


Statistics in Criminal Justice



Statistics in 
Criminal Justice 
 
Third Edition 

 
David Weisburd 

  

Chester Britt 

University of Maryland, MD, USA
and Hebrew University, Jerusalem, Israel

Northeastern University, Boston, MA, USA

and 



David Weisburd Chester Britt 

 
 

 
 

 

 

 

 
 

         Printed on acid-free paper.  

All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, 
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer 

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights. 
 
9  8  7  6  5  4  3  2  1                    
 
springer.com 
 

© 2007 Springer Science+Business Media, LLC 

Library of Congress Control Number: 2006940352

College of Criminal Justice 
Northeastern University

Institute of Criminology
Faculty of Law
The Hebrew University

Department of Criminology and Criminal Justice
University of Maryland

360 Huntington Avenue

and

software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. 

ISBN-10: 0-387-34112-9
ISBN-13: 978-0-387-34112-5

e-ISBN-10: 0-387-34113-7
e-ISBN-13: 978-0-387-34113-2

Israel

2220 LeFrak Hall

USA

USA
Mt. Scopus, Jerusalem 91905

College Park, MD 20742

Boston, MA 02115



For Bryan, who made the desert bloom, used
sun to brighten the night, and brought such joy
to family and friends

D. W.

C. B.

v

For Kelly



iv C H A P T E R N U M B E R :  C H A P T E R T I T L E

Contents

1

Statistics Are Used to Solve Problems 4

The Uses of Statistics 7

Measurement: The Basic Building Block of Research 13
Science and Measurement: Classification as a First Step in Research 14
Levels of Measurement 15
Relating Interval, Ordinal, and Nominal Scales: The Importance of Collecting Data 

at the Highest Level Possible 22
What Is a Good Measure? 23

Representing and Displaying Data 33
What Are Frequency Distributions and Histograms? 34
Extending Histograms to Multiple Groups: Using Bar Charts 40
Using Bar Charts with Nominal or Ordinal Data 47
Pie Charts 48
Time Series Data 49

Describing the Typical Case: Measures of Central Tendency 59
The Mode: Central Tendency in Nominal Scales 60
The Median: Taking into Account Position 62
The Mean: Adding Value to Position 68
Statistics in Practice: Comparing the Median and the Mean 76

How Typical Is the Typical Case?: Measuring Dispersion 86

The Purpose of Statistics Is to Clarify 3

Measuring Dispersion in Interval Scales: The Range, Variance, and Standard Deviation 94

Introduction: Statistics as a Research Tool

P r e f a c e

C h a p t e r  o n e

C h a p t e r  t w o

C h a p t e r  t h r e e

C h a p t e r  f o u r

C h a p t e r  f i v e

x i

vii

Basic Principles Apply Across Statistical Techniques  5

Measures of Dispersion for Nominal- and Ordinal-Level Data 87



The Logic of Statistical Inference: Making Statements 
About Populations from Sample Statistics 115

The Dilemma: Making Statements About Populations from Sample Statistics 116
The Research Hypothesis 119
The Null Hypothesis 121
Risks of Error in Hypothesis Testing 123
Risks of Error and Statistical Levels of Significance 125
Departing from Conventional Significance Criteria 127

Defining the Observed Significance Level of a Test: 
A Simple Example Using the Binomial Distribution 135

The Fair Coin Toss 137
Different Ways of Getting Similar Results 141
Solving More Complex Problems 144
The Binomial Distribution 145
Using the Binomial Distribution to Estimate the Observed Significance Level of a Test 149

Steps in a Statistical Test: Using the Binomial Distribution 
to Make Decisions About Hypotheses

Chi-Square: A Test Commonly Used for Nominal-Level Measures

Extending the Chi-Square Test to a Relationship Between Two Ordinal Variables: Identification with Fathers

The Normal Distribution and Its Application to Tests 

161
The Problem: The Impact of Problem-Oriented Policing on Disorderly Activity at Violent-Crime Hot Spots 162
Assumptions: Laying the Foundations for Statistical Inference 164
Selecting a Sampling Distribution 170
Significance Level and Rejection Region 172
The Test Statistic 177
Making a Decision 177

186
Testing Hypotheses Concerning the Roll of a Die 187
Relating Two Nominal-Scale Measures in a Chi-Square Test 195
Extending the Chi-Square Test to Multicategory Variables: The Example of Cell Allocations in Prison 201

and Delinquent Acts 206
The Use of Chi-Square When Samples Are Small: A Final Note 211

of Statistical Significance 221
The Normal Frequency Distribution, or Normal Curve 222
Applying Normal Sampling Distributions to Nonnormal Populations 234
Comparing a Sample to an Unknown Population: The Single-Sample z-Test for Proportions 239
Comparing a Sample to an Unknown Population: The Single-Sample t-Test for Means 244

C h a p t e r  s i x

C h a p t e r  s e v e n

C h a p t e r  e i g h t

C h a p t e r  n i n e

C h a p t e r  t e n

C O N T E N T Sviii



Distinguishing Statistical Significance and Strength of Relationship: 

Measuring Association for Interval-Level Data: 
Pearson’s Correlation Coefficient

Testing the Statistical Significance of Pearson’s r
Testing the Statistical Significance of Spearman’s r

An Introduction to Bivariate Regression

Multivariate Regression

Comparing Means and Proportions in Two Samples 256
Comparing Sample Means 257
Comparing Sample Proportions: The Two-Sample t-Test for Differences of Proportions 269
The t-Test for Dependent Samples 275
A Note on Using the t-Test for Ordinal Scales 280

Comparing Means Among More Than Two Samples: Analysis of Variance 292
Analysis of Variance 293
Defining the Strength of the Relationship Observed 314
Making Pairwise Comparisons Between the Groups Studied 317
A Nonparametric Alternative: The Kruskal-Wallis Test 320

Measures of Association for Nominal and Ordinal Variables 335

The Example of the Chi-Square Statistic 336
Measures of Association for Nominal Variables 339
Measures of Association for Ordinal-Level Variables 351
Choosing the Best Measure of Association for Nominal- and Ordinal-Level Variables 369

381
Measuring Association Between Two Interval-Level Variables 382
Pearson’s Correlation Coefficient 384
Spearman’s Correlation Coefficient 402

404
411

421
Estimating the Influence of One Variable on Another: The Regression Coefficient 422
Prediction in Regression: Building the Regression Line 427
Evaluating the Regression Model 435
The F-Test for the Overall Regression 449

462
The Importance of Correct Model Specifications 463
Correctly Specifying the Regression Model 475

C h a p t e r  e l e v e n

C h a p t e r  t w e l v e

C h a p t e r  t h i r t e e n

C h a p t e r  f o u r t e e n

C h a p t e r  f i f t e e n

C h a p t e r  s i x t e e n

C O N T E N T S ix



Logistic Regression

Special Topics: Confidence Intervals

Constructing Confidence Intervals

Special Topics: Statistical Power
Statistical Power

Critical Values of �2

Critical Value for P (Pcrit

Extending the Basic Logistic Regression Model

Multivariate Regression: Additional Topics 494
Non-linear Relationships 496
Interaction Effects 502 

An Example: Punishment Severity 513
An Example: Race and Punishment Severity 505

The Problem of Multicollinearity 514

Multivariate Regression with Multiple Category Nominal or Ordinal Measures:

526
Why Is It Inappropriate to Use OLS Regression for a Dichotomous Dependent Variable? 528
Logistic Regression 533
Interpreting Logistic Regression Coefficients 545
Comparing Logistic Regression Coefficients 555
Evaluating the Logistic Regression Model 561
Statistical Significance in Logistic Regression 565

 579
Multinomial Logistic Regression 581
Ordinal Logistic Regression 593
Substantive Example: Severity of Punishment Decisions 597

607
Confidence Intervals 609

613

629
631

Parametric versus Nonparametric Tests 640
Estimating Statistical Power: What Size Sample Is Needed for a Statistically Powerful Study? 640
Summing Up: Avoiding Studies Designed for Failure 644

Factorials 651

Distribution 652

Areas of the Standard Normal Distribution 653

Critical Values of Student’s t Distribution 654

Critical Values of the F-Statistic 655

), Tukey’s HSD Test 658

Critical Values for Spearman’s Rank-Order Correlation Coefficient 659

Fisher r-to-Z* Transformation 660

Glossary 662

Index 669

C h a p t e r  s e v e n t e e n

C h a p t e r  e i g h t e e n

C h a p t e r  n i n e t e e n

C h a p t e r  t w e n t y  o n e

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Appendix 6

Appendix 7

Appendix 8

C h a p t e r  t w e n t y

C O N T E N T Sx



Preface

Oliver Wendell Holmes, the distinguished associate justice of the
Supreme Court, was noted for his forgetfulness. On a train leaving
Washington, D.C., he is said to have been approached by a

awkward moments, the conductor recognized the distinctive-

however, is said to have looked sternly at the conductor and
responded, “Young man, the problem is not where is my ticket;
the problem is where am I going.”

basic understanding of statistics in this field. In the first chapter, the main
themes of the text are outlined and discussed. This preface describes
how the text is organized.

The text takes a building-block approach. This means that each chap-
ter helps prepare you for the chapters that follow. It also means that the
level of sophistication of the text increases as the text progresses. Basic
concepts discussed in early chapters provide a foundation for the intro-
duction of more complex statistical issues later. One advantage to this
approach is that it is easy to see, as time goes on, how much you have
learned about statistics. Concepts that would have seemed impossible to

of the book now, you will see equations that are quite forbidding. How-
ever, when you come to these equations after covering the material in
earlier chapters, you will be surprised at how easy they are to under-
stand.

Throughout the text, there is an emphasis on comprehension and not

his case and his pockets, could not locate his pass. After a few
conductor who requested his ticket. Holmes, searching through 

the rail company the ticket when he found it. Justice Holmes,
looking and well-known jurist and suggested that he just send 

For the student of statistics, a textbook is like a train ticket. Not only does
it provide a pass the student can use for entering a new and useful area
of study; it also defines the route that will be taken and the goals that
are important to achieve. Different textbooks take different approaches
and emphasize different types of material. Statistics in Criminal Jus-
tice emphasizes the uses of statistics in research in crime and justice.
This text is meant for students and professionals who want to gain a

examine real-life criminal justice problems. In the opening chapters of the
sible but sophisticated understanding of statistics that can be used to 

simple when you encounter them later on. If you turn to the final chapters
understand, had they been introduced at the outset, are surprisingly

xi

computation. This approach is meant to provide readers with an acces-



book, basic themes and materials are presented. Chapter 1 provides an
introduction to how we use statistics in criminal justice and the problems
we face in applying statistics to real-life research problems. Chapters 2
through 5 introduce basic concepts of measurement and basic methods

build on the themes covered in these early chapters.
One of the fundamental problems researchers face is that they seek

to make statements about large populations (such as all U.S. citizens)
but are generally able to collect information or data on only a sample,
or smaller group, drawn from such populations. In Chapters 6 through
12, the focus is on how researchers use statistics to overcome this

special problems are encountered in criminal justice research, and how
should the researcher approach them? Some texts skip over the basics,

Having examined how we can make statements about populations
from information gained from samples, we turn to how we describe the
strength of association between variables. In the social sciences, it is
often essential not only to determine whether factors are related but also
to define the strength and character of those relationships. Accordingly,
in Chapters 13 and 14, we look at measures of association, and in Chap-

In the concluding chapters, we look at two special topics. Chapter

trust you can place in the specific estimates that you obtain from a
sample. Because our emphasis is on research in criminal justice, we
conclude the text with a chapter that examines methods for evaluating
and improving the design of a research project. The statistical concept

concern in criminal justice research and accordingly is given emphasis
in this text.

remember that the more advanced statistics presented in later chapters
Many of the statistics provided here will be familiar to you; however, 

ing statements about populations based on samples? What are the  
problem. What is the logic that underlies the statistics we use for mak-

for graphically representing data and using statistics to describe data.

different types of statistical procedures or tests that can be used? What

moving students from test to test before they understand the logic 
behind the tests. The approach here is to focus in greater detail on 
relatively simple statistical decisions before moving on to more com-
plex ones.

ters 15 through 19, we examine bivariate and multivariate regression.

commonly used in criminal justice.
These are likely to be new topics for you, though they are statistics

20 describes confidence intervals, a method for assessing how much

that is central to Chapter 21—statistical power—follows directly from

ignored in introductory statistics texts. However, it has become a central
the concepts developed in prior chapters. Statistical power is often 

While it is always difficult in statistics to decide where an introduc-
tory text should stop, with an understanding of these techniques you 

P R E F A C Exii



point in learning statistics, but also to leave you with the confidence and

A working knowledge of computers is not required to understand
the statistical concepts or procedures presented in the text. However,
computers have become a very important part of research in statistics,
and thus we provide computer exercises for relevant chapters and a

Statistics in Criminal Justice will allow you to approach statistics in a
familiar context. It emphasizes the statistics and the problems that are
commonly encountered in criminal justice research. It focuses on under-
standing rather than computation. However, it takes a serious approach
to statistics, which is relevant to the real world of research in crime and
justice. The text is meant not only as an introduction for students but
also as a reference for researchers. The approach taken will help both
students who want an introduction to statistics and professionals who

tools to tackle more complex problems on your own. Each chapter starts
with a statement of the basic concepts and problems addressed and ends
with a full chapter summary. There is also a list of equations, when
relevant, at the end of the chapter. These materials should help you to
review what you have learned and to identify the basic knowledge you
need to move on to subsequent chapters. 

All of the chapters contain a list of key terms with short definitions. 
The key terms appear in boldface the first time they are mentioned in 
the chapter. Sometimes a term may have been briefly explained in an 
earlier chapter, but is designated as a key term in the chapter where 
the concept is more central. A general glossary of key terms appears at 

at the end. The questions are designed to make you think about the
subjects covered in the chapter. Sometimes they are straightforward,
following directly from the text. Sometimes they ask you to develop 
ideas in slightly different ways than in the text. In constructing the ques-
tions, we sought to make working on statistical issues as much fun as
possible. In statistics, it is crucial to go over material more than once.
The questions are meant to reinforce the knowledge you have gained.

seek a straightforward explanation for statistics that have become a 
routine tool in contemporary criminal justice systems.

will have the basic tools to comprehend and conduct criminal justice
research. Of course, these tools constitute a building block for more
advanced methods. The goal of the text is not only to bring you to this

web site where you can access the data needed for those exercises.
You are encouraged to use the web site. It will help you to see the
connection between the topics discussed in the chapters and statistical
computing.

P R E F A C E xiii
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tool for answering questions. It allows us to take large bodies of infor-
mation and summarize them with a few simple statements. It lets us
come to solid conclusions even when the realities of the research world
make it difficult to isolate the problems we seek to study. Without statis-
tics, conducting research about crime and justice would be virtually im-
possible. Yet, there is perhaps no other subject in their university studies
that criminal justice students find so difficult to approach.

A good part of the difficulty lies in the links students make between
statistics and math. A course in statistics is often thought to mean long
hours spent solving equations. In developing your understanding of sta-
tistics in criminal justice research, you will come to better understand the
formulas that underlie statistical methods, but the focus will be on con-
cepts and not on computations. There is just no way to develop a good
understanding of statistics without doing some work by hand. But in the
age of computers, the main purpose of doing computations is to gain a
deeper understanding of how statistics work.

Researchers no longer spend long hours calculating statistics. In the
1950s, social scientists would work for months developing results that
can now be generated on a computer in a few minutes. Today, you do
not need to be a whiz kid in math to carry out a complex statistical
analysis. Such analyses can be done with user-friendly computer pro-
grams. Why then do you need a course in statistics? Why not just leave it
to the computer to provide answers? Why do you still need to learn the
basics?

The computer is a powerful tool and has made statistics accessible to
a much larger group of criminal justice students and researchers. How-
ever, the best researchers still spend many hours on statistical analysis.
Now that the computer has freed us from long and tedious calculations,
what is left is the most challenging and important part of statistical analy-
sis: identifying the statistical tools that will best serve researchers in inter-
preting their research for others.

2

THE PURPOSE OF STATISTICAL ANALYSIS is to clarify and not confuse. It is a
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need to choose statistics for research and interpret them. It is meant for
students of criminology and criminal justice. As in other fields, there are
specific techniques that are commonly used and specific approaches that
have been developed over time by researchers who specialize in this
area of study. These are the focus of this text. Not only do we draw our
examples from crime and justice issues; we also pay particular attention
to the choices that criminal justice researchers make when approaching
statistical problems.

Before we begin our study of statistics in criminal justice, it is useful
to state some basic principles that underlie the approach taken in this
text. They revolve around four basic questions. First, what should our
purpose be in choosing a statistic? Second, why do we use statistics to
answer research questions? Third, what basic principles apply across
very different types of statistics? And finally, what are the different uses
for statistics in research?

guage. In this sense, statistics provide a way for the initiated to share
ideas and concepts without including the rest of us. Of course, it is nec-
essary to use a common language to report research results. This is one
reason why it is important for you to take a course in statistics. But the
reason we use statistics is to make research results easier—not more dif-

would be just to tell us about your subjects. You could describe each
offender and his or her criminal history without creating any real
confusion. But what if you wanted to report on 20 offenders? It would
take quite a long time to tell us about each one in some detail, and it 
is likely that we would have difficulty remembering who was who. 
It would be even more difficult to describe 100 offenders. With
thousands of offenders, it would be just about impossible to take this
approach.

This is one example of how statistics can help to simplify and clarify
the research process. Statistics allow you to use a few summary state-
ments to provide a comprehensive portrait of a large group of offenders.
For example, instead of providing the name of each offender and telling
us how many crimes he or she committed, you could present a single

ficult—to understand. For example, if you wanted to provide a description 
of three offenders you had studied, you would not need to search for statis-
tics to summarize your results. The simplest way to describe your sample

The goal of this text is to provide you with the basic skills you will

It sometimes seems as if researchers use statistics as a kind of secret lan-

C L A R I F Y

T h e  P u r p o s e  o f  S t a t i s t i c s  I s  t o  C l a r i f y  
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statistic that described the average number of crimes committed by the
people you studied. You might say that, on average, the people you
studied committed two to three crimes in the last year. Thus, although it
might be impossible to describe each person you studied, you could, by
using a statistic, give your audience an overall picture. Statistics make it
possible to summarize information about a large number of subjects with
a few simple statements.

Given that statistics should simplify the description of research results,
it follows that the researcher should utilize the simplest statistics appro-
priate for answering the research questions that he or she raises.
Nonetheless, it sometimes seems as if researchers go out of their way to
identify statistics that few people recognize and even fewer understand.
This approach does not help the researcher or his or her audience.
There is no benefit in using statistics that are not understood by those in-
terested in your research findings. Using a more complex statistic when a
simpler one is appropriate serves no purpose beyond reducing the num-
ber of people who will be influenced by your work.

The best presentation of research findings will communicate results in
a clear and understandable way. When using complex statistics, the re-
searcher should present them in as straightforward a manner as possible.
The mark of good statisticians is not that they can mystify their audi-
ences, but rather that they can communicate even complex results in a
way that most people can understand.

S t a t i s t i c s  A r e  U s e d  t o  S o l v e  P r o b l e m s

Statistics develop because of a need to deal with a specific type of ques-
tion or problem. In the example above, you were faced with the
dilemma that you could not describe each person in a very large study
without creating a good deal of confusion. We suggested that an average
might provide a way of using one simple statistic to summarize a charac-
teristic of all the people studied. The average is a statistical solution. It is
a tool for solving the problem of how to describe many subjects with a
short and simple statement.

As you will see in later chapters, statistics have been developed to
deal with many different types of problems that researchers face. Some
of these may seem difficult to understand at the outset, and indeed it is
natural to be put off by the complexities of some statistics. However, the
solutions that statisticians develop are usually based on simple common
sense. Contrary to what many people believe, statistics follow a logic
that you will find quite easy to follow. Once you learn to trust your com-
mon sense, learning statistics will turn out to be surprisingly simple. Indeed,
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encounter in this text. Stating them at the outset will help you to see
how statistical procedures in later chapters are linked one to another. To
understand these principles, you do not need to develop any computa-
tions or formulas; rather, you need to think generally about what we are
trying to achieve when we develop statistics.

The first is simply that in developing statistics we seek to reduce the
level of error as much as possible. The purpose of research is to provide
answers to research questions. In developing these answers, we want to
be as accurate as we can. Clearly, we want to make as few mistakes as
possible. The best statistic is one that provides the most accurate state-
ment about your study. Accordingly, a major criterion in choosing which
statistic to use—or indeed in defining how a statistic is developed—is the
amount of error that a statistic incorporates. In statistics, we try to mini-
mize error whenever possible.

Unfortunately, it is virtually impossible to develop any description
without some degree of error. This fact is part of everyday reality. For
example, we do not expect that our watches will tell perfect time or that
our thermostats will be exactly correct. At the same time, we all know
that there are better watches and thermostats and that one of the factors
that leads us to define them as “better” is that they provide information
with less error. Similarly, although we do not expect our stockbroker to

possible. Fear of statistics is a greater barrier to learning than any of the com-
putations or formulas that we will use. It is difficult to learn anything when 
you approach it with great foreboding. Statistics is a lot easier than you think.
The job of this text is to take you step by step through the principles and 
ideas that underlie basic statistics for criminal justice researchers. At the 
beginning, we will spend a good deal of time examining the logic behind 
statistics and illustrating how and why statisticians choose a particular 

that the solutions statisticians use make very good sense.

solution to a particular statistical problem. What you must do at the outset 
is take a deep breath and give statistics a chance. Once you do, you will find 

our experience is that students who have good common sense, even
if they have very little formal background in this area, tend to become

S T A T I S T I C S  A R E  U S E D  T O  S O L V E  P R O B L E M S

A few basic principles underlie much of the statistical reasoning you will

be correct all of the time, we are likely to choose the broker who we
believe will make the fewest mistakes.

the best criminal justice statisticians. But in order to be able to use com- 
mon sense, it is important to approach statistics with as little fear as

B a s i c  P r i n c i p l e s  A p p l y  A c r o s s  S t a t i s t i c a l  T e c h n i q u e s
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In choosing a statistic, we also use a second principle to which we
will return again and again in this text: Statistics based on more informa-
tion are generally preferred over those based on less information. This
principle is common to all forms of intelligence gathering and not just
those that we use in research. Good decision making is based on infor-
mation. The more information available to the decision maker, the better
he or she can weigh the different options that are presented. The same
goes for statistics. A statistic that is based on more information, all else
being equal, will be preferred over one that utilizes less information.
There are exceptions to this rule, often resulting from the quality or form
of the information or data collected. We will discuss these in detail in the
text. But as a rule, the best statistic utilizes the maximum amount of
information.

Our third principle relates to a danger that confronts us in using statis-
tics as a tool for describing information. In many studies, there are cases
that are very different from all of the others. Indeed, they are so different
that they might be termed deviant cases or, as statisticians sometimes call
them, “outliers.” For example, in a study of criminal careers, there may
be one or two offenders who have committed thousands of crimes,
whereas the next most active criminal in the sample has committed only

choice of statistics and your presentation of results.
In almost every statistic we will study, outliers present a distinct and

troublesome problem. A deviant case can make it look as if your offend-
ers are younger or older than they really are—or less or more criminally
active than they really are. Importantly, deviant cases often have the
most dramatic effects on more complex statistical procedures. And it is
precisely here, where the researcher is often preoccupied with other sta-
tistical issues, that deviant cases go unnoticed. But whatever statistic is
used, the principle remains the same: Outliers present a significant prob-
lem in choosing and interpreting statistics.

The final principle is one that is often unstated in statistics, because it
is assumed at the outset: Whatever the method of research, the researcher
must strive to systematize the procedures used in data collection and
analysis. As Albert J. Reiss, Jr., a pioneer in criminal justice methodolo-
gies, has noted, “systematic” means in part “that observation and record-
ing are done according to explicit procedures which permit replication
and that rules are followed which permit the use of scientific inference.”1

1A. J. Reiss, Jr., “Systematic Social Observation of Social Phenomenon,” in Herbert
Costner (ed.), Sociological Methodology (San Francisco: Jossey Bass, 1971), pp. 3–33.

a few hundred crimes. Although such cases form a natural part of the
research process, they often have very significant implications for your



T H E U S E S O F S T A T I S T I C S 7

While Reiss’s comment will become clearer as statistical concepts are
defined in coming chapters, his point is simply that you must follow
clearly stated procedures and rules in developing and presenting statisti-

follow a consistent logic from start to finish. You should not jump from
statistic to statistic merely because the outcomes are favorable to the the-
sis you raise. In learning about statistics, it is also important to go step by
step—and to be well organized and prepared. You cannot learn statistics
by cramming in the last week of classes. The key to learning statistics is
to adopt a systematic process and follow it each week.

Statistical procedures are built on all of the research steps that pre-
cede them. If these steps are faulty, then the statistics themselves will be
faulty. In later chapters, we often talk about this process in terms of the
assumptions of the statistics that we use. We assume that all of the rules
of good research have been followed up to the point where we decide
on a statistic and calculate it. Statistics cannot be disentangled from the
larger research process that comes before them. The numbers that we

systematic approach is crucial not only to the statistical procedures that
you will learn about in this text but to the whole research process.

three ways in which statistics are used in criminal justice. The first is
called descriptive statistics, because it helps in the summary and de-
scription of research findings. The second, inferential or inductive sta-
tistics, allows us to make inferences or statements about large groups
from studies of smaller groups, or samples, drawn from them. Finally,
we introduce multivariate statistics toward the end of the text. Multi-
variate statistics, as the name implies, allow us to examine a series of
variables at one time.

Descriptive Statistics
We are all familiar in some way with descriptive statistics. We use them
often in our daily lives, and they appear routinely in newspapers and on
television. Indeed, we use them so often that we sometimes don’t think

cal findings. It is important to approach statistics in a systematic way. You 
cannot be sloppy or haphazard, at least if the statistic is to provide a good
answer to the research question you raise. The choice of a statistic should

In the chapters that follow, we will examine three types of statistics or

employed. Very complex statistics cannot hide bad research methods. A
use are only as good as the data collection techniques that we have 

T h e  U s e s  o f  S t a t i s t i c s
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of them as statistics at all. During an election year, everyone is con-
cerned about the percentage support that each candidate gains in the
primaries. Students at the beginning of the semester want to know what
proportion of their grades will be based on weekly exercises. In deciding
whether our salaries are fair, we want to know what the average salary is
for other people in similar positions. These are all descriptive statistics.
They summarize in one simple statement the characteristics of many
people. As discussed above in the example concerning criminal histories,
descriptive statistics make it possible for us to summarize or describe
large amounts of information.

In the chapters that follow, we will be concerned with two types of
descriptive statistics: measures of central tendency and measures of
dispersion. Measures of central tendency are measures of typicality.
They tell us in one statement what the average case is like. If we could
take only one person as the best example for all of the subjects we stud-
ied, who would it be? If we could choose only one level of criminal ac-
tivity to typify the frequency of offending of all subjects, what level
would provide the best snapshot? If we wanted to give our audience a
general sense of how much, on average, a group of offenders stole in a
year, what amount would provide the best portrait? Percentages, propor-
tions, and means are all examples of measures of central tendency that
we commonly use. In the coming chapters, you will learn more about
these statistics, as well as more complex measures with which you may
not be familiar, such as correlation and regression coefficients.

Having a statistic that describes the average case is very helpful in de-
scribing research results. However, we might also want to know how
typical this average case is of the subjects in our study. The answer to
this question is provided by measures of dispersion. They tell us to what
extent the other subjects we studied are similar to the case or statistic we
have chosen to represent them. Although we don’t commonly use mea-
sures of dispersion in our daily lives, we do often ask similar questions
without the use of such statistics.

For example, in deciding whether our income is fair, we might want
to know not only the average income of others in similar positions, but
also the range of incomes that such people have. If the range was very
small, we would probably decide that the average provides a fairly good
portrait of what we should be making. If the range was very large, we
might want to investigate more carefully why some people make so
much more or less than the average. The range is a measure of disper-
sion. It tells us about the spread of scores around our statistic. In the
chapters that follow, we will look at other measures of dispersion—for
example, the standard deviation and variance, which may be less famil-
iar to you. Without these measures, our presentation of research findings
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would be incomplete. It is not enough simply to describe the typical
case; we must also describe to what degree other cases in our study are
different from or similar to it.

Inferential Statistics
Inferential statistics allow us to make statements about a population, or
the larger group of people we seek to study, on the basis of a sample
drawn from that population. Without this very important and powerful
tool, it would be very difficult to conduct research in criminal justice.
The reason is simple. When we conduct research, we do so to answer
questions about populations. But in reality we seldom are able to collect
information on the whole population, so we draw a sample from it. Sta-
tistical inference makes it possible for us to infer characteristics from that
sample to the population.

Why is it that we draw samples if we are really interested in making
statements about populations? In good part it is because gaining informa-
tion on most populations is impractical and/or too expensive. For exam-
ple, if we seek to examine the attitudes of U.S. citizens toward criminal
justice processing, we are interested in how all citizens feel. However,
studying all citizens would be a task of gigantic proportion and would
cost billions of dollars. Such surveys are done every few years and are
called censuses. The last census in the United States took many years to
prepare and implement and cost over $5 billion to complete. If every re-
search study of the American population demanded a census, then we

would likely cost millions of dollars to complete a simple study of their
attitudes. This is because the most inexpensive data collection can still
cost tens of dollars for each subject studied. When you consider that the
National Institute of Justice, the primary funder of criminal justice re-
search in the United States, provides a total of about $100 million a year
for all research, it is clear that criminal justice research cannot rely on
studies of whole populations.

It is easy to understand, then, why we want to draw a sample or sub-
set of the larger population to study, but it is not obvious why we should
believe that what we learn from that sample applies to the population
from which it is drawn. How do we know, for example, that the atti-
tudes toward criminal justice expressed by a sample of U.S. citizens are
similar to the attitudes of all citizens? The sample is a group of people

would have very few research projects indeed. Even when we are interested
in much smaller populations in the criminal justice system, examination of
the entire population is often beyond the resources of the criminal justice
researcher. For example, to study all U.S. prisoners, we would have to
study over 1 million people.

Even if we wanted to look at the 100,000 or so women prisoners, it
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drawn from the population; it is not the population itself. How much

surveys that now form so much a part of public life or the studies that
you read about in your other college classes. When a news organization

sions about populations—whether of offenders, criminal justice agents,
crime-prone places, or criminal justice events—on samples. Statistical in-
ference provides a method for deciding to what extent you can have
faith in such results. It allows you to decide when the outcome observed
in a sample can be generalized to the population from which it was
drawn. Statistical inference is a very important part of statistics and one
we will spend a good deal of time discussing in this text.

Taking into Account Competing Explanations: Multivariate Statistics
Multivariate statistics allow us to solve a different type of problem in re-
search. It is often the case that the issue on which we want to focus is
confounded by other factors in our study. Multivariate statistics allow us
to isolate one factor while taking into account a host of others. For ex-
ample, a number of criminal justice studies examine the impact of im-
prisonment on the future criminal behavior of offenders. In general, they
compare offenders who are found guilty in court and sentenced to

once they are released into the community, is different from that of non-
prisoners. Researchers conducting these studies face a very difficult re-
search problem. Prisoners and nonprisoners are often very different
types of people, and some of these differences are likely to affect their

impact of imprisonment on future offending. If we discover that prison-
ers, once released into the community, are more likely than nonprison-
ers to commit a crime, how can we tell whether this was a result of the

can we rely on such estimates? And to what extent can we trust such statis-
tics?  You have probably raised such issues already, in regard to either the

conducts a survey of 1,000 people to tell us how all voters will vote in the
next election, it is using a sample to make statements about a population.

The criminal justice studies you read about also base their conclu-

prison with those who are found guilty but do not receive a prison sanction.
 Such studies focus on whether the criminal behavior of prisoners,

criminal behavior in the community. For example, prisoners are more likely
than nonprisoners to have been arrested before, since a prior arrest is often
an important factor in the judge’s decision to incarcerate a convicted off-
ender in the first place. And we know from research about criminal careers 
that people with a prior history of arrest are much more likely than people 
without such a history to commit a crime in the future. Accordingly, prisoners 
are more likely to commit a crime in the future, irrespective of the fact that 
they have served a prison sentence. This makes it very difficult to assess the
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experience of imprisonment? It might be due to the simple fact that pris-
oners are more likely than nonprisoners to commit crimes in the first
place. Their more serious arrest histories would predict this result.

The complex task facing the criminal justice researcher is to isolate
the specific impact of imprisonment itself from all of the other possible
explanations for differences in reoffending between prisoners and non-
prisoners. Multivariate analysis provides a statistical solution to this prob-
lem. It allows the criminal justice researcher to isolate the impact of one
factor—in this case, imprisonment—from those of other factors, such as
prior criminal history, that might confound the researcher’s conclusions.

C h a p t e r  S u m m a r y

Statistics seem intimidating because they are associated with complex
mathematical formulas and computations. Although some knowledge of
math is required, an understanding of the concepts is much more im-
portant than an in-depth understanding of the computations. Today’s
computers, which can perform complex calculations in a matter of sec-
onds or fractions of seconds, have drastically cut the workload of the
researcher. They cannot, however, replace the key role a researcher
plays in choosing the most appropriate statistical tool for each research
problem.

The researcher’s aim in using statistics is to communicate findings in a
clear and simple form. As a result, the researcher should always choose
the simplest statistic appropriate for answering the research question.

ing principles apply to all types of statistics: (1) In developing statistics,
we seek to reduce the level of error as much as possible. (2) Statistics
based on more information are generally preferred over those based on
less information. (3) Outliers present a significant problem in choosing
and interpreting statistics. (4) The researcher must strive to systematize
the procedures used in data collection and analysis.

There are three principal uses of statistics discussed in this book. In
descriptive statistics, the researcher summarizes large amounts of in-
formation in an efficient manner. Two types of descriptive statistics that
go hand in hand are measures of central tendency, which describe
the characteristics of the average case, and measures of dispersion,
which tell us just how typical this average case is. We use inferential
statistics to make statements about a population on the basis of a sam-
ple drawn from that population. Finally, in multivariate statistics, we
isolate the impact of one factor from others that may distort our results.

Statistics offer commonsense solutions to research problems. The follow-
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K e y  T e r m s

descriptive statistics A broad area of sta-
tistics that is concerned with summarizing
large amounts of information in an efficient
manner. Descriptive statistics are used to
describe or represent in summary form the
characteristics of a sample or population.

inferential, or inductive, statistics A
broad area of statistics that provides the re-
searcher with tools for making statements
about populations on the basis of knowl-
edge about samples. Inferential statistics
allow the researcher to make inferences re-
garding populations from information
gained in samples.

measures of central tendency Descrip-
tive statistics that allow us to identify the

typical case in a sample or population.
Measures of central tendency are measures
of typicality.

measures of dispersion Descriptive sta-
tistics that tell us how tightly clustered or
dispersed the cases in a sample or popula-
tion are. They answer the question “How
typical is the typical case?”

multivariate statistics Statistics that 
examine the relationships among vari-
ables while taking into account the possi-

variable from others that may distort his
or her results.

ble influences of other confounding factors.
Multivariate statistics allow the resear-
cher to isolate the impact of one
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MEASUREMENT LIES AT THE HEART of statistics. Indeed, no statistic would
be possible without the concept of measurement. Measurement is also an
integral part of our everyday lives. We routinely classify and assign values
to people and objects without giving much thought to the processes that
underlie our decisions and evaluations. In statistics, such classification and
ordering of values must be done in a systematic way. There are clear rules
for developing different types of measures and defined criteria for decid-
ing which are most appropriate for answering a specific research question.

Although it is natural to focus on the end products of research, it is im-
portant for the researcher to remember that measurement forms the first
building block of every statistic. Even the most complex statistics, with
numbers that are defined to many decimal places, are only as accurate as
the measures upon which they are built. Accordingly, the relatively simple
rules we discuss in this chapter are crucial for developing solid research
findings. A researcher can build a very complex structure of analysis. But if
the measures that form the foundation of the research are not appropriate
for the analyses that are conducted, the findings cannot be relied upon.

We begin Chapter 2 by examining the basic idea of measurement in sci-
ence. We then turn to a description of the main types of measures in statis-
tics and the criteria used to distinguish among them. We are particularly
concerned with how statisticians rank measurement based on the amount
of information that a measure includes. This concept, known as levels of
measurement, is very important in choosing which statistical procedures are
appropriate in research. Finally, we discuss some basic criteria for defining
a good measure.

S c i e n c e  a n d  M e a s u r e m e n t :  
C l a s s i f i c a t i o n  a s  a  F i r s t  S t e p  i n  R e s e a r c h

Criminal justice research is a scientific enterprise that seeks to develop
knowledge about the nature of crimes, criminals, and the criminal justice

14
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system. The development of knowledge can, of course, be carried out in
a number of different ways. Criminal justice researchers may, for exam-
ple, observe the actions of criminal justice agents or speak to offenders.
They may examine routine information collected by government or crim-
inal justice agencies or develop new information through analyses of the
content of records in the criminal justice system. Knowledge may be de-
veloped through historical review or even through examination of ar-
chaeological records of legal systems or sanctions of ancient civilizations.

The methods that criminal justice researchers use vary. What they
have in common is an underlying philosophy about how knowledge
may be gained and what scientific research can tell us. This philosophy,
which is predominant in scientific study in the modern world, is usually
called positivism.1 At its core is the idea that science is based on facts
and not values. Science cannot make decisions about the way the world
should be (although scientific observation may inform such decisions).
Rather, it allows us to examine and investigate the realities of the world
as we know it. The major tool for defining this reality in science is mea-
surement.

Measurement in science begins with the activity of distinguishing
groups or phenomena from one another. This process, which is gener-
ally termed classification, implies that we can place units of scientific
study—such as victims, offenders, crimes, or crime places—in clearly de-
fined categories. The classification process leads to the creation of vari-
ables. A variable is a trait, characteristic, or attribute that can be mea-
sured. What differentiates measurement in science from measurement in
our everyday lives is that there must be systematic criteria for determin-
ing both what each category of a variable represents and the boundaries
between categories. We now turn to a discussion of these criteria as they
relate to different levels of measurement.

L e v e l s  o f  M e a s u r e m e n t

Classification forms the first step in measurement. There are a number of
different ways we can classify the people, places, or phenomena we
wish to study. We may be content to simply distinguish one category
from another. But we may also be interested in how those categories re-
late to one another. Do some represent more serious crime or less seri-
ous crime? Can we rank how serious various crimes are in a clear and

1See D. Black, “The Boundaries of Legal Sociology,” in D. Black and M. Mileski (eds.),
The Social Organization of Law (New York: Seminar Press, 1973), pp. 41–47.
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defined order? Is it possible to define exactly how serious one crime is
relative to another?

As these types of questions suggest, measurement can be a lot more
complex than simply distinguishing one group from another. Recogniz-
ing this complexity, statisticians have defined four basic groups of mea-
sures, or scales of measurement, based on the amount of information
that each takes advantage of. The four are generally seen as occupying
different positions, or levels, on a ladder of measurement (see Figure
2.1). Following a principle stated in Chapter 1—that statistics based on
more information are generally preferred—measures that include more
information rank higher on the ladder of measurement.

Nominal Scales
At the bottom of the ladder of measurement are nominal scales. Nominal-
scale variables simply distinguish one phenomenon from another. Sup-
pose, for example, that you want to measure crime types. In your study,
you are most interested in distinguishing between violent crime and
other types of crime. To fulfill the requirements of a nominal scale, and
thus the minimum requirements of measurement, you need to be able to
take all of the crime events in your study and place them in one of two
categories: either violent crime or other crime. There can be no overlap.
In practice, you might come across many individual events that seem dif-
ficult to classify. For example, what would you do with a crime event in
which the offender first stole from his victim and then assaulted him?
This event includes elements of both violent and property crime. What
about the case where the offender did not assault the victim, but merely

Ratio

Interval

Ordinal

Nominal
Categorization

Order + Categorization

True Zero + Set Intervals
+ Order + Categorization

Set Intervals
+ Order + Categorization

Ladder of MeasurementFigure 2.1

threatened her? Would you decide to include this in the category of 
violent crime or other crime?



L E V E L S O F M E A S U R E M E N T 17

In criminology and criminal justice, we often make use of nominal-
scale variables. Many of these reflect simple dichotomies, like the distinc-
tion between violent and other crime. For example, criminologists often
seek to examine differences between men and women in their involve-
ment in criminality or treatment in the criminal justice system. It is com-
mon as well to distinguish between those who are sentenced to prison
and those who are not or those who commit more than one crime (“re-
cidivists”) and those who are only one-shot offenders.

It is often necessary to distinguish among multiple categories of a
nominal-level variable. For example, if you wanted to describe legal rep-
resentation in court cases, you would provide a very simplistic picture if
you simply distinguished between those who had some type of legal
representation and those who did not. Some of the offenders would be
likely to have private attorneys and others court-appointed legal repre-
sentation. Still others might gain help from a legal aid organization or a
public defender. In order to provide a full portrait of legal representa-
tion, you would likely want to create a nominal-scale variable with five
distinct categories: No attorney, Legal aid, Court appointed, Public de-
fender, and Private attorney. Table 2.1 presents a number of examples of
nominal-level scales commonly used in criminal justice.

Nominal-scale measures can include any number of different cate-
gories. The Uniform Crime Reporting system, which keeps track of ar-
rests in the United States, includes some 29 categories of crime. These

Nominal-Scale Variables Commonly Found in Criminal Justice Research

VARIABLE COMMON CATEGORIES

Gender Male, Female
Race-Ethnicity Non-Hispanic Black, Non-Hispanic White, Hispanic (any race)
Marital Status Single, Married, Separated, Divorced, Widowed
Pretrial Release Status Detained, Released
Type of Case Disposition Dismissed, Acquitted, Diverted, Convicted
Method of Conviction Negotiated guilty plea, Nonnegotiated guilty plea, Bench trial, Jury trial
Type of Punishment Incarceration, Nonincarceration

Table 2.1

In measurement, you must make systematic choices that can be applied
across events. You cannot decide one way for one event and another 
way for another. In the situation described above, you might conclude
that the major issue in your study was the presence of violence. Thus,
all cases with any violent events would be placed in the violent cate-
gory. Similarly, you might conclude that violence had to include physical
victimization. Whatever your choice, to meet the requirements of mea-
surement you must define clearly where all events in your study are to
be placed.
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range from violent crimes, such as murder or robbery, to vagrancy and
vandalism. Although there is no statistical difficulty with defining many
categories, the more categories you include, the more confusing the de-
scription of the results is likely to be. If you are trying to provide a sense
of the distribution of crime in your study, it is very difficult to practically
describe 20 or 30 different crime categories. Keeping in mind that the
purpose of statistics is to clarify and simplify, you should try to use the
smallest number of categories that will accurately describe the research
problem you are examining.

At the same time, do not confuse collection of data with presentation
of your findings. You do not lose anything by collecting information in
the most detailed way that you can. If you collect information with a
large number of categories, you can always collapse a group of cate-
gories into one. For example, if you collect information on arrest events
utilizing the very detailed categories of the criminal law, you can always
combine them later into more general categories. But if you collect infor-
mation in more general categories (for example, just violent crime and
property crime), you cannot identify specific crimes such as robbery or
car theft without returning to the original source of your information.

Though nominal-scale variables are commonly used in criminology
and criminal justice, they provide us with very limited knowledge about
the phenomenon we are studying. As you will see in later chapters, they
also limit the types of statistical analyses that the researcher can employ.
In the hierarchy of measurement, nominal-scale variables form the low-
est step in the ladder. One step above are ordinal scales.

Ordinal Scales
What distinguishes an ordinal from a nominal scale is the fact that we as-
sign a clear order to the categories included. Now not only can we dis-
tinguish between one category and another; we also can place these
categories on a continuum. This is a very important new piece of infor-
mation; it allows us to rank events and not just categorize them. In the
case of crime, we might decide to rank in order of seriousness. In mea-
suring crime in this way, we would not only distinguish among cate-
gories, such as violent, property, and victimless crimes; we might also
argue that violent crimes are more serious than property crimes and that
victimless crimes are less serious than both violent and property crimes.
We need not make such decisions arbitrarily. We could rank crimes by
the amount of damage done or the ways in which the general popula-
tion rates or evaluates different types of crime.

Ordinal-scale variables are also commonly used in criminal justice
and criminology. Indeed, many important criminal justice concepts are
measured in this way. For example, in a well-known London survey of
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2

Ranking crime by seriousness and measuring people’s fear of crime

tences, damage to victims, complexity of crime, or seriousness of prior
records of offenders, as illustrated in Table 2.2. What all of these vari-
ables have in common is that they classify events and order them along
a continuum. What is missing is a precise statement about how various
categories differ one from another.

Interval and Ratio Scales
Interval scales not only classify and order people or events; they also
define the exact differences between them. An interval scale requires
that the intervals measured be equal for all of the categories of the scale
examined. Thus, an interval-scale measure of prior record would not
simply rank prior record by seriousness; it would allow us to say how
much more serious one offender’s record was than another’s in a stan-
dard unit of measurement—for example, number of arrests, convictions,
or prison stays.

2See R. Sparks, H. Genn, and D. Dodd, Surveying Victims: A Study of the Measurement
of Criminal Victimization (New York: Wiley, 1977).

Ordinal Scale Variables Commonly Found in Criminal Justice Research

VARIABLE COMMON CATEGORIES

Level of Education Less than high school, Some high school, High school graduation,
Some college or trade school, College graduate, Graduate/
professional school

Severity of Injury in an Assault None, Minor—no medical attention, Minor—medical attention
required, Major—medical attention required with no
hospitalization, Major—medical attention required with
hospitalization

Attitude and Opinion Survey Strongly disagree, Disagree, No opinion, Agree, Strongly agree; 
Questions Very high, High, Moderate, Low, Very low
Bail-Release Decision Released on own recognizance, Released on bail, Detained—

unable to post bail, Denied release
Type of Punishment Probation/community service, Jail incarceration, Prison

incarceration, Death sentence

Table 2.2

victimization, fear of crime was measured using a simple four-level
ordinal scale. Researchers asked respondents: “Are you personally con-
cerned about crime in London as a whole? Would you say you are (1)
very concerned, (2) quite concerned, (3) a little concerned, or (4) not
concerned at all?”

are only two examples of the use of ordinal scales in criminal justice
research. We could also draw examples regarding severity of court sen-
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Most criminal justice variables that meet the criteria of an interval scale
also meet the criteria of a ratio scale. A ratio scale has all of the charac-
teristics of an interval scale but also requires that there be a non-arbitrary,
or true, zero value. This means simply that zero represents the absence

that the former has 15 more arrests than the latter. We have an important
piece of information that we would not have gained with an ordinal
scale. Now, not only can we say that the prior record of one offender is
more serious than that of another, but we can specify exactly how many
more arrests the offender has. This variable thus meets the requirements
of an interval scale. But it also meets the additional requirement of a
ratio scale that there be a true zero value, since we can state that some-
one with 20 arrests has 4 times as many arrests as someone with 5 ar-
rests. If the zero value were arbitrary, we could not make this statement.

This fact is best illustrated with an example. Suppose we alter our
measure of prior record to focus on the degree to which offenders ex-
ceed a specific threshold of prior offending. Let’s say that our threshold
is 4 prior arrests and we are interested only in offenders who have 4 or
more prior arrests. An offender with 5 arrests would gain a score of 1 on
this new measure, and an offender with 20 arrests would have a score of
16. An offender with 4 arrests would have a score of 0. This variable
meets the criteria of an interval scale because we can distinguish scores,
rank them, and define the exact difference between them. A score of 16
represents a more serious prior criminal record than a score of 1. In turn,
an offender with a score of 16 has 15 more arrests than an offender with
a score of 1. However, we cannot say that the offender with a score of
16 on this measure had 16 times as many prior arrests as the offender
with a score of 1. This is because the scale has an arbitrary zero point.
Zero represents not the absence of a prior record, but the fact that the
offender has 4 prior arrests. Thus, the scale is an interval scale but not a
ratio scale.

Nearly all the statistics that we use in criminal justice (and all those
that we describe in this text) are also appropriate for interval scales if
they are appropriate for ratio scales. For this reason, most statistics texts
do not differentiate between the scales in practice, even if they identify
how they differ in theory. We follow the same approach. For the rest of
the chapter and indeed the rest of this text, we will concentrate on the
differences among nominal, ordinal, and at least interval scales.

Criminal justice researchers use interval scales to present findings
about criminal justice agency resources, criminal sentences, and a whole

of the trait under study. To understand how interval scales differ from 
ordinal scales and from ratio scales, it is useful to examine a concrete
example. We commonly measure prior offending in terms of the number 
of arrests on an offender’s criminal history record. If we compare an
offender who has 20 arrests with one who has only 5 arrests, we know
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host of other issues related to crimes and criminals. For example, we can
measure the amount spent by criminal justice agencies to pay the salaries
of police officers or to pay for the health care costs of prison inmates.
We can measure the financial costs of different types of crime by mea-
suring the amount stolen by offenders or the amount of time lost from

meet the requirements of at least an interval level of measurement.
Now that we have defined each step in the ladder of measurement,

we can summarize. As is illustrated in Table 2.4, as you move up the
ladder of measurement, the amount of information that is gained in-
creases. At the lowest level, you have only categorization. At the next
level, you add knowledge about the order of the categories included.
With interval scales, you not only classify and order your measure but
also define how much categories differ one from another. A ratio scale
requires all of these characteristics as well as a non-arbitrary, or true,
zero value.

Variables Commonly Found in Criminal Justice Research 
That Are Measured on at Least Interval Scales

VARIABLE COMMON CATEGORIES

Age Years
Education Years
Income or Salary Dollars, etc.
Number of Crimes in a

City/County State Nation Count
Crime Rates for a

City/County/State/Nation Count of crimes, adjusted for the size of the population
Self-Reported Delinquent Acts Count

Table 2.3

Summary of the Information Required for Each Level of Measurement

TRUE ZERO �
ORDER � SET INTERVALS � SET INTERVALS �

LEVEL OF CATEGOR- CATEGOR- ORDER � ORDER �
MEASUREMENT IZATION IZATION CATEGORIZATION CATEGORIZATION

Ratio X X X X
Interval X X X
Ordinal X X
Nominal X

Table 2.4

arrested. Table 2.3 provides examples of criminal justice variables that
of prison served or sentenced or the age at which offenders were first 
work by violent crime victims. We can measure the number of years 
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R e l a t i n g  I n t e r v a l ,  O r d i n a l ,  
a n d  N o m i n a l  S c a l e s :  T h e  I m p o r t a n c e  
o f  C o l l e c t i n g  D a t a  a t  t h e  H i g h e s t  L e v e l  P o s s i b l e

Take, for example, the measurement of victimization. If you decided
to simply compare the types of victimization involved in a crime event,
you would measure victimization using a nominal scale. You might
choose the following categories: events involving loss of money or prop-
erty, events including physical harm, a combination of such events, and
all other events. But let us assume, for a moment, that at some time after
you collected your data, a colleague suggests that it is important to dis-
tinguish not only the type of event but also the seriousness of crimes
within each type. In this case, you would want to distinguish not only
whether a crime included monetary loss or violence but also the serious-
ness of each loss. However, because your variable is measured on a
nominal scale, it does not include information on the seriousness of loss.
Accordingly, from the information available to you, you cannot create an
ordinal-level measure of how much money was stolen or how serious
the physical harm was.

Similarly, if you had begun with information only on the order of
crime seriousness, you could not transform that variable into one that
defined the exact differences between categories you examined. Let’s
say, for example, that you received data from the police that ranked

($10,001 and above). If you decide that it is important to know not just
the general order of monetary harm but also the exact differences in
harm between crimes, these data are insufficient. Such information
would be available only if you had received data about harm at an in-
terval level of measurement. In this case, the police would provide in-
formation not on which of the four categories of harm a crime belonged
to, but rather on the exact amount of harm in dollars caused by each
crime.

is that you should measure variables in a study at the highest level of
One important lesson we can draw from the ladder of measurement 

measurement your data allow. This is because each higher level of mea-

information at the outset, you may not be able to add it at the end of

surement cannot be transformed easily into measures higher on the

surement requires additional information. And if you fail to collect that

your study. In general, variables measured lower on the ladder of mea-

ladder. Conversely, variables measured higher on the ladder of mea-
surement can be transformed easily into measures lower on the ladder.

moderate monetary harm ($501–10,000), and serious monetary harm

monetary victimization for each crime into four ordinally scaled
categories: no monetary harm, minor monetary harm (up to $500), 
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While you cannot move up the ladder of measurement, you can move
down it. Thus, for example, if you have information collected at an inter-
val level, you can easily transform that information into an ordinal-scale
measure. In the case of victimization, if you have information on the
exact amount of harm caused by a crime in dollars, you could at any
point decide to group crimes into levels of seriousness. You would sim-
ply define the levels and then place each crime in the appropriate level.
For example, if you defined crimes involving harm between $501 and
$10,000 as being of moderate victimization, you would take all of the
crimes that included this degree of victimization and redefine them as
falling in this moderate category. Similarly, you could transform this mea-
sure into a nominal scale just by distinguishing between those crimes
that included monetary harm and those that did not.

Beyond illustrating the connections among different levels of mea-
surement, our discussion here emphasizes a very important rule of
thumb for research. You should always collect information at the highest
level of measurement possible. You can always decide later to collapse
such measures into lower-level scales. However, if you begin by collect-
ing information lower on the ladder of measurement, you will not be
able to decide later to use scales at a higher level.

W h a t  I s  a  G o o d  M e a s u r e ?

In analysis and reporting of research results, measures that are of a
higher scale are usually preferred over measures that are of a lower
scale. Higher-level measures are considered better measures, based on
the principle that they take into account more information. Nonetheless,
this is not the only criterion we use in deciding what is a good variable
in research. The researcher must raise two additional concerns. First,
does the variable reflect the phenomenon to be described? Second, will
the variable yield results that can be trusted?

The first question involves what those who study research methods
call validity. Validity addresses the question of whether the variable
used actually reflects the concept or theory you seek to examine. Thus,
for example, collecting information on age in a sample is not a valid way
of measuring criminal history. Age, although related to criminal history,
is not a measure of criminal history. Similarly, work history may be re-
lated to criminality, but it does not make a valid measure of criminality.
But even if we restrict ourselves to variables that directly reflect criminal
history, there are often problems of validity to address.

Let’s say that you wanted to describe the number of crimes that of-
fenders committed over a one-year period. One option you might have
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The most valid measure of frequency of offending is the one that
most directly assesses how many crimes an individual has committed.
Associated with each of the three variables included on the rap sheet is
some degree of threat to validity. This means that each can be criticized
because it does not quite reflect the concept we wish to study. Incarcera-
tion, for example, is more a measure of seriousness of crime than fre-
quency of offending. This is because judges may impose a number of
different types of sanctions, and they are more likely to impose a prison
sentence for more serious crimes. Many crimes that result in a conviction
lead not to incarceration but rather to probation, fines, or community
service. Thus, if we use incarceration to measure frequency of offending,
we are likely to miss many crime events in an offender’s criminal record.
Accordingly, incarceration provides a biased picture of the number of of-
fenses committed by an offender. It is not a highly valid measure of this
concept.

Using this logic, criminologists have generally assumed that arrest is
the most valid measure of frequency of offending that can be gained
from official data sources, such as the FBI rap sheet. Arrests are much
closer in occurrence to the actual behavior we seek to study and are not
filtered by the negotiations found at later stages of the legal process.
While criminologists have assumed that arrests reflect criminal behavior
more accurately than convictions or incarceration, some legal scholars
contend that arrests are a less valid measure of criminality precisely be-
cause they come before the court reaches a conclusion regarding the in-
nocence or guilt of a defendant. They contend that someone has not
committed a crime until the legal system defines an act as such.

Self-report surveys are generally considered to provide the most valid
measure of frequency of offending. This is because an individual can be
asked directly how many crimes he or she has committed. But self-report
studies are often criticized in terms of another concern in measurement,
which is termed reliability.

Reliability addresses the question of whether a measure gains infor-
mation in a consistent manner. Will you get the same result if you repeat
measurement of the same case or person? If different people have similar
characteristics, will your measure reflect that similarity? Returning to the
above example of criminal history, we would ask not whether the mea-
sure reflects the concept of frequency of offending, but whether mea-
surement of the concept is reliable across different subjects.

is to examine their criminal history as it is recorded on the Federal
Bureau of Investigation’s (FBI) criminal history record, or rap sheet.
The rap sheet includes information on arrests, convictions, and incar-
cerations. Although each of these variables tells us something about a
person s criminal history, they are not all equally valid in terms of ans-
wering the research question we have proposed.

’
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Self-reports, which allow us to ask valid questions about the number
of crimes that a person has committed, have been challenged on the basis
of their reliability. One problem is that people may lie about their crimi-
nal histories. Crime is a sensitive issue, and no matter what efforts the re-
searcher makes to assure subjects of confidentiality, people may be hesi-
tant to talk about crimes in their past. Accordingly, depending on the
degree of hesitancy of subjects, a researcher might gain different answers,
irrespective of a person’s actual criminal history. But even if a person is
willing to provide accurate responses to such questions, he or she may
not be able to. Some people have better memories than others, and the
reliability of this measure depends in part on a person’s ability to recall
events generally. Such issues of reliability have begun to be addressed di-
rectly by criminologists, who are trying to increase the reliability of self-
report methods by improving interview techniques and protocols.

Returning to the FBI rap sheets, we can also assess their reliability. In
general, not only is arrest assumed to be the most valid of official mea-
sures; it is also the measure most reliably recorded on the FBI rap sheets.
This is the case in good part because the rap sheets are built around fin-
gerprint records, which police agencies have come to routinely send to
the FBI. This helps the police agencies as well, because they often use
this information to check the identities of arrestees and to assess their
criminal histories. Other types of agencies are less consistent in their
transfer of information to the FBI, and as a result convictions and incar-
cerations are less reliably recorded.

The issues raised in connection with the validity and reliability of
criminal history information are good examples of the kinds of problems
you will encounter in assessing measures in criminal justice. You should
keep in mind that no variable is perfect. Some threat to validity is likely

velop or choose the best measure you can. The best measure is the one
that most closely reflects the concept you wish to study and assesses it in
a consistent and reliable way across subjects or events.

C h a p t e r  S u m m a r y

In science, we use measurement to make accurate observations. All
measurement must begin with a classification process—a process
that in science is carried out according to systematic criteria. This
process implies that we can place units of scientific study in clearly
defined categories. The end result of classification is the development
of variables.

reliability is almost always present in measurement. Your task is to de-
to be encountered, no matter how careful you are. Some degree of un-
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There are four scales of measurement: nominal, ordinal, interval,
and ratio. With a nominal scale, information is organized by simple
classification. The aim is merely to distinguish between different phe-
nomena. There can be no overlap between categories nor can there be
cases that do not fit any one category. There is no theoretical limit to the
number of nominal categories possible. With an ordinal scale, not only
is information categorized, but these categories are then placed in order
of magnitude. An interval scale is one that, in addition to permitting the
processes of categorization and ordering, also defines the exact differ-
ence between objects, characteristics, or events. A ratio scale is an inter-
val scale for which a non-arbitrary, or true, zero value can be identified.

Data collected at a higher level of measurement may subsequently be
reduced to a lower level, but data collected at a lower level may not be
transformed to a higher one. For this reason, it is always advisable to
collect data at the highest level of measurement possible.

There are three separate factors that affect the quality of a measure.
The researcher should strive for a measure that has (1) a high scale of
measurement (one that uses the most information); (2) a high level of
validity (one that provides an accurate reflection of the concept being
studied); and (3) a high level of reliability (one that provides consistent
results across subjects or units of study).

K e y  T e r m s

classification The process whereby data
are organized into categories or groups.

data Information used to answer a re-
search question.

interval scale A scale of measurement
that uses a common and standard unit and
enables the researcher to calculate exact
differences between scores, in addition to
categorizing and ordering data.

levels of measurement Types of mea-
surement that make use of progressively
larger amounts of information.

measurement The assignment of numeri-
cal values to objects, characteristics, or
events in a systematic manner.

nominal scale A scale of measurement
that assigns each piece of information to an

appropriate category without suggesting
any order for the categories created.

ordinal scale A scale of measurement that
categorizes information and assigns it an
order of magnitude without using a stan-
dard scale of equal intervals.

ratio scale A scale of measurement identi-
cal to an interval scale in every respect ex-
cept that, in addition, a value of zero on
the scale represents the absence of the
phenomenon.

reliability The extent to which a measure
provides consistent results across subjects
or units of study.

scale of measurement Type of catego-
rization used to arrange or assign values to
data.
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validity The extent to which a variable
accurately reflects the concept being
measured.

variable A trait, characteristic, or attribute
of a person/object/event that can be mea-
sured at least at the nominal-scale level.

E x e r c i s e s

2.1 For each of the following examples of criminal justice studies, state
whether the scale of measurement used is nominal, ordinal, or at least
interval (i.e., interval or ratio). Explain your choice.

a. In a door-to-door survey, residents of a neighborhood are asked
how many times over the past year they (or anyone in their house-
hold) have been the victims of any type of crime.

b. Parole-board members rate inmate behavior on a scale with
values ranging from 1 to 10; a score of 1 represents exemplary
behavior.

c. One hundred college students are asked whether they have ever
been arrested.

d. A researcher checks prison records to determine the racial back-
ground of prisoners assigned to a particular cell block.

e. In a telephone survey, members of the public are asked which of
the following phrases best matches how they feel about the perfor-

f. A criminologist measures the diameters (in centimeters) of the
skulls of inmates who have died in prison, in an attempt to develop
a biological theory of the causes of criminality.

g. Secretaries at a top legal firm are asked the following question:
“Over the past year, have you been the victim of sexual harass-

2.2 You have been given access to a group of 12 jurors, with a mandate
from your senior researcher to “go and find out about their prior jury
experience.” Under each of the following three sets of restrictions, de-
vise a question to ask the jurors about the number of experiences they
have had with previous juries.

a. The information may be recorded only on a nominal scale of
measurement.

indifferent, satisfied, or very satisfied.
mance of their local police force: totally dissatisfied, dissatisfied, 

follows: never, once, two or three times, more than three times, or 
ment—and if so, how many times?” Answers are categorized as 

refused to answer.
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b. The information may be recorded on an ordinal scale but not on
any higher scale of measurement.

c. The information may be recorded on an interval scale.

Your senior researcher subsequently informs you that she wishes to
know the answers to the following five questions:

—How many of the jurors have served on a jury before?

—Who is the juror with the most prior experience?

—What is the sum total of previous jury experience?

—Is there anyone on the jury who has served more than three times?

—What is the average amount of prior jury experience for this group?

d. If you had collected data at the nominal level, which (if any) of the
above questions would you be in a position to answer?

e. If you had collected data at the ordinal level, which (if any) of the
above questions would you be in a position to answer?

f. If you had collected data at the interval level, which (if any) of the
above questions would you be in a position to answer?

2.3 You have been asked to measure the public’s level of support for using
the death penalty. Devise questions to gauge each of the following:

a. Overall support for using the death penalty.

b. Support for using the death penalty if there are other punishment
options.

c. Support for using the death penalty if the chances of an innocent
person being executed are

i. 1 in 1,000.

ii. 1 in 100.

iii. 1 in 10.

2.4 You are investigating the effects of a defendant’s prior record on vari-
ous punishment decisions made by the court. One variable that you
have access to in local court records is the total number of prior
felony arrests for each defendant.

a. What kinds of questions would you be able to answer with prior
record measured in this way?

b. Explain how you would recode this information on a nominal scale

c. Explain how you would recode this information on an ordinal scale

answer with prior record measured in this way?

answer with prior record measured in this way?

of measurement. What kinds of questions would you be able to 

of measurement. What kinds of questions would you be able to 
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2.5 Because the Ministry of Transport (MOT) is concerned about the num-
ber of road accidents caused by motorists driving too close together, it
has, on an experimental 2-km stretch of road, painted “chevrons”
(lane markings) every few meters in each lane. By the roadside it has
erected a sign that reads: “KEEP YOUR DISTANCE: STAY AT LEAST 3
CHEVRONS FROM THE CAR IN FRONT!” The MOT has asked you to
measure the extent to which this instruction is being followed. There
are a number of possible measures at your disposal. Assess the relia-
bility and validity of each approach suggested below. Which is the
best measure?

a. Stand on a bridge over the experimental stretch of road and count
how many of the cars passing below do not keep the required
distance.

b. Compare police figures on how many accidents were recorded on
that stretch of road over the periods before and after it was painted.

c. Study the film from a police camera situated 5 km farther down the
same stretch of road (after the end of the experimental stretch) and
count how many cars do not keep a safe distance.

2.6 The police are planning to introduce a pilot “community relations
strategy” in a particular neighborhood and want you to evaluate
whether it has an effect on the willingness of citizens to report crimes
to the police. There are a number of possible measures at your dis-
posal. Assess the reliability and validity of each approach suggested
below. Which is the best measure?

a. Telephone every household and ask respondents to measure, on a
scale of 1 to 10, how willing they are to report particular types of
crime to the police. Repeat the experiment after the scheme has
been in operation six months.

b. Compare a list of offenses reported by members of the neighbor-
hood in the six months before introduction of the scheme with a
similar list for the six months after introduction of the scheme. (It is
standard procedure for the police to record the details of the com-
plainant every time a crime is reported to them.)

2.7 You are comparing the psychological condition of three inmates serv-
ing out long terms in different high-security prisons, and you are in-
terested in the amount of contact each one has with the outside
world. You wish to determine how many letters each one has sent
over the past 12 months. No official records of this exist. There are a
number of possible measures at your disposal. Assess the reliability
and validity of each approach suggested below. Which is the best
measure?

a. Ask each prisoner how many letters he or she sent over the past
year.
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b. Check the rules in each of the prisons to see how many letters high
security prisoners are allowed to send each year.

c. Check the records of the prison postal offices to see how many
times each prisoner bought a stamp over the past year.

2.8 The government is interested in the link between employment and
criminal behavior for persons released from prison. In a study de-
signed to test for an effect of employment, a group of people released
from prison are randomly assigned to a job training program, where
they will receive counseling, training, and assistance with job place-
ment. The other offenders released from prison will not receive any
special assistance. There are a number of possible measures at your
disposal. Assess the reliability and validity of each approach suggested
below. Which is the best measure?

a. Eighteen months after their release from prison, interview all the of-
fenders participating in the study and ask about their criminal activ-
ity to determine how many have committed criminal acts.

2.9 In a recent issue of a criminology or criminal justice journal, locate a
research article on a topic of interest to you. In this article, there
should be a section that describes the data. A well-written article will
describe how the variables were measured.

a. Make a list of the variables included in the article and how each
was measured.

b. What is the level of measurement for each variable—nominal, ordi-
nal, or at least interval? Explain why.

c. Consider the main variable of interest in the article. Assess its relia-
bility and validity.

C o m p u t e r  E x e r c i s e s
There are a number of statistical software packages available for data analy-
sis. Most spreadsheet programs will also perform statistical analyses of the
kind described in this text. The exercises included in this text focus on the
use of the software program SPSS, which at the time of this writing was at

for statistical data analysis, and our intent here is not to repeat what is said
in those books. Rather, our goal with the computer exercises is to illustrate
some of the power available to you in packages such as SPSS. In real-world
situations where you are performing some type of statistical analysis, you

version 14.0. There are many excellent reference books on the use of SPSS

observations is large.
will rarely work through a problem by hand, especially if the number of 

returned to prison within 18 months of release.

arrested for a new crime within 18 months of release.

b. Look at prison records to determine how many offenders were 

c. Look at arrest records to determine how many offenders were 
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Several SPSS data files are available at the following web address:

1976, when the first wave of data was collected. While these data are several
years old, researchers continue to publish reports based on new findings
and interpretations of these data. One of the apparent strengths of this study
was its design; the youth were interviewed annually for five years from 1976
to 1980 and then were interviewed again in 1983 and 1987. The data file on
our web site was constructed from the full data source available at the Inter-
University Consortium of Political and Social Research, which is a national
data archive. Data from studies funded by the National Institute of Justice

To begin our exploration of SPSS, we will focus here on some of the data

program on your computer, you will need to open the National Youth Sur-

After you start SPSS, the data should appear in a window that looks much
like a spreadsheet. Each column represents a different variable, while each
row represents a different observation (individual, here). If you scroll down

There are three direct ways to learn about the variables included in this
data file. First, notice the lower two tabs. One (which should be in front) is
labeled “Data View,” and the other is labeled “Variable View.” The data view
tab presents us with the spreadsheet of values for each observation and vari-
able. If you click on the tab labeled “Variable View,” you should now see
another spreadsheet, in which variable names are listed in the first column
and the other columns contain additional information about each variable.

 “2.” If you click on “OK” or “Cancel,” the

A second way of obtaining information about the variables in an SPSS
data file involves using the “Variables” command. To execute this command,
click on “Utilities” on the menu bar; then click on “Variables.” What you

National Youth Survey are available, for example.
http://www.icpsr.umich.edu/NACJD. All seven waves of data from the 

management features available in SPSS version 14. After starting the SPSS

vey data file from the web site (nys_1.sav). For those working with the  
Student Version of SPSS, you are limited to data files with no more than 50  

(or 1,000 if using the student version of the data file).  
to the end of the data file, you should see that there are 1,725 lines of data

For example, the first column provides the name of the variable, another
column provides a label for the variable (allowing us to add a more informa-
mative description of our varible), and an additional column provides value
labels. It is from this column that we will be able to learn more about each 

you should see a small gray box appear in the cell. Now click on this small 
gray box and you will be presented with a new window that lists possible
values for sex and the corresponding labels. Here, we see that males have 
been coded as “1” and females as 
window disappears. You can then perform this same operation for every
other variable.

first represents a subset of the data from the National Youth Survey, Wave 1. 
The sample of 1,725 youth is representative of persons aged 11 to 17 years in

variable. For example, click on the cell in this column for the sex variable, and

(of the original 1,725).  

(NIJ) are freely available to anyone with an Internet connection; go to

variables and 1,500 cases. We have also included a smaller version  of the 
NYS data (nys_1_student.sav) that contains a random sample of  1,000 cases

http://myfiles.neu.edu/c.britt/weisburd-britt_datafiles. The data file we will use
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coded and what categories or values are included. This feature is useful if
you are working with a data set and need to know what a particular variable
refers to or how it is measured in order to continue working.

A third way of obtaining information about the variables in an SPSS data
file involves the “File Info” command. Again, click on “Utilities” on the menu
bar; then click on “File Info.” This command generates text for the output
window in SPSS. This output contains all the information SPSS has on every
variable in a data file. Executing this command is equivalent to executing the
“Variables” command for every variable in the data set and saving that infor-
mation in another file. Be aware that using this command on a data file with
many variables will produce a very large output file. This command is most
useful when you are first working with an SPSS data set that someone else
has conveniently set up for you and you need to verify the contents of the
data set and the nature of the variables included in the data set.

1.

2. Note the levels of reliability and validity for each variable and explain
why they are what they are.

should see is a list of variables on the left and another window on the right
that presents information about the highlighted variable. If you click on the
sex variable, you should see information on its coding and values in the
window on the right. This command is particularly useful if you are working
with an SPSS data file and simply need a reminder of how the variables are

Using one of the three ways listed above, work through all the variables 
included in this data file:

Note the level of measurement for each variable and then briefly explain 
why it is what it is. (You should not rely on the level of measurement 
information given in the SPSS data file, especially if someone else has 
constructed the SPSS data file for you.)
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THE GRAPHICAL DISPLAY OF DATA is an important tool for presenting sta-
tistical results in such a way that the key features or characteristics of an
analysis are highlighted. There are many different ways the same data
might be displayed. Indeed, many books have been written that focus
entirely on graphical presentation of data. In this chapter, we introduce
some common ways of representing data in graphical form, along with
suggestions for effectively presenting information in an accurate way.
We begin by discussing the most basic way of summarizing—and then
graphing—data: frequency distributions and histograms. Building on the
discussion of histograms, we move on to more general bar charts, noting

W h a t  A r e  F r e q u e n c y  D i s t r i b u t i o n s  a n d  H i s t o g r a m s ?

When we array scores according to their value and frequency, we con-
struct what is called a frequency distribution. Let’s take the following
data on previous arrests of 100 known offenders as an example:

14 0 34 8 7 22 12 12 2 8
6 1 8 1 18 8 1 10 10 2

12 26 8 7 9 9 3 2 7 16
8 65 8 2 4 2 4 0 7 2
1 2 11 2 1 1 5 7 4 10

11 3 41 15 1 23 10 5 2 10
20 0 7 6 9 0 3 1 15 5
27 8 26 8 1 1 11 2 4 4
8 41 29 18 8 5 2 10 1 0
5 36 3 4 9 5 10 8 0 7

We first group all of the cases with the same value together. Accordingly,
we group together the cases with no prior arrests, one prior arrest, two

34

Finally, we examine how graphs can be used to represent a series of 
the variety of information that can be presented in bar and pie charts. 

observations over time.
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prior arrests, and so forth, until we have covered all of the potential
scores in the distribution. Then we arrange these scores in order of mag-
nitude, as is done in Table 3.1. Looking at the data in this way allows us
to get a sense of the nature of the distribution of scores.

In practice, creating a frequency distribution is usually the first step a
researcher takes in analyzing the results of a study. Looking at the distri-
bution of scores not only provides a first glance at the results of a study;
it also allows the researcher to see whether there are scores that do not
make sense. For example, coding errors in the data set may have given
rise to impossible scores. In our example, a result of thousands of arrests
would be very unlikely and would thus lead the researcher to take an-
other look at that particular case.

Constructing frequency distributions by hand can be very time and
labor intensive. Researchers today seldom construct frequency distribu-
tions by hand. This task can be done simply and easily with packaged
statistical software, such as SPSS.

Frequency Distribution of Prior Arrests for 100 Known Offenders

VALUE FREQUENCY

0 6
1 11
2 11
3 4
4 6
5 6
6 2
7 7
8 12
9 4

10 7
11 3
12 3
14 1
15 2
16 1
18 2
20 1
22 1
23 1
26 2
27 1
29 1
34 1
36 1
41 2
65 1
Total 100

Table 3.1
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If you decide to present a frequency distribution of the results of a
study, you must choose what particular format to use. For example, the
distribution of prior arrests could simply be presented as in Table 3.1. Or
the same information could be presented graphically in what is called a
histogram. To make a histogram, we take the scores and values from a
frequency distribution and represent them in pictorial form. In this case,
we use a bar to represent each value in the frequency distribution. The
x-axis (the horizontal axis) of the histogram represents the values of the
variable we are analyzing—here, the number of arrests. The y-axis (the
vertical axis) captures the height of the bars and indicates the number of
scores—the frequency—found in each category. A histogram of the data
on prior arrests is provided in Figure 3.1. The information presented in
the histogram is identical to the information presented in the frequency
distribution in Table 3.1, but the histogram conveys to the reader an im-
mediate sense of the range of values, the location of clusters of cases,
and the overall shape of the distribution—information that is not as eas-
ily obtainable from a frequency distribution.

It is important to note that the x-axis in Figure 3.1 correctly represents
the full range of values for the variable. In particular, note that there is a
large gap in the distribution from 41 arrests to 65 arrests. Depending on
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the software used to generate a histogram, this information may or may
not be represented. Excluding this information and placing all the bars
adjacent to each other essentially means ignoring the level of measure-
ment of the variable and treating the variable as if it were nominal or or-
dinal. Why would you want to include information about those values
that have an observed frequency of zero? If you look at Figure 3.1, you
can see that there are relatively few observations for increasingly greater
numbers of arrests and that the distance between categories starts to in-
crease. If the bars were adjacent to each other and correctly labeled, it
would still be possible for the reader to discern the spread of observa-
tions. But when the values with an observed frequency of zero are por-
trayed as well, it is often easier to interpret the histogram.

Before we get into working with more complex graphs, it is worth
noting that frequency distributions of interval-level variables are often
dispersed across a large number of values. Thus, in presenting a fre-

people, we would likely not want to present the simple distribution of
income scores. If we did, we might end up with thousands of scores,
most of which would include only one or two cases. It would take pages
and pages to illustrate these data in the form of either a frequency distri-
bution or a histogram. The solution to this problem is to “group” data
together in larger categories—for example, by thousands or tens of thou-
sands of dollars in the case of incomes. Although there is no hard-and-
fast rule about how to create such larger groupings, it should be done in
a way that fairly represents the raw distribution of scores. Do not create
such a small group of categories that important variation in your data is
hidden.

A common source of confusion for students of statistics is the fact that
statisticians often represent distributions as “curves” rather than his-
tograms or frequency distributions. For example, Figure 3.2 uses a curve
to represent the 2001 SAT math scores of over 1.2 million college-bound
test takers.1 What is the relationship between a frequency distribution or
histogram and a distribution represented by a curve, such as the one in
Figure 3.2?

When we represent a distribution as a curve, it is usually a distribu-
tion with a very large number of cases, such as that of SAT math scores
of 2001 college-bound seniors. We can represent these distributions as
curves because, with a true interval-scale measure, as the number of
cases becomes very large, we can construct a histogram in such a way

1The College Board, 2001 College-Bound Seniors: A Profile of SAT Program Test Tak-
ers, accessed at http://www.collegeboard.com/sat/cbsenior/yr2001/pdf/NATL.pdf.

if we were looking at the incomes of a random sample of thousands of
together into categories that represent a range of values. For example, 
quency distribution or histogram, it is often necessary to group scores
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that it begins to approximate a curve. We do this by making the intervals
of scores smaller and smaller.

This process is illustrated in Figure 3.3. We begin with a histogram of
almost 10,000 cases, in which all of the scores are placed within 10
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Smooth Curve Representation of a Histogram: 
SAT Math Scores of 2001 College-Bound SeniorsFigure 3.2
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broad categories (see part a). Here each category is represented by one
large bar. When we increase the number of intervals, or categories, in
the histogram to 30 (part b), we can still see the individual bars but the
shape of the distribution is not as jagged. When the number of cate-
gories is increased to 650 (part c), the histogram looks more like a
smooth curve than a histogram, although if you look closely you will be
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able to identify the bars that make up the curve. If our distribution had
included an even larger number of scores and categories, the curve
would have become even smoother.

E x t e n d i n g  H i s t o g r a m s  
t o  M u l t i p l e  G r o u p s :  U s i n g  B a r  C h a r t s

Although histograms provide a quick and easy way to present data from
a frequency distribution, they can be used to present the frequency dis-
tribution for only a single group. What happens when we have fre-
quency distributions for the same variable for more than one group?
There are many instances where an investigator will want to present re-
sults graphically for two or more groups, such as treatment and control
groups, males and females, or states. We could simply construct a his-
togram for each group we were interested in, but we would not be able
to make direct comparisons across the groups in the form and shape of
the distributions. A simple extension of the histogram to multiple groups
makes use of the bar chart. Bar charts allow us to present information
for multiple groups simultaneously. Bar charts are constructed in much
the same way as histograms. The x-axis generally represents the values
of the variable, and the y-axis the size of the bar.2 Most statistical soft-
ware and spreadsheet packages allow the user to construct bar charts to
depict patterns in the various groups. Two of the more common ap-
proaches involve placing the bars side by side and on top of each other.
Presenting data for each group in adjacent bars gives the reader a sense
of the distribution for each group and allows for immediate comparison
of distributions across groups.

Table 3.2 presents simulated frequency distributions for numbers of
prior convictions among 100 men and 100 women arrested for drug of-
fenses. The frequencies for male and female arrestees suggest that males

In addition to being able to incorporate data from more than one
group, a bar chart has other benefits. For example, bars may be pre-

2Most statistical software and spreadsheet packages allow for manipulation of many
characteristics of a bar chart, including color, shading, patterning, and dimensions
(two vs. three). While this allows for the construction of unique charts, the investiga-
tor should be wary of adding so much detail to a chart that the reader loses the point
the investigator is trying to make.

females. Figure 3.4 portrays the male and female frequency distributions 
have had more prior contact with the criminal justice system than the 

in a bar chart.
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sented either vertically, as in Figure 3.4, or horizontally, as in Figure 3.5.
The only difference between the bar charts in Figures 3.4 and 3.5 is that
in the latter the axes have been flipped: The y-axis now represents the

rules about which form of bar chart is better. Some people like vertical
bar charts because they can draw an imaginary horizontal line across the
graph to get a sense of which bars are larger and smaller. Alternatively,
other people prefer horizontal bars because looking at them mimics the

Frequency Distributions of Number of Prior Convictions 
for Male and Female Drug Arrestees

FREQUENCY

Number of Prior Convictions Male Female

0 25 40
1 20 25
2 15 15
3 10 7
4 8 4
5 6 0
6 2 3
7 6 3
8 5 1
9 0 2

10 3 0
Total 100 100

Table 3.2
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values of the variable (here, the number of prior convictions), and the 
x-axis represents the size of the bar (the frequency). There are no specific
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process of reading text from left to right. Since the research on visual
perception is mixed about whether vertical or horizontal bars are more
effective—there are benefits and drawbacks to both approaches—the
preferences of the investigator typically determine which approach is
used.3

A cautionary note is needed about the use of bar charts for comparing
multiple groups. In Figure 3.4, the number of individuals in each group
was equal, allowing us to make a direct comparison of each group’s fre-
quency distribution. An investigator would run into trouble, however, if
the two groups did not have the same number of cases. Say one group
had two or three times as many cases as a second group. If we simply
presented a bar chart of the observed frequencies, then we would be
limited to discussing the shape of each group’s distribution; we would
be unable to make valid comparisons across the two groups. For exam-
ple, in the frequency distributions of prior convictions in Table 3.2, sup-
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3For a good discussion of the benefits and drawbacks of various approaches, see Gary
T. Henry, Graphing Data: Techniques for Display and Analysis (Thousand Oaks, CA:
Sage, 1995).
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pose that we doubled the frequencies for the male arrestees, giving us a
total of 200 males in the sample. In Figure 3.6, the bars representing
male arrests are twice as large as they are in Figure 3.4, and one might
be tempted to say that more males have zero, one, or two arrests. Strictly
speaking, such an observation is correct—the frequency is larger for one
group than for the other group—but it misrepresents the relative sizes of
the two groups and the relative distribution of cases within each group,
which are unchanged by doubling the number of male arrests.

In research on crime and criminal justice, the groups we are inter-
ested in comparing rarely have an equal number of cases. For example,
Table 3.3 presents the frequency distributions of years of education for
capital offenders executed in the United States between 1977 and 1995,
distinguished by the recorded race of the offender. These data come
from a public data file archived by the Bureau of Justice Statistics.4 The
bar chart for these data is presented in Figure 3.7. It is important to note
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4Capital Punishment in the United States, ICPSR Study #6956, available through the
National Archive of Criminal Justice Data (NACJD) at http://www.icpsr.umich.edu/
NACJD.

that whites outnumber African Americans at a rate of about 3 to 2. This tells 
us that although we can evaluate the frequency distributions for whites and
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Number of Years of Education Among Offenders Executed 
in the United States, 1977 to 1995, by Race of Offender

RACE OF OFFENDER

Years of Education White African American

7 24 7
8 14 17
9 19 16

10 24 20
11 14 18
12 60 31
13 8 1
14 12 2
15 2 0
16 3 0
17 1 0
Total 181 112

Table 3.3
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African Americans separately, we should avoid any direct comparisons
across the two groups.

How do we address the problem of unequal group sizes? The most
direct way is to convert the observed frequencies into proportions or
percentages. A proportion has a value between 0 and 1 and represents
the fraction of all observations that fall into a category. We calculate a
proportion as:

Equation 3.1

where Ncat refers to the number of observations in a given category and
Ntotal refers to the total number of observations. For example, to find the
proportion of whites who had 8 years of education, we would take the
number of white offenders who had 8 years of education (14) and divide
it by the total number of whites executed (181):

Proportion � 
Ncat

Ntotal

By convention, we generally round a proportion to the second decimal
place. (However, as we will discuss in more detail in the next chapter,
your decision as to how precisely to present a statistic should be based
on the specific research problem you are examining.) The proportion of
executed white offenders who had 8 years of education is thus about
0.08.

Sometimes researchers like to transform a proportion into a percent-
age, because percentages are more commonly used in our everyday
lives. We obtain the percentage simply by multiplying the proportion
by 100:

Equation 3.2Percentage � � Ncat

Ntotal
� � 100

W orking It Out

 � 0.077

 � 14
181

 Proportion � 
Ncat

Ntotal
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For our example of executed white offenders with 8 years of education,
we multiply 14/181 by 100:

W orking It Out

 � 7.7%

 � � 14
181� � 100

 Percentage � � Ncat

Ntotal
� � 100

This tells us that about 8% of executed white offenders had 8 years of
education. Table 3.4 presents the observed frequencies and correspond-
ing percentages (calculated to the third decimal place) for every cell in
Table 3.3.

At this point, we can graph either the proportions or the percent-
ages in a bar chart. The selection of proportions or percentages does
not matter, as it will not have any bearing on the shape of the distribu-
tions. The bar chart in Figure 3.8 uses percentages to display years of
education among executed offenders in the United States, distinguished
by race.

Frequency Distributions and Percentages for Number of Years 
of Education Among Executed Offenders, by Race

RACE OF OFFENDER

WHITE AFRICAN AMERICAN

Years of Education Freq. % Freq. %

7 24 13.260 7 6.250
8 14 7.735 17 15.179
9 19 10.497 16 14.286

10 24 13.260 20 17.857
11 14 7.735 18 16.071
12 60 33.149 31 27.679
13 8 4.420 1 0.893
14 12 6.630 2 1.786
15 2 1.105 0 0.000
16 3 1.657 0 0.000
17 1 0.552 0 0.000
Total 181 112

Table 3.4
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U s i n g  B a r  C h a r t s  w i t h  N o m i n a l  o r  O r d i n a l  D a t a

The previous examples of bar charts and histograms have focused on
variables measured at the interval level. Bar charts are also quite useful
for visually representing nominally or ordinally measured variables. In
much of the research on public opinion about use of the death penalty in
the United States, there are sharp differences between the views of whites
and those of African Americans. Table 3.5 presents the level of support
for using the death penalty for first-degree murderers, distinguished by
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Level of Agreement with Use of the Death Penalty 
for Convicted First-Degree Murderers

RACE OF RESPONDENT

WHITE AFRICAN AMERICAN

Level of Agreement Freq. % Freq. %

Strongly agree 567 51.266 57 37.748
Agree 290 26.221 32 21.192
Neutral/no opinion 76 6.872 24 15.894
Disagree 106 9.584 25 16.556
Strongly disagree 67 6.058 13 8.609
Total 1,106 151

Table 3.5
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race of the respondent. The data come from the General Social Survey
(GSS), administered by the National Opinion Research Center at the Uni-
versity of Chicago. Respondents were asked: “How strongly do you agree
with the following statement: The death penalty should be used for per-
sons convicted of first-degree murder.” The responses were strongly
agree, agree, neutral/no opinion, disagree, and strongly disagree.5

To chart these data, we cannot graph the numbers of white and
African American respondents in each category and hope to make sense
of the patterns, since there are about seven times more white respon-
dents than African American respondents. Again, we construct a bar
chart using the proportion or percentage of respondents who fall into
each category. A bar chart presenting percentages of white and African
American respondents in each category appears in Figure 3.9.

P i e  C h a r t s

Pie charts offer another way of displaying data graphically if the num-
ber of categories of a variable is relatively small. Each wedge in a pie
chart is a proportional representation of the number of cases in that cate-
gory. When we present data on the percentage or proportion of cases in

5The entire GSS database is publicly available and can be accessed at http://www.
icpsr.umich.edu/GSS. Data presented here are drawn from a 1991 study.
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a pie chart, the information contained in a pie chart is identical to that

We will use the death penalty opinion data in Table 3.5 to illustrate

The information presented in Figure 3.10 is identical to that in Figure
3.9. But the need for two separate pie charts to represent the data for the
two groups of respondents points out one of the limitations of using pie
charts for comparing multiple groups. In Figure 3.9, the bars for the two
groups of respondents are presented side by side. The reader is able to
quickly assess which group is larger, which group is smaller, and the mag-
nitude of the difference. With the two pie charts represented in parts a and
b of Figure 3.10, the reader has to go back and forth between the pies,
match up the category of interest, and then try to infer the magnitude of the
difference in size between the two wedges. Although pie charts are an easy
and effective way of representing the relative sizes of different categories of
a variable, we discourage the use of pie charts for any type of cross-group
comparison, to avoid the potential for confusing or misleading the reader.

T i m e  S e r i e s  D a t a

Study of many important issues in crime and criminal justice requires the
use of time series data. Time series data include measures on the same
variable for the same unit of analysis at more than one point in time. For

Strongly Disagree (6.1%)

Agree (26.2%)

Neutral (6.9%)

Disagree (9.6%) Strongly
Agree (51.3%)

Strongly
Disagree (8.6%)

Agree (21.2%)

Neutral
(15.9%)

Disagree
(16.6%)

Strongly
Agree (37.7%)

Percentage of Agreement with Use of the Death Penalty for Convicted First-Degree MurderersFigure 3.10

(a) White Respondents (b) African American Respondents

aspects—size, shape, orientation, dimensions (two or three), position 
of wedges, colors, shades, and so on.

and spreadsheet packages allow the researcher to manipulate various 
presented in a bar chart. As with bar charts, most statistical software 

responses for white and African American respondents, respectively.
the construction of pie charts. Parts a and b of Figure 3.10 present the
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example, in a study of adolescents, the same individuals may be inter-
viewed two or more times. Or, in an examination of the effectiveness of
a treatment program, information on key characteristics of participants
may be collected before and after the treatment, to test for change.

An example of time series data more familiar to many students comes
from the Federal Bureau of Investigation’s annual Uniform Crime Re-
ports.6 Included in the reports are the “official” crime rates, which tell us
the total crime rate, the murder rate, the burglary rate, and so on. We
can easily locate a crime rate for the United States—as well as smaller
geopolitical units, such as states or counties—for some period of time.
Table 3.6 presents the total crime rate and murder rate for the United
States per 100,000 people for the years 1990 to 2000.

In a time series plot, data are graphed over time, with the measure
of time along the x-axis. For the data in Table 3.6, the measure of time is
years, but in other cases, we may have daily, weekly, monthly, or quar-
terly data. The y-axis then represents the value—here, the crime rate.
Figure 3.11 presents a plot of the total crime rate per 100,000 people in
the United States for the period 1990 to 2000. As you can see, the time
series plot provides a very powerful way to present data over time. The
“crime drop” in the United States during this period is clearly illustrated
in Figure 3.11.

It is also possible to plot more than one time series on the same
graph, but be careful about the values of the different series. If one se-
ries has values that are many times larger than those in the other series,
you run the risk of generating a plot in which the line of one group
looks misleadingly like a straight line. Figure 3.12, which shows total

Total Crime Rate and Murder Rate in the United States, 1990 to 2000

TOTAL CRIME RATE MURDER RATE 
YEAR (PER 100,000) (PER 100,000)

1990 5,820.300 9.4000
1991 5,897.800 9.8000
1992 5,660.200 9.3000
1993 5,484.400 9.5000
1994 5,373.500 9.0000
1995 5,275.900 8.2000
1996 5,086.600 7.4000
1997 4,930.000 6.8000
1998 4,619.300 6.3000
1999 4,266.800 5.7000
2000 4,124.800 5.5000

Table 3.6

6Federal Bureau of Investigation, Crime in the United States, available at http://www.
fbi.gov/ucr/ucr.htm.
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crime rates and murder rates for the 1990 to 2000 period, illustrates this
problem. Since the total crime rate ranges between about 4,000 and
6,000 per 100,000 while the murder rate varies between about 5 and 10
per 100,000, the line representing the murder rate appears straight and
indeed can hardly be seen. In such a case, one solution is to construct a
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time series plot with a second y-axis on the right side of the chart. Figure
3.13 adds a second y-axis to account for the smaller values associated
with the murder rate, providing a better depiction of the annual variation
in both rates.

C h a p t e r  S u m m a r y

A frequency distribution is an arrangement of data according to the
frequency with which each value occurs. The data may be represented
in a table or in graphic form in a histogram, which uses a bar to repre-
sent the frequency for each value.

Bar charts can be used to represent the frequencies, percentages,
or proportions of variables, regardless of whether they have been mea-
sured at the nominal, ordinal, or interval level. In a vertical bar chart, the
sizes of the bars are indicated along the y-axis and correspond to the fre-
quency, the percentage, or the proportion. The values, or categories, of
the variable are represented along the x-axis. When comparing two or
more groups in a bar chart, it is important to have the values represent
the percentage or proportion of cases, since the presentation of frequen-
cies could be misleading if the groups are of very different sizes.

Pie charts are another common way to represent variables with a
small number of categories or values. The size of each wedge in a pie
chart corresponds to the relative size of that category’s frequency count.
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Pie charts are better suited to describing data from a single sample or
group than data from multiple groups.

Time series data may be graphically displayed in a time series plot,
a line graph that portrays the values of a variable over some period of
time, such as days, weeks, months, or years. To allow for the compari-
son of multiple variables, additional lines can be easily incorporated into
the line graph. If the magnitudes of the variables differ by a large degree,
it is possible to add an additional y-axis so that the lines can be overlaid
and common or unique trends in the plotted variables discerned.

K e y  T e r m s

bar chart A graph in which bars represent
frequencies, percentages, or proportions
for the categories or values of a variable.

frequency The number of times that a
score or value occurs.

frequency distribution An arrangement
of scores in order from the lowest to the
highest, accompanied by the number of
times each score occurs.

histogram A bar graph used to represent
a frequency distribution.

percentage A relation between two num-
bers in which the whole is accorded a
value of 100 and the other number is given
a numerical value corresponding to its
share of the whole.

pie chart A graph in which a circle (called
a pie) is cut into wedges to represent the
relative size of each category’s frequency
count.

proportion A relation between two num-
bers in which the whole is accorded a
value of 1 and the other number is given a
numerical value corresponding to its share
of the whole.

time series data Repeated measures of
the same variable over some regularly oc-
curring time period, such as days, months,
or years.

time series plot A line graph that con-
nects repeated measures of the same vari-
able over some regularly occurring time
period, such as days, months, or years.

S y m b o l s  a n d  F o r m u l a s

Ncat Number of cases in a category of a variable

Ntotal Total number of cases

To calculate the proportion of cases falling into a category:

Proportion � 
Ncat

Ntotal
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To calculate the percentage of cases falling into a category:

E x e r c i s e s

3.1 A team of researchers observed the behavior of 20 children during
breaktime on a school playground. The observers recorded how many
times each child performed a “violent act”—be it a push, a kick, or a
punch—against another child. The scores of the 20 children were as
follows:

2 0 1 0 0 4 0 10 2 1 3 3 0 1 4 11 0 0 2 0

a. Construct a frequency distribution table for the above results.

b. Construct a histogram of the frequency distribution.

c. How might you interpret the results?

3.2 Workers at an inner-city rape crisis center asked all the callers on a
given night for their ages. For a total of 50 callers, the results were as
follows:

28 39 17 18 22 31 26 27 16 20

34 35 29 26 17 23 22 23 37 28

24 19 14 25 27 19 24 26 41 27

21 24 17 16 35 25 19 23 29 18

23 26 24 43 28 21 21 36 26 27

a. Construct a frequency distribution table for the above results.

b. Based on the frequency distribution, construct three different his-
tograms, with the data grouped in 1-year intervals, 3-year intervals,
and 10-year intervals.

3.3 A review of the records of 20 male and 20 female adjudicated delin-
quents revealed the following numbers of prior arrests for violent
crimes:

Male: 0 2 1 7 4 2 2 1 6 5 0 0 1 2 4 1 0 0 2 9

Female: 0 0 1 4 2 3 1 1 5 1 0 0 0 1 0 3 2 1 0 1

a. Construct three frequency distribution tables: one for males, one for
females, and one for the male and female data combined.

b. Construct a histogram for each of the three frequency distributions.

c. How might you interpret the results?

Percentage � � Ncat

Ntotal
� � 100
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3.4 In a survey of 75 offenders convicted through guilty pleas, respon-
dents were asked who had the greatest influence on their decision to
plead guilty. Here are their responses: defense attorney (n � 35),
spouse/partner (n � 25), prosecutor (n � 10), and judge (n � 5).

a. Graph these data on three bar charts using frequencies, propor-
tions, and percentages.

b. Graph these data on a pie chart.

3.5 Suppose a researcher conducted a survey to assess the link between

researcher found that 150 thought the punishments were “too harsh,”
100 thought the punishments were “about right,” and 50 thought the
punishments were “too lenient.”

b. Explain your choice of chart.

c. Describe the patterns that you find in this type of chart.

3.6 The burglary rates for two cities over a 10-year period are reported in
the following table:

Year City A City B

1991 2,576 875
1992 2,675 966
1993 2,892 1,015
1994 3,014 1,325
1995 2,852 1,779
1996 2,651 1,954
1997 2,443 2,333
1998 2,519 2,121
1999 2,999 2,657
2000 2,840 2,005

a. Present this information in the way that you think is most
informative.

b. Explain why you selected this type of chart.

c. Describe the patterns that you observe in this chart.

separately.

a. Present this information graphically in the way that you think is
most informative—either for the full sample or for each gender

ments were “too harsh.” Among 300 female respondents, the

gender and attitudes about the criminal justice system. Among 850 male
respondents, the researcher found that 500 thought the punishments
given by the courts were “too lenient,” 200 thought the punish-
ments were “about right,” and the remaining 150 thought the punish-
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C o m p u t e r  E x e r c i s e s
SPSS contains a useful set of graphics tools comparable to those found in
many of the better spreadsheet packages. The following computer exercises
are intended to guide you through the basic steps in producing graphs in
SPSS. The discussion is meant only as a brief overview of some of the capa-
bilities of SPSS. We encourage you to experiment and to explore the range
of features available in SPSS’s graphics commands.

Before working with the graphics commands in SPSS, open the data file

Frequency Distributions and Histograms

Frequency distributions and histograms are produced quite easily in SPSS
through the use of the “Frequencies” command (AnalyzelDescriptive
StatisticslFrequencies).

After you click on the “Frequencies” command, you will be presented
with a window that lists the variable names on the left and has a blank box
on the right. The variable names that you move into the box on the right are
the ones for which you will obtain frequency distributions and histograms.
Choose one of the delinquency variables from the nys_1.sav data file. To
obtain a histogram, click on the button at the bottom of this window labeled
“Charts,” then the circle next to “Histogram,” then “Continue,” and then
“OK.” The output window generated by the command should now contain a
frequency distribution table and a histogram for these data.

You should note that the default in SPSS is to construct intervals for the
values of the variable to be graphed. The size and number of intervals can

The “Histogram” command (GraphslHistogram) provides an alternative
way of obtaining just a histogram, without a frequency distribution. In the
window that opens after you execute the “Histogram” command, you will be
prompted to move one variable name from the left box into the small box
on the right—this is the variable that will be graphed. Choose the same vari-
able that you used in the “Frequencies” command above, and move its
name into the box on the right. Click on “OK” to produce the histogram.
The histogram produced by this command should be identical to the his-
togram produced with the “Frequencies” command.

Bar Charts

To have SPSS produce bar charts, all you have to do is execute the “Bar . . .”
command (GraphslBar . . . ). The window that opens will have three options
for you to choose from. To generate a simple bar chart for one variable, click
on the “Simple” box and the circle next to “Summaries for groups of cases.”
Then click on “Define.” To get a sense of how the bar charts differ from the
histograms, it is instructive to use the same variable that you have worked with
already. Move the name of this variable into the box for “Category axis.” (This
defines the x-axis.) Note, in the upper right corner of this window, the variety

be modified by editing the chart in SPSS. By “double-clicking” on the chart in 
the SPSS output, you can open an additional window that allows you to make

courage you to experiment with
many of the options available to you.
a wide range of changes to your chart. We en

nys_1.sav (or nys_  1 _ student. sav)
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If you want to produce a bar chart that includes bars for multiple groups,
there are many different ways of doing this in SPSS. A simple bar chart for
multiple groups can be obtained by again executing the “Bar . . . ” com-
mand. Click on the “Clustered” box rather than “Simple,” and then click on
“Define.” In this window, move a variable name that represents different
groups—such as gender or race—into the box “Define clusters by,” and
move the variable to be graphed into the box “Category axis.” Note that the
dot is still next to “N of cases,” although you might explore the percentage
or proportion options. Click on “OK” to produce the chart. If you selected
gender as the grouping variable, you should see two sets of bars—one for
males and one for females.

Pie Charts

Pie charts are very easy to produce in SPSS with the “Pie . . .” command
(GraphslPie . . . ). When the window opens, select “Summaries for groups
of cases” and click on “Define.” As with the bar chart command, you simply

cases, percentage, or another summary statistic to determine the size of each
wedge. As with other charts in SPSS, you can edit various dimensions of the
chart after it has been created and presented in the output window.

Line Graphs

To have SPSS produce a line graph, use the “Line . . .” command (Graphsl

Line . . .). To generate a simple line graph, click on “Simple” and “Summaries
for groups of cases.” To get a sense of how this kind of graph is similar to
and different from the previous charts, continue to use the same variable.
Note that the dot is next to “N of cases.” Click on “OK” to generate the
graph. The result will be a line graph that corresponds to the histogram you
created previously.

A time plot is also easily obtained through the “Line . . . ” command.
Open the data file crime_ts.sav. These are the crime data used for Figures
3.11 to 3.13 in the text. To produce line graphs similar to those in Figures
3.11 and 3.12, do the following:

— Click on “Simple” and then on “Values of individual cases.”

— Move the variable “total crime rate” into the box “Line represents.”

— Click on the circle next to the word “Variable” (located in the middle of the
window). Move the variable “year” into this box. This defines the x-axis.

— Click on “OK.” The result should look like Figure 3.11.

— Click on “GraphslLine . . . ” again. Then click on “Multiple.”

— Again move the variable “year” into the box next to “Variable.”

— Move both crime rate variables into the “Lines represent” box. Click on
“OK.” The result should look like Figure 3.12.

on “OK.” Your bar chart should look much like the histograms you produced
for this same variable, although you may notice a different scaling of the x-axis.

of things that can be plotted. Be sure that the dot is next to “N of cases.” Click

labeled “Define slices by.” You also have the option of using the number of
have to move the variable name from the box on the right into the box
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1. Enter the data from Exercise 3.1.

a. Produce a frequency distribution table and a histogram.

b. How does the histogram produced by SPSS differ from the one you
constructed?

c. Experiment with the interval length to see if you can reproduce in
SPSS the chart you constructed by hand.

2. Enter the data from Exercise 3.3.

a. Produce two frequency distribution tables and two histograms, one
each for males and for females.

b. Use the “Bar . . . ” command to produce a bar chart that presents
the information for males and females simultaneously, in terms of

i. Number of cases

ii. Percentage of cases.

3. Enter the data from Exercise 3.6. Produce three time plots:

a. One for City A

b. One for City B

c. One that contains lines representing both City A and City B.

4.

a. Produce a frequency distribution table and a histogram for each of
the delinquency variables.

b. Describe the shapes of the distributions produced in part a.

c. Choose one of the delinquency variables.

i. Produce a bar chart using percentages for each gender. De-
scribe how the patterns are similar and different across gender.

ii. Produce a bar chart using percentages for each race. Describe
how the patterns are similar and different across race.

d. Select two of the nominal or ordinal variables (excluding gender
and race).

i. Produce pie charts for both variables.

ii. Produce pie charts for both variables, distinguished by gender.

iii. Produce pie charts for both variables, distinguished by race.

iv. Describe how the patterns are similar and different across gen-
der and race.

e. Use the “Line . . .” command to produce a series of graphs that cor-
respond to the bar charts in part c.

NOTE: SPSS will not produce a line graph with two y -axes. You will need to

Problems

Open the nys_1.sav (or nys_1_student.sav) data file.

use a spreadsheet package, such as EXCEL, to produce such a graph.
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THE NATURAL FIRST STEP in summarizing research is to provide a basic
portrait of the characteristics of a sample or population. What is the typ-
ical case? If the researcher could choose one case to represent all oth-
ers, which would it be? When a sample is very small, it is possible
merely to show the array of cases and let the reader decide. However,
as the number of cases grows, it becomes difficult to make a decision
about typicality from the distribution as a whole. This is the function of
measures of central tendency in statistics. They provide us with a simple
snapshot of our data that can be used to gain a picture of the average
case.

In this chapter, three commonly used measures of central tendency
are discussed and compared. The first, the mode, is used primarily with
nominal-level data. It is the simplest measure of central tendency, draw-
ing information only about the frequency of events in each category. The
second measure, the median, takes into account not only frequency but
also the order or ranking of study subjects. Finally, the mean adds the
additional factor of the exact scores associated with each subject studied.
As in the discussion of levels of measurement, we emphasize in this
chapter the benefits gained from statistics that use more information. But
we also illustrate the importance of looking carefully at the distribution
of cases in your study before deciding which measure of central ten-
dency is most appropriate.

T h e  M o d e :  C e n t r a l  T e n d e n c y  i n  N o m i n a l  S c a l e s

Faced with a nominal-scale measure, how would you define a typical
case? Take as an example Table 4.1. Here you have a nominal scale of
legal representation for a sample of offenders convicted of white-collar
crimes in U.S. federal courts. Offenders were placed into one of five cat-
egories, indicating the type of legal representation they had: no attorney

60
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present, legal-aid attorney, court-appointed attorney, public defender,
and privately retained attorney. The number of individuals who fall in
each category—or, in statistical language, the N of cases—is reported.

Clearly, you have very limited information in this example on which
to base a choice about typicality. Here, as with other nominal-scale mea-
sures, you simply know how many cases fall into one category or an-
other. You would probably choose the category “private attorney” as
most representative of this sample, because it contains by far the most
cases (380). And indeed, this is precisely how statisticians define typical-
ity for nominal-level variables. We call the category with the largest N, or
number of cases, the mode. In this sample of white-collar offenders, the
modal category for type of representation is “private attorney.”

By defining one category as the modal category, we are able to pro-
vide a summary of the type of case that is typical of our sample or popu-
lation. Such statements are common in criminal justice research. We
often are interested in the racial category that appears most often in our
data or the type of offense that is most common. The modal category
can also provide a basis for making comparisons among samples. For
example, let’s say that a sample of offenders convicted of nonviolent
property crimes that would not ordinarily be defined as white collar was
compared to this larger sample of offenders convicted of white-collar
crimes. For the former group, as is apparent from Table 4.2, the modal
category is not “private attorney” but rather “court-appointed attorney.”
Although this comparison of the two samples is not a complex one, it

Legal Representation for White-Collar Crime

CATEGORY FREQUENCY (N)

No Attorney 20
Legal Aid 26
Court Appointed 92
Public Defender 153
Private Attorney 380
Total (�) 671

Table 4.1

Legal Representation for Common Crime

CATEGORY FREQUENCY (N)

No Attorney 40
Legal Aid 7
Court Appointed 91
Public Defender 22
Private Attorney 70
Total (�) 230

Table 4.2
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In general, we do not use the mode to describe central tendency with
ordinal or interval scales. The reason, in good part, is that the mode does
not take advantage of the additional information that such scales pro-
vide. The average case should not be chosen simply on the basis of the
frequency of events in a particular category, because higher-level scales
also provide information on the order or nature of the differences be-
tween categories.

Nonetheless, there are cases where researchers choose to use the
mode to describe ordinal- or interval-level measures. Generally this oc-
curs when there is a very large group of cases in one particular category.
Table 4.3, for example, provides an ordinal-level measure of the financial
harm caused by a sample of convicted offenders. Because almost two-
thirds of the individuals studied fall in the category “$101–$2,500,” you
might want to describe typicality in this case by saying that this category
is the modal category. Similarly, if you were examining prior arrests and
two-thirds of the offenders in your sample had no prior arrests, you
might want to report no arrests as the modal category. Even though this
measure is an interval measure, the mode provides a fairly good sum-
mary of the typical case in your sample.

T h e  M e d i a n :  T a k i n g  i n t o  A c c o u n t  P o s i t i o n

In constructing the median, we utilize information not only on the num-
ber of cases found in a particular category, but also on the positions of
the categories. The median may be defined simply as the middle score in
a distribution. For ordinal scales, it is the category in which the middle
score lies. For interval scales, the median is the value that splits the dis-
tribution of scores in half.

There are two general steps in determining the median for a distribu-
tion of scores. First, the values need to be arranged from low to high

Financial Harm for a Sample of Convicted Offenders

CATEGORY FREQUENCY (N)

Less than $100 15
$101–$2,500 92
$2,501–$10,000 20
More than $10,000 19
Total (�) 146

Table 4.3

illustrates the different backgrounds of the two groups. White-collar
offenders are much more likely than common criminals to have the
resources to pay for private legal representation.
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scores. As we saw in Chapter 3, a frequency distribution allows us to
represent our data in this way. Table 4.4 presents a frequency distribu-
tion of views of public drunkenness, drawn from a survey of students.
The students were presented with an ordinal-scale measure that allowed
them to rate the seriousness of a series of crimes. The ratings ranged
from “not serious at all” to “most serious.”

Second, we need to determine which observation splits the distribu-
tion. A simple formula, Equation 4.1, allows us to define which observa-
tion is the median when the number of observations in the distribution is
odd, as is the case with our example of views of public drunkenness.

Equation 4.1

In this case, we add 1 to the total number of observations in the sample
or population we are studying and then divide by 2. For the frequency
distribution in Table 4.4, the median observation is the 141st score:

Median observation � N � 1
2

Student Views on Public Drunkenness

CATEGORY FREQUENCY (N) CUMULATIVE N

Not serious at all 73 73
A bit serious 47 120
Somewhat serious 47 167
Serious 27 194
Very serious 26 220
Extremely serious 39 259
Most serious 22 281
Total (�) 281

Table 4.4

W orking It Out

 � 141

 � 281 � 1
2

 Median observation � N � 1
2

However, because our variable, student views on drunkenness, is mea-
sured on an ordinal scale, it does not make sense to simply state that the
141st observation is the median score. To give a substantive meaning to
the median, it is important to define which category the median score
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falls in. The 141st observation in our distribution of ordered scores falls
in the category labeled “somewhat serious.”

The advantage of the median over the mode for describing ordinal
scales is well illustrated by our example of views of public drunkenness.
If we used the mode to describe typicality in student assessments of the
seriousness of public drunkenness, we would conclude that the typical
student did not see drunkenness as at all serious. But even though the
“not serious at all” category includes the largest number of cases, almost
three-quarters of the students rate this behavior more seriously. The me-
dian takes this fact into consideration by placing the typical case in the
middle of a distribution. It is concerned with not only the number of
cases in the categories, but also their position.

If the number of observations or cases in your distribution is even, then
you cannot identify a single observation as the median. While statisticians
recognize that the median is ambiguously defined in this case, by conven-
tion they continue to use Equation 4.1 to identify the median for an ordi-
nal-level distribution. In practice, this places the median score between two
observations. For example, consider the distribution of 146 scores in Table
4.3, representing financial harm in a sample of offenders. Here the number

1

W orking It Out

73rd observation: $101–$2,500

74th observation: $101–$2,500

 � 73.5

 � 146 � 1
2

 Median observation � N � 1
2

1With this method, it is possible that the defined median value will fall between two
categories of an ordinally measured variable. In that case, you simply note that the
median falls between these two categories.

The median is sometimes used for defining typicality with interval
scales. For example, Table 4.5 presents the average number of minutes
of public disorder (per 70-minute period) observed in a sample of 31

of scores is even, and thus there is not a single observation that can be
defined as the median. Using Equation 4.1, we can see that the median is
defined as the halfway point between the 73rd and the 74th observation.
This means that the median falls in the category defined as $101 to $2,500.
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“hot spots of crime,” or city blocks with high levels of crime. The hot
spots are arranged in ascending order on the basis of the number of
minutes of disorder observed. In this case, the distribution has an odd
number of observations, and thus the median is the score in the middle
of the distribution, or the 16th observation, which has a value of 2.12.

Hot Spots: Minutes of Public Disorder (A)

HOT SPOT 
SCORE FREQUENCY (N) CUMULATIVE (N)

0.35 1 1
0.42 1 2
0.46 1 3
0.47 1 4
0.52 1 5
0.67 1 6
1.00 1 7
1.06 1 8
1.15 1 9
1.19 2 11
1.48 1 12
1.60 1 13
1.63 1 14
2.02 1 15
2.12 1 16
2.21 1 17
2.34 1 18
2.45 1 19
2.66 1 20
3.04 1 21
3.19 1 22
3.23 1 23
3.46 1 24
3.51 1 25
3.72 1 26
4.09 1 27
4.47 1 28
4.64 1 29
4.65 1 30
6.57 1 31
Total (�) 31 31

Table 4.5

W orking It Out

 � 16

 � 
31 � 1

2

 Median observation � N � 1
2
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Accordingly, using the median, we would describe the average hot spot as
having a little more than two minutes of disorder in each 70-minute period.

As noted above, when the number of observations in a distribution is
even, the median is ambiguously defined. Let’s, for example, delete the hot
spot with a score of 6.57 from Table 4.5. In this case, there is no single mid-
dle value for the array of cases in the table. If we use Equation 4.1 to define
the median observation, we get a value of 15.5.

2Sometimes the median for ordinal-level variables is also calculated using this method.
In such cases, the researcher should realize that he or she is treating the variable
under consideration as an interval-level measure. Only for an interval-level measure
can we assume that the units of measurement are constant across observations.

W orking It Out

 � 15.5

 � 
30 � 1

2

 Median observation � N � 1
2

But what is the value or score associated with an observation that lies
between two scores in an interval-level scale? If both the 15th and the
16th observation are in the same category, then the solution is easy. You
simply define the median as the score associated with both the 15th and
the 16th observation. However, it will sometimes be the case with an
interval-level variable that each of these observations will have a differ-
ent value on the scale, as we find here. There is no true median value
for this example. By convention, however, we define the median with
interval-level measures as the midpoint between the observation directly
below and the observation directly above the median observation. In our
example, this is the midpoint on our scale between the scores 2.02 and
2.12. The median in this case is defined as 2.07.2

W orking It Out

 � 2.07

 Median � 2.02 � 2.12
2

 16th case � 2.12

 15th case � 2.02
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The median is generally more appropriate than the mode for assess-
ing central tendency for both ordinal- and interval-level measures. How-
ever, the median does not take advantage of all the information included
in interval-level scales. Although it recognizes the positions of the values
of a measure, it does not take into account the exact differences among
these values. In many cases, this can provide for a misleading estimate of
typicality for interval-level measures.

For example, let’s say that the distribution of disorder in hot spots is
that represented in Table 4.6. In this case, the median is 1.83. But is 1.83
a good estimate of central tendency for this distribution? The 17th score
is 3.34, which is not very close to 1.83 at all. The score of 1.83 is not an

the values of the 16th and 17th cases. This is because it looks only at

Hot Spots: Minutes of Public Disorder (B)

HOT SPOT 
SCORE FREQUENCY (N) CUMULATIVE (N) CUMULATIVE %

0.35 1 1 3.2
0.42 1 2 6.5
0.46 1 3 9.7
0.47 1 4 12.9
0.52 1 5 16.1
0.67 1 6 19.4
1.00 1 7 22.6
1.06 1 8 25.8
1.15 1 9 29.0
1.19 2 11 35.5
1.48 1 12 38.7
1.60 1 13 41.9
1.63 1 14 45.2
1.73 1 15 48.4
1.83 1 16 51.6
3.34 1 17 54.9
3.44 1 18 58.1
3.45 1 19 61.3
3.66 1 20 64.5
4.04 1 21 67.7
4.19 1 22 71.0
4.23 1 23 74.2
4.46 1 24 77.4
4.51 1 25 80.6
4.72 1 26 83.9
5.09 1 27 87.1
5.47 1 28 90.3
5.64 1 29 93.5
5.65 1 30 96.8
5.57 1 31 100.0
Total (�) 31 31 100.0

Table 4.6

bution. The median is not sensitive to the gap in our measure between
ideal estimate of typicality, as it is far below half the scores in the distri-
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position and not at the size of the differences between cases. The me-
dian does not take advantage of all the information provided by interval-
level measures.

Another way to describe the median in interval-level measures is to
say that it is the 50th percentile score. A percentile score is the point or
score below which a specific proportion of the cases is found. The 50th
percentile score is the score below which 50% of the cases in a study lie.
For the data in Table 4.6, if we defined the median in this way, we again
choose 1.83 as the median minutes of disorder observed in the hot spots.
In this case, if we add the percentage of cases for all of the scores up
until the middle, or 16th, score, we come to a total (or cumulative per-
centage) of 51.6. At the 15th score, or 1.73, the cumulative percentage is
only 48.4, less than 50%.

T h e  M e a n :  A d d i n g  V a l u e  t o  P o s i t i o n

The mean takes into account not only the frequency of cases in a cate-
gory and the positions of scores on a measure, but also the values of
these scores. To calculate the mean, we add up the scores for all of the
subjects in our study and then divide the total by the total number of
subjects. In mathematical language, the mean can be written as a short
equation:

Equation 4.2

Even though equations sometimes put students off, they are an im-
portant part of statistics. Indeed, equations are the language of statistics.
They show how a statistic is constructed and the method we use to cal-
culate it. Equations provide a short way of writing out what would often
take a number of sentences to describe in English. One of our tasks in
this text is to help you to translate such equations and to become more
comfortable with them.

In the case of the mean, we introduce what are for most students of
criminal justice some new symbols and concepts. First, to express the
mean, statisticians provide us with a shorthand symbol, —in English,
“X bar.” The equation also includes the summation symbol, �. Under the
symbol is i � 1, and above it is N. What this means is that you should
start summing your cases with the first subject in the sample and end

X

X � 
�
N

i�1
 Xi

N
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with the last one (represented by N because, as we have already dis-
cussed, N is the number of cases in your sample). But what should you
sum? X represents the measure of interest—in the case of our example,
minutes of disorder. We use the subscript i to denote each of the obser-
vations of the variable X. If, for example, we wrote X3, we would be re-
ferring only to the 3rd observation of the variable. So Equation 4.2 says
that you should sum the scores for minutes of disorder from the first to
the last case in your study. Then you should divide this number by the
total number of cases.

Table 4.7 presents information about the total number of prior arrests
for a sample of 20 individuals arrested for felony offenses. To calculate
the mean, we first sum all of the scores, as shown in the numerator of
Equation 4.2:

Total Number of Prior Arrests

TOTAL NUMBER 
OF ARRESTS FREQUENCY (N) CUMULATIVE (N)

0 4 4
1 1 5
2 2 7
4 3 10
5 3 13
7 4 17
8 2 19

10 1 20

Table 4.7

W orking It Out

 � 86

 � 5 � 5 � 5 � 7 � 7 � 7 � 7 � 8 � 8 � 10

 � 0 � 0 � 0 � 0 � 1 � 2 � 2 � 4 � 4 � 4 

 �
N

i�1
 Xi � �

20

i�1
 Xi

We then take the sum of the values, 86, and divide by the number of ob-
servations in the sample.
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The result, 4.3, tells us that in this sample the typical person arrested for
a felony has, on average, 4.3 prior arrests.

As another example, let’s take the data from Table 4.5 on minutes of
disorder in crime hot spots. According to Equation 4.2, the first step is to
sum all of the scores:

W orking It Out

 � 4.3

 � 86
20

 X � 
�
N

i�1
 Xi

N

W orking It Out

 � 71.56

 � 3.51 � 3.72 � 4.09 � 4.47 � 4.64 � 4.65 � 6.57

 � 2.21 � 2.34 � 2.45 � 2.66 � 3.04 � 3.19 � 3.23 � 3.46

 � 1.15 � 1.19 � 1.19 � 1.48 � 1.60 � 1.63 � 2.02 � 2.12

 � 0.35 � 0.42 � 0.46 � 0.47 � 0.52 � 0.67 � 1.00 � 1.06 

 �
N

i�1
 Xi � �

31

i�1
 Xi

We then take this number, 71.56, and divide it by N, or 31, the number
of cases in our sample.

W orking It Out

 � 2.308387097

 � 
71.56

31

 X � 
�
N

i�1
 Xi

N
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The result, 2.308387097 (rounded to the ninth decimal place), brings up
an issue that often arises in reporting statistics. Do you really need to
provide your audience with the level of precision that is given by your
statistic? In this case, for example, at what level of precision should min-
utes of disorder be presented?

A basic rule of thumb is to use your common sense in answering such
questions. Don’t provide statistics developed out to a large number of
decimal places just to impress others. In making this decision, you
should ask: What is the simplest presentation of my results that will pro-
vide the reader or listener with enough information to understand and
evaluate my work? Overall, criminal justice researchers seldom report the
mean to more than two decimal places. This is a good choice in our ex-
ample. Rounding to the second decimal place gives a mean of 2.31. Pro-
viding a more precise representation of the mean here would not add
important information for the reader.

In some cases, it is useful to develop estimates with much greater pre-
cision. In particular, if the values for the cases you are examining are
very small in the first place, you will want to present a more precise
mean. For example, Lawrence Sherman and his colleagues looked at the
mean daily rate of reported domestic violence in a study that compared
the impact of arrests versus warnings as a strategy for controlling spouse
abusers.3 Had they reported their findings only to the second decimal
place, as recommended above, they would have ended up with a mean
daily rate over the longest follow-up period (361–540 days) of 0.00 for
short arrest and 0.00 for warning. The difficulty here is that individuals
are unlikely to report cases of domestic violence on a very frequent
basis. Sherman et al. needed a much higher degree of precision to exam-
ine the differences between the two groups they studied. Accordingly,
they reported their results to the fourth decimal place. For arrests, the
rate was 0.0019, and for warnings it was 0.0009. These differences,
though small, were found to be meaningful in their research.

Comparing Results Gained Using the Mean and Median
Returning to the example from Table 4.5, we see that the mean for min-
utes of disorder, 2.31, is very similar to the median of 2.12 calculated
earlier. In this case, adding knowledge about value does not change our
portrait of the typical hot spot very much. However, we get a very differ-
ent sense of the average case if we use the data from Table 4.6. Here,
the median provided a less than satisfying representation of the average

3L. Sherman, J. D. Schmidt, D. Rogan, P. Gartin, E. G. Cohn, D. J. Collins, and A. R.
Bacich, “From Initial Deterrence to Long-Term Escalation: Short-Custody Arrest for
Poverty Ghetto Domestic Violence,” Criminology 29 (1991): 821–850.
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case. It was not sensitive to the fact that there was a large gap in the
scores between the 16th and 17th cases. Accordingly, the median, 1.83,
was very close in value to the first half of the cases in the sample, but
very far from those hot spots with higher values. The mean should pro-
vide a better estimate of typicality here, because it recognizes the actual
values of the categories and not just their positions. Let’s see what hap-
pens when we calculate the mean for Table 4.6.

Following our equation, we first sum the individual cases:

W orking It Out

 � 84.41

 � 4.51 � 4.72 � 5.09 � 5.47 � 5.64 � 5.65 � 5.77

 � 3.34 � 3.44 � 3.45 � 3.66 � 4.04 � 4.19 � 4.23 � 4.46

 � 1.15 � 1.19 � 1.19 � 1.48 � 1.60 � 1.63 � 1.73 � 1.83

 � 0.35 � 0.42 � 0.46 � 0.47 � 0.52 � 0.67 � 1.00 � 1.06

 �
N

i�1
 Xi � �

31

i�1
 Xi

We then divide this number by the total number of cases:

W orking It Out

 � 2.7229

 � 84.41
31

 X � 
�
N

i�1
 Xi

N

Here, we gain an estimate of typicality of 2.72 (rounding to the second
decimal place). As you can see, this score is much better centered in
our distribution than is the median. The reason is simple. The median
does not take into account the values of the categories. The mean does
take value into account and thus is able to adjust for the gap in the
distribution.
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There are cases in which the sensitivity of the mean to the values of
the categories in a measure can give misleading results. For example,
let’s say that one case in your study is very different from the others. As
noted in Chapter 1, researchers call such a case an outlier, because it is
very much outside the range of the other cases you studied. Taking the
example of minutes of disorder from Table 4.5, let’s say that the last case
had 70 minutes of disorder (the maximum amount possible) rather than
6.57 minutes. When we calculate the mean now, the sum of the cases is
much larger than before:

W orking It Out

 � 134.99

 � 3.51 � 3.72 � 4.09 � 4.47 � 4.64 � 4.65 � 70.0

 � 2.21 � 2.34 � 2.45 � 2.66 � 3.04 � 3.19 � 3.23 � 3.46

 � 1.15 � 1.19 � 1.19 � 1.48 � 1.60 � 1.63 � 2.02 � 2.12

 � 0.35 � 0.42 � 0.46 � 0.47 � 0.52 � 0.67 � 1.00 � 1.06

 �
N

i�1
 Xi � �

31

i�1
 Xi

Dividing this sum by the total number of cases provides us with a mean
of 4.35 (rounded to the second decimal place):

W orking It Out

 � 4.3545

 � 
134.99

31

 X � 
�
N

i�1
 Xi

N

The mean we calculated with the original score was 2.31 (see page 70).
Accordingly, merely by changing one score to an outlier, we have almost
doubled our estimate of typicality. In this case, the sensitivity of the
mean to an extreme value in the distribution led it to overestimate the
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average case. This illustrates the general principle that the mean is sensi-
tive to outliers. Because the mean is used to develop many other more
complex statistics, this principle is relevant not only to the mean itself
but also to a number of other important statistical techniques used by re-
searchers.

So what should you do if outliers lead to a misleading conclusion re-
garding typicality in your study? One solution is simply to exclude the
outliers from specific analyses and let your readers or audience know
that some cases have been excluded and why. If the number of extreme
cases is large enough, you may want to analyze these cases separately.

Other Characteristics of the Mean
Two other traits of the mean are important because they play a role in
how we develop other statistics. The first concerns what happens when
we look at deviations (or differences) from the mean. This will be-
come an issue in the next chapter, when we discuss measures of disper-
sion. The second, often termed the least squares property of the
mean, will become important to us in Chapter 15, when we discuss re-
gression.

If we take each score in a distribution, subtract the mean from it, and
sum these differences, we will always get a result of 0. In equation form,
this principle is represented as follows:

Equation 4.3

In English, this equation says that if we sum the deviations from the
mean, from the first to the last case, we will always get a result of 0. This
principle is illustrated in Table 4.8, using the data on minutes of public
disorder from Table 4.5. Here we have taken the 31 scores and sub-
tracted the mean from each one. We then added these differences. Be-
cause the positive scores balance out the negative ones, the result is 0.
This will always happen when we use the mean.

The second trait, the least squares property, is very important for un-
derstanding regression analysis (introduced in Chapter 15), a technique
commonly used for describing relationships among variables in criminal
justice. For the moment, it is enough to note this fact and that the issues

�
N

i�1
 (Xi � X ) � 0

Another solution is to transform the outliers. That is, you may want to

highest value that is not an outlier). In this way, you can include the
replace them with values closer to the rest of the distribution (e.g., the

cases, but minimize the extent to which they affect your estimate of
typicality. However, you should be cautious in developing such trans-
formations of your scores, keeping in mind that you are changing the
character of the distribution examined in your study.
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we address early on in statistics are often the bases for much more com-
plex types of analysis. “Don’t forget the basics” is a good rule. Many mis-
takes that researchers make in developing more complex statistics come
from a failure to think about the basic issues raised in the first few chap-
ters of this text.

The least squares property is written in equation form as follows:

Equation 4.4

What this says in English is that if we sum the squared deviations from
the mean for all of our cases, we will get the minimum possible result.
That is, suppose we take each individual’s score on a measure, subtract

�
N

i�1
 (Xi � X )2 � minimum

Deviations from the Mean for Minutes of Public Disorder (A)

SCORE (X) DEVIATION FROM THE MEAN (Xi � )

0.35 0.35 � 2.31 � �1.96
0.42 0.42 � 2.31 � �1.89
0.46 0.46 � 2.31 � �1.85
0.47 0.47 � 2.31 � �1.84
0.52 0.52 � 2.31 � �1.79
0.67 0.67 � 2.31 � �1.64
1.00 1.00 � 2.31 � �1.31
1.06 1.06 � 2.31 � �1.25
1.15 1.15 � 2.31 � �1.16
1.19 1.19 � 2.31 � �1.12
1.19 1.19 � 2.31 � �1.12
1.48 1.48 � 2.31 � �0.83
1.60 1.60 � 2.31 � �0.71
1.63 1.63 � 2.31 � �0.68
2.02 2.02 � 2.31 � �0.29
2.12 2.12 � 2.31 � �0.19
2.21 2.21 � 2.31 � �0.10
2.34 2.34 � 2.31 � �0.03
2.45 2.45 � 2.31 � �0.14
2.66 2.66 � 2.31 � �0.35
3.04 3.04 � 2.31 � �0.73
3.19 3.19 � 2.31 � �0.88
3.23 3.23 � 2.31 � �0.92
3.46 3.46 � 2.31 � �1.15
3.51 3.51 � 2.31 � �1.20
3.72 3.72 � 2.31 � �1.41
4.09 4.09 � 2.31 � �1.78
4.47 4.47 � 2.31 � �2.16
4.64 4.64 � 2.31 � �2.33
4.65 4.65 � 2.31 � �2.34
6.57 6.57 � 2.31 � �4.26
Total (�) 0*

*Because of rounding error, the actual column total is slightly less than zero.

X

Table 4.8
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the mean from that score, and then square the difference. If we then
sum all of these values, the result we get will be smaller than the result
we would have gotten if we had subtracted any other number besides
the mean. You might try this by calculating the result for minutes of dis-
order using the mean. Then try other values and see if you can find
some other number of minutes that will give you a smaller result. The
least squares property says you won’t.

Using the Mean for Noninterval Scales
The mean is ordinarily used for measuring central tendency only with in-
terval scales. However, in practice, researchers sometimes use the mean
with ordinal scales as well. Is this wrong? In a pure statistical sense, it is.
However, some ordinal scales have a large number of categories and
thus begin to mimic some of the characteristics of interval-level mea-
sures.

This is particularly true in cases where the movements from one cate-
gory to another in an ordinal scale can be looked at as equivalent, no
matter which category you move from. Taking our example of student
attitudes toward public drunkenness in Table 4.4, a researcher might
argue that the difference between “somewhat serious” and “a bit serious”
is about equivalent to that between “very serious” and “extremely seri-
ous,” and so forth. Thus, the difference between these categories is not
just a difference of position; it is also a movement of equal units up the
scale. Taking this approach, we can say that this measure takes into ac-
count both position and value, although the values here are not as
straightforward as those gained from true interval scales such as number
of crimes or dollar amount stolen.

A researcher might argue that the mean is appropriate for presenting
findings on views of public drunkenness because this ordinal-scale mea-
sure of attitudes is like an interval-scale measure. Although it is easy to
see the logic behind this decision, it is important to note that such a de-
cision takes a good deal of justification. In general, you should be very
cautious about using the mean for ordinal-level scales, even when the
above criteria are met.

S t a t i s t i c s  i n  P r a c t i c e :  
C o m p a r i n g  t h e  M e d i a n  a n d  t h e  M e a n

The general rule is that the mean provides the best measure of central
tendency for an interval scale. This follows a principle stated in Chap-
ter 1: In statistics, as in other decision-making areas, more information 
is better than less information. When we use the mean, we take into 
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tion, but also the values or scores of those categories. Because more in-
formation is used, the mean is less likely than other measures of central
tendency to be affected by changes in the nature of the sample that a re-
searcher examines. It is useful to note as well that the mean has some al-
gebraic characteristics that make it more easily used in developing other
types of statistics.

The mean is generally to be preferred, but when the distribution of a
variable is strongly skewed, the median provides a better estimate of
central tendency than the mean. “Skewed” means that the scores on the

cases. A distribution that has extreme values lower than the main cluster
of observations (i.e., there is a “tail” to the left in the distribution) is said
to be negatively skewed, while a distribution that has extreme values
greater than the main cluster of observations (i.e., there is a “tail” to the
right in the distribution) is said to be positively skewed.4

A good example of a skewed distribution in criminal justice is crimi-
nal history as measured by self-reports of prisoners. Horney and Mar-
shall, for example, reported results on the frequency of offending for a
sample of prisoners.5 As is apparent from Figure 4.1, most of the offend-
ers in their sample had a relatively low offending rate—between 1 and
20 offenses in the previous year. But a number of offenders had rates of
more than 100, and a fairly large group had more than 200. The mean
for this distribution is 175.

Clearly, 175 offenses provides a misleading view of typical rates of of-
fending for their sample. Because the mean is sensitive to value, it is in-
flated by the very high frequency scores of a relatively small proportion
of the sample. One solution suggested earlier to the problem of outliers

4A formal statistic for measuring the degree of skewness of a distribution is given by
the following equation:

In words, this equation tells us to take the deviation between a value and the mean
and cube it, then sum these values over all observations; the sum of the cubed devia-
tions is then divided by the sample size (N) multiplied by the standard deviation
cubed. The measure of skewness will have a value of 0 if the distribution is symmetri-
cal, a negative value if the distribution is negatively skewed, and a positive value if
the distribution is positively skewed. The greater the value of the measure, the greater
the degree of positive or negative skewness.
5J. Horney and I. H. Marshall, “An Experimental Comparison of Two Self-Report Meth-
ods for Measuring Lambda,” Journal of Research in Crime and Delinquency 29 (1992):
102–121.

skewness �
(Xi � X )3

Ns3

account not only the frequency of events in each category and their posi-

variable are very much weighted to one side and that frequencies of 
extreme values trail off in one  direction away from the main cluster of

�
N

i�1
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was to exclude such cases. But here, this would mean excluding almost
30% of the sample. Thus, these are not outliers in the traditional sense.
Another option mentioned earlier is to analyze the “outliers” separately.
But again, there is quite a spread of scores even if we look at those
above 50 or 100 separately, and the analysis of the outliers might in itself
provide a misleading view of central tendency. A common solution used
for describing this type of skewed interval-level distribution is to use the
median rather than the mean to describe central tendency. The median
for this distribution is 4, which is certainly more representative of the av-
erage case than is the mean. But even if you choose this solution, it is
very important to note to your audience that the distribution is skewed
and to tell them a bit about the nature of the distribution.

How should you decide when a distribution is so skewed that it is
preferable to use the median as opposed to the mean? You should begin
by comparing the mean and the median. When there is a very large dif-
ference between them, it may be the result of skewness. In such cases,
you should look at the distribution of the scores to see what is causing
the mean and median to differ widely. But there is no solid boundary
line to guide your choice.

cases where the mean and median provide relatively close estimates,
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your choice will be clear. In the former case you would choose the 

In extreme cases (such as that of criminal history in our example) or
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where in between, you will have to use common sense and the experi-
ences of other researchers working with similar data as guidelines. What
seems to make sense? What have other researchers chosen to do? One
way of being fair to your audience is to provide results for both the
mean and the median, irrespective of which you choose as the best mea-
sure of typicality.

C h a p t e r  S u m m a r y

The mode is calculated by identifying the category that contains the
greatest number of cases. It may be applied to any scale of measure-
ment. Because the mode uses very little information, it is rarely used
with scales of measurement higher than the nominal scale. It can occa-
sionally serve as a useful summary tool for higher-level scales, however,
when a large number of cases are concentrated in one particular cate-
gory.

The median is calculated by locating the middle score in a distribu-
tion and identifying in which category it falls. It is also known as the
50th percentile score, or the score below which 50% of the cases lie. The
information used includes both the number of cases in a particular cate-
gory and the positions of the categories. The median uses more informa-
tion than does the mode and requires a scale of measurement that is at
least ordinal in magnitude.

The mean is calculated by dividing the sum of the scores by the
number of cases. The information used includes not only the number of
cases in a category and the relative positions of the categories, but also
the actual value of each category. Such information normally requires at
least an interval scale of measurement. For this reason, the researcher
should be cautious about using the mean to describe an ordinal scale.
The mean uses more information than the mode and the median. It is,
however, sensitive to extreme cases—outliers. Faced with the distorting
effect of outliers, the researcher may choose to keep them, to transform
them to other values, or to delete them altogether. If a distribution of
scores is substantially skewed, then it may be more appropriate to use
the median than to use the mean. 

The sum derived by adding each score’s deviation from the mean
will always be 0. If the deviation of each score from the mean is
squared, then the sum of these squares will be less than it would be if
any number other than the mean were used. This is called the least
squares property.

median, and in the latter the mean. However, when your results fall some-
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K e y  T e r m s

deviation from the mean The extent to
which each individual score differs from
the mean of all the scores.

least squares property A characteristic 
of the mean whereby the sum of all the
squared deviations from the mean is a
minimum—it is lower than the sum of the
squared deviations from any other fixed
point.

mean A measure of central tendency cal-
culated by dividing the sum of the scores
by the number of cases.

median A measure of central tendency cal-
culated by identifying the value or category
of the score that occupies the middle posi-
tion in the distribution of scores.

mode A measure of central tendency cal-
culated by identifying the score or category
that occurs most frequently.

outlier(s) A single or small number of ex-
ceptional cases that substantially deviate
from the general pattern of scores.

skewed Describing a spread of scores that
is clearly weighted to one side.

S y m b o l s  a n d  F o r m u l a s

X Individual score

Mean

N Number of cases

� Sum

To calculate the median observation:

To calculate the mean:

To show how the sum of the deviations from the mean equals 0:

To express the least squares property:

�
N

i�1
 (Xi � X)2 � minimum

�
N

i�1
 (Xi � X) � 0

X � 
�
N

i�1
 Xi

N

Median observation � N � 1
2

X
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E x e r c i s e s

4.1 Drivers cited for moving violations are required by a state’s laws to
take a driving safety course taught by the local police department. The
sign-in sheet asks individuals to note why they received a ticket. The
14 participants at a recent class noted the following:

Speeding, Running a red light, Running a stop sign, Speeding, Speeding,
Running a red light, Tailgating, Speeding, Running a red light,
Recklessness, Speeding, Running a red light, Speeding, Running 
a stop sign

a. Categorize these data and calculate the mode.

b. Explain why the median would not be an appropriate measure of
central tendency for these data.

4.2 Calculate the mode, median, and mean for the following data:

a. Number of previous employments held by 25 convicts:

3 3 1 1 0 1 0 2 1 0 8 4 3

1 2 1 9 0 1 7 0 7 2 0 1

b. Weeks of training undergone by 20 prison guards:

10 16 12 16 16 16 10 8 10 12

16 18 12 16 16 8 0 12 10 16

c. Height (in meters) of 30 convicts:

1.72 1.78 1.73 1.70 1.81 1.64 1.76 1.72 1.75 1.74

1.88 1.79 2.01 1.80 1.77 1.79 1.69 1.74 1.75 1.66

1.77 1.73 1.72 1.91 1.80 1.74 1.72 1.82 1.86 1.79

4.3 A researcher checked the response times of police to ten emergency
telephone calls. The data below record the number of minutes that
elapsed from when the telephone call ended to when the police
arrived:

24 26 14 27 198 22 27 17 19 29

a. Calculate the mode, the median, and the mean.

b. Which of these measures is the most suitable for this particular
case? Explain your choice.

4.4 Airport officials wished to check the alertness of their security officers
over the two busiest weeks of the summer. During this period, they
sent out 50 undercover staff carrying suspicious items of hand lug-
gage. Five of them were stopped at the entrance to the airport. Six
made it into the airport, but were stopped at check-in. Thirteen more
got into the airport and through check-in, only to be stopped at the



82 C H A P T E R F O U R :  D E S C R I B I N G T H E T Y P I C A L C A S E

hand-luggage inspection point. Two passed the airport entrance,
check-in, and hand-luggage inspection, but were stopped when
presenting their boarding cards at the gate. Four people made it 
past every one of these stages, only to be stopped when boarding 
the plane. Twenty of the undercover staff were not detected 
at all.

a. Categorize the data and calculate the median category.

b. Is the median a good measure of central tendency in this case? Ex-
plain your answer. If you think it is not, suggest an alternative and
explain why.

4.5 On the first day of the term in a statistics course, the professor admin-
istered a brief questionnaire to the students, asking how many statis-
tics courses they had ever taken before the current term. Of the 33
students who answered the question, 17 said none, 9 said one, 3 said
two, 2 said three, 1 said four, and 1 said five.

a. Calculate the mode, median, and mean for number of prior statis-
tics classes.

b. Which one of these measures of central tendency best measures the
typicality of these data?

4.6 As part of her undergraduate thesis, a criminal justice student asked
ten other criminal justice majors to rate the fairness of the criminal jus-
tice system. The students were asked to say whether they strongly
agreed, agreed, were uncertain, disagreed, or strongly disagreed with
the following statement: “The criminal justice system in our country
treats all defendants fairly.” The ten responses were

Strongly agree, Strongly agree, Strongly disagree, Strongly disagree,
Uncertain, Disagree, Disagree, Agree, Strongly disagree, Uncertain

a. Categorize these data and calculate an appropriate measure of cen-
tral tendency.

b. Explain why this measure of central tendency best represents the
typicality of these data.

4.7 There are five prisoners in the high-security wing in a prison—Albert,
Harry, Charlie, Dave, and Eddie. Only Eddie’s biographical details
have been lost. The information available is as follows:

Age Previous Convictions

Albert 23 1
Harry 28 4
Charlie 18 1
Dave 41 1
Eddie ? ?
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a. Can we compute any of the following for previous convictions of
the five prisoners: the mode, the median, or the mean? If any (or
all) of these three measures may be calculated, what are their
values?

b. If the mean number of previous convictions is 2.0, how many con-
victions does Eddie have?

c. If we know that the median age for the five prisoners is 28, what
does this tell us about Eddie’s age? Explain why.

d. If the mean age for the five prisoners is 28.2, how old is Eddie?

4.8 A researcher sat on a bench along the main shopping street of a city
center on ten successive Saturdays from 11:00 A.M. to 2:00 P.M.—the
three busiest shopping hours of the day—and recorded the number of
times a police officer passed by. The results for the ten weeks are as
follows:

Week No.: 1 2 3 4 5 6 7 8 9 10

No. of Police Officers Observed: 4 3 6 4 4 5 4 35 3 5

On week 8, local unionists held a demonstration in the city center,
and the high number of observations for that week can be explained
by the extra officers called in to police the rally.

b. Which measure of central tendency best represents typicality for
these data? Discuss the issues involved in choosing the most appro-
priate means of describing the data.

c. Imagine that the unionists had decided to hold a regular demon-
stration in the city center on alternating weeks. The results
recorded for the same study would be as follows:

Week No.: 1 2 3 4 5 6 7 8 9 10

No. of Police Officers Observed: 4 30 6 31 6 52 4 35 4 34

4.9 On a recent evening, a police crackdown on prostitution solicitation
resulted in 19 arrests. The ages of the persons arrested were

17 18 24 37 32 49 61 20 21 21

25 24 24 26 30 33 35 22 19

a. Calculate an appropriate measure of central tendency.

b. Explain why this measure of central tendency best represents typi-
cality for these data.

officers observed.
a. Calculate the mode, median, and mean for the number of police 

Would the measure of central tendency you recommended in part b
still be the best measure of typicality? Explain why.
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4.10 Using your answers from part a of Exercise 4.5, calculate

a. The sum of the deviations from the mean.

b. The sum of the squared deviations from the mean.

c. The sum of the squared deviations from the median.

d. The sum of the squared deviations from the mode.

e. Which of these sums of squared deviations has the smallest value?

C o m p u t e r  E x e r c i s e s
There are several different ways of obtaining measures of central tendency in
SPSS. Two of the more direct ways of computing measures of central tendency

Using the “Descriptives” command

Using the “Frequencies” command

are to use the “Descriptives” command and the “Frequencies” command
 (discussed in the Computer Exercises for Chapter 3).

The quickest way to obtain information on the mean for a variable measured 
at the interval level of measurement is to use the Descriptives  command“ ”
(AnalyzelDescriptive StatisticslDescriptives).

After clicking on the Descriptives  command, you should now see a window
with two boxes. The box on  the left contains the names of the variables in 

“ ”

the data set (a general layout to winows in SPSS that will become familiar to
you after working with SPSS); the box on the right is empty. For those vari-
ables which you want a mean, move the variable name from the left box to 
right box. Click on OK  to have the descriptive statistic calculated for you.
The output window will contain quite a bit of information for each variable
that you have selected.

“ ”

Note: In regard to measures of central tendency, the “Descriptives” command 
will report only the mean, not the mode or the median. Since the only

To obtain all three measures of central tendency, the best command in SPSS is 
the “Frequencies” command (Analyze lDescriptive Statistics lFrequencies).

As you may recall from the previous chapter’s computer exercises, this com-
mand will produce frequency distributions for the variables whose names
are moved from the list on the left to the box on the right of the window. 
To obtain measures of central tendency for the variables of interest, click on 
the box labeled “Statistics” that appears at the bottom of this window.

In the new window that appears, you will be presented with a menu of sta-
tistics that SPSS can calculate on each of the variables. Select (click on the 

measure of central tendency this command will calculate is the mean, this 
command is generally useful only for interval-level data. This command is  

sively interval-level variables.
most useful when you are working with a data set that contains almost exclu- 
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1.

2. Do any of the variables included in the data file appear to have poten-
tial outliers? (You may want to consult your histograms from the
Chapter 3 computer exercises or create histograms now for the inter-
val-level variables included in the data file.)

3. If you find one or more potential outliers, take the following steps to
investigate their effect on the measures of central tendency.

a. Use the “Recode” command to create two new variables, one that
recodes the outliers as “System Missing” values and one that re-
codes the outliers as the next smaller value.

b. Using your variable that recodes the outliers as missing, report how
the values of the mean and the median change when potential out-
liers are removed from the analysis.

c. Using your variable that recodes the outliers as the next smaller
value, report how the values of the mean and the median change
when potential outliers are made less extreme.

d. Which approach to handling potential outliers is more appropriate
for analyzing these data? Explain why. Faced with potential outliers,
which measure of central tendency would you report?

empty square next to) Mode, Median, and Mean. Click on Continue  and “ ”
then “OK” to have these statistics calculated for you.

In the output window, you should see a box labeled “Statistics.” Each column
of this table refers to a separate variable. As you move down the rows, you 
should see the reported values for the mode, the median, and the mean.

Caution: Note that the mode and the median are listed as numbers, even
though the data may be nominal or ordinal and you have entered value  
labels. To report correctly the value of the mode or median, you need to
report the category represented by that number. For example, suppose you

would be up to you to report correctly whether the modal category was male 
females as 2. The mode would be reported by SPSS as either 1 or 2, and it 

or female  not a 1 or a 2.– 

Open the data file nys_1.sav (or nys_1_student.sav). Consider the
level of measurement for each variable, and then compute and report 
appropriate measures of central tendency for each variable.

had analyzed the variable labeled “gender,” where males were coded as 1 and 

Problems



How Typical Is the Typical Case?:

Measuring Dispersion

What Do They Tell Us About Our Data?

a n d  o r d i n a l  s c a l e s :  p r o p o r t i o n s ,  
p e r c e n t a g e s ,  a n d  t h e  v a r i a t i o n  r a t i o

r a n g e ,  v a r i a n c e ,  a n d  s t a n d a r d  d e v i a t i o n

C h a p t e r  f i v e

M e a s u r e s  o f  d i s p e r s i o n

M e a s u r i n g  d i s p e r s i o n  i n  n o m i n a l  

M e a s u r i n g  d i s p e r s i o n  i n  i n t e r v a l  s c a l e s :  

How are They Calculated?

What are Their Characteristics?

How are They Calculated?

What are Their Characteristics?



MEASURES OF CENTRAL TENDENCY provide a snapshot of the typical
case; however, the same statistic may be obtained from samples or pop-
ulations that are in fact quite dissimilar. For example, a sample of police
recruits with a mean or median age of 23 is not likely to include people
younger than 18 or older than 30, because most police departments have
age requirements for incoming officers. A sample of offenders with a
mean or median age of 23, however, will include offenders younger than
18 and much older than 30. In both these samples, the average person
studied is 23 years old. But the sample of offenders will include more
younger and older people than the sample of police recruits. The ages of
the offenders are dispersed more widely around the average age.

Measures of dispersion allow us to fill a gap in our description of the
samples or populations we study. They ask the question: How typical is
the typical case? They tell us to what extent the subjects we studied are
similar to the case we have chosen to represent them. Are most cases
clustered closely around the average case? Or, as with the sample of of-
fenders above, is there a good deal of dispersion of cases both above
and below the average?

M e a s u r e s  o f  D i s p e r s i o n  
f o r  N o m i n a l -  a n d  O r d i n a l - L e v e l  D a t a

With nominal scales, we define the typical case as the category with
the largest number of subjects. Accordingly, in Chapter 4 we chose
“private attorney” as the modal category for legal representation for a
sample of white-collar offenders. But how would we describe to what
extent the use of a private attorney is typical of the sample as a whole?
Put another way, to what degree are the cases concentrated in the
modal category?

87
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The Proportion in the Modal Category
The most straightforward way to answer this question is to describe the
proportion of cases that fall in the modal category. Recall from Chapter 3
that a proportion is represented by the following equation:

Accordingly, we can represent the proportion of cases in the modal cate-
gory using Equation 5.1:

Equation 5.1

That is, we take the number of cases in the modal category and divide it
by the total number of cases in the sample.

Taking the example of legal representation, we divide the N of cases
in the modal category (private attorney) by the total N of cases in the
sample (see Table 5.1):

Proportion � 
Nmodal cat.

Ntotal

Proportion � 
Ncat

Ntotal

Legal Representation for White-Collar Crime

CATEGORY FREQUENCY (N )

No Attorney 20
Legal Aid 26
Court Appointed 92
Public Defender 153
Private Attorney 380
Total (�) 671

Table 5.1

W orking It Out

 � 0.5663

 � 
380
671

 Proportion � 
Nmodal cat.

Ntotal

Following our earlier suggestions regarding rounding to the second deci-
mal place, we say that the proportion of white-collar offenders in the
modal category was about 0.57.
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Table 5.2 presents information about the method of execution used
on the 683 persons executed in the United States from 1977 to 2000. The
modal category is lethal injection, so the proportion in the modal cate-
gory is found by dividing the N of cases in that category by the total N of
cases:

Method of Execution in the United States, 1977–2000

CATEGORY FREQUENCY (N )

Lethal Injection 518
Electrocution 149
Lethal Gas 11
Hanging 3
Firing Squad 2
Total (�) 683

Source: Tracy L. Snell, “Capital Punishment 2000,”
Bureau of Justice Statistics Bulletin, 2001, p. 12.

Table 5.2

W orking It Out

 � 0.7584

 � 
518
683

 Proportion � 
Nmodal cat.

Ntotal

Of persons executed in the United States from 1977 to 2000, the propor-
tion killed through lethal injection was about 0.76.

The Percentage in the Modal Category
Alternatively, we may refer to the percentage in the modal category.
Most people find percentages easier to understand than proportions. Re-
call that a percentage is obtained by taking a proportion and multiplying
it by 100. Accordingly, we can take Equation 5.1 and multiply the result
by 100 to get the percentage of cases in the modal category.

Percentage � 
Nmodal cat.

Ntotal
 � 100
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For our legal representation example,

W orking It Out

 � 56.6319

 � 
380
671

 � 100

 Percentage � 
Nmodal cat.

Ntotal
 � 100

That is, about 57% of the cases in the sample fall in the modal category.
Similarly, for the method of execution example, the percentage in the

modal category is

The Variation Ratio
Another way to describe the degree to which the modal category repre-
sents the cases in a sample is to use a statistic called the variation ratio
(VR). The variation ratio is based on the same logic as a proportion, but
it examines the extent to which the cases are spread outside the modal
category, rather than concentrated within it. The proportion of cases in
the modal category is subtracted from 1:

Equation 5.2

For the legal representation example, the variation ratio is

VR � 1 � �Nmodal cat.

Ntotal
�

 � 75.8419

 Percentage � 
518
683

 � 100

W orking It Out

 � 0.4337

 � 1 � �380
671�

 VR � 1 � �Nmodal cat.

Ntotal
�

involved the use of lethal injection.
About 76% of all executions in the United States from 1977 to 2000 
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The variation ratio for legal representation in this sample of white-collar
offenders is about 0.43. But what does this say about the extent to
which cases in the sample are clustered around the typical case? Is a
variation ratio of 0.43 large or small? What rule can we use for deciding
more generally whether the distribution we are examining is strongly
clustered?

One approach is to define at the outset the upper and lower limits for
the variation ratio or proportion for a particular measure. Obviously, the
largest proportion, regardless of the study, is 1.0, which would mean that
all of the cases were in the modal category. Having all of the cases in
the modal category would lead to a variation ratio of 0, indicating no
dispersion.

The smallest proportion (or largest VR) depends, however, on the
number of categories in your measure. The mode is defined as the cate-
gory in your measure with the most cases, so it must have at least one
more case than any other category. If you have only two categories, then
the modal category must include one more than half of the cases in your
study. So, in the instance of two categories, the least possible concentra-
tion is just over 0.50 of the cases. The least possible dispersion, as mea-
sured by the variation ratio, would be 1 minus this proportion, or just
under 0.50. If you have four categories, the modal category must have
more than one-quarter of the cases. Accordingly, the smallest variation
ratio would be a bit smaller than 0.75.

What about our example of legal representation? We have five cate-
gories and 671 cases. The smallest number of cases the modal cate-
gory could have with these numbers is 135. In this instance, each of
the other four categories would have 134 cases. This is the maximum
amount of dispersion that could exist in this sample, and it amounts to
about 20.12% of the total number of cases in the sample, or a variation
ratio of 0.7988. As noted earlier, the greatest degree of concentration
in the modal category would yield a proportion of 1 and a variation
ratio of 0. The estimates we calculated for legal representation
(proportion � 0.57; VR � 0.43) lie somewhere between these two
extremes.

Is this dispersion large or small? As with many of the statistics we will
examine, the answer depends on the context in which you are working.
“Large” or “small” describes a value, not a statistical concept. Statistically,
you know that your estimate falls somewhere between the largest possi-
ble degree of concentration and the largest possible degree of disper-
sion. But whether this is important or meaningful depends on the prob-
lem you are examining and the results that others have obtained in prior
research.

For example, if, in a study of legal representation for white-collar
crime in England, it had been found that 90% of the cases were concen-
trated in the private attorney category, then we might conclude that our
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results reflected a relatively high degree of dispersion of legal represen-
tation in the United States. If, in England, only 25% of the cases had
been in the modal category, we might conclude that there was a rela-
tively low degree of dispersion of legal representation in the United
States.

The proportion and the variation ratio are useful primarily for describ-
ing dispersion with nominal-level measures. In some circumstances,
however, they can be useful for describing ordinal-level variables as
well. This is true primarily when there are just a few categories in a mea-
sure or when there is a very high degree of concentration of cases in
one category. The problem in using a simple proportion or variation
ratio for ordinal-level measures is that the mode, upon which these sta-
tistics are based, is often a misleading measure for ordinal scales. As dis-
cussed in Chapter 4, the mode does not take into account the positions
of scores in a measure, and thus it may provide a misleading view of the
average case.

Index of Qualitative Variation
One measure of dispersion that is not based on the mode—and that
can be used for both nominal and ordinal scales—is the index of
qualitative variation (IQV). The IQV compares the amount of varia-
tion observed in a sample to the total amount of variation possible,
given the number of cases and categories in a study. It is a standard-
ized measure. This means that whatever the number of cases or cate-
gories, the IQV can vary only between 0 and 100. An IQV of 0 means
that there is no variation in the measure, or all of the cases lie in one
category. An IQV of 100 means that the cases are evenly dispersed
across the categories.

Equation 5.3

Equation 5.3 provides a guide for how to compute the IQV. You are
already familiar with the summation symbols within the parentheses.
Here we are summing not across cases, but across products of distinct
categories. Nobs represents the number of cases we observe within a cate-
gory in our study. Nexp represents the number of cases we would expect
in a category if the measure were distributed equally across the cate-
gories. That is, it is the N we would expect if there were the maximum
amount of dispersion of our cases. We use the subscripts i, j, and k as a

IQV � � �
k�1

i�1
 �

k

j�i�1
 Nobsi Nobsj

�
k�1

i�1
 �

k

j�i�1
 Nexpi Nexpj 

� � 100
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shorthand way to say that we should multiply all of the potential pairs of
categories. Here’s how this works: k represents the total number of cate-
gories of a variable. In the legal representation example, k � 5. Sub-
scripts i and j index the categories of the variable. Use of the subscripts i
and j provides us with a way of keeping track and making sure that we
have multiplied all possible pairs of observed frequencies from each of
the categories.

For example, if a variable had three categories, then the numerator
(the measure of observed variation) would be equal to

If a variable had four categories, then the numerator would be equal to

A concrete example will make it much easier to develop this statistic
in practice. Let’s say that we wanted to describe dispersion of an ordinal-
scale measure of fear of crime in a college class of 20 students. The stu-
dents were asked whether they were personally concerned about crime
on campus. The potential responses were “very concerned,” “quite con-
cerned,” “a little concerned,” and “not concerned at all.” The responses
of the students are reported under the “N observed” column in Table 5.3.
As you can see, the cases are fairly spread out, although there are more
students in the “very concerned” and “quite concerned” categories than
in the “a little concerned” and “not concerned at all” categories. The ex-
pected number of cases in each category under the assumption of maxi-
mum dispersion is 5. That is, if the cases were equally spread across the
categories, we would expect the same number in each. Following Equa-
tion 5.3, we first multiply the number of cases observed in each category
by the number observed in every other category and then sum. We then
divide this total by the sum of the number expected in each category

Nobs1
Nobs2

 � Nobs1
Nobs3

 � Nobs1
Nobs4

 � Nobs2
Nobs3

 � Nobs2
Nobs4

 � Nobs3
Nobs4

Nobs1
Nobs2

 � Nobs1
Nobs3

 � Nobs2
Nobs3

Fear of Crime Among Students

CATEGORY N OBSERVED N EXPECTED

Not Concerned at All 3 20/4 � 5
A Little Concerned 4 20/4 � 5
Quite Concerned 6 20/4 � 5
Very Concerned 7 20/4 � 5
Total (�) 20 20

Table 5.3
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multiplied by the number expected in every other category. This amount
is then multiplied by 100:

W orking It Out

 � 96.6667

 � �145
150� � 100

 � �(3 � 4) � (3 � 6) � (3 � 7) � (4 � 6) � (4 � 7) � (6 � 7)
(5 � 5) � (5 � 5) � (5 � 5) � (5 � 5) � (5 � 5) � (5 � 5)� � 100

 IQV � 
�
k�1

i�1
 �

k

j�i�1
 Nobsi

 Nobsj

�
k�1

i�1
 �

k

j�i�1
 Nexpi

 Nexpj
 

 � 100

The observed variation is 145. The expected variation is 150, represent-
ing the maximum amount of dispersion possible for the measure. The
IQV for this measure is 96.67, meaning that the cases studied are very
dispersed among the categories of the measure.

M e a s u r i n g  D i s p e r s i o n  i n  I n t e r v a l  S c a l e s :  
T h e  R a n g e ,  V a r i a n c e ,  a n d  S t a n d a r d  D e v i a t i o n

A common method of describing the spread of scores on interval or
higher scales is to examine the range between the highest and lowest
scores. Take, for example, the distribution of cases in Table 5.4. Let’s say
that this was a distribution of crime calls at hot spots over a one-year pe-
riod. In describing typicality in this distribution, we would report the
mean number of calls for the 12 places, which is 21.50. In describing
how dispersed the scores are, we would report that the scores range be-
tween 2 and 52, or that the range of scores is 50.

The range is very simple and easy to present. Its attraction lies pre-
cisely in the fact that everyone understands what a range represents.
However, the range is an unstable statistic because it uses very little of
the information available in interval-level scales. It bases its estimate of
dispersion on just two observations, the highest and lowest scores. This
means that a change in just one case in a distribution can completely
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alter your description of dispersion. For example, if we changed the case
with the most calls in Table 5.4 from 52 to 502, the range would change
from 50 to 500.

One method for reducing the instability of the range is to examine
cases that are not at the extremes of your distribution. In this way, you
are likely to avoid the problem of having the range magnified by a few
very large or small numbers. For example, you might choose to look at
the range between the 5th and 95th percentile scores, rather than that
between the lowest and highest scores. It is also common to look at the
range between the 25th and 75th percentile scores or between the 20th
and 80th percentile scores. But however you change the points at which
the range is calculated, you still rely on just two scores in determining
the spread of cases in your distribution. The range provides no insight
into whether the scores below or above these cases are clustered to-
gether tightly or dispersed widely. Its portrait of dispersion for interval
scales is thus very limited.

How can we gain a fuller view of dispersion for interval scales? Re-
member that we became interested in the problem of dispersion because
we wanted to provide an estimate of how well the average case repre-
sented the distribution of cases as a whole. Are scores clustered tightly
around the average case or dispersed widely from it? Given that we have
already described the mean as the most appropriate measure of central
tendency for such scales, this is the natural place to begin our assess-
ment. Why not simply examine how much the average scores differ from
the mean?

In fact, this is the logic that statisticians have used to develop the
main measures of dispersion for interval scales. However, they are faced
with a basic problem in taking this approach. As we discussed in Chap-
ter 4, if we add up all of the deviations from the mean, we will always

Crime Calls at Hot Spots in a Year

HOT SPOT NUMBER NUMBER OF CALLS

1 2
2 9
3 11
4 13
5 20
6 20
7 20
8 24
9 27

10 29
11 31
12 52

Table 5.4
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come up with a value of 0. You can see this again by looking at the data
on crime calls at hot spots in Table 5.5. If we take the sum of the differ-
ences between each score and the mean, written in equation form as

the total, as expected, is 0.
As discussed in Chapter 4, when we add up the deviations above and

below the mean, the positive and negative scores cancel each other out.
In order to use deviations from the mean as a basis for a measure of dis-
persion, we must develop a method for taking the sign, or direction, out
of our statistic. One solution is to square each deviation from the mean.
Squaring will always yield a positive result because multiplying a posi-
tive number or a negative number by itself will result in a positive out-
come. This is the method that statisticians have used in developing the
measures of dispersion most commonly used for interval scales.

The Variance
When we take this approach, the variance (s 2) provides an estimate of
the dispersion around the mean. It is the sum of the squared deviations
from the mean divided by the number of cases. Written in equation
form, it is

Equation 5.4s 2 � 
�
N

i�1
(Xi � X )2

N

�
N

i�1
(Xi � X )

Deviations from the Mean for Crime Calls at Hot Spots in a Year

HOT SPOT NUMBER DEVIATIONS FROM
NUMBER OF CALLS THE MEAN (Xi � )

1 2 2 � 21.5 � �19.5
2 9 9 � 21.5 � �12.5
3 11 11 � 21.5 � �10.5
4 13 13 � 21.5 � �8.5
5 20 20 � 21.5 � �1.5
6 20 20 � 21.5 � �1.5
7 20 20 � 21.5 � �1.5
8 24 24 � 21.5 � 2.5
9 27 27 � 21.5 � 5.5

10 29 29 � 21.5 � 7.5
11 31 31 � 21.5 � 9.5
12 52 52 � 21.5 � 30.5

Total (�) � 0.0

X

Table 5.5
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In practice, you must take the following steps to compute the variance
(as we do for our example in Table 5.6):

1. Take each case and subtract the mean from it, to get the deviation
from the mean. For our example of crime calls at hot spots, we first
take the case with 2 calls and subtract the mean of 21.5 from it, to
get a score of �19.5.

2. Square each of these scores. For the first case, our result is 380.25.

3. Sum the results obtained in step 2. For our example of hot spots of
crime, this yields a total of 1,839.

4. Finally, divide this result by the number of cases in the study. For our
12 cases, this leads to a variance of 153.25.1

Variance for Crime Calls at Hot Spots in a Year

HOT SPOT NUMBER
NUMBER OF CALLS (Xi � ) (Xi � )2

1 2 2 � 21.5 � �19.5 380.25
2 9 9 � 21.5 � �12.5 156.25
3 11 11 � 21.5 � �10.5 110.25
4 13 13 � 21.5 � �8.5 72.25
5 20 20 � 21.5 � �1.5 2.25
6 20 20 � 21.5 � �1.5 2.25
7 20 20 � 21.5 � �1.5 2.25
8 24 24 � 21.5 � 2.5 6.25
9 27 27 � 21.5 � 5.5 30.25

10 29 29 � 21.5 � 7.5 56.25
11 31 31 � 21.5 � 9.5 90.25
12 52 52 � 21.5 � 30.5 930.25

Total (�) � 0.0 Total (�) � 1,839.00

XX

Table 5.6

1If you are working with SPSS or another computer package, you will notice that the
result you get computing the variance by hand using this formula and the result pro-
vided by the computer package are slightly different. For example, SPSS computes a
variance of 167.18 for the distribution provided in Table 5.6. The difference develops
from the computer’s use of a correction for the bias of sample variances: 1 is sub-
tracted from the N in the denominator of Equation 5.4. The correction is used primar-
ily as a tool in inferential statistics and is discussed in Chapter 10. Though it is our
view that the uncorrected variance should be used in describing sample statistics,
many researchers report variances with the correction factor for sample estimates.
When samples are larger, the estimates obtained with and without the correction are
very similar, and thus it generally makes very little substantive difference which ap-
proach is used.
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amounts required for a group of 15 defendants. The mean bail amount is
$3,263.33. Following the same procedure as before, we subtract the
mean from each of the individual observations. These values are pre-

cases, we gain a variance of $6,984,155.56 for the dollar amount of bail.

W orking It Out

 � 153.25

 � 
1,839

12

 � 
�
12

i�1
(Xi � 21.5)2

12

 s 

2 � 
�
N

i�1
(Xi � X )2

N

Variance for Bail Amounts for a Sample of Persons Arrested for Felonies

BAIL
DEFENDANT AMOUNT (Xi � ) (Xi � )2

1 500 �2,763.33 7,635,992.69
2 1,000 �2,263.33 5,122,662.69
3 1,000 �2,263.33 5,122,662.69
4 1,000 �2,263.33 5,122,662.69
5 1,200 �2,063.33 4,257,330.69
6 1,500 �1,763.33 3,109,332.69
7 2,500 �763.33 582,672.69
8 2,500 �763.33 582,672.69
9 2,500 �763.33 582,672.69

10 2,750 �513.33 263,507.69
11 5,000 1,736.67 3,016,022.69
12 5,000 1,736.67 3,016,022.69
13 5,000 1,736.67 3,016,022.69
14 7,500 4,236.67 17,949,372.69
15 10,000 6,736.67 45,382,722.69

Total (�) � 0.05 Total (�) � 104,762,333.33

XX

Table 5.7

sented in the third column. The squared deviations from the mean 

appears at the bottom of the column. When we divide the total by the N of
appear in the fourth column, and the sum of the squared deviations 

As another example, consider the data presented in Table 5.7 on bail
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With the variance, we now have a statistic for computing dispersion
based on deviations from the mean. However, how can we interpret
whether the variance for a distribution is large or small? If you are having
trouble making sense of this from our two examples, you are not alone.
While squaring solves one problem (the fact that the raw deviations from
the mean sum to 0), it creates another. By squaring, we generally obtain
numbers that are much larger than the actual units in the distributions
we are examining.2

The Standard Deviation
Another measure of dispersion based on the variance provides a solution
to the problem of interpretation. This measure, the standard deviation,
is calculated by taking the square root of the variance. Accordingly, it re-
duces our estimate of dispersion, using a method similar to the one we
employed to solve the problem of positive and negative differences from
the mean adding to 0. The standard deviation (s) provides an estimate of
dispersion in units similar to those of our original scores. It is described
in equation form as

Equation 5.5s � ��
N

i�1
(Xi � X )2

N

W orking It Out

 � 6,984,155.56

 � 
104,762,333.33

15

 � 
�
15

i�1
(Xi � 3,263.33)2

15

 s 

2 � 
�
N

i�1
(Xi � X )2

N

2In the special case of a fraction, the result will be smaller numbers.



Although Equations 5.4 and 5.5 provide a useful way of conceptualizing and
measuring the variance and standard deviation, you can also use a com-
puting formula that has fewer steps and is less likely to result in computa-
tional error. In Table 5.6, we rounded the mean and then calculated squared
deviations based on values that were rounded at each step. In an attempt
to limit the amount of rounding, and consequently decrease the chances of
a mistake, an alternative equation that can be used for the variance is

And an alternative for the standard deviation is

Let’s reconsider the data in Table 5.6 on hot spots. The following table
illustrates the key calculations:

HOT SPOT NUMBER NUMBER OF CALLS (Xi)

1 2 4
2 9 81
3 11 121
4 13 169
5 20 400
6 20 400
7 20 400
8 24 576
9 27 729

10 29 841
11 31 961
12 52 2,704
Total (�) 258 7,386

X 

2
i

s � ��
N

i�1
X 

2
i  � 

��N
i�1

Xi�2

N
N

s 

2 � 
�
N

i�1
X 

2
i  � 

��
N

i�1
Xi�2

N
N

Computational Equations for the Variance 
and Standard Deviation



The variance (s 2) is then calculated with the computational equation as

And the standard deviation is simply the square root of the variance:

Similarly, let’s revisit the bail data in Table 5.7 and compute the vari-
ance with the computational formula. The following table illustrates the
key calculations.

DEFENDANT BAIL AMOUNT (Xi )

1 500 250,000
2 1,000 1,000,000
3 1,000 1,000,000
4 1,000 1,000,000
5 1,200 1,440,000
6 1,500 2,250,000
7 2,500 6,250,000
8 2,500 6,250,000
9 2,500 6,250,000

10 2,750 7,562,500
11 5,000 25,000,000
12 5,000 25,000,000
13 5,000 25,000,000
14 7,500 56,250,000
15 10,000 100,000,000
Total (�) 48,950 264,502,500

The variance is

And the standard deviation is

s � �6,984,155.56 � 2,642.76

s 

2 � 
264,502,500 � 

(48,950)2

15
15  � 6,984,155.56

X 

2
i

s � �153.25 � 12.38

s 2 � 
7,386 � 

(258)2

12
12  � 153.25
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In calculating the standard deviation, we add one step to our calcula-
tion of variance: We take the square root of our result. For the example
of crime calls at 12 hot spots (where the variance equaled 153.25), we
obtain a standard deviation of .3 If you were to define,
on average, how much the scores differed from the mean just by looking
at these 12 cases, you would probably come to a conclusion close to that
provided by the standard deviation. Similarly, if we take the square root
of the variance for the bail example above, we come up with a figure
that makes much more intuitive sense than the variance. In this case, the
standard deviation is , or $2,642.76.

The standard deviation has some basic characteristics, which relate
generally to its use:

1. A standard deviation of 0 means that a measure has no variability.
For this to happen, all of the scores on a measure have to be the
same. For example, if you examine a group of first-time offenders,
there will be no variation in the number of offenses in their criminal
records. By definition, because they are all first-time offenders, the
standard deviation (and the variance) will be 0.

2. The size of the standard deviation (and the variance) is dependent
on both the amount of dispersion in the measure and the units of
analysis that are used. When cases are spread widely from the mean,
there is more dispersion and the standard deviation will be larger.
When cases are tightly clustered around the mean, the standard
deviation will be smaller.

Similarly, when the units of analysis in the measure are large, the
standard deviation will reflect the large units. For example, if you
report the standard deviation of police salaries in a particular city in
dollars, your standard deviation will be larger than if you reported
those salaries in units of thousands of dollars. If the standard
deviation is 3,350 in dollars, the standard deviation would be 3.35
using the unit of thousands of dollars.

3. Extreme deviations from the mean have the greatest weight in
constructing the standard deviation. What this means is that here, as
with the mean, you should be concerned with the problem of
outliers. In this case, the effect of outliers is compounded because
they affect not only the mean itself, which is used in computing the
standard deviation, but also the individual deviations that are
obtained by subtracting the mean from individual cases.

�6,984,155.56

�153.25 � 12.38

3As discussed in footnote 1, SPSS and many other computer packages would provide
a slightly different result, based on the use of a correction of �1 in the denominator.
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The standard deviation is a useful statistic for comparing the extent to
which characteristics are clustered or dispersed around the mean in dif-

4

samples are very similar (61.05 for antitrust violators; 59.27 for bribery
offenders), but the standard deviation for those convicted of bribery is
about twice that of those convicted of antitrust violations.

Figure 5.1 illustrates why these two samples yield similar means but
very different standard deviations. The scores for most antitrust offend-

the distribution, including many more cases between 75 and 90 and
below 50. What this tells us is that the antitrust sample includes a fairly
homogeneous group of offenders, ranking on average relatively high
on the Duncan socioeconomic index. Bribery is a much more diverse
category. Although the means are similar, the bribery category includes
many more lower- and higher-status individuals than does the antitrust
category.

The Coefficient of Relative Variation
For the data on bribery and antitrust offenders in Table 5.8, in which the
means of the two groups are fairly similar, a direct comparison of stan-
dard deviations provides a good view of the differences in dispersion.
When the means of two groups are very different, however, this compar-
ison may not be a fair one. If the mean Duncan score for one group was
10 and for the other was 50, we might expect a larger standard deviation
in the latter group simply because the mean was larger and there was

Duncan SEI for Bribery and Antitrust Offenders

CATEGORY N s

Bribery 83 59.27 19.45
Antitrust 112 61.05 11.13
Total (�) 195

X

Table 5.8

4See Albert J. Reiss, Occupations and Social Status (New York: Free Press, 1961).

victed of antitrust violations is compared to a sample of offenders convicted
ferent samples. For example, in Table 5.8, a sample of offenders con-

of bribery. The characteristic examined is social status, as measured
by the interval-scale Duncan socioeconomic index  (SEI). The  index
is based on the average income, education, and prestige associated
with different occupations. The mean Duncan scores for these two

offenders, in contrast, the scores are much more widely spread across
ers are clustered closely within the range of 55 to 75. For bribery 
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greater potential for dispersion. Similarly, if two measures use different
units of analysis—for example, dollars and number of offenses—a direct
comparison of standard deviations does not make sense.

One solution to this problem is to use the coefficient of relative
variation (CRV). The coefficient of relative variation looks at the size of
the standard deviation of a measure relative to the size of its mean:

Equation 5.6

In the example of the SEI for antitrust offenders, we divide the standard
deviation (11.13) by the mean (61.05) to obtain a CRV of 0.18, meaning
that the standard deviation is about one-fifth the size of the mean. Be-
cause the CRV expresses dispersion in a measure in a standardized form
relative to the mean, we can compare the CRV across measures that have
widely different means and standard deviations.

CRV � s

X

W orking It Out

 � 0.1823

 � 
11.13
61.05

 CRV � s

X

A Note on the Mean Deviation
The standard deviation allows us to measure dispersion in interval
scales, taking into account the deviation from the mean of each case in
our sample or population. But it is not the only measure that allows us
to do this. The mean deviation takes a similar approach, but relies on
absolute values, rather than squaring, to overcome the fact that the sum
of the deviations from the mean equals 0. When you take the absolute
value of a number, you ignore its sign. Accordingly, �8 and 8 both have
an absolute value of 8; in mathematical notation, � �8 � � � 8 � � 8.

The equation for the mean deviation is similar to that for the vari-
ance. The only difference is that we take the absolute value of the

antitrust offenders.

A measure that has a CRV of 1, for example, may be considered to 
include much greater relative variation than is found in our sample of 
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Mean Deviation for Crime Calls at Hot Spots in a Year

HOT SPOT NUMBER DEVIATIONS FROM
NUMBER OF CALLS THE MEAN �Xi � �

1 2 � 2 � 21.5 � � 19.5
2 9 � 9 � 21.5 � � 12.5
3 11 � 11 � 21.5 � � 10.5
4 13 � 13 � 21.5 � � 8.5
5 20 � 20 � 21.5 � � 1.5
6 20 � 20 � 21.5 � � 1.5
7 20 � 20 � 21.5 � � 1.5
8 24 � 24 � 21.5 � � 2.5
9 27 � 27 � 21.5 � � 5.5

10 29 � 29 � 21.5 � � 7.5
11 31 � 31 � 21.5 � � 9.5
12 52 � 52 � 21.5 � � 30.5

Total (�) � 111.0

X

Table 5.9

difference between each score and the mean, rather than the square of
the difference:

Using the data on crime calls in hot spots from Table 5.4, we take the
following steps to obtain the mean deviation. We first take the absolute
value of the difference between each score and the mean (see Table
5.9). We then sum up the 12 scores. Notice that we obtain a positive
number now (111), and not 0, because we are taking the absolute values
of the differences. Dividing this sum by the number of cases, N, we get a
mean deviation of 9.25.

Mean deviation � 
�
N

i�1
�Xi � X �

N

W orking It Out

 � 9.25

 � 111
12

 � 
�
12

i�1
�Xi � 21.5 �

N

 Mean deviation � 
�
N

i�1
�Xi � X �

N

Equation 5.7
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The mean deviation and the standard deviation provide similar esti-
mates of dispersion, but the mean deviation here is a bit smaller than the
standard deviation of 12.38 that we calculated earlier. Which is the better
estimate of dispersion? In some sense, the mean deviation is more
straightforward. It simply looks at the average deviation from the mean.
In obtaining the standard deviation, we first must square the deviations;
then later, to return our result to units similar to those of the original dis-
tribution, we must take the square root of the variance.

Given our rule that we should use the least complex presentation
that is appropriate to answering our research question, you may won-
der why the standard deviation is almost always preferred over the
mean deviation in criminal justice research. As you will see in the next
few chapters, the answer is that the standard deviation is relevant to a
number of other statistics that we use in analyzing and describing
data.

C h a p t e r  S u m m a r y

Measures of dispersion describe to what extent cases are distributed
around the measure of central tendency. They tell us just how typical the
typical case is.

There are several measures of dispersion for nominal and ordinal
scales. Proportions and percentages describe the extent to which cases
are concentrated in the modal category. The variation ratio (VR) de-
scribes the extent to which cases are spread outside the modal category.
A proportion of 1 (VR of 0) means that all the cases are in the modal cat-
egory. This represents the least possible amount of dispersion. The value
for the greatest possible dispersion can be determined by calculating the
minimum possible value of the modal category and then translating that
into a proportion or VR value. These measures can, in principle, be used
with ordinal-level data, but the results may be misleading, as they take
into account only the value of the mode. As an alternative, the index of
qualitative variation (IQV) is a standardized measure that takes into ac-
count variability across all the categories of a nominal- or ordinal-level
variable. An IQV of 0 means that there is no variation; an IQV of 100
means that there is maximum variation across the categories.

A different set of measures is used to measure dispersion for inter-
val and ratio scales. The range measures the difference between the
highest and lowest scores. It has the advantage of simplicity, but it
uses very little information (only two scores) and the scores used are
taken from the two extremes. It is also very sensitive to outliers. A 
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95th and the 5th percentile. Such measures, however, are still based
on minimal information and thus are generally considered unstable
statistics. A more stable statistic for measuring dispersion in interval-
level scales is the variance. The variance is the sum of the squared
deviations of each score from the mean divided by the number of
cases. The standard deviation (s) is the square root of the variance.
The advantage of the standard deviation over the variance is that the
results are more easily interpreted. If all the scores in a sample are the
same, s will be 0. The more widely the scores are spread around the
mean, the greater will be the value of s. Outliers have a considerable
impact on the standard deviation.

Comparing the standard deviations of means is problematic when
the means are very different or when their units of measurement are
different. An alternative measure, the coefficient of relative varia-
tion (CRV), enables comparisons among samples with different
means. A less often used measure of dispersion for interval scales is
the mean deviation. The mean deviation is computed by taking the
sum of the absolute values of the deviations from the mean divided by
the number of cases.

K e y  T e r m s

coefficient of relative variation A mea-
sure of dispersion calculated by dividing
the standard deviation by the mean.

index of qualitative variation A measure
of dispersion calculated by dividing the
sum of the possible pairs of observed
scores by the sum of the possible pairs of
expected scores (when cases are equally
distributed across categories).

mean deviation A measure of dispersion
calculated by adding the absolute deviation
of each score from the mean and then di-
viding the sum by the number of cases.

range A measure of dispersion calculated
by subtracting the smallest score from the

largest score. The range may also be calcu-
lated from specific points in a distribution,
such as the 5th and 95th percentile scores.

standard deviation A measure of disper-
sion calculated by taking the square root of
the variance.

variance (s2) A measure of dispersion cal-
culated by adding together the squared de-
viation of each score from the mean and
then dividing the sum by the number of
cases.

variation ratio A measure of dispersion
calculated by subtracting the proportion of
cases in the modal category from 1.

researcher may instead choose to measure the range between, say, the
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S y m b o l s  a n d  F o r m u l a s

Nmodal cat. Number of cases in the modal category

Ntotal Total number of cases

Nobs Number of cases observed in each category

Nexp Number of cases expected in each category

s Standard deviation

s 2 Variance

To calculate the proportion of cases falling in the modal category:

To calculate the percentage of cases falling in the modal category:

To calculate the variation ratio:

To calculate the index of qualitative variation:

To calculate the variance:

To calculate the standard deviation:

s � ��
N

i�1
(Xi � X )2

N

s 

2 � 
�
N

i�1
(Xi � X )2

N

IQV � ��
k�1

i�1
 �
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j�i�1
 Nobsi

 Nobsj
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k�1

i�1
 �
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j�i�1
 Nexpi Nexpj

� � 100

VR � 1 � �Nmodal cat.

Ntotal
�

Percentage � 
Nmodal cat.

Ntotal
 � 100

Proportion � 
Nmodal cat.

Ntotal
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To calculate the coefficient of relative variation:

To calculate the mean deviation:

E x e r c i s e s

5.1 Police records for 105 rape victims were analyzed to determine
whether any prior relationship existed between the victim and the
offender. The results were as follows:

Spouse 41

Family member other than spouse 14

Acquaintance 22

No prior relationship 28

a. Calculate the modal proportion and the variation ratio.

b. What are the minimum and maximum possible values for the varia-
tion ratio?

c. Calculate the index of qualitative variation.

5.2 As part of a larger study on the influence of delinquent peers, a sam-
ple of high school youth were asked how much they wanted to be
like their best friend. The responses were coded as follows: in every
way, 26; in most ways, 36; in some ways, 41; and not at all, 8.

a. Calculate the variation ratio for these data.

b. Calculate the index of qualitative variation for these data.

5.3 People convicted of minor traffic offenses who appeared in the
magistrate’s court of a given locality on a given day were sentenced
as follows: conditional discharge, 14; fine, 35; and license dis-
qualification, 11.

a. Calculate the variation ratio.

b. Calculate the index of qualitative variation.

c. Why do these two results differ?

5.4 A sample of women was drawn from town A, and another sample was
drawn from town B. All the women were asked how safe or unsafe

Mean deviation � 
�
N

i�1
�Xi � X �

N

CRV � s

X
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they felt walking alone at night in their neighborhoods. The results
were recorded on a scale as follows: totally unsafe (town A: 40; town
B: 25), quite unsafe (town A: 29; town B: 23), quite safe (town A: 10;
town B: 15), and totally safe (town A: 21; town B: 17).

a. For each town, describe the typical case, using an appropriate mea-
sure of central tendency. Explain why this is the best measure of
central tendency for these data.

b. For each town, describe how typical the typical case is, using an
appropriate measure of dispersion. Explain why this is the best
measure of dispersion for these data.

c. In comparing the measures of central tendency and dispersion for
the two towns, what conclusions may be drawn about the attitudes
of the women?

5.5 For a sample of 12 offenders convicted of weapons violations, the
length of prison sentence in months was recorded as:

6 6 2 12 36 48 60 24 24 20 18 15

a. Calculate the range for these data.

b. Calculate the mean and the variance for these data.

5.6 A group of 20 prisoners in a particular cell block were tested on their
knowledge of the rules of the institution. The marks (out of a possible
70) were as follows:

31 28 27 19 18 18 41 0 30 27

27 36 41 64 27 39 20 28 35 30

a. Calculate the range.

b. Remove the largest and smallest scores. Calculate the range for the
remaining cases.

c. How do you account for the difference between the values of the
above two measures of dispersion?

5.7 Police crack a drug ring of 18 suppliers and discover that of the 18,
only 4 have no previous convictions for drug- or theft-related offenses.
Eight of those arrested have 1 previous conviction, and the others
have 2, 3, 4, 5, 6, and 8, respectively.

a. Calculate the mean and the standard deviation of the 18 cases.

b. If each of the drug suppliers is convicted this time around, does the
extra conviction on each of their criminal records affect the mean
or the standard deviation in any way? Explain your answer.
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5.8 Use the data collected from tests of prisoners’ knowledge of institution
rules in Exercise 5.6.

a. Calculate the mean and the standard deviation for these data.

b. If you remove the two most extreme scores, 0 and 64, what are the
new mean and standard deviation?

c. How do you account for this effect?

5.9 When asked about how often in the last year they drank more than
four beers in one evening, a sample of college students reported the
following:

Number 
of Times Frequency

0 187
1 213
2 162
3 94
4 71
5 55
6 39
7 12
8 9
9 5

10 13

a. Calculate an appropriate measure of dispersion for these data.
Explain why this measure is most appropriate for these data.

b. Describe one way these data could be recoded to reduce the number
of categories. Calculate an appropriate measure of dispersion for the
recoded data and explain why this measure is most appropriate.

5.10 A researcher takes a sample of shop owners in Tranquiltown and a
sample of shop owners in Violenceville and asks them to estimate the
value of goods stolen from their shops in the past 12 months. The
mean figure is $11.50 (s � $2.50) for Tranquiltown and $4,754.50 
(s � $1,026.00) for Violenceville. When the study is published, the
mayor of Violenceville protests, claiming that the mean sum for his
town is a misleading figure. Because the standard deviation for Vio-
lenceville is much bigger than that for Tranquiltown, he argues, it is
clear that the mean from Violenceville is a much less typical descrip-
tion of the sample than the mean from Tranquiltown.

a. What statistic might help the researcher to refute this criticism?
Why?
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b. Calculate this statistic for each town. What should the researcher
conclude?

5.11 A researcher investigating differences in violence among preschool-
age boys and girls found that the average number of violent acts per
week was 7.6 (s � 4.8) for boys and 3.1 (s � 1.9) for girls.

a. Calculate the coefficient of relative variation for boys and for
girls.

b. How can the coefficient of relative variation be used to compare
these two groups? What does it tell you?

C o m p u t e r  E x e r c i s e s
As with measures of central tendency, there are several ways to obtain mea-
sures of dispersion for interval-level variables in SPSS. (SPSS does not com-
pute measures of dispersion, such as the index of qualitative variation, for
nominal or ordinal variables.)

Using the “Descriptives” Command

The “Descriptives” command (AnalyzelDescriptive StatisticslDescriptives)
allows you to compute the standard deviation and variance. The default in
SPSS is to compute the standard deviation and minimum and maximum val-
ues. To obtain the variance and/or range, click on the “Options” button and
select these statistics from the window that appears. By default, SPSS uses a
correction for the bias of sample measures of variance and dispersion: 1 is
subtracted from the N in the denominator of Equations 5.4 and 5.5. The cor-
rection is used primarily as a tool in inferential statistics and is discussed in
Chapter 10. Though it is our view that the uncorrected variance and stan-
dard deviation should be used in describing sample statistics, many re-
searchers report these statistics with the correction factor for sample esti-
mates. When samples are larger, the estimates obtained with and without
the correction are very similar, and thus it generally makes very little sub-
stantive difference which approach is used.

Using the “Frequencies” Command

The “Frequencies” command (AnalyzelDescriptive StatisticslFrequencies)
provides similar measures of dispersion through use of the “Statistics” but-
ton. You may select from the standard deviation, variance, range, minimum,
and maximum. The list of measures of dispersion is the same as for the

can be very difficult. There are three options for calculating percentiles in
SPSS: quartiles (25th, 50th, and 75th percentiles), cut points for some num-

 “De
is the ability to calculate percentiles, since calculation of percentiles by hand

scriptives” command. One benefit of use of the “Frequencies” command 

fic percentiles that you may be interested in (e.g., 5th, 95th, 99th).
ber of equally spaced groups (e.g., 10th, 20th, ..., 90th percentiles), and speci-
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1. Enter the data from Exercise 5.6 on the 20 prisoners’ test scores.

a. What is the range?

b. What are the 5th and 95th percentiles? What is the range between
the 5th and 95th percentiles?

c. How does your answer to part b compare to your answer to part b
in Exercise 5.6?

2. Enter the data from Exercise 5.7. (Be sure that you have 18 lines of
data, since there are 18 observations listed in the question.)

a. What are the mean and the standard deviation? How does the stan-
dard deviation differ from the value you calculated in Exercise 5.7?

b. To add 1 to each person’s number of prior convictions, use the
“Compute” command (TransformlCompute). When the window
appears, type a new variable name into the “Target variable” box to
distinguish the new variable from the existing variable. The box on
the right—“Numeric expression”—is where you type the calculation
that you want performed. To increase the value of prior convictions
by 1 for each offender, move the variable name representing prior
convictions into the numeric expression box and type “�1” (with-
out the quotation marks) after the variable name. Click on “OK,”
and the calculation will be performed by SPSS. What are the mean
and standard deviation for this new variable? What changed? What
remained the same?

3.

b. What is the range between the 25th and 75th percentiles for each
delinquency measure? (This difference is known as the “inter-

d. Use the mean and the standard deviation calculated by SPSS for

tive variation for each delinquency variable. What do the values of

Problems

Open the data file nys_1.sav (or  nys_1_

 for each of the five types of delinquency?

quartile range.”) What do the differences in inter-quartile ranges ap-
pear to indicate about the dispersion of self-reported delinquency?

c. What number of delinquent acts would mark the 15% least delin-
quent youth? The 20% most delinquent youth?

these five delinquency measures. Calculate the coefficient of rela-

a. Choose five of the delinquency measures. What are the quartiles

indicate about the relative dispersion of these variables?
the coefficient of relative variation for each delinquency variable 

student.sav) into SPSS.



The Logic of Statistical Inference: 

Making Statements About Populations

from Sample Statistics

How Can a Sample Teach Us About a Population?

C h a p t e r  s i x

S a m p l e  d i s t r i b u t i o n s  a n d  p o p u l a t i o n  d i s t r i b u t i o n s

A s k i n g  t h e  r e s e a r c h  q u e s t i o n

A n s w e r i n g  t h e  r e s e a r c h  q u e s t i o n

How are They Defined?

What Symbols are Used?

How are the Two Interrelated?

What Types of Error are Possible?

What is an “Acceptable” Risk of Error?

When Might It be Necessary to Accept a Different Level of Risk?

What are the Research and Null Hypotheses?

How are They Set Up?



IN THIS CHAPTER, we look at an important dilemma that researchers face
in conducting criminal justice research. Although they seek to make
statements about populations, generally they collect data on samples
drawn from such populations. Statistical inference provides a solution to

about the characteristics of a population from data collected from a sam-
ple drawn from the population. We begin our discussion of statistical in-
ference by explaining the dilemma researchers face in making statements
about populations from samples. We then examine the logic of statistical
inference and the statistical risks associated with using this logic. You
will be introduced to how null and research hypotheses are set up, how
risks of error are assessed, and how levels of statistical significance are
used to limit this error.

T h e  D i l e m m a :  M a k i n g  S t a t e m e n t s  
A b o u t  P o p u l a t i o n s  f r o m  S a m p l e  S t a t i s t i c s

In descriptive statistics, we are concerned with two basic types of distrib-
utions. One is the distribution of scores in the sample, or the sample
distribution. The second is the distribution of scores in the population
from which the sample is drawn. This is referred to as the population
distribution. One of the fundamental problems in research in criminal
justice, as in other fields, is that we want to make statements about the
characteristics of the population distribution, but we generally have in-
formation only about the distribution of sample scores. For example,
when we draw a sample of 2,000 voters in an election survey, we are
not interested per se in how those people will vote. Rather, we examine
their voting preference to learn something about how all people will
vote in the election. In statistical terms, we want to use information on
characteristics of the distribution of sample scores to make statements
about characteristics of the distribution of population scores.

116

this dilemma: it allows the researcher to make statements, or inferences,
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It is important to note at the outset that populations can be defined in
a number of different ways. There is, for example, the population of the
entire United States or the population of a particular state. There is the
population of all prisoners in the United States or the population of pris-
oners only in a specific state. Although the population of cases is fixed at
any particular time, actual populations are constantly changing across
time. For example, we can speak of the population of prisoners on any
particular day. But every day new people enter prisons and some prison-
ers are freed. Since the population of prisoners changes every day, the
population of prisoners at any one time is only a sample of the popula-
tion of prisoners across a longer period of time—for example, a year or
two.

Statisticians use different symbols to distinguish statistics on a popula-
tion from statistics on a sample (see Table 6.1). Population statistics, or
parameters, are defined using Greek letters. For example, the parame-
ter for the mean in a distribution of population scores is represented by
� and the standard deviation by �. Sample statistics are represented by
roman letters. We denote the mean in a distribution of sample scores as

and the standard deviation as s.
Why do we study sample statistics if we really want to say something

about population parameters? It certainly makes more sense to collect in-
formation on the population if that is what is of interest in the long run.
In practice, however, it is usually very difficult to gain information on the
universe, or total group of cases in the population. One reason is sim-
ply financial. As was pointed out in Chapter 1, to carry out just one sur-
vey of the U.S. population regarding their attitudes toward crime would
exhaust the budget of the National Institute of Justice (the major funder
of research in criminal justice in the United States) for many years. But
beyond the costs of such studies, there is the problem of their manage-
ment. A study of an entire population will often demand contact with
hundreds of thousands or even millions of people. Such an effort is
likely to be not just expensive, but difficult to manage and time consum-
ing to complete.

Because of the difficulty of gaining information on the characteristics
of an entire population, such parameters are generally unknown. How-
ever, when a parameter is available, there is no point in drawing statis-
tics from a sample. In recent years, advances in computer technology

X

Representing Population Parameters and Sample Statistics

MEAN VARIANCE STANDARD DEVIATION

Sample distribution s 2 s
Population distribution � �2 �

X

Table 6.1
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and recognition by public officials of the importance of data in making
policy decisions about the criminal justice system have led to the devel-
opment of a number of databases that include information on the popu-
lation of cases. For example, we now have population parameters on
characteristics of sentencing in the federal courts and basic demographic
characteristics of offenders held in jails and prisons. Information on the
population of arrests and emergency calls to the police is routinely col-
lected and computerized in most cities. One scholar suggests that this
trend means that criminologists in the future will have to pay less and
less attention to samples and the problems they create for researchers.1

However, whatever the future will bring, at present criminal justice re-
searchers must rely primarily on sample statistics in trying to say some-
thing about the characteristics of a population.

Given our reliance on sample statistics, it is important at the outset to
define how they might differ from population parameters. One obvious
difference is that sample statistics are generally known—put differently,
they can be defined by the researcher in the context of a research study.
In contrast, parameters are generally unknown, although, as we noted
above, there is a trend toward development of parameters about major
issues in criminal justice.

Even though parameters are often unknown, they are assumed to be
fixed. By that we mean that there is one true parameter for any measure.
For example, there is a true mean age at first arrest for the population of
all criminals in the United States at a specific time. In contrast, sample
statistics vary from sample to sample. For example, if you were to draw
10 samples from a population, using exactly the same method each time,
each sample would likely provide different sample statistics.

This is illustrated in Table 6.2. Ten random samples of 100 offenders
were drawn from a population of 1,940 offenders. Sample statistics are
presented for mean age and number of prior arrests. Although the sample
statistics obtained are generally similar to the population parameters, each
sample provides a somewhat different group of estimates, and in some
cases the differences are relatively large. In the case of sample 10, for ex-
ample, the average number of arrests for the sample is more than a third
lower than the population score. In sample 4, the average age is more
than two years older than the population parameter. This occurs despite
the fact that we drew each of the samples using the same technique and
from the same population of scores. You might want to try this yourself
by drawing a series of samples from your class or dormitory. Using the
same method, you will almost always obtain different sample statistics.

1M. Maltz, “Deviating from the Mean: The Declining Significance of Significance,”
Journal of Research in Crime and Delinquency 31 (1994): 434–463.
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This fact is one of the fundamental problems we face in statistics. We
want to make statements about populations, but we generally must rely
on sample statistics to do so. If sample statistics vary from sample to
sample, how can we use them to make reliable statements about the pa-
rameters associated with a population? Put differently, what is the use of
most studies in criminal justice, if they are based on samples rather than
populations? Fortunately, there is an area of statistics that provides us
with a systematic way to make decisions about population parameters
based on sample statistics. This area is called statistical inference, and
in the remaining sections of this chapter we focus on the logic that un-
derlies statistical inference.

T h e  R e s e a r c h  H y p o t h e s i s

Statistical inference begins with the definition of the questions that the
researcher seeks to answer in a research project. Sometimes research
questions in criminal justice are focused on specific agencies in the
criminal justice system. For example, we may want to learn more about
the police, the courts, or probation services. Other times research ques-
tions revolve around broad theoretical concerns that can be applied
across criminal justice agencies. We may, for example, seek to define
common features of criminal justice programs that lead to a reduction in
recidivism (reoffending). Sometimes our questions relate to offenders,
other times to victims of crime or criminal justice agents.

To answer a research question, we have to set up at least one and
sometimes several research hypotheses related to it. A hypothesis is a
proposed answer to our research question that we can then test in the

Ten Random Samples of 100 Offenders Drawn 
from a Population of 1,940 Offenders

MEAN AGE MEAN ARRESTS

Population 39.7 2.72
Sample 1 41.4 2.55
Sample 2 41.2 2.19
Sample 3 38.8 2.09
Sample 4 42.1 3.45
Sample 5 37.9 2.58
Sample 6 41.1 2.62
Sample 7 39.2 2.79
Sample 8 39.2 2.48
Sample 9 37.8 2.55
Sample 10 37.7 1.72

Table 6.2
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context of a study. Stating a research hypothesis does not mean that we
assume that the hypothesis is true. Rather, it focuses our research ques-
tion in such a way that it can be directly examined in the context of a
study. When the research hypothesis does not indicate a specific type of
outcome, stating only that there is a relationship or a difference, we say
that it is a nondirectional hypothesis. However, in those cases where
a researcher has a very clear idea of what to expect—based on prior re-
search evidence and/or theory—the research hypothesis may be more

Suppose we are interested in comparing the arrest records of drug-
involved offenders with those of offenders who do not use drugs. Our
research hypothesis might be simply that the arrest records of drug-

behavior among drug-involved offenders, we might want to state a direc-
tional hypothesis—that drug-involved offenders have more serious arrest
records than do non–drug-involved offenders. One problem with choos-
ing the latter option is that if we state our research hypothesis as a direc-
tional hypothesis, we are stating that we are not interested in outcomes
that fall in the opposite direction. In criminal justice research, we can
often be surprised by what we learn in a study. Accordingly, researchers
generally are cautious in defining a directional research hypothesis.

Having defined a research hypothesis, we want to examine whether it
is true for the population in which we are interested. For our example of
drug-involved offenders, if we could collect information about all offend-
ers, we could simply look at the parameters drawn from our study to see
whether they support the research hypothesis and, if so, to what degree.
In this case, we would not need to use the logic of statistical inference.
We would collect data directly on the population parameters. But ordi-
narily we cannot collect information on the population parameters and
must rely on the statistics drawn from a sample in making our decision.
Our problem is that we cannot come to an absolute conclusion regard-
ing the research hypothesis because we know that statistics vary from
sample to sample.

On the basis of a sample, we can never be sure of the true value of a
population parameter. Accordingly, we can never be absolutely certain
as to whether the research hypothesis is true. But does the fact that we
cannot be sure mean that we cannot come to a reasonable conclusion
regarding our hypotheses?

In fact, we often make decisions about hypotheses on the basis of
samples in our daily lives. For example, let’s say that you are deciding

involved offenders and offenders who do not use drugs are different 
(a nondirectional hypothesis). But based on prior knowledge of criminal

precise. In this case, the researcher may specify the nature of the relation-
ship that is expected. Such a research hypothesis is called a directional
hypothesis. When a directional hypothesis is used, the researcher
states at the outset that he or she is interested in a specific type of
outcome—for example, that one group has more arrests than another.
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whether to sign up for a course taught by an instructor named Professor
Justice. One issue that you are particularly concerned about is the impact
the course will have on your grade point average. To make an informed
decision about the course, you might decide to ask friends of yours who
took the course last year how Professor Justice grades in comparison to
others at your college. Although you might not think of them quite in
this way, your friends represent your sample. In turn, the hypothesis that
the professor grades differently from other faculty members in your col-
lege is similar to a research hypothesis.

If your friends gave a mixed view or generally were unable to say
whether Professor Justice grades more harshly or more easily than other
professors, you would likely conclude that the course would not have
much impact on your grade point average. Put differently, you would
decide that the research hypothesis is probably false. If most of your
friends said that the professor is an easy grader or, conversely, that she
was a hard grader, you would take this as evidence that the research hy-
pothesis is most likely correct—that the professor grades differently and
that the course is likely to have an impact on your grade point average.

Once you have made the decision that Professor Justice is different
from others, you are likely to assess how she is different. If your friends
define the professor as a hard grader, you might decide to avoid the
course because you fear you would get a lower grade than is usual with
other professors. If they define the professor as an easy grader, you
might be encouraged to take the course, with the expectation that your
grade will be higher than usual.

In effect, you make a decision about the research hypothesis based
on information that you draw from your “sample” of friends. Your confi-
dence in making a decision will depend greatly on how reliable you be-
lieve your friends’ observations to be and to what degree they represent
other students in the class. This is very similar to the logic we use in
making statistical inferences from samples to populations. However, in
statistical inference, we test hypotheses not in reference to the research
hypothesis but in reference to a type of hypothesis that statisticians call
the null hypothesis.

T h e  N u l l  H y p o t h e s i s

The null hypothesis—or H0—gains its name from the fact that it usually
states that there is no relationship, or no difference. It is the flip side of
the research hypothesis (H1), which usually posits that there is a relation-
ship. In the example of the professor’s grading, the null hypothesis
would simply be that “there is no difference between the grading of Pro-
fessor Justice and that of others in the university.”
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In practice, in statistics, we make decisions about hypotheses in rela-
tion to the null hypothesis rather than the research hypothesis. This is
because the null hypothesis states that the parameter in which we are in-
terested is a particular value. For example, returning to the comparison
of drug-involved and other offenders, your null hypothesis (H0) might be
that there is no difference between the two groups in the average num-
ber of crimes committed, or, put differently, that the difference is equal
to zero. In the case of Professor Justice’s grading, the null hypothesis
also states that there is no difference, or again that the difference be-
tween the average grade given by Professor Justice and the average
grade given by her colleagues is equal to zero.

In contrast, the research hypothesis is ordinarily not stated in exact
terms. A number of potential outcomes can satisfy the research hypothe-
sis. In the example of the professor’s grading, any average grade that is
different from that of other professors in the college is consistent with
the research hypothesis. But only one result, that the professor’s grading
is the same as that of others, is consistent with the null hypothesis. The
null hypothesis, accordingly, has the advantage of defining a specific
value for the population parameter.2

By stating the null and research hypotheses, we have taken a first
very important step in making statistical inferences. However, we still
have the problem of how to make decisions about these hypotheses on
the basis of sample statistics.

Whenever we rely on sample statistics to make statements about popu-

This means that when we test hypotheses in research, we generally
do not ask whether a hypothesis is true or false. To make such a state-
ment would require knowledge about the population parameters.
Rather, we ask whether we can make an inference, or draw a conclu-
sion, about our hypotheses based on what we know from a sample. In
statistical inference, we use sample statistics to infer to, or draw conclu-
sions about, population parameters.

2Some statisticians prefer to call the research hypothesis the “alternative” hypothesis,
because we can, in theory, choose any value as the null hypothesis, and not just the
value of zero or no difference. The alternative hypothesis, in this case, can be defined
as all other possible outcomes or values. For example, you could state in your null
hypothesis that the professor’s grades are, on average, five points higher than those of
other professors in the college. The alternative hypothesis would be that the profes-
sor’s grades are not, on average, five points higher than those of other professors.

lation parameters, we must always accept that our conclusions are 
tentative. The only way to come to a definitive conclusion regarding the 
population parameter is to actually examine the entire population. This 
happens more and more with criminal justice data today. However, in most 
research, we are still able to collect information only about sample statistics.
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In order to understand the logic of making inferences, it will help to
return to our example of drug-involved offenders. Let’s say we are inter-
ested in the number of crimes that offenders commit in a given year. We
decide to use arrests as our measure of criminal behavior. We might state
our null hypothesis as follows: “Drug-involved offenders and offenders
who do not use drugs have, on average, the same number of arrests in a
given year.” To test our hypothesis, we take a sample of drug-involved

As illustrated earlier in regard to Professor Justice’s grading, in every-
day life we make such decisions through a combination of intuition,
prior experience, and guesswork. In statistical inference, we take a sys-
tematic approach to this decision making, which begins with the recog-
nition that whatever decision we make has a risk of error.

R i s k s  o f  E r r o r  i n  H y p o t h e s i s  T e s t i n g

What types of error do we risk when making a decision about a popula-

pothesis concerning arrests among drug-involved and non–drug-involved
offenders, there are only two possible scenarios for the population. In
the first case, the null hypothesis is true, meaning that there is no differ-
ence in average number of arrests between offenders in the population
who use drugs and those who do not. Alternatively, the null hypothesis
may be false, meaning that there is a difference in the population be-

Based on our sample statistic, we can, as well, come to only two pos-
sible conclusions regarding the null hypothesis. We can reject the null
hypothesis and infer that there is a difference in the average numbers of
arrests of drug-involved and other offenders in the population. Alterna-
tively, we can fail to reject the null hypothesis and state that our sample
does not provide sufficient evidence to conclude that there is a differ-
ence in the average numbers of arrests of drug-involved offenders and
offenders in the population who do not use drugs.

tion parameter from a sample? A simple way to examine this question 
is to compare the potential decisions that can be made about a null 
hypothesis with the value of the population parameter. For our null hy-

do offenders who do not use drugs.
offenders have, on average, either fewer or more arrests in a year than 
tween drug-involved and other offenders. In this case, drug-involved 

offenders and another sample of offenders who do not use drugs. We find
that drug-involved offenders in our sample have a mean of five arrests
per year, whereas offenders who do not use drugs have a mean of three
arrests per year. Should we reject the null hypothesis? Should we conclude
that there is a difference in the numbers of arrests in the population
based on results from our sample?
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If we cross these two sets of possibilities, we define four possible situ-
ations, as represented in Figure 6.1. Two of these are desirable, because
they suggest that our decision about the null hypothesis is consistent
with the population parameter. In one case (box 1), we fail to reject the
null hypothesis, and it is in fact true. In the second (box 4), we reject the
null hypothesis on the basis of our sample results, and the null hypothe-
sis is false.

In the remaining situations, however, our decisions are not consistent
with the population parameter. In one (box 2), we fail to reject the null
hypothesis on the basis of our sample statistic, but it is in fact false. In
this case, we have made what statisticians call a Type II (or beta)
error. A Type II error would occur in our example of arrests among
offenders if we did not reject the null hypothesis on the basis of our
sample results when in fact the average numbers of arrests for drug-
involved and other offenders were different in the population to which
we want to infer. We make a Type I (or alpha) error (see box 3)
when we reject the null hypothesis on the basis of sample statistics but
H0 is true. In this case, we infer from our sample that drug offenders are
different from offenders who do not use drugs, when in fact they are
similar in the population.

Whenever we make a decision about a population parameter from a
sample statistic, we risk one of these two types of statistical error. If we

Box 1
✔ 

Box 3
✘

Type I
error

Box 2
✘

Type II
error

Box 4
✔

H0 = True H0 = False

Population

Reject H0

Decision

Fail to Reject H0

Types of Error in a Statistical TestFigure 6.1
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fail to reject the null hypothesis, there is always the possibility that we
have failed to reject it when it was false (Type II error). If we reject the
null hypothesis, there is always the possibility that we have rejected it
when it was true (Type I error). Although we cannot avoid the possibil-
ity of error when we study samples, we can decide at the outset how

R i s k s  o f  E r r o r  a n d  S t a t i s t i c a l  L e v e l s  o f  S i g n i f i c a n c e

In statistical inference, we assess the risk of making a wrong decision
about the population parameter in reference to Type I error. This is why
it is very important in statistical inference that we use the phrase “reject”
or “fail to reject” the null hypothesis, rather than the simpler statement
that we “reject” or “accept” the null hypothesis. Type I error is concerned
with rejection of the null hypothesis when it is true. It does not refer di-
rectly to the risk of accepting the null hypothesis when it is false (Type II
error). This latter problem will be the focus of a discussion in Chapter

make a decision either to “reject” or to “fail to reject” the null hypothesis
on the basis of the amount of Type I error we are willing to risk.

We define the amount of Type I error we are willing to risk as the
significance level of a test of statistical significance. In a test of statis-
tical significance, we make a decision to reject or to fail to reject the null
hypothesis on the basis of a sample statistic. The significance criterion,
or level, of a test of statistical significance is ordinarily represented by the
symbol �. The estimate of the risk of Type I error that is associated with
rejecting the null hypothesis in a test of statistical significance (based on
a sample statistic) is called the observed significance level and is ordi-
narily represented by the symbol p. In statistical inference, we first iden-
tify the amount of Type I error we are willing to risk, or the significance
level of a test. We then estimate the observed significance level from our
sample statistics. Finally, we compare the observed significance level
gained from our study with the criterion significance level we set at the
outset of our test of statistical significance. If the observed significance
level is less than the significance criterion, or level, that we set at the
outset of the test, we reject the null hypothesis. In the next chapter, we
examine how statisticians estimate the observed significance level of a
test. At this juncture, it is important to consider how we decide on the
amount of Type I error we are willing to risk. How do we choose the
significance level in a test of statistical significance?

hypotheses.
much risk or error we are willing to take in making decisions about 

21. For now, it is important to remember that in statistical inference we
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If we are willing to take a good deal of risk of Type I error, we set a
very lenient significance level. This means that we are willing to reject
the null hypothesis on the basis of our sample statistic, even if the risk of
a Type I error is fairly large. If we set a very strict significance level, this
means that we are unwilling to reject the null hypothesis unless we are
fairly certain that our decision is correct.

If we return to the example of Professor Justice’s grading, the impor-
tance of Type I error in making statistical inferences will become clearer.
Let’s say that every one of the friends you ask reports that the professor
is a much easier grader than other professors at your college. In this
case, you would probably conclude that the observed significance level,
or risk of a Type I error, in your study was very small. It is unlikely that
all of your friends would say that the professor was an easy grader if she
was in reality very similar to others in the college. Of course, your
friends could provide a mistaken view of the professor’s grading habits.
But you would probably assume that this is not very likely.

But what if your friends provided you with a mixed view of Professor
Justice’s grading? What if 40% of your friends say that Professor Justice
grades similarly to other professors and 60% say that she is easier? Would
you be so confident in rejecting the null hypothesis with these results?
Overall, the majority of your friends still say the professor is a relatively
easy grader. But in this case there is a substantial group reporting that
she grades much as other professors do. If you set a strict significance
level, you might not be willing to reject the null hypothesis based on
your observations (your observed significance level), and you might sim-
ply conclude that there is not enough evidence, on the basis of your
sample of friends, to say that Professor Justice grades differently.

It might seem at first that we would want to be fairly lenient in setting
our significance level. Often, in defining the research hypothesis, we are
expressing what we believe to be true. Why, then, would we want to
make it difficult to reject the null hypothesis? By rejecting the null hy-
pothesis that there is no difference, we are led to infer that the research
hypothesis is correct. This would seem in our best interest. In fact, by
convention we set a fairly strict significance level. In order to reject the
null hypothesis, we are expected to provide convincing evidence that
our conclusions reflect the true population parameters.

What is “convincing evidence”? How much risk of a Type I error
should we be willing to take in a test of statistical significance? In
criminal justice, and in most of the social sciences, a 5% level of statis-
tical significance is generally considered rigorous enough for tests of
hypotheses. This means that if the observed significance level of our
test is greater than 0.05, we will fail to reject the null hypothesis. If the
observed significance level is less than 0.05, we will reject the null
hypothesis.
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D e p a r t i n g  f r o m  C o n v e n t i o n a l  S i g n i f i c a n c e  C r i t e r i a

In statistics, as in everyday life, it is simplest to follow the accepted con-

research may be better served by departing from established norms.
Sometimes this is the case because our criterion is not cautious enough
for the issue we are examining.

For example, a criminal justice agency making a decision about its
policies may want you to use a stricter standard than you would ordinar-
ily apply to your research. This may be the case if your conclusions
could lead to expensive or time-consuming changes in the structure or
activities of the agency. The agency will likely not want to make such
changes unless you are very confident that your conclusions are correct.
In this situation, you might decide to set your significance level at 0.01 or
0.001, meaning that you are willing to reject the null hypothesis only if
the observed significance level of a test is less than 1% or less than 0.1%.

Sometimes a researcher may decide to use a more lenient significance
level than 5%. This ordinarily occurs when the researcher is particularly
concerned with a Type II error rather than a Type I error. In the Min-
neapolis hot spots experiment, for example, which evaluated the impact
of police patrol on street blocks with high crime activity, the principal in-
vestigators discussed the dangers of a Type II error at the outset of their
study.3 They argued that conventional significance criteria might be too
strict for assessing the effectiveness of new police initiatives. Failure to
reject the null hypothesis of no program impact in this case, if it were
false, would lead the police not to pursue a potentially effective new
method of police patrol. The principal investigators, accordingly, de-
cided to use a 0.10, rather than a 0.05, significance level.

Why would a concern with a Type II error lead us to change the sig-
nificance level of our test of hypotheses? As we noted earlier, the signifi-
cance level is based on a Type I error, not a Type II error. However, the
two types of statistical error are related. When we increase the risk of a
Type I error, we reduce the risk of a Type II error. When we decrease
the risk of a Type I error, we increase the risk of a Type II error. This

3See Lawrence Sherman and David Weisburd, “General Deterrent Effects of Police
Patrol in Crime ‘Hot Spots’: A Randomized Study,” Justice Quarterly 12:4 (1995):
625–648.

ventions. Accordingly, most criminal justice researchers apply the 5% 
significance level fairly automatically to the research questions they 
consider. The problem with this approach is that the purposes of the

reject the null hypothesis in your study.

Whenever you use a significance level more stringent than 5%, it is 
important to explain clearly why you have chosen to make it harder to 
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relationship is an obvious one, because setting a stricter significance
level (by decreasing the risk of a Type I error) naturally makes it less
likely that you will reject the null hypothesis. Similarly, when we make it
easier to reject the null hypothesis by increasing the risk of a Type I
error, it is that much harder in practice to fail to reject the null hypothe-
sis (and therefore to make a Type II error). The relationship between
Type I and Type II error is easy to understand, but it is not directly pro-

cept of “statistical power,” other factors in addition to the significance
level of a study affect the risk of a Type II error.

You should always consider carefully the implications of risks of error in
your research before setting the significance level of a test of statistical sig-
nificance. Even though you are likely in the end to rely on the conventional
norm of 5%, there are, as discussed above, some cases for which you might
want to consider stricter or more lenient levels of significance. If you do
choose a level other than 0.05, you must explain to your audience the fac-
tors that led you to depart from common practice in criminal justice.

The level of significance in a study should be defined at the outset,
and not after your results are in. If you wait until you have your sample
data, there will always be the temptation to adjust your significance level
to fit your sample statistics. This is particularly important if you decide to
use more stringent or more lenient criteria. If you use a more lenient cri-
terion, others might argue that you have made that decision in order to
allow rejection of the null hypothesis (and thus support for the research
hypothesis). If you use a stricter criterion, others might argue that you
are trying to avoid rejecting the null hypothesis. In many funded re-
search studies, researchers specify in their original proposals the signifi-
cance levels that they intend to apply to tests of hypotheses in order to
prevent such criticism later on.

In this chapter, we discussed the logic underlying statistical inference.
In the coming chapters, we will examine how statisticians define the risk
of Type I error associated with a specific outcome in a study, or the ob-
served significance level of a test. We also detail how such tests are ap-
plied to different types of statistics. You should not expect to have a full
understanding of statistical inference at this point. We have only begun
to develop these ideas and will return to them again and again.

C h a p t e r  S u m m a r y

In descriptive statistics we are concerned with two types of distribu-
tions. The sample distribution is the distribution of scores in the sam-
ple. The population distribution is the distribution of scores in the

portional. As we will discuss in Chapter 21 when we examine the con-
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population from which the sample is drawn. Population statistics are
known as parameters, and they have symbols different from those
which you have encountered so far. The mean in a population distribu-
tion is represented by � and the standard deviation by �. Parameters
are assumed to be fixed and are generally unknown. Sample statistics
are by definition known, but they vary from sample to sample. Statisti-
cians are faced with a fundamental dilemma in that they are usually in-
terested in making statements about population parameters, but they
generally study sample statistics. Statistical inference provides a solu-
tion to this dilemma.

Statistical inference begins with the definition of the research hy-
pothesis and the null hypothesis. These hypotheses are set up by the
researcher to answer the broader research question. The research hy-
pothesis is the proposed answer to a specific research question. When
the research hypothesis does not indicate a specific type of outcome,
stating only that there is a relationship or a difference, we say that it is a
nondirectional hypothesis. When the research hypothesis identifies
the nature of the relationship that is expected, it is called a directional
hypothesis. The null hypothesis generally posits that there is no such
relationship or no difference. The null hypothesis is stated in exact
terms. The research hypothesis encompasses a range of possible alterna-

Given the difficulties involved in collecting information on an entire
population, we are forced to work with samples. The tools of statistical
inference enable us to infer from a sample to a population by identifying
the risk of making a mistaken decision and determining the amount of
risk we are prepared to take. Two possible errors can be made when
making decisions about a population from a sample. A researcher who
rejects the null hypothesis when it is in fact true has made a Type I
error. A researcher who fails to reject the null hypothesis when it is in
fact false has made a Type II error.

In a test of statistical significance, we make a decision to reject or
to fail to reject the null hypothesis on the basis of a sample statistic. The
significance level defines the risk of Type I error that a researcher is
willing to take in a test of statistical significance. The risk of Type I error
associated with a specific sample statistic is the observed significance
level of a test. A commonly accepted standard significance level is 5%,
but researchers may choose to set a lower level if they want it to be
more difficult to reject the null hypothesis—or a higher level if they want
to make it easier. A researcher who wishes to depart from the accepted
standard should explain the reasons for such a decision at the outset.
Decreasing the risk of a Type I error increases the risk of a Type II error,
and vice versa.

hypothesis.
tives. It is thus easier to focus decisions on whether to reject the null 
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K e y  T e r m s

directional hypothesis A research hy-
pothesis that indicates a specific type of
outcome by specifying the nature of the re-
lationship that is expected.

nondirectional hypothesis A research
hypothesis that does not indicate a specific
type of outcome, stating only that there is a
relationship or a difference.

null hypothesis A statement that reduces
the research question to a simple assertion
to be tested by the researcher. The null hy-
pothesis normally suggests that there is no
relationship or no difference.

observed significance level The risk of
Type I error associated with a specific sam-
ple statistic in a test. When the observed
significance level is less than the criterion
significance level in a test of statistical sig-
nificance, the researcher will reject the null
hypothesis.

parameter A characteristic of the pop-
ulation—for example, the mean number 
of previous convictions for all U.S.
prisoners.

population The universe of cases that the
researcher seeks to study. The population
of cases is fixed at a particular time (e.g.,
the population of the United States). How-
ever, populations usually change across
time.

population distribution The frequency
distribution of a particular variable within a
population.

research hypothesis The antithesis of the
null hypothesis. The statement normally
answers the initial research question by
suggesting that there is a relationship or a
difference.

sample A set of actual observations or
cases drawn from a population.

sample distribution The frequency distri-
bution of a particular variable within a
sample drawn from a population.

sample statistic A characteristic of a sam-
ple—for example, the mean number of
previous convictions in a random sample
of 1,000 prisoners.

significance level The level of Type I
error a researcher is willing to risk in a sta-
tistical test of significance.

statistical inference The process of mak-
ing generalizations from sample statistics to
population parameters.

test of statistical significance A test in
which a researcher makes a decision to re-
ject or to fail to reject the null hypothesis
on the basis of a sample statistic.

Type I error Also known as alpha error.
The mistake made when a researcher re-
jects the null hypothesis on the basis of a
sample statistic (i.e., claiming that there is a
relationship) when in fact the null hypothe-

Type II error Also known as beta error.
The mistake made when a researcher fails
to reject the null hypothesis on the basis of
a sample statistic (i.e., failing to claim that
there is a relationship) when in fact the
null hypothesis is false (i.e., there actually
is a relationship).

universe The total population of cases.

by means of a study.
researcher hopes to be able to answer 
research question The question the 

relationship in the population).
sis is true (i.e., there is actually no such 
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S y m b o l s  a n d  F o r m u l a s

H0 Null hypothesis

H1 Research hypothesis

� Significance level of a test

� Population mean

p Observed significance level of a test

�2 Population variance

E x e r c i s e s

6.1 For each of the following random samples, describe the population to
which the results could be generalized:

a. Subscribers to a magazine on hunting are asked about gun legislation.

b. Youth aged 15 to 19 years in the United States are asked about per-
sonal drug use.

c. Registered voters in Los Angeles are asked whom they will vote for
in the next election for mayor.

d. Visitors to a domestic violence shelter are assessed for psychologi-
cal distress.

e. Members of the National Organization for Women (NOW) are
asked about sexual harassment in the workplace.

f. Judges in New Jersey are asked about their sentencing philosophy.

6.2 A foundation sponsored a review of all studies carried out over the
past 15 years into the link between smoking and juvenile delinquency.
Eric, a criminologist commissioned by the foundation, unearthed five
studies that sought to determine at what age delinquents who smoke
began their habit. The five studies, conducted at the same time, use
identical sampling techniques and sample sizes and draw their sam-
ples from a fixed database of delinquents. The mean age, however, is
different for each of the samples:

Study sample no. 1: mean age � 12.2

Study sample no. 2: mean age � 11.6

Study sample no. 3: mean age � 14.0

Study sample no. 4: mean age � 11.3

Study sample no. 5: mean age � 12.8

Overall computed mean � 12.38
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a. During Eric’s presentation, one member of the foundation asks him
to explain how it can be that each of the study samples produced a
different result: Does this mean that there was something wrong
with the sampling techniques used? How should Eric respond?

b. Another foundation member also seems confused. She asks if the
overall computed mean is the mean age of the population. How
should Eric respond?

6.3 A researcher collects data on the families of 20 delinquent and 20
nondelinquent children from the records of a school and checks how
many children from each group come from broken homes.

a. State the null hypothesis.

b. State a nondirectional research hypothesis.

c. State a directional research hypothesis.

6.4 A researcher is interested in whether electronic monitoring of offend-
ers on probation is an effective means of reducing crime. To test for
an effect of electronic monitoring, probationers are randomly assigned
either to a monitored group or to a control group that has no elec-
tronic monitoring.

a. State the null hypothesis.

b. State a nondirectional research hypothesis.

c. State a directional research hypothesis.

6.5 A study published in a distinguished journal reported the results of a
series of tests carried out on 50 convicted burglars. One of the claims
of the investigators is that the average IQ of convicted burglars is 120.

a. From the following list of options, choose an appropriate null hy-
pothesis and research hypothesis for testing this claim.

IQ � 120 IQ � 120 IQ � 120 IQ � 120

b. Explain your choice of null and research hypotheses.

6.6 A gang of criminals is planning to rob a supermarket. Eddy, the gang
leader, reports that he “staked the store out” the day before and saw the
store detective going for a 15-minute coffee break at 9.15 A.M. He sug-
gests that this would be the best time to strike. Clive, a gang member,
thinks that this plan is too risky—how do they know that the detective
takes his break at the same time each day? Eddy, who is desperate for
the money, thinks that the plan is safe enough and wants to carry out
the robbery the next day. After an argument, they agree to compromise
and watch the supermarket for three more days. On each of the three
days, the store detective indeed takes his 15-minute break at 9:15 A.M.
The gang decides to go ahead with the robbery on the fourth day.

The robbers can be seen as having set themselves a research ques-
tion and having made a statistical decision based on a simple study.
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a. How would you frame the robbers’ null hypothesis and research
hypothesis?

b. Based on these hypotheses, what is their decision?

c. How would the robbers make a Type I error? How would the rob-
bers make a Type II error? What type of statistical error ought the
robbers to be most concerned with making? Explain why.

d. How does the argument between Eddy and Clive relate to the con-
cept of statistical significance?

6.7 The government wishes to launch a pre-Christmas advertising cam-
paign warning about the dangers of drunk driving. It suspects that dri-
vers aged 18 to 21 are most likely to drive while under the influence
of alcohol and is considering targeting the campaign specifically at this
age group. A preliminary study gathers data on the ages of drunk dri-
vers apprehended in a particular district over a six-month period.

b. How might the government make a Type I error?

c. How might the government make a Type II error?

d. The government accepts that targeting this specific age group in the
advertising campaign will not cost any extra money. There is a feel-
ing that the new campaign will be “worth a try,” even if the study
doesn’t find enormous differences between the offending rate of
18- to 21-year-olds and that of other ages. How should these con-
siderations affect the researchers’ decision on what level of signifi-
cance to set?

6.8 The head of the police force in the city of Cheadle suspects that in-
creasing the pay of his officers might increase their efficiency. A police
researcher is assigned to test whether there is a difference between
the crime-solving rates of a group of detectives who have been ran-
domly awarded pay raises and a control group of detectives who have
not been awarded pay raises. In writing up his report, the researcher
concludes as follows:

The results show that the observed significance level is 0.14, mean-
ing that rejecting the null hypothesis would run a 14% risk of a
Type I error. Although a 5% significance level is considered stan-
dard, in light of the potential benefits of salary increases for crime
control rates, a higher 15% threshold is justified here, and the H0

may therefore be rejected.

a. What is the null hypothesis to which the researcher refers?

b. Explain why the researcher’s statistical reasoning is problematic.

research hypothesis is directional or nondirectional.
a. What are the null and research hypotheses? Explain why the 
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6.9 A study explored whether there is a link between male aggression and
climate. The researcher recorded her results as follows: 5% signifi-
cance level set, H0 could not be rejected.

a. Explain these results in plain English.

b. Why is it important for the researcher to set the significance level at
the beginning of the research and not at the end?

6.10 A private research foundation claims that increased regulation of
handguns would reduce homicides in the United States. To examine
this relationship, the foundation funds a study to assess the impact of
handgun legislation on homicides in four states that recently passed
laws restricting handgun ownership. The foundation expects that the
reduced availability of handguns following the change in law will re-
duce the number of opportunities for lethal violence. The researcher
collects data on homicides in the four states for one year before and
one year after the change in handgun laws.

b. Explain how the researcher could make a Type I error.

c. Explain how the researcher could make a Type II error.

dation wants the researcher to increase the significance level of the
study to 10% and reject the null hypothesis. Should the researcher
increase the significance level of the study? Why?

6.11 A group of researchers at a private think tank claims that the increased
use of incarceration in the United States has not been harmful to the
social fabric of the country. To support this claim, the researchers con-
duct a study looking at rates of incarceration and rates of divorce in
all fifty states for a 20-year period. The group of researchers tests for a
relationship between rates of incarceration and rates of divorce, but
does not expect to find a relationship between these two variables.

b. Explain how the research group could make a Type I error.

c. Explain how the research group could make a Type II error.

d. The observed significance level developed in their study is 0.03.
The research group initially set a 5% risk of Type I error. One
member of the research group suggests that they simply decrease
the significance level of the study to 1% and fail to reject the null
hypothesis. Should the research group decrease the significance
level of the study? Why?

a. What are the null and research hypotheses? Explain why the 
research hypothesis is directional or nondirectional.

d. The results show an observed significance level of 0.06. The 
researcher wants to conclude that the null hypothesis cannot be 
rejected based on a 5% risk of Type I error. An official from the foun-

research hypothesis is directional or nondirectional.
a. What are the null and research hypotheses? Explain why the 
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WHEN WE MAKE INFERENCES to a population, we rely on a statistic in
our sample to make a decision about a population parameter. At the
heart of our decision is a concern with Type I error. Before we reject
our null hypothesis, we want to be fairly confident that it is in fact false
for the population we are studying. For this reason, we want the ob-
served risk of a Type I error in a test of statistical significance to be as
small as possible. But how do statisticians calculate that risk? How do
they define the observed significance level associated with the outcome
of a test?

The methods that statisticians use for calculating the observed sig-
nificance level of a test of statistical significance vary depending on
the statistics examined. Sometimes these methods are very complex.
But the overall logic that underlies these calculations is similar, irre-
spective of the statistic used. Thus, we can take a relatively simple
example and use it as a model for understanding how the observed
significance level of a test is defined more generally in statistics. This
is fortunate for us as researchers, because it means that we do not
have to spend all of our time developing complex calculations to de-
fine risks of error. Once we understand how risks of error are defined
for one problem, we can let statisticians calculate the risks for other
more complex problems. Our concern is not with the calculations
themselves, but with understanding the general logic that underlies
them.

We begin this chapter by discussing a very simple decision. When
should we begin to suspect that a coin used in a coin toss is unfair or bi-
ased? Ordinarily, we might come to a conclusion based on common
sense or intuition. In statistics, we take a more systematic approach, rely-
ing on the logic of hypothesis testing and a type of distribution called a
sampling distribution. Using this example of the coin toss and a sam-
pling distribution called the binomial distribution, we illustrate how sta-
tisticians use probability theory to define the observed significance level,
or risk of Type I error, for a test of statistical significance.

136
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T h e  F a i r  C o i n  T o s s

Imagine that you and your friends play a volleyball game each week
against a group of criminal justice students from another school. You al-
ways begin the game with a coin toss to decide who will serve the ball
first. Your opponents bring an old silver dollar, which you have agreed
to use for the toss. They choose heads and continue to choose heads
each time you play. At first, this does not seem like a problem. However,
each week you play, the coin comes up heads and they serve the ball.

Suppose that this happened for four straight weeks. Would you begin
to become suspicious? What if it went on for six weeks? How many
times in a row would they have to win the coin toss before you and
your team accused them of cheating? Would they have to win for ten or
twenty weeks? You might worry about accusing them too quickly, be-
cause you know that even if the coin is fair it sometimes happens that
someone is lucky and just keeps on winning. You would want to be
fairly certain that the coin was biased before concluding that something
was wrong and taking some action.

In everyday life, you are likely to make this decision based on intu-
ition or prior experience. If you ask your classmates, each one is likely
to come up with a slightly different number of coin tosses before he or
she would become suspicious. Some students may be willing to tolerate
only four or five heads in a row before concluding that they have
enough evidence to accuse their opponents of cheating. Others may be
unwilling to reach this conclusion even after ten or fifteen tosses that
come up heads. In part, the disagreement comes from personality differ-
ences. But more important, guesswork or common sense does not give
you a common yardstick for deciding how much risk you take in coming
to one conclusion or another.

Sampling Distributions and Probability Distributions
Statistical inference provides a more systematic method for making deci-
sions about risk. The coin toss can be thought of as a simple test of statisti-
cal significance. The research hypothesis is that the coin is biased in favor
of your opponents. The null hypothesis is that the coin is fair. Each toss of
the coin is an event that is part of a sample. If you toss the coin ten times,
you have a sample of ten tosses. Recall from Chapter 6 that Type I error
is the error of falsely rejecting the null hypothesis that the coin is fair. If
you follow the common norm in criminal justice, then you are willing to
reject the null hypothesis if the risk of a Type I error is less than 5%.

But how can we calculate the risk of a Type I error associated with a
specific outcome in a test of statistical significance, or what we generally
term the observed significance level of a test? One simple way to gain an
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estimate of the risk of unfairly accusing your friends is to check how
often a fair coin would give the same result as is observed in your series
of volleyball games. For example, let’s say that you played ten games in a
season and in all ten games the old silver dollar came up heads (meaning
that the opposing team won the toss). To check out how often this might
happen just by chance when the coin is in fact a fair one, you might go
to a laboratory with a fair coin and test this out in practice. One problem
you face is deciding how many samples or trials you should conduct. For
example, should you conduct one trial or sample by flipping your fair
coin just ten times and stopping? Or should you conduct multiple trials or
samples, each with ten tosses of the fair coin? Clearly, one trial or sample
of ten tosses will not tell you very much. Indeed, one of the reasons you
have gone to the laboratory is that you know it sometimes happens that a
fair coin will come out heads ten times in a row. What you want to know
is how rare an event this is. How often would you gain ten heads in a
row in a very large number of samples or trials of a fair coin?

The distribution that is gained from taking a very large number of
samples or trials is called a sampling distribution. In principle, one
could create a sampling distribution by drawing thousands and thou-
sands of samples from a population. For example, in the case of our
coin toss, we might conduct thousands of trials of ten flips of a fair coin.
If we recorded the outcome for each trial and placed our results in a fre-
quency distribution, we would have a sampling distribution for a sample
of ten tosses of a fair coin.

This sampling distribution would allow us to define the risk of a Type
I error we would face in rejecting the null hypothesis that the old silver
dollar is fair. For example, suppose that in the sampling distribution we
gained a result of ten heads in only 1 in 1,000 samples. If we reject the
null hypothesis in this case, our risk of making a Type I error, according
to the sampling distribution, is only 0.001. This is the observed signifi-
cance level of our test of statistical significance. In only 1 in 1,000 sam-
ples of ten tosses of a fair coin would we expect to gain a result of ten
heads. If the old silver dollar was indeed a fair coin, it would seem very
unlikely that on our one trial of ten tosses of the coin each toss would
come out heads. Of course, in making our decision we cannot be certain
that the silver dollar used in the volleyball toss is not a fair coin. While
the occurrence of ten heads in ten tosses of a fair coin is rare, it can hap-
pen about once in every 1,000 samples.

Building a sampling distribution provides a method for defining our
risk of a Type I error. However, it is very burdensome to create a sam-
pling distribution by hand or even in the laboratory. If you try out our
example of ten tosses of a fair coin, you will see that developing even
100 samples is not easy. If we had to actually construct a sampling distri-
bution every time we wanted to make a decision about a hypothesis, it
would be virtually impossible to make statistical inferences in practice.
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Fortunately, there is another method we can use for creating sampling
distributions. This method relies on probability theory, rather than a bur-
densome effort to collect samples in the real world. Because we use
probabilities, the distributions that are created using this method are
called probability distributions. Importantly, though we rely on prob-
ability theory because it is very difficult to develop sampling distributions
in practice, we do not suffer for our approach. This is because probabil-
ity theory allows us to calculate the outcomes one would expect in a
perfect world. In the real world, we might flip the coin slightly differ-

The Multiplication Rule
In order to estimate the risk of a Type I error in the case of a series of
tosses of a fair coin, we can use the multiplication rule, a simple rule
about probabilities drawn from probability theory. The multiplication
rule tells you how likely we are to gain a series of events one after
another—in this case, a series of outcomes in a toss of a coin. It allows
us to estimate theoretically how often we would gain a specific series of
events if we drew an infinite number of samples. The multiplication rule
generally used to establish probabilities in statistics is based on the as-
sumption that each event in a sample is independent of every other
event. In the case of the coin toss, this means that the outcome of one
toss of a coin is unaffected by what happened on the prior tosses. Each
time you toss the coin, it is as if you started with a clean slate. That
would seem a fairly reasonable assumption for our problem. What wor-
ries us is that the coin is unfair overall, not that it is becoming less or
more unfair as time goes on.

An example of a series of events that are not independent is draws
from a deck of cards. Each time you draw a card, you reduce the num-
ber of cards left in the deck, thus changing the likelihood of drawing any
card in the future. For example, let’s say that on your first draw from a
deck of 52 cards you drew an ace of spades. On your second draw, you
cannot draw an ace of spades because you have already removed it from
the deck. The likelihood of drawing an ace of spades on the second
draw has thus gone from 1 in 52 to 0 in 51. You have also influenced the
likelihood of drawing any other card because there are now 51, not 52,
cards left in the deck. If you want a series of draws from a deck to be
independent of one another, you have to return each card to the deck
after you draw it. For example, if you returned the ace of spades to the
deck, the chance of choosing it (assuming the deck was mixed again)
would be the same as it was on the first draw. The chances of choosing
any other card would also be the same because you once again have all
52 cards from which to draw.

another, thus affecting the outcomes we gain. In probability theory, we 
remove the imperfections of the real world from our estimates.

ently as we got tired or the coin might become worn on one side or 
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The multiplication rule for four independent events is stated in Equa-
tion 7.1. It says that the likelihood of any series of events, represented as
A, B, C, and D, happening one after another is equal to the probability
of event A times the probability of event B times the probability of event
C times the probability of event D. The rule can be extended to as many
events as you like. We have chosen four here, because this was the
number of volleyball games we began with. If you wanted to extend the
rule, you would simply include the additional events on the left side of
the equation (for example, E and F ) and include the probability of each
on the right side of the equation [e.g., P (E ) • P (F )].

P (A & B & C & D) � P (A) • P (B) • P (C ) • P (D) Equation 7.1

Extending this logic to our example of the coin toss is straightforward.
The probability of A and B and C and D can represent the probability
that four tosses in a row come up heads. Our main problem is to estab-
lish what the probability is of a head coming up on any particular toss of
the coin. In this, we are helped by our null hypothesis, which states that
the coin is fair. If the coin is fair, then there should be an even chance of
a head or a tail coming up on any particular toss of the coin. Put differ-
ently, under the assumption of the null hypothesis that the coin is fair,
the likelihood of a head coming up is 0.50.

What, then, does the multiplication rule tell us about the chances of
getting four heads in a row on four tosses of a fair coin? In part a of
Table 7.1, we calculate that probability by multiplying 0.50 (the likeli-
hood of gaining a head on any toss of a fair coin) by itself four times, to
represent four tosses of an unbiased coin. The result is 0.0625. If you
had decided at the outset to make a decision about the null hypothesis—
that the coin is fair—after four tosses of the coin, then you have con-
ducted a type of test of statistical significance. For this test, the observed
significance level (or risk of a Type I error) of rejecting the null hypothe-
sis on the basis of four heads is 0.0625.

If you use the norms of criminal justice research, this is not enough,
however, for you to reject the null hypothesis that the coin is fair. Crimi-
nal justice researchers generally want the risk of falsely rejecting the null
hypothesis to be less than 5%. A bit over 6% is still more than the 5% sig-
nificance criterion that is used by convention. So if you had decided to

Probabilities Associated with Tosses of a Fair Coin

a. P (A & B & C & D) � P (A) • P (B) • P (C) • P (D) � (0.50)(0.50)(0.50)(0.50) � 0.0625
b. P (A & B & C & D & E) � P (A) • P (B) • P (C) • P (D) • P (E) � (0.50)(0.50)(0.50)(0.50)(0.50) � 0.0313
c. P (A & B & C & D & E & F & G & H & I & J) � P (A) • P (B) • P (C) • P (D) • P (E) • P (F ) • P (G) • P (H) • P (I ) • P (J)

� (0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50) � 0.0010

Table 7.1
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make a decision about the fairness of the coin after four coin tosses, you
would probably not want to reject the null hypothesis that the coin is fair
and confront your opponents. Under this criterion, the likelihood of
falsely rejecting the null hypothesis, or the observed significance level of
your test, would have to be below 0.05.

What if you had decided at the outset to make a decision about the
null hypothesis after five tosses of a coin? Would a result of five heads in
a row lead you to reject the null hypothesis? As illustrated in part b of
Table 7.1, the multiplication rule tells you that the likelihood of getting
five heads in a row if the coin is fair is 0.0313. This is less than our
threshold of 0.05, and thus would lead you to reject the null hypothesis.
Is this consistent with your earlier commonsense conclusions? Students
are usually surprised at how quickly they reach the 0.05 significance
threshold in this example.

If you had decided at the outset that you would need ten or fifteen
heads in a row, you may want to reconsider, given what we have
learned from the multiplication rule. The likelihood of getting ten heads
in a row in ten tosses of a fair coin is only 1 in 1,000 (see part c of Table
7.1). The likelihood of getting fifteen heads in a row in fifteen tosses of a
fair coin is even lower: about 3 in 100,000. In both of these cases, you
would take a very small risk of a Type I error if you rejected the null hy-
pothesis. Nonetheless, the multiplication rule tells us that, even if the
coin is fair, it is possible to get ten or even fifteen heads in a row. It just
does not happen very often.

The multiplication rule allows us to estimate how often we would ex-
pect to get a series of specific outcomes in a very large number of trials
or samples, without actually going out and doing the hard work of con-
structing a sampling distribution in the real world. However, the problem
as examined so far assumes that the coin will come up heads every time.
What if the coin comes up heads generally, but not all the time? For ex-
ample, what if you play ten games and the coin comes up heads nine
times? The situation here is not as one-sided. Nonetheless, it still seems
unlikely that your opponents would win most of the time if the coin
were fair. The multiplication rule alone, however, does not allow us to
define how likely we are to get such a result.

D i f f e r e n t  W a y s  o f  G e t t i n g  S i m i l a r  R e s u l t s

The multiplication rule allows us to calculate the probability of getting a
specific ordering of events. This is fine so far in our coin toss because in
each example we have chosen there is only one way to get our out-
come. For example, there is only one way to get five heads in five coin
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tosses or ten heads in ten coin tosses. In each case, your opponents
must toss a head before each game. This would be the situation as well
if your opponents tossed tails ten times in ten coin tosses. However, for
any outcome in between, there is going to be more than one potential
way to achieve the same result.

For example, if your opponents tossed nine heads in ten coin tosses,
they could win the coin toss nine times (with a head) and then lose the
toss in the tenth game (with a tail). Or they could lose the first toss (with
a tail) and then win the remaining nine. Similarly, they could lose the
second, third, fourth, fifth, sixth, seventh, eighth, or ninth coin toss and
win all the others. Each of these possible ordering of events is called an
arrangement. As is illustrated in Table 7.2, there are ten possible
arrangements, or different ways that you could get nine heads in ten
coin tosses. In the case of ten heads in ten coin tosses, there is only one
possible arrangement.

It is relatively simple to list all of the arrangements for our example of
nine heads in ten coin tosses, but listing becomes very cumbersome in
practice as the split of events becomes more even. For example, if we
were interested in how many ways there are of getting eight heads in ten
coin tosses, we would have to take into account a much larger number
of arrangements. As Table 7.3 illustrates, it takes a good deal of effort to
list every possible arrangement even for eight heads. In the case of a
more even split of events—for example, five heads in ten tosses—it be-
comes extremely cumbersome to list each arrangement one by one. Be-
cause of this, we generally use the formula in Equation 7.2 to define the
number of arrangements in any series of events.

Equation 7.2

On the left side of this equation we have N “choose” r, where N is the
number of events in the sample and r is the number of successes in the

�N
r� � N !

r !(N � r)!

Arrangements for Nine Successes in Ten Tosses of a Coin

Arrangement 1 � � � � � � � � � �
Arrangement 2 � � � � � � � � � �
Arrangement 3 � � � � � � � � � �
Arrangement 4 � � � � � � � � � �
Arrangement 5 � � � � � � � � � �
Arrangement 6 � � � � � � � � � �
Arrangement 7 � � � � � � � � � �
Arrangement 8 � � � � � � � � � �
Arrangement 9 � � � � � � � � � �
Arrangement 10 � � � � � � � � � �

� � Head; � � Tail

Table 7.2
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total number of events. In our case, N is the number of coin tosses and r
is the number of times that the coin comes up heads. Put together, this
statement establishes our question: How many ways are there of gaining
r heads in N tosses of a coin? To answer our question, we need to solve
the right side of the equation. Each of the terms in the equation is de-
fined as a factorial, indicated by the symbol !. When we take a factorial
of a number, we merely multiply it by all of the whole numbers smaller
than it. For example, 3! is equal to (3)(2)(1), or 6. Because factorials get
very large very quickly, a table of factorials is presented in Appendix 1.
Note that 0! � 1. Applied to our problem of nine heads in ten coin
tosses, Equation 7.2 is worked out below:

Arrangements for Eight Successes in Ten Tosses of a Coin

1: ���������� 16: ���������� 31: ����������
2: ���������� 17: ���������� 32: ����������
3: ���������� 18: ���������� 33: ����������
4: ���������� 19: ���������� 34: ����������
5: ���������� 20: ���������� 35: ����������
6: ���������� 21: ���������� 36: ����������
7: ���������� 22: ���������� 37: ����������
8: ���������� 23: ���������� 38: ����������
9: ���������� 24: ���������� 39: ����������

10: ���������� 25: ���������� 40: ����������
11: ���������� 26: ���������� 41: ����������
12: ���������� 27: ���������� 42: ����������
13: ���������� 28: ���������� 43: ����������
14: ���������� 29: ���������� 44: ����������
15: ���������� 30: ���������� 45: ����������

� � Head; � � Tail

Table 7.3

W orking It Out

 � 10

 � 
3,628,800

362,880(1)

 � 10!
9! 1!

 �10
9 � � 10!

9!(10 � 9)!

 �N
r� � N !

r !(N � r)!
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Using this method, we get the same result as before. There are ten possi-
ble arrangements to get nine heads in ten tosses of a coin. When we
apply Equation 7.2 to the problem of five heads in ten coin tosses, its
usefulness becomes even more apparent. There are 252 different ways of
getting five heads in ten tosses. Listing each would have taken us consid-
erably longer than the calculation below.

W orking It Out

 � 252

 � 
3,628,800
120(120)

 � 10!
5! 5!

 �10
5 � � 10!

5!(10 � 5)!

 �N
r� � N !

r !(N � r)!

S o l v i n g  M o r e  C o m p l e x  P r o b l e m s

Now that we have a method for calculating arrangements, we can return
to our original problem, which was to define the probability of your op-
ponents tossing the coin in ten games and getting heads nine times. Be-
cause there are ten different ways of getting nine heads in ten coin
tosses, you need to add up the probabilities associated with these ten se-
quences. This is what is done in Table 7.4. The multiplication rule is
used to calculate the probability for each sequence, or arrangement,
under the assumption of the null hypothesis that the coin is fair. Because
our null hypothesis states that the coin is fair, we can assume that the
chances of gaining a head and a tail are even. The probability of any
event, whether a head or a tail, is 0.50, and the probability of a sequence
of ten events is always the same. This makes our task easier. But it is im-
portant to note that if the null hypothesis specified an uneven split (for
example, 0.75 for a head and 0.25 for a tail), then each of the sequences
would have a different probability associated with it. In any case, the
likelihood of getting any one of these sequences is about 0.001, rounded
to the nearest thousandth. When we add together the ten sequences, we
get a probability of 0.010.
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This means that we would expect to get nine heads in ten coin tosses
of a fair coin in only about 1 in 100 samples in a very large number of
trials of a fair coin. But is this the observed significance level of a test of
statistical significance in which we gain nine heads in ten tosses of a
coin? Or put in terms of Type I error, is this the total amount of risk we
face of falsely rejecting the null hypothesis when we gain nine heads?
The answer to this question is no, although it may be difficult at first to
understand why. If we are willing to reject the null hypothesis based on
an outcome of nine heads in ten trials, then we are, by implication, also
willing to reject the null hypothesis if our outcome is ten heads in ten tri-
als. In calculating our total risk of a Type I error, we must add together
the risk of all potential outcomes that would lead us to reject the null hy-
pothesis. This is why, when testing hypotheses, we generally do not
begin with an estimate of the specific probability associated with a single
outcome, but rather with the sampling distribution of probabilities of all
possible outcomes.

T h e  B i n o m i a l  D i s t r i b u t i o n

To construct a probability or sampling distribution for all of the possible
outcomes of ten coin tosses, we could continue to compute the number
of permutations and the likelihood of any particular arrangement. How-
ever, Equation 7.3 provides us with a more direct method for calculating
the probability associated with each of the potential outcomes in our

The Sum of Probabilities for All Arrangements 
of Nine Heads in Ten Tosses of a Fair Coin

PROBABILITY

Arrangement 1 � � � � � � � � � � 0.001
Arrangement 2 � � � � � � � � � � 0.001
Arrangement 3 � � � � � � � � � � 0.001
Arrangement 4 � � � � � � � � � � 0.001
Arrangement 5 � � � � � � � � � � 0.001
Arrangement 6 � � � � � � � � � � 0.001
Arrangement 7 � � � � � � � � � � 0.001
Arrangement 8 � � � � � � � � � � 0.001
Arrangement 9 � � � � � � � � � � 0.001
Arrangement 10 � � � � � � � � � � 0.001

Total Probability: 0.01

Probability of throwing each arrangement of 10 throws
� P (A) • P (B) • P (C) • P (D) • P (E) • P (F ) • P (G) • P (H) • P (I ) • P (J ) 
� (0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50)(0.50)
� 0.001

Table 7.4
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sample. Equation 7.3 is generally defined as the binomial formula, and
the distribution created from it is called the binomial distribution. As
the name suggests, the binomial distribution is concerned with events in
which there are only two possible outcomes—in our example, heads
and tails.

Equation 7.3

The binomial formula may look confusing, but most of it is familiar from
material already covered in this chapter. The left-hand side of the equa-
tion represents the quantity in which we are interested—the probability
of getting r successes (in our case, r heads) in a sample of N events (for
us, ten tosses of a coin). The first part of the equation provides us with
the number of arrangements for that number of heads. This quantity is
then multiplied by pr(1 � p)N�r, where p is the probability of a successful
outcome (a head) under the null hypothesis and r is the number of suc-
cesses. This formula gives us the probability associated with each
arrangement. Although this part of the equation looks somewhat differ-
ent from the multiplication rule we used earlier, it provides a shortcut for
getting the same result, as the example below illustrates.

We have already calculated the likelihood of getting nine or ten heads
in ten coin tosses if the coin is fair. To complete our sampling distribu-
tion, we need to compute probabilities associated with zero through
eight heads as well. Let’s begin with eight heads in ten coin tosses of an
unbiased coin:

Step 1: Calculating the number of arrangements

P �10
8 � � 10!

8!(10 � 8)!
 (0.50)8(1 � 0.50)10�8

P �N
r� � N !

r !(N � r)!
 pr(1 � p)N�r

W orking It Out

 � 45

 � 
3,628,800
40,320(2)

 � 10!
8! 2!

 �10
8 � � 10!

8!(10 � 8)!
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In step 1 we simply follow the same method as we did earlier in estab-
lishing the number of ways of getting eight heads in ten tosses of a coin.
Our conclusion is that there are 45 different arrangements.

Step 2: Calculating the probability of any specific arrangement

W orking It Out

 � 0.00098

 � (0.50)10

 � (0.50)8(0.50)2

 pr(1 � p)N�r � (0.50)8(1 � 0.50)10�8

Step 2 provides us with the likelihood of getting any particular arrange-
ment under the assumption of the null hypothesis that the coin is fair. By
the null hypothesis, p is defined as 0.50, and r is the number of suc-
cesses (heads) in our example, or 8. So pr is (0.50)8, and (1 � p)N�r is 
(1 � 0.50)10�8, or (0.50)2. The outcome of this part of the equation can
be simplified to (0.50)10. This in turn is the same outcome that we would
obtain using the multiplication rule, because the expression (0.50)10

means that we multiply the quantity 0.50 by itself 10 times. Using the
multiplication rule, we would have done just that.

Step 3: Combining the two outcomes

W orking It Out

 � 0.0441

 P �10
8 � � 45(0.00098)

 P �N
r� � N !

r !(N � r)!
 pr(1 � p)N�r

of tossing eight heads in ten tosses of a fair coin is about 0.044. In 
Combining the two parts of the equation, we find that the likelihood 

Table 7.5, we calculate the probabilities associated with all the potential 
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The probability or sampling distribution for ten tosses of a fair coin il-
lustrates how likely you are to get any particular outcome. All of the out-
comes together add up to a probability of 1.1 Put differently, there is a
100% chance that in ten tosses of a coin you will get one of these 11 po-
tential outcomes. This is obvious, but the sampling distribution allows
you to illustrate this fact. Following what our common sense tells us, it
also shows that an outcome somewhere in the middle of the distribution

Computation of Probability Distribution for Ten Tosses of a Fair Coin

0 heads

1 head

2 heads

3 heads

4 heads

5 heads

6 heads

7 heads

8 heads

9 heads

10 heads

� � 1.0*

*The total in the last column is in fact slightly greater than 100%. This is due to rounding the numbers to the nearest
decimal place in order to make the calculation more manageable.

 
3,628,800

3,628,800(10 � 10)!
 � 

3,628,800
3,628,800

 � 1           1(0.00098) � 0.0010

 
3,628,800

362,880(10 � 9)!
 � 

3,628,800
362,880

 � 10           10(0.00098) � 0.0098

 
3,628,800

40,320(10 � 8)!
 � 

3,628,800
80,640

 � 45           45(0.00098) � 0.0441

 
3,628,800

5,040(10 � 7)!
 � 

3,628,800
30,240

 � 120           120(0.00098) � 0.1176

 
3,628,800

720(10 � 6)!
 � 

3,628,800
17,280

 � 210           210(0.00098) � 0.2058

 
3,628,800

120(10 � 5)!
 � 

3,628,800
14,400

 � 252           252(0.00098) � 0.2470

 
3,628,800

24(10 � 4)!
 � 

3,628,800
17,280

 � 210           210(0.00098) � 0.2058

 
3,628,800
6(10 � 3)!

 � 
3,628,800

30,240
 � 120           120(0.00098) � 0.1176

 
3,628,800
2(10 � 2)!

 � 
3,628,800

80,640
 � 45            45(0.00098) � 0.0441

 
3,628,800
1(10 � 1)!

 � 
3,628,800
362,880

 � 10           10(0.00098) � 0.0098

 
3,628,800
1(10 � 0)!

 � 
3,628,800
3,628,800

 � 1           1(0.00098) � 0.0010

�N
r �pr (1 � p)N�r�N

r � � N !
r ! (N � r )!

Table 7.5

1Because of rounding error, the total for our example is actually slightly larger than 1
(see Table 7.5).

outcomes in this binomial distribution. The resulting sampling distribution
is displayed in Table 7.6.
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is most likely. If the coin is fair, then we should more often than not get
about an even split of heads and tails.

The largest proportion (0.247) in the sampling distribution is found at
five heads in ten tosses of a coin. As you move farther away from the
center of the distribution, the likelihood of any particular result declines.
The smallest probabilities are associated with gaining either all heads or
no heads. Like many of the distributions that we use in statistics, this dis-
tribution is symmetrical. This means that the same probabilities are asso-
ciated with outcomes on both sides.

In Chapter 6, we talked about the fact that samples vary from one an-
other. This is what makes it so difficult to make inferences from a sam-
ple to a population. Based on a sample statistic, we can never be sure
about the actual value of the population parameter. However, as illus-
trated in this sampling distribution, samples drawn from the same popu-
lation vary in a systematic way in the long run. It is very unlikely to draw
a sample with ten heads in ten tosses of a fair coin. On the other hand, it
is very likely to draw a sample with four, five, or six heads in ten tosses.

U s i n g  t h e  B i n o m i a l  D i s t r i b u t i o n  
t o  E s t i m a t e  t h e  O b s e r v e d  S i g n i f i c a n c e  L e v e l  o f  a  T e s t

Using the sampling distribution, we can now return to the problem of
identifying the risks of error associated with rejecting the null hypothesis
that the coin brought by the other volleyball team is fair. Earlier we sug-
gested that you might want to use a 5% significance level for this test, in
part because it is the standard or conventional significance level used by

Probability or Sampling Distribution for Ten Tosses of a Fair Coin

0 heads 0.001
1 head 0.010
2 heads 0.044
3 heads 0.118
4 heads 0.206
5 heads 0.247
6 heads 0.206
7 heads 0.118
8 heads 0.044
9 heads 0.010
10 heads 0.001

Table 7.6

most criminal justice researchers. This means that in order to reject the null
hypothesis you would require that the observed significance level (p) of your  
test (or the risk of making a Type1 error by incorrectly rejecting the null hypo- 

to reject the null hypothesis that the coin is fair and confront your opponents?
thesis) be less than 5% (or p < .05). Using this level, when would you be willing  



Applying the Binomial Distribution 
to Situations Where p � 0.5

The examples in the text focus on applying the binomial distribution to sit-
uations where the probability of a success is equal to 0.5. There are other
situations where we are interested in the probability of multiple suc-
cesses (or failures), but success and failure are not equally likely. For ex-
ample, many of the games of chance that a person might play at a casino
are constructed in such a way that winning and losing are not equally
likely—the chances of losing are greater than the chances of winning—
but use of the binomial distribution would allow for calculation of the
chances of winning over several plays of the game.

Consider the following more detailed example. Suppose that we have a
quiz with five questions and we are interested in the probability of a student

sponse on any single question is p � 1/2 � 0.5. We can then apply the bino-
mial in the same way as we have in the previous examples to determine the
probability of some number of correct answers. The following table pre-
sents the numbers of correct answers and the corresponding probabilities.

NUMBER OF CORRECT ANSWERS

0 correct

1 correct

2 correct

3 correct

4 correct

5 correct

Now suppose that the questions are worded as multiple-choice items
and the student has to choose one answer from four possibilities. For any
single question, the probability of guessing the correct answer is p � 1/4
� 0.25. Given that we have multiple questions, we can again calculate the

5!
5!(5 � 5)!

 0.55 (1 � 0.5)5�5 � 0.03125

5!
4!(5 � 4)!

 0.54 (1 � 0.5)5�4 � 0.15625

5!
3!(5 � 3)!

 0.53 (1 � 0.5)5�3 � 0.3125

5!
2!(5 � 2)!

 0.52 (1 � 0.5)5�2 � 0.3125

5!
1!(5 � 1)!

 0.51 (1 � 0.5)5�1 � 0.15625

5!
0!(5 � 0)!

 0.50 (1 � 0.5)5�0 � 0.03125

�N
r �pr (1 � p)N�r

Computation 
of Binomial

Probabilities for
Five True-False

Questions

answers are true or false, then the probability of guessing the correct re-
correctly guessing all of the answers on the quiz. If the only possible



probability for the number of correct responses using the binomial distri-
bution, but we need to replace p � 0.5 with p � 0.25 in the equations to
reflect the different probability of a correct answer. The following table
presents the numbers of correct responses and the corresponding prob-
abilities for the multiple-choice response set.

NUMBER OF CORRECT ANSWERS

0 correct

1 correct

2 correct

3 correct

4 correct

5 correct

It is important to note that the distribution presented in the second table
is no longer symmetrical, reflecting the fact that the probability of a cor-
rect response is no longer equal to the probability of an incorrect re-
sponse. For the true-false questions, where the probabilities of correct
and incorrect answers are the same, we see that the probabilities of zero
and five correct responses are equal, the probabilities of one and four cor-
rect responses are equal, and the probabilities of two and three correct
responses are equal. In contrast, when we look at the probabilities for
multiple-choice questions with four possible answers, there is no such
symmetry. The most likely outcome is one correct response, with a proba-
bility of 0.3955. The probability of guessing four or five correct multiple-
choice answers is much lower than the probability of guessing four or five
correct true-false answers. In general, the probabilities in the table show
that increasing the number of possible answers makes it much more diffi-
cult for the student to correctly guess all the answers and increases the
chances of getting no correct responses or only one correct response.

5!
5!(5 � 5)!

 0.255 (1 � 0.25)5�5 � 0.0010

5!
4!(5 � 4)!

 0.254 (1 � 0.25)5�4 � 0.0146

5!
3!(5 � 3)!

 0.253 (1 � 0.25)5�3 � 0.0879

5!
2!(5 � 2)!

 0.252 (1 � 0.25)5�2 � 0.2637

5!
1!(5 � 1)!

 0.251 (1 � 0.25)5�1 � 0.3955

5!
0!(5 � 0)!

 0.250 (1 � 0.25)5�0 � 0.2373

�N
r �pr (1 � p)N�rComputation

of Binomial
Probabilities

for Five
Multiple-
Choice

Questions
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At first glance, you might decide to reject the null hypothesis for out-
comes of zero, one, two, eight, nine, and ten heads. Each of these is
below the threshold of 0.05 that we have suggested. However, at the
outset we stated in our research hypothesis that we were concerned not
that the coin was biased per se, but that it was biased against your team.
This means that we set up our research hypotheses in such a way that
we would reject the null hypothesis only if the outcomes were mostly
heads. Although tossing zero, one, or two heads is just as unlikely as
tossing eight, nine, or ten heads, our research hypothesis states our in-
tention not to consider the former outcomes.

What about the risk of falsely rejecting the null hypothesis in the case
of eight, nine, or ten heads? As we noted earlier, in calculating the risk of
a Type I error, we must add up the probabilities associated with all the
outcomes for which we would reject the null hypothesis. So, for exam-
ple, if we want to know the risk of falsely rejecting the null hypothesis
on the basis of eight heads in ten coin tosses, we have to add together
the risks associated with eight, nine, and ten heads in ten tosses. The
question we ask is, What is the risk of falsely rejecting the null hypothe-
sis if we gain eight or more heads in ten coin tosses? The total risk, or
observed significance level, would be about 0.055 (that is, 0.044 � 0.010
� 0.001), which is greater than our threshold of 0.05 for rejecting the
null hypothesis. It is too large an outcome for you to confront your op-
ponents and accuse them of cheating.

In the case of nine heads, the outcome is well below the threshold of
a Type I error we have chosen. By adding together the probabilities as-
sociated with gaining nine or ten heads in ten coin tosses, we arrive at a
risk of 0.011 of falsely rejecting the null hypothesis. If we decided to re-
ject the null hypothesis that the coin is fair on the basis of an outcome of
nine heads, then the observed significance value for our test would be
0.011. For ten heads, as we noted earlier, the risk of a Type I error is
even lower (p � 0.001). Because there are no outcomes more extreme
than ten heads in our distribution, we do not have to add any probabili-
ties to it to arrive at an estimate of the risk of a Type I error.

You would take a very large risk of a Type I error if you decided in
advance to reject the null hypothesis that the coin is fair based on six
heads in ten tosses of a coin. Here, you would have to add the probabil-
ities associated with six (0.206), seven (0.118), eight (0.044), nine
(0.010), and ten heads (0.001).

As the coin toss example illustrates, sampling distributions play a very
important role in inferential statistics. They allow us to define the ob-
served significance level, or risk of a Type I error, we take in rejecting
the null hypothesis based on a specific outcome of a test of statistical
significance. Although most sampling distributions we use in statistics are
considerably more difficult to develop and involve much more complex
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mathematical reasoning than the binomial distribution, they follow a
logic similar to what we have used here. For each distribution, statisti-
cians use probabilities to define the likelihood of gaining particular out-
comes. These sampling distributions provide us with a precise method
for defining risks of error in tests of statistical significance.

What you have learned here provides a basic understanding of how
sampling distributions are developed from probability theory. In later
chapters, we will rely on already calculated distributions. However, you
should keep in mind that steps similar to those we have taken here have
been used to construct these distributions.

C h a p t e r  S u m m a r y

Whereas a sample distribution is the distribution of the results of one
sample, a sampling distribution is the distribution of outcomes of a
very large number of samples, each of the same size. A sampling distrib-
ution that is derived from the laws of probability (without the need to
take countless samples) may also be called a probability distribution.
A sampling distribution allows us to define the observed significance
level of a test of statistical significance, or the estimated risk of a Type I
error we take in rejecting the null hypothesis based on sample statistics.
To guide our decision as to whether to reject or fail to reject the null hy-
pothesis, we compare the observed significance level with the criterion
significance level set at the outset of the test of statistical significance.

By using the multiplication rule, we can calculate the probability of
obtaining a series of results in a specific order. The number of arrange-
ments is the number of different ways of obtaining the same result. The
total probability of obtaining any result is the individual probability mul-
tiplied by the number of different possible arrangements.

The binomial distribution is the sampling distribution for events
with only two possible outcomes—success or failure, heads or tails, etc.
It is calculated using the binomial formula. When deciding whether
the result achieved, or observed significance level, passes the desired
threshold for rejecting the null hypothesis, it is important to remember to
take a cumulative total of risk.

K e y  T e r m s

arrangements The different ways events
can be ordered and yet result in a single
outcome. For example, there is only one
arrangement for gaining the outcome of ten

heads in ten tosses of a coin. There are,
however, ten different arrangements for
gaining the outcome of nine heads in ten
tosses of a coin.
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S y m b o l s  a n d  F o r m u l a s

! Factorial

r Number of successes

N Number of trials

p

To determine the probability of events A, B, C, and D occurring jointly
under the assumption of independence (the multiplication rule):

P (A & B & C & D) � P (A) • P (B) • P (C ) • P (D)

To determine the number of arrangements of any combination of
events:

To determine the probability of any binomial outcome occurring in all
its possible arrangements (the binomial formula):

P�N
r� � N !

r !(N � r)!
 pr(1 � p)N�r

�N
r� � N !

r !(N � r)!

binomial distribution The probability or
sampling distribution for an event that has
only two possible outcomes.

binomial formula The means of deter-
mining the probability that a given set of
binomial events will occur in all its possi-
ble arrangements.

factorial The product of a number and all
the positive whole numbers lower than it.

independent Describing two events when
the occurrence of one does not affect the
occurrence of the other.

multiplication rule The means for deter-
mining the probability that a series of
events will jointly occur.

probability distribution A theoretical
distribution consisting of the probabilities
expected in the long run for all possible
outcomes of an event.

sampling distribution A distribution 
of all the results of a very large number 
of samples, each one of the same size
and drawn from the same population
under the same conditions. Ordinarily,
sampling distributions are derived using
probability theory and are based on prob-
ability distributions.

The probability of a success in the binomial formula. It is also used as a 

significance.
symbol of the observed significance level of a test of statistical 
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E x e r c i s e s

7.1 Calculate the probability for each of the following:

a. Two tails in two tosses of a fair coin.

b. Three heads in three tosses of a fair coin.

c. Four heads in four tosses of an unfair coin where the probability of
a head is 0.75.

d. Three sixes in three rolls of a fair die.

e. Five fours in five rolls of an unfair die where the probability of a
four is 0.25.

7.2 All of Kate’s children are boys.

a. Intuitively, how many boys do you think Kate would have to have
in succession before you would be willing to say with some cer-
tainty that, for some biological reason, she is more likely to give
birth to boys than girls?

b. Now calculate the number of successive births required before you
could make such a decision statistically with a 5% risk of error.

c. How many successive boys would have to be born before you
would be prepared to come to this conclusion with only a 1% risk
of error?

7.3 The Federal Bureau of Investigation trains sniffer dogs to find explo-
sive material. At the end of the training, Lucy, the FBI’s prize dog, is
let loose in a field with four unmarked parcels, one of which contains
Semtex explosives. The exercise is repeated three times, and on each
occasion, Lucy successfully identifies the suspicious parcel.

a. What is the chance of an untrained dog performing such a feat?
(Assume that the untrained dog would always approach one of the
parcels at random.)

b. If there had been five parcels instead of four and the exercise had
been carried out only twice instead of three times, would the
chances of the untrained dog finding the single suspicious parcel
have been greater or less?

7.4 Alex, an attorney, wishes to call eight witnesses to court for an impor-
tant case. In his mind, he has categorized them into three “strong” wit-
nesses and five “weaker” witnesses. He now wishes to make a tactical
decision on the order in which to call the strong and the weaker
witnesses.
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For example, one of his options is

Strong Weak Weak Strong Weak Weak Weak Strong

a. In how many different sequences can he call his strong and weaker
witnesses?

b. If Alex decides that one of his three strong witnesses is in fact more
suited to the weaker category, how many options does he now have?

7.5 In a soccer match held at a low-security prison, the inmates beat the
guards 4 to 2.

a. How many different arrangements are there for the order in which
the goals were scored?

b. What would your answer be if the final score were 5 to 1?

7.6 At the end of each year, the police force chooses its “Police Officer of
the Year.” In spite of the fact that there are equal numbers of men and
women on the force, in the last 15 years, 11 of the winners have been
men and 4 have been women. Paul has been investigating whether
women and men are treated differently in the police force.

a. Do these figures provide Paul with a reasonable basis to suspect
that the sex of the officer is an active factor? Explain your answer.

b. Looking back further into the records, Paul discovers that for the
three years before the 15-year span initially examined, a woman
was chosen each time. Does this affect his conclusion? Explain your
answer.

7.7 Use the binomial distribution to calculate each of the following
probabilities:

a. Three heads in eight tosses of a fair coin.

b. Six tails in thirteen tosses of a fair coin.

c. Four fives in five rolls of a fair die.

d. Two ones in nine rolls of a fair die.

e. Five sixes in seven rolls of a fair die.

7.8 Tracy, a teacher, gives her class a ten-question test based on the
homework she assigned the night before. She strongly suspects that
Mandy, a lazy student, did not do the homework. Tracy is surprised to
see that of the ten questions, Mandy answers seven correctly. What is
the probability that Mandy successfully guessed seven of the ten an-
swers to the questions if

a. The questions all required an answer of true or false?

b. The questions were all in the multiple-choice format, with students
having to circle one correct answer from a list of five choices?
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7.9 After a supermarket robbery, four eyewitnesses each report seeing a
man with glasses fleeing from the scene. The police suspect Eddy and
make up an identity parade of five men with glasses. Eddy takes his
place in the parade alongside four randomly chosen stooges. Of the
four eyewitnesses who are brought in, three identify Eddy and the
fourth points to one of the stooges. The detective in charge decides
that there is enough evidence to bring Eddy to trial.

a. The detective’s superior wishes to know the probability that Eddy
would have been chosen by three out of the four eyewitnesses if
each witness had chosen a member of the identity parade entirely
at random. What is the probability?

b. What is the probability of Eddy being chosen at random by only
two of the four witnesses?

7.10 A gang of five child thieves draws straws each time before they go
shoplifting. Whoever draws the short straw is the one who does the
stealing. By tradition, Anton, the leader, always draws first. On the
four occasions that the gang has performed this ritual, Anton has
drawn the short straw three times.

a. Construct a table to illustrate the binomial distribution of Anton’s
possible successes and failures for each of the four draws.

b. Should he accuse his fellow gang members of rigging the draw if

i. He is willing to take a 5% risk of falsely accusing his friends?

ii. He is willing to take only a 1% risk of falsely accusing his friends?

7.11 Baron, a gambler, plays 11 rounds at a casino roulette wheel, each
time placing a $100 note on either black or red.

a. Construct a table to illustrate the binomial distribution of Baron’s
possible successes and failures for each of the 11 rounds.

b. The casino croupiers have been told to inform the management if a
client’s winning streak arouses suspicion that he might be cheating.
The threshold of suspicion is set at 0.005. How many successes does
Baron need on 11 trials to arouse the management’s suspicion?

7.12 Nicola is playing roulette on an adjacent table. On 12 successive spins
of the wheel, she places a $100 note on either the first third (numbers
1–12), the second third (numbers 13–24), or the final third (numbers
25–36).

a. Construct a table to illustrate the binomial distribution of Nicola’s
possible successes and failures for each of the 12 spins.

b. How many times out of the 12 would Nicola need to win in order
to arouse the suspicion of the casino manager that she was cheat-
ing, if the management policy is to limit the risk of falsely accusing
a customer to 0.001?



7.13 A security consultant hired by store management thinks that the prob-
ability of store security detecting an incident of shoplifting is 0.1. Sup -
pose the consultant decides to test the effectiveness of security by try -
ing to steal an item ten different times.

a. Construct a table to illustrate the binomial distribution of possible
detections for each of the ten attempted thefts.

b. Store management claims that the chances of detection are greater
than 0.1. If the consultant set the threshold for detection at 0.05,
how many times would she have to be detected to increase the
probability of detection?

7.14 In a crime spree, Joe commits six robberies.

a. If the probability of arrest for a single robbery is 0.7, what is the
probability that Joe will be arrested for three of the robberies?

b. If the probability of detection for a single robbery is 0.4, what is the
probability that Joe will not be arrested for any of his crimes?

7.15 The arrest histories for a sample of convicted felons revealed that,
with ten previous arrests, the probability of a drug arrest was 0.25. If
an offender has been arrested ten times, what is the probability of

a. two drug arrests?

b. five drug arrests?

c. seven drug arrests?

C o m p u t e r  E x e r c i s e s

 

 

consuming. Spreadsheet packages typically include a function that can be

“ ”

Although not quite as flexible as a spread sheet package, it is possible to
compute binomial probabilities in SPSS. It requires the use of the Compute“ ”

To illustrate the computation of binomial probabilities in SPSS, we will 
reproduce the binomial probabilities listed in Table 7.5. To begin, we will 

command (Transform   Compute). l

11 values for your new variable.)

This new variable will have values ranging from 0 to 10 - enter them in order
for ease of interpretation later. (After you enter these data, you should have

create a new data set in SPSS that contains one variable: the number of success. 

The computation of binomial probabilities by hand can be quite tedious and time 
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To compute the probability correctly, you will need to enter three pieces of
information: the number of successes  (i.e., events of interest), the total
number of trials, and the probability of success on a single trial. Another
item that you will need to pay attention to is whether the binomial function
you are using computes a cumulative probability. Throughout this chapter,
we have not computed cumulative probabilities, but rather, what are labeled,
“probability densities” in many spreadsheet packages.

inserted into a cell that will allow for the computation of a binomial probability.
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1. 
2. 

3. 

a. 

b. 

4. 

a. 

b. 

c. 

d. 

To compute the binomial probabilities, use the following steps:

e. 

5. 

1. 
2. 

3. 
combinations: 

In the Numeric Expression  box to the right, you will need to move

right corner of the window.  
Scroll down the list of functions until you find 

Click on the Compute  command.“ ”

probabilites (eg., probability ).“ ”
”“

PDF.BINOM(q,n,p).  This function will compute binomial 
probabilities for any given combination of successes (q), 
trials (n), and probability of success on a single trial (p).
Click on this function name to highlight it. Once you do 

Click on this button to move the function name into the 

box, you will see that q, n, and p have been replaced with question

name in box on the left, then the arrow to move it into the

The value for n  (the second question mark in the

enter the number 10. 

is the probability of success for a single trial. For our

In the Numeric Expression  box, you should now have
something that looks like: PDF.BINOM(VAR0001,10,0.5).
Ensure that there are commas between the variable name, 

commas, you will receive an error message. (VAR0001 is
simply the default name for a variable constructed in SPSS
without the user changing the name of the variable.) 
Click OK  to compute the probabilities and return to the
data window. 

You should now see that a variable has been added to your data file

out of 10 trials. With the exception of rounding differences, these
values are identical to those presented in Table 7.5. 

Problems

worked through at the end of Chapter 7. 

“

Numeric Expression  box.“

“

“

“

”

”

”

”

”
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this, the box with an arrow pointing up will be highlighted.

the parentheses):

function or type the variable name to replace the first
question mark.

example, enter the value 0.5. 

parentheses) is the total number of trials. For our example,

that contains the binomial probabilities for 0 through 10 successes

Verify  the probabilities you calculated for any of the Exercises you

Construct a  table of binomial probabilities for each of the following

In the new window that opens, type in a new variable name to contain

a function from the box labeled “Functions” that appears in the lower

Once you have moved the function name into the “Numeric Expression”

of these items (but do not remove either comma that appears in 

created with values ranging from 0    to10. Click on the variable

The value for “p” (the third question mark in the parentheses)

is the the number of successes - this is the variable that you

number of trials, and probability of a success - without the

Reproduce the tables of binomial probabilities on pages 150 and 151.

The value for “q” (the first question mark in the parentheses)

marks. You  now need to insert the appropriate information for each



a. 
b. 
c. 
d. 
e. 
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Number of trials = 10, probability of success = 0.2. 
Number of trials = 10, probability of success = 0.7. 
Number of trials = 15, probability of success = 0.3. 
Number of trials = 15, probability of success = 0.5. 
Number of trials = 15, probability of success = 0.8. 



Steps in a Statistical Test: 

Using the Binomial Distribution 

to Make Decisions About Hypotheses

Are Assumptions Made About the Population Distribution?

C h a p t e r  e i g h t

S t a t i s t i c a l  a s s u m p t i o n s

S a m p l i n g  d i s t r i b u t i o n

S i g n i f i c a n c e  l e v e l

T e s t  s t a t i s t i c  a n d  d e c i s i o n

What Type of Measurement is Being Used?

What Sampling Method is Being Used?

What are the Hypotheses?

Which Sampling Distribution is Appropriate?

What is the Rejection Region?

Should a One-Tailed or a Two-Tailed Test be Used?

What is the Test Statistic?

How is a Final Decision Made?

Where is It Placed?



IN THE PREVIOUS CHAPTER, you saw how probability theory is used to
identify the observed significance level in a test of statistical significance.
But you cannot simply rely on mathematical calculations to determine
whether to reject the null hypothesis. You must make sure at the outset
that the methods used are appropriate to the problem examined. You
must clearly state the assumptions made. You must define the specific
hypotheses to be tested and the specific significance criteria to be used.
It is best to take a careful step-by-step approach to tests of statistical sig-
nificance. Using this approach, you will be much less likely to make seri-
ous mistakes in developing such tests.

In this chapter, we introduce the basic elements of this step-by-step
approach. To place this approach in context, we illustrate each step with
a specific research problem that can be addressed using the binomial
distribution. Although we use the binomial distribution as an example,
you should not lose sight of the fact that our purpose here is to establish
a general model for presenting tests of statistical significance, which can
be used whichever sampling distribution is chosen.

T h e  P r o b l e m :  T h e  I m p a c t  o f  P r o b l e m - O r i e n t e d  
P o l i c i n g  o n  D i s o r d e r l y  A c t i v i t y  a t  V i o l e n t - C r i m e  H o t  S p o t s

In Jersey City, New Jersey, researchers developed a problem-oriented
policing program directed at violent-crime hot spots.1 Computer map-
ping techniques were used to identify places in the city with a very high
level of violent-crime arrests or emergency calls to the police. Jersey City
police officers, in cooperation with staff of the Rutgers University Center
for Crime Prevention Studies, developed strategies to solve violent-crime

1See Anthony Braga, “Solving Violent Crime Problems: An Evaluation of the Jersey
City Police Department’s Pilot Program to Control Violent Crime Places,” unpublished
dissertation, Rutgers University, Newark, NJ, 1996.
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problems at a sample of 11 places. The strategies followed a problem-
oriented policing (POP) approach, in which police collect a wide variety
of information about each hot spot, analyze that information to identify
the source of the problem, develop tailor-made responses to do some-
thing about the problem, and finally assess whether their approach actu-
ally had an impact.2

The evaluation involved a number of different components. One part
of the research sought to identify whether “disorderly” activity at the hot
spots had declined during the period of the study. For example, the re-
searchers wanted to see whether the number of loiterers or homeless
people had been reduced as a result of the efforts of the police. The
treatment areas were compared to a matched group, or control group, of
similar but untreated violent-crime places. Table 8.1 presents the overall

2Problem-oriented policing is an important new approach to police work formulated
by Herman Goldstein of the University of Wisconsin Law School. See H. Goldstein,
Problem-Oriented Policing (New York: McGraw-Hill, 1990).

Results at Treatment and Control Locations Derived from Observations 
of Disorderly Behavior Before and After Intervention

TRIAL PLACE OUTCOME

1 Journal Square East �
Newport Mall

2 Stegman & Ocean �
Clerk & Carteret

3 Glenwood & JFK �
Journal Square West

4 Bergen & Academy �
Westside & Duncan

5 Westside & Clendenny �
Franklin & Palisade

6 Belmont & Monticello �
MLK & Wade

7 MLK & Atlantic �
Neptune & Ocean

8 MLK & Armstrong �
Ocean & Eastern

9 Westside & Virginia �
JFK & Communipaw

10 Park & Prescott �
Dwight & Bergen

11 Old Bergen & Danforth �
Bramhall & Arlington

Note: Experimental or treatment hot spots are listed in boldface type.
� � Relative improvement in experimental locations
� � Relative improvement in control locations

Table 8 .1
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results of pre- and posttest comparisons of outcomes for the 11 matched
pairs of locations. In 10 of the 11 pairs, the experimental hot spots (those
receiving POP intervention) improved relative to the control locations.

The research question asked by the evaluator was whether the POP
approach has an impact on disorderly activity at violent-crime hot spots.
The statistical problem faced is that the 11 comparisons are only a sample
of such comparisons. What conclusions can the researcher make regard-

A s s u m p t i o n s :  L a y i n g  t h e  F o u n d a t i o n s  
f o r  S t a t i s t i c a l  I n f e r e n c e

The first step in a test of statistical significance is to establish the as-
sumptions on which the test is based. These assumptions form the
foundation of a test. No matter how elegant the statistics used and the
approach taken, if the assumptions on which they are built are not solid,
then the whole structure of the test is brought into question.

Level of Measurement
Our first assumption is related to the type of measurement used. Differ-
ent types of tests of statistical significance demand different levels of
measurement.

Accordingly, it is important to state at the outset the type of measure-
ment required by a test. For the binomial test, which is based on the bi-
nomial distribution, a nominal-level binary measure is required. A binary
measure has only two possible outcomes, as was the case with the coin
toss example in Chapter 7. The type of outcome measure used to evalu-
ate the impact of problem-oriented policing on disorderly activity—
whether the treatment hot spot improved (or got worse) relative to the
control location—fits this assumption. In stating our assumptions (as is
done at the end of this section), we include a specific definition of the
level of measurement required:

Level of Measurement: Nominal binary scale.

Shape of the Population Distribution
The second assumption refers to the shape of the population distribu-
tion. In statistical inference, we are generally concerned with two types
of tests. In the first type—termed parametric tests—we make an as-
sumption about the shape of the population distribution. For example, in
a number of tests we will examine in later chapters, there is a require-

appropriate for our problem is based on the binomial sampling distribution.
question, we use a test of statistical significance. The specific test that is 
ing the larger population of violent-crime hot spots? To answer this 
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ment that for the population to which you infer, the scores on the vari-
able be normally distributed.

The second type of test of statistical significance does not make a spe-
cific assumption regarding the population distribution. These tests are
called nonparametric tests or distribution-free tests. The advantage
of nonparametric tests is that we make fewer assumptions. The disad-
vantage is that nonparametric tests do not allow us to analyze data at
higher levels of measurement. They are generally appropriate only for
nominal and ordinal scales. The binomial test is a nonparametric test. Ac-

Population Distribution: No assumption made.

Sampling Method
The third assumption concerns the sampling method used. When we
conduct a test of statistical significance, we want our sample to be a
good representation of the population from which it is drawn. Put in sta-
tistical terms, we want our study to have high external validity.

Let’s suppose you are interested in attitudes toward the death penalty.
Would a sample of your friends provide an externally valid sample of all
Americans? Clearly not, because a sample of only your friends is not
likely to include age or ethnic or class differences that typify the U.S.
population. Even if we used your friends as a sample of U.S. college stu-
dents, we could still identify threats to the external validity of the study.
Colleges have differing criteria for admission, so it is not likely that one
college will be representative of all colleges. Even as a sample of stu-
dents at your college, your friends may not provide a valid sample. They
may be drawn primarily from a specific year of college or have other
characteristics that make them attractive as friends but also mean that
they are a poor representation of others in the college.

How can we draw a representative sample? The most straightfor-
ward approach is to choose cases at random from the population. This
type of sampling is called random sampling. Random samples are as-
sumed to have high external validity compared with what may be termed
convenience samples. A convenience sample consists of whatever sub-
jects are readily available to the researcher. Your friends form a conve-
nience sample of students at your college or of all college students.

It is important to note that convenience samples are not always bad
samples. For example, if you choose to examine prisoners in one prison on
the assumption that prisoners there provide a cross section of the different
types of prisoners in the United States, you might argue that it is a repre-
sentative sample. However, if you use a convenience sample, such as pris-
oners drawn from a single prison, you must always be wary of potential
threats to external validity. Convenience samples are prone to systematic
biases precisely because they are convenient. The characteristics that make
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them easy for the researcher to define are likely as well to differentiate
them in one way or another from the population the researcher seeks to
study.

Statistical tests of significance generally assume that the researcher has
used a type of random sampling called independent random sampling.
Independent random sampling requires not only that cases be identified at
random, but also that the selection of cases be independent. As discussed
in the previous chapter, two events are statistically independent when the
occurrence of one does not affect the occurrence of the other. In sam-
pling, this means that the choice of one case or group of cases will not
have any impact on the choice of another case or group of cases. This is a
useful assumption in assuring the external validity of a study because it
prevents biases that might be brought into the process of sampling.

For example, suppose you want to select 1,000 prisoners from the
population of all prisoners in the United States. Each time you select a
prisoner for your sample, you use a random method of selection. How-
ever, prison officials have told you that if you select one prisoner from a
cell then you cannot select any other prisoner from that cell. Accord-

In order to ensure independent random sampling, the same popula-

the deck. If we didn’t replace the card, we would influence the likeli-
hood of a specific card being chosen on the next draw from the deck.
For example, if we started with a full deck of 52 cards, the likelihood of
getting the queen of spades would be 1 in 52. However, if we drew, say,
a jack of hearts and didn’t return it to the deck, what would be the likeli-
hood of getting a queen of spades on our next draw? This time we
would have only 51 cards to draw from, so our likelihood would change
to 1 in 51. In order to gain a fully independent random sample, we must
use a method of sampling called sampling with replacement. This
means that we must use the same population each time we select a case.
For every selection, the sampling frame must remain exactly the same. In
this way, we can ensure that the choice of one case cannot have any im-
pact on the choice of another.

Though this method ensures independence, it also means that a par-
ticular case may be selected more than once. For example, suppose you
choose a particular prisoner as case number five in your sample. Be-
cause you must use the same sampling frame each time you select a
case, that prisoner is returned to the sampling frame after selection. Later

ingly, after each selection of a prisoner, you must remove all of his 
cellmates from your sampling frame, or universe of eligible cases. The 
result is that there are now systematic reasons why you might suspect 
that your sample is not representative of the population.

tion of cases must be used in drawing each case for a sample. As we 
discussed in Chapter 7, if we want each draw from a deck of cards to be 
independent, we have to return the card chosen on any specific draw to
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in your study, you might choose that prisoner again. Accordingly, while
sampling with replacement, or returning sampled cases to the sampling
frame after each selection, makes statistical sense, it often does not make
practical sense when you are carrying out research in the real world. If
you are conducting an interview study, for example, independent ran-
dom sampling would allow individuals to be interviewed more than
once. It is likely that subjects would find it strange to be reinterviewed
using the same interview schedule. Moreover, their responses would
likely be influenced by their knowledge of the survey. Similarly, if a sub-
ject or place is chosen twice in a study that involves a specific treatment
or intervention, then that subject or place should be given the treatment
after each selection. Here there is the difficulty that it may be harmful to
provide the treatment more than once.

Even when there are no specific practical barriers to sampling with re-
placement, it is difficult to explain to practitioners or even many re-
searchers why an individual may appear twice in the same sample. As a
result, many, if not most, criminal justice studies do not replace individu-
als in the sampling frame once they have been selected. Although this
represents a formal violation of the assumptions of your test, in most
cases its impact on your test result is negligible. This is because samples
are generally very small relative to populations, and thus in practice
there is little chance of selecting a case more than once even when sam-
pling with replacement. If, however, your sample reaches one-fifth or
more of the size of your population, you may want to include a correc-
tion factor in your test.3

For this test of statistical significance, we assume that researchers in
the Jersey City POP study sampled cases randomly from a large popula-
tion of hot spots during the sample selection month. Because it would
not have been practical to implement treatments more than once at any
site, the researchers did not sample with replacement.

3The correction factor adjusts your test to account for the fact that you have not al-
lowed individuals to be selected from the population more than once. Not including a
correction factor makes it more difficult to reject the null hypothesis. That is, the in-
clusion of a correction factor will make it easier for you to reject the null hypothesis.
One problem criminal justice scholars face in using a correction factor is that they
often want to infer to populations that are beyond their sampling frame. For example,
a study of police patrol at hot spots in a particular city may sample 50 of 200 hot
spots in the city during a certain month. However, researchers may be interested in
making inferences to hot spots generally in the city (not just those that exist in a par-
ticular month) or even to hot spots in other places. For those inferences, it would be
misleading to adjust the test statistic based on the small size of the sampling frame.
For a discussion of how to correct for sampling without replacement, see Paul S. Levy
and Stanley Lemeshow, Sampling of Populations: Methods and Applications (New
York: Wiley, 1991).
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The binomial test, however, like most tests of statistical significance
examined in this book, assumes independent random sampling. Accord-
ingly, in stating our assumptions, it is important to note both the require-
ment for this test and our failure to meet that requirement. Therefore we
state our assumption:

Sampling Method: Independent random sampling (no replacement; sam-
ple is small relative to population).

Throughout this text, we state the assumptions of a test and then place
any violations of assumptions in parentheses. This is good practice, as it
will alert you to the fact that in many studies there are violations of one
type or another of assumptions. Some of these violations are not impor-
tant. For example, not sampling with replacement in this study does not
affect the test outcome because the population of hot spots is assumed
to be very large relative to the sample. However, you will sometimes
find more serious violations of assumptions. In those cases, you will
have to take a more critical view of the results of the test.

It is good practice to define not only the sampling method used but
also the sampling frame of your study. In our example, we can make in-
ferences based on our random sample to the population of hot spots in
Jersey City during the month of sample selection. Accordingly, we state
in our assumptions:

Sampling Frame: Hot spots of violent crime in one month in Jersey
City.

Our sampling frame reminds us of the specific population to which our
sample infers. However, researchers usually want to infer beyond the
specific population identified by their sampling frame. For example, the
population of interest for the POP study is likely to be hot spots through-
out the year, not just those in a specific month. Researchers may even
want to infer to violent-crime hot spots generally, not just those in Jersey
City.

We cannot assume that our sample is a representative sample for
these inferences based on our sampling method, since these populations
did not constitute our sampling frame. However, we can ask whether
our sample is likely to provide valid inferences to those populations. In
the case of hot spots in Jersey City, we would need to question whether
there is any reason to suspect that hot spots chosen in the month of
study were different from those that would be found in other months of
the year. For inferences to the population of hot spots in other locations,
we would have to assume that Jersey City hot spots are similar to those
in other places and would respond similarly to POP interventions. In
making any inference beyond your sampling frame, you must try to
identify all possible threats to external validity.
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The Hypotheses
The final assumptions we make in a test of statistical inference refer to
the hypotheses of our study. As discussed in Chapter 6, hypotheses are
developed from the research questions raised in a project. Hypotheses
must be stated before the researcher collects outcome data for a study. If
hypotheses are stated only after data have been collected and analyzed,
the researcher might be tempted to make changes in the hypotheses that
unfairly affect the tests of statistical significance that are conducted.

As discussed in Chapter 6, the researcher ordinarily begins by defin-
ing the research hypothesis. In the problem-oriented policing study, we
might state our research hypothesis in three different ways:

Hypothesis 1. Incivilities in treatment hot spots decline relative to incivil-
ities in control hot spots after POP intervention.

Hypothesis 2. Incivilities in treatment hot spots increase relative to inci-
vilities in control hot spots after POP intervention.

Hypothesis 3. The level of incivilities in treatment hot spots relative to
incivilities in control hot spots changes after POP intervention.

hypotheses. The first two research hypotheses are directional hypotheses
because they specify the direction, or type of relationship, that is ex-
pected. For example, hypothesis 1 is concerned only with whether the
POP program is successful in reducing incivilities. If the researcher
adopts this hypothesis, then he or she is stating that the statistical test
employed will not be concerned with the second hypothesis—that the
intervention makes matters worse and increases incivilities. The third hy-
pothesis is a nondirectional hypothesis. In this case, the researcher is in-
terested in testing the possibility that the intervention improves hot spots
or makes them worse.

In the POP study, researchers wanted to assess both positive and neg-
ative outcomes. Although they believed that problem-oriented policing
should reduce incivilities at violent-crime hot spots, they did not want to
preclude at the outset a finding that the program actually made matters
worse. Accordingly, they used a nondirectional research hypothesis:
“The level of incivilities in treatment hot spots relative to incivilities in
control hot spots changes after POP intervention.” The null hypothesis is
“The level of incivilities in treatment hot spots does not change relative
to incivilities in control hot spots after POP intervention.”

In practice, the null hypothesis may be stated in terms of probabili-
ties, just as we could state the coin toss hypothesis in the last chapter
in terms of probabilities. In this study, the researchers examined (for
each matched pair of hot spots) whether the hot spot that received the
problem-oriented policing intervention improved or worsened relative to

Recall from Chapter 6 that we distinguish directional from nondirectional
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the control location. The null hypothesis suggests that the treatment and
control hot spots are equally likely to improve. Put in terms of probabili-
ties, there is a 0.50 chance of success (P � 0.50) for the intervention
under the null hypothesis. The research hypothesis represents all other
possible outcomes (P � 0.50). Remember that our hypotheses are state-
ments about the populations examined. Accordingly, in stating the hy-
potheses, we use symbols appropriate for population parameters—in
this case P rather than p. Stating our assumptions, we write

Hypotheses:

H0: The level of incivilities in treatment hot spots does not change rela-
tive to incivilities in control hot spots after POP intervention, P � 0.50.

H1: The level of incivilities in treatment hot spots relative to incivilities in
control hot spots changes after POP intervention, P � 0.50.

Stating All of the Assumptions
Our assumptions may be stated as follows:

Assumptions:

Level of Measurement: Nominal binary scale.

Population Distribution: No assumption made.

Sampling Method: Independent random sampling (no replacement; sam-
ple is small relative to population).

Sampling Frame: Hot spots of violent crime in one month in Jersey City.

Hypotheses:

H0: The level of incivilities in treatment hot spots does not change rela-
tive to incivilities in control hot spots after POP intervention, P � 0.50.

H1: The level of incivilities in treatment hot spots relative to incivilities in
control hot spots changes after POP intervention, P � 0.50.

S e l e c t i n g  a  S a m p l i n g  D i s t r i b u t i o n

In stating our hypotheses, we already noted the specific requirements of
the binomial sampling distribution. Now we must state why we have
chosen the binomial distribution and identify the specific characteristics
of the sampling distribution that will be used to assess the risk of falsely
rejecting the null hypothesis in our problem-oriented policing example.
Choosing a sampling distribution is one of the most important decisions
that researchers make in statistical inference. As we will show in later
chapters, there are a number of different types of sampling distributions.
Moreover, as with the binomial distribution, a single type of sampling
distribution may have different forms depending on the problem 
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Because our measure is nominal and binary (see assumptions), we se-
lected the binomial distribution for our test. The specific distribution that we
use is based on our null hypothesis and the size of our sample. As illus-
trated in Chapter 7, the binomial distribution provides the likelihood of gain-
ing a particular number of successes (heads in the example of the coin toss)
in a fixed number of trials. In order to assess that likelihood, we also need
to know what the probability of a success or failure is on any particular trial.

In our example, there are 11 trials, or 11 matched comparisons. Our
null hypothesis states that the likelihood of a success for any comparison
is 0.50. To build our sampling distribution, we apply the binomial for-
mula to each of the 12 possible outcomes that could be gained in our
study, under the assumption that P � 0.50. This is done in Table 8.2.
The resulting distribution is presented in Table 8.3.

Computation of Sampling Distribution of Success or Failure in 11 Trials

0 successes 1(0.00049) � 0.00049

1 success 11(0.00049) � 0.00537

2 successes 55(0.00049) � 0.02686

3 successes 165(0.00049) � 0.08057

4 successes 330(0.00049) � 0.16113

5 successes 432(0.00049) � 0.22638*

6 successes 432(0.00049) � 0.22638*

7 successes 330(0.00049) � 0.16113

8 successes 165(0.00049) � 0.08057

9 successes 55(0.00049) � 0.02686

10 successes 11(0.00049) � 0.00537

11 successes 1(0.00049) � 0.00049

*Probabilities contain rounding error.
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Table 8.2

research problem examined, then the conclusion reached will be suspect.
examined. If the sampling distribution used is inappropriate for the 
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S i g n i f i c a n c e  L e v e l  a n d  R e j e c t i o n  R e g i o n

Having selected the distribution that will be used to assess Type I error,
we are ready to define the outcomes that will lead us to reject the null
hypothesis. Our first step is to choose the significance level of our test.
As described in Chapter 6, the significance level of a test is the amount
of Type I error we are willing to risk in rejecting the null hypothesis. By
convention, criminal justice researchers use a 5% significance threshold.
But, as discussed in Chapter 6, we should consider at the outset whether
a more lenient or more stringent significance level is appropriate for our
study.

As researchers in the problem-oriented policing study do not present
any special reason for altering conventionally accepted levels of signifi-
cance, we will set a 5% significance threshold for our test of statistical
significance. As noted in Chapter 6, in articles and books the significance
level is often expressed by the Greek letter �. For our test, � � 0.05.

The significance level defines the Type I error we are willing to risk in
our test. But it does not tell us directly what outcomes in our sample
would lead us to reject the null hypothesis. For this, we need to turn to
our sampling distribution and define an area within it called a rejection
region. The rejection region of a test is the area in the sampling distribu-
tion that includes those outcomes that would lead to rejection of the null
hypothesis. If the observed significance level of a test, or the p value of
the test, falls within the rejection region, then the researcher rejects the
null hypothesis and concludes that the outcome is statistically significant.
The area covered by the rejection region is equivalent to the significance
level of a test. The point at which the rejection region begins is called
the critical value because it is the point at which the test becomes criti-
cal and leads the researcher to reject the null hypothesis.

Sampling Distribution of Success or Failure in 11 Trials

OUTCOME OF TRIALS OVERALL PROBABILITY

0 successes 0.00049
1 success 0.00537
2 successes 0.02686
3 successes 0.08057
4 successes 0.16113
5 successes 0.22559
6 successes 0.22559
7 successes 0.16113
8 successes 0.08057
9 successes 0.02686

10 successes 0.00537
11 successes 0.00049

Table 8.3
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In the problem-oriented policing example, the rejection region in-
cludes 5% of the sampling distribution. Our initial problem is to define
which 5%. Should we define the rejection region to be in the middle of
the distribution represented in Table 8.3—for example, at 5 or 6 suc-
cesses in 11 comparisons? Or should we look only at the extreme values
on the positive side of the distribution, where there are mostly successes?
Or should we include the area on the negative side of the distribution,
where there are no successes?

Choosing a One-Tailed or a Two-Tailed Rejection Region
The answer to our questions comes in part from common sense and in
part from our assumptions. It just would not make sense to place the re-
jection region in the middle of the sampling distribution. We are trying
to decide whether the outcomes observed in our sample are very differ-
ent from the outcomes that would be expected if problem-oriented
policing had no impact. Putting the rejection region in the middle of the
distribution would place it among those outcomes that are most likely
under the null hypothesis. Clearly, we want the rejection region to be on
the edges of the distribution, or in what statisticians call the tails of the
distribution. These are the unlikely events—those that we would not
expect if the null hypothesis were true. As indicated in our sampling dis-
tribution in Table 8.3, we would expect to get 11 successes in a row in
about 5 of 10,000 samples if the program had no impact on the popula-
tion. This is a very unlikely event and one that would lead us to reject
the null hypothesis.

But zero successes is also an unlikely event, with the same probability
of occurrence as 11 successes. Should we include only one tail of the dis-
tribution in our rejection region—the tail that assesses whether the pro-
gram was a success? Or should we also include the opposite side of the
distribution, which suggests that the program led to more disorder? Our
answer is drawn from the research hypothesis that we stated in our as-
sumptions. We chose a nondirectional research hypothesis, meaning that
we are interested in evaluating both the possibility that the experimental
sites improved relative to the control hot spots and the potential outcome
that they got worse relative to the control hot spots. In terms of the sam-
pling distribution, our research hypothesis suggests that the rejection re-
gion for our test should be split between both tails of the distribution.

This type of test is called a two-tailed test of significance. If we had
stated a directional research hypothesis, we would be concerned with out-
comes on only one side of the sampling distribution. Such a test is called a
one-tailed test of significance. For example, if our research hypothesis
were that incivilities in treatment hot spots decrease relative to incivilities
in control hot spots after POP intervention, we would be concerned only
with outcomes on the side of the distribution that shows program success.

173



C H A P T E R E I G H T :  S T E P S I N A S T A T I S T I C A L T E S T

The choice of a one-tailed or two-tailed test of statistical significance
has important implications for the types of study outcomes that will lead
to rejection of the null hypothesis. Because our test is a two-tailed test,
the rejection region must be divided between both sides of the sampling
distribution. This means in practice that the total significance level of
0.05 must be divided in half. Half of the rejection region, or 0.025, is
found in the tail associated with success of the program, and half, or
0.025, in the tail associated with failure.

What outcomes would lead to rejection of the null hypothesis in our
example? When we add 0 and 1 successes or 10 and 11 successes, we
gain a probability value of 0.00586 (in each tail of the distribution,
0.00049 � 0.00537). This is less than the 0.025 value that we have de-
fined as the rejection region for each tail of our test. Accordingly, an out-
come of 0, 1, 10 or 11 would lead to an observed significance level less
than the significance level of 0.05 that we have set, and thus we would
reject the null hypothesis (p � 0.05). However, including 2 or 9 suc-
cesses, each of which has a probability value of 0.027, increases the area
of the distribution to 0.066. This area is larger than our rejection region.
An outcome of 9 or 2 would result in an observed significance level
greater than 0.05, and thus we would fail to reject the null hypothesis.
Figure 8.1 presents the binomial probabilities for our example and high-
lights the two tails of the distribution that are used to test our nondirec-
tional hypothesis.
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But what if we state a directional research hypothesis? How does
this affect our rejection region? In this case, we calculate the area of the
rejection region on only one side of the sampling distribution. Parts a
and b of Figure 8.2 present the binomial probabilities for our two dis-
tinct directional hypotheses and highlight the tail of the distribution
that is potentially of interest. For example, if our research hypothesis is
that incivilities in treatment hot spots decline relative to incivilities in
control hot spots after POP intervention, we look at outcomes only on
the tail of the distribution that shows program success (Figure 8.2b).
Because we are concerned only about these outcomes, all 5% of the re-
jection region is placed in this one tail of the distribution. We do not
have to split the area of the rejection region. In this example, outcomes
of 9, 10, and 11 successes are all within the rejection region, because
adding their probabilities results in a value of 0.033 (0.00049 � 0.00537
� 0.02686). An outcome of 9, 10, or 11 results in an observed signifi-
cance level that is less than the 5% significance threshold of our test
(see Figure 8.2b). Adding the probability of 8 successes (or 0.08057)
puts us above that threshold. If our research hypothesis is that incivili-
ties increase in treatment hot spots relative to control hot spots, then
we look at outcomes only on the opposite tail of the distribution (Fig-
ure 8.2a). In this case, outcomes of 0, 1, and 2 successes lead us to re-
ject the null hypothesis.

This example reinforces a rule described earlier: It is important to
state the research hypothesis before you gain study outcomes. What if
the problem-oriented policing hot spots improved relative to control
locations in nine comparisons? With a one-tailed test, the result would
fall within our rejection region and lead to rejection of the null hypoth-
esis. With a two-tailed test, the result would be outside our rejection re-
gion. The choice of a directional or nondirectional research hypothesis
can have an important impact on our conclusions. Merely by stating
the research hypothesis a bit differently, we can change the outcome of
the test.

A one-tailed test makes it easier to reject the null hypothesis based on
outcomes on one side of a sampling distribution because it precludes re-
jection of the null hypothesis based on outcomes on the opposite side.
The price of a larger rejection region in one-tail of the sampling distribu-
tion is no rejection region in the other tail. Similarly, the price of being
able to examine outcomes on both sides of the distribution, as is the
case with a two-tailed test, is that the rejection region will be smaller on
each side. The benefit is that you can assess results in both directions. If
you already know the outcomes of a test, you might be tempted to ad-
just the direction of the test according to the observed outcomes of a
study. Taking such an approach unfairly adjusts the rejection region to
your advantage.
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(b) Focus on Program Successes

(a) Focus on Program Failures

176



M A K I N G A D E C I S I O N

T h e  T e s t  S t a t i s t i c

In most tests of statistical significance, it is necessary to convert the spe-
cific outcome of a study to a test statistic. A test statistic expresses the
value of your outcome in units of the sampling distribution employed in
your test. For the binomial distribution, the units are simply the number
of successes in the total number of trials. The test statistic for our POP
intervention example is 10.

M a k i n g  a  D e c i s i o n

The final step in a test of statistical significance is making a decision. If
you have laid out all of the steps discussed above, then your choice
should be easy. If your test statistic falls within the rejection region, then
you reject the null hypothesis. This means in practice that the observed
significance level of your test is less than the criterion significance level
that you set when you defined the significance level and rejection region
for your test. If the test statistic does not fall in the rejection region, you
cannot reject the null hypothesis. In our example, the test statistic (10)
does fall in the rejection region, which includes 0, 1, 10, and 11 suc-
cesses. In this case, our observed significance level is less than the 0.05
threshold we set earlier. Our decision, then, is to reject the null hypothe-
sis that incivilities in treatment hot spots do not change relative to incivil-
ities in control hot spots after POP intervention. We conclude that the
differences observed are statistically significant.

But what does this mean? When we say that a result is statistically
significant, we are not claiming that it is substantively important. The
importance of a result depends on such issues as whether the research
affects real-life criminal justice decision making or whether it con-
tributes new knowledge to a specific area of criminology or criminal
justice. We also are not stating that we are certain that the null hypothe-
sis is untrue for the population. Without knowledge of the population
parameter, we cannot answer this question with certainty. Statistical sig-
nificance has a very specific interpretation. The fact that an outcome is
statistically significant means that it falls within the rejection region of
your test. This happens when the observed significance level for a test
is smaller than the significance criterion, or significance level, set at the
outset of the test. A statistically significant result is one that is unlikely if
the null hypothesis is true for the population. Whenever we make a
statement that a result is statistically significant, we do it with the recog-
nition that we are risking a certain level of Type I error. In this test, as
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in most tests of statistical significance in criminal justice, we were will-
ing to take a 5% risk of falsely rejecting the null hypothesis.

C h a p t e r  S u m m a r y

The first stage in a test of statistical significance is to state one’s as-
sumptions. The first assumption is about the type of measurement
used. The second assumption concerns the shape of the population
distribution. A parametric test is one that makes assumptions about
the shape of the population distribution. A nonparametric test
makes no such assumptions. Although nonparametric tests have the
advantage of making fewer assumptions, they are generally used only
for nominal and ordinal scales. The third assumption relates to the
sampling method. A random sample is generally considered to be

pling, it is in theory necessary to return the subject to the sampling
frame after selection. Sampling with replacement creates practical
problems, however, and is generally not required if the sample is
small relative to the population. The fourth assumption states the null
and research hypotheses. Care should be taken in framing them and in
deciding whether the research hypothesis should be directional.

The second stage is to select an appropriate sampling distribution.
The third stage is to select a significance level. The significance level
determines the size of the rejection region and the location of the
critical values of the test. If a test result falls within the rejection re-
gion, the researcher is prepared to reject the null hypothesis. This
means that the observed significance level of the test is less than the
significance level the researcher set at the outset of the test. If the hy-
potheses are directional, then the researcher will be concerned only
with one tail of the distribution, and the entire rejection region will
be placed on one side of the distribution (a one-tailed test of signifi-
cance). If the hypotheses are nondirectional, then the researcher is
concerned with results in both tails, and the rejection region will be
divided equally between both sides of the distribution (a two-tailed
test of significance).

The fourth stage involves calculating a test statistic. The study re-
sult is now converted into the units of the sampling distribution. Fi-
nally, a decision is made: The null hypothesis will be rejected if the
test statistic falls within the rejection region. When such a decision can
be made, the results are said to be statistically significant.

accepted form of sampling. To ensure the independence of the sam-

more representative, or to have greater external validity, than a 
convenience sample. Independent random sampling is the most 
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assumptions Statements that identify the
requirements and characteristics of a test of
statistical significance. These are the foun-
dations on which the rest of the test is built.

convenience sample A sample chosen not
at random, but according to criteria of expe-
dience or accessibility to the researcher.

critical value The point at which the re-
jection region begins.

distribution-free tests Another name for
nonparametric tests.

external validity The extent to which a
study sample is reflective of the population
from which it is drawn. A study is said to
have high external validity when the sam-
ple used is representative of the population
to which inferences are made.

independent random sampling A form
of random sampling in which the fact that
one subject is drawn from a population in
no way affects the probability of drawing
any other subject from that population.

nonparametric tests Tests of statistical
significance that make no assumptions as
to the shape of the population distribution.

one-tailed test of significance A test of
statistical significance in which the region
for rejecting the null hypothesis falls on
only one side of the sampling distribution.
One-tailed tests are based on directional re-
search hypotheses.

parametric tests Tests of statistical signifi-
cance that make assumptions as to the
shape of the population distribution.

random sampling Drawing samples from
the population in a manner that ensures
every individual in that population an
equal chance of being selected.

rejection region The area of a sampling
distribution containing the test statistic val-
ues that will cause the researcher to reject
the null hypothesis.

representative sample A sample that
reflects the population from which it is
drawn.

sampling frame The universe of eligible
cases from which a sample is drawn.

sampling with replacement A sampling
method in which individuals in a sample
are returned to the sampling frame after
they have been selected. This raises the
possibility that certain individuals in a pop-
ulation may appear in a sample more than
once.

statistically significant Describing a test
statistic that falls within the rejection region
defined by the researcher. When this oc-
curs, the researcher is prepared to reject the
null hypothesis and state that the outcome
or relationship is statistically significant.

tails of the distribution The extremes on
the sides of a sampling distribution. The
events represented by the tails of a sam-
pling distribution are those deemed least
likely to occur if the null hypothesis is true
for the population.

test statistic The outcome of the study,
expressed in units of the sampling distribu-
tion. A test statistic that falls within the re-
jection region will lead the researcher to re-
ject the null hypothesis.

two-tailed test of significance A test of
statistical significance in which the region
for rejecting the null hypothesis falls on
both sides of the sampling distribution.
Two-tailed tests are based on nondirec-
tional research hypotheses.

K e y  T e r m s
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E x e r c i s e s

8.1 Answer the following conceptual questions:

a. Is it better to have more or fewer assumptions at the beginning of a
test of statistical significance? Explain your answer.

b. Why is it important to state all of the assumptions at the outset of
the test?

c. In what sense can stating the null and research hypotheses be seen
as making assumptions?

8.2 Gatley University is an elite university of 1,000 students. Nadia, a stu-
dent studying Chinese at the university, wishes to determine the aver-
age IQ of students at Gatley. She has decided that her sample size will
be 50, and she is considering several different sampling methods. For
each method, state the sampling frame and discuss whether the sam-
pling method is random and whether it is independent.

a. Nadia chooses 50 names at random from the list of language stu-
dents at the university.

b. Nadia asks 50 of her acquaintances at the university if they would
mind taking an IQ test.

c. Nadia chooses the first two students from the alphabetical list of
each of the 25 university departments.

d. Nadia takes all 1,000 names and puts them into a hat. She draws
out a name, writes it down, and then puts it back in the hat and
draws again. This procedure is repeated 50 times.

8.3 Hale Prison is renowned for its poor internal discipline. The new
prison governor wants to tackle this problem and decides to investi-
gate whether removing prisoners’ visiting privileges will act as a deter-
rent against future misbehaving. From 100 prisoners who recently
took part in a violent prison riot, he selects the 25 inmates with the
worst disciplinary records, removes their visiting privileges, and begins
to monitor their progress relative to the others.

a. Does this method meet the criteria of independent random
sampling?

b. Is independent sampling possible in this case?

c. Describe a more appropriate sampling method.

8.4 For each of the following hypotheses, state whether a one-tailed or a
two-tailed test of statistical significance would be appropriate. In each
case, explain your choice.

a. H1: Citizens over the age of 50 are more likely to be the victims of
assault than citizens under the age of 50.
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b. H1: Children raised by adopted parents have rates of delinquency
different from those of children raised by their biological parents.

c. H1: The experience of imprisonment has an impact on the chances
of an ex-convict reoffending.

d. H1: Women are more likely than men to support increased sentences
for rapists.

e. H1: Persons who are not victims of assault have lower levels of
anger than persons who have been victims of assault.

f. H1: White offenders are less likely to be sentenced to prison than
Hispanic offenders.

g. H1: Teenagers have rates of crime that are different from adult rates
of crime.

h. H1: Defendants charged with property crimes have different rates of
pretrial misconduct than defendants charged with violent crimes.

i. H1: Male defendants are more likely to be held on bail than female
defendants.

j. H1: Women are more supportive of capital punishment than men.

k. H1: States with higher unemployment rates have higher rates of
property crime.

l. H1: The level of poverty in a neighborhood affects the neighbor-
hood’s crime rate.

m. H1: Democrats are less supportive of cutting taxes than Republicans.

n. H1: Graduates from private law schools are more likely to become
federal judges than graduates from state law schools.

8.5 In Chapter 7, we constructed a binomial distribution showing the
chances of success and failure for ten tosses of a fair coin. The distri-
bution was as follows:

0 heads  0.001

1 head 0.010

2 heads  0.044

3 heads  0.118

4 heads  0.206

5 heads  0.247

6 heads  0.206

7 heads  0.118

8 heads  0.044

9 heads  0.010

10 heads  0.001
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Consider the following alternative hypotheses:

Alternative 1: H0: The coin is fair.
H1: The coin is biased.

Alternative 2: H0: The coin is fair.
H1: The coin is biased in favor of heads.

a. Would a one-tailed or a two-tailed test be more appropriate for a
researcher who chose alternative 1? Explain why.

b. For a sequence of ten throws, what results would cause a re-
searcher operating under the hypotheses listed under alternative 1
to reject the null hypothesis at a significance level of 5%?

c. Would a one-tailed or a two-tailed test be more appropriate for a
researcher who chose alternative 2? Explain why.

d. For a sequence of ten throws, what results would cause a re-
searcher operating under the hypotheses listed under alternative 2
to reject the null hypothesis at a significance level of 5%?

8.6 Use the following binomial distribution showing the chances of suc-
cess and failure for 12 trials.

Number of Successes Probability

0 successes 0.00118
1 success 0.01065
2 successes 0.04418
3 successes 0.11110
4 successes 0.18857
5 successes 0.22761
6 successes 0.20032
7 successes 0.12953
8 successes 0.06107
9 successes 0.02048

10 successes 0.00463
11 successes 0.00064
12 successes 0.00004

Using a significance level of 0.05, what outcomes would lead you to
reject the null hypothesis for each of the following pairs of hypotheses?

a. H0: P � 0.50
H1: P � 0.50

b. H0: P � 0.50
H1: P � 0.50
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c. H0: P � 0.50
H1: P � 0.50

d. If you changed the significance level to 0.01, how would your an-
swers to parts a, b, and c change?

8.7 Use the following binomial distribution showing the chances of suc-
cess and failure for 15 trials.

Number of Successes Probability

0 successes 0.00000
1 success 0.00000
2 successes 0.00001
3 successes 0.00006
4 successes 0.00042
5 successes 0.00228
6 successes 0.00930
7 successes 0.02928
8 successes 0.07168
9 successes 0.13650

10 successes 0.20051
11 successes 0.22313
12 successes 0.18210
13 successes 0.10288
14 successes 0.03598
15 successes 0.00587

Using a significance level of 0.05, what outcomes would lead you to
reject the null hypothesis for each of the following pairs of hypotheses?

a. H0: P � 0.50
H1: P � 0.50

b. H0: P � 0.50
H1: P � 0.50

c. H0: P � 0.50
H1: P � 0.50

d. If you changed the significance level to 0.01, how would your an-
swers to parts a, b, and c change?

8.8 Locate a research article in a recent issue of a criminology or criminal
justice journal.

a. State the research hypotheses tested by the researcher(s).

b. Describe the sampling method, the sample, and the sampling frame
used by the researcher(s).
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C o m p u t e r  E x e r c i s e s
The “Binomial” command (Analyze l Nonparametric Tests l Binomial)
will use a two-tailed test to calculate an observed significance level for a bi-
nary variable (e.g., success vs. failure). The default probability in the “Bino-
mial” command is p � 0.50, meaning that this command tests the following
hypotheses:

H0: P � 0.50
H1: P � 0.50

After you execute the “Binomial” command, the window that appears will
have a list of variables in the box on the left. Simply move the names of the
variables of interest into the box on the right side of this window. Click on
“OK” to compute the results.

To try out the “Binomial” command, open the data file ex_8_1.sav. This
small data file contains the data from Table 8.1 in the text. Relative de-
creases in postintervention crime are indicated by a value of 1, and relative
increases in postintervention crime are indicated by a value of 0. Execute the
“Binomial” command for this variable.

In the output window, you will be presented with a table of results that
indicates the proportion of cases in each category and the observed signifi-
cance level (labeled “Exact Significance” in the table). You will see from this
output window that the observed significance level is 0.012, which is identi-

1. The director of a special drug treatment program claims to have found
a cure to drug addiction. As supporting evidence, the director pro-
duces information on a random sample of 13 former clients who were
followed for 12 months after completing the program. Here is how the
director classified each former client:

Success, Failure, Success, Success, Success, Success, Success,
Failure, Success, Success, Failure, Success, Success

Enter these data into SPSS.

a. State all the assumptions of the test.

b. What is the test statistic?

c. What decision can be made about the null hypothesis? (Assume the
significance level is 0.05.)

d. Can the director conclude that the program is effective? Explain why.

2. A group of researchers wanted to replicate previous research on hot
spot interventions in another city, using a sample of 25 hot spots.
When comparing postintervention crime levels, they classified the 25
locations as follows:

Decrease, Decrease, Increase, Decrease, Decrease, Increase, Increase,
Decrease, Decrease, Decrease, Decrease, Decrease, Decrease, 
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Decrease, Decrease, Increase, Increase, Decrease, Decrease, Decrease,
Decrease, Decrease, Increase, Decrease, Decrease

Enter these data into SPSS.

a. State all the assumptions of the test.

b. What is the test statistic?

c. What decision can be made about the null hypothesis? (Assume the
significance level is 0.05.)

d. Did this study show a postintervention change in crime?

e. If the significance level had been set at 0.01, would the researchers
have come to the same conclusion? Explain why.
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THE BINOMIAL TEST provides a good introduction to the problem of sta-
tistical inference because it examines relatively simple statistical deci-
sions. Using the binomial test, we illustrated how statisticians build a
sampling distribution from probabilities. But the binomial distribution
can be applied only to a single binary variable. In this chapter, we look
at a more commonly used nonparametric test of statistical significance
for nominal-level measures: chi-square. The chi-square test allows the re-
searcher to examine multicategory nominal-level variables as well as the
relationship between nominal-level measures.

We begin our discussion of chi-square with an example similar to the
one used to introduce the binomial distribution in Chapter 7. In this
case, we examine the problem of a fair roll of a die. We then turn to ap-
plications of the chi-square test in criminal justice.

T e s t i n g  H y p o t h e s e s  C o n c e r n i n g  t h e  R o l l  o f  a  D i e

In Chapter 7, we examined how you might make a decision about
whether to challenge the fairness of a coin used to decide who would
serve first in a weekly volleyball match. But what if you had the same
question regarding a die used in a friendly game of chance at a local
club? Each week, you and a few friends go down to the club and play a
game of chance that involves the toss of a die. Let’s say that the house
(the club) wins whenever you roll a two or a six. You win whenever
you roll a three or a four, and no one wins when you roll a one or a
five. Over the month, you have played the game 60 times. Of the 60 rolls
of the die, you have lost 24, rolling six 20 times and rolling two 4 times
(see Table 9.1). You have won 10 times in total, rolling three 6 times and
rolling four 4 times. The remaining 26 rolls of the die were split, with 16
ones and 10 fives.
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As in the case of the coin toss, you and your friends have begun to be
suspicious. Does it make sense that there should be such an uneven split
in the outcomes of the game if the die is fair? Should you raise this issue
with the club and suggest that they change their die? You don’t want to
appear to be a sore sport. Nonetheless, if the distribution of rolls of the
die that you observed is very unlikely given a fair die, you would be
willing to make a protest.

The Chi-Square Distribution
You cannot use the binomial distribution to assess the fairness of the die
because the binomial distribution assumes that there are only two poten-
tial outcomes for each event—for example, a head or tail on each toss of
a coin. For the die, there are six potential outcomes: a roll of one, two,
three, four, five, or six. In such cases, you can make use of another sam-

2

ducted, the chi-square distribution varies from problem to problem.
However, the chi-square distribution varies not according to the number
of trials that are conducted but according to the number of degrees of
freedom (df) associated with a test. The number of degrees of freedom
refers to how much a mathematical operation is free to vary, or take on
any value, after an agreed-upon set of limitations has been imposed.

In the chi-square distribution, these limitations are associated with
the number of categories, or potential outcomes, examined. To define
the degrees of freedom of a chi-square test, we ask how many cate-
gories would have to be known for us to predict the remaining cate-
gories with certainty. For example, if we know that there are 60 rolls of
the die and we also know the precise number of events that fall in five
of the six categories, we will be able to predict the sixth category sim-
ply by subtracting from the total number of events (60) the number in
the five known categories (see Table 9.2). If two categories are blank,
we can predict the total of both, but not the exact split between them.
Accordingly, the number of degrees of freedom for this example is 5.
Once we know the number of events or observations in five categories,

Frequency Distribution for 60 Rolls of a Die

1 No winner 16
2 You lose 4
3 You win 6
4 You win 4
5 No winner 10
6 You lose 20

60

Table 9.1

pling  distribution, called  the chi-square (� ) distribution. Like the 
binomial distribution, which varies depending on the number of trials con-
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we can predict the number in the sixth with certainty. More generally,
you can identify the degrees of freedom for a one-variable chi-square
distribution using the equation df � k � 1, where k equals the number
of categories in your measure (for our example, 6 � 1 � 5).

Figure 9.1 shows how chi-square distributions vary according to the
number of degrees of freedom. The height of the distribution represents
the proportion of cases found at any specific value of the chi-square
statistic. As the number of degrees of freedom grows, the height of the
chi-square distribution decreases, with a longer and longer tail to the
right. This means that the proportion of cases found above higher values
of the chi-square statistic grows as the number of degrees of freedom in-
creases. To understand what this means substantively, as well as how the
chi-square distribution is used in making decisions about hypotheses, it
is important to see how the chi-square statistic is calculated.

Frequency Distribution for 60 Rolls of a Die 
with Information Missing

1 No winner 16
2 You lose 4
3 You win 6
4 You win 4
5 No winner 10
6 You lose ?

60

Frequency of category 6 � (total frequency) � (sum of categories 1 to 5)
20 � 60 � 40

Table 9.2

Fr
eq

ue
nc

y

Values of χ2

df = 1

df = 2
df = 6

df = 15

Chi-Square Distributions for Various Degrees of FreedomFigure 9.1

189

�Total ( ) 



C H A P T E R N I N E :  C H I - S Q U A R E

Calculating the Chi-Square Statistic
The formula for the chi-square statistic is presented in Equation 9.1.

Equation 9.1

The summation symbol in the body of the equation has i � 1 below it
and k above it. This means that we sum the quantity that follows the
summation symbol for each category from the first to the k th, or last,
category. Since there are six categories in our example, we will have to
carry out the same calculation six times, once for each of the six poten-
tial outcomes of the roll of a die.

The quantity that follows the summation symbol includes two sym-
bols, fo and fe. The symbol fo represents the frequency of the events ob-
served in a category, or the observed frequencies. For example, in 20
of the 60 trials, a six was rolled (see Table 9.1). The observed frequency
for a roll of six is 20. The symbol fe represents the expected frequency
of a category. The expected frequencies are ordinarily defined by the
null hypothesis. In our example, they represent the number of events
that would be expected in each category in the long run if the die were
fair. Because a fair die is one for which there is an equal chance of ob-
taining any of the six potential outcomes, we divide the 60 observations
evenly across the six categories. This leads to an expected frequency of
10 for each potential outcome. Table 9.3 shows the expected and ob-
served frequencies for our example.

To calculate the chi-square statistic, Equation 9.1 tells us first to sub-
tract the expected frequency from the observed frequency in each cate-
gory. We then square the result and divide that quantity by the expected
frequency of the category. For example, for a roll of six, we subtract 10
(the expected frequency) from 20 (the observed frequency). We then
square that quantity (to get 100) and divide the result by 10. This gives
us 10 for a roll of six. After carrying out this computation for each cate-
gory, as is done in Table 9.4, we add up the results for all six categories

�2 � �
k

i�1
 
( fo � fe)

2

fe

Expected and Observed Frequencies for 60 Rolls of a Fair Die

fe fo

1 10 16
2 10 4
3 10 6
4 10 4
5 10 10
6 10 20

60 60

Table 9.3
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to obtain the total chi-square statistic. The chi-square statistic for this ex-
ample is 22.4.

The chi-square statistic measures how much the observed distribution
differs from that expected under the null hypothesis. If the observed fre-
quencies are similar to the expected frequencies, the chi-square statistic
is small. If the observed frequencies are the same as the expected fre-
quencies, the chi-square statistic equals 0. The more the observed fre-
quencies differ from the expected frequencies, the larger the chi-square
statistic will be. What does this mean in terms of making a decision
about the fairness of the die? To find out, we have to turn to a table of
probabilities associated with the chi-square distribution.

Linking the Chi-Square Statistic to Probabilities: The Chi-Square Table
In Chapters 7 and 8, we used the binomial formula to calculate the prob-
ability associated with each of the possible outcomes in our sample. For
other tests of statistical significance, including chi-square, we can take
advantage of already calculated probability distributions. Appendix 2
presents a table of probabilities associated with chi-square distributions
with degrees of freedom from 1 to 30. The chi-square table does not give
us the probability associated with every possible outcome, but rather
provides probabilities and then lists the chi-square statistics associated
with them.

As illustrated in the chi-square table in Appendix 2, a larger chi-
square statistic is associated with a smaller significance level, or � value.
For example, under one degree of freedom, a statistic of 2.706 is associ-
ated with a significance level of 0.10, a statistic of 3.841 with an � value
of 0.05, and a statistic of 10.827 with an � value of 0.001. This also
means that the larger the chi-square statistic obtained in a test, the less
likely it is that the observed distribution is drawn from the expected dis-
tribution. This logic makes good common sense. For our example of the
roll of a die, it is reasonable to become more suspicious about the fair-
ness of the die as the number of events in the different categories

Computation of Chi-Square for 60 Rolls of a Die

OUTCOME A fo fe (fo � fe) (fo � fe)2

1 16 10 6 36 3.6
2 4 10 �6 36 3.6
3 6 10 �4 16 1.6
4 4 10 �6 36 3.6
5 10 10 0 0 0
6 20 10 10 100 10.0

� � 22.4

(fo � fe)2

fe

Table 9.4
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becomes more uneven. If we expect 10 events in each category and ac-
tually get one with 20, one with 16, and two others with only 4, this
should begin to make us suspicious. If one or two categories have 25
cases and two or three have none, it seems even more likely that the die
is not a fair one. But if each category has about 10 cases, which is to be
expected in the long run with 60 rolls of a fair die, both common sense
and chi-square give us little reason to suspect a biased die.

Notice as well in Appendix 2 that as the number of degrees of free-
dom gets larger, a larger chi-square statistic is needed to arrive at the
same probability value. For example, with one degree of freedom, a chi-
square statistic of 3.841 is associated with an � value of 0.05. With 30 de-
grees of freedom, a statistic of 43.773 is needed to achieve the same
threshold. This reflects the difference in the shape of chi-square distribu-
tions with different degrees of freedom and makes good sense if you
consider how the chi-square statistic is calculated. A separate addition is
made to the chi-square statistic for each possible category. Accordingly,
it makes sense to demand a larger statistic as the number of categories in
the test increases.

What about our decision regarding the roll of the die? Looking at Ap-
pendix 2, we can see that with five degrees of freedom a chi-square sta-
tistic of 11.070 is associated with a significance level of 0.05. This means
that in the long run we would expect to obtain a chi-square statistic of
11.070 in only 5 in 100 samples if the die is fair. In fact, we obtained a
chi-square statistic of 22.4. This number is even larger than that needed
for a significance level of 0.001. Accordingly, the observed significance
level for this test is less than 0.001 ( p � 0.001). If the die were fair, the
probability of getting a distribution like the one observed in our 60 rolls
of a die would be less than 1 in 1,000. Given this result, we would likely
come to the conclusion that the die was not a fair one and call for the
club to use a new one.

A Substantive Example: The Relationship Between Assault 
Victims and Offenders
We can illustrate the chi-square test for a single variable by considering
the responses from a random sample survey of Illinois residents.1 One of
the primary purposes of the survey was to examine the effect of victim-
ization on the physical and mental health of adults. Each respondent was
asked about a variety of possible victimization experiences. When the
person claimed to have experienced a crime, a series of follow-up ques-
tions were asked about the circumstances of the event. Table 9.5 pre-
sents the frequency distribution of the responses to a question about the

1See Chester L. Britt, “Health Consequences of Criminal Victimization,” International
Review of Victimology 8 (2001): 63–73 for a description of the study.
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relationship between the victim and the offender for those persons who
claimed to have been assaulted.

A simple research question using these data might focus on whether
the victim-offender relationship was unevenly distributed among the
population of assault victims. To answer our research question, we fol-
low the form of a statistical test introduced in Chapter 8.

We begin by stating the assumptions of our chi-square test. The level of
measurement required for chi-square is nominal. We make no specific as-
sumptions regarding the shape of the population distribution, as the chi-
square test is a nonparametric test of statistical significance. Although the
chi-square test ordinarily requires a fully independent random sample, this
sample was selected without replacement.2 This is not a serious violation
of our assumptions because the sample is very small relative to the popu-
lation of interest. Note that our null hypothesis is that the victim-offender
relationship in the population is evenly or randomly distributed across the
categories examined. The research hypothesis is that the victim-offender
relationship is not randomly or evenly distributed in the population.

Assumptions:

Level of Measurement: Nominal scale.

Population Distribution: No assumption made.

Sampling Method: Independent random sampling (no replacement; sam-
ple is small relative to population).

Sampling Frame: Persons aged 18 and over in the state of Illinois.

Hypotheses:

H0: The type of victim-offender relationship for assault victims is ran-
domly distributed.

H1: The type of victim-offender relationship for assault victims is not ran-
domly distributed.

Relationship Between Assault Victim and Offender

CATEGORY FREQUENCY (N )

Stranger 166
Acquaintance 61
Friend 35
Boyfriend/girlfriend 38
Spouse 66
Other relative 44
Total (�) 410

Table 9.5

2There are certain specific situations in which the chi-square test does not require
sampling with replacement; see B. S. Everitt, The Analysis of Contingency Tables (Lon-
don: Chapman and Hall, 1997).
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The Sampling Distribution Since we are analyzing the distribution of
cases for a nominal variable, the chi-square distribution provides an ap-
propriate means of assessing whether the observations are randomly dis-
tributed across the six categories of victim-offender relationships. For a
single nominal variable, the number of degrees of freedom for the chi-
square test is df � k � 1 � 6 � 1 � 5.

Significance Level and Rejection Region Since we have no reason to im-
pose a stricter or more lenient level of statistical significance on our analy-
sis, we will use a significance level (�) of 0.05. Given that the number of
degrees of freedom associated with this chi-square test is 5 and the signifi-
cance level is 0.05, we see from Appendix 2 that the corresponding critical
value of the chi-square distribution is 11.070. Accordingly, if the calculated
value of the chi-square statistic in our example is greater than 11.070, we
will reject the null hypothesis and conclude that type of victim-offender re-
lationship among assault victims is not randomly distributed.

The Test Statistic Equation 9.1 provides the formula for calculating the chi-
square statistic to test for random assignment of cases to each category or
value. We begin by calculating the expected frequency (fe) for each cell in
the table. Again, as in the example of the die, we would expect under the
null hypothesis that there would be an equal number of cases in each of
the categories examined. To calculate the expected frequency mathemati-
cally, we divide the total N of cases by the number of categories. This is
done below, where we get an expected value for each category of 68.333:

After calculating the expected frequency, we can proceed to calculate the
chi-square statistic. Table 9.6 presents the observed and expected frequen-
cies for each cell and the appropriate calculations for determining the value
of the chi-square statistic. We find the value of the test statistic to be 178.85.

fe � N
k

 � 410
6

 � 68.333

Computation of Chi-Square for Type of Victim-Offender Relationship

CATEGORY fo fe (fo � fe) (fo � fe)2

Stranger 166 68.333 97.667 9,538.843 139.593
Acquaintance 61 68.333 �7.333 53.773 0.787
Friend 35 68.333 �33.333 1,111.089 16.260
Boyfriend/girlfriend 38 68.333 �30.333 920.091 13.465
Spouse 66 68.333 �2.333 5.443 0.080
Other relative 44 68.333 �24.333 592.095 8.665

� � 178.849

(fo � fe)2

fe

Table 9.6
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The Decision The critical value for our test of statistical significance was
11.070, meaning that a calculated chi-square statistic greater than this
critical value would lead to rejection of the null hypothesis. The value of
our test statistic is 178.85, which is much larger than our critical chi-
square value. Accordingly, the observed significance level of our test is
less than the significance criterion we set at the outset (p � 0.05). On
the basis of this outcome, we reject the null hypothesis and conclude
that type of victim-offender relationship among assault victims is not ran-
domly distributed. Of course, we cannot be certain that the null hypothe-
sis is false for the population we are examining. We make our decision
with a set risk of a Type I error defined at the outset of our test.

R e l a t i n g  T w o  N o m i n a l - S c a l e  
M e a s u r e s  i n  a  C h i - S q u a r e  T e s t

In criminal justice and criminology, we seldom examine research issues like
the fairness of a die or the randomness of type of victim-offender relation-
ship, which are concerned with outcomes on only one measure. More often,
we are interested in describing the relationships among two or more vari-
ables. For example, we may want to assess whether men and women are
likely to be placed in different types of treatment facilities or whether differ-
ent ethnic groups receive different types of sanctions. For each of these ex-
amples, two measures must be assessed at the same time. In the former, we
examine both gender and type of treatment facility. In the latter, we exam-
ine type of sentence and ethnicity. Below, we use the example of a study of
white-collar criminals to illustrate the use of chi-square in making inferences
about the relationship between two variables: recidivism and sanction type.

A Substantive Example: Type of Sanction and Recidivism 
Among Convicted White-Collar Criminals
In a study of white-collar offenders, data on reoffending from FBI records
over a ten-year period were examined. The sample included offenders
from seven U.S. district courts, convicted of eight different white-collar
crimes (antitrust violations, securities fraud, mail and wire fraud, false
claims and statements, credit and lending institution fraud, bank embez-
zlement, income tax fraud, and bribery). The sample was chosen ran-
domly without replacement.3 The research question concerned whether
imprisonment of white-collar offenders impacted upon reoffending.

3In this case, a stratified random sample was selected in order to ensure a broad sampling
of white-collar offenders. For our example here, we treat the sample as a simple random
sample. See David Weisburd, Elin Waring, and Ellen Chayet, “Specific Deterrence in a
Sample of Offenders Convicted of White Collar Crimes,” Criminology 33 (1995): 587–607.
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The likelihood of rearrest for a group of offenders who received a
prison sanction was compared with that of a matched group who did not
receive a prison sanction. The researchers found that 33.0% of the prison
group (N � 100) was rearrested during the follow-up period, in contrast
to 28.4% of the no-prison group (N � 67). What conclusions can we
come to concerning white-collar criminals generally?

To answer our research question, we follow the standard format of a
test of statistical significance. We begin by stating our assumptions. Re-
member that to state the assumptions you must choose the type of test
you will use. In this case, we have chosen a chi-square test for relating
two nominal-level measures.

Assumptions:

Level of Measurement: Nominal scales.

Population Distribution: No assumption made.

Sampling Method: Independent random sampling (no replacement; sam-
ple is small relative to population).

Sampling Frame: Offenders from seven federal judicial districts convicted
of eight different white-collar crimes.

Hypotheses:

H0: There is no difference in the likelihood of rearrest among similar
white-collar offenders sentenced or not sentenced to prison. (Or, likeli-
hood of rearrest and imprisonment are independent.)

H1: There is a difference in the likelihood of rearrest among similar
white-collar offenders sentenced or not sentenced to prison. (Or, likeli-
hood of rearrest and imprisonment are not independent.)

The level of measurement required for a chi-square test is nominal.
Our example includes two variables: rearrest and type of sanction. Each
is measured as a binary nominal variable. For rearrest, we examine those
rearrested versus those not rearrested in the follow-up period. For type
of sanction, we differentiate between those who were sentenced to
prison and those who did not receive a prison sanction. In regard to the
population distribution, chi-square is a nonparametric test and therefore
requires no specific assumption.

The sample was selected randomly, but as is the case with most crim-
inal justice studies, the investigators did not sample with replacement. At
the same time, the population from which the sample was drawn is very
large relative to the sample examined, and thus we have no reason to
suspect that this violation of the assumptions will affect our test result.

The sampling frame includes offenders from seven federal judicial dis-

tricts. As discussed in Chapter 8, it is necessary to explain why your

tricts convicted of eight different white-collar crimes. Accordingly, our 
inferences relate directly to the population of those offenses and those 
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sample is representative of a broader population of cases if you want to
make inferences beyond your sampling frame. In this study, the seven dis-
tricts examined were seen as providing a sample with geographic spread
throughout the United States, and the selected white-collar offenses were
defined as offering a “broad sampling of white-collar offenders.”

In most applications of the chi-square test, one cannot assign a direc-
tional research hypothesis. This is because chi-square requires a nominal

ables, as examined here, the researcher can choose between a direc-
tional and a nondirectional research hypothesis. In our example, a
directional hypothesis would be that the prison group is more likely than
the no-prison group to be rearrested or that the no-prison group is more
likely than the prison group to be rearrested. The research hypothesis
stated by the investigators in this study was nondirectional. It stated sim-
ply that the two groups (prison and no-prison) differ in terms of likeli-
hood of rearrest during the follow-up period. The null hypothesis was
that there is no difference between the prison and no-prison groups.

Researchers often state the hypotheses of a chi-square test in terms of
the independence of the variables that are examined. Stated this way, the
null hypothesis would be that prison group (prison or no-prison) is inde-
pendent, or unrelated to rearrest, in the follow-up period. The research
hypothesis is that prison group is not independent. While this method of
stating the hypotheses for your test sounds different, it leads to the same
conclusions. If the two groups differ in terms of likelihood of rearrest in
the follow-up period, then prison group and recidivism are related and
thus not independent. If there is no difference, then prison group is un-
related to, or independent of, recidivism in the follow-up period.

The Sampling Distribution Because we are examining the relationship
between two nominal-scale variables, the chi-square distribution pro-
vides an appropriate sampling distribution for our test. However, our de-
cision about degrees of freedom is not as straightforward as that in the
example of a roll of a die. In this case, we must take into account the

Recidivism Among 167 White-Collar Criminals According to Whether
They Did or Did Not Receive Prison Sentences

Imprisoned Not imprisoned

Subsequently arrested Cell A Cell B 52
33 19

Not subsequently arrested Cell C Cell D 115
67 48

100 67 167

Table 9.7

catagories examined. Nonetheless, in the special case of two binary vari-
level of measurement, which does not assign order or value to the 
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joint distribution of our measures. This is illustrated in Table 9.7, which
shows two potential outcomes for the prison variable and two potential
outcomes for the arrest variable. We have four cells, or four possible
combined outcomes. Cell A is for offenders who received a prison sanc-
tion and were arrested in the follow-up period. Cell B is for offenders
who did not receive a prison sanction and were arrested in the follow-up
period. Cell C is for offenders who received a prison sanction and were
not arrested in the follow-up period. Cell D is for offenders who did not
receive a prison sanction and were not arrested in the follow-up period.

If we sum across and down the cells, we gain two row marginals and
two column marginals. The row marginals represent the totals for the rows:
52 for those arrested and 115 for those not arrested. The column marginals
represent the totals for the columns: N � 100 for the prison group, and N �

67 for the no-prison group. If you know the row and column marginals, as
is assumed in computing the degrees of freedom for chi-square, you can
predict with certainty the remaining cells, once the value of any one cell is
known (see Table 9.8). Degrees of freedom for a two-variable chi-square
can be gained more simply through the formula df � (r � 1)(c � 1), where
r represents the number of rows and c the number of columns. For our ex-
ample, there are two rows and two columns, so df � (2 � 1)(2 � 1) � 1.

Significance Level and Rejection Region We stated no reason at the outset
for choosing for our example a stricter or more lenient significance thresh-
old than is used by convention. Accordingly, we use a significance level of
0.05 for our test. Our rejection region is defined by the chi-square table
(see Appendix 2). Importantly, the chi-square distribution is not concerned
with the direction of outcomes in a test. It tells us to what extent the ob-
served frequencies in our example differ from those that would be ex-
pected under the null hypothesis of no difference. Whether they differ in
one direction or another, the chi-square statistic will always be positive.

Predicting the Missing Cells in a Two-Variable Chi-Square Test

Row 

Cell B 52
33 ?

Cell C Cell D 115
? ?

67 167

Given that cell A � 33:
Cell B � (52 � 33) � 19
Cell C � (100 � 33) � 67
Cell D � (115 � 67) � 48

Table 9.8
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The terms “directional” and “nondirectional” are very tenuous ones in
a chi-square test. Chi-square assumes nominal-scale variables, which by
definition do not provide information about the order of values in a
measure. If we cannot specify the order of two measures, we cannot
speak of the direction of their relationship. As noted earlier, in most situ-
ations a directional hypothesis is not appropriate for a chi-square test. In
the special case of two binary variables, however, researchers do some-
times use chi-square to examine directional research hypotheses. For ex-
ample, we might have stated our research hypothesis as “The likelihood
of arrest in the follow-up period for white-collar offenders sentenced to
prison is lower than that of similar white-collar offenders not sentenced
to prison.”

However, our research hypothesis is nondirectional, as is the table of
chi-square values. To define our rejection region, we turn to the row of
the table associated with one degree of freedom. Under a significance
level (�) of 0.05, we see a score of 3.841. For us to reject the null hy-
pothesis, our test statistic will have to be greater than this value.4

The Test Statistic To apply chi-square to the two-variable case, we need
to adapt our original equation. The formula for the chi-square statistic for
relating two measures is presented in Equation 9.2.5

Equation 9.2

The only difference between Equation 9.2 and Equation 9.1 is that we
have an additional summation symbol. In this case, we do not sum
simply across the categories of one measure; rather, we sum across
each row (r) and column (c) of the joint distribution of two measures.
Accordingly, Equation 9.2 reminds us that we must examine the ex-
pected and observed frequencies for every potential outcome we can
observe—or, in terms of the chi-square equation, for every cell in our
table.

�2 � �
r

i�1
 �

c

j�1
 
( fo � fe)

2

fe

4What if we had defined a directional research hypothesis? In this case, we look to the
column of the table for twice the value of the desired significance level, since we now
have placed all risk of falsely rejecting the null hypothesis in only one direction. For
example, for a 0.05 significance level, we turn to the test statistic for a 0.10 level.
5When a chi-square test has only one degree of freedom, it is recommended that a
correction factor be added if the expected frequencies of any cell fall below 20. The
correction provides a more conservative, or smaller, chi-square statistic:

�2 � �
r

i�1
 �

c

j�1
 
(� fo � fe � � 0.5)2

fe
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For our example, this means we must sum across cells A, B, C, and D.
As before, we want to compare the observed frequency to the expected
frequency in each cell. The observed frequencies are those gained in our
research. The expected frequencies are defined through the null hypoth-
esis. The null hypothesis states that there is no difference in arrest rates
between the prison and no-prison groups. If this is true, then we should
expect the same proportion of arrests in both groups. To calculate the
expected frequencies, accordingly, we first need to define the overall
proportion of offenders arrested in the follow-up period.

The proportion of offenders arrested overall in the sample in the follow-
up period is obtained by dividing the total number of offenders arrested
(Ncat � 52) by the total number of offenders in the sample (Ntotal � 167):

To get the expected frequency for cell A, we multiply this proportion by
the marginal total of 100 ( fe � 31.14). For the no-prison group, we have
a total of 67 offenders. Applying the proportion of the total sample to
this group, we multiply 0.3114 by 67 and get an expected frequency of
20.86 for cell B. In practice, we do not need to compute the expected
frequencies for the remaining two cells, C and D. Indeed, we could have
assigned all of the cells expected frequencies based on knowledge of
only one cell. This is what the number of degrees of freedom for this ex-
ample tells us. If you know the number of cases in one cell, you can
predict with certainty the rest. The expected and observed frequencies
for our example are shown in Table 9.9.

Now that we have calculated the observed and expected frequencies
for each potential outcome, or cell, we can calculate the chi-square sta-

Proportion � 
Ncat

N  total 
 � 

52
167

 � 0.3114

Expected and Observed Frequencies of Recidivism and Nonrecidivism
for White-Collar Offenders According to Whether They Received
Prison Sentences

Imprisoned Not imprisoned

Subsequently arrested Cell A Cell B 52
fo � 33 fo � 19

fe � 31.14 fe � 20.86

Not subsequently arrested Cell C Cell D 115
fo � 67 fo � 48

fe � 68.86 fe � 46.14

100 67 167

Table 9.9
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expected frequency of the cell:

This is done in Table 9.10 for each of the four cells in our problem.
Using cell A as an example, we first subtract the expected frequency of
31.14 from the observed frequency of 33. We then square this quantity
(1.86), obtaining a result of 3.4596. Dividing this result by the expected
frequency in the cell (31.14) gives us 0.1111. The sum of all four cells,
0.4021, is our test statistic.

The Decision Our rejection region was defined as including any chi-
square statistic greater than 3.841. The test statistic for our example is
only 0.402. Accordingly, we choose not to reject the null hypothesis. The
observed significance level for our test is greater than the significance
level, or threshold, we set at the outset (p � 0.05). We conclude that
there is no significant difference in the likelihood of recidivism between
white-collar offenders who have and have not been sentenced to prison.
Our inferences are made directly to the specific offenses and judicial dis-
tricts defined in the sampling frame.

E x t e n d i n g  t h e  C h i - S q u a r e  T e s t  t o  M u l t i c a t e g o r y  
V a r i a b l e s :  T h e  E x a m p l e  o f  C e l l  A l l o c a t i o n s  i n  P r i s o n

The previous example illustrates the use of chi-square in the case of two
binary variables. We now turn to an extension of the chi-square test to
an example including a multicategory nominal-level variable. Our exam-
ple is drawn from a study of the relationship between prisoners’ race
and their cell assignments in a large state prison in the northeastern

( fo � fe)
2

fe

Computation of Chi-Square for 167 White-Collar Criminals

CELL fo fe (fo � fe) (fo � fe)2

A 33 31.14 1.86 3.4596 0.1111
B 19 20.86 �1.86 3.4596 0.1658
C 67 68.86 �1.86 3.4596 0.0502
D 48 46.14 1.86 3.4596 0.0750

� � 0.4021

(fo � fe)2

fe

Table 9.10

expected frequencies for each cell, and then we divide this quantity by the
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United States.6 We examine the placement of non-Hispanic white and
“nonwhite” inmates (including Hispanics) into seven cell blocks. The
sample includes all prisoners in the general prison population for a sin-
gle day. The distribution of cases is presented in Table 9.11.

If cell assignments were made on considerations unrelated to race, we
would expect to find the proportion of non-Hispanic whites in each cell
block roughly equivalent to the proportion of non-Hispanic whites in the
general prison population (19.9%; see the marginal for non-Hispanic
whites in Table 9.11). Such equivalence is not evident. In block G, for ex-
ample, non-Hispanic whites constituted 12.2% of the inmates. In block H,
they comprised 60.7%. Do results for this sample allow us to conclude that

Assumptions:

Level of Measurement: Nominal scales.

Population Distribution: No assumption made.

Sampling Method: Independent random sampling (the entire sampling
frame is examined).

Sampling Frame: All prisoners in the general prison population on a
specific day.

6See Douglas McDonald and David Weisburd, “Segregation and Hidden Discrimina-
tion in Prisons: Reflections on a Small Study of Cell Assignments,” in C. Hartchen
(ed.), Correctional Theory and Practice (Chicago: Nelson Hall, 1991).

Proportions of Non-Hispanic White Prisoners in Seven Cell Blocks

Non-Hispanic
whites Nonwhites

Cell block C 48 208 256
18.7% 81.3% 100%

Cell block D 17 37 54
31.5% 68.5% 100%

Cell block E 28 84 112
25.0% 75.0% 100%

Cell block F 32 79 111
28.8% 71.2% 100%

Cell block G 37 266 303
12.2% 87.8% 100%

Cell block H 34 22 56
60.7% 39.3% 100%

Cell block I 44 268 312
14.1% 85.9% 100%

240 964 1,204
19.9% 80.1% 100%

Table 9.11
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Hypotheses:

H0: Cell-block assignment and race are independent.

H1: Cell-block assignment and race are not independent.

As in our previous example, we assume a nominal level of measure-
ment for our test and do not make assumptions regarding the form of
the population distribution. Prisoner race is measured at the binary nom-
inal level, and cell block is a multicategory nominal scale.

The sample includes all cases in the sampling frame. Accordingly, we
do not need to use statistical inference to make statements about that
population. However, the study was designed not only to describe
prison-cell allocations on that day, but also to make more general state-
ments about cell allocations in the prison studied throughout the year.
This is not an uncommon scenario in criminal justice research, in good
part because the realities of the criminal justice system often preclude
sampling beyond specific institutions or outside of specific time frames.
This means, however, that the researchers seek to make inferences be-
yond their sampling frame.

If cell allocations on the day examined in this study are representative
of cell allocations more generally throughout the year, then the infer-
ences made on the basis of the test will be reliable. If not, then the test
will not provide for valid inferences. In our example, the investigators
argue:

There was no reason to suspect that the cell assignments of prisoners
on that day differed substantially from assignments on other days.
Moreover, these cell assignments represented the results of decisions
made over the course of months and perhaps years prior to the date 
of drawing the sample. There was every reason to believe, conse-
quently, that cell assignments on that date constituted a valid repre-
sentation of cell assignment decisions made during the several months
prior to that day.

Our research question asks whether we would be likely to obtain the
distribution we observe in our sample if assignment to cell blocks were
colorblind in the population. Stated in the form of hypotheses, we ask
whether race and cell-block assignment are independent. If they are in-
dependent, as proposed in our null hypothesis, then we would expect
about the same proportion of nonwhite and non-Hispanic white prison-
ers in each cell block. Our research hypothesis is nondirectional. It states
that race and cell-block assignment are not independent. In this exam-
ple, as in most chi-square tests, use of nominal-scale measures, which do
not assign order or value to categories, means that one cannot define a
directional research hypothesis.
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The Sampling Distribution Because we are examining the relationship
between two nominal variables, one binary and one multicategory, we
use the chi-square sampling distribution. The number of degrees of free-
dom for our problem is defined as in the previous example:

W orking It Out

 � 6

 � (7 � 1)(2 � 1)

 df � (r � 1)(c � 1)

In this case, we have seven categories for our row variable (cell block)
and two categories for our column variable (ethnicity). The number of
degrees of freedom for our sampling distribution is six.

Significance Level and Rejection Region As we have no reason to pro-
pose more lenient or stricter significance criteria than are used by con-
vention, we will set a 0.05 significance level. To define our rejection re-
gion, we turn to the row of the chi-square table associated with six
degrees of freedom. Under the 0.05 column, a chi-square statistic of
12.592 is listed. If the test statistic is greater than this critical value, then it
falls within the rejection region of the test.

The Test Statistic To calculate the test statistic in this multicategory ex-
ample, we follow the same procedure used for the two-by-two table in
the previous section. Our first task is to define the expected frequency
for each cell of the table. We do this, as before, by dividing a marginal of
the table by the total proportion of cases. Taking the overall number of
non-Hispanic whites in the sample, we obtain a proportion of 0.1993:

W orking It Out

 � 0.199335

 � 240
1,204

 Proportion � 
Ncat

N total
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To calculate the expected frequency in each cell in the non-Hispanic
whites column, we multiply this proportion by the marginal total for
each row. So, for example, for cell block C, we multiply 256 by
0.199335, leading to an expected frequency for non-Hispanic whites of
51.030. We then replicate this procedure for each of the six other cells in
the non-Hispanic whites column. To calculate the expected frequencies
for the nonwhites column, we simply subtract the expected frequency
for the non-Hispanic whites column from the row marginal. So, for ex-
ample, for nonwhites in cell block C, the expected frequency is 256 (the
marginal total) minus 51.030 (the expected frequency for non-Hispanic
whites for that cell block), or 204.970. Table 9.12 includes the expected
and observed frequencies for the 14 cells in our example.

To obtain the test statistic, we use Equation 9.2, which may be ap-
plied to any two-variable chi-square problem:

Again we begin by subtracting the expected frequency from the observed
frequency in each cell and squaring the result. This quantity is then di-
vided by the expected frequency of the cell. The chi-square statistic is
found by summing the result across all 14 cells. The full set of calculations
for the test statistic is presented in Table 9.13. The chi-square score for our
example is 88.3610.
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( fo � f e)

2

fe

Observed Frequencies and Expected Frequencies for Non-Hispanic
White and Nonwhite Prisoners in Seven Cell Blocks

Non-Hispanic
whites Nonwhites

Cell block C f � 48 fo � 208 256
fe � 51.030 fe � 204.970

Cell block D fo � 17 fo � 37 54
fe � 10.764 fe � 43.236

Cell block E fo � 28 fo � 84 112
fe � 22.326 fe � 89.674

Cell block F fo � 32 fo � 79 111
fe � 22.126 fe � 88.874

Cell block G fo � 37 fo � 266 303
fe � 60.399 fe � 242.601

Cell block H fo � 34 fo � 22 56
fe � 11.163 fe � 44.837

Cell block I fo � 44 fo � 268 312
fe � 62.193 fe � 249.807

240 964 1,204

Table 9.12
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The Decision The outcome of 88.3610 is much greater than the critical
value for our test of 12.592. Accordingly, we reject the null hypothesis
that race and cell-block allocation are independent (using a 5% signifi-
cance level). We conclude that there is a statistically significant relation-
ship between the distribution of prisoners across cell blocks and their
race.

E x t e n d i n g  t h e  C h i - S q u a r e  T e s t  
t o  a  R e l a t i o n s h i p  B e t w e e n  T w o  O r d i n a l  V a r i a b l e s :
I d e n t i f i c a t i o n  w i t h  F a t h e r s  a n d  D e l i n q u e n t  A c t s

The examples of the application of the chi-square test presented so far
have used only nominal-scale variables. This is consistent with the as-
sumptions of the chi-square test. But in practice researchers sometimes
use chi-square to test for independence when one or both of the vari-
ables have been measured at the ordinal level of measurement. This test
for independence can provide important information to the researcher.
However, because the chi-square test assumes a nominal scale of mea-
surement, it does not pay attention to the order of the categories in an
ordinal scale. This means that a statistically significant finding can tell the
researcher only that the distribution of scores observed is different from
that expected had there been no relationship. It cannot test for whether
the values of one variable increase as the values of the other increase or,
conversely, whether the scores on one measure increase as those on the

Computation of Chi-Square for Non-Hispanic White (W) 
and Nonwhite (NW) Prisoners in Seven Cell Blocks

CELL BLOCK RACE fo fe (fo � fe) (fo � fe) 2

C W 48 51.030 �3.030 9.1809 0.1799
C NW 208 204.970 3.030 9.1809 0.0448
D W 17 10.764 6.236 38.8877 3.6128
D NW 37 43.236 �6.236 38.8877 0.8994
E W 28 22.326 5.674 32.1943 1.4420
E NW 84 89.674 �5.674 32.1943 0.3590
F W 32 22.126 9.874 97.4959 4.4064
F NW 79 88.874 �9.874 97.4959 1.0970
G W 37 60.399 �23.399 547.5132 9.0649
G NW 266 242.601 23.399 547.5132 2.2568
H W 34 11.163 22.837 521.5286 46.7194
H NW 22 44.837 �22.837 521.5286 11.6317
I W 44 62.193 �18.193 330.9852 5.3219
I NW 268 249.807 18.193 330.9852 1.3250

� � 88.3610

(fo � fe) 2

fe

Table 9.13

206



E X T E N D I N G T H E T E S T T O O R D I N A L V A R I A B L E S

other decrease. When you use the chi-square test for ordinal-scale vari-
ables, the test itself treats the variables as if they were simply composed
of a group of nominal categories.

Table 9.14 presents data from the Richmond Youth Survey report on
the relationship between number of delinquent acts and affectional iden-
tification with one’s father. The distribution of cases presented refers
only to the white males who responded to the survey.7 The sample was
a random sample (drawn without replacement) for all high school–age
white males in Richmond, California, in 1965. The size of the sample is
small relative to the sampling frame.

If delinquency were unrelated to attachment to one’s family—here in-
dicated by the level of affectional identification with one’s father—we
would expect to find the distribution of cases for each level of delin-
quency to be roughly equal across levels of identification. The distribu-
tion of cases provides some indication that these variables are not, in
fact, independent. For example, among the youths who wanted to be
like their father in every way, 63% reported that they had not committed
a delinquent act. This was true for only 41% of those who did not want
to be at all like their fathers. Our question is whether the differences we
observe in our sample are large enough for us to conclude that identifi-
cation with one’s father and delinquency are related in the population
from which our sample has been drawn.

7David F. Greenberg, “The Weak Strength of Social Control Theory,” Crime and Delin-
quency 45:1 (1999): 66–81.

Affectional Identification with Father by Number of Delinquent Acts

AFFECTIONAL D E L I N Q U E N T  A C T S
IDENTIFICATION 
WITH FATHER None One Two or More

In every way 77 25 19 121
63.636% 20.661% 15.702% 100%

In most ways 263 97 44 404
65.099% 24.010% 10.891% 100%

In some ways 224 97 66 387
57.881% 25.065% 17.054% 100%

In just a few ways 82 52 38 172
47.674% 30.233% 22.093% 100%

Not at all 56 30 52 138
40.580% 21.739% 37.681% 100%
702 301 219 1,222
57.447% 24.632% 17.921% 100%

Table 9.14
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Assumptions:

Level of Measurement: Nominal scales (our study examines two ordinal-
scale measures).

Population Distribution: No assumption made.

Sampling Method: Independent random sampling (no replacement;
sample is small relative to population).

Sampling Frame: High school–age white males in Richmond, California,
in 1965.

Hypotheses:

H0: Affectional identification with father and delinquency are independent.

H1: Affectional identification with father and delinquency are not
independent.

The Sampling Distribution Although we are using two ordinal-scale mea-
sures rather than two nominal-scale measures, we have chosen to use
the chi-square sampling distribution to test for a relationship. This viola-
tion of the nominal-scale assumption for the chi-square test is accept-
able. However, by placing the violation of the assumption in parentheses
next to the test requirement of a nominal level of measurement, we re-
mind ourselves that chi-square is not concerned with the order of the
categories in the measures examined. It treats the two ordinal-scale mea-
sures as if they were nominal-scale measures and simply tests for
whether the distributions among the categories depart from what we
would expect under an assumption of independence. As we did in the
two previous examples, we calculate degrees of freedom as follows:

W orking It Out

 � 8

 � (5 � 1)(3 � 1)

 df � (r � 1)(c � 1)

Significance Level and Rejection Region There is no reason to propose a
more lenient or stricter significance level for this analysis, so we will
stick with a 0.05 significance level. Given that we have eight degrees of
freedom and a significance level of 0.05, we can consult the chi-square
table and determine that our critical value of the chi-square statistic is
15.507. If the test statistic is greater than this value, it falls in the rejection
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region of the test, and we can conclude that delinquency is significantly
related to affectional identification.

The Test Statistic To determine the expected frequency for each cell in
the table, we follow the same format we have used in the previous two
examples. As before, we start with the calculation of the marginal for no
delinquent acts and divide by the total number of cases, which gives us
a value of 0.574468:

W orking It Out

 � 0.574468

 � 
702

1,222

 Proportion � 
Ncat

N total

To calculate the expected frequency for each cell in the no delinquent
acts column, we take this proportion and multiply it by the marginal total
for the row. For the first row, we multiply 0.574468 by 121, which gives
us an expected frequency of 69.511. Similarly, for the second row, we
multiply 0.574468 by 404, giving us an expected frequency of 232.085.
We continue this procedure for the remaining three rows in the no delin-
quent acts column.

For the second column, we need to determine the marginal proportion
for those cases with one delinquent act. Since there are 301 cases in the
marginal for one delinquent act, the corresponding proportion is
(301/1,222) � 0.246318. To obtain the expected frequencies for this sec-
ond column, we multiply 0.246318 by the corresponding row marginal.
So, for the first row of the second column, the expected frequency is ob-
tained by multiplying 0.246318 by 121, which gives us 29.804. This proce-
dure is repeated to complete the remaining cells in the second column.

Finally, to determine the expected frequencies for the cells in the
third column, we simply add the expected frequencies for the first two
columns and subtract that sum from the row marginal. For example, in
the first row, the two expected frequencies obtained thus far are 69.511
and 29.804. If we add these two values (69.511 � 29.804 � 99.315) and
subtract this sum from the row marginal (121), we find that the ex-
pected frequency for the cell in the third column of the first row is equal to
(121 � 99.315) � 21.685. To complete the table of expected frequencies,
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we repeat this operation for the remaining cells in the third column.
Table 9.15 contains all the observed and expected frequencies.

To obtain the test statistic, we again use Equation 9.2, which may be
applied to any two-variable chi-square problem:

Again we begin by subtracting the expected from the observed fre-
quency in each cell and squaring the result. This quantity is then divided
by the expected frequency of the cell. The chi-square statistic is found
by summing the result across all cells. The full set of calculations neces-
sary for obtaining the value of the chi-square test statistic appears in
Table 9.16. The chi-square statistic for our test has a value of 61.532.

The Decision
The calculated chi-square statistic of 61.532 is much larger than the criti-
cal value of 15.507 for the chi-square distribution with eight degrees of
freedom. This means that the observed significance level for our test is
less than the criterion significance level we set at the outset (p � 0.05).
Thus, we reject the null hypothesis that affectional identification with fa-
ther is not related to number of delinquent acts (at a 5% significance
level). In turn, we conclude that for adolescent males there is a statisti-
cally significant relationship between delinquency and affectional identi-
fication with father. Importantly, this statistical inference refers directly to
our sampling frame: high school–age white males in Richmond, Califor-
nia, in 1965.
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Observed and Expected Frequencies for Affectional Identification
with Father and Number of Delinquent Acts

AFFECTIONAL D E L I N Q U E N T  A C T S
IDENTIFICATION 
WITH FATHER None One Two or More

In every way fo � 77 fo � 25 fo � 19 121
fe � 69.511 fe � 29.804 fe � 21.685

In most ways fo � 263 fo � 97 fo � 44 404
fe � 232.085 fe � 99.512 fe � 72.403

In some ways fo � 224 fo � 97 fo � 66 387
fe � 222.319 fe � 95.325 fe � 69.355

In just a few ways fo � 82 fo � 52 fo � 38 172
fe � 98.809 fe � 42.367 fe � 30.824

Not at all fo � 56 fo � 30 fo � 52 138
fe � 79.277 fe � 33.992 fe � 24.731
702 301 219 1,222

Table 9.15
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T h e  U s e  o f  C h i - S q u a r e  W h e n  
S a m p l e s  A r e  S m a l l :  A  F i n a l  N o t e

The chi-square test is often used by criminal justice researchers. How-
ever, it has a very important limitation in its application to studies with
small or highly skewed samples. When more than one in five (20%) of
the cells in your table has an expected frequency of five or less, it is gen-
erally considered inappropriate to use a chi-square test. In such situa-
tions, it is recommended that you combine categories of your variables
until you meet the minimum expected-frequencies requirement.

C h a p t e r  S u m m a r y

Whereas the binomial distribution is relevant only for binary variables,
the chi-square distribution can be used to examine a variable with
more than two categories.

The shape of the chi-square distribution chosen depends on the
degrees of freedom associated with the test. The formula for degrees of
freedom defines how many categories would have to be known for us to

the number of degrees of freedom, the flatter the distribution. In practi-
cal terms, as the number of degrees of freedom increases, a larger chi-
square statistic is required to reject the null hypothesis.

Computation of Chi-Square for Affectional Identification 
with Father and Delinquency

IDENTIFICATION DELINQUENCY fo fe (fo � fe) (fo � fe)2

Every way None 77 69.511 7.489 56.085 0.807
Every way One 25 29.804 �4.804 23.078 0.774
Every way Two or more 19 21.685 �2.685 7.209 0.332
Most ways None 263 232.085 30.915 955.737 4.118
Most ways One 97 99.512 �2.512 6.310 0.063
Most ways Two or more 44 72.403 �28.403 806.730 11.142
Some ways None 224 222.319 1.681 2.826 0.013
Some ways One 97 95.325 1.675 2.806 0.029
Some ways Two or more 66 69.355 �3.355 11.256 0.162
Few ways None 82 98.809 �16.809 282.543 2.859
Few ways One 52 42.367 9.633 92.795 2.190
Few ways Two or more 38 30.824 7.176 51.495 1.671
Not at all None 56 79.277 �23.277 541.819 6.835
Not at all One 30 33.992 �3.992 15.936 0.469
Not at all Two or more 52 24.731 27.269 743.598 30.067

� � 61.532

(fo � fe )2

fe

Table 9.16
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The chi-square test of statistical significance is a nonparametric test. To
calculate the test statistic, the researcher must first identify the observed
frequency and the expected frequency of each category. The expected
frequencies are those one would expect under the assumption of the null
hypothesis. They are distributed in the same proportions as the marginal
frequencies. The chi-square formula is then applied to each category, or
cell, in the table. If the observed frequencies differ substantially from the

square statistic will be small. If the two frequencies are the same, the statis-
tic will be 0. The larger the statistic (and the smaller the number of degrees
of freedom), the easier it will be to reject the null hypothesis. The chi-
square statistic is always positive. Because the chi-square test relies on nom-
inal nonordered data, it is not concerned with the direction of outcomes.

K e y  T e r m s

cells The various entries in a table, each of
which is identified by a particular row and
column. When we use a table to compare
two variables, it is convenient to refer to
each combination of categories as a cell.

chi-square distribution A sampling distri-
bution that is used to conduct tests of sta-
tistical significance with binary or multicat-
egory nominal variables. The distribution is
nonsymmetrical and varies according to de-
grees of freedom. All the values in the dis-
tribution are positive.

chi-square statistic The test statistic re-
sulting from applying the chi-square for-
mula to the observed and expected fre-
quencies for each cell. This statistic tells
us how much the observed distribution

differs from that expected under the null
hypothesis.

degrees of freedom A mathematical
index that places a value on the extent to
which a particular operation is free to vary
after certain limitations have been imposed.
Calculating the degrees of freedom for a
chi-square test determines which chi-
square probability distribution we use.

expected frequency The number of ob-
servations one would predict for a cell if
the null hypothesis were true.

marginal The value in the margin of a
table that totals the scores in the appropri-
ate column or row.

observed frequency The observed result
of the study, recorded in a cell.

S y m b o l s  a n d  F o r m u l a s

�2 Chi-square

df Degrees of freedom

observed frequencies are similar to the expected frequencies, then the chi-
expected frequencies, then the chi-square statistic will be large. If the 
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a sampling distribution for each problem examined, have been made more practical with
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fo Observed frequency

fe Expected frequency

c Number of columns

r Number of rows

k Number of categories

To determine the degrees of freedom for a chi-square test including only
one variable:

df � k � 1

To determine the degrees of freedom for a chi-square test including two
variables:

df � (r � 1)(c � 1)

To determine the chi-square statistic for one variable:

To determine the chi-square statistic for two variables:

E x e r c i s e s

9.1 Local community leaders are concerned about the distribution of
homicides in their small town. The local police department broke the
city into six recognizable neighborhoods of the same size and discov-
ered the following distribution of homicides:

Neighborhood Number of Homicides

A 14
B 9
C 17
D 3
E 7
F 10
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Community leaders would like to know whether the homicides are
randomly distributed across these six neighborhoods.

a. Use a 5% level of significance and outline each of the steps re-
quired in a test of statistical significance.

b. What can you conclude about the distribution of homicides across
these six neighborhoods?

9.2 Sergeant Bob is in charge of the duty roster at Gatley police station.
Every week, it is his responsibility to randomly assign the five beat of-
ficers, including his son Bob Jr., to patrol in each of the five zones
that make up the city of Gatley. Zones A and D are favored by all the
officers because they are usually quiet. Of the others, Zone C is noto-
riously dangerous. The officers have recently begun to suspect
Sergeant Bob of favoritism toward his son. In the last 30 weeks, Bob
Jr. has been assigned to Zone A 12 times, Zone B and Zone C 2 times
each, Zone D 9 times, and Zone E 5 times.

a. Do the other officers have reason to believe that Sergeant Bob is
not assigning zones in a random manner? Use a 5% level of signifi-
cance and outline each of the steps required in a test of statistical
significance.

b. Would your answer be any different if a 1% level of significance
were used?

9.3 In the past 100 years, there have been more than 250 successful
breakouts from Didsbury Prison. Mike is a researcher who has been
hired by the prison governor to investigate the phenomenon. Details
are available only for those breakouts that took place in the past ten
years—a total of 30. Using the records of these 30 breakouts as a sam-
ple, Mike decides to break the figures down to see whether breakouts
were more common in certain wings of the prison than in others. It
transpires that of the 30 breakouts, 4 have been from A-Wing, 8 from
B-Wing, 15 from C-Wing, and 3 from D-Wing.

a. Does Mike have enough evidence to conclude that, over the 100-
year period, breakouts were more (or less) likely to occur from cer-
tain wings than from others? Use a 5% level of significance and out-
line each of the steps required in a test of statistical significance.

b. Would your answer be any different if a 1% level of significance
were used?

c. Are there any problems with Mike’s choice of a sample? Explain
your answer.

9.4 A study of death penalty cases (all first-degree murder charges with
aggravating circumstances) revealed the following relationship be-
tween the victim’s race and the chances the offender was sentenced to
death: In 100 cases involving white victims, 20 offenders were sen-
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tenced to death. In 100 cases involving black victims, 10 offenders
were sentenced to death.

a. Is there a relationship between the race of the victim and the likeli-
hood an offender was sentenced to death? Use a 5% level of signifi-
cance and outline each of the steps required in a test of statistical
significance.

b. Would your answer be different if a 1% level of significance were
used?

9.5 At a local school, 46 children were accused of cheating on exams over
the course of a semester. In an innovation, the principal decided that
every second child accused of cheating would be brought before a
“peer jury” to decide guilt or innocence. In all other cases, the deci-
sion would be made by the examiners as usual. Of the 30 children
who were adjudged guilty over the course of the semester, 18 were
convicted by the peer jury, and the rest were convicted by the exam-
iners. Of the children who were adjudged not guilty, 5 were acquitted
by their peers.

a. The principal is mainly interested in the educational value of the
experiment, but he will discontinue it if it becomes clear that the
peer jury and the examiners make different decisions to a statisti-
cally significant degree. He is willing to take a 5% risk of error.
Should the scheme be continued? Outline each of the steps of a test
of statistical significance.

b. Could the principal base the test on a directional hypothesis? If so,
what would that hypothesis be, and would it make a difference in
his final decision?

9.6 In the course of a year, Jeremy, a law student, observed a total of 55
cases in which an accused male pleaded guilty to a serious traffic of-
fense. He observed that of the 15 who were sentenced to prison, 6
wore a shirt and tie in court. Of the 40 who were not sentenced to
prison, 8 wore a shirt and tie in court.

a. Can Jeremy conclude that there is a link between the physical ap-
pearance of the accused and whether he is imprisoned? Use a 5%
level of significance and outline each of the steps required in a test
of statistical significance.

b. What level of significance would be required for his decision to be
reversed?

9.7 Sasha was interested in the extent to which people are prepared to in-
tervene to help a stranger and whether the race of the stranger is rele-
vant to the likelihood of intervention. She hired four male actors: one
of African ancestry, one of Asian ancestry, one of European ancestry,
and one of Indian ancestry. The actors were each told to fake a fall 
in a busy shopping street and pretend to be in some pain. Sasha
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observed from nearby and recorded whether, within five minutes of
the actor’s fall, anyone had stopped to see if he was okay. Each actor
repeated the experiment 40 times.

The results were as follows:

Ancestry � �

African 4 36
Asian 0 40
European 20 20
Indian 8 32

(� � Intervention within 5 mins; � � no intervention)

a. Can Sasha conclude that there is a link between race of victim and
readiness to intervene? Use a 5% level of significance and outline
each of the steps required in a test of statistical significance.

b. Would your answer be any different if a 1% level of significance
were used?

9.8 Dave takes a random sample of the speeches, interviews, and official
statements given by the prime minister and the interior minister of a
particular country over the course of a year in which reference is
made to “prison policy.” He analyzes the content of the statements in
his sample and discovers five different types of justification for the
government’s prison policy. Dave then records each time the prime
minister or interior minister refers to any of the five justification types.
The results are as follows:

Justification Type Prime Minister Interior Minister

Incapacitation or protecting society 6 16
Specific deterrence 2 14
General deterrence 4 20
Rehabilitation 0 15
Retribution 13 10

a. Is there a statistically significant difference between the policy state-
ments of the prime minister and those of the interior minister? Use
a 5% level of significance and outline each of the steps required in
a test of statistical significance.

b. Would your answer be any different if a 1% level of significance
were used?

9.9 The Television Complaints Board monitors the standards of morality
for a nation’s TV channels. It has recently set up a telephone hotline
for viewers who wish to complain about sex, violence, or foul lan-
guage on any of the nation’s three TV channels. In its first month of
operation, the board received the following complaints:
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Channel 1 Channel 2 Channel 3

Sex 2 8 10
Violence 10 12 10
Foul language 3 10 15

a. Which of the following questions would a chi-square test of these
results seek to answer?

i. Is there a statistically significant difference between the number
of complaints made against each channel?

ii. Is there a statistically significant difference between the number
of each type of complaint made?

iii. Is there a statistically significant difference between the types of
different complaints received about the three different stations?

b. Answer the question you chose in part a by running a chi-square test
at a 5% level of significance. Should the null hypothesis be overturned?

9.10 A survey of public opinion about the criminal justice system asked re-
spondents to complete the following statement: “The criminal justice
system treats offenders. . . .” The researchers found the following dis-
tribution of responses by gender of the respondent:

Gender of Respondent Too Lenient About Right Too Harsh

Female 15 50 35
Male 40 35 25

a. Is there a relationship between the gender of the respondent and per-
ceptions of punishment severity? Use a 5% level of significance and
outline each of the steps required in a test of statistical significance.

b. Would your answer be different if the significance level were 0.01?

c. What can you conclude about the relationship between gender and
perceptions of punishment severity?

9.11 A researcher is interested in the link between the type of offense a de-
fendant is charged with and the manner in which a conviction is ob-
tained. An examination of court records of a random sample of con-
victed offenders reveals the following distribution of cases:

How Conviction Was Obtained

Type of Charge Offense Jury Trial Bench Trial Guilty Plea

Violent 19 13 67
Property 5 8 92
Drug 8 11 83
Other 10 6 74
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a. Is there a relationship between type of charge offense and method
of conviction? Use a 5% level of significance and outline each of
the steps required in a test of statistical significance.

b. Would your answer be any different if a 1% level of significance
were used?

c. What can you conclude about the relationship between type of
charge offense and method of conviction?

C o m p u t e r  E x e r c i s e s
Entering Tabular Data

The most direct way of entering tabular data is to think of the rows and
columns in a table as two separate variables and the number of cases in
each cell of the table as a third variable (which represents a count). For ex-
ample, consider the data presented in Table 9.7:

Imprisoned Not Imprisoned Row Margin

33 19 52
67 48 115

100 67 167

We can enter the information from this table as three variables: the row, the
column, and the count. For now, we will simply name the row variable “ar-
rested” (to represent whether or not the person was subsequently arrested),
the column variable “prison” (to represent whether or not the person had
been imprisoned), and the number of cases in each cell “count.” Upon en-

arrest prison count

1.0000 1.0000 33.0000
1.0000 2.0000 19.0000
2.0000 1.0000 67.0000
2.0000 2.0000 48.0000

If you were to begin working with SPSS at this point, you would not ob-
tain the correct results, since SPSS will treat these data as representing only
four observations. To have SPSS recognize the 167 observations represented
by these four lines, you need to use the “Weight cases” command (Data l
Weight cases). This command tells SPSS that you have entered data in tabu-
lar form.

After execution of the “Weight cases” command, you will be presented
with a window informing you that there is no weighting of the cases. Click

Before we look at how to obtain chi-square statistics from SPSS, it is useful to
become familiar with a feature in SPSS that allows you to enter tabular data, such

_ _

Subsequently Arrested
Not Subsequently Arrested
Column Margin

tering these data into SPSS, you would have three variables and four lines of
data like the following (with the variable names appearing at the top of each
column of data):

as data from the tables in the text and the end  of  chapter exercises above.
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on the circle next to “Weight cases by . . .”; the adjacent box under the “Fre-
quency Variable” label will become highlighted. Move the name of the
count variable into this box and click on “OK” to run the command. SPSS
will now treat the four lines of data that you entered as 167 observations.

Obtain the Chi-Square Statistic

The chi-square statistic is obtained by using the “Crosstabs” command
(Analyze l Descriptive Statistics l Crosstabs). After executing this com-
mand, you will be presented with a window that asks for the names of the
row and column variables. In general, you move the names of the variables
for which you want to produce tables into the “Row(s)” and “Column(s)”
boxes.

To obtain the chi-square statistic, click on the button labeled “Statistics,”
located at the bottom of this window. A new window will appear that prompts
you for the statistics you would like to have calculated. Click on the box next
to “Chi-square” and then click on “Continue” and “OK” to run the command.

To continue our example using the data from Table 9.7, enter the “arrest”
variable name in the “Row” box and the “prison” variable name in the “Col-
umn” box. The output produced by executing this command will contain a
cross-tabulation of the data that should be identical to Table 9.7. Immedi-
ately below this table will be another table labeled “Chi-square tests.” The
“Pearson Chi-Square” is the name of the chi-square statistic that you have
learned to calculate in this chapter. The value reported by SPSS is 0.403,
which differs from the value reported above (0.402) by 0.001, which can be
attributed to rounding error above.

1. Input the data on race and cell-block assignment from Table 9.11 into
SPSS. Compute the value of the chi-square statistic for these data. How
does it compare to the value reported in the text?

2. Input the data on affectional identification with father and delin-
quency from Table 9.14 into SPSS. Compute the value of the chi-
square statistic for these data. How does it compare to the value re-
ported in the text?

3. Enter the data from Exercise 9.7 into SPSS. Compute the value of the
chi-square statistic for these data. How does it compare with the value
that you calculated for this exercise?

4. Enter the data from Exercise 9.11 into SPSS. Compute the value of the
chi-square statistic for these data. How does it compare with the value
that you calculated for this exercise?

5.

a. Is ethnicity related to grade point average?

b. Is marijuana use among friends related to the youth’s attitudes
about marijuana use?

Problems

nys_1_ student.sav) data file. Use a 5% level Open the nys_1.sav (or 

statistical significance for each of the following relationships:
of significance and outline each of the steps required in a test of 
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c. Is the importance of going to college related to the importance of
having a job?

d. Is grade point average related to the importance of having a job?

e. Is the sex of the youth related to the importance of having friends?

f. Is the importance of having a job related to the youth’s attitudes
about marijuana use?

g. SPSS notes at the bottom of each cross-tabulation the number and
percentage of all cells that had expected frequencies less than 5.
For parts a through f, are there any cross-tabulations that produce
expected frequencies of less than 5 for 20% or more of all cells in
the table? If so, what are the consequences for interpreting the chi-
square statistic? Explain how the categories of one or more vari-
ables could be combined to produce a table that has fewer cells
with expected frequencies of less than 5.

Open the data file pcs_ 98.sav. These data represent a random sample
of 1,300 offenders convicted of drug, property, or violent offenses 
and sentenced in Pennsylvania in 1998. The full data file contains 
information on all offenders (more than 40,000) who were convicted 
of misdemeanor and felony offenses and sentenced to some form of 
punishment in Pennsylvania in 1998. The full data file is avilable 

icpsr.umich.edu/NACJD. (Prior to answering the following questions, 

coded.) Use a 5% level of significance and outline each of the steps 
required in a test of statistical significance for each of the following 
relationships: 

a. Is sex of the offender related to the method of conviction (i.e., plea,
bench trial, or jury trial) ?

b. Is race-ethnicity of the offender related to whether the offender
was incarcerated or not?

(i.e., probation, jail, or prison)?
c. Is method of conviction related to the type of punishment received

6.

d. Is the type of conviction offense (i.e., drug, property, or violent)
related to the method of conviction?

through the National Archive of Criminal Justice Data at http://www. 

you may find it helpful to review the list of variables and how each is 
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The Normal Distribution 

and Its Application 

to Tests of Statistical Significance

w h e n  p o p u l a t i o n  p a r a m e t e r s  a r e  u n k n o w n

How Can We Make Assumptions About an Unknown Population?

When Can It Be Used?

How Can We Define a Sampling Distribution 
When the Parameters Are Unknown?

p o p u l a t i o n  d i s t r i b u t i o n
P a r a m e t r i c  t e s t s  f o r  a  n o r m a l  

U s i n g  t h e  n o r m a l  s a m p l i n g  d i s t r i b u t i o n  

T w o  e x a m p l e s

C h a p t e r  t e n

What are the Characteristics of the Normal Frequency Distribution?

What is the z-Score?

When can We Use the Normal Sampling Distribution?

What are the Assumptions of the One-Sample z-Test for Means?

What is the Central Limit Theorem?

What is the z-Test for Proportions?

What is the t-Test for Means?



IN CHAPTERS 8 AND 9, tests of statistical significance were presented that
did not make assumptions about the population distribution of the char-
acteristics studied. We now turn to a different type of test of statistical
significance in which the researcher must make certain assumptions
about the population distribution. These tests, called parametric tests, are
widely used in criminal justice and criminology because they allow the
researcher to test hypotheses in reference to interval-level scales.

inference is to make statements about populations from what is known
about samples. However, parametric tests require that we make assump-
tions about the population at the outset. If population parameters are
generally unknown, how can we make assumptions about them? In this
chapter, we examine this dilemma in the context of two types of para-
metric tests that are based on the normal distribution.

T h e  N o r m a l  F r e q u e n c y  D i s t r i b u t i o n ,  o r  N o r m a l  C u r v e

In Chapter 3, we noted that frequency distributions may take many dif-
ferent forms. Sometimes there is no pattern to a distribution of scores.
This is the case for the example in Figure 10.1, in which the frequency of
scores goes up and down without consistency. But often a distribution
begins to take a specific shape. For example, Floyd Allport suggested
more than half a century ago that the distribution of deviant behavior is
shaped like a J.1 His J curve, represented in Figure 10.2, fits many types

1F. H. Allport, “The J-Curve Hypothesis of Conforming Behavior,” Journal of Social
Psychology 5 (1934): 141–183.

We begin by introducing the normal sampling distribution and its
application to tests of significance for measures that are normally dis-

researchers in the use of parametric tests. The purpose of statistical
tributed in the population. We then turn to a basic dilemma faced by
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of rule-breaking behavior and suggests a theory of deviance in which so-
cial control leads most people to conform more or less to societal rules.
Allport fit a J curve to behaviors as diverse as parking violations, confor-
mity to religious rituals in church, and stopping at a stop sign.

The most widely utilized distributional form in statistics is what is de-
fined as the normal frequency distribution or normal curve. The
normal distribution is the basis for a number of parametric statistical

Random Frequency DistributionFigure 10.1

The J CurveFigure 10.2

Conformity Deviance
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tests. This is the case in good part because of a set of special characteris-
tics associated with the normal curve.

Characteristics of the Normal Frequency Distribution
A normal distribution is always symmetrical and bell shaped. By that we
mean that it is shaped exactly the same on both sides of its mean. If you
represent a normal distribution as a curve, you can fold it over at its
mean and gain two half-curves that are exactly alike. Of course, there
are many different potential bell-shaped curves that are symmetrical, as
illustrated in Figure 10.3. The curve in part a of Figure 10.3, for example,
is fairly flat. What this means is that the scores are fairly widely spread
around the mean. The curve in part b, in contrast, is very peaked. Here,
the scores are tightly clustered around the mean. In the statistical lan-
guage developed in earlier chapters, we can say that the standard devia-
tion of the first distribution is much larger than that of the second.

In a true normal distribution, the mean, mode, and median are always
the same. This can be seen in the normal curves in Figure 10.3. If the
distribution is completely symmetrical, then the 50th percentile score, or
the median, must be right in the middle of the distribution. In turn, since

Two Examples of Normal CurvesFigure 10.3

(a) Normal Curve with a Large Standard 
Deviation

(b) Normal Curve with a Small Standard 
Deviation
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the middle of the distribution represents its highest peak, and thus the
largest frequency of scores, it is also the location of the mode for the
normal distribution. Finally, given that there is an exactly equal distribu-
tion of scores below and above that peak, the same value must also be
the mean for a normal distribution.

All of these traits help to define a normal distribution. However, the
most useful characteristic of a normal distribution develops from the fact
that the percentage of cases between its mean and points at a measured
distance from the mean is always fixed. The measure in this case is the
standard deviation unit. A standard deviation unit is simply the stan-
dard deviation for the particular distribution being examined. For exam-
ple, let’s say that you were examining the results of a standardized test
for assessing adjustment of prisoners and that the distribution obtained
was a normal distribution. You obtained a mean score of 90 and a stan-
dard deviation of 10 for your sample. The standard deviation unit of this
distribution would be 10. That is, if you measured one standard devia-
tion unit from the mean in either direction, you would move 10 points
from the mean, to 100 and 80. If you measured two standard deviation
units from the mean, you would move 20 points, to 110 and 70.

In a normal distribution, 68.26% of the cases in the distribution are
found within one standard deviation unit above and below the mean
(see Figure 10.4). Because the normal distribution is symmetrical, this
means that 34.13% of the cases lie within one standard deviation unit to
either the right (positive side) or the left (negative side) of the mean.

Percentage of Cases Under Portions of the Normal CurveFigure 10.4

Standard Deviations

–4 –3 –2 –1 0 +1 +2 +3 +4

0.13% 2.14% 13.59% 34.13% 34.13% 13.59% 2.14% 0.13%

68.26% 

95.46% 

σσσσ σ σ σ σ
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Fully 95.46% of the cases are found within two standard deviation units
above and below the mean. Virtually all of the cases in a distribution
with a normal form are within three standard deviation units of the
mean, although in theory the tails (or extremes) of this distribution go on
forever. For the sample of inmates discussed above, we thus know that
slightly more than two-thirds have adjustment scores of between 80 and
100 (one standard deviation unit above and below the mean). Very few
members of the sample have adjustment scores above 120, which repre-
sents a score that is three standard deviation units from the mean.

z-Scores

scores in our sample or population to z-scores, which represent stan-
dard deviation units for the standard normal distribution. This distribu-
tion has a mean of 0 and a standard deviation unit of 1. The formula for
converting a specific score to a z-score is represented by Equation 10.1.

Equation 10.1

For this equation, we take the score of interest and subtract from it the
mean score for the population distribution (represented by �). We then
divide that result by the standard deviation of the population distribution
we are examining (represented by �). In practice, what this formula does
is allow us to convert any specific score in any normal distribution to a
z-score in a standard normal distribution. We can then use a standard-
ized table to identify the location of that score. A concrete example will
make this conversion easier to understand.

Intelligence quotient (IQ) scores are normally distributed in the U.S.
population, with a mean of 100 and a standard deviation of about 15.
Suppose a probation officer is writing a report on a young offender. She
finds that the young man has an IQ of 124. She wants to give the sen-
tencing judge a good sense of what this means in terms of how this
young man compares to others. She can do this by transforming the
mean IQ of the offender (124) to a z-score and then identifying where
this z-score fits in the standard normal distribution. We use Equation
10.1 for this purpose.

As shown in the numerator of the equation, we subtract the popula-
tion mean (�) of IQ scores, which we already noted was 100, from the
score of 124. By doing this we shift the position of our score. We now
have its location if the mean of our distribution were 0—the mean of a
standard normal distribution.

z � 
Xi � �

�

Using a simple equation, we can convert all normal distributions, irrespec-

normal distribution. This distribution can then be used to identify
the exact location of any score. We do this by converting the actual

tive of their particular mean or standard deviation, to a single standard
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If the mean were 0, then the score for this offender would be 24 (and
not 124). As a second step, we divide this result by 15, the standard devi-
ation (�) of IQ scores in the U.S. population. This is equivalent to con-
verting our sample standard deviation unit to 1, the standard deviation of
the standard normal distribution, since each score of 15 is equivalent to
one z standard deviation unit. The result is 1.60.

Our final step is to compare this z-score to an already prepared table
of the standard normal distribution, provided in Appendix 3. You will
notice that the z table goes up to only 0.50. This is because it provides
us with only half of the normal curve. On this half of the normal curve,

W orking It Out

 � 1.60

 � 124 � 100
15

 z � 
Xi � �

�

IQ Score of Young Prisoner Compared to Average IQ Score of the General PopulationFigure 10.5

z = 1.60
score for prisoners

94.52% 5.48% 
44.52% 

µ

our z-score of 1.60 is equivalent to 0.4452, meaning that 44.52% of
the scores lie between 0 and �1.60 standard deviations from 0. In
Figure 10.5, our result is illustrated in the context of the normal curve.
Because our result is a positive score, we place the value on the right-
hand side of the normal distribution.
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To identify the percentage of people in the general population with
IQ scores higher than that of the young offender, we subtract our result
of 0.4452 from 0.50 (the proportion of cases in this half of the curve).
Our result of 0.0548 means that only a bit more than 5% of the general
population has higher IQ scores than this offender. Conversely, almost
95% of the population has lower IQ scores than this offender. By con-
verting the offender’s score to a score on the standard normal distribu-
tion, we are able to place his intelligence in context. From our finding,
we can see that he is indeed a highly intelligent young man, based on
his IQ score.

Developing Tests of Statistical Significance Based on the Standard Normal
Distribution: The Single-Sample z-Test for Known Populations
The normal distribution can also be used as a sampling distribution.

population characteristics for all Americans are, as discussed above,
known. The mean score for the population is 100, and the standard devi-
ation of the population mean is 15. You conduct a study of 125 prisoners
selected through an independent random sampling procedure from the
population of American prisoners. You find that the mean IQ in your
sample is 90.2 This mean is different from the mean of the American
population. But we know that samples vary, and thus you might get a
mean of 90 even if the mean for American prisoners were the same as
that for the general population. What we want to know is how likely we
are to get such an outcome in our sample if the distribution of American
prisoners is the same as that of the general American population.3 Be-

2Our hypothesized results mirror those found in prior studies; see R. J. Hernstein,
“Some Criminogenic Traits of Offenders,” in J. Q. Wilson (ed.), Crime and Public Pol-
icy (San Francisco: Institute for Contemporary Studies, 1983). Whether these differ-
ences mean that offenders are, on average, less intelligent than nonoffenders is an
issue of some controversy in criminology, in part because of the relationship of IQ to
other factors, such as education and social status.
3By implication, we are asking whether it is reasonable to believe that our sample of
prisoners was drawn from the general population. For this reason, the z-test can also
be used to test for random sampling. If you have reason to doubt the sampling meth-
ods of a study, you can conduct this test, comparing the observed characteristics of
your sample with the known parameters of the population from which your sample
was drawn.
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distribution of sample means will also be distributed normally. This means 
When a population of scores is distributed normally, the sampling

in practice that we can use the normal distribution as our sampling

This is the case for the IQ test, so we will continue to use it as an example.
Let’s say that you were interested in whether American prisoners
differ from Americans generally in terms of average IQ scores. The

that the variable of interest is normally distributed in the population.
distribution for a test of statistical significance if we know at the outset 
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cause the population parameters of the American population are known,
a single-sample z-test for known populations is appropriate.

We set up our test of statistical significance the same way we did
other tests in previous chapters.

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution.

Sampling Method: Independent random sampling.

Sampling Frame: The American prison population.

Hypotheses:

H0: The mean IQ of the population from which our sample of prisoners
was drawn is the same as the mean IQ of the general population of
Americans (� � 100).

H1: The mean IQ of the population from which our sample of prisoners
was drawn is not the same as the mean IQ of the general population of
Americans (� � 100).

As required by the single-sample z-test for known populations, IQ
scores are measured at an interval level. As already noted, IQ is also nor-
mally distributed in the general population, meaning that it is appropri-
ate to use a normal sampling distribution to conduct our test of statistical
significance. Our sample, as required by our test, is drawn randomly

pothesis is that the mean IQ of American prisoners is the same as the
mean IQ of the general American population (� � 100). Our research
hypothesis is that the mean IQ of prisoners is different from that of the

The Sampling Distribution

population distribution and apply it to the sampling distribution for our
test, because the standard deviation of the sampling distribution is influ-
enced by the number of observations in a sample. This is illustrated in
Figure 10.6, which presents three different sampling distributions for the
same population distribution of scores. In the first, there are only 10
cases in the samples from which the sampling distribution is developed.
In the second, there are 25 cases in each sample. Finally, in the third
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that the mean of the sampling distribution is the same as the mean of the

However, we cannot simply take the standard deviation of scores for the
ledge of the standard deviation of the population distribution of scores. 

The mean of the sampling distribution we use

average American (� � 100).

with replacement from the American prison population. Our null hy-

for our test of statistical inference is defined, as in other tests, by our null
hypothesis. In statistical tests using the normal distribution we can assume

population distribution. In this case, it is 100, or the mean IQ for the
American population. The standard deviation is drawn from our know-
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that the spread of scores is reduced as the size of samples in the distrib-
ution increases. This fact is a very important one in statistics and follows

samples increases. Put in lay terms, larger samples are more trustworthy
or more likely to reflect the true population score, all else being equal,
than are smaller samples.

In order to differentiate between the standard deviation of a popula-
tion distribution of scores and that of a sampling distribution, statisticians
call the standard deviation of a sampling distribution the standard
error. Using Equation 10.2, we adjust our standard error for the fact that
the dispersion of sample means decreases as sample size increases. In
order to distinguish the standard deviation (�) from the standard error in
this text, we will use the subscripts sd (for sampling distribution) when-
ever we refer to the standard error of a sampling distribution. Accord-
ingly, the standard error of a sampling distribution is represented as �sd

in Equation 10.2.

Equation 10.2

For our example, we find the standard error of the sampling distribu-
tion by dividing the population standard deviation of IQ, 15, by the
square root of our sample N. The result is 1.342.

Standard error � �sd � �

�N

Normal Distribution of Scores from Samples of Varying Sizes: N � 10, N � 25, and N � 100Figure 10.6
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distribution, there are 100 cases in each sample. What is clear here is

what our common sense tells us: Our sampling distribution becomes
more tightly clustered around the mean as N increases. This implies,
in practice, that we are less likely to draw deviant samples (those far
from the mean of the sampling distribution) as the N of cases in our
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Significance Level and Rejection Region Given that no special concerns
have been stated in regard to the risk of either a Type I or a Type II
error, we use a conventional 0.05 significance threshold. As our research
hypothesis is nondirectional, we use a two-tailed test. What this means
for our rejection region is illustrated in Figure 10.7. On the right-hand
side of the distribution are outcomes greater than the average American
IQ of 100. On the left-hand side of the distribution are outcomes less
than the average. Because our research hypothesis is not directional, we
split our total rejection region of 5% between both tails of the distribu-
tion. This is represented by the shaded area. Each shaded area repre-
sents half the total rejection region, or 0.025.

W orking It Out

 � 1.342

 � 
15

�125

 Standard error � �

�N

Rejection Region on a Normal Frequency Distribution for a 0.05 Two-Tailed 
Significance Test

Figure 10.7

z = –1.96

Total Rejection Region,     = 0.025 + 0.025 = 0.05

Rejection
Region
    = 0.025

Rejection
Region
    = 0.025

z = +1.96

Outcomes Supporting
Lower IQs for Prisoners

Outcomes Supporting
Higher IQs for Prisoners

µ

α

α 

α 
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To define the z-score that corresponds with our rejection region,
we must turn to the table of probability values associated with the z
distribution in Appendix 3. As discussed earlier in the chapter, the z
table represents only half of the normal curve. We look at the value
associated with 0.4750 (0.5000 � 0.0250) in the table, which is 1.96. If
we observe a test statistic either greater than 1.96 or less than �1.96,
we will reject the null hypothesis of our test (see Figure 10.7). In this
case, our observed significance level would be less than the 0.05 crite-
rion for our test.

If we had stated a directional research hypothesis, we would place
the entire rejection region (� � 0.05) in one of the two tails of the nor-
mal distribution. In this case, we would conduct a one-tailed statistical
test. Parts a and b of Figure 10.8 represent the rejection regions for two
different one-tailed tests of statistical significance. If our research hypoth-
esis stated that average IQs for prisoners were less than those for the
U.S. population, we would place the entire rejection region of 0.0500 in
the left tail of the distribution (see Figure 10.8a). We again consult the z
table in Appendix 3 to identify the z-score associated with a value of
0.4500 (0.5000 � 0.0500). We observe that 0.4500 falls exactly halfway
between two values in the table —0.4495 and 0.4505—corresponding to
z-scores of �1.64 and �1.65, respectively. How do we determine the
value of z in such a case? The most accurate value for z would be found
by interpolating between �1.64 and �1.65, which would give �1.645,

The Test Statistic To calculate our test statistic, we can use the same for-
mula we did in examining the relative position of a score in the standard
normal distribution, with two important differences. In this case, we
have to take into account the fact that sampling distributions become
more tightly spread around their mean as the N of sample cases becomes
larger. As discussed in defining the sampling distribution above, we need
to adjust the standard deviation of the population distribution by divid-
ing it by the square root of the N of our sample. This provides us with
the standard error (�sd) for our distribution. We also need to subtract the

average IQ for prisoners is less than the U.S. average. If our research
than �1.645,  then we reject our null hypothesis and conclude that the
portions reported in the z table. In this case, if our test statistic is less 
since the value we are looking for is halfway between the two pro-

hypothesis stated that the average IQ of prisoners was greater than the
U.S. average, we would place the rejection region on the right side
of the distribution (see Figure 10.8b). In such a case, our critical value
would be �1.645, meaning that if our test statistic was greater than
1.645, we would reject the null hypothesis and conclude that the ave-
rage IQ for prisoners was greater than the U.S. average.
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Rejection Region on a Normal Frequency Distribution for a 0.05 One-Tailed Significance TestFigure 10.8
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mean (�) of the population score from , rather than Xi. These adjust-
ments are made in Equation 10.3.

Equation 10.3

Inserting into our equation the mean value of our sample and its N of
cases and the mean and standard deviation for the population of scores,
we obtain a z-test statistic of �7.453.

z � 
X � �

�sd
 � 

X � �

�/�N

X

W orking It Out

 � �7.453

 � 
90 � 100

15/�125

 z � 
X � �

�/�N

The Decision Because our test statistic is less than our negative critical
value (�7.453 � �1.96) and falls in the rejection region, we reject the
null hypothesis. We conclude on the basis of our study that the mean IQ
of the population from which our sample was drawn is different from
that of the general American population.

A p p l y i n g  N o r m a l  S a m p l i n g  
D i s t r i b u t i o n s  t o  N o n n o r m a l  P o p u l a t i o n s

The example of IQ presents a case where the single-sample z-test can be
used to test hypotheses involving interval-scale measures. However, it re-
quires that the population distribution for the measure be normal. In
some fields in the social sciences, measures are constructed in such a way
that they are normally distributed in practice.4 But in criminology, there

4In principle, any distribution may be arranged in such a way that it conforms to a
normal shape. This can be done simply by ranking scores and then placing the appro-
priate number within standard deviation units appropriate for constructing a standard
normal distribution.
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has been much less use of distributions that are standardized in normal
form, in part because the distributions of the behaviors and populations
that we confront do not often conform to the shape of a normal curve.
Even measures that do begin to approximate the shape of the normal dis-
tribution seldom meet all the requirements of a true normal distribution.

How, then, can parametric tests based on the normal distribution be
widely used to make statistical inferences? Not only do they demand that
we make an assumption about a population we usually know little
about, but the assumption we are being asked to make does not make
very much sense for criminal justice measures. The answer may be
found in an important distinction between population distributions on
the one hand and sampling distributions on the other. While we have
every reason to be hesitant in assuming that the population distribution
of scores is normal for criminal justice measures, we can assume with a
good deal of confidence that the sampling distributions for such mea-
sures are approximately normal. Using the toss of a fair coin as an exam-
ple, we can provide a simple illustration of this fact.

In Figure 10.9, we overlay the distribution of scores for a population
of 1,000 tosses of a fair coin over the normal distribution. As is apparent,
outcomes in a coin toss are not distributed normally. This makes good
sense, since there are only two possible scores for the coin toss: heads
and tails. No matter what the outcome, it is impossible for a coin toss to
approximate the form of the normal distribution.

But let’s now turn to a sampling distribution for the coin toss. In
this case, we want to know the likelihood of gaining a specific num-
ber of heads in a set number of coin tosses. This is the logic we used

Distribution of 1,000 Tosses of a Fair Coin Contrasted to the Normal DistributionFigure 10.9
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in developing the binomial probability distribution in Chapter 7. Fig-
ure 10.10 presents the binomial distribution for different-size samples
of the coin toss under the null hypothesis that the coin is fair.

For a sample size of 1 (Figure 10.10a), the shape of the sampling dis-
tribution is the same as the shape of the population distribution of
scores. However, notice what happens as the size of the samples used to
construct the sampling distributions grows. For a sample of 10 (Figure
10.10b), the histogram for the distribution of scores is still jagged, but it
has begun to take a shape similar to the normal distribution. Importantly,
for a sample of 10, we do not have two potential outcomes, which

Sampling Distribution of Coin TossesFigure 10.10
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would make a normal shape impossible, but 11 potential outcomes (no
heads, one head, two heads, three heads, four heads, . . . to ten heads).
This is the case because we are flipping the coin ten times for each sam-
ple. The sampling distribution is telling us the number of times we
would expect to gain a specific number of heads in ten tosses of a fair
coin in a very large number of trials. For a sample of 100 flips of a fair
coin (Figure 10.10c), the sampling distribution even more closely ap-
proximates the normal curve. By the time we get to a sample of 400 flips
of the coin (Figure 10.10d), the sampling distribution of a fair coin is al-
most indistinguishable from the normal curve.
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(c) 100 Tosses of a Fair Coin
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Sampling Distribution of Coin Tosses (cont.)Figure 10.10
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The population distribution of scores for a fair coin is very far from a
normal form. Yet sampling distributions for the same population begin
to approximate the normal distribution as the size of the sample of coin
tosses grows. This remarkable fact is summarized in a very important
theorem, or statement, about sampling distributions called the central
limit theorem. The central limit theorem allows us to overcome our ini-
tial dilemma because it says that under many circumstances we can use
a normal sampling distribution for making inferences about a population
that is not normal in shape.

Central Limit Theorem
If repeated independent random samples of size N are drawn from a
population, then as N grows large, the sampling distribution of sample
means will be approximately normal.

The central limit theorem tells us that when the number of cases in a
sample is large, we can assume that the sampling distribution of sample
means is approximately normal even if the population distribution itself
is not normal. This is what is meant by the statement “then as N grows
large, the sampling distribution of sample means will be approximately
normal.” However, the theorem does not provide us with a clear state-
ment about how large the number of cases in a sample must be before
we can make this assumption.

One reason for this ambiguity is that the number of cases needed be-
fore the sampling distribution begins to approximate normality depends
in part on the actual distribution of the measure examined in the popula-
tion. As can be seen from the example of the coin toss, even when the
population distribution departs markedly from the normal distribution,
the sampling distribution fits fairly closely to the normal curve with a
sample size of 100. For this reason, you will find wide agreement that a
normal sampling distribution can be assumed for samples of 100 or
more, irrespective of the distribution of scores in a population.

There is much less agreement about what to do when a sample is
smaller than 100 cases. Some statisticians argue that with 50 cases you
can be fairly confident that the central limit theorem applies in most cir-
cumstances. Others apply this yardstick to 25 or 30 cases, and still others
argue that under certain circumstances—for example, when prior studies
suggest a population distribution fairly close to normality—only 15 cases
is enough. In conducting research in criminal justice, you should recog-
nize that there is no hard and fast rule regarding sample size and the
central limit theorem. In practice, in criminal justice, researchers gener-
ally assume that 30 cases is enough for applying the central limit theo-
rem. However, when a distribution strongly departs from normality, as is
the case with a proportion, it is safer to require more than 100 cases.
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While the central limit theorem solves a major problem in applying
normal distribution tests to criminological questions, we are still faced
with a barrier in actually carrying out such tests. As we saw earlier (see
Equation 10.3), the standard error of the z sampling distribution is gained
from knowledge about the standard deviation of the population distribu-
tion. How can we identify the standard error of a sampling distribution if
we do not know the standard deviation of the population distribution? In
the following sections, we illustrate two methods for defining � for an
unknown population. In the first, we take advantage of a special rela-
tionship between the mean and the standard deviation of a proportion.
In the second, we estimate the unknown parameter based on informa-
tion gained in our sample.

C o m p a r i n g  a  S a m p l e  t o  a n  U n k n o w n  P o p u l a t i o n :  
T h e  S i n g l e - S a m p l e  z - T e s t  f o r  P r o p o r t i o n s

One implication of the central limit theorem is that we can use a normal

begins to approximate a normal distribution when the number of cases
for the sample becomes large. The central tendency of this distribution
and its dispersion are measured by the mean and standard error, just as in
distributions that develop from interval-level data. Accordingly, although
it would be inappropriate to use the mean and standard deviation to de-
scribe a sample or population distribution of a proportion, the mean and
standard error are appropriate statistics for describing the normal sam-
pling distribution that is associated with the same proportion.

Computing the Mean and Standard Deviation 
for the Sampling Distribution of a Proportion
How do we compute the mean and standard deviation of a proportion?
One way to do this would be to simply apply the formula for the mean
and the standard deviation to the scores associated with a proportion.
However, there is a simpler way to arrive at the same result. It turns out
that the mean of a proportion is equal to the proportion itself. This is il-
lustrated in Table 10.1, which shows an example in which the mean and
proportion are calculated for five heads in ten tosses of a coin.

sampling distribution to test hypotheses involving proportions. This might 
seem strange at first, since we estimate the shape of a normal distribu-
tion through knowledge of its mean and standard deviation. As discus-
sed in Chapter 4, the mean and standard deviation are not appropriate
statistics to use with a nominal-level measure such as a proportion.

bution of a proportion—in our example, the coin toss (see Figure 10.10)—
Nonetheless, as illustrated in the previous section, the sampling distri-
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For the numerator of the mean, we sum the scores on the ten trials
(five ones and five zeros) and get 5. The numerator of a proportion is
the N of cases in the category of interest. If the category is heads, then
we also get a result of 5. The denominators for both equations are the
same (10), and thus the outcomes are also the same. As a general rule,
we state that for a proportion � � P.

What about the standard deviation of a proportion? It turns out that
we can calculate the standard deviation with knowledge of only the pro-
portion itself. This is illustrated in Table 10.2.

Taking the sum of the squared deviations from the mean and divid-
ing it by N, we get a result of 0.25. But we can get this same result by
multiplying the proportion of heads (P) by the proportion of tails 
(Q)—in our case, multiplying 0.5 by 0.5. Accordingly, we can substitute
P • Q for

�
N

i�1
 (Xi � X)2

N

Calculating the Mean and Proportion 
of 5 Heads in 10 Tosses of a Coin

CALCULATING THE PROPORTION 
CALCULATING THE MEAN FOR FIVE HEADS FOR FIVE HEADS

Proportion � 
Nsuccesses

Ntotal
 � 5

10
 � 0.5X � 

�
N

i�1
 Xi

N
 � 1 � 1 � 1 � 1 � 1 � 0 � 0 � 0 � 0 � 0

10
 � 0.5

Table 10.1

Calculating the Standard Deviation of 5 Heads in 10 Tosses of a Coin

CALCULATING THE STANDARD DEVIATION CALCULATING THE STANDARD 
FROM THE RAW SCORES DEVIATION FROM P AND Q

 � �0.25  � 0.5

 � �0.25 � 0.25 � 0.25 � 0.25 �0.25 � 0.25 �0.25 � 0.25 �0.25 � 0.25
10

� � �PQ � �(0.5)(0.5) � �0.25 � 0.5 � � ��
N

i�1
 (Xi � X)2

N

Table 10.2
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in the equation for the standard deviation for the mean:

Equation 10.4

Because of this relationship between the mean and the standard devi-
ation of a proportion, when we state the proportion of successes ex-
pected under the null hypothesis, we also state by implication the mean
and the standard deviation for the population distribution of scores. So if
we state in the null hypothesis that the proportion of successes in the
population is 0.50, we know that the mean of the population distribution
of scores for our test of the null hypothesis is 0.50 and its standard devia-
tion is .

What this means in practice is that we need not have any a priori
knowledge of the shape of the population distribution to construct a
sampling distribution for our test of proportions. With a large N, we can
assume a normal sampling distribution, irrespective of the actual form of
the population distribution. Through our null hypothesis, we can define
both the mean and the standard deviation of the population distribution
for our test. We are now ready to use the normal distribution to test hy-
potheses about unknown population parameters.

Testing Hypotheses with the Normal Distribution: 
The Case of a New Prison Program
Suppose that you were asked to evaluate a new prison education pro-

ported by the foundation. Managers of the program claim that the suc-
cess rate is actually much greater than the criteria set by the foundation.
However, a recent newspaper exposé claims that the success rate of the
program is actually much below 75%. You are able to collect information
on 150 prisoners, selected using independent random sampling. You
find that 85% of your sample successfully completed the course. What
conclusions can you make, based on your sample results, about the
claims of managers and the newspaper exposé?

Assumptions:

Level of Measurement: Interval scale (program success is measured as a
proportion).

Population Distribution: Normal distribution (relaxed because N is
large).

0.25 (� � �PQ � �(0.50)(0.50) � �0.25 � 0.50)

� � ��
N

i�1
 (Xi � X)2

N
 � �PQ

gram. The foundation sponsoring the effort sought to achieve a pro-
gram success rate of 75% among the 100,000 prisoners enrolled in the
program. Success was defined as completion of a six-month course sup-
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Sampling Method: Independent random sampling.

Sampling Frame: 100,000 prisoners in the program.

Hypotheses:

H0: The success rate of the program is 0.75 (P � 0.75).

H1: The success rate of the program is not 0.75 (P � 0.75).

Because the number of cases in our sample is greater than the thresh-
old of 100 suggested for invoking the central limit theorem in the case of
a proportion, we can ignore—or, in statistical terms, relax—assump-
tions regarding the shape of the population distribution. In the special
case of a proportion, we can also relax the assumption of an interval
scale of measurement.5 Our sample, as assumed by our test, is drawn
randomly with replacement from the sampling frame of 100,000 prison-
ers in the program.

Our research hypothesis is nondirectional. Managers of the program
claim that the program has a success rate of greater than 0.75 (P � 0.75).
The newspaper exposé claims that the success rate is much below 75%
(P � 0.75). Accordingly, we want to be able to examine both of these
potential outcomes in our test. The null hypothesis is that the rate of suc-
cess for the program is 0.75 (P � 0.75).

The Sampling Distribution In calculating the mean and standard devia-
tion or standard error for our sampling distribution, we rely on our null
hypothesis. Our null hypothesis states that the proportion of successes in
the population is 75%. This means that the mean of the sampling distrib-
ution is also 0.75. We can calculate the standard error of the sampling

5It would not make sense, however, to use a normal distribution test for nominal-scale
measures with more than two categories. The normal distribution assumes scores
above and below a mean. The sampling distribution of a proportion follows this
pattern because it includes only two potential outcomes, which then are associated
with each tail of the distribution. In a multicategory nominal-scale measure, we have
more than two outcomes and thus cannot fit each outcome to a tail of the normal
curve. Because the order of these outcomes is not defined, we also cannot place them
on a continuum within the normal distribution. This latter possibility would suggest
that the normal distribution could be applied to ordinal-level measures. However, be-
cause we do not assume a constant unit of measurement between ordinal categories,
the normal distribution is often considered inappropriate for hypothesis testing with
ordinal scales. In the case of a proportion, there is a constant unit of measurement
between scores simply because there are only two possible outcomes (e.g., success
and failure).
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distribution by adjusting Equation 10.2 to the case of a proportion, as il-
lustrated in Equation 10.5:

Equation 10.5

Applying this equation to our problem, we obtain a standard error of
0.035 for the normal sampling distribution associated with our null
hypothesis:

�sd � �

�N
 � 

�PQ

�N
 � �PQ

N

W orking It Out

 � 0.0353

 � 
0.433
12.25

 � 
�0.1875

�150

 � �(0.75)(0.25)
150

 �sd � �PQ
N

In order to test our hypothesis, we will convert this sampling distribu-
tion, with mean 0.75 and standard error 0.035, to the standard normal
distribution (or z), which has a mean of 0 and a standard deviation or
standard error of 1. This calculation is done when we calculate the test
statistic below.

Significance Level and Rejection Region Given that no special concerns
have been stated in regard to the risk of either a Type I or a Type II
error, we use a conventional 0.05 significance threshold. As our research
hypothesis is nondirectional, we use a two-tailed test. As our level of sig-
nificance is the same as in our previous problem, we follow the same
procedure and arrive at a critical value of 1.96. If we observe a test statis-
tic either greater than 1.96 or less than �1.96, we will reject the null hy-
pothesis of our test.
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The Test Statistic We can rely on the same formula used in the single-
sample z-test for known populations, presented earlier in Equation 10.3.
However, in Equation 10.6, we express the formula with proportions
rather than means:

Equation 10.6

The mean of the sample (p) is 0.85, since this is the outcome of the
study. The mean of the sampling distribution P (0.75) is taken from our
null hypothesis. The standard error of the sampling distribution (�sd) was
calculated earlier based on our null hypothesis that the proportion of
successes was 0.75. Our result is a z-score of 2.833.

z � 
X � �

�sd
 � 

X � �

�/�N
 � 

p � P

�PQ/N

W orking It Out

 � 2.8329

 � 0.10
0.0353

 � 
0.85 � 0.75

�(0.75)(0.25)/150

 z �
p � P

The Decision Our test statistic is well within the rejection region of our
test (which includes scores greater than 1.96 or less than �1.96), meaning
that our observed significance level is less than the significance level we
set for our test at the outset (p � 0.05). We therefore reject the null hy-
pothesis at a 0.05 significance level. We come out on the side of the man-
agers of the program. Our sample results support their position that the
overall program has exceeded the criterion for success of the foundation.

C o m p a r i n g  a  S a m p l e  t o  a n  U n k n o w n  
P o p u l a t i o n :  T h e  S i n g l e - S a m p l e  t - T e s t  f o r  M e a n s

The proportion provides us with a special case in which we can calcu-
late the standard error of our sampling distribution based on our null hy-
pothesis. But this is not possible when our null hypothesis relates to a
mean of an interval-level measure. In this case, there is not one specific
variance or standard deviation associated with a mean but an infinite
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number of potential variances or standard deviations. How, then, can we
test hypotheses about unknown parameters in the case of the mean?

One obvious method is to simply use the variance of our sample as a
“guesstimate” of the variance of the population distribution. The problem
with this solution is that the variance of a sample is a somewhat biased
estimate of the variance of the population. By this we mean that the av-
erage of repeated observations of the variance (s2) tends in the long run
not to be equivalent to the value of �2. We can transform s2 to a better
estimate of �2 through a very small correction to the equation for the
variance. This new statistic (expressed as since it is an estimate of �2)
is represented in Equation 10.7.6 An estimate of the standard deviation

can be gained by taking the square root of this value.

Equation 10.7

In order to use this new statistic to test hypotheses, we must also use
a slightly different sampling distribution, called the t distribution. It is
sometimes called Student’s t because its inventor, W. S. Gossett
(1876–1936), first described the distribution under the pen name Student
in 1908.

The t distribution (Appendix 4) is very similar to the z distribution
(Appendix 3). However, as with the chi-square test, the shape of the t
distribution is dependent on the number of degrees of freedom. The
number of degrees of freedom for a single-sample t-test is defined as 
N � 1. When the number of cases in a sample is greater than 500, then
the t and z distributions are virtually identical. However, as the number
of cases in a sample gets smaller and smaller, and so accordingly does
the number of degrees of freedom, the t distribution becomes flatter and
a larger and larger test statistic is needed to reject the null hypothesis.

This fact can be illustrated by looking at the t table in Appendix 4. As
you can see, the t table lists the critical values associated with six signifi-
cance thresholds for both one- and two-tailed tests. Let’s focus on the
fourth column, which is the critical value associated with a two-tailed,
5% significance level. When the number of degrees of freedom is 500,
the critical value for the t-statistic is the same as for the z distribution:
1.960. At 120, the t value needed to reject the null hypothesis is still al-
most the same: 1.980. At 100, the value is 1.982: at 50, it is 2.008; and at
25, it is 2.060. The largest differences come for even smaller degrees of
freedom.

 �̂2 � 
�
N

i�1
 (Xi � X)2

N � 1

(�̂)

�̂2

6As noted on page 97 (footnote 1), computerized statistical analysis packages, such as
SPSS, use this corrected estimate in calculating the variance and standard deviation for
sample estimates.
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The t distribution presents a new problem as well in making infer-
ences to unknown populations. Relaxing the assumption of normality is
generally considered more risky in a t-test than in a z-test. This makes
good sense because we are now using an estimate of � rather than the
actual population parameter. As the number of cases increases, our con-
fidence in this estimate grows.7 How large should N be before you are
willing to use a t-test? With samples of more than 30 cases, your statisti-
cal conclusions are not likely to be challenged. However, the t distribu-
tion is particularly sensitive to outliers. Conclusions based on smaller
samples should be checked carefully to make sure that one or two ob-
servations are not the cause of a very large statistical outcome.

Testing Hypotheses with the t Distribution
We are now ready to turn to a practical example. Suppose that the study
described earlier also examined the average test scores for those prison-
ers who had completed the program. The foundation set a standard of
success of 65 on the test. Program managers say that prisoners who have
completed the program achieve average scores much higher than this.
The newspaper exposé again claims that the average scores are consid-
erably lower than those expected by the foundation. In this case, you are
able to take an independent random sample of 51 prisoners who have
completed the test. You find that the test mean for the sample is 60, and
the standard deviation is 15. What conclusions about the larger popula-
tion of prisoners can you come to based on your sample results?

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution (relaxed because 
N is large).

Sampling Method: Independent random sampling.

Sampling Frame: Prisoners who have completed the program.

Hypotheses:

H0: The mean test score for prisoners who have completed the program
is 65 (� � 65).

H1: The mean test score for prisoners who have completed the program
is not 65 (� � 65).

7Our statistical problem is that we assume that � and � are independent in developing
the t distribution. When a distribution is normal, this is indeed the case. However, for
other types of distributions, we cannot make this assumption, and when N is small, a
violation of this assumption is likely to lead to misleading approximations of the ob-
served significance level of a test.
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Following the assumptions of our test, we use an interval scale (the
mean of test scores) and an independent random sampling method. We
relax the assumption of normality because N is larger than the minimum
threshold of 30 recommended for interval-level measures. Our research hy-
pothesis is once again nondirectional so that we can examine the positions
of both the managers of the program and the newspaper exposé. The null
hypothesis is that the mean test score for the population of prisoners com-
pleting the program is 65 (the foundation standard), or that � � 65.

The Sampling Distribution Because � is unknown and cannot be deduced
from our null hypothesis, we will use the t distribution. The number of
degrees of freedom for our example is defined as N � 1, or 51 � 1 � 50.

Significance Level and Rejection Region Again, we have no reason in this
example to depart from the 0.05 significance threshold. Because our re-
search hypothesis is not directional, we use a two-tailed test. Turning to
the t table, we find that a t-score of 2.008 is associated with a two-tailed,
5% significance threshold (at 50 degrees of freedom). This means that we
will reject our null hypothesis if we obtain a test statistic greater than
2.008 or less than �2.008. For these observed values of our test statistic,
the observed significance level of our test is less than the criterion of
0.05 that we have selected.

The Test Statistic The test statistic for the t distribution is similar to that
for the z distribution. The only difference is that we now use an estimate
of the standard deviation rather than � itself.

Equation 10.8

Although we can get an estimate of � by adjusting the calculation for
s, the formula for t may also be written in a way that allows us to calcu-
late t from the unadjusted sample standard deviation.

 � 
X � �

��
N

i�1
 (Xi � X )2

N
    �N � 1

 t � 
X � �

�̂/�N
 � 

X � �

��
N

i�1
 (Xi � X )2

N � 1
   �N

t � 
X � �

�sd
 � 

X � �

�̂/�N

(�̂)

247



C H A P T E R T E N :  T H E N O R M A L D I S T R I B U T I O N

This means that we can simplify the equation for the t-test as follows:

Equation 10.9

Applying the t formula to our example, we use the mean of the sample,
60, as ; � is defined by the null hypothesis as 65; s is our sample stan-
dard deviation of 15; and N is the number of cases for our sample (51).

X

t � 
X � �

s/�N � 1

W orking It Out

 � �2.3570

 � 
�5

2.1213

 � 
�5

15/�50

 � 
60 � 65

15/�51 � 1

 t � 
X � �

s/�N � 1

The Decision Because the test statistic of �2.3570 is less than �2.008,
we reject the null hypothesis and conclude that the result is significantly
different from the goal set by the foundation. In this case, our decision is
on the side of the newspaper exposé. We can conclude from our sample
(with a 5% level of risk of falsely rejecting the null hypothesis) that the
test scores in the population of prisoners who have completed the pro-
gram are below the foundation goal of 65.

C h a p t e r  S u m m a r y

Parametric tests of statistical significance allow us to make inferences
about a population from samples using interval-level data. In a paramet-
ric test, we make certain assumptions about the shape of the population
distribution at the outset.

The normal distribution, or normal curve, is widely used in statis-
tics. It is symmetrical and bell shaped. Its mean, mode, and median are
always the same. There will always be a set number of cases between
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the mean and points a measured distance from the mean. The measure
of this distance is the standard deviation unit. All normal distributions,
irrespective of their mean or standard deviations, can be converted to a
single standard normal distribution by converting the actual scores in the
sample or population to z-scores. To use a normal sampling distribution
for a test of statistical significance, we must assume that the characteristic
studied is normally distributed in the population.

An important dilemma in statistical inference is created by this as-
sumption. How can we make assumptions about the population distribu-
tion when its characteristics are generally unknown? The central limit
theorem describes an important fact that allows us to solve this prob-
lem. As stated in the theorem, when the number of cases in a sample is
large, the sampling distribution will be approximately normal in shape,
even if the population distribution itself is not. In the field of criminal
justice, it is generally assumed that the central limit theorem can be ap-
plied where the sample size is 30 or greater. When dealing with propor-
tions, though, it is safer to require a sample size of at least 100. In such
circumstances, we may relax the assumption of normality. We can
now make inferences using a normal sampling distribution, even though
the shape of the population distribution is unknown.

In order to define the sampling distribution, we need information
about the population parameters—information that is not usually avail-
able. In the case of a test involving proportions, the null hypothesis can
be used to define both the mean and the standard error of the popula-
tion distribution. Once the population parameters have been defined by
the null hypothesis, we can apply the formula for the z-test of statistical
significance. In the case of a test of means, the null hypothesis cannot be
used directly to define the standard error. We may, however, use the t

K e y  T e r m s

central limit theorem A theorem that
states: “If repeated independent random
samples of size N are drawn from a
population, as N grows large, the 
sampling distribution of sample means 
will be approximately normal.” The 
central limit theorem enables the researcher
to make inferences about an unknown
population using a normal sampling
distribution.

normal curve A normal frequency distrib-
ution represented on a graph by a continu-
ous line.

normal frequency distribution A bell-
shaped frequency distribution, symmetrical
in form. Its mean, mode, and median are
always the same. The percentage of cases
between the mean and points at a mea-
sured distance from the mean is fixed.
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S y m b o l s  a n d  F o r m u l a s

p Proportion of successes (sample)

P Proportion of successes (population)

Q Proportion of failures (population)

�sd

t t-score

Estimate of �

To determine the z-score for a single observation:

To determine the standard error of a sampling distribution:

�sd � �

�N

z � 
Xi � �

�

�̂

relaxing an assumption Deciding that
we need not be concerned with that as-
sumption. For example, the assumption
that a population is normal may be relaxed
if the sample size is sufficiently large to in-
voke the central limit theorem.

single-sample t-test A test of statistical
significance that is used to examine
whether a sample is drawn from a specific
population with a known or hypothesized
mean. In a t-test, the standard deviation of
the population to which the sample is
being compared is unknown.

single-sample z-test A test of statistical sig-
nificance that is used to examine whether a
sample is drawn from a specific population
with a known or hypothesized mean. In a 
z-test, the standard deviation of the popula-

tion to which the sample is being compared
either is known or—as in the case of a pro-
portion— is defined by the null hypothesis.

standard deviation unit A unit of mea-
surement used to describe the deviation of
a specific score or value from the mean in
a z distribution.

standard error The standard deviation of
a sampling distribution.

standard normal distribution A normal
frequency distribution with a mean of 0
and a standard deviation of 1. Any normal
frequency distribution can be transformed
into the standard normal distribution by
using the z formula.

z-score Score that represents standard
deviation units for a standard normal
distribution.
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To determine the z-score for a sample mean:

To determine the standard deviation of a proportion:

To determine the z-score for a sample proportion:

To estimate the value of � from data in a sample:

To determine the value of t:

E x e r c i s e s

10.1 In which of the following circumstances would a researcher be justi-
fied in using a normal sampling distribution? Explain how or why for
each case.

a. A sample of 10 subjects is drawn to study a variable known to be
normally distributed in the population.

b. A sample of 50 subjects is drawn to study a variable known to be
normally distributed in the population.

c. A sample of 10 subjects is drawn to study a variable. The shape of
the distribution of this variable in the population is unknown.

d. A sample of 50 subjects is drawn to study a variable. The 
shape of the distribution of this variable in the population is
unknown.

e. A sample of 50 subjects is drawn to study a proportion. The shape
of the distribution of this proportion in the population is un-
known.

t � 
X � �

s/�N � 1

�̂ � ��
N

i�1
 (Xi � X)2

 N � 1

z � 
X � �

�sd
 � 

X � �

�/�N
 � 

p � P

�PQ /N

�  � �PQ

z � 
X � �

�sd
 � 

X � �

�/�N
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10.2 A team of psychologists has created an index they claim measures an
individual’s “ability to control anger.” The index is calculated from the
answers to a detailed questionnaire and is normally distributed among
U.S. adult males, with a mean of 100 and a standard deviation of 30.
Researchers assess a group of ten prisoners, all of whom have been
convicted for violent rapes. They discover that the mean score for the
group is 50.8.

a. What percentage of U.S. adult males would be expected to obtain a
score equal to or less than that of the rapists?

b. The psychologists who constructed the index consider the bottom
10% of U.S. adult males on their distribution to be “strongly in-
clined to use violence to solve social problems.” Albert is a re-
spectable businessman who scores 60.6 on the scale. Is Albert in-
cluded in this category? Explain why.

c. What percentage of U.S. adult males would be expected to score
between 110 and 120 on the “anger index”?

10.3 A teacher gives the following assignment to 200 students: Check the
local newspaper every morning for a week and count how many times
the word “gun” is mentioned on the “local news” pages. At the end of
the week, the students report their totals. The mean result is 85, with a
standard deviation of 8. The distribution of scores is normal.

a. How many students would be expected to count fewer than 70
cases?

b. How many students would be expected to count between 80 and
90 cases?

c. Karen is a notoriously lazy student. She reports a total of 110 cases
at the end of the week. The professor tells her that he is convinced
she has not done the assignment, but has simply made up the
number. Are his suspicions justified?

10.4 The professors who teach the Introduction to Psychology course at
State University pride themselves on the normal distributions of exam
scores. After the first exam, the current professor reports to the class
that the mean for the exam was 73, with a standard deviation of 7.

a. What proportion of student would be expected to score above 80?

b What proportion of students would be expected to score between
55 and 75?

c. What proportion of students would be expected to score less than 65?

d. If the top 10% of the class receive an A for the exam, what score
would be required for a student to receive an A?

e. If the bottom 10% of the class fail the exam, what score would earn
a student a failing grade?
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10.5 A noted criminologist, Leslie Wilkins, has suggested that the distribu-
tion of deviance in the population follows a normal bell-shaped curve,
with “sinners” at one extreme, “saints” at the other, and most of us
falling somewhere in between the two. Working on the basis of this
theory, a researcher constructs a detailed self-report survey whereby
individuals are given a score based on the offenses they have commit-
ted in the past year, with the score weighted according to the relative
triviality or seriousness of each offense. The lower the score, the
nearer the individual approximates “sinner” status, and the higher the
score, the closer he or she is to being a “saint.” From his initial sample
of 100 adults in a specific state, the researcher computes a mean score
of 30, with a standard deviation of 5.

a. If the researcher’s model is correct, below which score should he
expect to find the 5% of U.S. society with the greatest propensity to
deviance?

b. In his sample of 100, the researcher is surprised to discover that 50
subjects score greater than 35 on the deviance test. How many
cases would be expected under the assumption of a normal distrib-
ution of saints and sinners? What does this suggest about the origi-
nal theory?

10.6 An established test measuring “respect for authority” has a mean
among U.S. adults of 73 and a standard error of 13.8. Brenda gives the
test to 36 prison inmates and finds the mean score to be 69.

a. Is this enough evidence to suggest that the prisoners belong to a
population that has significantly less respect for authority than the
general U.S. adult population?

b. Assuming there is enough information, test whether this sample dif-
fers significantly from the population. Use a significance level of 5%
and outline each of the stages of a test of statistical significance.

10.7 The governor of Stretford Prison has a biographical record of all the
inmates. The mean age of all the inmates is 22, with a standard devia-
tion of 7.5. A recent survey by a hostile researcher makes damaging
criticisms of the educational standards in the prison. The prison gover-
nor suspects that the 50 prisoners interviewed for the study were not
chosen at random. The mean age of the prisoners chosen is 20. Show
how a test for statistical significance can be used by the governor to
cast doubt on the sampling method of the survey. Use a significance
level of 5% and outline each of the stages of a test of statistical
significance.

10.8 A hundred years ago, an anonymous scientist wrote a famous indict-
ment of a notoriously cruel prison somewhere in the United States.
Without ever referring to the prison by name, the scientist checked the
records of all those who were imprisoned over its 50-year history and
found that 15% of those who entered died within. Henry, a historian,
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is intrigued by the old report and publishes an article in a historical
journal in which he states his conviction that the report was referring
to Grimsville Prison, which existed about that time. In a subsequent
issue of the journal, a rival historian claims that Henry has shown no
evidence to support his theory.

Henry finds the records from Grimsville, and from a sample of 80
prisoner records he discovers that 11% of the prisoners died inside.
Can he use this information to substantiate his claim that the object of
the report is indeed Grimsville? Use a significance level of 5% and out-
line each of the stages of a test of statistical significance.

10.9 Every pupil at Foggy Lane College was asked a series of questions,
which led to an overall score grading “satisfaction” with the college’s
discipline procedures. The overall mean score was 65. Roger suspects
that the black students at the college feel differently. He takes a ran-
dom sample of 25 black students from the college and finds that their
mean satisfaction score is 61, with a standard deviation of 8.

Are the black students’ views on discipline significantly different
from those of the general student population? Use a significance level
of 1% and outline each of the stages of a test of statistical significance.

10.10 A special police unit has spent several years tracking all the members
of a large child-abuse ring. In an interview with a daily newspaper, a
junior detective on the unit claims that the ringleaders have been
tracked down and will shortly be arrested. In response to questions
from the interviewer about the makeup of the child-abuse ring, the
detective replies, “We have gathered details on every last member of
this criminal group—they come from very varied backgrounds and
their average age is 36.”

X is the chairperson of a charitable club, which is in fact a front for
a substantial child-abuse circle. He reads the newspaper article and
fears that it might refer to him and his group. He looks through the
club’s membership files and draws a sample of 50 members, finding
an average age of 40 with a standard deviation of 9.

Can X be confident that the detective interviewed in the newspaper
was not referring to his criminal group?

10.11 A civil rights group is concerned that Hispanic drug offenders are
being treated more severely than all drug offenders in Border State. A
state government web site reports that all drug offenders were sen-
tenced to an average of 67 months in prison. The group conducts a
small study by taking a random sample of public court records. For
the 13 Hispanic drug offenders in the sample, the average sentence
was 72 months (s = 8.4). Use a 5% significance level and test whether
Hispanic drug offenders in Border State are sentenced more severely.
Be sure to outline the steps in a test of statistical significance.

10.12 A researcher believes that offenders who are arrested for committing
homicides in her city are younger than the national average. A review
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of FBI arrest statistics for recent years indicates that the mean age of
homicide offenders is 18.7. The researcher collects information on a
random sample of 25 persons arrested for homicide in her city and
finds the mean age to be 16.8, with a standard deviation of 4.1. Can
the researcher conclude that homicide offenders in her city are
younger than the national average? Use a significance level of 0.05. Be
sure to outline the steps in a test of statistical significance.

10.13 Following a revolution, the new leadership of the nation of Kippax
decides to hold a national referendum on whether the practice of cap-
ital punishment should be introduced. In the buildup to the referen-
dum, a leading army general wishes to gauge how the people are
likely to vote so that he can make a public statement in line with pop-
ular feeling on the issue. He commissions Greg, a statistician, to carry
out a secret poll of how people expect to vote. The results of Greg’s
poll are as follows: The sample proportion in favor of introducing
capital punishment is 52%.

Do the results indicate that the majority of the population favors in-
troducing capital punishment? Use a significance level of 5% and out-
line each of the stages of a test of statistical significance.

10.14 The Silver Star Treatment Center claims to be effective at reducing
drug addiction among the persons who go through its treatment regi-
men. As evidence of the effectiveness of the Silver Star treatment, the
director claims that 63% of all drug users nationally have a relapse
within 12 months of treatment, but in a random sample of 91 cases
treated by Silver Star, only 52% had a relapse within 12 months of
completing the treatment. Use a 1% level of significance to test
whether Silver Star’s treatment is effective at reducing drug use. Be
sure to outline the steps in a test of statistical significance.

10.15 A federal judge issues an opinion claiming that nonviolent drug of-
fenders should make up no more than 20% of the local jail popula-
tion. If a jail is found to have more than 20% nonviolent drug offend-
ers, the jail will fall under court order and be required to release
inmates until the composition of the jail population conforms to the
judge’s standard. The local sheriff draws a random sample of 33 in-
mates and finds that 23% have been convicted of nonviolent drug of-
fenses. Should the sheriff be concerned about the jail coming under
court supervision? Use a significance level of 0.05. Be sure to outline
the steps in a test of statistical significance.
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IN CHAPTER 10, we used parametric significance tests to compare the
mean or proportion of a single sample with a population goal or para-
meter. In this chapter, we turn to a more commonly used application of
parametric tests of statistical significance: comparisons between samples.
Let’s say, for example, that you are interested in whether there is a differ-
ence in the mean salaries of male and female police officers or in the
proportions of African Americans and others arrested last year. Your
question in either of these cases is not whether the population parame-
ters have particular values, but whether the parameters for the groups
examined in each case are different. This involves comparing means and
proportions for two populations. If you take samples from these popula-
tions, you can make inferences regarding the differences between them
by building on the normal distribution tests covered in Chapter 10.

C o m p a r i n g  S a m p l e  M e a n s

The Case of Anxiety Among Police Officers and Firefighters
In a study conducted by University of Washington researchers, police of-
ficers were compared to firefighters in terms of the amount of stress and
anxiety they experienced on the job.1 One measure the researchers used
was derived by creating an interval-scale index from questions about the
occurrence on the job of symptoms of anxiety, such as sweating and “the
jitters.” The researchers drew a sample of police officers by going to po-
lice stations and asking officers to be paid participants in their study. For
firefighters, the researchers randomly selected subjects. The final sample,

1Michael Pendleton, Ezra Stotland, Philip Spiers, and Edward Kirsch, “Stress and Strain
among Police, Firefighters, and Government Workers: A Comparative Analysis,” Crim-
inal Justice and Behavior 16 (1989): 196–210.
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all drawn from one city, included 127 firefighters and 197 police officers.
For this sample, the researchers found that the mean anxiety-on-the-job
score for police officers was 12.8 (s1 � 2.76), whereas that for firefighters
was 8.8 (s2 � 2.85). What conclusions regarding the larger populations
of firefighters and police officers can the researchers draw from these
sample statistics?

As in other problems involving comparisons between the means of
two groups, we are not able to define the standard deviations of the
population distributions for our test. Indeed, we conduct a test of statisti-
cal significance for the differences between the two samples precisely
because we do not have information on the population parameters. Ac-
cordingly, we turn again to the t-test introduced in Chapter 10. In this
case, we use a two-sample t-test for means.

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution in both populations (re-
laxed because N is large).

Sampling Method: Independent random sampling (a nonrandom sam-
pling technique was used for police officers; random sampling without
replacement was used for firefighters).

Sampling Frame: All police officers and firefighters in one city.

Hypotheses:

H0: The mean anxiety-on-the-job score for the population of police offi-
cers is the same as that for the population of firefighters (�1 � �2).

H1: The mean anxiety-on-the-job score for the population of police offi-
cers is different from that for the population of firefighters (�1 � �2).

The assumptions for the two-sample t-test are similar to those for the
one-sample t-test. An interval level of measurement is assumed, and in-
deed the characteristic being examined, anxiety on the job, is measured
at the interval-scale level. The two-sample t-test also requires that both
population distributions be normal in form. When this is the case, the
sampling distribution of the difference between means—the focus of our
test—is also normally distributed. Even when the populations examined
are not normally distributed, the sampling distribution of the difference
between the sample means will be normally distributed if the N of cases
for both samples is large.

The definition of how large samples must be to invoke the central
limit theorem is again a matter of debate. In Chapter 10, we noted that a
sample size of 30 or more was generally large enough to apply the cen-
tral limit theorem in a single-sample test for means. For a two-sample
test, we need a minimum of 30 cases in each sample. In our example,
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both samples include a much larger number of subjects, and thus we can
relax the assumption of normality.

As with other tests we have examined, here we are required to use an
independent random sampling method. For a two-sample t-test, we must
assume that both samples are independent random samples. In practice,
researchers do not ordinarily use separate sampling procedures to iden-
tify the samples representing each population of interest. Rather, they
draw a random sample from all members of a population and then as-
sume that specific samples within the larger sample are also independent
and random. For example, researchers interested in attitudes toward
crime in the United States generally draw an independent random sam-
ple of all U.S. residents. They may, however, also have an interest in
comparing attitudes of men and women or of college graduates and
non–college graduates. If the larger sample has been drawn as an inde-
pendent random sample, the subsamples are also independent random
samples.2

The one practical difficulty with this assumption arises when the num-
ber of subjects in a particular subpopulation is small. For example, in a
survey of U.S. residents, a very small group of Jews or Muslims is likely
to be sampled when researchers draw a simple independent random
sample. Thus, even though such a subsample will still be independent
and random (if the larger sample is independent and random), re-
searchers may not end up with many cases because such a group repre-
sents a small proportion of the U.S. population. When there is interest in
a subpopulation that is small, researchers often identify such groups for
special attention and attempt to draw larger samples from them.

For the firefighters in our example, the researchers used a random
sampling method, but they did not sample with replacement. This viola-
tion of assumptions is not serious because the sample of firefighters
drawn was small relative to the number of subjects in the sampling
frame. The method of sampling for police officers represents a more seri-
ous violation of the assumptions of the two-sample t-test. The re-
searchers did not draw a random sample. Nonetheless, they argued that

2The logic here follows simple common sense. If you select each case independently
and randomly from a population, on each selection you have an equal probability of
choosing any individual, whether male or female, college-educated or not, and so on.
From the perspective of a particular group—for example, males—each time you
choose a man, the method can be seen as independent and random. That is, the like-
lihood of choosing any male from the sample is the same each time you draw a case.
Of course, sometimes you will draw a female. However, within the population of
males, each male has an equal chance of selection on each draw. And if the sampling
method is independent, then each male has an equal chance of being selected every
time a case is selected.
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their sample was still representative of the population of police officers
in the city:

Participant officers were compared with nonparticipant officers on avail-
able data (which were acquired by the police department independently
of the study). These data included entrance psychological tests, current
departmental physical fitness tests, age, sex, and so on. . . . The partici-
pant and nonparticipant groups did not differ significantly on 25 com-
parison variables.

generally. For this inference to be justified, the researchers would have
to explain why firefighters and police officers in this city are representa-
tive of firefighters and police officers in other cities.

1

(�2) is the same (�1 � �2). The research hypothesis was that there is a
difference (�1 � �2). The researchers did not define the direction of this
difference. Their research hypothesis allows the possibility that police of-
ficers experience more anxiety at work than firefighters as well as the op-
tion that firefighters experience more anxiety at work than police officers.

The Sampling Distribution For a difference of means test, we use the t
sampling distribution. The number of degrees of freedom for the distri-
bution is obtained by adding the numbers of cases in the two samples
and subtracting 2: df � N1 � N2 � 2. For our example, the number of
degrees of freedom is 322.

The mean of the sampling distribution is defined, as in the case of a
difference of proportions test, by the null hypothesis. It is represented by
�1 � �2, or the hypothesized difference between the means of the two
populations studied. Since the null hypothesis states that �1 � �2, the
mean of the sampling distribution is 0.

 � 322

 � 197 � 127 � 2

 df � N1 � N2 � 2

The validity of our inferences to the larger population of police officers
in the city depends on how persuasive we find the researchers’ claims
that their sample was representative. But irrespective of the generali-
zability of these samples to the population of police officers and fire-
fighters in the city, the researchers also want to infer their findings 
beyond their sampling frame to police officers and firefighters more

The null hypothesis for a difference of means test is generally that there
is no difference, and this was the case in the University of Washington
research. The null hypothesis stated simply that the mean anxiety-on-the-

) and firefightersjob score for the populations of police officers (�
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In defining the standard error of the sampling distribution for compar-
ing two samples, we take into account the variances of the two popula-
tions. Accordingly, the standard error of a sampling distribution of the
difference of sample means is the square root of the sum of
the two sample variances, each divided by its sample N:

Equation 11.1

In calculating this standard error, we can use either of two ap-
proaches. The first assumes that the two population distributions not
only have equal means but also have equal variances. In this case, we
are assuming that the two population distributions are the same. This is
often called the pooled variance method. The assumption we make in
this approach, a common one in statistical tests, is often referred to as
homoscedasticity (from the Greek for “same scatter [or spread]”). It can
be written in mathematical form as follows:

A second approach, called the separate variance method, does not
make a specific assumption that the variances of the two populations are
equal. You should note, however, that when samples are very small or
one sample is much larger than the other, the simple estimate of degrees
of freedom noted above must be corrected if the separate variance
method is used. The correction commonly employed involves a good
deal of computation.3 For our problem, which involves large samples of
relatively similar size, it is unnecessary to take this approach.

Given that the pooled variance method requires an additional assump-
tion, that of homoscedasticity, you might question why researchers would
choose this approach to analyze the statistical significance of their study
results. One advantage of the pooled variance method is that you will
generally get a more efficient estimate of the standard error of your sam-
pling distribution. This means that the pooled variance method often
leads to a larger t-statistic (though this is not always the case, as illustrated
later in the chapter). But should you take advantage of this method if it
means that you add the risk of violating an additional assumption?

The separate variance method should be used in most circumstances.
As a general rule, it is better to make fewer assumptions, because this cre-
ates less potential for violating them and coming to a mistaken conclusion.
Nonetheless, sometimes your sample results or prior research suggests

�2
1 � �2

2 � �2   or   �1 � �2 � �

�sd(X1 � X2) � ��2
1

N1
 � 

�2
2

N2

(�sd(X1 �  X2))

3See H. M. Blalock, Social Statistics (New York: McGraw-Hill, 1979), p. 231.
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strongly that an assumption of equal variances can be made. For example,
if there is little difference in the standard deviations you find in your sam-
ples, you may be able to conclude with confidence that the population
standard deviations do not differ.4 If, in turn, prior studies show that the
standard deviations between the groups studied are very similar, this
might also lead you to apply this assumption in your test. Most statistical

How are the two methods different in practice? Let’s start with the
pooled variance approach. 

If we assume that the two populations of interest have equal vari-
ances, we can simplify Equation 11.1, which defines the standard error
of the sampling distribution for a difference of means test.

plified formula is given in Equation 11.2.

Equation 11.2

Because we do not know the actual value of �, we rewrite the equation,
substituting an estimate of �, or , as shown in Equation 11.3.

Equation 11.3

This, of course, creates another problem for us. How do we calculate ?
We now have two estimates of the sample variance, one from each sample.
And we also need to take into account the bias associated with using s 2 to
estimate , as discussed in Chapter 10. Our solution to the former problem
is to weight the two sample variances by the N of cases in each sample.
This is only fair, because the larger sample is likely to provide a better
estimate of the joint standard deviation than the smaller sample. We in-
clude a correction for bias of the sample variances directly in our esti-
mate of � by subtracting 2 (1 for each sample) in the denominator of the
equation, as shown in Equation 11.4.

Equation 11.4�̂ � � N1s
2
1 � N2s

2
2

N1 � N2 � 2

�̂

�̂

�̂sd(X1 � X2) � �̂�N1 � N2

N1N2

�̂

�sd(X1 � X2) � ��N1 � N2

N1N2

(�sd(X1 � X2))

4A test of statistical significance may be performed to assess differences in variances. It
is based on the F distribution, which is discussed in detail in Chapter 12. The test
takes a ratio of the two variances being examined:

F � 
�̂2

larger variance

�̂2
smaller variance

analysis computer programs provide test outcomes for both of these
options with the correct degrees of freedom applied.
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To work out the pooled variance method for our example, we first es-
timate the pooled standard deviation for the two populations, which pro-
vides a result of 2.8043. We then calculate the standard error (
for our sampling distribution. Our result is 0.3191.

�̂sd(X1 � X2))

�sd(X1 � X2) � ��2
1

N1
 � 

�2
2

N2
 � �� 1

N1
 � 1

N2
 � ��N1 � N2

N1N2

Simplification of the Equation for the Standard Error of the
Sampling Distribution for Two Samples (�1 � �2)

W orking It Out

 � 2.8043

 � �7.86405

 � �2,532.22
322

 � �(197)(2.76)2 � (127)(2.85)2

197 � 127 � 2

 �̂ � � N1s
2
1 � N2s

2
2

N1 � N2 � 2

W orking It Out

 � 0.3191

 � 2.804�0.01295

 � 2.804�197 � 127
(197)(127)

 �̂sd(X1 � X2) � �̂�N1 � N2

N1N2
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How does the pooled variance method differ from the separate vari-
ance method? We once again begin with Equation 11.1. Because and

are unknown, we use and to gain an estimate of . In
turn, as before, the variances of our samples are not considered unbi-
ased estimates of the variances of the population distributions. Accord-
ingly, in order to obtain an unbiased estimate of the standard error using
this method, we need once more to adjust the equations—in this case,
by subtracting 1 from the denominator of each variance estimate, as
shown in Equation 11.5.

Equation 11.5

Based on the sample variances of police officers and firefighters in our
example, we get 0.321 as an estimate of the standard error of the two-
sample t-text using the separate variance method.

�̂sd(X1 � X2) � � s 

2
1

N1 � 1
 � 

s 

2
2

N2 � 1

sd(X1 � X2)s2
2s2

1�2
2

�2
1

As you can see, the result found using the pooled variance method
(0.319) is very similar to that found using the separate variance method
(0.321). This will often be the case, especially when samples are rela-
tively large or evenly divided between the two groups. Nonetheless,
even small differences can sometimes affect the conclusions you reach in
a two-sample t-test.

Significance Level and Rejection Region The University of Washington
researchers used a 0.05 significance level and a two-tailed significance
test. The two-tailed test was based on their nondirectional research hy-

job scores between firefighters and police officers.

W orking It Out

 � 0.3214

 � � (2.76)2

197 � 1
 � 

(2.85)2

127 � 1

 �̂sd(X1 � X2) � � s 

2
1

N1 � 1
 � 

s 

2
2

N2 � 1

pothesis, which stated simply that there is a difference in anxiety-on-the-
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Interpolating from the t table (see Appendix 4), we find that a 
t-value of about 1.97 is associated with a two-tailed 5% significance
threshold (with 322 degrees of freedom). This means that a test
statistic greater than 1.97 or less than �1.97 is needed to reject the
null hypothesis.

The Test Statistic To define the t-score appropriate for our test, we must
alter the single-sample t-test equation to account for the fact that we are
comparing two samples. First, we must adjust the numerator to reflect
our comparisons of the differences in the means observed in our study
with those defined in the null hypothesis. Second, we must adjust the
denominator to reflect the standard error of the difference between
means. Because we now have two methods for defining the standard
error of the sampling distribution, we have two separate equations. The
first reflects the difference of means test using a separate variance esti-
mate (11.6a), and the second the difference of means test using a pooled
variance estimate (11.6b).

Both Equation 11.6a and Equation 11.6b have two quantities in the
numerator. The first is the difference between the two sample means
(represented by ). The second is the difference between the two
population means (�1 � �2) as defined by the null hypothesis. Because
the null hypothesis is that the two populations are equal, this quantity is
equal to 0.

In the denominator in each equation, the standard error used for a
sampling distribution when comparing a sample mean to a population
mean has been replaced with the standard error used when comparing
sample means drawn from two populations. This quantity was defined in
our discussion of the sampling distribution.

The t-score for this problem is 12.461 using the separate variance esti-
mate and 12.539 using the pooled variance estimate. As recommended
(although the differences are small in this case), we use the separate
variance method in making our decision.

X1 � X2

Equation 11.6b
Pooled Variance Methodt � 

(X1 � X2) � (�1 � �2)

�̂�N1 � N2

N1N2

Equation 11.6a
Separate Variance Methodt � 

(X1 � X2) � (�1 � �2)

� s 

2
1

N1 � 1
 � 

s 

2
2

N2 � 1
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The Decision Because our test statistic of 12.4456 is larger than the criti-
cal value of our rejection region of 1.97, we reject the null hypothesis
that there is no difference in anxiety-on-the-job scores between the pop-
ulations of police officers and firefighters to which our test infers. For
our test, the observed significance level is less than the significance
threshold we set at the outset (p � 0.05).

W orking It Out Separate Variance

 � 12.4456

 � 4
0.3214

 � 
(12.8 � 8.8) � 0

� (2.76)2

197 � 1
 � 

(2.85)2

127 � 1

 t � 
(X1 � X2) � (�1 � �2)

� s 2
1

N1 � 1
 � 

s 2
2

N2 � 1

W orking It Out Pooled Variance

 � 12.5353

 � 4
0.3191

 � 
(12.8 � 8.8) � 0

�(197)(2.76)2 � (127)(2.85)2

197 � 127 � 2
 �197 � 127

(197)(127)

 t � 
(X1 � X2) � (�1 � �2)

�N1s
2
1 � N2s

2
2

N1 � N2 � 2
 �N1 � N2

N1N2

 t � 
(X1 � X2) � (�1 � �2)

�̂�N1 � N2

N1N2

,  where �̂ � �N1s
2
1 � N2s

2
2

N1 � N2 � 2
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Bail in Los Angeles County: Another Example 
of the Two-Sample t-Test for Means
As a second example of the two-sample t-test for means, we will
examine a study of bail setting in Los Angeles County in the 1990s.
The State Court Processing Statistics database represents a random
sample of felony defendants from more than 50 urban court districts 
in the United States. Since Los Angeles County participated in the
study throughout the 1990s, data are available for 1990, 1992, 1994,
and 1996.5

An important issue in criminal justice decision making has been the
impact of the defendant’s race or ethnicity on the type of decision
made. We can focus on the amount of bail set as one way to begin to
test for racial or ethnic differences in criminal case processing. In Los
Angeles County in the 1990s, a sample of 1,121 African Americans were
required to post a mean bail amount of $50,841 (s � 115,565). A sample
of 1,798 Hispanics of any race were required to post a mean bail
amount of $66,552 (s � 190,801). Although the difference in mean bail
amounts for these two samples of defendants appears to be large (ap-
proximately $16,000), can we conclude that this difference is statistically
significant?

Assumptions

Level of Measurement: Interval scale.

Population Distribution: Normal distribution in both populations (re-
laxed because N is large).

Sampling Method: Independent random sampling.

Sampling Frame: All felony arrestees in Los Angeles County in 
the 1990s.

Hypotheses:

H0: The mean bail amount set for the population of African American
felony defendants is the same as the mean bail amount set for the popu-
lation of Hispanic felony defendants of any race (�1 � �2).

H1: The mean bail amount set for the population of African American
felony defendants is different from the mean bail amount set for the
population of Hispanic felony defendants of any race (�1 � �2).

5These data are available through the National Archive of Criminal Justice Data and
can be accessed at http://www.icpsr.umich.edu/NACJD.
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The Sampling Distribution Because we are interested in comparing
means and � for the population distributions is unknown, we use a t-test
for means. Since the number of cases in each sample is large, we can
relax the normality assumption for this test. The number of degrees of
freedom for the test is df � N1 � N2 � 2 � 1,121 � 1,798 � 2 � 2,917.

Significance Level and Rejection Region Let’s assume that we want to set
a fairly strict level of statistical significance for this test—say, 0.01. We
might argue that we are particularly concerned with a Type I error in this
example, since concluding that there are racial differences may have
very important implications for the criminal justice system. At the same
time, there is no stated reason for expecting one group to have higher
bail amounts than the other group, so we use a two-tailed test. Given
that we have 2,917 degrees of freedom, a significance level of 0.01, and
a two-tailed test, we can consult the t distribution table and determine
that our critical values for this analysis are �2.576. If the test statistic is
greater than �2.576 or less than �2.576, then it falls into the rejection re-
gion for the test, and we will conclude that bail amounts set are not
equal across the two felony groups of defendants.

The Test Statistic We calculate the test statistic using both the separate
variance and the pooled variance methods. As we demonstrate below,
the t-score is �2.7694 using the separate variance method and �2.4863
using the pooled variance method. Following the earlier recommenda-
tion, we will use the separate variance method in making our decision
about the null hypothesis.

W orking It Out Separate Variance Method

 � �2.7694

 � 
�15,711

5,673.02

 � 
(50,841 � 66,552) � 0

� 115,5652

1,121 � 1
 � 

190,8012

1,798 � 1

 t � 
(X1 � X2) � (�1 � �2)

� s2
1

N1 � 1
 � 

s2
2

N2 � 1
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The Decision Because our test statistic of �2.7694 is less than the criti-
cal value of �2.576, we reject the null hypothesis that there is no differ-
ence in bail amounts set for African Americans and Hispanics of any race
in Los Angeles County. In this case, it is interesting to note that if we had
used the pooled variance method, we would have failed to reject the
null hypothesis. This points to the importance of making your assump-
tions before you see the study results. 

C o m p a r i n g  S a m p l e  P r o p o r t i o n s :  
T h e  T w o - S a m p l e  t - T e s t  f o r  D i f f e r e n c e s  o f  P r o p o r t i o n s

As we noted in Chapter 10, one implication of the central limit theorem

portion, the sampling distribution of a proportion begins to approximate

comes large. The central tendency of this distribution and its dispersion
are measured by the mean and standard error, just as for distributions
that develop from interval-level data. In a difference of proportions test,
our interest is in the difference between the populations studied. This

W orking It Out Pooled Variance Method

 � �2.4863

 � 
�15,711

6,319.07

 � 
(50,841 � 66,552) � 0

�(1,121)(115,565)2 � (1,798)(190,801)2

1,121 � 1,798 � 2
 �1,121 � 1,798

(1,121)(1,798)

 � 
(X1 � X2) � (�1 � �2)

� N1s
2
1 � N2s

2
2

N1 � N2 � 2
 �N1 � N2

N1N2

 t � 
(X1 � X2) � (�1 � �2)

�̂�N1 � N2

N1N2

, � where �̂ � � N1s
2
1 � N2s

2
2

N1 � N2 � 2

a normal distribution when the number of cases for the sample be-

is that we can use a normal sampling distribution to test hypotheses
involving proportions. While the mean and standard deviation are not 
appropriate statistics to use with a nominal-level measure such as a pro-
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difference is also a proportion. Though it would be inappropriate to use
the mean and standard deviation to describe the sample or population
distribution of this proportion, the mean and standard error are appro-

At the same time, we generally cannot use the z-test for conducting a
difference of proportions test. Rather, as in the previous examples, we
rely on the t distribution to test our null hypothesis. You may wonder
why we use the t-test rather than the z-test for making statistical infer-
ences in the case of a difference of proportions. A t-test is used when the
standard deviation of the population distribution is unknown and must
be estimated. In Chapter 10, we noted that when we stated the propor-
tion of successes expected under the null hypothesis, we also stated by
implication the mean and the standard deviation of the population distri-
bution of scores and thus the mean and the standard error of the sam-

In fact, we again define the mean of the sampling distribution for
such a test through the null hypothesis. For a difference of proportions
test, the null hypothesis is ordinarily that there is no difference between
the proportions of the two populations to which we seek to infer. This
null hypothesis defines the mean of our sampling distribution: no differ-
ence, or zero.

As noted earlier in the chapter, in defining the standard error of our
sampling distribution, we take into account the variances of the two
populations. Our problem is that defining the standard error requires
knowing the values of P and Q for each of the two populations we are
interested in. (This is the case because we obtain the variance of a pro-

the null hypothesis states only that the proportions of the two popula-
tions are equal; it does not tell us the value of those proportions. Be-
cause of this, when testing for differences of proportions, the researcher

6

6In practice, many statistics texts use the z-test for examples involving proportions.
Generally this is done because a difference of proportions test is appropriate only for
larger samples, and with larger samples, there is substantively little difference between
the outcomes of these two normal distribution tests. We illustrate a difference of pro-
portions problem using a t-test because it follows the logic outlined in Chapter 10.
That is, in the case where � is unknown, a t-test should be used. Moreover, most
packaged statistical programs provide outcomes only in terms of t-tests.

associated with this proportion. 
priate statistics for describing the normal sampling distribution that is 

pling distribution for our test. Why can’t we just rely on the same logic
to produce the mean and the standard error for a test comparing two
proportions?

must apply a t rather than a z distribution to his or her test. If the
standard deviations for each distribution were known, it would not be
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The Case of Drug Testing and Pretrial Misconduct
In a study conducted in Maricopa County, Arizona, criminal justice
researchers examined whether drug testing of defendants released
before trial had an impact on pretrial misconduct.7 They compared
two groups of defendants who were released before trial. The first
group was monitored through drug testing twice a week. The second
group was released without subsequent drug testing. The sample 
was chosen over a six-month period. The researchers identified sub-
jects for the study through identification numbers kept in a computer-
ized case-management system. Defendants with odd identification
numbers were placed in the drug-testing group. Defendants with even
identification numbers were placed in the control, or no-drug-testing,
group. The drug-testing group had 118 subjects. The control group
had 116 subjects.

The researchers followed up on both of these groups of defendants
for 90 days. One measure of pretrial misconduct was failure to appear at
a hearing during the follow-up period. A total of 38% of the control
group and 30% of the drug-testing group failed to appear at a hearing
during this period. The question the researchers wanted to answer was
whether they could infer from the difference between these two samples
that there was in fact a difference in pretrial misconduct between the
populations these samples represent. A two-sample t-test is an appropri-
ate statistical test with which to answer this question.

Assumptions:

Level of Measurement: Interval scale (failure to appear is measured as a
proportion).

Population Distribution: Normal distribution in both populations (re-
laxed because N is large).

Sampling Method: Independent random sampling (all cases for six
months are selected).

Sampling Frame: Defendants released before trial for a six-month period
in Maricopa County, Arizona.

7See Chester Britt III, Michael Gottfredson, and John S. Goldkamp, “Drug Testing and
Pretrial Misconduct: An Experiment on the Specific Deterrent Effects of Drug Monitor-
ing Defendants on Pretrial Release,” Journal of Research in Crime and Delinquency 29
(1992): 62–78.

necessary for the researcher to conduct a statistical test of significance
at all. In this case, the value of the proportion for each of the two popu-
lations would be known by implication.
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Hypotheses:

H0: The two populations do not differ in terms of the proportion who
fail to appear for a pretrial hearing (P1 � P2).

H1: Defendants subject to drug testing will be more likely to appear for
a pretrial hearing (P1 � P2).

The two-sample t-test requires an interval level of measurement, as
well as a normal population distribution for each of the two samples ex-
amined. The actual level of measurement for our example (as stated in
parentheses in our assumptions) is nominal—we compare two propor-
tions. As with a single-sample test of proportions, when the sample sizes
are large, we can relax assumptions regarding the level of measurement
used and the shape of the populations examined. Because we have two
samples and not just one, the central limit theorem applies only if both
samples are large. The definition of how large samples must be to in-
voke the central limit theorem in the case of a difference of proportions
test is a matter of debate. However, when each sample includes more
than 100 cases, as is true for the Arizona study, there will be little argu-
ment regarding the use of this parametric test for proportions.

We must again assume that both samples are independent random
samples. In our example, the researchers did not draw an independent
random sample for either the drug-testing group or the control group.
Rather, as was the case with the cell-allocation study examined in Chap-
ter 9, they sampled all defendants released before trial in Maricopa
County for a specific period of time—in this case, six months. In order to
create the two samples, the researchers assigned the defendants to the
groups according to their identification numbers: Even-numbered sub-
jects were assigned to the control group, and odd-numbered subjects to
the drug-testing group.

In making statistical inferences, the researchers were clearly interested
in inferring beyond their sampling frame (defendants released before

8

8In fact, although we do not examine their findings here, Britt and colleagues con-
ducted their study in two Arizona counties.

Maricopa County but also to other jurisdictions and other programs
trial during the six-month period), not only to other time periods in

likely to apply to other “sophisticated and experienced pretrial services
agencies.  They also noted that it “is reasonable to assume that the
programs that were implemented are comparable to the programs that
are likely to be implemented in similar agencies.” When drawing con-
clusions from this research, we would have to consider whether the sample
used can in fact be seen as representative of these larger populations.
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Our final assumptions relate to the hypotheses. The null hypothesis,
as for earlier tests, is that there is no difference. It assumes that those
monitored through drug testing and those not so monitored (the control
group) will have the same proportion of defendants who fail to appear.
Another way of expressing this is to say that the proportion of failures to
appear in the drug-tested population (P1) of released defendants is the
same as that in the population that is not drug-tested (P2), or that P1 �

P2. The researchers chose a directional research hypothesis because they
were concerned only with the possibility that the program decreased the
likelihood that offenders would fail to appear for a pretrial hearing.
Accordingly, the research hypothesis was stated as P1 � P2. The re-
searchers were interested in testing whether drug testing would increase
compliance.

The Sampling Distribution Because N is large for both samples, we can
use a t distribution as the sampling distribution for testing the difference
between proportions. The number of degrees of freedom for the distri-
bution is obtained by adding the numbers of cases in the two samples

N1 � N2

As we noted earlier, the null hypothesis defines the mean of the sam-
pling distribution we will use for our test. The mean of the sampling dis-
tribution is P1 � P2, or simply 0, because the null hypothesis states that
the two population proportions are the same.

In defining the standard error of the sampling distribution, we can
rely on the pooled variance approach. This is always the case when we
are examining differences between proportions. When we assume in the
null hypothesis that the two population proportions are the same, then
by implication we also assume that the two standard deviations for these
population distributions are also equal. This fact derives from the
method by which the population variances are calculated. As noted in
Chapter 10, the variance of a proportion is

�2 � PQ

and the standard deviation of a proportion is

Accordingly, if P is the same for two populations, then we can also as-
sume that the variances of those populations are equal. In statistical

� � �PQ

� 2. In our example, the number of and subtracting 2: df �
degrees of freedom equals 118 � 116 � 2, or 232.

terms, as we noted earlier, this is defined as the assumption of homos-
cedasticity.
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Significance Level and Rejection Region The researchers in the Mari-
copa County study decided to use “conventional levels” of statistical
significance—that is, a rejection region of � � 0.05. Following their re-
search hypothesis, they also used a one-tailed test of statistical signifi-
cance. Given that we have 232 degrees of freedom, a significance level
of 0.05, and a one-tailed test, we can consult the t distribution table
and determine that the critical value for this analysis is �1.654. If the

this test.

The Test Statistic To define the t-score appropriate for our test, we
must alter the formula for a t-test of means to take into account the
fact that we are examining sample proportions. Accordingly, we re-
place the difference between the sample means with the dif-
ference between the sample proportions (p1 � p2). We also replace
the assumed differences between the population means with (P1 �

P2), as stated by the null hypothesis. Because the null hypothesis
states that the two populations are equal, this quantity is equal to 0.
Equation 11.7 presents a modified formula for calculating the t-statistic
for proportions.

Equation 11.7

Below we calculate the t-statistic for our test. Note that we must 
first calculate the variance for each of the sample proportions. To cal-
culate the variance of a sample proportion, we use the formula 
s2 � pq. This formula is identical to that presented above for the
variance of a population proportion. The only difference here is the
use of the symbols p, q, and s to represent sample rather than popula-
tion estimates. For our example, � (0.3)(0.7) � 0.21 and �

(0.38)(0.62) � 0.2356.
After inserting the values for the two sample variances and into

Equation 11.7, we obtain a t-statistic equal to �1.29.
s 

2
2)(s 

2
1

s 

2
2s 

2
1

 � 
(p1 � p2) � (P1 � P2)

� N1s 

2
1 � N2s 

2
2

N1 � N2 � 2
 �N1 � N2

N1N2

 t � 
(p1 � p2) � (P1 � P2)

�̂�N1 � N2

N1N2

,  where �̂ � � N1s 

2
1 � N2s 

2
2

N1 � N2 � 2

(X1 � X2)
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The Decision Because our test statistic of �1.29 is greater than the criti-
cal value of �1.654, we fail to reject the null hypothesis that there is no
difference in failure to appear at hearings for the drug testing and control
populations. Based on these and other similar results, the researchers in
this study concluded that “systematic drug testing and monitoring in the
pretrial setting, in programs such as those described above [i.e., exam-
ined in this research], is not likely to achieve significant” change in pre-
trial misconduct.

T h e  t - T e s t  f o r  D e p e n d e n t  S a m p l e s

One of the requirements of the two-sample t-test is that the samples ex-

W orking It Out Pooled Variance Method

 � �1.29

 � �0.08
0.062

 � 
(0.30 � 0.38) � 0

�(118)(0.21) � (116)(0.2356)
118 � 116 � 2

 �118 � 116
(118)(116)

 � 
(p1 � p2) � (P1 � P2)

� N1s
2
1 � N2s

2
2

N1 � N2 � 2
 �N1 � N2

N1N2

 t � 
(p1 � p2) � (P1 � P2)

�̂�N1 � N2

N1N2

, � where �̂ � � N1s
2
1 � N2s

2
2

N1 � N2 � 2

amined be independent. However, sometimes criminal justice resear-
chers examine samples that are not independent. For example, subjects
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may be matched and placed in like pairs based on such characteristics
as social status, education, gender, age, and IQ. Dependent samples
will also result when a researcher takes measurements on the same
subject or unit of analysis over time. For example, a researcher may
examine the attitudes of juvenile delinquents before and after partici-
pation in a specific program or may study changes at specific crime
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hot spots before and after some type of police intervention. Sometimes
the same individuals are compared at different ages or stages in their de-
velopment. Even though in such instances the researcher has two sam-
ples of observations—for example, before and after the program—the
samples are not independent.

The t-test for dependent samples is commonly used in such situa-
tions.9 It focuses on the differences between the pairs in developing the
sampling distribution of the test statistic. Each pair in a t-test for depen-
dent samples is considered a single observation.

The Effect of Police Presence Near High-Crime Addresses
Let’s suppose that a police department took an independent random
sample of 35 high-crime addresses from all high-crime addresses in a
city. The department then assigned a police officer to walk the beat on
each block where one of the addresses was located for a full month. As-
sume we are asked to assess whether the strategy was effective in reduc-
ing calls for police service. We have data on the number of emergency
calls for police service for the month before the officer walked the beat
and for the month during which the officer walked the beat. These data
are given in Table 11.1. The mean number of calls for service the month
before was 30, and the mean for the month when the officer was present
was 20. Can we conclude from this that the program would be effective
in reducing calls for service if applied generally to high-crime addresses?

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution (relaxed because N is large).

Sampling Method: Independent random sampling.

Sampling Frame: All high-crime addresses in the city.

Hypotheses:

H0: There is no difference in the number of calls for service at high-
crime addresses whether an officer walks the beat or not (�1 � �2).

1

1 � �2).

9Here we examine the t-test for dependent samples only in reference to mean differ-
ences for interval-level data. However, this test may also be used for dichotomous
nominal-level data. Suppose you were assessing the absence or presence of some char-
acteristic or behavior at two points in time. If each observation were coded as 0 or 1,
then you would calculate the mean difference and the standard deviation of the
difference (sd) using the same equations as in this section. The only difference from the
example discussed in the text is that you would work only with zeros and ones.

(Xd)
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H : There are fewer calls for service at high-crime addresses when an 
officer walks the beat (�
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Number of calls for service is an interval-scale measure, as required
by the t-test. The test also requires that the population of differences be-
tween pairs be normally distributed. Because our sample is large (greater
than 30), we are able to relax this assumption for our test.

Our null hypothesis states that there is no difference in the number of
calls for police service at high-crime addresses whether a police officer
walks the beat or not. Because the police department is concerned only
with whether the presence of a police officer walking the beat is effec-
tive in reducing emergency calls for service, we use a directional re-
search hypothesis. It states that the number of calls for police service will
be lower when a police officer walks the beat.

Emergency Calls to Police for the Month Before 
and the Month During Which an Officer Walked the Beat

CALLS CALLS CALLS CALLS
LOCATION BEFORE DURING LOCATION BEFORE DURING

1 29 14 19 18 22
2 50 28 20 27 24
3 14 8 21 42 16
4 16 6 22 31 14
5 11 20 23 51 30
6 31 17 24 28 8
7 33 4 25 26 11
8 37 22 26 14 19
9 21 20 27 29 21

10 40 27 28 39 26
11 30 29 29 40 20
12 22 30 30 30 20
13 30 18 31 26 11
14 36 20 32 30 28
15 30 22 33 27 13
16 29 26 34 33 20
17 24 19 35 35 34
18 41 33 � 1,050 700

30 20
s 9.21 7.52
X

Table 11.1

A t-test for dependent samples requires that the pairs examined be 
selected randomly and independently from the target population of 

dependent (i.e., they are related to one another), the pairs themselves 
are independent from one another. Because we began with an inde-
pendent random sample of high-crime addresses, we can assume that 
the paired observations taken before and during the police interven-
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tion are random and independent.

pairs. Accordingly, although the scores for the subjects in the pairs are 
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The Sampling Distribution The number of degrees of freedom for a t-test
for dependent samples is obtained by taking the number of pairs studied
and subtracting 1: df � N � 1. In our example, which involves paired
observations for the same subjects over two time periods, the number of
degrees of freedom is 35 � 1, or 34. If we had examined subjects

The mean of the sampling distribution is defined by the null hypothe-
sis. It is represented by �d, or the mean of the population of differences
between crime calls when a police officer is and is not walking the beat.
Because the null hypothesis states that there is no difference in crime
calls during these time periods, �d for the sampling distribution is 0. The
estimated standard error of the sampling distribution is found using
Equation 11.8.

Equation 11.8

Using the estimates of variance calculated in Table 11.2, we find that the
estimated standard error for the sampling distribution is 1.559.

�̂sd � � s2
d

N � 1

(�̂sd)

Significance Level and Rejection Region Following conventional norms,
we use a 0.05 level of statistical significance. However, our research hy-
pothesis suggests a directional test, which means that we place the entire
rejection region on one side of the t distribution. Because the research
hypothesis states that the period during which a police officer is walking
the beat will have a lower number of crime calls, we are interested in the
negative area of the t distribution below the mean. Looking at the t table
(Appendix 4) under a one-tailed significance test with 34 degrees of free-
dom, we see that a critical value of t less than �1.691 is needed to place
the score in the rejection region.

W orking It Out

 � 1.5595

 � �82.6857
35 � 1

 �̂sd �� s2
d

N � 1

matched by common traits, the degrees of freedom would also be
obtained by taking the number of pairs of subjects and subtracting 1.
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The Test Statistic To define the t-score appropriate for our test, we alter
Equation 10.9 (used for the single-sample test of means in Chapter 10) to
take into account the fact that we are now concerned with the mean differ-
ence between pairs of observations. Accordingly, instead of comparing the
mean of one sample to the hypothesized population parameter ,
we now compare the mean of the observed differences between the pairs
with the hypothesized difference between the pairs based on the null hy-
pothesis . As discussed in the section on the sampling distribu-
tion, the hypothesized difference is 0. We also adjust the denominator of
the equation to reflect the standard error of the differences between the
pairs of observations. The revised formula is presented in Equation 11.9.

Equation 11.9t � 
Xd � �d

� s2
d

N � 1

(Xd � �d)

(X � �)

Calculation of the Standard Deviation for the Differences Between 
the Two Sets of Dependent Observations

DIFFER- DIFFER-

LOCATION DURING BEFORE ENCE Xi LOCATION DURING BEFORE ENCE Xi

1 14 29 �15 25 19 22 18 �4 196
2 28 50 �22 144 20 24 27 �3 49
3 8 14 �6 16 21 16 42 �26 256
4 6 16 �10 0 22 14 31 �17 49
5 20 11 �9 361 23 30 51 �21 121
6 17 31 �14 16 24 8 28 �20 100
7 4 33 �29 361 25 11 26 �15 25
8 22 37 �15 25 26 19 14 �5 225
9 20 21 �1 81 27 21 29 �8 4

10 27 40 �13 9 28 26 39 �13 9
11 29 30 �1 81 29 20 40 �20 100
12 30 22 �8 324 30 20 30 �10 0
13 18 30 �12 4 31 11 26 �15 25
14 20 36 �16 36 32 28 30 �2 64
15 22 30 �8 4 33 13 27 �14 16
16 26 29 �3 49 34 20 33 �13 9
17 19 24 �5 25 35 34 35 �1 81
18 33 41 �8 4 Totals (�) �350 2,894

� 82.6857� �10

� 
2,894

35
� 

�350
35

s2
d � 

�
N

i�1
(Xi � Xd)2

N
Xd � 

�
N

i�1
 Xi

N

(Xi � Xd)2(Xi � Xd)2

Table 11.2
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Substituting the values from our example, we obtain a t-score of �6.412.

10See Chapter 12 for an example of a rank-order test (the Kruskal-Wallis one-way
analysis of variance).

W orking It Out

 � �6.4123

 � �10 � 0

�82.6857
35 � 1

 t � 
Xd � �d

� s2
d

N � 1

The Decision Because our test statistic of �6.4123 is less than the crit-
ical value of our rejection region, �1.691, we reject the null hypothe-
sis. The observed significance level of our test is less than the criterion
significance level we set when defining the significance level and
rejection region for our test (p � 0.05). We can conclude that there 
is a statistically significant decrease in the number of calls for police
services at high-crime addresses when a police officer is walking 
the beat.

A  N o t e  o n  U s i n g  t h e  t - T e s t  f o r  O r d i n a l  S c a l e s

Ordinal scales create a special problem in conducting tests of statistical
significance. Most tests we have examined so far assume either a nomi-
nal or an interval level of measurement. There are nonparametric tests
for ordinal-level measures; however, these generally assume that the re-
searcher can rank order all scores in a distribution.10 Typically, with ordi-
nal measures, there are a limited number of ordinal categories and many
observations, so such tests are not appropriate.

There is no simple guideline for deciding which test to use for ordinal-
scale variables. In practice, when there are a number of categories in an
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ordinal scale, researchers use the t-test for means to calculate statistical
significance. When N is large and the number of categories is more than
five, this approach is generally accepted. However, you should keep 
in mind when you use this approach that the t-test assumes not only 
that the categories in the scale are ordered but also that the intervals
represented by the categories are equal for all of the categories. To 
the extent that this can be assumed, you will be on more solid ground
using the t-test for ordinal scales. When the number of categories is less
than five, it may be better to use the chi-square statistic, discussed in
Chapter 9. In Chapter 13, we will discuss other descriptive statistics and
associated significance tests that are often appropriate for ordinal-level
scales.

C h a p t e r  S u m m a r y

The two-sample t-test is a parametric test of statistical significance that
may be used to test for equality of two population means or propor-
tions. Although the test requires an interval level of measurement and
normal population distributions, it is nonetheless appropriate for un-

Like other tests of statistical significance examined in previous chap-
ters, the two-sample t-test requires independent random sampling. The
null hypothesis states that the population means or proportions for the
two samples studied are the same. A critical value for the test is identi-
fied on the t sampling distribution, after first determining the degrees
of freedom. The mean of the sampling distribution is again defined
with reference to the null hypothesis. There are two options for calcu-
lating the standard error of the sampling distribution for a difference of
means test. The first is termed the pooled variance method; it gener-
ally provides a more efficient statistical estimate but requires the addi-
tional assumption of homoscedasticity—that the standard deviations

variance method because it does not make an assumption about the
equality of variances between the two population distributions. For a
difference of proportions test, the pooled variance method is always
used.

When the two samples examined are not independent, the t-test for
dependent samples should be used. The calculation of this statistic is
based on the mean difference between pairs of samples and the standard
deviation of the differences between the pairs.
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of the two populations are the same. The second is called the separate

both samples.
known populations and binary variables when N is sufficiently large for 
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K e y  T e r m s

homoscedasticity A statement that the
variances and standard deviations of two or
more populations are the same.

pooled variance A method of obtaining
the standard error of the sampling distribu-
tion for a difference of means test. The
pooled variance method requires an as-
sumption of homoscedasticity.

separate variance A method of obtaining
the standard error of the sampling distribu-

tion for a difference of means test. The
separate variance method does not require
an assumption of homoscedasticity.

t-test for dependent samples A test of
statistical significance that is used when
two samples are not independent.

two-sample t-test A test of statistical sig-
nificance that examines the difference ob-
served between the means or proportions
of two samples.

S y m b o l s  a n d  F o r m u l a s

Estimate of the standard deviation of a population

Estimate of the standard error of a sampling distribution

To calculate degrees of freedom for the two-sample t-test:

df � N1 � N2 � 2

To calculate an unbiased estimate of the standard error for the sampling
distribution in a two-sample t-test (separate variance method):

To estimate a pooled joint standard deviation of two populations for the
pooled variance method:

To estimate the standard error for the sampling distribution in a two-
sample t-test (pooled variance method):

�̂sd(X1 � X2) � �̂�N1 � N2

N1N2

�̂ � � N1s
2
1 � N2s

2
2

N1 � N2 � 2

�̂sd(X1 � X2) � � s2
1

N1 � 1
 � 

s2
2

N2 � 1

�̂sd

�̂
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To calculate the two-sample t-test statistic for means (separate variance
method):

To calculate the two-sample t-test statistic for means (pooled variance
method):

To calculate the variance of a sample proportion:

s2 � pq

To calculate the two-sample t-test statistic for proportions:

To calculate the two-sample t-test statistic for means of dependent
samples:

E x e r c i s e s

11.1 Test the following pairs of hypotheses using the information given.
Assume that the variable has been measured at the interval level and
the cases have been selected at random. For each test, answer the fol-
lowing questions:

— Does the test require a one-tailed or a two-tailed test of statistical
significance?

— What is (are) the critical value(s) for the stated level of significance?

— What is the value of the test statistic?

— What is the decision regarding the null hypothesis?

t � 
Xd � �d

� s2
d

N � 1

t � 
(p1 � p2) � (P1 � P2)

� N1s
2
1 � N2s

2
2

N1 � N2 � 2
 �N1 � N2

N1N2

t � 
(X1 � X2) � (�1 � �2)

�̂�N1 � N2

N1N2

t � 
(X1 � X2) � (�1 � �2)

� s2
1

N1 � 1
 � 

s2
2

N2 � 1
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— Does the sample size suggest the need for caution in drawing
conclusions?

a. H0: �1 � �2

H1: �1 � �2

� � 0.05

s1 � 4 s2 � 6
N1 � 14 N2 � 18

b. H0: �1 � �2

H1: �1 � �2

� � 0.01

s1 � 8 s2 � 10
N1 � 41 N2 � 41

c. H0: �1 � �2

H1: �1 � �2

� � 0.05

s1 � 6 s2 � 6
N1 � 122 N2 � 215

d. H0: �1 � �2

H1: �1 � �2

� � 0.05

s1 � 2 s2 � 3
N1 � 29 N2 � 33

e. H0: �1 � �2

H1: �1 � �2

� � 0.01

s1 � 35 s2 � 25
N1 � 513 N2 � 476

f. H0: �1 � �2

H1: �1 � �2

� � 0.05

s1 � 1 s2 � 2
N1 � 85 N2 � 93

11.2 Greg wishes to investigate whether there is any difference in the
amount of violent crowd behavior that supporters of two soccer teams
report having seen in one season. He distributes questionnaires at ran-
dom to season-ticket holders at United and at City. The mean number

X2 � 4X1 � 2

X2 � 32X1 � 45

X2 � 6X1 � 15

X2 � 28X1 � 33

X2 � 20X1 � 10

X2 � 30X1 � 24
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of matches at which the sample of 110 United fans remember seeing
violent incidents is 15 (s � 4.7). For the sample of 130 City fans, the
mean number of such matches is 8 (s � 4.2).

a. Can Greg conclude that there are differences in the amount of
violent crowd behavior observed between the two populations of
season-ticket holders? Outline all the steps required in the test of sta-
tistical significance. Choose an appropriate level of significance and
calculate the t-test statistic according to the separate variance
method.

b. Would Greg’s conclusion be any different if he were to use the
pooled variance method?

c. Which of the two methods is preferred in this case?

11.3 To see if there is truth in the claim by a prominent graduate of the
police academy that white officers are awarded more promotions
than African American officers, an independent random sample is
drawn from the 1,000 police officers in Bluesville who graduated
from the academy ten years earlier. For the 42 white officers sam-
pled, the mean number of promotions received in the ten years
since graduation was 3.2 (s � 0.8). For the 20 African American
officers sampled, the mean number of promotions received was 2.8
(s � 0.65).

a. From these data, can you conclude that white officers who gradu-
ated ten years ago have been awarded more promotions than their
African American counterparts? Use the separate variance method
and set a 5% significance level.

b. Would your answer be any different if you used the pooled vari-
ance method?

c. If the level of significance had been set at 1%, would there be any
difference in the decisions you would make based on the separate
variance and pooled variance methods?

d. Does the sample size have any relevance to the extent to which
you can rely on the results?

11.4 By surveying a random sample of 100 students from Partytime High
School and 100 students from Funtime High School, a researcher
learns that those from Partytime High School have smoked marijuana
an average of 9.8 times (s � 4.2) in the last six months, while those
from Funtime High School have smoked marijuana an average of 4.6
times (s � 3.6) in the last six months. Can the researcher conclude
that use of marijuana differs between Partytime and Funtime high
schools? Use the separate variance method and set a significance level
of 0.01. Be sure to state the assumptions of the statistical test.
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11.5 Test the following pairs of hypotheses using the information 
given. Assume that the variable has been measured at the nominal
level, the value reported is the proportion, and the cases have 
been selected at random. For each test, answer the following
questions:

— Does the test require a one-tailed or a two-tailed test of statistical
significance?

— What is (are) the critical value(s) for the stated level of significance?

— What is the value of the test statistic?

— What is the decision regarding the null hypothesis?

— Does the sample size suggest the need for caution in drawing
conclusions?

a. H0: P1 � P2

H1: P1 � P2

� � 0.05
p1 � 0.80 p2 � 0.60
N1 � 6 N2 � 8

b. H0: P1 � P2

H1: P1 � P2

� � 0.01
p1 � 0.73 p2 � 0.75
N1 � 211 N2 � 376

c. H0: P1 � P2

H1: P1 � P2

� � 0.05
p1 � 0.46 p2 � 0.54
N1 � 86 N2 � 76

d. H0: P1 � P2

H1: P1 � P2

� � 0.01
p1 � 0.28 p2 � 0.23
N1 � 192 N2 � 161

e. H0: P1 � P2

H1: P1 � P2

� � 0.01
p1 � 0.12 p2 � 0.10
N1 � 57 N2 � 45

f. H0: P1 � P2

H1: P1 � P2

� � 0.05
p1 � 0.88 p2 � 0.94
N1 � 689 N2 � 943
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11.6 After a long political battle, certain categories of prisoners in Rainy
State have been given the right to vote in upcoming local elections.
Carolyn wishes to know whether there is any difference between the
proportion of eligible prisoners and the proportion of eligible nonpris-
oners in Rainy State who will take advantage of their right to vote. She
draws two random independent samples—one of 125 prisoners, and
the other of 130 nonprisoners. The samples are drawn from the entire
eligible prisoner and nonprisoner populations of Rainy State. She finds
that 60% of her prisoner sample and 44% of her nonprisoner sample
intend to vote.

a. Why is a statistical test of significance necessary here?

b. Carry out a test of statistical significance, remembering to outline
each step carefully. Can Carolyn conclude that the two populations
are different in terms of their respective members’ intentions to
vote?

11.7 Eric takes a random sample of 200 offenders convicted of bribery and
a random sample of 200 offenders convicted of robbery over the past
five years in Sunny State. By checking court records, he finds that 9%
of the bribery offenders and 1% of the robbery offenders in his sam-
ples have university educations.

a. By using a two-tailed test with a significance level of 0.01, can 
Eric conclude that the differences he observes are statistically
significant?

b. What steps would you recommend that Eric take if he wishes to ex-
tend his conclusions to the prisoner population of neighboring
Rainy State?

11.8 Three hundred prisoners, all convicted of violent crimes against
persons, have enrolled in a six-month course in anger control. A
random sample of 41 of the prisoners are chosen to complete the
same questionnaire on two separate occasions—once during the
first lesson and once during the last lesson. The questionnaire
measures how likely respondents are to resort to violence to solve
problems. The results are translated into an index from 0 to 10, with
higher scores indicating a higher tendency to seek nonviolent
solutions to problems. The 41 prisoners’ scores are shown in the

a. What is the mean change in scores?

b. What is the standard deviation for the differences between 
scores?

c. Carry out a test of statistical significance, remembering to outline all
of the steps required by the test. Can you reject the null hypothesis
for the test on the basis of the differences observed?
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First Last First Last
Subject Lesson Lesson Subject Lesson Lesson

1 1 2 22 6 6
2 2 4 23 4 4
3 1 6 24 9 6
4 3 2 25 9 7
5 4 5 26 0 1
6 7 9 27 1 4
7 6 6 28 1 4
8 4 3 29 3 3
9 4 7 30 2 2

10 1 1 31 2 4
11 2 1 32 1 1
12 3 4 33 0 3
13 4 9 34 4 5
14 6 7 35 4 5
15 7 8 36 6 7
16 2 2 37 6 6
17 2 7 38 7 7
18 3 3 39 3 6
19 1 4 40 1 1
20 6 4 41 1 2
21 2 4

11.9 A random sample of adults in a midwestern state were interviewed
twice over a period of two years. Each time, as part of the survey,
they were asked how many times their home had been burglarized
in the previous 12 months. The numbers of burglaries reported by
27 of the respondents in each interview are shown in the table on

a. What is the mean change in scores?

b. What is the standard deviation for the differences between 
scores?

c. Carry out a test of statistical significance. Use a significance level of
5% and outline all of the steps required by the test. Can you reject
the null hypothesis for the test on the basis of the differences
observed?

d. Would your answer have been any different if you had used a sig-
nificance level of 1%? Explain why.
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Respondent First Interview Second Interview

1 0 2
2 1 1
3 2 0
4 1 0
5 0 1
6 0 0
7 3 0
8 0 0
9 0 1

10 5 1
11 2 2
12 2 2
13 1 0
14 1 0
15 0 0
16 0 2
17 0 1
18 0 1
19 1 3
20 0 1
21 1 0
22 2 0
23 0 0
24 0 0
25 2 1
26 0 2
27 1 0

C o m p u t e r  E x e r c i s e s
Before beginning these exercises on using SPSS to obtain t-statistics, open

The two-sample t-test for differences in group means is performed by using

Independent Samples T Test). At a minimum, when executing this command,
you will need two variables: the variable of primary interest (e.g., delinquency,
arrest) and the variable that denotes the different groups (e.g., sex, race).

After you execute the command, a window will appear that lists all the
variables in the data file in the box on the left. Move the name of one of the
delinquency variables into the box on the right. Below this box is another
box labeled “Grouping Variable.” Move the name of the race variable into

prior to working with the different commands will make some of the instruc-
tions less confusing.

the “Independent-Samples T Test” command (Analyze l Comparing Means l

the data file nys_1.sav (or nys_1_student.sav). Having this data file open
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this box, and then click on the button “Define Groups.” In the new window
that opens, you will need to enter the numbers representing the two cate-
gories you are interested in comparing. The race variable presents an inter-
esting choice, since it has five categories. For now, enter “1” for group 1
(denoting whites) and “2” for group 2 (denoting African Americans). If you
wanted to compare any other combination of race groups, you would sim-
ply have to change the numbers representing the groups. Clicking on “Con-
tinue” and “OK” will run the command.

command will contain two lines in the main results table. The first line will
present the t-test results using the pooled variance method, while the second
line will present the t-test results using the separate variance method.

command in SPSS (Analyze l Comparing Means l Paired Samples T Test).
After you execute this command, a window will appear that lists all the vari-
ables in the box on the left. Just below the list of variables is a box labeled
“Current Selections,” which lists the current pair of variables to be com-
pared. To have SPSS perform the analysis, move the highlighted names to
the box on the right (both variable names should appear in the box labeled
“Paired Variables”). The output window will give the mean difference (list-
ing the variables in the calculation, such as “var1 � var2”), the standard de-
viation of the difference, and the corresponding t-statistic.

Note that in SPSS paired samples are calculated in only one way. SPSS
uses the order of appearance of the variable names in the data file to deter-
mine which variable is listed as the “First variable” and which is listed as the
“Second variable.” Try clicking on a pair of variables in different orders, and
see how SPSS rearranges the names to correspond to order of appearance in
the data file. The difficulty with this feature of SPSS is that you may want the
variable that appears second, such as a post-treatment measure, to be used
first in the calculation. The easiest and most straightforward way of dealing
with this aspect of SPSS is to change the sign of the mean of the difference if
the calculation performed by SPSS is the reverse of what you want. But be
very careful—ensure from the output table that the calculation performed is
opposite to the one you want performed.

1. Open the SPSS data file labail.sav. This data file contains the values
used for the bail example in the text. There are only two variables in-
cluded in this data set: bail amount and race (coded as 1 � African
Americans and 2 � Hispanics). Use the “Independent Samples T Test”

2.

The output window generated by the “Independent-Samples T Test”

A dependent samples t-test is obtained using the “Paired-Samples T Test”

Open the data file nys_1.sav (or nys_1_student.sav). Use the 
command to test the hypotheses listed“Independent-Samples T Test”

below. For each hypothesis test, use a significance level of 5%, state 
each of the assumptions, and explain whether there is a statistically
significant difference between the two groups.
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b. The number of times a youth has smoked marijuana is greater for
males than for females.

c. The number of times a youth has physically attacked another stu-
dent is different for males and females.

d. The number of times a youth has hit his or her parents is greater
for 17-year-olds than for 12-year-olds.

e. The number of times a youth has cheated on schoolwork is greater
for students earning mostly C’s than for students earning mostly A’s.

Enter the data from Exercise 11.8. Test for a significant change using

to those you obtained for Exercise 11.8?

Enter the data from Exercise 11.9. Test for a significant change using

to those you obtained for Exercise 11.9?

3. “ ”Open the data file pcs_98.sav. Use the Independent-Samples T Test
command to test the hypotheses listed below. For each hypothesis test, 
use a significance level of 5%, state each of the assumptions, and 
explain whether there is a statistically significant difference between
the two groups.

male offenders.
a. The length of incarceration sentence is shorter for female than for 

b. The length of incarceration sentence is different for white and 
Hispanic offenders.

victed in a jury trial then for offenders who plead guilty.
c. The length of incarceration sentence is longer for offfenders con-

d. The length of incarceration sentence is different for offenders con-
victed of drug and property offenses.

4.

5.

the “Paired-Samples T Test” command. How do these results compare

the “Paired-Samples T Test” command. How do these results compare
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a. The number of times a youth has stolen something valued at $5 to
$50 is different for whites and African Americans.
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IN CHAPTER 11, we used the t distribution to test hypotheses about
means from two independent samples. But what if we are interested in
looking at more than two samples at a time? This is a common problem
in criminology and criminal justice, where many important questions
can be raised across a number of different samples. For example, race is
a central concern in criminal justice and criminology, and often it does
not make sense to restrict comparisons involving race to just two
groups. Similarly, in many criminal justice studies, a number of interven-
tions are compared simultaneously. In such studies, researchers want to
compare not just two but three or more means in the context of one
statistical test.

Analysis of variance (ANOVA) is a commonly used parametric test of
statistical significance that allows the researcher to compare multiple
groups on specific characteristics. ANOVA also provides an opportunity
to introduce several important statistical concepts used in more complex
types of analysis. In this chapter, we examine in this context the con-
cepts of explained and unexplained variation and consider how they re-
late to the total variation found in a specific measure. This chapter also
introduces a nonparametric test, the Kruskal-Wallis test, which can be
used for comparisons across multiple groups when the assumptions un-
derlying ANOVA are difficult to meet.

A n a l y s i s  o f  V a r i a n c e

Analysis of variance is based on a simple premise. As the differences
between the means of samples become larger relative to the variability
of scores within each sample, our confidence in making inferences
grows. Why is this the case? Certainly it makes sense that the more the
mean differs from one sample to another, the stronger the evidence
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supporting the position that there are differences between the popula-
tion means. All else being equal, the larger the differences between the
samples, the more confident we are likely to be in rejecting the position
that the population means are equal.

But we are faced with a problem in making such an inference. How
much confidence can we place in the observed means of our samples?
As we have stated many times in this book, sample estimates vary from
sample to sample. If the sample means are likely to vary considerably,
then we want to be cautious in drawing strong conclusions from our
study. If the sample means are not likely to vary greatly, we can have
more confidence in conclusions drawn from them. Analysis of variance
uses the variability within the observed samples to come to conclusions
about this variability.

Suppose, for example, that you are examining two separate studies,
each including three samples. In the first study, the scores are widely
dispersed around the mean for each group. In contrast, in the second
study, the scores are tightly clustered around the group means. If you
take the variability you observe in these samples as an indication of the
variability in the populations from which they were drawn, you are
likely to have more confidence in estimates gained from the second
study than from the first. Those estimates appear to be more stable, evi-
dencing much less variability.

This is precisely the approach taken in analysis of variance. The vari-
ability between the groups studied is contrasted with the variability
within these groups to produce a ratio:

The larger this ratio—the larger the differences between the groups
relative to the variability within them—the more confidence we can
have in a conclusion that the population means are not equal. When
the ratio is smaller, meaning that the differences between the groups
are small relative to the variability within them, we have less reason to
conclude that differences exist in the populations to which we want to
infer.

Developing Estimates of Variance Between and Within Groups
The first step in analysis of variance is to define the variability be-
tween and within the groups studied. To make this process more con-

Table 12.1).

Variability between groups

Variability within groups

crete, let’s use a hypothetical study of depression among 12 prison 
inmates drawn from high-, moderate-, and low-security prisons (see

294



A N A L Y S I S O F V A R I A N C E

Between-group variability is measured by first subtracting the grand
mean, or overall mean, of the three samples from the mean of each
sample. This difference must then be adjusted to take into account the
number of scores or observations in each sample. Equation 12.1 repre-
sents this process in mathematical language. The sample (or category)
means are represented by , the overall mean (or grand mean) is repre-
sented by , Nc represents the number of scores or observations in the 

sample (or category), and tells us to sum the results from the first 

sample (or category) mean (c � 1) to the last sample (or category) mean
(c � k).

Equation 12.1

As illustrated in Table 12.1, the overall, or grand, mean is found by
adding up all the scores in the three samples and dividing by the total
number of scores (N � 12). To calculate the amount of between-group
variability for our example, we take just three quantities—the mean de-
pression score of high-security inmates minus the overall mean,
the mean depression score of moderate-security inmates minus
the overall mean, and the mean depression score of low-security inmates

minus the overall mean—and multiply each by its sample size.
Within-group variability is identified by summing the difference be-

tween each subject’s score and the mean for the sample in which the
subject is found. In Equation 12.2, Xi represents a score from one of the

(X � 4)

(X � 8)
(X � 9)

�
k

c�1
 [Nc(Xc � Xg)]

�
k

c�1

Xg

Xc

Depression Scores for 12 Prison Inmates Drawn 
from High-, Moderate-, and Low-Security Prisons

LOW SECURITY MODERATE SECURITY HIGH SECURITY
(GROUP 1) (GROUP 2) (GROUP 3)

3 9 9
5 9 10
4 8 7
4 6 10

To calculate the grand mean: Xg � 
�
N

i�1
 Xi

N
 � 

84
12

 � 7

X � 9X � 8X � 4
� � 36� � 32� � 16

Table 12.1
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three samples and, as before, represents the mean for that sample.
Here we sum from i � 1 to N, or from the first to the last score in the
overall study.

Equation 12.2

For within-group variability, we have four calculations to carry out for
each sample (group). For the first subject in the low-security prison sam-
ple, for example, we subtract from the subject’s score of 3 the mean
score of low-security inmates in the study (4). The same is done for each
of the other three members of this sample. For the moderate-security
sample, we repeat the process, starting with the first subject, with a score
of 9, and using the mean of 8 for the group as a whole. The same is
done for the high-security sample.

When we add up the deviations between the groups and those within
them, as is done in Tables 12.2 and 12.3, we find that both are 0. This
does not mean that there is an absence of variability either within or be-
tween the samples we are examining. Rather, this outcome reflects a rule
stated in Chapter 4: The sum of the deviations from a mean equals 0.
Clearly, we cannot use the sum of the deviations from the mean as an in-
dicator of variation. As in other similar problems, it makes sense to
square the deviations from the mean. The squares of all the deviations
from the mean will be positive or 0.

The result when we square these quantities and then add them is
commonly referred to as a sum of squares. The variability between
groups measured in this way is called the between sum of squares
(BSS). It is calculated by taking the sum of the squared deviation of each
sample mean from the overall mean multiplied by the number
of cases (Nc) in that sample.

Equation 12.3BSS � �
k

c�1
[Nc(Xc � Xg)

2]

(Xg)(Xc )

�
N

i�1
 (Xi � Xc )

Xc

Summing the Deviations of the Group Means from the Grand Mean
for the Three Groups in the Inmate Depression Study

N c

4 7 �3 �12
8 7 1 4
9 7 2 8

� � 0� � 0

(Xc � Xg)(Xc � Xg)XgXc

Table 12.2
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To calculate the between sum of squares for our hypothetical study,
we take the same approach as is shown in Table 12.2. The one differ-
ence is that after we subtract the overall mean from a category mean, we
square the result. Our final result is 56.

Summing the Deviations of the Scores from the Group Means 
Within the Three Groups in the Inmate Depression Study

X i

3 4 �1
5 4 1
4 4 0
4 4 0
9 8 1
9 8 1
8 8 0
6 8 �2
9 9 0

10 9 1
7 9 �2

10 9 1
� � 0

(Xi � Xc)Xc

Table 12.3

W orking It Out

 � 56

 � 4(4 � 7)2  � 4(8 � 7)2  � 4(9 � 7)2

 BSS � �
k

c�1
[Nc(Xc � Xg)

2]

is defined as the within sum of squares (WSS). The within sum of
squares is obtained by taking the sum of the squared deviation of each
score from its category mean, as represented in Equation 12.4. As before,
we first take the score for each subject and subtract from it the sample
mean. However, before adding these deviations together, we square
each one. The within sum of squares for our hypothetical example is
equal to 14.

Equation 12.4WSS � �
N

i�1
 (Xi � Xc )2

When we measure variability within groups using this method, the result
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Partitioning Sums of Squares
We can also calculate a third type of variability for our inmate depres-
sion study: total sum of squares (TSS). The total sum of squares
takes into account all of the variability in our three samples. It is
calculated by taking the sum of the squared deviation of each score
from the overall mean of scores for the three groups, as shown in
Equation 12.5.

Equation 12.5

In practice, we first take the deviation of a score from the overall
mean and then square it. For example, the first subject in the low-secu-
rity prison sample has a score of 3. We subtract from this score the over-
all mean of 7 and then square the result (�4), to obtain a value of 16. To
arrive at the total sum of squares, we do this for each of the 12 scores in
the study and then sum the results.

TSS � �
N

i�1
 (Xi � Xg)

2

W orking It Out

 � 14

  �� (7 � 9)2 � (10 � 9)2

  �� (9 � 8)2 � (8 � 8)2 � (6 � 8)2 � (9 � 9)2 � (10 � 9)2 

 � (3 � 4)2 � (5 � 4)2 � (4 � 4)2 � (4 � 4)2 � (9 � 8)2 

 WSS � �
N

i�1
 (Xi � Xc )2

W orking It Out

 � 70

   � (10 � 7)2 � (7 � 7)2 � (10 � 7)2

   � (9 � 7)2 � (9 � 7)2 � (8 � 7)2 � (6 � 7)2 � (9 � 7)2

 � (3 � 7)2 � (5 � 7)2 � (4 � 7)2 � (4 � 7)2

 TSS � �
N

i�1
 (Xi � Xg)

2
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squares and the within sum of squares. That is, the total variability across
all of the scores is made up of the variability between the samples and
the variability within the samples. More generally, the three types of vari-
ability discussed so far may be expressed in terms of a simple formula
that partitions the total sum of squares into its two component parts: the
between sum of squares and the within sum of squares.

Total sum of squares � between sum of squares 
� within sum of squares Equation 12.6

(For our example, 70 � 56 � 14.)
Another way to express the relationship among the three types of

sums of squares is to partition the total sum of squares into explained
and unexplained components:

Total sum of squares � explained sum of squares 
� unexplained sum of squares Equation 12.7

In this equation, the between sum of squares is represented by the ex-
plained sum of squares (ESS) because the between sum of squares
represents the part of the total variability that is accounted for by the dif-
ferences between the groups. For our hypothetical example, this is the
proportion of the total variability in depression that is “explained” by the
type of prison in which the subject is incarcerated.

The within sum of squares is represented in Equation 12.7 by the un-
explained variability, or the unexplained sum of squares (USS). This
is the part of the total variability that differences between the groups do
not explain. We usually do not know the cause of this variability.

Developing Estimates of Population Variances
So far we have defined the sums of squares associated with between-
group and within-group variability. But analysis of variance, as its name
implies, is concerned with variance, not just variability. Accordingly, we
have to adjust our sums by taking into account the appropriate number
of degrees of freedom. In Chapter 5, when we developed estimates of
variance, we divided the squared deviations from the mean by the num-
ber of cases in the sample or population. For analysis of variance, we di-
vide the between and within sums of squares by the appropriate degrees
of freedom.

For the between-group estimate of variance, we define the number of
degrees of freedom as k � 1, where k is the number of samples or cate-
gories examined. If we are comparing three sample means, the number
of degrees of freedom associated with the between-group estimate 
of variance is thus 2. As illustrated by Equation 12.8, an estimate of the

The quantity obtained is equivalent to the sum of the between sum of
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The ANOVA model is often presented using a different set of statistical
notation than that used in this text. In this book, we define the total sum of
squares as equal to the sum of the within sum of squares and the be-
tween sum of squares:

In many other statistics texts, the following equation is used for the de-
composition of the total sum of squares:

The double summation symbols indicate that we need to first sum over
each group—denoted by the subscript j—and then sum over each indi-
vidual observation—denoted by the subscript i. In terms of this book’s no-
tation, .

Although we have reduced the number of summation signs to one for
each sum of squares, the calculations with the two equations are identi-
cal for the total sum of squares and the within sum of squares. The one
difference between the two equations lies in the calculation of the be-
tween sum of squares. The notation we offer simplifies this calculation
by taking into account the fact that all of the individual scores in a single
group (Nc) will have the same value. Rather than repeat the same calcu-
lation for all the individuals in the same group, we produce the identical
answer by multiplying the squared difference of the sample mean and
the overall mean by the number of observations in the corresponding
sample.

X • • � Xg and X •j � Xc

�
N

i�1
�

k

j�1
(Xij � X••)2  � �

N

i�1
�

k

j�1
(Xij � X•j)2 � �

N

i�1
�

k

j�1
(X•j � X••)2

�
N

i�1
(Xi � Xg)2 � �

N

i�1
(Xi � Xc)2 � �

k

c�1
[Nc(Xc � Xg)2]

in Different Formats
Representing Sums of Squares: ANOVA Notation 
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between-group variance is obtained by dividing the between sum
of squares by k � 1.

Equation 12.8

The number of degrees of freedom for the within-group estimate of
variance is N � k, or the number of cases in the sample minus the num-
ber of samples or categories examined. The within-group variance esti-
mate is calculated by dividing the within sum of squares by N � k
(see Equation 12.9).

Equation 12.9

A Substantive Example: Age and White-Collar Crimes
Now that we have defined the two types of variance that are compared
in analysis of variance, let’s look at a substantive problem. Table 12.4
presents data on age for three samples of offenders convicted of white-
collar crimes in seven federal district courts over a three-year period.1

�̂2
wg � 

�
N

i�1
(Xi � Xc)

2

N � k

(�̂2
wg)

�̂2
bg � 

�
k

c�1
[Nc(Xc � Xg)

2]

k � 1

(�̂2
bg)

Ages of 30 White-Collar Criminals Convicted 
of Three Different Offenses

OFFENSE 1 OFFENSE 2 OFFENSE 3
BANK EMBEZZLEMENT BRIBERY ANTITRUST VIOLATION

19 28 35
21 29 46
23 32 48
25 40 53
29 42 58
30 48 61
31 58 62
35 58 62
42 64 62
49 68 75

s � 8.98 s � 13.99 s � 10.54

Grand mean � 1333/30 � 44.43(Xg)

X � 56.2X � 46.7X � 30.4

Table 12.4

1The data are drawn from S. Wheeler, D. Weisburd, and N. Bode, Sanctioning of
White Collar Crime, 1976–1978: Federal District Courts (Ann Arbor, MI: Inter-
University Consortium for Political and Social Research, 1988).
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The first sample was drawn from offenders convicted of bank embezzle-
ment, the second from offenders convicted of bribery, and the third from
offenders convicted under criminal antitrust statutes. Ten subjects were
drawn randomly from each of these populations.

The values listed in Table 12.4 represent the ages of the sampled of-
fenders. The mean age of the bank embezzlers is 30.4 years; of the
bribery offenders, 46.7 years; and of the antitrust offenders, 56.2 years.
Can we conclude from the differences found among these samples that
there are differences among the means of the populations from which
these samples were drawn?

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution for each population (the
shape of the population distributions is unknown, and the sizes of the
samples examined are small).

Sampling Method: Independent random sampling (no replacement;
sample is small relative to population).

Sampling Frame: All white-collar offenders convicted of the 
crimes examined in seven federal judicial districts over a three-year
period.

Population variances are equal .

Hypotheses:

H0: Population means of age for bank embezzlers, bribery offenders,
and antitrust offenders are equal (�1 � �2 � �3).

H1: Population means of age for bank embezzlers, bribery offenders,
and antitrust offenders are not equal (�1 � �2 � �3).

ance requires that an interval level of measurement be used for the
scores to be examined. Our example meets this assumption because
age is an interval measure. Some statisticians add an assumption of
nominal measurement because a comparison of means across samples
requires that we define categories (or samples) for comparison. For
example, in the case of age and white-collar crime, the three samples
represent three categories of offenses. Our interest in this case is in
the relationship between age (an interval-scale variable) and category
of crime (a nominal-scale variable). In the hypothetical study dis-
cussed earlier in this chapter, we were interested in the relationship
between depression (measured at an interval level) and type of prison
(a nominal-scale variable).

(�2
1 � �2

2 � �2
3)

Like other parametric tests of statistical significance, analysis of vari-
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Analysis of variance also requires that the populations underlying the
samples examined be normally distributed. For our example, this is the
most troubling assumption. We do not have evidence from prior studies
that age is distributed normally within categories of crime. Nor are our
samples large enough to allow us to invoke the central limit theorem.
For ANOVA, as for the two-sample t-test, we want to have at least 30
cases per sample in order to relax the normality assumption. Because the
computations for analysis of variance are complex, having only ten cases
in each sample makes it easier to learn about ANOVA. However, our test
will provide valid results only if the population distributions we infer to
are in fact normally distributed.

We must also assume that the samples being compared were drawn
randomly and independently. In practice, as we discussed in Chapter
11, researchers often make comparisons between groups within a sin-
gle larger sample. For example, we might draw an independent ran-
dom sample of white-collar offenders and then compare the means
found in this larger sample for bank embezzlement, bribery, and an-
titrust offenders. As explained in Chapter 11, if the larger sample was
drawn as an independent random sample, then we may assume that
subsamples consisting of offenders convicted of different types of
crimes are also independent random samples. In this study, random
samples were drawn independently from each category of crime. Al-

districts studied.
For analysis of variance, we must also assume that the population

variances of the three groups are equal. This assumption of homoscedas-
ticity is similar to that introduced for the two-sample t-test (using the
pooled-variance method) in Chapter 11. However, in contrast to the 

2

One reason researchers, as opposed to statisticians, are not very
concerned about the assumption of homoscedasticity is that even large

2For example, see G. Hornsnell, “The Effect of Unequal Group Variances on the 
F Test for Homogeneity of Group Means,” Biometrika 40 (1954): 128–136; G. E. P.
Box, “Some Theorems on Quadratic Forms Applied in the Study of Analysis of
Variance Problems. I. Effect of Inequality of Variance in the One Way Classification,”
Annals of Mathematical Statistics 25 (1954): 290–302.

though the researchers did not sample with replacement, we can assume
that this violation of assumptions is not serious because the sample
drawn is very small relative to the population of offenders in the

t-test, ANOVA has no alternative test if we cannot assume equal variances
between the groups. Although this seems at first to be an important
barrier to using analysis of variance, in practice it is generally accepted
that violations of this assumption must be very large before the results
of a test come into question.
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violations of this assumption affect the estimates of statistical signifi-
cance to only a small degree. Sometimes it is suggested that you simply
define a more conservative level of statistical significance when you 
are concerned with a serious violation of the homoscedasticity assump-
tion.3 Accordingly, you might select a 1% significance threshold as
opposed to the more conventional 5% threshold. In general, large devi-
ations in variance are not likely to occur across all of the groups stud-
ied. If one group is very different from the others, you might choose to
conduct your test two ways—both including the group that is very dif-
ferent from the others and excluding it—and compare your results. In
our example, the variances do not differ widely one from another (see
Table 12.4).

Our final assumptions for this analysis relate to the null and research
hypotheses. For analysis of variance, the null hypothesis is that the
means of the groups are the same. In our example, the null hypothesis
is that the mean ages of offenders in the populations of the three crime
categories are equal. Our research hypothesis is that the means are not
equal. As is true for ANOVA more generally, our research hypothesis is
nondirectional. If we are making inferences to three or more popula-
tions, it is not possible to define the direction of the differences among
them.4

The Sampling Distribution The sampling distribution used for making de-
cisions about hypotheses in analysis of variance is called the F distribu-
tion, after R. A. Fisher, the statistician who first described it. The shape of
the F distribution varies, depending on the number of degrees of free-
dom of the variance estimates being compared. The number of degrees

3Most packaged statistical programs provide a test for equivalence of variances as an
option with their ANOVA program. However, be careful not to automatically reject
use of analysis of variance on the basis of a statistically significant result. In smaller
studies, with samples of less than 50 per group, a finding of a statistically significant
difference should make you cautious about using analysis of variance. In such a
study, you may want to adjust the significance level, as suggested here, or consider al-
ternative nonparametric tests (discussed later in the chapter). With larger samples, 
a statistically significant result at conventional significance levels should not necessar-
ily lead to any adjustments in your test. For such adjustments to be made, the differ-
ence should be highly significant and reflect large actual differences among variance
estimates.
4However, in the special case of analysis of variance with only two samples, the re-
searcher can use a directional research hypothesis. This will sometimes be done in ex-
perimental studies when the researcher seeks to examine differences across experi-
mental and control groups, taking into account additional factors [e.g., see L. W.
Sherman and D. Weisburd, “General Deterrent Effects of Police Patrol in Crime ‘Hot
Spots.’ A Randomized Study,” Justice Quarterly 12 (1995): 625–648.]
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of freedom is represented by k � 1 for the between-group variance and
N � k for the within-group variance:

W orking It Out

df for between-group variance � k � 1 � 3 � 1 � 2

df for within-group variance � N � k � 30 � 3 � 27

Because we need to take into account two separate degrees of freedom
at the same time, a different table of probability estimates is given for
each significance threshold. Accordingly, Appendix 5 provides F tables
for 0.05, 0.01, and 0.001 significance levels.

Each table provides the F-scores, adjusted for degrees of freedom,
that correspond to the particular significance threshold. Thus, for
example, in the table for � � 0.05, the values given are the critical
values for the test. For all tests using the F distribution, we need to ob-
tain an F-score greater than this critical value to reject the null hypothesis
of equal means. Looking at the table for � � 0.05, we can identify two
interesting characteristics of the F distribution.

First, the F distribution is unidirectional, consisting only of positive
values. Consistent with the fact that the research hypothesis in analysis
of variance with three or more population means states simply that the
means are not equal, the F distribution is concerned only with the ab-
solute size of the statistic obtained.

Second, as the number of degrees of freedom associated with the
within-group variance grows, the F-value needed to reject the null hy-
pothesis gets smaller. Remember that the number of degrees of freedom
for the within-group variance is equal to N � k. Accordingly, as the
number of cases in the sample gets larger, the number of degrees of
freedom also gets larger. Why should the F-value needed to reject the
null hypothesis be related to the size of the sample? As with a t-test, as
the number of cases increases, so too does our confidence in the esti-
mate we obtain from an F-test.5

Significance Level and Rejection Region Given that no special concerns
have been stated in regard to the risk of either a Type I or a Type II
error, we use a conventional 0.05 significance level. Looking at the F
table for � � 0.05 (Appendix 5), with 2 and 27 degrees of freedom,

5Indeed, note that the values of F with 1 degree of freedom for the between sum of
squares are simply the values of t squared.
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respectively, we find a critical value of 3.35. This tells us that we need an
F-score greater than 3.35 to reject our null hypothesis of no difference
between the population means. An observed F-score greater than 3.35
means that the observed significance level for our test is less than the
0.05 criterion level we have set.

The Test Statistic To calculate the F-ratio, we must compute estimates of
the between-group and within-group population variances based on our
three samples. Computing the between-group variance is relatively easy.
As noted earlier, the formula for between-group variance is

Applying this formula to our example, we first take the mean for each
group, subtract from it the overall mean of the three groups (44.43),
square the result, and multiply by 10—the number of observations in
each group. After this process has been carried out for each of the three
groups, the totals are then added together and divided by the degrees of
freedom for the between-group variance (2). These calculations are illus-
trated below. The between sum of squares for our example is 3,405.267.
Dividing it by the number of degrees of freedom (2) results in a
between-group variance estimate of 1,702.634.

�̂2
bg � 

�
k

c�1
[Nc(Xc � Xg)

2]

k � 1

(�̂2
bg)

W orking It Out

 � 1,702.6335

 � 
3,405.267

2

 � 
10(30.4 � 44.43)2 � 10(46.7 � 44.43)2 �10(56.2 � 44.43)2

3 � 1

 �̂2
bg � 

�
k

c�1
[Nc(Xc � Xg)

2]

k � 1

Applying the formula for within-group variance is more difficult in large
part because the calculation of a within-group sum of squares demands a
good deal of computation even for small samples. For that reason, some
texts provide an alternative estimating technique for the within-group sum

assume that you will turn to statistical computing packages when conduct-
ing research in the future and the purpose here is to gain a better under-
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standing of analysis of variance, we will focus on the raw computation. Al-
though cumbersome, it illustrates more directly the logic behind ANOVA.

As discussed earlier, the formula for within-group variance is

For our example, we first take each individual score as illustrated in Table
12.5, and subtract from it the mean for its group: . We then
square this quantity: . This is done for all 30 individual scores,
and the results are then summed. The within-group sum of squares is
3,874.1. When we divide this quantity by the correct degrees of freedom
(N � k, or 27), we obtain a within-group variance estimate of 143.485.

To obtain the F-statistic for our example, we simply calculate the ratio
of the between- and within-group variances (see Equation 12.10), obtain-
ing 11.866.

Equation 12.10F � 
between-group variance

within-group variance

(X � Xc )2
(X � Xc )

�̂2
wg � 

�
N

i�1
(Xi � Xc )2

N � k

(�̂2
wg)

Calculating the Within-Group Sum of Squares

OFFENSE 1 OFFENSE 2 OFFENSE 3
BANK EMBEZZLEMENT BRIBERY ANTITRUST VIOLATION 

� 30.4 � 46.7 � 56.2

X X X
19 �11.4 129.96 28 �18.7 349.69 35 �21.2 449.44
21 �9.4 88.36 29 �17.7 313.29 46 �10.2 104.04
23 �7.4 54.76 32 �14.7 216.09 48 �8.2 67.24
25 �5.4 29.16 40 �6.7 44.89 53 �3.2 10.24
29 �1.4 1.96 42 �4.7 22.09 58 1.8 3.24
30 �0.4 0.16 48 1.3 1.69 61 4.8 23.04
31 0.6 0.36 58 11.3 127.69 62 5.8 33.64
35 4.6 21.16 58 11.3 127.69 62 5.8 33.64
42 11.6 134.56 64 17.3 299.29 62 5.8 33.64
49 18.6 345.96 68 21.3 453.69 75 18.8 353.44

� � 3,874.1

(Xi � Xc ) 2(Xi � Xc )(Xi � Xc ) 2(Xi � Xc )(Xi � Xc ) 2(Xi � Xc )

XXX

Table 12.5

W orking It Out

 � 11.8663

 F � 
1,702.6335
143.4852

 F � 
between-group variance

within-group variance
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While it is important for you to understand the concepts underlying the
equations used in the computations for ANOVA, the actual calculation of
the within-group sum of squares can be quite tedious. Since it is often
easier to calculate the total sum of squares and the between-group sum
of squares, the simplest way of obtaining the within-group sum of squares
is to rely on the relationship stated in Equation 12.6:

Total sum of squares � between-group sum of squares 
� within-group sum of squares

This equation can be rearranged and solved for the within-group sum of
squares:

Within-group sum of squares � total sum of squares 
� between-group sum of squares

A formula for computing the total sum of squares is

This equation tells us to square the value of each observation and add the

resulting squared values together . From this quantity, we then

subtract the square of the sum of all the values divided by the total num-

ber of observations .

For an illustration of the use of this formula, we can turn to the data on
the ages of white-collar criminals in Table 12.4. In the following table, we
take each offender’s age (X ) and square it (X 2). We then sum each column.

To calculate the total sum of squares, we just enter the two sums into
the computational formula:

 � 7,279.367

 � 66,509 � 
(1,333)2

30

TSS � �
N

i �1
X 

2
i  � 

(�
N

i�1
 X i)2

N

�(�
 N

i�1
X i)2/N�

��N
i�1

 X 

2
i�

TSS � �
N

i �1
X 

2
i  � 

(�
N

i�1
 X i)2

N

Computational Formulas for the Within-Group 
Sum of Squares



Age (X ) Age Squared (X 2)

19 361
21 441
23 529
25 625
29 841
30 900
31 961
35 1,225
42 1,764
49 2,401
28 784
29 841
32 1,024
40 1,600
42 1,764
48 2,304
58 3,364
58 3,364
64 4,096
68 4,624
35 1,225
46 2,116
48 2,304
53 2,809
58 3,364
61 3,721
62 3,844
62 3,844
62 3,844
75 5,625

At this point, since we know the total sum of squares (7,279.367) and have
already calculated the between-group sum of squares (3,405.267), we can
easily see that the within-group sum of squares is 3,874.1:

Within-group sum of squares � total sum of squares 
� between-group sum of squares

� 7,279.367 � 3,405.267
� 3,874.1

� � 66,509� � 1,333
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The Decision Because the test statistic for our example (11.866) is larger
than 3.35, the critical value of the rejection region, our result is statisti-
cally significant at the 0.05 level. Accordingly, we reject the null hypothe-
sis of no difference between the population means and conclude (with a
conventional level of risk of falsely rejecting the null hypothesis) that the
average age of offenders differs across the three types of crime exam-
ined. However, given our concern about violating the assumption of
normality, our conclusion will be valid only if age is indeed normally
distributed in the three populations studied.

Another ANOVA Example: Race and Bail Amounts 
Among Felony Drug Defendants
Table 12.6 presents data on bail amounts set for three samples of
felony drug defendants in large urban court districts in the United
States in the 1990s.6 The first sample is taken from non-Hispanic
whites, the second sample from non-Hispanic African Americans, and
the third sample from Hispanics of any race. Twelve defendants were
drawn at random from the population of each group. The mean bail
amount is $4,833.33 for non-Hispanic whites, $8,833.33 for non-
Hispanic African Americans, and $30,375.00 for Hispanics of any race. Do

Bail Amounts (in Dollars) for 36 Felony Drug Defendants

NON-HISPANIC NON-HISPANIC HISPANICS 
WHITES BLACKS OF ANY RACE

1,000 1,000 1,000
1,000 1,000 2,000
1,500 2,000 4,000
2,000 2,500 5,000
2,500 3,000 10,000
3,000 4,000 12,500
5,000 5,000 25,000
7,000 10,000 25,000
7,500 12,500 25,000
7,500 20,000 40,000

10,000 20,000 65,000
10,000 25,000 150,000

s � 3,287.18 s � 8,201.46 s � 42,028.74
g

X � 30,375.00X � 8,833.33X � 4,833.33

Table 12.6

6The data are taken from State Court Processing Statistics: 1990, 1992, 1994, 1996 and
can be accessed through the National Archive of Criminal Justice Data web site at
http://www.icpsr.umich.edu/NACJD.

310

Grand mean (X ) � 528500/36 = 14,680.56



Most statistical analysis software presents the results of an analysis of
variance in the form of an ANOVA table. An ANOVA table provides a com-
pact and convenient way to present the key elements in an analysis of
variance. In addition to ensuring that the researcher has all the neces-
sary information, it also allows the researcher to reproduce the estimates
of the variance and the F-statistic. The general form of an ANOVA table is
as follows:

Source df Sum of Squares Mean Square F

Between k � 1

Within N � k

Total N � 1

Each row gives the pieces of information needed and the formulas for the
calculations. For example, the “Between” row gives the corresponding
degrees of freedom and the formulas for calculating between-group vari-
ability, between-group variance (in the “Mean Square” column), and the
F-statistic. The “Within” row gives the corresponding degrees of freedom
and the formulas for calculating within-group variability and within-group
variance.

Following is the ANOVA table for the results of our calculations using
the data on the ages of white-collar criminals:

Source df Sum of Squares Mean Square F

Between 2 3,405.267 1,702.6335 11.8663
Within 27 3,874.100 143.4852
Total 29 7,279.367

�
N

i�1
(Xi � Xg)2

WSS
N � k�

N

i�1
(Xi � Xc)2

�̂2
bg

�̂2
wg

BSS
k � 1�

k

c�1
[Nc(Xc � Xg)2]

The ANOVA Table
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the differences in sample means indicate that there are differences in
the population means?

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution for each population (the
shape of the population distributions is unknown, and the sizes of the
samples examined are small).

Sampling Method: Independent random sampling (no replacement; sam-
ples are small relative to populations).

Sampling Frame: Felony drug defendants in large urban court districts in
the United States in the 1990s.

Population variances are equal .

Hypotheses:

H0: Population means of bail amounts set for felony drug defendants
who are non-Hispanic whites, non-Hispanic African Americans, and His-
panics of any race are equal (�1 � �2 � �3).

H1: Population means of bail amounts set for felony drug defendants
who are non-Hispanic whites, non-Hispanic African Americans, and His-
panics of any race are not equal (�1 � �2 � �3).

The Sampling Distribution We again use the F distribution to test for dif-
ferences among our three sample means. Recall that we need two indi-
cators of degrees of freedom: one for the between-group variance and
one for the within-group variance.

df for between-group variance � k � 1 � 3 � 1 � 2

df for within-group variance � N � k � 36 � 3 � 33

Significance Level and Rejection Region As in the preceding example, we
do not have any particular concerns about the risk of a Type I or Type II
error, so we can use the conventional 0.05 significance level. Given that
we have degrees of freedom equal to 2 and 33 with a 0.05 significance
level, the critical value of the F-statistic is about 3.29. If our calculated 
F-statistic is greater than 3.29, then we will reject our null hypothesis of
equal means.

The Test Statistic We begin our calculation of the F-statistic by comput-
ing estimates of the between-group variance and the within-group vari-

to be 2,264,840,905.56.�̂2
bg

(�2
1 � �2

2 � �2
3)

ance. Applying the formula for between-group variance, we find the 
estimate of 
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W orking It Out

 � 2,264,840,905.56

 � 
4,529,681,811.11

2

 � 
� 12(4,833.33 � 14,680.56)2

� 12(8,833.33 � 14,680.56)2 � 12(30,375.00 � 14,680.56)2�
3 � 1

 �̂2
bg � 

�
k

c�1
[Nc(Xc � Xg)

2]

k � 1

The value of the within-group variance is 617,193,813.13. Table
12.7 presents the calculation of the within-group sum of squares, which
turns out to be equal to 20,367,395,833.33. We then divide the value of
the within-group sum of squares by the corresponding degrees of free-
dom (N � k � 36 � 3 � 33), which gives us an estimate for the within-
group variance of 617,193,813.13.

(�̂2
wg)

W orking It Out

 � 617,193,813.13

 � 
20,367,395,833.33

36 � 3

 �̂2
wg � 

�
N

i�1
(Xi � Xc)

2

N � k

The value of the F-statistic is obtained by dividing the estimate of
between-group variance by the estimate of within-group variance. For
our example, F is found to be 3.67.

W orking It Out

 � 3.67

 � 
2,264,840,905.56

617,193,813.13

 F � 
between-group variance

within-group variance
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The Decision Since our test statistic of 3.67 is greater than the critical
value of 3.29 for the F distribution, we reject the null hypothesis of equal
population means; we conclude that there is a statistically significant re-
lationship between bail amount and race of defendant. However, as in
our example concerning age and white-collar crime, we began our test
with strong doubts about whether we could meet a core assumption of
analysis of variance. The samples examined are not large, and thus we
cannot relax the normality assumption for our test. In turn, we do not
have strong reason to believe that the populations to which we want to
infer actually meet the criteria of this assumption. As has been noted
throughout the text, statistical conclusions are only as solid as the as-
sumptions the researchers make. In this case, our statistical conclusions
clearly do not stand on solid ground.

D e f i n i n g  t h e  S t r e n g t h  o f  t h e  R e l a t i o n s h i p  O b s e r v e d

Even though analysis of variance is concerned with comparing means
from independent samples, in practice the samples are usually defined
as representing a multicategory nominal-level variable. For example, as
noted earlier, in comparing three samples of white-collar criminals, we
could define each as one category in a nominal-scale measure of type of
white-collar crime. Similarly, in our example concerning the relationship
between bail amount and race, we spoke about differences among three
samples of offenders: non-Hispanic whites, non-Hispanic blacks, and

Calculating the Within-Group Sum of Squares

NON-HISPANIC NON-HISPANIC HISPANICS 
WHITES BLACKS OF ANY RACE

X X X

1,000 14,694,418.89 1,000 61,361,058.89 1,000 862,890,625.00
1,000 14,694,418.89 1,000 61,361,058.89 2,000 805,140,625.00
1,500 11,111,088.89 2,000 46,694,398.89 4,000 695,640,625.00
2,000 8,027,758.89 2,500 40,111,068.89 5,000 643,890,625.00
2,500 5,444,428.89 3,000 34,027,738.89 10,000 415,140,625.00
3,000 3,361,098.89 4,000 23,361,078.89 12,500 319,515,625.00
5,000 27,778.89 5,000 14,694,418.89 25,000 28,890,625.00
7,000 4,694,458.89 10,000 1,361,118.89 25,000 28,890,625.00
7,500 7,111,128.89 12,500 13,444,468.89 25,000 28,890,625.00
7,500 7,111,128.89 20,000 124,694,518.89 40,000 92,640,625.00

10,000 26,694,478.89 20,000 124,694,518.89 65,000 1,198,890,625.00
10,000 26,694,478.89 25,000 261,361,218.89 150,000 14,310,140,625.00

� � 20,367,395,833.33

(Xi � Xc )2(Xi � Xc )2(Xi � Xc )2

Table 12.7
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Hispanics of any race. Nonetheless, these three samples can be seen as
three groups in a nominal-level measure of race of defendant.

ences between the means of the samples. With just three samples, we can
get a pretty good sense of the strength of a relationship using this method.
But even with three samples, it is difficult to summarize the extent of the
relationship observed because we must look at three separate compar-
isons (that between group 1 and group 2, that between group 2 and group
3, and that between group 3 and group 1). With four samples, the number
of comparisons is six; for seven samples, there are 21 comparisons.
Clearly, it is useful, especially as the number of samples grows, to have a
single statistic for establishing the strength of the observed relationship.

A commonly used measure of association for ANOVA is a statistic
called eta (�). Eta relies on the partialing of sums of squares to establish
the relationship, or correlation, between the interval-level variable in
ANOVA and the nominal-level variable. To calculate eta, we simply take
the square root of the ratio of the between sum of squares to the total
sum of squares (see Equation 12.11).

Equation 12.11

Although it might not seem so at first glance, this measure makes good
sense. Understanding eta, however, will be easier if we start with an-
other statistic, eta squared (�2), which is sometimes referred to as the
percent of variance explained (see Equation 12.12).

Equation 12.12

Eta squared is the proportion of the total sum of squares that is accounted
for by the between sum of squares. As previously noted, the between
sum of squares is also defined as the explained sum of squares because it
represents the part of the total variation that is accounted for by the dif-
ferences between the samples. Eta squared thus identifies the proportion
of the total sum of squares that is accounted for by the explained sum of
squares—hence its identification as the percent of variance explained.

The larger the proportion of total variance that is accounted for by the
between sum of squares, the stronger the relationship between the nom-
inal- and interval-level variables being examined. When the means of the
samples are the same, eta squared will be 0. This means that there is no
relationship between the nominal- and interval-level measures the study
is examining. The largest value of eta squared is 1, meaning that all of

�2 � BSS
TSS

� � �BSS
TSS

identified?” The simplest way to answer this question is to look at the differ-
significant result is “How strong is the overall relationship we have 

Accordingly, one question we might ask after finding a statistically 
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the variability in the samples is accounted for by the between sum of
squares. In practice, as eta squared increases in value between 0 and 1,
the relationship being examined gets stronger.

The square root of eta squared is a measure more sensitive to small
relationships. For example, a value for eta squared of 0.04 is equal to a
value for eta of 0.20, and a value for eta squared of 0.1 is equivalent to a
value for eta of 0.32, as shown in Table 12.8. In criminal justice, where
the relationships examined are often not very large, measures such as
this one, which allow us to distinguish relatively small values more
clearly, are particularly useful.

Turning to our example concerning age and white-collar crime, we
can see that the differences between the groups account for a good deal
of the variability in the total sum of squares. Taking the between sum of
squares for that example and dividing it by the total sum of squares
gives a value for eta squared of 0.468.

Comparing Eta Squared with Eta

� 2 �

0.00 0.00
0.01 0.10
0.02 0.14
0.03 0.17
0.04 0.20
0.05 0.22
0.10 0.32
0.25 0.50
0.50 0.71
0.75 0.87
1.00 1.00

Table 12.8

W orking It Out

 � 0.4678

 � 
3,405.267

7,279.367

 �2 � BSS
TSS

 � 7,279.367

 � 3,405.267 � 3,874.100

 TSS � BSS � WSS

 BSS � 3,405.267

316



M A K I N G P A I R W I S E C O M P A R I S O N S B E T W E E N T H E G R O U P S S T U D I E D

By taking the square root of this value, we obtain a correlation coeffi-
cient, or eta, of 0.684.

W orking It Out

 � 0.6840

 � �0.4678

 � � �BSS
TSS

 � �3,405.267

7,279.367

Does an eta of 0.684 signify a large or small relationship? To some ex-
tent, differentiating between “large” and “small” in this context is a value
judgment rather than a statistical decision. We might decide whether a
particular value of eta is large or small based on results from other stud-
ies in other areas of criminal justice or perhaps similar studies that drew
different samples. There is no clear yardstick for making this decision.
One psychologist suggests that any value for eta greater than 0.371 rep-
resents a large effect.7 A moderate-size effect is indicated by a value of
0.243. Using this criterion, we would define the relationship between age
and type of white-collar crime as very strong. However, in this example,
we should be cautious about relying on the results obtained. With small
samples, the values of eta are not considered very reliable.8

M a k i n g  P a i r w i s e  C o m p a r i s o n s  B e t w e e n  t h e  G r o u p s  S t u d i e d

Once you have established through an analysis of variance that there is a
statistically significant difference across the samples studied, you may
want to look at differences between specific pairs of the samples. To do
this, you make comparisons between two sample means at a time. Such
comparisons within an analysis of variance are often called pairwise
comparisons.

7See Jacob Cohen, Statistical Power Analysis for the Behavorial Sciences (Hillsdale, NJ:
Lawrence Erlbaum, 1988), pp. 285–287.
8Once again, there is no universally accepted definition of what is “small.” There will
be little question regarding the validity of your estimate of eta if your samples meet
the 30 cases minimum defined for invoking the central limit theorem. Some statisti-
cians suggest that you will gain relatively reliable estimates even for samples as small
as 10 cases.
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It would seem, at first glance, that you could simply apply the two-
sample t-test discussed in Chapter 11 to test hypotheses related to such
comparisons. However, you are faced with a very important statistical
problem. If you run a number of t-tests at the same time, you are un-
fairly increasing your odds of obtaining a statistically significant finding
along the way. For example, let’s say that you have conducted an analy-
sis of variance comparing seven samples and obtained a statistically sig-
nificant result. You now want to look at the pairwise comparisons to see
which of the specific comparisons are significantly different from one an-
other. There are a total of 21 separate comparisons to make (see Table
12.9). For each test, you set a significance level of 0.05, which means
that you are willing to take a 1 in 20 chance of falsely rejecting the null
hypothesis. Thus, if you run 20 tests, you might expect to get at least one
statistically significant result just by chance.

Here a finding of a significant result could simply be attributed to the
fact that you have run a large number of tests. Accordingly, to be fair, you
should adjust your tests to take into account the change in the probabili-
ties that results from looking at a series of pairwise comparisons. A num-
ber of different tests allow you to do this; many are provided in standard
statistical packages.9 One commonly used test is the honestly significant
difference (HSD) test developed by John Tukey (see Equation 12.13).

Equation 12.13

HSD defines the value of the difference between the pairwise compar-
isons that is required to reject the null hypothesis at a given level of sta-
tistical significance.

HSD � Pcrit � �̂ 2
wg

Nc

The 21 Separate Pairwise Comparisons To Be Made 
for an Analysis of Variance with Seven Samples (Categories)

SAMPLE 1 2 3 4 5 6 7

1
2 �
3 � �
4 � � �
5 � � � �
6 � � � � �
7 � � � � � �

Table 12.9

9For a discussion of pairwise comparison tests, see A. J. Klockars and G. Sax, Multiple
Comparisons (Quantitative Applications in the Social Science, Vol. 61) (London: Sage,
1986).
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For our white-collar crime example, with a conventional 5% signifi-
cance threshold, we first identify the critical value (Pcrit) associated with
that significance threshold by looking at Appendix 6. With three samples
and 27 degrees of freedom in the within sum of squares estimate, the
critical value is about 3.51. We then multiply this value by the square
root of the within-group variance estimate ( ) divided by the number
of cases in each sample (Nc)—in our example, 10.10 Our result is 13.296,
meaning that the absolute value of the difference in mean age between
the pairwise comparisons must be greater than 13.296 to reject the null
hypothesis of no difference (using a 5% significance threshold).

�̂ 2
wg

10Most pairwise comparison tests, including Tukey’s HSD test, require that the sample
sizes of the groups examined be equal. While most statistical software packages pro-
vide adjustments of these tests to account for unequal sample sizes, there is still de-
bate over whether the estimates gained can be relied upon [e.g., see Robert R. J. Sokal
and F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Re-
search, 3rd ed. (New York: W. H. Freeman, 1995), Chap. 9]. Irrespective of this de-
bate, when unequal sample sizes are examined, the adjusted estimates are to be pre-
ferred over the unadjusted estimates.

W orking It Out

 � 13.296

 � 3.51 �143.49
10

HSD � Pcrit � �̂ 2
wg

Nc

Table 12.10 shows the absolute differences found for the three com-
parisons between means. Two of the three comparisons are statistically
significant at the 5% level—the absolute differences are greater than
13.296 for the difference between bank embezzlers and bribery offend-
ers and for that between bank embezzlers and antitrust offenders. How-

have to conclude that our sample results do not provide persuasive evi-
dence for stating that the mean ages of bribery and antitrust offenders
are different in the larger populations from which these two samples
were drawn.

result just misses the value needed to reject the null hypothesis. We would
ever, for the difference between bribery and antitrust offenders, our 
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The comparisons we have made so far have been based on a statis-
tically significant overall result for ANOVA. Should such comparisons
be made if the overall differences across the means are not statistically
significant? In general, it is not a good idea to look for pairwise com-
parisons if the overall analysis of variance is not statistically signifi-
cant. This is a bit like going fishing for a statistically significant result.
However, sometimes one or another of the pairwise comparisons is of

pothesis for a pairwise comparison, it is acceptable to examine it, irre-
spective of the outcomes of the larger test. In such circumstances, it is
also acceptable to use a simple two-sample t-test to examine group
differences.

A  N o n p a r a m e t r i c  A l t e r n a t i v e :  T h e  K r u s k a l - W a l l i s  T e s t

For studies where you cannot meet the parametric assumptions of the
analysis of variance test, you may want to consider a nonparametric
rank-order test. In performing a rank-order test, you lose some
crucial information because you focus only on the order of scores and
not on the differences in values between them. However, such tests
have the advantage of not requiring assumptions about the population
distribution.

One rank-order test is the Kruskal-Wallis test. As a nonparametric
test of statistical significance, it requires neither a normal distribution
nor equal variances between the groups studied. The test asks simply
whether the distribution of ranked scores in the three groups is what
would be expected under a null hypothesis of no difference. When the

Results of the Pairwise Comparison Tests

OFFENSE 1 OFFENSE 3
BANK OFFENSE 2 ANTITRUST 

EMBEZZLEMENT BRIBERY VIOLATION

Offense 1
Bank Embezzlement
Offense 2 16.300*
Bribery
Offense 3 25.800* 9.500
Antitrust Violation

*p � 0.5

Table 12.10

develop your analyses. However, if you do start off with a strong hy-
particular interest. Such interest should be determined before you 
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number of cases in each group is greater than 5, the sampling distribu-
tion of the Kruskal-Wallis test score, denoted H, is approximately chi-
square.

As an illustration, let’s examine whether this nonparametric test sug-
gests significant differences in terms of age across the white-collar crime
categories of our earlier example.

Assumptions:

Level of Measurement: Ordinal scale.

Population Distribution: No assumption made.

Sampling Method: Independent random sampling (no replacement; sam-
ple is small relative to population).

Sampling Frame: All white-collar offenders convicted of the crimes ex-
amined in seven federal judicial districts over a three-year period.

Hypotheses:

H0: The distribution of ranked scores is identical in the three populations.

H1: The distribution of ranked scores differs across the three populations.

the sample. To obtain this measure, we simply rank the 30 subjects stud-
ied according to age, with the youngest offender given a rank of 1 and
the oldest a rank of 30 (see Table 12.11). In the case of ties, subjects
share a rank. For example, the two subjects aged 29 share the rank of
6.5 (the average of ranks 6 and 7), and the three subjects aged 62 share
the rank of 26 (the average of ranks 25, 26, and 27).

White-Collar Offenders Ranked According to Age

OFFENSE 1 OFFENSE 3
BANK OFFENSE 2 ANTITRUST 

EMBEZZLEMENT BRIBERY VIOLATION

Age Rank Age Rank Age Rank

19 1 28 5 35 11.5
21 2 29 6.5 46 16
23 3 32 10 48 17.5
25 4 40 13 53 20
29 6.5 42 14.5 58 22
30 8 48 17.5 61 24
31 9 58 22 62 26
35 11.5 58 22 62 26
42 14.5 64 28 62 26
49 19 68 29 75 30

� � 219� � 167.5� � 78.5

Table 12.11

In this test, we use an ordinal-level measure: the rank order of ages in
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Our null hypothesis is that the distribution of ranked scores in the
three populations is identical. Our research hypothesis is that it is not
identical across the three populations.

Sampling Distribution The sampling distribution H is distributed approx-
imately according to chi-square because the number of cases in each
group is greater than 5. The number of degrees of freedom for the distri-
bution is defined as k � 1, where k refers to the number of samples (or
categories). Because our example involves three samples, the number of
degrees of freedom for the chi-square distribution is 3 � 1, or 2.

Significance Level and Rejection Region Consistent with our earlier
choice of a 0.05 significance threshold, we turn to the 0.05 value with 2
degrees of freedom in the chi-square table (see Appendix 2). The critical
value identified is 5.991.

The Test Statistic The formula for H given in Equation 12.14 looks
complex. However, it is relatively simple to compute if broken into
pieces.

Equation 12.14

There is only one complex term in the equation. It is

This term tells us to take the sum of the ranks in each sample, square it,
and divide it by the number of cases in the sample; then we sum these
values for all the samples.11 The H-score obtained for our problem is
13.038.

�
k

c�1
 
��

Nc

i�1
 Ri�2

Nc

H � �� 12
N(N � 1)� ��

k

c�1
 
��

Nc

i�1
 Ri�2

Nc ��� 3(N � 1)

11Most statistical computing packages provide an alternative calculation that adjusts for
ties. In practice, the differences between using this correction procedure and perform-
ing the unadjusted test are generally small. For our example, where there are a large
number of ties relative to the sample size (14/30), the difference in the observed sig-
nificance level is only 0.0001.
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The Decision As with the F-test, our score exceeds the critical value
needed to reject the null hypothesis of no difference. The observed sig-
nificance level of our test is thus less than the criterion significance level
we set at the outset (p � 0.05). From the Kruskal-Wallis test, we can
again conclude that there is a statistically significant relationship between
type of white-collar crime and age of offender. This time, however, we
can have more confidence in our conclusion because the assumptions of
the test are met more strictly.

C h a p t e r  S u m m a r y

ANOVA is a parametric test of statistical significance that allows a researcher
to compare means across more than two groups. It takes into account not
only variability between groups but also variability within groups. The larger
the differences between the groups relative to the variability within them,
the more confidence the researcher can have in a conclusion that differ-
ences exist among the population means. Between-group variability is mea-
sured by the between sum of squares (or explained sum of squares).
Within-group variability is measured by the within sum of squares (or un-
explained sum of squares). The total sum of squares is equal to the
sum of the between and within sums of squares. To develop estimates of
population variances, the sums of squares are divided by the appropriate
degrees of freedom. ANOVA requires the following assumptions: interval
scales, normal population distributions, independent random sampling, and
homoscedasticity. The sampling distribution for ANOVA is denoted as F.

W orking It Out

 � 13.038

 � � 12
930�8,217.95 � 3(31)

 � � 12
30(31)��(78.5)2

10
 � 

(167.5)2

10
 � 

(219)2

10 � � 3(31)

 H � �� 12
N(N � 1)���

k

c�1
 
��

Nc

i�1
 Ri�2

Nc �� � 3(N � 1)
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The F-value needed to reject the null hypothesis gets smaller as the
within-group degrees of freedom grows. The F-statistic is calculated by
dividing the between-group variance by the within-group variance.

The strength of the relationship observed is measured by the statistic
eta squared, or percent of variance explained. Eta squared is the
ratio of the between sum of squares to the total sum of squares. An eta
squared value of 0 indicates that there is no relationship between the
nominal and interval variables (i.e., the means are the same). An eta
squared value of 1 represents a perfect relationship between the nominal

A researcher who wishes to compare means of pairs of specific sam-
ples within a larger test makes a pairwise comparison. Running a se-
ries of two-sample t-tests, however, unfairly increases the odds of getting
a statistically significant result. The honestly significant difference
(HSD) test is a pairwise comparison test that corrects for this bias.

When the assumptions underlying ANOVA are difficult to meet, the
researcher may choose a nonparametric alternative—the Kruskal-Wallis
test. This test does not require an assumption of normal population dis-
tributions or homoscedasticity. As a rank-order test, however, it does
not use all of the information available from interval-level data.

K e y  T e r m s

analysis of variance (ANOVA) A para-
metric test of statistical significance that
assesses whether differences in the means
of several samples (groups) can lead the
researcher to reject the null hypothesis
that the means of the populations from
which the samples are drawn are the
same.

between sum of squares (BSS) A mea-
sure of the variability between samples
(groups). The between sum of squares is
calculated by taking the sum of the
squared deviation of each sample mean
from the grand mean multiplied by the
number of cases in that sample.

correlation A measure of the strength of a
relationship between two variables.

eta A measure of the degree of correlation
between an interval-level and a nominal-
level variable.

eta squared The proportion of the total
sum of squares that is accounted for by the
between sum of squares. Eta squared is
sometimes referred to as the percent of
variance explained.

explained sum of squares (ESS) Another
name for the between sum of squares. The
explained sum of squares is the part of the
total variability that can be explained by
visible differences between the groups.

grand mean The overall mean of every
single case across all of the samples.

honestly significant difference (HSD)
test A parametric test of statistical signifi-
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S y m b o l s  a n d  F o r m u l a s

Xi Individual subject or score

Sample or category mean

Grand or overall mean

Nc Number of cases in each sample

k Number of categories or samples

� Correlation coefficient eta

�2 Percent of variance explained; eta squared

Pcrit Critical value for HSD test

Ri Individual rank of score

To calculate the between sum of squares:

BSS � �
k

c�1
[Nc(Xc � Xg)

2]

Xg

Xc

cance, adjusted for making pairwise compar-
isons. The HSD test defines the difference
between the pairwise comparisons required
to reject the null hypothesis.

Kruskal-Wallis test A nonparametric test
of statistical significance for multiple
groups, requiring at least an ordinal scale
of measurement.

overall mean See grand mean.

pairwise comparisons Comparisons
made between two sample means ex-
tracted from a larger statistical analysis.

percent of variance explained The pro-
portion of the total sum of squares that is
accounted for by the explained sum of
squares; eta squared.

rank-order test A test of statistical
significance that uses information relating to
the relative order, or rank, of variable scores.

sum of squares The sum of squared devia-
tions of scores from a mean or set of means.

total sum of squares (TSS) A measure of
the total amount of variability across all of
the groups examined. The total sum of
squares is calculated by summing the
squared deviation of each score from the
grand mean.

unexplained sum of squares (USS) An-
other name for the within sum of squares.
The unexplained sum of squares is the part
of the total variability that cannot be ex-
plained by visible differences between the
groups.

within sum of squares (WSS) A measure
of the variability within samples (groups).
The within sum of squares is calculated by
summing the squared deviation of each
score from its sample mean.
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To calculate the within sum of squares:

To calculate the total sum of squares:

To partition the total sum of squares:

Total sum of squares � between sum of squares 
� within sum of squares

TSS � BSS � WSS

To estimate between-group variance:

To estimate within-group variance:

To calculate F:

To calculate eta:

To calculate eta squared:

To perform the HSD test:

To perform the Kruskal-Wallis test:

H � �� 12
N(N � 1)���

k

c�1
 
��

Nc

i�1
 Ri�2

Nc �� � 3(N � 1)

HSD � Pcrit � �̂2
wg

Nc

�2 � BSS
TSS

� � �BSS
TSS

F � 
between-group variance

within-group variance

�̂2
wg � 

�
N

i�1
(Xi � Xc)

2

N � k

�̂2
bg � 

�
k

c�1
[Nc(Xc � Xg)

2

k � 1

TSS � �
N

i�1
(Xi � Xg)

2

WSS � �
N

i�1
(Xi � Xc)

2
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E x e r c i s e s

12.1 Dawn, a criminal justice researcher, gives 125 pretrial defendants
scores based on a questionnaire that assesses their ability to under-
stand the court process. The defendants were selected from five sepa-
rate counties. Dawn took an independent random sample of 25 defen-
dants from each county. The scores for the five populations are
normally distributed. Dawn runs an ANOVA test on her results, which
produces a test statistic of 3.35.

a. Would Dawn be able to reject her null hypothesis that there is no
difference between the populations in their ability to comprehend
the court process if she were to set a 5% significance level?

b. Would she be able to reject the null hypothesis using a 1% signifi-
cance level?

c. Would your answer to either part a or part b be different if Dawn’s
sample had consisted of five equally sized groups of 200 subjects
each?

12.2 Random samples of individuals were drawn from three neighborhoods
by a policing research foundation to study the level of public support
for the local police department. The research foundation constructed a
complicated interval-level measure of police support, in which higher
values indicated more support. The researchers found the following
pattern across the three neighborhoods: The mean level of support in
neighborhood A was 3.1 (N � 15); in neighborhood B, it was 5.6 
(N � 17); and in neighborhood C, 4.2 (N � 11). The measure of be-
tween-group variance was 4.7, and the measure of within-group vari-
ance was 1.1.

a. If the significance level is 0.05, can the research foundation con-
clude that there are different levels of support for the police depart-
ment across neighborhoods? Write out all of the steps of a test of
statistical significance, including any violations of assumptions.

b. What if the significance level is 0.01?

12.3 Random sampling of individuals with four different majors at a univer-
sity found the following grade point averages (GPAs) for the four
groups:

Major A: GPA � 3.23 (N � 178)

Major B: GPA � 2.76 (N � 64)

Major C: GPA � 2.18 (N � 99)

Major D: GPA � 3.54 (N � 121)

If the between-group variance is 5.7 and the within-group variance is
1.5, are the GPAs different for the four majors? Use a significance level
of 0.01, and write out all of the steps of a test of statistical significance,
including any violations of assumptions.
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12.4 Random sampling offenders convicted of minor drug possession in
Border County found the average jail sentence for white offenders
to be 86 days (N � 15), for African American offenders to be 99
days (N � 10), and for Hispanic offenders to be 72 days (N � 7).
Further analysis of jail sentence lengths by race found the between
sum of squares to be 250 and the within sum of squares to be
1,300. Are the jail sentence lengths significantly different across 
race categories?

a. Use a significance level of 0.05. Write out all of the steps of a 
test of statistical significance, including any violations of
assumptions.

b. Would the conclusion be any different if the significance level had
been set at 0.01?

12.5 Listed below is a set of data identifying previous convictions for any

Robbery Rape Murder Drug Dealing

1 1 0 5
0 1 0 3
2 1 0 7
6 0 6 4
4 0 2 8
5 2 7 0
3 2 1 6
1 1 4 2
5 0 2 1
3 2 3 4

Calculate the following values:

a.

b. df for between-group variance

c. df for within-group variance

d. the four values of 

e. the total sum of squares

f. the between sum of squares

g. the within sum of squares

12.6 Convicted drug dealers held in Grimsville Prison are placed in cell
block A, B, or C according to their city of origin. Danny (who has little
knowledge of statistics) was once an inmate in the prison. Now re-

Xc

Xg
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leased, he still bears a grudge against the prison authorities. Danny
wishes to make up a series of statistics to show that the convicts in the
various blocks are treated differently. According to his fictitious sam-
ple, the mean number of hours of exercise per week given to the in-
mates is 10 hours for block A offenders, 20 hours for block B offend-
ers, and 30 hours for block C offenders. Shown below are two
fictitious sets of results.

Fictitious study 1:

Block A Block B Block C

9 21 30
10 19 29
9 20 31

11 19 29
11 21 31

Fictitious study 2:

Block A Block B Block C

18 16 37
16 18 36
10 2 7
2 31 41
4 33 29

a. From simply looking at the numbers, without running any
statistical tests, which of the two fictitious studies would you
expect to provide stronger backing for Danny’s claim? Explain
your answer.

b. Calculate the between sum of squares and the within sum of
squares for study 1.

c. Calculate the between sum of squares and the within sum of
squares for study 2.

d. Calculate the value of eta for each study. How do you account for
the difference?

12.7 A researcher takes three independent random samples of young pick-
pockets and asks them how old they were when they first committed
the offense. The researcher wishes to determine whether there are any
differences among the three populations from which the samples were
drawn—those who have no siblings, those who have one or two sib-
lings, and those with three or more siblings.

X � 30X � 20X � 10

X � 30X � 20X � 10
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Age at first theft:

0 Siblings 1 or 2 Siblings 3� Siblings

10 14 15
8 15 15

16 15 10
14 13 13

7 12 16
8 9 15

a. Show that the total sum of squares is equal to the between sum of
squares plus the within sum of squares.

b. What is the value of eta?

c. Can the researcher reject the null hypothesis on the basis of the dif-
ferences observed? Run an F-test using a 5% significance level. Re-
member to outline all of the steps of a test of statistical significance,
including any violations of assumptions.

12.8 Using independent random sampling, Sophie draws samples from
three different populations: psychologists, police officers, and factory
workers. She gives each subject a hypothetical case study of a drug
dealer who has been found guilty and awaits sentencing. The subjects
are then asked to suggest how many years the drug dealer should
serve in prison. The results are presented below:

Psychologists Police Factory Workers

2 3 5
1 2 6
0 3 4
0 3 8
1 4 7
2.5 1 7
2 1.5 6
1.5 0 2
4 0.5 3
1 7 2

a. Can Sophie conclude that the three populations are different in
terms of their attitudes toward punishing convicted drug dealers?
Run an F-test using a 5% significance level. Remember to outline all
of the steps of a test of statistical significance, including any viola-
tions of assumptions.

b. Would Sophie’s decision be any different if she chose a 1% or a
0.1% level of significance?
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c. Calculate the value of eta for the results above. Is the relationship a
strong one?

12.9 For the data in Exercise 12.4, run a Kruskal-Wallis test using a 5%
level of statistical significance. Remember to outline all of the steps of
a test of statistical significance, including any violations of assump-
tions. Are you able to reject the null hypothesis?

C o m p u t e r  E x e r c i s e s
Before you try out the ANOVA commands in SPSS, open the data file

ANOVA

In SPSS, the “One-Way ANOVA” command (Analyze l Compare Means l
One-Way ANOVA) performs a quick and easy test for differences in group
means. After you execute the command, you will be presented with a win-
dow that lists all the variables in the data file in a box on the left. On the
right side of the window is a box labeled “Dependent List,” which will hold
the names of the interval-level variables you are interested in testing for dif-
ferences across groups. Below this box is a smaller box for the grouping
variable, labeled “Factor,” which is where you put the name of the variable
that represents the different categories or groups in the sample.

Move the age variable into the “Dependent List” box and the crime type
variable into the “Factor” box. Click on “OK” to run the command. The out-

ANOVA results can also be obtained with the “Means” command (Analyze
l Compare Means l Means). After you execute this command, you will be
presented with a window that lists all the variables in the data file in a box
on the left. The two boxes on the right are labeled “Dependent List” and “In-
dependent List.” The “Dependent List” box will contain the names of the in-
terval-level variables you are testing, and the “Independent List” box will con-
tain the name(s) of the grouping variable(s). Enter the age variable as the
dependent variable and the crime type variable as the independent variable.

To obtain the ANOVA table with the “Means” command, you need to
click on the “Options” button located in the lower right corner of the win-
dow. In the next window that opens, click on the box next to “ANOVA
Table and Eta.” Then click on “Continue” and “OK” to run the command.

The output from this command will consist of the ANOVA table (check
that the values here are identical to those obtained using the “One-Way

not available through the “One-Way ANOVA” command.

Tukey’s HSD

SPSS’s “One-Way ANOVA” command will perform a wide range of
additional calculations on data; Tukey’s HSD statistic is included in this

ex12_1.sav, which contains the data presented in Table 12.4 in the text.

where you should see that the value of the F-test reported by SPSS matches

ANOVA” command) and a table that provides the value of Eta. Note: Eta is
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package. To obtain Tukey’s HSD statistic, execute the “One-Way ANOVA”
command. You will see a button labeled “Post Hoc . . .” at the bottom
center of the resulting window. After clicking on this button, you will 
be presented with a new window that lists many different statistics SPSS
can compute. Locate the line labeled “Tukey,” and click on the small
white box next to the label; then click on “Continue” and “OK” to run 
the command.

The output presented will contain the ANOVA table and an additional
table that lists all possible comparisons of group means. The three major
rows in this table represent the three samples of offenders. Within each
major row are two smaller rows that represent contrasts between the
groups. So, for example, in the first major row (the embezzlement sample),
there are calculations for the mean of this group minus the mean of the
second group (the bribery sample) in the first line, followed by calcula-
tions for the mean of the first group minus the mean of the third group
(the antitrust sample) in the second line. The values for Tukey’s HSD re-
ported in the first major row match those reported in Table 12.10. In the
second major row (the bribery sample), the second line represents the dif-
ference between this group’s mean and the mean for the third group (the
antitrust sample), and the value for Tukey’s HSD again matches that re-
ported in Table 12.10.

Sometimes the labels in the table of results for Tukey’s HSD can be con-
fusing, so you will need to pay attention to the lines you are working with.
Keep in mind that the variable listed in the first column of each major row
has the mean for every other group (listed in the second column) subtracted
from its mean.

Kruskal-Wallis Test

The Kruskal-Wallis test is available in SPSS through use of the “K Indepen-
dent Samples” command (Analyze l Nonparametric Tests l K Indepen-
dent Samples). After you execute this command, you will be presented with
a window that lists all the variables in a box on the left. As with the “One-
Way ANOVA” command, there is a box labeled “Test Variable List” (enter
the age variable here) and a box labeled “Grouping Variable” (enter the
crime type variable here). The “Grouping Variable” box requires an addi-
tional piece of information. After entering a variable name in this box, you
will need to click on the button just below, labeled “Define Range.” In the
window that opens after this button has been clicked, you will need to enter
numbers for the minimum and maximum values for the crime type variable:
Enter 1 for the minimum and 3 for the maximum. Click on “Continue” and
“OK” to run the command.

The output window will contain two small tables. The first table lists
each group or category and its average rank. The second table presents
the results for the Kruskal-Wallis test. Note that the value of the test
statistic reported by SPSS differs slightly from that reported in the text
(SPSS: 13.0729; text: 13.038). The reason for this difference was noted 
in footnote 11: SPSS corrects the calculation of the test statistic by
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adjusting for ties in rank, and the formula in the text does not make such
a correction.

1. Input the data from Table 12.6 as two variables: bail amount and race
(use 1 � non-Hispanic white, 2 � non-Hispanic African American,
and 3 � Hispanic of any race).

a. Reproduce the ANOVA results in the text.

b. Compute the HSD for these data. What can you conclude about the
pairwise comparisons across race categories?

c. Perform the Kruskal-Wallis test. How do the results from the
Kruskal-Wallis test compare to the ANOVA results in part a? Do the
results from the Kruskal-Wallis test alter the conclusions obtained
through the use of ANOVA?

2. Enter the data from Exercise 12.5. Use the “One-Way ANOVA” com-
mand to test for differences in group means.

a. Write out the assumptions of the test, the critical value of the test
statistic, the value of the computed test statistic, and the decision
regarding the null hypothesis.

b. Compute the HSD for each of the group comparisons. What can
you conclude about pairwise comparisons for each group?

c. Use the Kruskal-Wallis test to test for differences in rank order
across groups. Write out the assumptions of the test, the critical
value of the test statistic, the value of the computed test statistic,
and the decision regarding the null hypothesis.

3. Enter the data from Exercise 12.6. Use the “One-Way ANOVA” com-
mand to test for differences in group means.

a. Write out the assumptions of the test, the critical value of the test
statistic, the value of the computed test statistic, and the decision
regarding the null hypothesis.

b. Compute the HSD for each of the group comparisons. What can
you conclude about pairwise comparisons for each group?

c. Use the Kruskal-Wallis test to test for differences in rank order
across groups. Write out the assumptions of the test, the critical
value of the test statistic, the value of the computed test statistic,
and the decision regarding the null hypothesis.

4.

a. Does the mean number of thefts valued at $5 to $50 vary across
academic ability?

b. Does the mean number of times drunk vary across race?

Problems

nys_1_  student.sav).   Carry out the 
following statistical analyses for each of the research questions in parts a 
through e:

Open the data file nys_1.sav (or
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c. Does the level of marijuana use vary across amount of contact with
delinquent peers?

d. Does the mean number of attacks on other students vary across vic-
timization experience?

e. Does the mean number of times cheating on schoolwork vary
across grade point average?

— Use ANOVA to test for differences in group means. For each hy-
pothesis test, write out the assumptions of the test, the critical value
of the test statistic, the value of the computed test statistic, and the
decision regarding the null hypothesis.

— Compute the HSD for each of the pairwise comparisons. What can
you conclude about pairwise comparisons for each research ques-
tion?

— Use the Kruskal-Wallis test to test for differences in rank order
across groups. For each hypothesis test, write out the assumptions
of the test, the critical value of the test statistic, the value of the
computed test statistic, and the decision regarding the null hypoth-
esis.

5. Open the data file pcs_ 98.sav. Carry out the following statistical anal-
yses for each of the research questions in parts a through c:

a. Does the length of incarceration sentence vary across race?

b. Does the length of incarceration sentence vary across method
of conviction?

c. Does the length of incarceration sentence vary by type of 
conviction offense?

— Use ANOVA to test for differences in group means. For each hy-
pothesis test, write out the assumptions of the test, the critical value
of the test statistic, the value of the computed test statistic, and the
decision regarding the null hypothesis.

— Compute the HSD for each of the pairwise comparisons. What can
you conclude about pairwise comparisons for each research ques-
tion?

— Use the Kruskal-Wallis test to test for differences in rank order
across groups. For each hypothesis test, write out the assumptions
of the test, the critical value of the test statistic, the value of the
computed test statistic, and the decision regarding the null hypoth-
esis.
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What is the Test of Statistical Significance for These Measures?



CHAPTER 12 INTRODUCED eta (�) and the more general concept of mea-
sures of association. Eta is a descriptive statistic that allows us to define
how strongly the categorical variable or sample in an analysis of variance
is related to the interval-level variable or trait we examined across the
samples. But there are many other useful measures of association that
allow us to define relationships among variables. Over the next few
chapters, we will focus on some of these that are particularly useful in
studying criminal justice. We will still be concerned with statistical signif-
icance in these chapters, but we will examine not only whether a mea-
sure is statistically significant but also how strong the relationship is.

In this chapter, our focus is on nominal- and ordinal-level measures of
association. We begin with a discussion of why it is important to distin-
guish between statistical significance and strength of association. While
statistical significance can tell us whether we can make reliable state-
ments about differences in a population from observations made from
samples, it does not define the size of the relationship observed. It is im-
portant to define the strength of the relationship between variables being

D i s t i n g u i s h i n g  S t a t i s t i c a l  S i g n i f i c a n c e  a n d  S t r e n g t h  
o f  R e l a t i o n s h i p :  T h e  E x a m p l e  o f  t h e  C h i - S q u a r e  S t a t i s t i c

In Chapter 9, we explored the chi-square statistic as a way to determine
whether there was a statistically significant relationship between two
nominal-level variables. The chi-square statistic is useful as a way of test-
ing for such a relationship, but it is not meant to provide a measure of the
strength of the relationship between the variables. It is tempting to look at
the value of the chi-square statistic and the observed significance level as-
sociated with a particular chi-square value and infer from these statistics
the strength of the relationship between the two variables. If we follow
such an approach, however, we run the risk of an interpretive error.

results that are statistically significant are also substantively important.
examined because that puts us in a better position to decide whether
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The problem with using the chi-square statistic—or outcomes of other
tests of statistical significance—in this way is that the size of the test sta-
tistic is influenced not only by the nature of the relationship observed
but also by the number of cases in the samples examined. As we have
noted a number of times in the text, this makes good sense. Larger sam-
ples, all else being equal, are likely to be more trustworthy. Just as we
feel more confident in drawing inferences from a sample of 10 or 20
coin tosses than from a sample of 2 or 3 tosses, our confidence in mak-
ing a decision about the null hypothesis grows as the sizes of the sam-
ples examined using a chi-square statistic increase.

The following example will help to illustrate this problem. Suppose we
have a sample of 200 cases that cross-tabulate experimental condition with
an outcome measure, as shown in Table 13.1. We see that 60% of those in
the treatment group have an outcome classified as a success, while only
40% of those in the control group have an outcome classified as a success.
Our calculated value of chi-square for these data is 8.00 with df � 1, which
has an observed significance level less than 0.01 (see Appendix 2). See
Table 13.2 for detailed calculations for obtaining the chi-square statistic.

Observed Frequencies ( fo) and Expected Frequencies ( fe) for Two
Outcomes of an Experimental Condition with 200 Cases

OUTCOME

EXPERIMENTAL
CONDITION Failure Success Total

Treatment f � 40 fo � 60 100
fe � 50 fe � 50

Control fo � 60 fo � 40 100
fe � 50 fe � 50

Total 100 100 200

Table 13.1

Calculations for Obtaining Chi-Square 
Statistic for the Example in Table 13.1

EXPERIMENTAL
CONDITION OUTCOME f fe fo � fe (fo � fe)2

Treatment Failure 40 50 �10 100 2
Treatment Success 60 50 10 100 2
Control Failure 60 50 10 100 2
Control Success 40 50 �10 100 2

� � 8.0

(fo � fe)2

fe

Table 13.2
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Without changing the proportional distribution of cases for this exam-
ple—keeping success at 60% for the treatment group and 40% for the
control group—suppose we multiply the number of cases by 10. We
now have 2,000 total observations, as shown in Table 13.3, but the rela-
tionship between experimental condition and outcome is the same. Our
calculated chi-square statistic, however, now has a value of 80.00 (see
Table 13.4) with df � 1, and the observed significance level is less than
0.0001. So, simply by increasing the size of the sample, we increase the
value of chi-square and decrease the corresponding observed signifi-
cance level.

This feature of the chi-square statistic applies to all tests of statistical
significance. Irrespective of the observed relationship between measures,
as the sample size increases, the observed significance level associated

The rule does not raise any new questions regarding the meaning of sta-
tistical significance. It simply reminds us that, all else being equal, we can
be more confident in making statistical inferences from larger samples. It
also emphasizes the importance of distinguishing between statistical sig-
nificance and the size or strength of a relationship between variables.

To allow researchers to define the strength of a relationship among
nominal-level or ordinal-level variables, statisticians have developed a vari-
ety of measures of association. Some of these measures are based on the
value of the chi-square statistic; others are based on unique transforma-
tions of the counts or distributions of cases within a table. All the measures
of association that we discuss share a standardized scale: A value of 0 is
interpreted as no relationship, and a value of 1.0 (or, in the case of ordinal
scales, �1 or �1) is interpreted as a perfect relationship between the two
variables. The discussion that follows describes some of the more fre-
quently used measures of association for nominal and ordinal variables.

Observed Frequencies ( fo) and Expected Frequencies ( fe) for Two
Outcomes of an Experimental Condition with 2,000 Cases

OUTCOME
EXPERIMENTAL
CONDITION Failure Success Total

Treatment fo � 400 fo � 600 1,000
fe � 500 fe � 500

Control fo � 600 fo � 400 1,000
fe � 500 fe � 500

Total 1,000 1,000 2,000

Table 13.3

relationship between statistical significance and sample size will be exam-
with that relationship will also increase. This simple rule regarding the 
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ined in more detail in the discussion of statistical power in Chapter 21.
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M e a s u r e s  o f  A s s o c i a t i o n  f o r  N o m i n a l  V a r i a b l e s

Measures of Association Based on the Chi-Square Statistic
The preceding example illustrated how the chi-square statistic is affected
by sample size. With a 2 � 2 table (i.e., two rows and two columns),
one straightforward way of measuring the strength of a relationship be-
tween two variables that adjusts for the influence of sample size is to
transform the value of the chi-square statistic by adjusting for the total
number of observations. One measure of association that does this is
phi (�). Phi is obtained simply by dividing the chi-square statistic by the
total number of observations (N) and taking the square root of this value
(see Equation 13.1).

Equation 13.1

Phi will have a value of 0 if the value of the chi-square statistic is 0 and
there is no relationship between the two variables. Phi will have a value
of 1 if the chi-square statistic takes on a value equal to the sample size,
which can occur only when there is a perfect relationship between two
categorical variables. It is important to note that phi is appropriate only

eliminating the possibility of any kind of meaningful interpretation.
Consider the two chi-square statistics that we calculated above for the

data in Tables 13.1 and 13.3: 8.00 and 80.00, respectively. If we insert
these values for chi-square and the sample size, we find that the value of
phi for both tables is 0.20.

� � ��2

N

Calculations for Obtaining Chi-Square 
Statistic for the Example in Table 13.3

EXPERIMENTAL
CONDITION OUTCOME fo fe fo � fe (fo � fe)2

Treatment Failure 400 500 �100 10,000 20
Treatment Success 600 500 100 10,000 20
Control Failure 600 500 100 10,000 20
Control Success 400 500 �100 10,000 20

� � 80.0

(fo � fe)2

fe

Table 13.4
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exceeds two, then it is possible for phi to take on values greater than 1.0,
for analyses that use a 2 � 2 table. If the number of rows or columns 
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We now have a measure of association that is not influenced by sample
size. For both of our examples, in which the proportion of cases in each
group was similar, we have the same phi statistic. However, is the relation-
ship large or small? As noted in Chapter 12, defining “large” and “small” is
a matter of judgment and not statistics. In judging the importance of a re-
sult, researchers can compare it with other findings from prior studies. Or
they may examine the importance of the policy implications that could be
drawn from the result. For example, a very small change in rates of heart
attacks in the population could save many lives, and thus a small relation-
ship may still be important. According to a standard measure of effect size
suggested by Jacob Cohen, a phi of 0.10 is considered to indicate a small
relationship, one of 0.30 a medium relationship, and one of 0.50 a large
relationship.1

Our examples suggest why we might be misled if we used the chi-
square statistic and its corresponding significance level as an indicator of
the strength of the relationship between two variables. If we had tried to
infer the strength of the relationship between experimental condition
and outcome from the value of the chi-square statistic, we would have
been tempted to conclude that Table 13.3 showed a stronger relationship
than Table 13.1. However, once we take into account the size of the
sample, we see that the two tables reflect the same relationship between
the two variables. The data in Table 13.3 lead to a higher observed sig-
nificance level because the samples examined are larger. However, the
strength of the relationship observed in the two tables is the same.

For tables with more than two rows or two columns, we cannot use
phi. Instead, we use a measure of association known as Cramer’s V,
which is also based on the value of the chi-square statistic but makes an
adjustment for the number of categories in each variable. Equation 13.2
presents the formula for calculating Cramer’s V.

Equation 13.2

In Equation 13.2, the chi-square statistic (�2) is divided by the product of
the total number of observations (N ), and the smaller of two numbers, 

V � � �2

N � min(r � 1, c � 1)

1See Jacob Cohen, Statistical Power Analysis for the Behavioral Sciences (Hillsdale, NJ:
Lawrence Erlbaum, 1988), pp. 215–271.

W orking It Out

and � � �80.00
2,000

 � 0.20� � �8.00
200

 � 0.20
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r � 1 or c � 1 (i.e., the minimum of these two values), where r is the
number of rows in the table and c is the number of columns. For exam-
ple, if we had a table with two rows and three columns, we would have
r � 1 � 2 � 1 � 1 and c � 1 � 3 � 1 � 2. The value for r � 1 is the
smaller of these two numbers, so we would use that value (1) for 
min(r � 1, c � 1) in the denominator of the formula. If we were work-
ing with a larger table with, say, five rows and four columns, we would
have r � 1 � 5 � 1 � 4 and c � 1 � 4 � 1 � 3. Since 3 is less than 4,
we would use the value 3 for min(r � 1, c � 1) in the denominator.

Let’s consider an example. Table 13.5 reproduces the data from Table
9.9 on cell-block assignment and race of prisoner. Recall from Chapter 9
that the chi-square statistic for this cross-tabulation was 88.2895, and
with df � 6, the observed significance level was less than 0.001. We can
use the data in this table to illustrate the calculation of V. The table has
seven rows (r � 7) and two columns (c � 2), meaning that r � 1 � 7 �
1 � 6 and c � 1 � 2 � 1 � 1. The smaller of these two values is 1,
which we substitute for min(r � 1, c � 1) in the denominator of the for-
mula for V. After inserting the other values into Equation 13.2, we find
that V � 0.2708.

Assignment of Non-Hispanic White 
and Nonwhite Prisoners in Seven Prison Cell Blocks

NON-HISPANIC
CELL BLOCK WHITES NONWHITES

C 48 208 1,256
D 17 37 1, 54
E 28 84 1,112
F 32 79 1,111
G 37 266 1,303
H 34 22 1, 56
I 44 268 1,312

240 964 1,204

Table 13.5

W orking It Out

 � 0.2708

 � � 88.2895
(1,204)(1)

 V � � �2

N � min(r � 1, c � 1)
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Proportional Reduction in Error Measures: Tau and Lambda
Some measures of association that are appropriate for nominal-level vari-
ables are based on the idea of proportional reduction in error, or
PRE. Such measures indicate how much knowledge of one variable
helps to reduce the error we make in defining the values of a second
variable. If we make about the same number of errors when we know
the value of the first variable as when we don’t, then we can conclude
that the PRE is low and the variables are not strongly related. However,
if knowledge of one variable helps us to develop much better predic-
tions of the second variable, then we have a high PRE and the variables
may be assumed to be strongly related.

Two of the more common measures of association between nominal
variables, Goodman and Kruskal’s tau (�) and lambda (�) are both
PRE measures. Both of these measures require that we identify at the
outset which variable is the dependent variable and which variable is
the independent variable. A dependent variable is an outcome vari-
able—it represents the phenomenon that we are interested in explaining.
It is “dependent” on other variables, meaning that it is influenced—or we
expect it to be influenced—by other variables. Any variable that affects,
or influences, the dependent variable is referred to as an independent
variable. The values of Goodman and Kruskal’s tau (�) and lambda (�)

For most research projects, a body of prior research and/or theory
will indicate which variables are dependent and which are independent.
For example, for the study in Table 13.1, the independent variable is the
experimental condition: the treatment or the control group. Whether the
person participated in the treatment or the control group is generally
theorized to influence outcome success or failure, which is the depen-
dent variable. In other words, the experiment tests whether success or
failure is due, at least in part, to participation in some kind of treatment.

PRE measures of association, such as tau and lambda, require the use
of two decision rules. The first decision rule—the naive decision rule—
involves making guesses about the value of the dependent variable with-
out using any information about the independent variable. The second
decision rule—the informed decision rule—involves using information
about how the cases are distributed within levels or categories of the in-
dependent variable. The question becomes “Can we make better predic-
tions about the value of the dependent variable by using information
about the independent variable?” Will the informed decision rule provide
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relationship between cell-block assignment and race of prisoner.

The value of Cramer’s V may be interpreted in the same way as that 
of phi. Accordingly, a value for V of 0.2708 is suggestive of a moderate 

dependent variable and which as the independent variable.
will generally differ depending on which variable is identified as the 
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better predictions than the naive decision rule? PRE measures of associa-
tion have a value of 0 when there is no relationship between the two
variables and a value of 1 when there is a perfect relationship between
the two variables. Table 13.6 presents two hypothetical distributions il-
lustrating PRE measures showing no relationship (part a) and a perfect
relationship (part b). In part a, we see that knowledge of one variable
does not help us make predictions about the second variable, since the

A key advantage to PRE measures of association is the interpretation of
values between 0 and 1. Any value greater than 0 may be interpreted as a
proportionate reduction in error achieved by using information on the in-
dependent variable. Alternatively, we can multiply the PRE measure by
100 and interpret the value as the percent reduction in errors. For exam-

For an illustration of the calculation of tau and lambda, consider the
data presented in Table 13.7. These data come from responses to a sur-

Hypothetical Distribution of 200 Cases for Two Nominal Variables

(a) PRE Measure of Association � 0.0

VARIABLE 2

VARIABLE 1 Category 1 Category 2

Category 1 50 50 100
Category 2 50 50 100

100 100 200

(b) PRE Measure of Association � 1.0

VARIABLE 2

VARIABLE 1 Category 1 Category 2

Category 1 0 100 100
Category 2 100 0 100

100 100 200

Table 13.6

2For a description of the study, see Chester L. Britt, “Health Consequences of Criminal
Victimization,” International Review of Victimology, 8 (2001): 63–73.
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errors of 50% when information about the independent variable is used.
ple, a PRE measure of 0.50 indicates a percent reduction in prediction 

Row total

Column total

Row total

Column total

knowledge of one variable determines, without error, the value of the

cases are evenly distributed across all possible cells of the table (e.g., of
the 100 cases in Category 1 of Variable 1, exactly 50 cases each fall into

2 of Variable 2).

Category 1 and 2 of Variable 2).  In the perfect relationship shown in part b, 

second variable (e.g., all cases in Category 1 of Variable 1 fall into Category 
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questions about the most recent event. Two of these questions addressed
the relationship between the victim and the offender and the location of
the assault. Here we have classified the victim-offender relationship into
four categories: stranger, acquaintance/friend, partner (includes spouse
and boyfriend or girlfriend), and relative. Location of the assault is also
classified into four categories: home, neighborhood, work, and someplace
else. For this analysis, we assume that the victim-offender relationship is
the independent variable and the location of the assault is the dependent
variable. Our research question is “What is the strength of the relationship
between victim-offender relationship and location of an assault?”

Goodman and Kruskal’s tau uses information about the marginal dis-
tributions of the two variables to test whether knowledge of the inde-
pendent variable reduces prediction errors for the dependent variable.
The first step in computing this statistic is to ask how many errors we
would expect to make, on average, if we did not have knowledge about
the victim-offender relationship. This is our naive decision rule, where
we are effectively trying to guess what category of the dependent vari-
able an observation might belong to, without using any information
about the independent variable. For our example, we begin by looking
at the column totals in Table 13.7, which reflect the categories of the de-
pendent variable. Of the 410 assaults, we see that 139 occurred in the
home, 77 in the neighborhood, 30 at work, and 164 someplace else. We
use these column totals to help us determine the average number of er-
rors we would expect to make if we assigned cases without any informa-
tion about the victim-offender relationship.

Let’s begin with assaults in the home. Of the 410 total assaults, 139
belong in the assaulted-in-the-home category, while 271 do not belong
in this category (i.e., the assault occurred elsewhere). Proportionally,
0.6610 (271 of 410) of the cases do not belong in the assaulted-in-the-

Data on Victim-Offender Relationship and Location of Assault

VICTIM- LOCATION OF ASSAULT
OFFENDER
RELATIONSHIP Home Neighborhood Work Someplace Else

Stranger 10 49 18 89 166
Acquaintance/friend 21 22 7 46 96
Partner 77 5 3 19 104
Relative 31 1 2 10 44

139 77 30 164 410

Table 13.7
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assaulted-in-the-home category, we would expect 0.6610 of these 139
home category. If we randomly assigned 139 of the 410 cases to the 

vey by adult residents of the state of Illinois.2 Respondents who reported
that they had experienced an assault were asked a series of follow-up

Row total

Column total
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incorrectly—the number of prediction errors—we multiply the propor-
tion of cases not in the category by the number of cases assigned to that
category. For assaulted in the home, this is (0.6610 � 139) � 92. The
value 92 represents the number of prediction errors we would expect to
make, on average, in assigning cases to the assaulted-in-the-home cate-
gory without any knowledge of the victim-offender relationship.3

Turning to assaults in the neighborhood, we see that 77 cases belong in
this category, and the remaining 333 do not belong in this category. As a
proportion, 0.8122 of the cases (333 of 410) do not belong in the as-
saulted-in-the-neighborhood category. This means that we would expect
to make 0.8122 � 77 � 63 prediction errors, on average, in assigning
cases to this category without any knowledge of the victim-offender rela-
tionship. For assaults at work, 30 cases belong in this category and 380 do
not, meaning that we would expect to make (380/410) � 30 � 28 predic-
tion errors, on average, in assigning cases to the assaults-at-work category
without any information about the victim-offender relationship. There are
164 cases that belong to the assaulted-someplace-else category, meaning
that 246 cases do not belong in this category. We would expect to make
(246/410) � 164 � 98 prediction errors, on average, in assigning cases to
this category without any information about the victim-offender relation-
ship. To determine the total number of prediction errors we would make
without any knowledge of the victim-offender relationship, we add these
four values together: 92 � 63 � 28 � 98 � 281 total prediction errors.

If we then use information about the victim-offender relationship—
whether the victim and offender were strangers, acquaintances/friends,
partners, or relatives—we can test whether this information improves our
ability to predict the location of the assault. This reflects the use of our
informed decision rule: Does our assignment of cases to categories of
the dependent variable improve when we use information about the cat-
egory of the independent variable? In other words, does knowing the
category of the independent variable (victim-offender relationship) re-
duce the number of prediction errors we make about the category of the
dependent variable (location of assault)? To the extent that the indepen-
dent variable has a relationship with the dependent variable, the number
of prediction errors should decrease.

The logic behind calculating the prediction errors is the same as before,
except that we focus on the row totals in the table, rather than the total
number of cases in each category of the dependent variable. We start with
the first category of the independent variable (i.e., the first row of Table
13.7) and note that 166 cases involved offenders who were strangers to

3For all calculations of prediction errors, we have rounded the result to the nearest
integer.
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cases to be assigned incorrectly. To obtain the number of cases assigned
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the victim. In a process similar to our earlier analysis, we begin by noting
the placement of cases within this row: 10 assaults occurred at home, 49 in
the neighborhood, 18 at work, and 89 someplace else. Starting with the as-
signment of cases to assaulted-in-the-home, we note that 10 cases belong
in this category and 156 do not belong in this category. As a proportion,
0.9398 of the cases (156 of 166) do not belong in the assaulted-in-the-

gory, we would expect to make 0.9398 � 10 � 9 prediction errors, on
average. Turning to the assaulted-in-the-neighborhood category, we note
that 49 cases belong in this category and 117 do not belong in this cate-
gory, which means that we would expect to make (117/166) � 49 � 35
prediction errors. For the assaulted-at-work category, we would expect to
make (148/166) � 18 � 16 prediction errors, and for the assaulted-
someplace-else category, we would expect to make (77/166) � 89 � 41
prediction errors. The total number of prediction errors in assigning cases
involving offenders who were strangers is 101 (that is, 9 � 35 � 16 � 41).

To determine the prediction errors for each of the remaining cate-
gories of the independent variable (assaults involving offenders who
were acquaintances/friends, partners, or relatives), we use the same ap-
proach with the three remaining rows of Table 13.7. Table 13.8 presents
all the calculations of prediction errors necessary for obtaining tau.

We obtain the total number of prediction errors made using informa-
tion about the victim-offender relationship by summing the errors across
each category of relationship. For cases involving an offender who was a

tion errors; for cases involving partners, 44 prediction errors; and for
cases involving a relative, 20 prediction errors (see the bottom row of
Table 13.8). Altogether, we would expect to make 228 (that is, 101 � 63 �

Calculations of Prediction Errors for Obtaining Tau for a Relationship
Between Victim-Offender Relationship and Location of Assault

PREDICTION  PREDICTION PREDICTION PREDICTION PREDICTION
ERRORS: ERRORS: ERRORS: ERRORS: ERRORS:
No Knowledge of Offender Offender Was an Offender Offender 

LOCATION OF Victim-Offender Was a Acquaintance Was a Was a
ASSAULT Relationship Stranger or a Friend Partner Relative

Home 139(271/410) � 92 10(156/166) � 9 21(75/96) � 16 77(27/104) � 20 31(13/44) � 9
Neighborhood 77(333/410) � 63 49(117/166) � 35 22(74/96) � 17 5(99/104) � 5 1(43/44) � 1
Work 30(380/410) � 28 18(148/166) � 16 7(89/96) � 6 3(101/104) � 3 2(42/44) � 2
Someplace else 164(246/410) � 98 89(77/166) � 41 46(50/96) � 24 19(85/104) � 16 10(34/44) � 8
Total � � 281 � � 101 � � 63 � � 44 � � 20

Table 13.8
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assigned 10 of the 166 cases in this row to the assaulted-in-the-home cate-
home category when the offender is a stranger. Thus, if we randomly 

involving an acquaintance or friend, we would expect to make 63 predic-
stranger, we would expect to make 101 prediction errors; for cases 
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Goodman and Kruskal’s tau is a measure of the reduction in predic-
tion errors achieved by using knowledge of the independent variable—
which, again, in our example is the victim-offender relationship. Equa-
tion 13.3 presents the general formula for calculating tau.

Equation 13.3

For our example, tau is equal to 0.1886. If we multiply this proportion by
100%, we can discern that knowledge of the victim-offender relationship
reduced our prediction errors by 18.86%, which implies a weak to mod-
erate relationship between victim-offender relationship and location of
assault.

� � 

�number of errors
without knowledge of
independent variable � � �number of errors

with knowledge of
independent variable�

number of errors without knowledge of independent variable

W orking It Out

� � 281 � 228
281

 � 0.1886

Lambda (�) is a measure of association that is conceptually very simi-
lar to Goodman and Kruskal’s tau in that it is a PRE measure. However,
rather than using the proportional distribution of cases to determine pre-
diction errors, lambda uses the mode of the dependent variable. We
begin with the naive decision rule, placing all possible observations in
the modal category of the dependent variable and counting as errors the
number of cases that do not belong in that modal category. We then use
information about the value of the independent variable (the informed
decision rule), making assignments of cases based on the mode of the
dependent variable within each category of the independent variable.

Equation 13.4 shows that lambda is calculated in a manner similar to
that used to calculate tau.

 � 

�number of errors

dependent variable� � �
number of errors
using mode of
dependent variable
by level of
independent variable

�
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relationship to predict location of assault.
44 � 20) prediction errors using information about the victim-offender 

Equation 13.4

using mode of

number of errors using mode of dependent variable
�
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The calculation of lambda is less tedious, since we use only informa-
tion on the modal category overall and then within each level of the
independent variable. Without knowledge of the victim-offender rela-
tionship, we would assign all 410 cases to the assaulted-someplace-
else category, resulting in 410 � 164 � 246 classification errors. 

What about the number of classification errors when we use knowl-

someplace-else category, resulting in 166 � 89 � 77 classification
errors. For assaults where the offender was an acquaintance or friend,
we would assign all 96 cases to the assaulted-someplace-else category,
resulting in 96 � 46 � 50 classification errors. All 104 partner offend-
ers and 44 relative offenders would both be assigned to the home cat-

use knowledge of the victim-offender relationship, compared to 246
prediction errors made without any knowledge of the victim-offender
relationship. The value of lambda is 0.3211, meaning that knowledge
of the modal location of assault for each type of victim-offender rela-
tionship reduces our errors in predicting location of assault by 32.11%.

W orking It Out

� � 
246 � 167

246
 � 0.3211

As can be seen from our example, different measures of association
may lead to somewhat different interpretations of the relationship be-
tween two variables. This occurs because different measures use differ-
ent strategies in coming to a conclusion about that relationship. Which
is the best measure of association for assessing the strength of the rela-
tionship between two nominal-level variables? Researchers often prefer
the two PRE measures—tau and lambda—over phi and V, since PRE
measures have direct interpretations of values that fall between 0 and
1. However, to use PRE measures, a researcher must assume that one
measure (the independent variable) affects a second (the dependent
variable). Of tau and lambda, tau is often defined as the better measure

able, lambda will have a value of 0, implying that there is no relation-
ship between the two variables. Since tau relies on the marginal
distributions of observations both overall and within each category of
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offender was a stranger, we would assign all 166 cases to the assaulted-
edge of the victim-offender relationship? For assaults where the 

errors, respectively. We have a sum of 167 prediction errors when we
egory, resulting in 104 � 77 � 27 and 44 � 31 � 13 classification 

dependent variable is the same for all categories of the independent vari-
of association for two reasons. First, if the modal category of the 
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the independent variable, tau can still detect a relationship between the

marginal totals (i.e., row or column totals). When row or column totals
are not approximately equal, the value of lambda may be artificially
high or low. The reliance on marginal distributions in the calculation of
tau allows that measure of association to account for the size of the
marginal totals directly and causes it not to be as sensitive to differ-
ences in marginal totals.

Statistical Significance of Measures of Association for Nominal Variables
The statistical significance of each of the nominal measures of associa-
tion just discussed can be assessed with the results of a chi-square test.
When the chi-square statistic has a value of 0, each of the four coeffi-
cients will also have a value of 0. The null hypothesis for each of the
four coefficients is simply that the coefficient is equal to 0. The research
hypothesis is simply that the coefficient is not equal to 0.

We illustrate the steps of a hypothesis test for tau and lambda, using
the data on victim-offender relationship and location of assault.

Assumptions:

Level of Measurement: Nominal scale.

Population Distribution: No assumption made.

Sampling Method: Independent random sampling.

Sampling Frame: Adults aged 18 years and older in the state of 
Illinois.

Hypotheses:

H0: There is no association between victim-offender relationship and
location of assault (�p � 0).

H1: There is an association between victim-offender relationship and
location of assault (�p � 0).

or

H0: There is no association between victim-offender relationship and
location of assault (�p � 0).

H1: There is an association between victim-offender relationship and
location of assault (�p � 0).

The Sampling Distribution Since we are testing for a relationship be-
tween two nominal-level variables, we use the chi-square distribution,
where degrees of freedom � (r � 1)(c � 1) � (4 � 1)(4 � 1) � 9.
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related to the marginal distributions, the value of lambda is sensitive to
independent and the dependent variables. Second, and this is again 



C H A P T E R T H I R T E E N :  N O M I N A L A N D O R D I N A L V A R I A B L E S

Observed Frequencies and Expected Frequencies 
for Victim-Offender Relationship and Location of Assault

LOCATION OF ASSAULT

VICTIM-
OFFENDER Someplace 
RELATIONSHIP Home Neighborhood Work Else

Stranger fo � 10 fo � 49 fo � 18 fo � 89 166
fe � 56.2780 fe � 31.1756 fe � 12.1463 fe � 66.4000

Acquaintance/ fo � 21 fo � 22 fo � 7 fo � 46 96
friend fe � 32.5463 fe � 18.0293 fe � 7.0244 fe � 38.4000

Partner fo � 77 fo � 5 fo � 3 fo � 19 104
fe � 35.2585 fe � 19.5317 fe � 7.6098 fe � 41.6000

Relative fo � 31 fo � 1 fo � 2 fo � 10 44
fe � 14.9171 fe � 8.2634 fe � 3.2195 fe � 17.6000

139 77 30 164 410

Table 13.9

Calculations of Chi-Square for Victim-Offender 
Relationship and Location of Assault

VICTIM-
OFFENDER LOCATION
RELATIONSHIP OF ASSAULT fo fe fo � fe (fo � fe)2

Stranger Home 10 56.2780 �46.2780 2141.6578 38.0549
Stranger Neighborhood 49 31.1756 17.8244 317.7089 10.1909
Stranger Work 18 12.1463 5.8537 34.2653 2.8210
Stranger Someplace else 89 66.4000 22.6000 510.7600 7.6922
Friend Home 21 32.5463 �11.5463 133.3180 4.0963
Friend Neighborhood 22 18.0293 3.9707 15.7667 0.8745
Friend Work 7 7.0244 �0.0244 0.0006 0.0001
Friend Someplace else 46 38.4000 7.6000 57.7600 1.5042
Partner Home 77 35.2585 41.7415 1742.3498 49.4164
Partner Neighborhood 5 19.5317 �14.5317 211.1705 10.8117
Partner Work 3 7.6098 �4.6098 21.2499 2.7924
Partner Someplace else 19 41.6000 �22.6000 510.7600 12.2779
Other relative Home 31 14.9171 16.0829 258.6605 17.3399
Other relative Neighborhood 1 8.2634 �7.2634 52.7572 6.3844
Other relative Work 2 3.2195 �1.2195 1.4872 0.4619
Other relative Someplace else 10 17.6000 �7.6000 57.7600 3.2818

� � 168.0005

(fo � fe)2

fe

Table 13.10
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Row total

Column total
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Significance Level and Rejection Region We use the conventional 5% sig-
nificance level for this example. From Appendix 2, we see that the criti-
cal value of chi-square associated with a significance level of 5% and 
df � 9 is 16.919. If the calculated chi-square statistic is greater than
16.919, we will reject the null hypotheses and conclude that the associa-
tion between victim-offender relationship and location of assault is statis-
tically significant.

The Test Statistic The chi-square statistic for the data in Table 13.7 is
168.001. See Table 13.9 for the expected and observed frequencies and
Table 13.10 for the detailed calculations.

The Decision Since our calculated chi-square statistic of 168.001 is much

M e a s u r e s  o f  A s s o c i a t i o n  f o r  O r d i n a l - L e v e l  V a r i a b l e s

The preceding discussion described several measures of association for
nominal variables, where there is no rank ordering of the categories of
each variable. With ordinal-level variables, we can use the ordering of the
categories to measure whether there is a positive or a negative relation-
ship between two variables. A positive relationship would be indicated
by higher ranks on one variable corresponding to higher ranks on a sec-
ond variable. A negative relationship would be indicated by higher ranks
on one variable corresponding to lower ranks on a second variable. The
measures of association for ordinal-level variables all have values that

value of 0.0 indicates no relationship between the two variables.
Table 13.11 illustrates these variations in the strength of the relation-

ship between two ordinal variables with a hypothetical distribution of
450 cases. Part a presents a pattern of no association between the two
variables. Since the cases are evenly distributed across all the cells of the
table, knowledge of the level of one ordinal variable does not provide
any information about the level of the second ordinal variable. Parts b
and c show perfect negative and positive relationships, respectively,
where knowledge of the level of one ordinal variable determines, with-
out error, the level of the second ordinal variable.

The calculation of ordinal measures of association is tedious to perform
by hand. When doing data analysis, you would likely rely on a statistical
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larger than our critical chi-square of 16.919, we reject the null hypotheses
and conclude that there is a statistically significant relationship between
victim-offender relationship and location of assault.

relationship, a value of �1.0 indicates a perfect positive relationship, and a
range from �1.0 to �1.0. A value of �1.0 indicates a perfect negative 
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software package to perform the calculations for you. Most common statis-
tical software packages will compute the measures of association for ordi-
nal variables described here (see, for example, the computer exercises at
the end of this chapter). The following discussion is intended to help you
understand how these various measures are calculated.

There are four common measures of association for ordinal variables:
gamma (�), Kendall’s �b, Kendall’s �c, and Somers’ d. Common to all
four is the use of concordant pairs and discordant pairs of observa-
tions. The logic behind using concordant and discordant pairs of obser-
vations is that we take each possible pair of observations in a data set
and compare the relative ranks of the two observations on the two vari-
ables examined. Concordant pairs are those pairs of observations for
which the rankings are consistent: One observation is ranked high on
both variables, while the other observation is ranked low on both vari-

Hypothetical Distribution of 450 Cases for Two Ordinal Variables

(a) Measure of Association � 0.0

VARIABLE 2

VARIABLE 1 Low Medium High

Low 50 50 50 150
Medium 50 50 50 150
High 50 50 50 150

150 150 150 450

(b) Measure of Association � �1.0

VARIABLE 2

VARIABLE 1 Low Medium High

Low 0 0 150 150
Medium 0 150 0 150
High 150 0 0 150

150 150 150 450

(c) Measure of Association � �1.0

VARIABLE 2

VARIABLE 1 Low Medium High

Low 150 0 0 150
Medium 0 150 0 150
High 0 0 150 150

150 150 150 450

Table 13.11
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ables. For example, one observation is ranked 1 (of five ranked categories)

Row total

Column total

Column total

Row total

Row total

Column total
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ond variable, while the other observation is ranked 4 on the first variable
and 3 on the second variable. Discordant pairs refer to those pairs of ob-
servations for which the rankings are inconsistent: One observation is
ranked high on the first variable and low on the second variable, while
the other observation is ranked low on the first variable and high on the
second variable. For example, one observation is ranked 1 on the first
variable and 5 on the second variable, while the other observation is

called a tied pair of observations (tie).4

How do we decide whether a pair of observations is a concordant
pair, a discordant pair, or a tied pair? Let’s look at the determination of
concordant, discordant, and tied pairs for the data presented in Table
13.12, which represents a cross-tabulation of two ordinal variables, each
with three categories: low, medium, and high.

4All the measures of association for ordinal variables that we discuss here are for
grouped data that can be represented in the form of a table. In Chapter 14, we discuss
another measure of association for ordinal variables—Spearman’s r (rs)—that is most
useful in working with ungrouped data, such as information on individuals. The diffi-
culty we confront when using Spearman’s r on grouped data is that the large number
of tied pairs of observations complicates the calculation of this measure of association.
Spearman’s r is a more appropriate measure of association when we have ordinal
variables with a large number of ranked categories for individual cases or when we
take an interval-level variable and rank order the observations (see Chapter 14).

Cross-Tabulation of Two Ordinal Variables

DEPENDENT VARIABLE

INDEPENDENT
VARIABLE Low Medium High

Low Cell A Cell B Cell C
12 4 3

Medium Cell D Cell E Cell F
5 10 6

High Cell G Cell H Cell I
3 5 14

Table 13.12

on the first variable and 2 (of five ranked categories) on the sec-
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ranked 4 on the first variable and 2 on the second variable. A pair of 
observations that has the same rank on one or both of the variables is

the dependent and the independent variables is required. The value of d
four measures of association for ordinal variables for which specification of

Somers’ d is the only one of the 

depending on which variable is specified as the dependent variable. To simp-
lify the following discussion, the examples we present in the next section de-
fine one variable as the dependent and the other as the independent variable.
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We begin by determining the concordant pairs—those pairs of observa-

since the cases in the same row or column will have the same ranking on
the independent and dependent variables, respectively, and thus represent
ties. We then look for cases located below and to the right of the cell of in-
terest. For Cell A, the cells we will use to determine concordant pairs are

of observations that are concordant for observations in Cell A, we begin
by summing the number of observations in Cells E, F, G, and I: 10 � 6 �
5 � 14 � 35. This tells us that for a single observation in Cell A, there are
35 concordant pairs of observations. Since there are 12 observations in
Cell A, we multiply the number of cases in Cell A (12) by the sum of the
cases in Cells E, F, H, and I. For Cell A, there are 420 concordant pairs.

W orking It Out

12(10 � 6 � 5 � 14) � 420

Continuing to work across the first row of Table 13.12, we move to Cell
B. The cells located below and to the right of Cell B are Cells F and I, so
the number of concordant pairs is 4(6 � 14) � 80. When we move to Cell
C, we see there are no cells below and to the right, so we drop down to
the next row and start with Cell D. The cells located below and to the right
of Cell D are Cells H and I, so the number of concordant pairs is 5(5 � 14)
� 95. Moving to Cell E, we see that only Cell I is below and to the right, so
the number of concordant pairs is 10(14) � 140. The remaining cells in the
table—F, G, H, and I—have no other cells located below and to the right,
so they are not used in the calculation of concordant pairs. After calculating
concordant pairs for all cells in the table, we sum these values to get the
number of concordant pairs for the table. For Table 13.12, the total number
of concordant pairs is 735 (that is, 420 � 80 � 95 � 140).

W orking It Out

Sum � 420 � 80 � 95 � 140 � 735

Cell A:
Cell B:
Cell D:
Cell E:

 12(10 � 6 � 5 � 14) � 420
4(6 � 14) �  80
5(5 � 14) �  95

10(14) � 140
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tions that have consistent relative rankings. Let’s start with Cell A. We 

Cells E, F, H, and I, since the ranks are consistently lower on both the 
independent and the dependent variables. To determine the number of pairs

remove from consideration the row and column that Cell A is located in,
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To calculate discordant cells, we begin in the upper right corner of
Table 13.12 (Cell C), locate cells that are positioned below and to the
left of the cell of interest, and perform calculations similar to those for
concordant pairs. Beginning with Cell C, we multiply the number of
cases in Cell C by the sum of cases in Cells D, E, G, and H, which are
located below and to the left of Cell C. The number of discordant pairs
for Cell C is 69.

W orking It Out

3(5 � 10 � 3 � 5) � 69

Moving from right to left in the top row of Table 13.12, we shift our
attention to Cell B. The discordant pairs for Cell B are calculated by mul-
tiplying the number of cases in Cell B by the sum of cases in Cells D and
G. We find the number of discordant pairs for Cell B to be 4(5 � 3) �
32. Since there are no cells located below and to the left of Cell A, it is
not used to calculate discordant pairs, and we move on to Cell F. The
cells located below and to the left of Cell F are Cells G and H, so the

is 10(3) � 30. There are no cells located below and to the left of Cells D,
G, H, and I, so no further calculations are performed. As with the con-
cordant pairs, we sum our discordant pairs for Table 13.12 and find the
sum to be 179 (that is, 69 � 32 � 48 � 30).

W orking It Out

Sum � 69 � 32 � 48 � 30 � 179

Cell C:
Cell B:
Cell F:
Cell E:

3(5 � 10 � 3 � 5) � 69
4(5 � 3) � 32
6(3 � 5) � 48

10(3) � 30

To calculate ties in rank for pairs of observations, we have to con-
sider the independent and dependent variables separately. We denote
ties on the independent variable as TX and ties on the dependent vari-
able as TY. Since the independent variable is represented by the rows
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number of discordant pairs is 6(3 � 5) � 48. For Cell E, the only cell 
located below and to the left is Cell G, so the number of discordant pairs
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in Table 13.12, the pairs of observations that will be defined as ties on 
the independent variable will be those cases located in the same row
of Table 13.12. To calculate the number of ties in each row, we use
Equation 13.5.

Equation 13.5

where TX is the number of ties on the independent variable and Nrow is
the row total. Equation 13.5 tells us to calculate the product of the num-
ber of observations in a row and the number of observations in a row
minus 1 for all rows. We then sum the products calculated for each row
and multiply the sum by .

For Table 13.12, the three row totals are 19 (row 1), 21 (row 2), and
22 (row 3). When we insert these values into Equation 13.5, we find the
number of ties on the independent variable to be 612.

1
\2

TX � 1
2

 � Nrow(Nrow � 1)

W orking It Out

 � 612

 � 1
2

 (342 � 420 � 462) � 1
2

 (1,224)

 � 1
2

 [(19)(18) � (21)(20) � (22)(21)]

 � 1
2

 [(19)(19 � 1) � (21)(21 � 1) � (22)(22 � 1)]

 TX � 1
2

 � Nrow(Nrow � 1)

The ties on the dependent variable are found in a similar manner. Since
the dependent variable is represented in the columns, we perform the
same type of calculation, but using column totals rather than row totals.
Equation 13.6 presents the formula for calculating ties on the dependent
variable.

Equation 13.6

In Equation 13.6, TY is the number of ties on the dependent variable and
Ncol is the total number of observations in the column.

TY � 1
2

 � Ncol(Ncol � 1)
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Gamma
Once we have calculated the numbers of concordant pairs and discor-
dant pairs, gamma (�) is the simplest of the ordinal measures of associa-
tion to calculate, since it does not use information about ties in rank.
Gamma has possible values that range from �1.0 to �1.0. Gamma may
also be interpreted as a PRE measure: We can interpret the value of
gamma as indicating the proportional reduction in errors in predicting
the dependent variable, based on information about the independent
variable.

Equation 13.7 presents the formula for calculating gamma. Gamma is
the difference between the number of concordant (C ) and discordant
(D) pairs, (C � D), divided by the sum of the concordant and discordant
pairs, (C � D).

Equation 13.7

For the data in Table 13.12, gamma is equal to 0.6083. The positive value
of gamma tells us that as we move from lower ranked to higher ranked
categories on the independent variable, the category of the dependent
variable also tends to increase. In regard to the relative strength of the
relationship, a value of 0.6083 suggests a strong relationship between the
independent and dependent variables, since knowledge of the indepen-
dent variable reduces our errors in predicting the dependent variable by
60.83%.

� � C � D
C � D

W orking It Out

 � 614

 � 1
2

 (380 � 342 � 506) � 1
2

 (1,228)

 � 1
2

 [(20)(19) � (19)(18) � (23)(22)]

 � 1
2

 [(20)(20 � 1) � (19)(19 � 1) � (23)(23 � 1)]

 TY � 1
2

 � Ncol(Ncol � 1)

In Table 13.12, the column totals are 20 (column 1), 19 (column 2),
and 23 (column 3). After inserting these values into Equation 13.6, we
find the number of ties on the dependent variable to be 614.
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Kendall’s �b and �c

Kendall’s tau measures—�b and �c—also assess the strength of associa-
tion between two ordinal variables.5 The two measures are conceptually
very similar in that they use information about concordant and discor-
dant pairs of observations. But they also utilize information about tied
pairs on both the independent and the dependent variables. Both tau
measures have possible values ranging from �1.0 to �1.0. There are two
important differences between �b and �c: First, �b should be applied only
to a table where the number of rows is equal to the number of columns;
�c should be applied to a table where the number of rows is not equal to
the number of columns. When the number of rows is equal to the num-
ber of columns, �c will have a value close to that of �b. Second, �b may
be interpreted as a PRE measure, but �c may not. The differences in the
application and interpretation of each measure suggest that knowing the
dimensions of the table is important in deciding which measure is most
appropriate.

Equations 13.8 and 13.9 present the formulas for calculating �b and �c,
respectively.

Equation 13.8

In Equation 13.8, C and D represent the concordant and the discordant
pairs, respectively; N represents the total number of cases; TX represents
the number of ties on the independent variable; and TY represents the
number of ties on the dependent variable.

�b � C � D

�[N(N � 1)/2 � TX][N (N � 1)/2 � TY]

W orking It Out

 � 0.6083

 � 
556
914

 � 
735 � 179
735 � 179

 � � C � D
C � D

5These two tau measures are different from Goodman and Kruskal’s tau, which mea-
sures the strength of association between two nominal variables.
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Let’s return to the data presented in Table 13.12. We have already
calculated the number of concordant pairs to be 735, the number of
discordant pairs to be 179, the total number of cases to be 62, the
number of ties on the independent variable to be 612, and the number
of ties on the dependent variable to be 614. After inserting these val-
ues into Equation 13.6, we find �b to be 0.4351. This indicates that
knowledge of the independent variable reduces our prediction errors
by 43.51%.

W orking It Out

 � 0.4351

 � 
556

�(1,279)(1,277)

 � 
556

�[1,891 � 612][1,891 � 614]

 � 
735 � 179

�[62(62 � 1)/2 � 612][62(62 � 1)/2 � 614]

 �b � C � D

�[N (N � 1)/2 � TX ][N (N � 1)/2 � TY ]

Equation 13.9 presents the formula for calculating �c. We do not calcu-
late �c for Table 13.12, since the number of rows is equal to the number
of columns. We do, however, illustrate its calculation below with another
example.

Equation 13.9

In Equation 13.9, C and D represent the concordant and the discordant
pairs, respectively; N represents the total number of cases; and m is the
smaller of the number of rows (r) and the number of columns (c). Sup-
pose, for example, that we had a table with five rows (r � 5) and four
columns (c � 4). The number of columns is smaller than the number of
rows, so m would be 4.

 where m � min(r, c)

 �c � 
C � D

1
2

 N 

2[(m � 1)/m]
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Somers’ d
The fourth measure of association for ordinal variables that we present

ables, Somers’ d uses information on ties on only the independent vari-
able. It is important to remember that the statistic you get for Somers’ d
may vary, depending on which variable is defined as the dependent vari-
able. The formula for calculating Somers’ d is given in Equation 13.10.

Equation 13.10

In Equation 13.10, where C, D, N, and TX represent the concordant pairs,
the discordant pairs, the total number of cases, and the number of ties

For Table 13.12, we have already calculated values for C, D, N, and
TX. After inserting these values into Equation 13.10, we find Somers’ d to
be 0.4347.

dYX � C � D
N (N � 1)/2 � TX

W orking It Out

 � 0.4347

 � 
556

1,279

 � 
556

1,891 � 612

 � 
735 � 179

62(62 � 1)/2 � 612

 dYX � C � D
N (N � 1)/2 � TX

A Substantive Example: Affectional Identification 
with Father and Level of Delinquency
Table 9.14 presented a cross-tabulation of two ordinal variables: affec-

much they wanted to grow up and be like their fathers. The responses
were classified into five ordered categories: in every way, in most
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information about ties on both the independent and the dependent vari-
here—Somers’ d—is similar to the tau measures, but instead of using 

on the independent variable, respectively. The subscript YX on d
denotes the dependent and the independent variables, in order.

father was determined by the youth’s responses to a question about how
tional identification with father and delinquency. Identification with 
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ways, in some ways, in just a few ways, and not at all. Delinquent acts
were classified into three ordered categories: none, one, and two or
more. The data came from the Richmond Youth Survey report, and the
distribution of cases presented refers only to the white males who re-
sponded to the survey.6 We reproduce this cross-tabulation in Table
13.13.

In our earlier analysis of the data in this table (see Chapter 9), we
found a statistically significant relationship between affectional identifica-
tion with father and delinquency. However, the chi-square statistic told
us nothing about the direction of the effect or the strength of the rela-
tionship between these two variables. We can use the measures of asso-

We begin by calculating the numbers of concordant pairs, discordant
pairs, and tied pairs of observations. The number of concordant pairs of
observations is 201,575; the number of discordant pairs is 125,748; the
number of pairs tied on the independent variable is 187,516; and the
number of pairs tied on the dependent variable is 315,072.

Affectional Identification with Father by Number of Delinquent Acts

AFFECTIONAL

IDENTIFICATION NUMBER OF DELINQUENT ACTS

WITH FATHER None One Two or more

In every way Cell A Cell B Cell C 121
77 25 19

In most ways Cell D Cell E Cell F 404
263 97 44

In some ways Cell G Cell H Cell I 387
224 97 66

In just a few ways Cell J Cell K Cell L 172
82 52 38

Not at all Cell M Cell N Cell O 138
56 30 52

702 301 219 1,222

Table 13.13

6David F. Greenberg, “The Weak Strength of Social Control Theory,” Crime and Delin-
quency 45:1 (1999): 66–81.
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W orking It Out

Concordant Pairs:

Cell A: 77(97 � 44 � 97 � 66 � 52 � 38 � 30 � 52) � 36,652

Cell B: 25(44 � 66 � 38 � 52) � 5,000

Cell D: 263(97 � 66 � 52 � 38 � 30 � 52) � 88,105

Cell E: 97(66 � 38 + 52) � 15,132

Cell G: 224(52 � 38 � 30 � 52) � 38,528

Cell H: 97(38 � 52) � 8,730

Cell J: 82(30 � 52) � 6,724

Cell K: 52(52) � 2,704

Sum � 36,652 � 5,000 � 88,105 � 15,132 � 38,528 � 8,730 
� 6,724 � 2,704

� 201,575

Discordant Pairs:

Cell C: 19(263 � 97 � 224 � 97 � 82 � 52 � 56 � 30) � 17,119

Cell B: 25(263 � 224 � 82 � 56) � 15,625

Cell F: 44(224 � 97 � 82 � 52 � 56 � 30) � 23,804

Cell E: 97(224 � 82 � 56) � 35,114

Cell I: 66(82 � 52 � 56 � 30) � 14,520

Cell H: 97(82 � 56) � 13,386

Cell L: 38(56 � 30) � 3,268

Cell K: 52(56) � 2,912

Sum � 17,119 � 15,625 � 23,804 � 35,114 � 14,520 � 13,386 
� 3,268 + 2,912

� 125,748
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After calculating the concordant pairs, discordant pairs, and pairs
tied on the independent and dependent variables, we can calculate
the measures of association for ordinal variables. We find the value of
gamma to be 0.2317. Don’t be confused by the fact that for affectional
identification movement from lower to higher ordered categories rep-
resents movement from more to less identification with the father.
Substantively, what this value of gamma tells us is that as the level of
affectional identification with father decreases (i.e., as we move down
the rows of the table), the youth are likely to report higher levels of
delinquency. The value of gamma also indicates that we reduce our
prediction errors about level of delinquency by 23.17% when we use
information about the level of affectional identification with father. If
affectional identification in this example had been measured from less
to more identification with father (rather than more to less identifica-
tion), gamma would have been negative. As a general rule, it is impor-
tant to look carefully at the ordering of the categories of your measure
in order to make a substantive interpretation of your result.

Pairs Tied on the Independent Variable:

Pairs Tied on the Dependent Variable:

 � 315,072

 � (1
\2)(630,144)

 � (1
\2)(492,102 � 90,300 � 47,742)

 TY � (1
\2)[(702)(701) � (301)(300) � (219)(218)]

 � 187,516

 � (1
\2)(375,032)

 � (1
\2)(14,520 � 162,812 � 149,382 � 29,412 � 18,906)

  �� (172)(171) � (138)(137)]
 TX � (1

\2)[(121)(120) � (404)(403) � (387)(386)
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Recall that there are two tau measures: �b and �c. If the number of
rows were equal to the number of columns, then we would use �b. Since
the number of rows is different from the number of columns in Table
13.13, we use �c. For the data presented in Table 13.13, �c has a value of
0.1523, meaning that as the level of affectional identification with father
decreases, the level of delinquency increases. However, since �c

W orking It Out

 � 0.2317

 � 
75,827
327,323

 � 
201,575 � 125,748
201,575 � 125,748

 � � C � D
C � D

W orking It Out

 � 0.1523

 � 
75,827

497,761.3333

 � 
201,575 � 125,748

1
2

 (1,222)2 �3 � 1
3 �

 �c � 
C � D

1
2

 N 

2�m � 1
m �

, � where m � min(r, c) � min(5, 3) � 3

Our third measure of association for ordinal variables, Somers’ d, has
a value of 0.1358. The interpretation is the same as that for gamma and
�c: Lower levels of affectional identification with father are associated

level of delinquency by 13.58%.
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is not 

reduction in error.
a PRE measure, we cannot interpret this result in terms of proportional 

affectional identification with father reduces our prediction errors about
with higher levels of delinquency. In this case, knowledge of level of 
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Note on the Use of Measures of Association for Ordinal Variables
As illustrated in our example, the values for gamma, Kendall’s tau mea-
sures, and Somers’ d will generally not be the same. The difference in val-
ues can be attributed primarily to whether the measure accounts for tied
pairs of observations. Gamma does not account for tied pairs of observa-

pairs of observations tied on the independent variable, while Kendall’s tau
measures account for tied pairs of observations on both variables.

Which of these measures is best to use in which situations? As in
our discussion of measures of association for nominal variables, to
begin to address this question, we need to consider the dimensions of
the table and our desire for a PRE measure. If the number of rows is
equal to the number of columns, then �b is likely the best overall mea-
sure of association for two reasons: First, it has a PRE interpretation,
meaning that values falling between 0 and 1 have direct interpreta-
tions in terms of reduction of error. Second, since �b accounts for pairs
of observations tied on both the independent and the dependent vari-
ables, it will provide a more conservative estimate than gamma. If the
number of rows is not equal to the number of columns, Somers’ d is
sometimes considered a better measure of association than �c, since it
has a PRE interpretation and �c does not. Somers’ d offers the addi-
tional advantage of being an appropriate measure of association for

Statistical Significance of Measures of Association for Ordinal Variables
Each of the four measures of association for ordinal variables can 
be tested for statistical significance with a z-test. The general formula
for calculating the z-score is given in Equation 13.11, where we divide

W orking It Out

 � 0.1358

 � 
75,827
558,515

 � 
201,575 � 125,748

[(1,222)(1,222 � 1)/2] � 187,516

 dYX � C � D
N (N � 1)/2 � TX
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association between two ordinal variables. Somers’ d accounts for only the
tions and thus is sometimes criticized for overestimating the strength of 

dependent variables.
those situations where we have clearly defined independent and 
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the measure of association by the standard error of the measure of
association.

Equation 13.11

What will differ for each of the measures of association for ordinal vari-
ables is the calculation of the standard error. Equations 13.12, 13.13, and
13.14 present approximate standard errors for gamma, Kendall’s tau
measures, and Somers’ d, respectively.7

In all three equations, N is the total number of observations, r is the
number of rows, and c is the number of columns in the table.

Assumptions:

Level of Measurement: Ordinal scale.

Population Distribution: Normal distribution for the relationship exam-
ined (relaxed because N is large).

Sampling Method: Independent random sampling.

Sampling Frame: High school–age white males in Richmond, California,
in 1965.

Hypotheses:

H0: There is no association between affectional identification with father
and delinquency (�p � 0).

H1: There is an association between affectional identification with father
and delinquency (�p � 0).

Equation 13.14
Approximate Standard Error for

Somers’ d

�̂d � �4(r 2 � 1)(c � 1)

9Nr  

2(c � 1)

Equation 13.13
Approximate Standard Error for

Kendall’s Tau Measures

�̂� � �4(r � 1)(c � 1)
9Nrc

Equation 13.12
Approximate Standard Error for

Gamma

�̂� � � 4(r � 1)(c � 1)
9N (r � 1)(c � 1)

z � measure of association
standard error of measure of association

7For a more detailed discussion of these issues, see Jean Dickson Gibbons, Nonpara-
metric Measures of Association (Newbury Park, CA: Sage, 1993).
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or

H0: There is no association between affectional identification with father
and delinquency (�c (p) � 0).

H1: There is an association between affectional identification with father
and delinquency (�c (p) � 0).

or

H0: There is no association between affectional identification with father
and delinquency (dp � 0).

H1: There is an association between affectional identification with father
and delinquency (dp � 0).

The Sampling Distribution We use the normal distribution to test
whether the measures of ordinal association differ significantly from 0.
As with our earlier examples using a normal sampling distribution, the N
of cases must be large in order for us to relax the normality assumption.
When examining the relationship between two ordinal-level variables,
we recommend a sample of at least 60 cases.

Significance Level and Rejection Region We use the conventional 5% sig-
nificance level for our example. From Appendix 3, we can determine
that the critical values for z are �1.96. If the calculated z-score is greater
than 1.96 or less than �1.96, we will reject the null hypotheses and con-
clude that the measure of association between affectional identification
with father and delinquency is significantly different from 0.

The Test Statistic Since we have three different measures of associa-
tion—�, �c, and d—we need to calculate three separate test statistics. We
first need to calculate the approximate standard error for gamma, using
Equation 13.12. We find the standard error for gamma to be 0.0330.

W orking It Out

 � 0.0330
 � �0.00109

 � � 96
87,984

 � � 4(5 � 1)(3 � 1)
(9)(1,222)(5 � 1)(3 � 1)

 �̂� � � 4(r � 1)(c � 1)
9N (r � 1)(c � 1)
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Using the standard error for gamma, we then calculate the z-score
using Equation 13.11. In our example, we find the z-score for gamma to
be 7.0212.

W orking It Out

 � 7.0212

 � 
0.2317
0.0330

 z � 
�

�̂�

Turning to �c, we calculate the standard error using Equation 13.13.
For our example, the standard error for �c is 0.0241.

W orking It Out

 � 0.0241

 � �0.00058

 � � 96
164,970

 � �4(5 � 1)(3 � 1)
(9)(1,222)(5)(3)

 �̂� � �4(r � 1)(c � 1)
9Nrc

Using the standard error for �c

W orking It Out

 � 6.3195

 � 
0.1523
0.0241

 z � 
�c

�̂�
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to be 6.3195.
and Equation 13.11, we find the z-score 
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For Somers’ d, we follow the same process, calculating the standard
error for d and then using the standard error to calculate the z-score for
d. For our example, the standard error for d is 0.0264 and the corre-
sponding z-score is 5.1439.

W orking It Out

 � 0.0264

 � �0.00070

 � � 384
549,900

 � � 4(52 � 1)(3 � 1)

(9)(1,222)(52)(3 � 1)

 �̂d � �4(r 

2 � 1)(c � 1)

9Nr 

2(c � 1)

W orking It Out

 � 5.1439

 � 
0.1358
0.0264

 z � d
�̂d

The Decision All three of the calculated z-scores are greater than 1.96,
meaning that we reject the null hypotheses and conclude in the case of
each test that there is a statistically significant relationship between affec-
tional identification with father and delinquency.

C h o o s i n g  t h e  B e s t  M e a s u r e  o f  A s s o c i a t i o n  
f o r  N o m i n a l -  a n d  O r d i n a l - L e v e l  V a r i a b l e s  

Because we have covered so many different measures in this chapter,
we thought it would be useful to recap them in a simple table that can
be used in deciding which measure of association is appropriate 
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for which specific research problem. Table 13.14 presents summary
information on the measures of association for nominal and ordinal
variables discussed in this chapter. The first column of Table 13.14
gives the measure of association, the second column notes the appro-
priate level of measurement for the two variables, the third column
tells whether the measure of association is also a PRE measure, and the
fourth column lists any restrictions on the size of the table used in the
analysis. Thus, for any given pair of nominal or ordinal variables, you
should be able to determine which measure of association best suits
your needs.

C h a p t e r  S u m m a r y

Measures of association for nominal and ordinal variables allow
researchers to go beyond a simple chi-square test for independence
between two variables and assess the strength of the relationship. 
The measures of association discussed in this chapter are the most
commonly used measures of association for nominal and ordinal
variables.

Two of the measures of association for nominal variables are based
on the value of the chi-square statistic. Phi (�) adjusts the value of chi-
square by taking into account the size of the sample, but is useful only
for 2 � 2 tables. Cramer’s V is also based on the value of the chi-square
statistic, but makes an additional adjustment for the numbers of rows
and columns in the table. One of the difficulties with the interpretation

Summary of Measures of Association 
for Nominal and Ordinal Variables

MEASURE OF LEVEL OF DIMENSIONS OF TABLE
ASSOCIATION MEASUREMENT PRE MEASURE? (ROWS BY COLUMNS)

� Nominal No 2 � 2
V Nominal No Any size
� Nominal Yes Any size
� Nominal Yes Any size
� Ordinal Yes Any size
�b Ordinal Yes Number of rows �

Number of columns
�c Ordinal No Number of rows �

Number of columns
d Ordinal Yes Any size

Table 13.14
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of phi and V is that a value that falls between 0 and 1 does not have a
precise interpretation. We can infer that as values approach 0, there is a
weak relationship between the two variables. Similarly, as values ap-
proach 1, there is a strong (or near perfect) relationship between the two
variables.

Goodman and Kruskal’s tau and lambda are measures of associa-
tion that are not based on the value of the chi-square statistic and instead
use different decision rules for classifying cases. Tau relies on the pro-
portional distribution of cases in a table, while lambda relies on the
modal values of the dependent variable overall and within each level or
category of the independent variable. Tau and lambda offer an improve-
ment over phi and V in that a value between 0 and 1 can be interpreted
directly as the proportional reduction in errors made by using informa-
tion about the independent variable. More generally, this characteristic is
called proportional reduction in error, or PRE. PRE measures tell us
how much knowledge of one measure helps to reduce the errors we
make in defining the values of a second measure. Both measures require
that we define at the outset which variable is the dependent variable
and which variable is the independent variable. The dependent vari-
able is the outcome variable—the phenomenon that we are interested in
explaining. As it is dependent on other variables, it is influenced—or we
expect it to be influenced—by other variables. The variables that affect,
or influence, the dependent variable are referred to as the independent
variables.

There are four common measures of association for ordinal vari-
ables: gamma (�), Kendall’s �b and �c, and Somers’ d. Measures of
association for ordinal variables are all based on concordant pairs
and discordant pairs of observations. Concordant pairs are pairs of
observations that have consistent rankings on the two variables (e.g.,
high on both variables or low on both variables), while discordant
pairs are those pairs of observations that have inconsistent rankings on
the two variables (e.g., high on one variable and low on the other vari-
able). Gamma uses information only on the concordant and discordant
pairs of observations. The remaining measures of association—
Kendall’s tau measures and Somers’ d—use information about pairs of
observations that have tied rankings. All four of the measures of associ-
ation for ordinal variables discussed in this chapter have values ranging
from �1.0 to 1.0, where a value of �1.0 indicates a perfect negative re-
lationship (i.e., as we increase the value of one variable, the other vari-
able decreases), a value of 1.0 indicates a perfect positive relationship
(i.e., as we increase the value of one variable, the other variable also
increases), and a value of 0.0 indicates no relationship between the
two variables. Gamma (�), Kendall’s �b, and Somers’ d all have PRE
interpretations.
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K e y  T e r m s

concordant pairs of observations Pairs
of observations that have consistent rank-
ings on two ordinal variables.

Cramer’s V A measure of association for
two nominal variables that adjusts the chi-
square statistic by the sample size. V is ap-
propriate when at least one of the nominal
variables has more than two categories.

dependent variable The outcome vari-
able; the phenomenon that we are inter-
ested in explaining. It is dependent on
other variables in the sense that it is influ-
enced—or we expect it to be influenced—
by other variables.

discordant pairs of observations Pairs
of observations that have inconsistent rank-
ings on two ordinal variables.

gamma (�) PRE measure of association 
for two ordinal variables that uses informa-
tion about concordant and discordant 
pairs of observations within a table.
Gamma has a standardized scale ranging
from �1.0 to 1.0.

Goodman and Kruskal’s tau (�) PRE
measure of association for two nominal
variables that uses information about the
proportional distribution of cases within a
table. Tau has a standardized scale ranging
from 0 to 1.0. For this measure, the re-
searcher must define the independent and
dependent variables.

independent variable A variable as-
sumed by the researcher to affect or influ-
ence the dependent variable.

Kendall’s �b PRE measure of association
for two ordinal variables that uses informa-
tion about concordant pairs, discordant
pairs, and pairs of observations tied on

both variables examined. �b has a standard-
ized scale ranging from �1.0 to 1.0 and is
appropriate only when the number of rows
equals the number of columns in a table.

Kendall’s �c A measure of association for
two ordinal variables that uses information
about concordant pairs, discordant pairs,
and pairs of observations tied on both vari-
ables examined. �c has a standardized scale
ranging from �1.0 to 1.0 and is appropriate
when the number of rows is not equal to
the number of columns in a table.

lambda (�) PRE measure of association
for two nominal variables that uses infor-

independent variable. Lambda has a stan-
dardized scale ranging from 0 to 1.0.

phi (�) A measure of association for two
nominal variables that adjusts the chi-
square statistic by the sample size. Phi is
appropriate only for nominal variables that
each have two categories.

proportional reduction in error (PRE)
The proportional reduction in errors made
when the value of one measure is pre-
dicted using information about the second
measure.

Somers’ d PRE measure of association for
two ordinal variables that uses information
about concordant pairs, discordant pairs,
and pairs of observations tied on the inde-
pendent variable. Somers’ d has a standard-
ized scale ranging from �1.0 to 1.0.

tied pairs of observations (ties) Pairs of
observation that have the same ranking on
two ordinal variables.
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S y m b o l s  a n d  F o r m u l a s

C Number of concordant pairs of observations

D Number of discordant pairs of observations

Nrow Total number of observations for each row

Ncol Total number of observations for each column

TX Number of pairs of observations tied on the independent 
variable

TY Number of pairs of observations tied on the dependent 
variable

� Phi; measure of association for nominal variables

V Cramer’s V; measure of association for nominal variables

� Lambda; measure of association for nominal variables

� Goodman and Kruskal’s tau; measure of association for nominal
variables

� gamma; measure of association for ordinal variables

�b Kendall’s �b; measure of association for ordinal variables

�c Kendall’s �c; measure of association for ordinal variables

d Somers’ d; measure of association for ordinal variables

To calculate phi (�):

To calculate Cramer’s V:

V � � � 2

N � min(r � 1, c � 1)

� � �� 2

N
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To calculate Goodman and Kruskal’s tau:

To calculate lambda:

To calculate the number of tied pairs of observations on the
independent variable:

To calculate the number of tied pairs of observations on the dependent
variable:

To calculate gamma:

To calculate �b:

To calculate �c:

To calculate Somers’ d:

To calculate the z-score:

z � measure of association
standard error of measure of association

dYX � C � D
N (N � 1)/2 � TX

 �c � 
C � D

1
2

 N 

2[(m � 1)/m]
, where m � min(r, c)

�b � C � D

�[N (N � 1)/2 � TX][N (N � 1)/2 � TY ]

� � C � D
C � D

TY � 1
2
 � Ncol(Ncol � 1)

TX � 1
2
 � Nrow(Nrow � 1)

 � 

�number of errors

dependent variable� � �
number of errors
using mode of
dependent variable
by level of
independent variable

�

� � 

�number of errors
without knowledge of
independent variable � � �number of errors

with knowledge of
independent variable�

number of errors without knowledge of independent variable
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To calculate the standard error for gamma:

To calculate the standard error for Kendall’s tau measures:

To calculate the standard error for Somers’ d:

E x e r c i s e s

13.1 A researcher studies the link between race of offender and death sen-
tence decision in a state by selecting a random sample of death
penalty cases over a 20-year period. The researcher finds the follow-
ing distribution of death sentence decisions by race:

Race Sentenced to Death Not Sentenced to Death

White 8 73
African American 16 52

a. Calculate phi for these data.

b. Calculate Goodman and Kruskal’s tau for these data.

c. Using the values that you calculated for phi and tau, how strongly
related are the race of the offender and receiving a death sentence?

13.2 Silver Bullet Treatment Services claims to have an effective system for
treating criminal offenders. As evidence for the effectiveness of its pro-
gram, a spokesperson from the organization presents information on
rearrest within one year for 100 individuals randomly assigned to the
treatment program and for 100 individuals randomly assigned to a
control group. The distribution of cases follows:

Experimental Condition Not Rearrested Rearrested

Treatment group 75 25
Control group 40 60

a. Calculate phi for these data.

b. Calculate Goodman and Kruskal’s tau for these data.

�̂d � �4(r 

2 � 1)(c � 1)

9Nr 

2(c � 1)

�̂� � �4(r � 1)(c � 1)
9Nrc

�̂� � � 4(r � 1)(c � 1)
9N (r � 1)(c � 1)
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c. Calculate lambda for these data.

d. Based on these three measures of association, what can you con-
clude about the strength of the relationship between the treatment
and rearrest?

13.3 A graduate student is interested in the relationship between the gen-
der of a violent crime victim and the victim’s relationship to the of-
fender. To study this relationship, the student analyzes survey data
collected on a random sample of adults. Among those persons who
had been victims of violent crimes, the student finds the following dis-
tribution of cases by gender:

Relationship of Offender to Victim

Gender Stranger Friend Partner

Male 96 84 21
Female 55 61 103

a. Calculate V for these data.

b. Calculate Goodman and Kruskal’s tau for these data.

c. Calculate lambda for these data.

d. Based on these three measures of association, what can you con-
clude about the strength of the relationship between gender and
the victim’s relationship to a violent offender?

13.4 In an attempt to explore the relationship between type of legal repre-
sentation and method of case disposition, a student working on a re-
search project randomly selects a small sample of cases from the local
court. The student finds the following distribution of cases:

Method of Case Disposition

Type of Legal Convicted by Convicted by Guilty
Representation Trial Plea Acquitted

Privately retained 10 6 4
Public defender 3 17 2
Legal aid 3 13 1

a. Calculate V for these data.

b. Calculate Goodman and Kruskal’s tau for these data.

c. Calculate lambda for these data.

d. Based on these three measures of association, what should the stu-
dent conclude about the relationship between type of legal repre-
sentation and method of case disposition?
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13.5 A researcher interested in the link between attacking other students
and being bullied by other students at school used data from a self-
report survey administered to a random sample of teenagers. The dis-
tribution of responses was as follows:

Attacked Another Student

Bullied Never Once Two or More Times

Never 59 22 19
Once 31 44 52
Two or more times 25 29 61

a. Calculate gamma for these data.

b. Calculate �b for these data.

c. Calculate Somers’ d for these data.

d. Interpret each of the three measures of association. What can you
conclude about the relationship between being bullied and attack-
ing other students?

13.6 In response to an increasing reluctance of individuals to serve on ju-
ries, a study is commissioned to investigate what might account for
the public’s change of heart. Wondering whether prior jury experience
has any effect on how favorably the jury system is viewed, a re-
searcher constructs the following table:

“How would you rate the current jury system?”

Very Very 
Served on a jury Unfavorable Unfavorable Favorable Favorable

Never 22 20 21 26
Once 11 19 12 13
Two or three times 18 23 9 6
Four or more times 21 15 7 4

a. Calculate gamma for these data.

b. Calculate �b for these data.

c. Calculate Somers’ d for these data.

d. Interpret each of the three measures of association. What can you
conclude about the relationship between serving on a jury and atti-
tudes about the jury system?

13.7 A researcher interested in the relationship between attitudes about
school and drug use analyzed data from a delinquency survey admin-
istered to a random sample of high school youth. The researcher was
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particularly interested in how well the youth liked school and their
use of marijuana. A cross-tabulation of responses revealed the follow-
ing distribution of cases:

Smoked Marijuana in the Last Year

Once or Three or
I Like School Never Twice More Times

Strongly agree 52 20 12
Agree 48 26 20
Disagree 31 32 33
Strongly disagree 35 45 50

a. Calculate gamma for these data.

b. Calculate �c for these data. Explain why �b is not appropriate for
these data.

c. Calculate Somers’ d for these data.

d. Interpret each of the three measures of association. What can you
conclude about the relationship between liking school and smoking
marijuana?

13.8 A public opinion poll asked respondents whether punishments for

whether their political views were liberal, moderate, or conservative. A
cross-tabulation of the responses to these two questions shows the fol-
lowing distribution of cases:

Criminal punishments should be . . .

Political
Views More Severe About the Same Less Severe

Liberal 8 54 79
Moderate 35 41 37
Conservative 66 38 12

a. Calculate gamma for these data.

b. Calculate �c for these data. Explain why �b is not appropriate for
these data.

c. Calculate Somers’ d for these data.

d. Interpret each of the three measures of association. What can you
conclude about the relationship between views about politics and
attitudes about criminal punishments?
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convicted criminals should be made more severe, made less severe,
or kept about the same. The respondents were also asked to state
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C o m p u t e r  E x e r c i s e s
Each measure of association discussed in this chapter is available with the
“Crosstabs” command (Analyze l Descriptive Statistics l Crosstabs) in SPSS
(see also the computer exercises in Chapter 9). After executing this command,
you will be presented with a window that asks for the names of the row and
column variables. In general, you move the names of the variables for which
you want to produce tables into the “Row(s)” and “Column(s)” boxes.

To obtain the measures of association discussed in this chapter, click on
the button labeled “Statistics” located at the bottom of this window. A new
window will appear that prompts you for the statistics you would like to
have calculated. Note that the measures are grouped by level of measure-
ment—nominal and ordinal. Although it is not listed under the measures of
association for nominal variables, Goodman and Kruskal’s tau is obtained by
clicking on the box next to “Lambda.” Click on the box next to the mea-
sure(s) of association that you would like to have SPSS calculate; then click
on “Continue” and “OK” to run the command.

To try this command, enter the data from Table 13.5 on race and assign-
ment to different cell blocks. Recall that you will need to enter the data from
Table 13.5 as three variables—race, cell block, and count—and that you will
need to use the “Weight cases” command. (See the computer exercises in
Chapter 9 for a review of this command.) Using the “Crosstabs” command,
move the cell-block variable name into the “Row(s)” box and the race vari-
able name into the “Column(s)” box. Click on the “Statistics” button to ob-
tain the list of association measures and then click on the boxes next to
“Lambda” and “Phi and Cramer’s V.” Click on “Continue” and “OK” to run
the command.

In the output window, you will be presented with the cross-tabulation of
the two variables, followed by two additional tables that give the various
measures of association. Note that there are three measures of lambda and
two measures of Goodman and Kruskal’s tau reported. The key to reading
the correct values for lambda and tau is to know which variable is the de-
pendent variable. Recall in the discussion of the cell-block assignment data
that we treated cell block as the dependent variable. The value reported for
lambda in the line for cell block as the dependent variable will match the
value reported in the text. The value reported for Goodman and Kruskal’s
tau in the line for cell block as the dependent variable will differ slightly
from that reported in the text because SPSS does not round the prediction
errors to the nearest integer; instead, it records prediction errors with digits
after the decimal.

1. Enter the data from Table 13.7 into SPSS. Compute the values of V,
tau, and lambda for these data. How do the values of these measures
of association compare to those reported in the text?

2. Enter the data from Table 13.13 into SPSS. Compute the values of
gamma, �c, and Somers’ d for these data. How do the values of these
measures of association compare to those reported in the text? Test
the statistical significance of each of the measures of association.

Problems
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3. Enter the data from Exercise 13.2 into SPSS. Compute the values of
phi, tau, and lambda. How do these measures of association compare
to the values that you calculated for this exercise? Test the statistical
significance of each of the measures of association.

4. Enter the data from Exercise 13.6 into SPSS. Compute the values of
gamma, �b, and Somers’ d. How do these measures of association
compare to the values that you calculated for this exercise?

5. Open the nys_1.sav

a. What is the relationship between ethnicity and grade point average?

b. What is the relationship between marijuana use among friends and
the youth’s attitudes about marijuana use?

c. What is the relationship between the importance of going to col-
lege and the importance of having a job?

d. What is the relationship between grade point average and the im-
portance of having a job?

e. What is the relationship between the youth’s sex and the impor-
tance of having friends?

f. What is the relationship between the importance of having a job
and the youth’s attitudes about having a job?

 (or nys_1_student.sav) data file into SPSS. Each 
pair of variables listed below was tested for a relationship using the chi-
square test in the computer exercises at the end of Chapter 9. For each 
pair of variables, determine the level of measurement (nominal or 
ordinal) and the dependent and the independent variables; then compute 
appropriate measures of association. Interpret each of the measures of 

ralationship between each pair of variables?

association that you have computed. Test the statistical significance of 
each of the measures of association. What can you conclude about the 

6.
tested for a relationship using the chi-square test in the computer
exercises at the end of Chapter 9. For each pair of variables, determine 
the level of measurement (nominal or ordinal) and the dependent
and the independent variables; then compute appropriate measures of
association. Interpret each of the measures of association that you have 
computed. Test the statistical significance of each of the measures of 
association. What can you conclude about the relationship between  
each pair of variables?

a. Is sex of the offender related to the method of conviction?

b. Is race-ethnicity of the offender related to whether the offender
was incarcerated or not?

c. Is method of conviction related to the type of punishment received?

d. Is the type of conviction offense related to the method of
conviction?
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Measuring Association for Interval-Level

Data: Pearson’s Correlation Coefficient

What Does a Correlation Coefficient Describe?

When Might Pearson’s r Provide Misleading Results?

C h a p t e r  f o u r t e e n

T h e  l i n e a r  c o r r e l a t i o n  c o e f f i c i e n t

T e s t i n g  f o r  s t a t i s t i c a l  s i g n i f i c a n c e

What are the Characteristics of Pearson’s r?

What are the Characteristics of Spearman’s r?

What is the Test of Statistical Significance for Pearson’s r?

What is the Test of Statistical Significance for Spearman’s r?



THIS CHAPTER INTRODUCES the linear correlation coefficient, a widely
used descriptive statistic that enables the researcher to describe the rela-
tionship between two interval-level measures. This situation is encoun-
tered often in criminal justice research. For example, researchers may
want to establish whether number of prior arrests is related to age, edu-
cation, or monthly income. Similarly, it is common in criminal justice re-
search to ask whether the severity of a sanction measured on an interval
scale (e.g., number of years sentenced to imprisonment or amount of a
fine) is related to such variables as the amount stolen in an offense or
the number of prior arrests or convictions of a defendant. We also exam-
ine an alternative rank-order measure of association that may be used
when the linear correlation coefficient will lead to misleading results.

M e a s u r i n g  A s s o c i a t i o n  
B e t w e e n  T w o  I n t e r v a l - L e v e l  V a r i a b l e s

example, that we are presented with the data in Table 14.1. Can we find a
simple way of expressing the relationship between these two variables?

For each of the 15 young offenders in our sample, we have informa-
tion regarding age and number of arrests over the last year. The mean
age of the sample overall is 17.1 years. The mean number of arrests is
4.9. These statistics describe the characteristics of our sample overall,

One way to understand this relationship is to change one of these
measures into a categorical variable. For example, we might divide the
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of examining a new statistic to describe the relationship between two 
It may not be intuitively obvious why we need to go to the trouble

interval-level measures. Why can’t we just use the means, as we did when 
we examined interval-level measures in Chapters 11 and 12? Suppose, for

but, importantly, they do not help us to understand the relationship
between age and arrests in the study.
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offenders into two groups—one consisting of offenders under age 18
and the other of offenders 18 and older. Then we could use the same
approach taken in earlier chapters and simply compare the means for
the younger and older groups, as shown in Table 14.2. On average, the
older offenders appear to have more arrests than the younger offenders
( versus ).

Similarly, we could divide arrests into categories and compare the
mean age of offenders in each category. For example, Table 14.3 divides
arrests into three categories: low number of arrests (less than 3), moder-
ate number of arrests (3–8), and high number of arrests (9 and above).
This table again shows that, on average, older offenders have more ar-
rests than younger ones. In this case, the mean age for the high-arrest

X � 2.500X � 7.571

Age and Number of Arrests over the Last Year for 15 Young Offenders

SUBJECT NUMBER OF ARRESTS AGE

1 0 14
2 1 13
3 1 15
4 2 13
5 2 14
6 3 14
7 3 17
8 4 19
9 4 21

10 6 19
11 8 16
12 9 18
13 9 20
14 10 21
15 11 22

X � 17.0667X � 4.8667

Table 14.1

Mean Numbers of Arrests for Offenders 
Under Age 18 versus Those Age 18 and Older

NUMBER OF ARRESTS NUMBER OF ARRESTS
(UNDER AGE 18) (AGE 18 AND OLDER)

0 4
1 4
1 6
2 9
2 9
3 10
3 11
8

X � 7.5714X � 2.5000

Table 14.2
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group was 20.3 and those for the moderate- and low-arrest groups were
17.7 and 13.8, respectively.

Although this approach allowed us to come to a general conclusion
regarding the relationship between age and arrests in our sample, it
forced us to convert one measure from an interval- to a nominal-level
variable. In each example, we had to take a step down the ladder of
measurement, which means that we did not use all of the information
provided by our data. This, of course, violates one of the general princi-
ples stated earlier in the text: Statistics based on more information are
generally preferred over those based on less information.

But how can we describe the relationship between two interval-level
variables without converting one to a nominal scale? A logical solution to
this dilemma is provided by a coefficient named after Karl Pearson, a
noted British statistician who died in 1936. Pearson’s r estimates the
correlation, or relationship, between two measures by comparing how
specific individuals stand relative to the mean of each measure. Pear-
son’s correlation coefficient (r) has become one of the most widely
used measures of association in the social sciences.

P e a r s o n ’ s  C o r r e l a t i o n  C o e f f i c i e n t

Pearson’s r is based on a very simple idea. If we use the mean of each
distribution as a starting point, we can then see how specific individuals
in the sample stand on each measure relative to its mean. If, in general,
people who are above average on one trait are also above average on
another, we can say that there is a generally positive relationship be-
tween the two traits. That is, being high, on average, on one trait is re-
lated to being high, on average, on the other. If, in contrast, people who
are higher, on average, on one trait tend to be low, on average, on the

Mean Ages for Offenders with Low, Moderate, 
and High Numbers of Arrests

LOW NUMBER OF ARRESTS MODERATE NUMBER OF ARRESTS HIGH NUMBER OF ARRESTS
(0–2) (3–8) (9�)

14 14 18
13 17 20
15 19 21
13 21 22
14 19

16
X � 20.2500X � 17.6667X � 13.8000

Table 14.3
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other, then we conclude that there is a negative relationship between
those traits.

To illustrate these relationships, let’s use the data presented in Table
14.1. If we put a plus next to each subject whose average age or number
of arrests is above the mean for the sample overall and a minus next to
those whose average is below the mean, a pattern begins to emerge (see
Table 14.4). When a subject is above average in number of arrests, the
subject is also generally above average in age. This is true for five of the
six subjects above average in number of arrests (subjects 10, 12, 13, 14,
and 15). Conversely, when a subject is below average in number of ar-
rests, the subject is generally below the mean age for the sample. This is
true for seven of the nine subjects below average in number of arrests
(subjects 1 through 7).

Accordingly, for this sample, subjects generally tend to stand in the
same relative position to the mean for both age and arrests. When indi-
viduals in the sample have a relatively high number of arrests, they also
tend to be relatively older. When they have fewer arrests, they tend to
be younger than average for the sample. A simple mathematical way to
express this relationship is to take the product of the signs. By doing
this, we find that for 12 of the 15 subjects, the result is a positive value
(see Table 14.4). Put simply, 12 of the cases move in the same direction
relative to the mean. The relationship observed in this case is generally
positive.

A Positive Relationship Between Age and Number 
of Arrests for 15 Young Offenders Relative to the Means

ABOVE OR ABOVE OR
NUMBER OF BELOW THE BELOW THE PRODUCT OF

SUBJECT ARRESTS MEAN? AGE MEAN? THE SIGNS

1 0 � 14 � �
2 1 � 13 � �
3 1 � 15 � �
4 2 � 13 � �
5 2 � 14 � �
6 3 � 14 � �
7 3 � 17 � �
8 4 � 19 � �
9 4 � 21 � �

10 6 � 19 � �
11 8 � 16 � �
12 9 � 18 � �
13 9 � 20 � �
14 10 � 21 � �
15 11 � 22 � �

X � 17.0667X � 4.8667

Table 14.4
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A generally negative relationship can be illustrated by reversing the
scores for arrests in Table 14.4. That is, the first subject does not have 0
arrests, but 11; the second does not have 1 arrest, but 10; and so forth. If
we now indicate each subject’s placement relative to the mean, we ob-
tain the set of relationships listed in Table 14.5. In this table, subjects
who are above average in number of arrests are generally below average
in age, and subjects who are below average in number of arrests are
generally above average in age. The products of these signs are mostly
negative. Put differently, the scores generally move in opposite direc-
tions relative to the mean. There is still a relationship between age and
number of arrests, but in this case the relationship is negative.

This is the basic logic that underlies Pearson’s r. However, we need to
take into account two additional pieces of information to develop this
correlation coefficient. The first is the values of scores. Using plus (�)
and minus (�) divides the scores into categories and thus does not take
full advantage of the information provided by interval-level measures.
Accordingly, instead of taking the product of the signs, we take the
product of the difference between the actual scores and the sample
means. This measure is termed the covariation of scores and is ex-
pressed mathematically in Equation 14.1.

Equation 14.1Covariation of scores � �
N

i�1
(X1i � X1)(X2i � X2)

A Negative Relationship Between Age and Number 
of Arrests for 15 Young Offenders Relative to the Means

ABOVE OR ABOVE OR
NUMBER OF BELOW THE BELOW THE PRODUCT OF

SUBJECT ARRESTS MEAN? AGE MEAN? THE SIGNS

1 11 � 14 � �
2 10 � 13 � �
3 9 � 15 � �
4 9 � 13 � �
5 8 � 14 � �
6 6 � 14 � �
7 4 � 17 � �
8 4 � 19 � �
9 3 � 21 � �

10 3 � 19 � �
11 2 � 16 � �
12 2 � 18 � �
13 1 � 20 � �
14 1 � 21 � �
15 0 � 22 � �

X � 17.0667X � 4.8667

Table 14.5

386



P E A R S O N ’ S C O R R E L A T I O N C O E F F I C I E N T

Table 14.6 illustrates what we gain by including the values of the
scores. We now have not only a measure of the subjects’ placement on
both variables relative to the mean—the sign of the relationship— but
also an estimate of how strongly the scores vary from the mean. In
general, for this distribution, the stronger the deviation from the mean
on one variable, the stronger the deviation on the second variable. For
example, if we look at the scores most distant in value from the mean
in terms of number of arrests over the last year, we also find the scores
most distant in terms of age. Those subjects with either zero or one ar-
rest are not just younger, on average, than other subjects; they are
among the youngest offenders overall in the sample. Similarly, those
with the most arrests (10 or 11) are also the oldest members of the
sample (ages 21 and 22).

The covariation of scores provides an important piece of information
for defining Pearson’s r. However, the size of the covariation between
two measures depends on the units of measurement used. To permit
comparison of covariation across variables with different units of
measurement, we must standardize the covariation between the two

Covariation of Number of Arrests (X1) 
and Age (X2) for 15 Young Offenders

NUMBER 
OF ARRESTS AGE

SUBJECT X1 X2

1 0 �4.8667 14 �3.0667 14.9247
2 1 �3,8667 13 �4.0667 15.7247
3 1 �3.8667 15 �2.0667 7.9913
4 2 �2.8667 13 �4.0667 11.6580
5 2 �2.8667 14 �3.0667 8.7913
6 3 �1.8667 14 �3.0667 5.7246
7 3 �1.8667 17 �0.0667 0.1245
8 4 �0.8667 19 1.9333 �1.6756
9 4 �0.8667 21 3.9333 �3.4090

10 6 1.1333 19 1.9333 2.1910
11 8 3.1333 16 �1.0667 �3.3423
12 9 4.1333 18 0.9333 3.8576
13 9 4.1333 20 2.9333 12.1242
14 10 5.1333 21 3.9333 20.1908
15 11 6.1333 22 4.9333 30.2574

�
N

i�1
(X1i � X1)(X2i � X2) � 125.1332X2 � 17.0667X1 � 4.8667

(X1i � X1)(X 2i � X 2)X 2i � X 2X1i � X1

Table 14.6
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variables according to the variability within each. This is done by taking
the square root of the product of the sums of the squared deviations
from the mean for the two variables. Pearson’s r is then the ratio be-
tween the covariation of scores and this value (see Equation 14.2). The
numerator of the equation is the covariation of the two variables. The

Equation 14.2

ables is negative (i.e., when subjects’ scores vary in opposite directions
relative to the mean). The ratio will be largest when there is a good deal
of covariation of the variables and when the variability of scores around
each mean is small. The ratio will be smallest when there is little covaria-
tion and a good deal of variability in the measures. The range of possible
values of r is between �1 and �1.

The Calculation
Calculating Pearson’s r by hand takes a good deal of work. For that rea-
son, in the future you will probably enter the data into a computer and
then use a packaged statistical program to calculate correlation coeffi-
cients. But it will help you to understand r better if we take the time to
calculate an actual example. We will use the data on number of arrests
and age presented in Table 14.1. The calculations needed for Pearson’s r
are shown in Table 14.7.

To calculate the numerator of Equation 14.2, we must first take the
simple deviation of each subject’s score from the mean number of arrests
(Table 14.7, column 3) and multiply it by the deviation of the subject’s
age from the mean age of the sample (column 6). The result, the covari-
ation between the measures, is presented in column 8. So, for the first
subject, the product of the deviations from the means is 14.9247; for the
second, it is 15.7247; and so on. The covariation for our problem,
125.1332, is gained by summing these 15 products.

To obtain the denominator of the equation, we again begin with the
deviations of subjects’ scores from the mean. However, in this case we

Pearson’s r � 
�
N

i�1
(X1i � X1)(X2i � X2)

���
N

i�1
(X1i � X1)

2���
N

i�1
(X2i � X2)

2�
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denominator of the equation standardizes this outcome according to
the square root of the product of the variability found in each of the
two distributions, again summed across all subjects.

This ratio will be positive when the covariation between the variables 
is positive (i.e., when subjects’ scores vary in the same direction relative 
to the mean). It will be negative when the covariation between the vari-
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do not multiply the two scores for each subject. Rather, we first square
the deviations from each mean (columns 4 and 7) and then sum the
squared deviations for each variable. The sum of the squared deviations
of each score from the mean number of arrests is equal to 187.7333; the
sum of the squared deviations of each score from the mean age is equal
to 138.9326. Next we take the product of those deviations, and finally we
take the square root of that product.

W orking It Out

 � 161.5001

 � �26,082.2755

 ���
N

i�1
(X1i � X1)

2���
N

i�1
(X2i � X2)

2� � �(187.7333)(138.9326)

Calculations for the Correlation of Number 
of Arrests (X1) and Age (X2) for 15 Young Offenders

NUMBER OF ARRESTS AGE

SUBJECT X1 X2

(1) (2) (3) (4) (5) (6) (7) (8)

1 0 �4.8667 23.6848 14 �3.0667 9.4046 14.9247
2 1 �3.8667 14.9514 13 �4.0667 16.5380 15.7247
3 1 �3.8667 14.9514 15 �2.0667 4.2712 7.9913
4 2 �2.8667 8.2180 13 �4.0667 16.5380 11.6580
5 2 �2.8667 8.2180 14 �3.0667 9.4046 8.7913
6 3 �1.8667 3.4846 14 �3.0667 9.4046 5.7246
7 3 �1.8667 3.4846 17 �0.0667 0.0044 0.1245
8 4 �0.8667 0.7512 19 1.9333 3.7376 �1.6756
9 4 �0.8667 0.7512 21 3.9333 15.4708 �3.4090

10 6 1.1333 1.2844 19 1.9333 3.7376 2.1910
11 8 3.1333 9.8176 16 �1.0667 1.1378 �3.3423
12 9 4.1333 17.0842 18 0.9333 0.8710 3.8576
13 9 4.1333 17.0842 20 2.9333 8.6042 12.1242
14 10 5.1333 26.3508 21 3.9333 15.4708 20.1908
15 11 6.1333 37.6174 22 4.9333 24.3374 30.2574

X2 � 17.0667X1 � 4.8667

�
N

i�1
(X1i � X1)(X2i � X2) � 125.1332�

N

i�1
(X2i � X 2)2 � 138.9326�

N

i�1
(X1i � X1)2 � 187.7333

(X1i � X1)(X 2i � X 2)(X2i � X2)2X 2i � X 2(X1i � X1)2X1i � X1

Table 14.7

This leaves us with a value of 161.5001 for the denominator of our
equation.
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Our correlation is about 0.77, meaning that the correlation between age
and number of arrests is a positive one. As number of arrests increases,
so does the average age of the offenders in our sample. But what is the
strength of this relationship? Is it large or small? As discussed in Chapter
12 when we examined the correlation coefficient eta, whether something
is large or small is in good measure a value judgment. The answer de-
pends in part on how the result compares to other research in the same
area of criminal justice. For example, if other studies produced correla-
tions that were generally much smaller, we might conclude that the rela-
tionship in our sample was a very strong one. Jacob Cohen suggests that
a correlation of 0.10 may be defined as a small relationship; a correlation
of 0.30, a moderate relationship; and a correlation of 0.50, a large rela-
tionship.1 On this yardstick, the relationship observed in our example is
a very strong one.

A Substantive Example: Crime and Unemployment in California

W orking It Out

 � 0.7748

 � 
125.1332
161.5001

 � 
125.1332

�(187.7333)(138.9326)

 Pearson’s r � 
�
N

i�1
(X1i � X1)(X2i � X2)

���
N

i�1
(X1i � X1)

2���
N

i�1
(X2i � X2)

2�

We are now ready to calculate Pearson’s r for our example. We sim-
ply take the covariation of 125.1332 and divide it by 161.5001, to get
0.7748:

1See Jacob Cohen, Statistical Power Analysis for the Behavioral Sciences (Hillsdale, NJ:

statisticians develop standardized estimates of “effect size.”
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An area of study that has received extensive attention from criminologists
is the relationship between crime rates and other social or economic
indicators, such as unemployment. An example of such data is provided
in Table 14.8, which presents the burglary rate and the unemployment

Lawrence Erlbaum, 1988), pp. 79–80. In Chapter 21, we discuss in greater detail how



Unemployment Rate and Burglary Rate 
for 58 California Counties in 1999

UNEMPLOYMENT RATE BURGLARY RATE (PER 100,000)
COUNTY (X1) (X2)

Alameda 3.5 837.89
Alpine 9.1 2,037.49
Amador 4.6 818.55
Butte 6.8 865.04
Calaveras 6.9 989.76
Colusa 15.9 520.06
Contra Costa 3.0 664.73
Del Norte 8.0 1,200.91
El Dorado 3.9 509.87
Fresno 13.4 924.10
Glenn 11.2 845.29
Humboldt 6.4 1,027.79
Imperial 23.4 1,526.40
Inyo 5.7 511.12
Kern 11.4 960.18
Kings 13.1 649.22
Lake 7.7 1,333.21
Lassen 7.0 361.24
Los Angeles 5.9 610.28
Madera 11.5 929.32
Marin 1.9 526.98
Mariposa 7.4 775.92
Mendocino 6.7 843.92
Merced 13.3 1,214.69
Modoc 8.5 325.08
Mono 6.7 957.95
Monterey 9.6 570.14
Napa 3.3 477.54
Nevada 4.1 455.37
Orange 2.6 464.52
Placer 3.2 646.12
Plumas 9.0 1,030.58
Riverside 5.4 1,049.18
Sacramento 4.2 925.61
San Benito 8.0 845.75
San Bernadino 4.8 883.02
San Diego 3.1 539.82
San Francisco 3.0 744.81
San Joaquin 8.8 896.85
San Luis Obispo 3.2 540.79
San Mateo 2.0 355.82
Santa Barbara 3.9 444.07
Santa Clara 3.0 347.57
Santa Cruz 6.3 647.73
Shasta 7.0 823.95
Sierra 9.2 699.71
Siskiyou 10.3 575.09
Solano 4.6 769.30
Sonoma 2.7 555.44
Stanislaus 10.5 1,057.99
Sutter 13.0 859.11
Tehama 6.7 816.55
Trinity 11.5 676.23
Tulare 16.5 1,047.32
Tuolumne 6.5 908.79
Ventura 4.8 491.86
Yolo 4.3 591.28
Yuba 11.6 1,366.76

Table 14.8



C H A P T E R F O U R T E E N :  I N T E R V A L - L E V E L D A T A

Calculations for the Correlation of Unemployment Rate (X1) 
and Burglary Rate (X2) for 58 California Counties

UNEMPLOYMENT RATE BURGLARY RATE

X1i X2i

3.5 15.2639 837.89 2,208.9342 �183.6216
9.1 2.8666 2,037.49 1,554,009.8148 2,110.6173
4.6 7.8787 818.55 765.0369 �77.6369
6.8 0.3683 865.04 5,498.1187 �45.0012
6.9 0.2569 989.76 39,548.9985 �100.8068

15.9 72.1327 520.06 73,349.2681 �2,300.1922
3.0 19.4208 664.73 15,916.5222 555.9776
8.0 0.3518 1,200.91 168,115.8264 243.1824
3.9 12.2983 509.87 78,972.6338 985.5115

13.4 35.9172 924.10 17,744.7176 798.3367
11.2 14.3876 845.29 2,959.2838 206.3420

6.4 1.0138 1,027.79 56,121.2783 �238.5339
23.4 255.7792 1,526.40 540,973.9304 11,763.0738

5.7 2.9135 511.12 78,271.6446 477.5406
11.4 15.9448 960.18 28,658.8671 675.9891
13.1 32.4114 649.22 20,070.5872 �806.5455

7.7 0.0859 1,333.21 294,110.2232 158.9538
7.0 0.1656 361.24 184,599.7240 174.8249
5.9 2.2707 610.28 32,620.2250 272.1623

11.5 16.7535 929.32 19,162.6711 566.6050
1.9 30.3259 526.98 69,648.8576 1,453.3298
7.4 0.0000 775.92 224.1219 0.1033
6.7 0.4997 843.92 2,812.1067 �37.4864

13.3 34.7286 1,214.69 179,605.8467 2,497.4917
8.5 1.1949 325.08 216,979.6082 �509.1777
6.7 0.4997 957.95 27,908.8097 �118.0942
9.6 4.8097 570.14 48,730.8716 �484.1284
3.3 16.8666 477.54 98,188.6612 1,286.9000
4.1 10.9356 455.37 112,574.1401 1,109.5334
2.6 23.1063 464.52 106,517.8338 1,568.8313
3.2 17.6980 646.12 20,958.5556 609.0359
9.0 2.5380 1,030.58 57,450.9605 381.8490
5.4 4.0276 1,049.18 66,713.3625 �518.3608
4.2 10.2842 925.61 18,149.2898 �432.0313
8.0 0.3518 845.75 3,009.5428 32.5371
4.8 6.7959 883.02 8,487.8079 �240.1719
3.1 18.5494 539.82 63,036.4964 1,081.3364
3.0 19.4208 744.81 2,123.4309 203.0730
8.8 1.9407 896.85 11,227.3733 147.6119
3.2 17.6980 540.79 62,550.3601 1,052.1486
2.0 29.2346 355.82 189,286.5140 2,352.3838
3.9 12.2983 444.07 120,284.5979 1,216.2655
3.0 19.4208 347.57 196,533.2430 1,953.6700
6.3 1.2252 647.73 20,494.9860 158.4646
7.0 0.1656 823.95 1,092.9173 �13.4518
9.2 3.2152 699.71 8,313.9201 �163.4961

10.3 8.3700 575.09 46,569.9421 �624.3330
4.6 7.8787 769.30 466.1583 60.6029
2.7 22.1549 555.44 55,437.0321 1,108.2429

10.5 9.5673 1,057.99 71,342.0361 826.1648
13.0 31.2828 859.11 4,653.8729 381.5574

(X1i � X1)(X 2i � X 2)(X2i � X2)2(X1i � X1)2

Table 14.9

(continued on next page)
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Table 14.9 presents the detailed calculations for the unemployment
and burglary data from California. The sum of the covariations is
37,128.9297, the sum of the squared deviations for the unemployment
rate is 1,010.3570, and the sum of the squared deviations for the bur-
glary rate is 5,659,402.5114. After inserting these values into Equation
14.2, we find that r � 0.4910. The positive correlation between the un-
employment rate and the burglary rate means that counties with higher
rates of unemployment also tended to have higher rates of burglary,
while counties with lower rates of unemployment tended to have lower
rates of burglary.

W orking It Out

 � 0.4910

 � 
37,128,9297

�(1,010.3570)(5,659,402.5114)

 r � 
�
N

i�1
(X1i � X1)(X2i � X2)

�� �
N

i�1
(X1i � X1)

2��  �
N

i�1
(X2i � X2)

2�

Calculations for the Correlation of Unemployment Rate (X1) 
and Burglary Rate (X2) for 58 California Counties (Continued)

UNEMPLOYMENT RATE BURGLARY RATE

X1i X2i

6.7 0.4997 816.55 658.3997 �18.1386
11.5 16.7535 676.23 13,147.0761 �469.3177
16.5 82.6845 1,047.32 65,755.9859 2,331.7373

6.5 0.8225 908.79 13,900.2449 �106.9229
4.8 6.7959 491.86 89,419.3595 779.5431
4.3 9.6528 591.28 39,844.4316 620.1705

11.6 17.5821 1,366.76 331,625.4507 2,414.6776

X2 � 790.8907X1 � 7.4069

�
N

i�1
 � 37,128.9297�

N

i�1
 � 5,659,402.5114�

N

i�1
 � 1,010.3570

(X1i � X1)(X 2i � X 2)(X2i � X2)2(X1i � X1)2

Table 14.9

rate for all 58 counties in California in 1999. The burglary rate represents 
the number of burglaries per 100,000 population, and the unemployment
rate represents the percentage of persons actively looking for work who
have not been able to find employment.
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Nonlinear Relationships and Pearson’s r
Pearson’s r allows us to assess the correlation between two interval-level
measures, taking into account the full amount of information that these
measures provide. However, it assesses the strength of only a linear re-
lationship. If the correlation between two variables is not linear, then
Pearson’s r will give very misleading results.

A simple way to see this is to look at scatterplots, or scatter dia-
grams, representing different types of relationships. A scatterplot posi-
tions subjects according to their scores on both variables being examined.
Figure 14.1 represents the subjects in our example concerning age and
number of arrests. The first case (age � 14, arrests � 0) is represented
by the dot with a 1 next to it. The overall relationship in this example is
basically linear and positive. That is, the dots move together in a positive
direction (as age increases, so too do arrests). A scatterplot of the data in
Table 14.5, where the highest number of arrests is found among younger
rather than older subjects, is presented in Figure 14.2. In this case, the
scatterplot shows a negative relationship (as age increases, number of ar-
rests decreases).

But what would happen if there were a curvilinear relationship be-
tween age and number of arrests? That is, what if the number of arrests
for both younger and older subjects was high, and the number for those
of average age was low? This relationship is illustrated in Figure 14.3. In

Scatterplot Showing a Positive Relationship Between Age 
and Number of Arrests for 15 SubjectsFigure 14.1
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Scatterplot Showing a Negative Relationship 
Between Age and Number of Arrests for 15 SubjectsFigure 14.2
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Scatterplot Showing a Curvilinear Relationship 
Between Age and Number of Arrests for 15 SubjectsFigure 14.3
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this scatterplot, the relationship is clear: The number of arrests declines
until age 17 and then increases. However, Pearson’s r for these data is
close to 0. If there is a relationship, why does this happen? Table 14.10
shows why. Subjects who are either much above or much below the
mean for age have large numbers of arrests. The covariance for these
subjects is accordingly very high. However, for those below the mean in
age, the covariance is negative, and for those above the mean, the co-
variance is positive. If we add these scores together, they cancel each
other out. As a result, Pearson’s r for this example is close to 0.

W orking It Out

 � 0.0066

 � 0.8668

�(123.7338)(138.9326)

 Pearson’s r � 
�
N

i�1
(X1i � X1)(X2i � X2)

���
N

i�1
(X1i � X1)

2���
N

i�1
(X2i � X2)

2�

Curvilinear Relatonship: Calculations for the Correlation 
of Number of Arrests (X1) and Age (X2) for 15 Young Offenders

NUMBER OF ARRESTS AGE

SUBJECT X1 X2

1 9 1.8667 3.4846 14 �3.0667 9.4046 �5.7246
2 11 3.8667 14.9514 13 �4.0667 16.5380 �15.7247
3 6 �1.1333 1.2844 15 �2.0667 4.2712 2.3422
4 10 2.8667 8.2180 13 �4.0667 16.5380 �11.6580
5 8 0.8667 0.7512 14 �3.0667 9.4046 �2.6579
6 7 �0.1333 0.0178 14 �3.0667 9.4046 0.4088
7 2 �5.1333 26.3508 17 �0.0667 0.0044 0.3424
8 5 �2.1333 4.5510 19 1.9333 3.7376 �4.1243
9 9 1.8667 3.4846 21 3.9333 15.4708 7.3423

10 6 �1.1333 1.2844 19 1.9333 3.7376 �2.1910
11 2 �5.1333 26.3508 16 �1.0667 1.1378 5.4757
12 4 �3.1333 9.8176 18 0.9333 0.8710 �2.9243
13 7 �0.1333 0.0178 20 2.9333 8.6042 �0.3910
14 10 2.8667 8.2180 21 3.9333 15.4708 11.2756
15 11 3.8667 14.9514 22 4.9333 24.3374 19.0756

X2 � 17.0667X1 � 7.1333

�
N

i�1
(X1i � X1)(X2i � X2)� 0.8668�

N

i�1
(X2i � X2)2 � 138.9326�

N

i�1
(X1i � X1)2 � 123.7338

(X1i � X1)(X 2i � X 2)(X2i � X2)2X 2i � X 2(X1i � X1)2X1i � X1

Table 14.10
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Pearson’s r will provide a good estimate of correlation when the
relationship between two variables is approximately linear. However,
a strong nonlinear relationship will lead to a misleading correlation
coefficient. Figure 14.4 provides examples of a number of nonlinear
relationships. These examples illustrate why it is important to look at
the scatterplot of the relationship between two interval-level measures
to establish that it is linear before calculating Pearson’s correlation
coefficient. Linear relationships are much more common in criminal
justice than nonlinear ones. But you would not want to conclude,
based on r, that there was a very small relationship between two vari-
ables when in fact there was a very strong nonlinear correlation be-
tween them.

What can you do if the relationship is nonlinear? Sometimes the so-
lution is simply to break up the distribution of scores. For example,
Figure 14.3 shows a nonlinear relationship that results in an r of 0.007.
If we break this distribution at the point where it changes direction,
we can calculate two separate Pearson’s correlation coefficients, 
each for a linear relationship. The first would provide an estimate 
of the relationship for younger offenders (which is negative), and the
second an estimate of the relationship for older offenders (which is
positive).

For some nonlinear relationships, you may want to consider using al-
ternative statistics. For example, it may be worthwhile to break up your

Examples of Nonlinear RelationshipsFigure 14.4

397



C H A P T E R F O U R T E E N :  I N T E R V A L - L E V E L D A T A

sample into a number of groups, or categories, and then look at the
means for each. In some cases, it may be possible to change the form of
the variables and, in doing so, increase the linearity of the relationship
being examined. Although such transformations are beyond the scope of
this text, you should be aware that they provide one solution to prob-
lems of nonlinearity.2

Beware of Outliers
For Pearson’s r, as for other statistics based on deviations from the mean,
outliers can have a strong impact on results. For example, suppose we
add to our study of age and number of arrests (from Table 14.1) one
subject who was very young (12) but nonetheless had an extremely large
number of arrests over the last year (25), as shown in the scatterplot in
Figure 14.5. If we take the covariation for this one relationship (see sub-

2For a discussion of this issue, see. J. Fox, Linear Statistical Models and Related Meth-
ods (New York: Wiley, 1994).

Scatterplot Showing the Relationship Between Age and Number of Arrests for 16 Subjects,
Including an OutlierFigure 14.5
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ject 16 in Table 14.11), we see that it is very large relative to that of other
subjects in our analysis. Because it is negative, it cancels out the positive
covariation produced by the other subjects in the sample. Indeed, with
this subject included, the correlation decreases from 0.77 to 0.10.

Calculations for the Correlation of Number 
of Arrests (X1) and Age (X2) for 16 Young Offenders

NUMBER OF ARRESTS AGE

SUBJECT X1 X2

1 0 �6.1250 37.5156 14 �2.7500 7.5625 16.84375
2 1 �5.1250 26.2656 13 �3.7500 14.0625 19.21875
3 1 �5.1250 26.2656 15 �1.7500 3.0625 8.96875
4 2 �4.1250 17.0156 13 �3.7500 14.0625 15.46875
5 2 �4.1250 17.0156 14 �2.7500 7.5625 11.34375
6 3 �3.1250 9.7656 14 �2.7500 7.5625 8.59375
7 3 �3.1250 9.7656 17 0.2500 0.0625 �0.78125
8 4 �2.1250 4.5156 19 2.2500 5.0625 �4.78125
9 4 �2.1250 4.5156 21 4.2500 18.0625 �9.03125

10 6 �0.1250 0.0156 19 2.2500 5.0625 �0.28125
11 8 1.8750 3.5156 16 �0.7500 0.5625 �1.40625
12 9 2.8750 8.2656 18 1.2500 1.5625 3.59375
13 9 2.8750 8.2656 20 3.2500 10.5625 9.34375
14 10 3.8750 15.0156 21 4.2500 18.0625 16.46875
15 11 4.8750 23.7656 22 5.2500 27.5625 25.59375
16 25 18.8750 356.2656 12 �4.7500 22.5625 �89.65625

� 567.7496 � 163.000 � 29.5000

�
N

i�1
(X1i � X1)(X2i � X2)�

N

i�1
(X2i � X2)2X2 � 16.7500�

N

i�1
(X1i � X1)2X1 � 6.1250

(X1i � X1)(X 2i � X 2)(X2i � X2)2X 2i � X 2(X1i � X1)2X1i � X1

Table 14.11

W orking It Out

 � 0.0970

 � 
29.5000

�(567.7496)(163)

 Pearson’s r � 
�
N

i�1
(X1i � X1)(X2i � X2)

���
N

i�1
(X1i � X1)

2���
N

i�1
(X2i � X2)

2�
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What should you do when faced with outliers? When you have just a
few deviant cases in your sample, the best decision may be to exclude
them from your analysis. If you take this approach, it is important to
clearly state that certain cases have been excluded and to explain why.
Before excluding outliers, however, you should compare the correlations
with and without them. When samples are large, deviant cases may have
a relatively small impact; thus, including them may not lead to mislead-
ing results.

When there are a relatively large number of outliers that follow the
general pattern of relationships in your data, it may be better to choose
an alternative correlation coefficient rather than exclude such cases. For
example, suppose we add to our study of age and arrests three different
subjects for whom the relationships are similar to those noted previously,
but the number of arrests and the average age are much higher (see sub-
jects 16, 17, and 18 in Table 14.12). These data are depicted in the scat-

Calculations for the Correlation of Number 
of Arrests (X1) and Age (X2) for 18 Young Offenders

NUMBER OF ARRESTS AGE

SUBJECT X1 X2

1 0 �11.2778 127.1888 14 �8.5556 73.1983 96.4883
2 1 �10.2778 105.6332 13 �9.5556 91.3095 98.2105
3 1 �10.2778 105.6332 15 �7.5556 57.0871 77.6549
4 2 �9.2778 86.0776 13 �9.5556 91.3095 88.6549
5 2 �9.2778 86.0776 14 �8.5556 73.1983 79.3771
6 3 �8.2778 68.5220 14 �8.5556 73.1983 70.8215
7 3 �8.2778 68.5220 17 �5.5556 30,8647 45.9881
8 4 �7.2778 52.9664 19 �3.5556 12.6423 25.8769
9 4 �7.2778 52.9664 21 �1.5556 2.4199 11.3213

10 6 �5.2778 27.8552 19 �3.5556 12.6423 18.7675
11 8 �3.2778 10.7440 16 �6.556 42.9759 21.4879
12 9 �2.2778 5.1884 18 �4.5556 20.7535 10.3767
13 9 �2.2778 5.1884 20 �2.5556 6.5311 5.8211
14 10 �1.2778 1.6328 21 �1.5556 2.4199 1.9877
15 11 �0.2778 0.0772 22 �0.5556 0.3087 0.1543
16 36 24.7222 611.1872 40 17.4444 304.3071 431.2639
17 40 28.7222 824.9648 50 27.4444 753.1951 788.2635
18 54 42.7222 1,825.1864 60 37.4444 1,402.0831 1,5999.7071

� 4,065.6116 � 3,050.4446 � 3,472.2214

�
N

i�1
(X1i � X1)(X2i � X2)�

N

i�1
(X2i � X2)2X2 � 22.5556�

N

i�1
(X1i � X1)2X1 � 11.2778

(X1i � X1)(X 2i � X 2)(X2i � X2)2X 2i � X 2(X1i � X1)2X1i � X1

Table 14.12
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terplot in Figure 14.6. In such situations, Pearson’s r is likely to give a
misleading view of the relationship between the two variables. For our
example, the correlation changes from 0.77 to 0.99.

Scatterplot Showing the Relationship Between Age and Number of Arrests 
for 18 Subjects, Including Three Outliers Who Follow the General Pattern

Figure 14.6
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W orking It Out

 � 0.9859

 � 
3,472.2214

�(4,065.6116)(3,050.4446)

 Pearson’s r � 
�
N

i�1
(X1i � X1)(X2i � X2)

���
N

i�1
(X1i � X1)

2���
N

i�1
(X2i � X2)

2�

In such situations, you may want to use a rank-order correlation coef-
ficient called Spearman’s r. Pearson’s r is generally more appropriate
for interval-level data. However, where a number of outliers are found in
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the distribution, Spearman’s correlation coefficient can provide a use-
ful alternative.

S p e a r m a n ’ s  C o r r e l a t i o n  C o e f f i c i e n t

Spearman’s r compares the rank order of subjects on each measure
rather than the relative position of each subject to the mean. Like Pear-
son’s r, its range of possible values is between �1 and �1. It is calcu-
lated using Equation 14.3.

Equation 14.3

Let’s calculate rs for our original example with 15 cases (from Table
14.1), and for the example with the additional three outliers (from Table
14.12). To carry out the calculation, we must first rank order the cases, as

rs � 1 � 
6�

N

i�1
D 

2
i

N  (N 

2 � 1)

Calculation of Difference in Rank (D) 
for Spearman’s r for 15 Young Offenders

NUMBER OF RANK ARRESTS RANK AGE D
SUBJECT ARRESTS Rk1 AGE Rk2 (Rk1 � Rk2) D 2

1 0 1 14 4 �3 9
2 1 2.5 13 1.5 1 1
3 1 2.5 15 6 �3.5 12.25
4 2 4.5 13 1.5 3 9
5 2 4.5 14 4 0.5 0.25
6 3 6.5 14 4 2.5 6.25
7 3 6.5 17 8 �1.5 2.25
8 4 8.5 19 10.5 �2 4
9 4 8.5 21 13.5 �5 25

10 6 10 19 10.5 �0.5 0.25
11 8 11 16 7 4 16
12 9 12.5 18 9 3.5 12.25
13 9 12.5 20 12 0.5 0.25
14 10 14 21 13.5 0.5 0.25
15 11 15 22 15 0 0

�
N

i�1
D 

2
i  � 98X2 � 17.0667X1 � 4.8667

Table 14.13
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shown in Tables 14.13 and 14.14. We then take the squared difference in
ranks for each subject on the two measures and sum it across all the
cases in our example. This value is multiplied by 6, and then divided by
N(N 2 � 1). The final figure is then subtracted from 1.

Calculation of Difference in Rank (D) 
for Spearman’s r for 18 Young Offenders

NUMBER OF RANK ARRESTS RANK AGE D
SUBJECT ARRESTS Rk1 AGE Rk2 (Rk1 � Rk2) D 2

1 0 1 14 4 �3 9
2 1 2.5 13 1.5 1 1
3 1 2.5 15 6 �3.5 12.25
4 2 4.5 13 1.5 3 9
5 2 4.5 14 4 0.5 0.25
6 3 6.5 14 4 2.5 6.25
7 3 6.5 17 8 �1.5 2.25
8 4 8.5 19 10.5 �2 4
9 4 8.5 21 13.5 �5 25

10 6 10 19 10.5 �0.5 0.25
11 8 11 16 7 4 16
12 9 12.5 18 9 3.5 12.25
13 9 12.5 20 12 0.5 0.25
14 10 14 21 13.5 0.5 0.25
15 11 15 22 15 0 0
16 36 16 40 16 0 0
17 40 17 50 17 0 0
18 54 18 60 18 0 0

�
N

i�1
D 

2
i  � 98X2 � 22.5556X1 � 11.2778

Table 14.14

W orking It Out No Outliers

 � 0.8250

 � 1 � 0.1750

 � 1 � 
588
3360

 � 1 � 
(6)(98)

(15)(224)

rs  � 1 � 
6�

N

i�1
D 

2
i

N(N 

2 � 1)
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The correlation coefficients for our two distributions (without outliers
and with outliers) are similar. In the case without the outliers, rs � 0.83;
in the case with them, rs � 0.90. The outliers here do not have as much
of an impact because Spearman’s correlation coefficient does not take
into account the actual values of the scores, but only their ranks in the
distribution. Note that the correlation coefficient obtained here for the 15
cases, rs � 0.83, is a bit larger than, although similar to, r � 0.77. Which
is the better estimate of the correlation between these two variables? In
the case without the outliers, Pearson’s r would be preferred because it
takes into account more information (order as well as value). In the case
with the outliers, however, Spearman’s r would be preferred because it
is not affected by the extreme values of the three outliers, but only by
their relative positions in the distributions.

T e s t i n g  t h e  S t a t i s t i c a l  S i g n i f i c a n c e  o f  P e a r s o n ’ s  r

As in Chapter 13, our emphasis in this chapter has been not on statistical
inference but rather on statistical description. Our concern has been to
describe the strength or nature of the relationship between two interval-
level variables. Nonetheless, it is important here, as before, to define
whether the differences observed in our samples can be inferred to the
populations from which they were drawn.

Statistical Significance of r : The Case of Age and Number of Arrests
We can use the t-distribution introduced in Chapter 10 to test for the sig-
nificance of Pearson’s r. We begin by conducting a test of statistical sig-
nificance for our example of the correlation between age and number of
arrests.

W orking It Out With Outliers

 � 0.8989

 � 1 � 0.1011

 � 1 � 
588
5814

 � 1 � 
(6)(98)

(18)(323)

 rs � 1 � 
6�

N

i�1
D 

2
i

N (N 

2 � 1)
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Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution of Y around each value of
X (must be assumed because N is not large).

Homoscedasticity.

Linearity.

Sampling Method: Independent random sampling.

Sampling Frame: Youth in one U.S. city.

Hypotheses:

H0: There is no linear relationship between age and number of arrests in
the population of young offenders (rp � 0).

H1: There is a linear relationship between age and number of arrests in
the population of young offenders (rp � 0).

The t-test for Pearson’s r assumes that the variables examined are
measured on an interval scale. In practice, researchers sometimes use
ordinal-scale measures for calculating these coefficients, particularly
when an interval-level measure is related to an ordinal-scale variable.
There is no simple answer to the question of which statistic is most ap-
propriate in such cases, and Pearson’s r is often considered a good solu-
tion. Nonetheless, you should keep in mind that Pearson’s r, like other
statistics that require an interval level of measurement, assumes that the
categories are not only ranked but also equal to one another. When
there are clear differences between the categories, the meaning of r be-
comes ambiguous. For example, suppose you were interested in the re-
lationship between amount stolen in robberies and age, where amount
stolen in robberies was measured on an ordinal scale, with the first cat-
egory as $1–50, the second as $51–200, and subsequent intervals also of
unequal size. If the real relationship between amount stolen and age
was truly linear, with every year of age related to a measured increase
in amount stolen, you would likely get a misleading correlation coeffi-
cient. In this case, an interval-scale measurement would allow you to
represent the linear relationship between amount stolen and age. The
ordinal scale we have described might mask or misrepresent that rela-
tionship. In practice, you should also be wary of using Pearson’s corre-
lation coefficient when the number of categories is small (for example,
less than 5). While r is sometimes used when the researcher wants to
represent the relationship between an ordinal-scale measure and an in-
terval-level variable, it should not be used to define the relationship be-
tween two ordinal-level measures or when nominal-scale measurement
is involved. As noted in earlier chapters, other statistics are more appro-
priate for measuring such relationships.
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Because our test of the statistical significance of r is a parametric test
of significance, we must also make assumptions regarding the popula-
tion distribution. For tests of statistical significance with r, we must
assume a normal distribution. However, in this case, it is useful to think
of this distribution in terms of the joint distribution of scores between 
X1 and X2. Assume that the scatterplot in Figure 14.7 represents the
relationship between age and number of arrests for ages 16–19 for the
population of scores. The relationship, as in our sample, is linear. Notice
how the points in the scatterplot are distributed. Suppose we put an
imaginary line through the scatter of points (shown as a real line in Fig-
ure 14.7). There is a clustering of points close to the line, in the middle

Scatterplot Showing Normal Distribution and HomoscedasticityFigure 14.7
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of the distribution. As we move away from the center of the distribution
of number of arrests for each age (represented by the imaginary line),
there are fewer points. The distribution of number of arrests for each
value of age is basically normal in form, as illustrated in the cross section
for each of the four ages examined. This imaginary population distribu-
tion meets the normality assumption of our test.

One problem in drawing conclusions about our assumptions is that
they relate to the population and not to the sample. Because the popula-
tion distribution is usually unknown, we generally cannot come to solid
conclusions regarding our assumptions about the population. In the case
of an assumption of normality, the researcher is most often aided by the
central limit theorem. When the number of cases in a sample is greater
than 30, the central limit theorem can be safely invoked. For our exam-
ple, we cannot invoke the central limit theorem. Accordingly, our test re-
sults cannot be relied on unless the assumption of a normal distribution
is true for the population to which we infer.

For our t-test, we must also assume that the variances of the joint dis-
tribution of scores are equal. In our example, this means that the spread
of number of arrests around each value of age should be about the
same. This is the assumption of homoscedasticity. To visualize this as-
sumption, it is useful to look again at the scatterplot in Figure 14.7.

We can see that for each age examined, the variance in the distribu-
tion of scores for number of arrests is about equal. That is, the spread of
the scores around our imaginary line for each value of age in this popu-
lation distribution is about equal, whether we look at the cases associ-
ated with the youngest subjects (on the left side of the scatterplot), those
associated with average-age subjects (in the middle of the scatterplot), or
those associated with the oldest offenders (on the right side of the scat-
terplot). With regard to the assumption of homoscedasticity, researchers
generally use the scatterplot of sample cases as an indication of the form
of the population distribution. As with analysis of variance, we are gen-
erally concerned with only marked violations of the homoscedasticity as-
sumption. Given the small number of cases in our sample distribution of
scores, it is very difficult to examine the assumption of homoscedasticity.
Nonetheless, if you look back at Figure 14.1, it seems reasonable to con-
clude that there are no major violations of this assumption.

What would a joint distribution of the relationship between arrests
and age look like if both the normality and the homoscedasticity as-

the points for each age category are not clustered in the center of the
distribution of scores for number of arrests. Indeed, they form a type of
bimodal distribution, with peaks above and below our imaginary line
(see the cross section for each age group). Heteroscedasticity (or un-
equal variances), rather than homoscedasticity, is also represented in
the scatterplot in Figure 14.8. For subjects aged 17 and 19, the scores
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are scattered widely. For subjects aged 16 and 18, however, the scores
are tightly clustered around the imaginary line. If this were the popula-
tion distribution of the variables under study, you would want to be very
cautious in applying the t-test to your correlation coefficient.

As with other tests of statistical significance, we assume independent
random sampling. Pearson’s correlation coefficient adds one new as-
sumption to our test—that of linearity. Our null hypothesis is simply that
there is no linear relationship between age and number of arrests, or that
the population correlation coefficient (rp) is equal to 0. The research hy-
pothesis is nondirectional; that is, we simply test for a linear relationship

Scatterplot Showing Nonnormal Distribution and HeteroscedasticityFigure 14.8
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between age and number of arrests (i.e., rp � 0). However, we might
have proposed a directional research hypothesis—for example, that
there is a positive relationship between age and number of arrests in the
population, or that rp � 0.

The Sampling Distribution The sampling distribution is t, with N � 2 de-
grees of freedom. For our example, df � 15 � 2 � 13.

Significance Level and Rejection Region With a two-tailed 0.05 signifi-
cance threshold, the critical value for the t-test (with 13 degrees of free-
dom) is 2.160 (see Appendix 4). We will reject the null hypothesis if the
t-score is greater than 2.160 or less than �2.160. In these cases, the ob-
served significance level of the test will be less than the criterion signifi-
cance level we have chosen.

The Test Statistic It is important to note that there is more than one way
to test statistical significance for r. Equation 14.4 provides a straightfor-
ward estimate of t, based on our calculation of r.

Equation 14.4

Inserting our sample estimates, we calculate that the t-statistic for r is
4.4188:

t � r �N � 2
1 � r 

2

W orking It Out

 � 4.4188

 � 0.7748�32.5256

 � 0.7748� 15 � 2
1 � (0.7748)2

 t � r �N � 2
1 � r 

2

The Decision Since 4.419 is greater than our critical value of t (2.160),
we reject the null hypothesis and conclude that there is a statistically sig-
nificant relationship between age and number of arrests. However, be-
cause we cannot strongly support the assumption of normality in this test
or relax that assumption because N is large, we cannot place strong re-
liance on our test result.
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Statistical Significance of r : 
Unemployment and Crime in California
In our analysis of unemployment and burglary rates in California coun-
ties, we found r � 0.4910. We can test the statistical significance of this
result by following the same approach we used in the previous example.
We start by outlining our assumptions and hypotheses.

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution of Y (i.e., burglary rate)
around each value of X (i.e., unemployment rate) (relaxed because N is
large).

Homoscedasticity.

Sampling Method: Independent random sampling (the 58 counties repre-
sent all counties in California in 1999).

Sampling Frame: California counties.

Linearity.3

Hypotheses:

H0: There is no linear relationship between unemployment rate and bur-
glary rate (rp � 0).
H1: There is a linear relationship between unemployment rate and bur-
glary rate (rp � 0).

might question why we would choose to conduct a statistical test of sig-
nificance. Why do we need to make inferences? We already have the
population of scores. One reason might be that we want to look at data
for the year observed as a sample of the relationships that occur over a
number of years. Similarly, we might want to use the data in California
to represent other states. For either of these inferences, we would need
to explain why this sample was representative of the population. An-
other reason we might choose to conduct a statistical test of significance
is to see whether the correlation observed is likely to be a chance occur-
rence. We would expect differences across the counties simply as a
product of the natural fluctuations that occur in statistics. A significance
test in this case can tell us whether the relationship observed is likely to
be the result of such chance fluctuations or whether it is likely to repre-
sent a real relationship between the measures examined.

3It is good practice to examine the sample scatterplot of scores to assess whether this
assumption is likely to be violated. We find no reason to suspect a violation of the as-
sumption when we examine this scatterplot (see Chapter 15, Figure 15.2).
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The Sampling Distribution The sampling distribution is t, with N � 2 de-
grees of freedom. For this example, df � 58 � 2 � 56.

Significance Level and Rejection Region With a two-tailed 0.05 signifi-
cance level and 56 degrees of freedom, interpolation yields estimates of
�2.003 and �2.003 for the critical values of the t-test.4

The Test Statistic We again use Equation 14.4 to calculate a t-value to
test the significance of r. Inserting the values for our data, we find the
value of the t-statistic to be 4.2177:

The Decision Since 4.218 is greater than our critical value of 2.003, we
reject the null hypothesis and conclude that there is a statistically sig-
nificant relationship between the unemployment rate and the burglary
rate.

T e s t i n g  t h e  S t a t i s t i c a l  S i g n i f i c a n c e  o f  S p e a r m a n ’ s  r

For Spearman’s r, we use a nonparametric statistical test. With N � 30,
we use an exact probability distribution constructed for the distribution
of differences between ranked pairs (see Appendix 7). For larger sam-
ples, a normal approximation of this test is appropriate. It is con-
structed by taking the difference between the observed value of rs and
the parameter value under the null hypothesis (rs(p)). This value is then
divided by 1 divided by the square root of N � 1, as shown in Equa-
tion 14.5.

Equation 14.5z � 
rs � rs (p)

1

�N � 1

 � 4.2177

 � 0.491�73.789165

 � 0.491� 58 � 2
1 � (0.491)2

 t � r �N � 2
1 � r 

2

4The table does not list a t-value for df � 56. We therefore interpolate from the values
of df � 55 (2.004) and df � 60 (2.000).
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Because we are examining less than 15 cases, we will use the exact
probability table presented in Appendix 7.

Assumptions:

Level of Measurement: Ordinal scale.

Population Distribution: No assumption made.

Sampling Method: Independent random sampling.

Sampling Frame: Youth in one U.S. city.

Hypotheses:

H0: There is no linear relationship between the rank order of scores in
the population (rs(p) � 0).

H1: There is a linear relationship between the rank order of scores in the
population (rs(p) � 0).

The Sampling Distribution Because N is small, we use the exact probabil-
ity distribution constructed for Spearman’s r in Appendix 7.

Significance Level and Critical Region As earlier, we use the conventional
0.05 significance threshold. Since our research hypothesis is not direc-
tional, we use a two-tailed rejection region. From Appendix 7, under a
two-tailed 0.05 probability value and an N of 15, we find that an rs

greater than or equal to 0.525 or less than or equal to �0.525 is needed
to reject the null hypothesis.

The Test Statistic In the case of the exact probability distribution, the
test statistic is simply the value of rs. As calculated earlier in this chapter

s equals 0.825.

The Decision Because the observed rs is larger than 0.525, we reject the
null hypothesis and conclude that there is a statistically significant linear
relationship between ranks of age and number of arrests in the popula-
tion. The observed significance level of our test is less than the criterion
significance level we set at the outset (p � 0.05).
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C h a p t e r  S u m m a r y

Linear correlation coefficients describe the relationship between two
interval-level measures, telling us how strongly the two are associated.
Pearson’s r is a widely used linear correlation coefficient. It examines
the placement of subjects on both variables relative to the mean and
estimates how strongly the scores move together or in opposite direc-
tions relative to the mean. The covariation, which is the numerator of
the Pearson’s r equation, is positive when both scores vary in the
same direction relative to the mean and negative when they vary in
opposite directions. Dividing the covariation by the denominator of
the Pearson’s r equation serves to standardize the coefficient so that it
varies between �1 and �1. Pearson’s r will produce a misleading cor-
relation coefficient if there is a nonlinear relationship between the
variables.

Outliers have a strong impact on Pearson’s r. If there are several out-
liers that follow the general pattern of relationships in the data, Spear-
man’s r may provide less misleading results. Spearman’s r also varies
between �1 and �1. It compares the rank order of subjects on each
measure.

The t distribution may be used to test significance for Pearson’s
correlation coefficient. It is assumed that the variables examined 
are measured on an interval scale. There is also an assumption of
normality and a requirement of homoscedasticity. These assumptions re-
late to the joint distribution of X1 and X2. The researcher must also as-
sume linearity. For Spearman’s r, a nonparametric test of statistical signif-
icance is used.

K e y  T e r m s

covariation A measure of the extent to
which two variables vary together relative
to their respective means. The covariation
between the two variables serves as the
numerator for the equation to calculate
Pearson’s r.

curvilinear relationship An association
between two variables whose values may
be represented as a curved line when plot-
ted on a scatter diagram.

heteroscedasticity A situation in which
the variances of scores on two or more
variables are not equal. Heteroscedasticity
violates one of the assumptions of the
parametric test of statistical significance for
the correlation coefficient.

linear relationship An association be-
tween two variables whose joint distribu-
tion may be represented in linear form
when plotted on a scatter diagram.
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S y m b o l s  a n d  F o r m u l a s

r Pearson’s correlation coefficient

rs Spearman’s correlation coefficient

D Difference in rank of a subject on two variables

To calculate the covariation of scores for two variables:

To calculate Pearson’s correlation coefficient:

To calculate Spearman’s correlation coefficient:

To test statistical significance for Pearson’s r :

To test statistical significance for Spearman’s r where N is large:

z � 
rs � rs (p)

1

�N � 1

t � r �N � 2
1 � r 

2

rs � 1 � 
6�

N

i�1
D 

2
i

N (N 

2 � 1)

Pearson’s r � 
�
N

i�1
(X1i � X1)(X2i � X2)

���
N

i�1
(X1i � X1)

2���
N

i�1
(X2i � X2)

2�

Covariation of scores � �
N

i�1
(X1i � X1)(X2i � X2)

Pearson’s correlation coefficient See
Pearson’s r.

Pearson’s r A commonly used measure of
association between two variables. Pear-
son’s r measures the strength and direction
of linear relationships on a standardized
scale from �1.0 to 1.0.

scatter diagram See scatterplot.

scatterplot A graph whose two axes are
defined by two variables and upon which a

point is plotted for each subject in a sam-
ple according to its score on the two vari-
ables.

Spearman’s correlation coefficient See
Spearman’s r.

Spearman’s r (rs) A measure of associa-
tion between two rank-ordered variables.
Spearman’s r measures the strength and di-
rection of linear relationships on a stan-
dardized scale between �1.0 and 1.0.

414



E X E R C I S E S

E x e r c i s e s

14.1 A researcher draws four random samples of ten offenders, aged be-
tween 30 and 35 years, all of whom are currently serving out a term of
imprisonment and all of whom have been in prison before. For each
sample, she compares the subjects on the following pairs of variables:

Sample 1 1 2 3 4 5 6 7 8 9 10

X1: Number of convictions 3 5 1 7 6 2 4 9 10 8
X2: Average sentence 2 2.5 0.5 3 3 1 2 4.5 5 3.5

Sample 2 1 2 3 4 5 6 7 8 9 10

X1: Years of education 9 12 17 16 9 14 10 17 17 9
X2: Age at first offense 14 17 14 16 10 17 16 10 12 12

Sample 3 1 2 3 4 5 6 7 8 9 10

X1: Age at first offense 13 17 10 16 14 11 18 19 15 12
X2: Number of convictions 7 3 10 4 6 9 1 1 6 8

Sample 4 1 2 3 4 5 6 7 8 9 10

X1: Age at first offense 11 16 18 12 15 17 13 20 20 13
X2: Average sentence 3 5 1.5 1 1 4 4.5 5 3 2.5

a. Calculate the mean scores of both variables for Samples 1, 2, 3, 
and 4.

b. Display the data for the four samples in four frequency distribution
tables. For each score, add a positive or negative sign to indicate
the direction in which the score differs from the mean (as done in
Tables 14.4 and 14.5). Add an extra column in which you record a
plus or a minus for the product of the two signs.

c. Draw four scatterplots, one for each sample distribution. State
whether each scatterplot shows a positive relationship, a negative
relationship, a curvilinear relationship, or no relationship between
the two variables.

d. Would you advise against using Pearson’s correlation coefficient as
a measure of association for any of the four samples? Explain your
answer.

14.2 Jeremy, a police researcher, is concerned that police officers may not be
assigned to areas where they are needed. He wishes to find out whether
there is a connection between the number of police officers assigned to
a particular block and the number of violent incidents reported on that
block during the preceding week. For ten different blocks (designated A
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through J), the number of patrolling officers assigned and the number of
prior violent incidents reported are as follows:

A B C D E F G H I J

X1: Violent incidents 7 10 3 9 8 0 4 4 2 8
X2: Officers assigned 6 9 3 10 8 1 4 5 2 7

a. Calculate the covariance for the data recorded above.

b. Calculate the value of Pearson’s r for the data recorded above.

c. On an 11th block—block K—there are no police officers patrolling,
yet in the previous week 11 violent incidents were reported there.
What effect would it have on Pearson’s r if Jeremy included block
K in his calculations?

d. How do you explain this difference?

14.3 Seven subjects of different ages are asked to complete a questionnaire
measuring attitudes about criminal behavior. Their answers are coded
into an index, with scores ranging from 1 to 15. The subjects’ scores
are as follows:

X1: Age 12 22 10 14 18 20 16
X2: Score 6 3 3 9 9 6 13

a. Calculate Pearson’s correlation coefficient for the two variables
listed above.

b. Illustrate the sample distribution on a scatterplot.

c. Divide the scatterplot into two sections, and calculate the value of
Pearson’s r for each section.

d. Explain the difference between the r values you obtained in parts a
and c.

14.4 Eight homeowners in the inner-city neighborhood of Moss Tide are
asked how long they have been living in the neighborhood and how
many times during that period their house has been burglarized. The
results for the eight subjects are listed below:

X1: Years in neighborhood 2 1.5 3.5 28 1 5 20 3

X2: Number of burglaries 2 1 5 55 0 4 10 3

a. Calculate Pearson’s r for the two variables recorded above.

b. Calculate Spearman’s r for the same data.

c. Illustrate the sample distribution on a scatterplot.

d. Which of the two correlation coefficients is more appropriate, in
your opinion, for this case? Refer to the scatterplot in explaining
your answer.
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14.5 Eleven defendants arrested for violent offenses were all required to
post bail. The judge said that the amount of bail assigned was related
to the total number of prior arrests. The results for the 11 defendants
are as follows:

X1: Number of 
prior arrests 0 3 9 13 2 7 1 4 7 20 5

X2: Amount of
bail assigned 100 500 2,500 10,000 1,000 10,000 100 7,500 5,000 100,000 4,000

a. Calculate Pearson’s r for the two variables recorded above.

b. Calculate Spearman’s r for the same data.

c. Illustrate the sample distribution on a scatterplot.

d. Which of the two correlation coefficients is more appropriate, in
your opinion, for this case? Refer to the scatterplot in explaining
your answer.

14.6 Researchers looking at age and lifetime assault victimization inter-
viewed nine adults and found the following values:

X1: Age 18 20 19 25 44 23 67 51 33

X2: Number of times
assaulted in lifetime 1 4 8 0 6 2 9 3 10

a. Calculate Pearson’s r for the two variables recorded above.

b. Calculate Spearman’s r for the same data.

c. Illustrate the sample distribution on a scatterplot.

d. Which of the two correlation coefficients is more appropriate, in
your opinion, for this case? Refer to the scatterplot in explaining
your answer.

14.7 In a study looking at the relationship between truancy and theft, a
sample of ten youth were asked how many times in the last year they
had skipped school and how many times they had stolen something
worth $20 or less. Their responses were

X1: Number of times 
skipped school 9 2 4 0 0 10 6 5 3 1

X2: Number of thefts
valued at $20 or less 25 10 13 0 2 24 31 20 1 7

a. Calculate Pearson’s r for the two variables recorded above.

b. Use a 5% level of significance and outline each of the steps re-
quired in a test of statistical significance of r.
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14.8 A study investigating the link between child poverty and property
crime rates gathered information on a random sample of 13 counties.
The values for the percentage of children under 18 living in poverty
and property crime rates (given per 100,000) are

a. Calculate Pearson’s r for the two variables recorded above.

b. Use a 5% level of significance and outline each of the steps re-
quired in a test of statistical significance of r.

C o m p u t e r  E x e r c i s e s
Obtaining Correlation Coefficients in SPSS

Both correlation coefficients discussed in this chapter—Pearson’s r and
Spearman’s r—can be obtained with the same command. The easiest way to
have SPSS compute these correlations is with the bivariate correlation com-
mand (Analyze l Correlate l Bivariate). After you execute this command,
you will be presented with a window that lists all the variables in the data
file in a box on the left and has an empty box on the right labeled “Vari-
ables.” Move the names of all the variables for which you want correlations
to the box on the right.

Just below the list of variables in the data file is a list of three correlation

The output window will present a matrix (grid) of correlations for all the
variables whose names appear in the box on the right side of the previous
window. It is much more efficient to have SPSS compute all the correlations
simultaneously, rather than select several specific pairs that you might be
most interested in seeing. You should also note that this matrix of correla-
tions is symmetric; running from the upper left to the lower right corner of
the matrix is a diagonal that is made up of 1s (the correlation of the variable
with itself ). The correlations that appear above the diagonal will be a mirror
image of the correlations that appear below the diagonal. Thus, to locate the
value of the correlation coefficient you are most interested in, you simply
find the row that corresponds to one of the variables and the column that
corresponds to the other variable. It does not matter which variable you se-
lect for the row or for the column; the correlation coefficient reported in the
matrix will be the same.

X1: Percentage of 
children living 
in poverty 10 8 43 11 27 18 15 22 17 17 20 25 35

X2: Property crime 
rate 1,000 2,000 7,000 4,000 3,000 4,500 2,100 1,600 2,700 1,400 3,200 4,800 6,300

τcoefficients that this command will compute: Pearson’s r, Kendall’s b (dis-
 cussed in Chapter 13), and Spearman’s r. The default is Pearson’s r, but sim-
ply clicking on the box located next to the other correlation coefficients will
result in their being computed. After selecting the variables and the correla-
tion coefficients, click on “OK” to run the command.
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To try out this command, enter the data on age and arrests from Table
14.1 into SPSS. Execute the bivariate correlation command, moving the two
variable names into the box on the right. Be sure that both Pearson’s r and
Spearman’s r are selected, and click on “OK” to compute the correlations.
The output window should present two tables—one for Pearson’s r and one
for Spearman’s r—that display correlations identical to those reported in 
the text.

Obtaining Scatterplots in SPSS

As noted in Chapter 3, SPSS has a wide range of graphics commands. 
One of the graphs that SPSS can produce is a scatterplot, which is ob-
tained with the “Scatter” command (Graphs l Scatter). After executing
the command, you will be presented with a window that lists four differ-
ent types of scatterplots that SPSS can produce. Select the “Simple” scat-
terplot, and then click on “Define.” The next window that appears will 
list all the variables in the data file on the left and prompt you for other
information on the right. You must enter information in the two boxes on
the right labeled “Y Axis” (the vertical axis) and “X Axis” (the horizontal
axis). Insert the names of the variables that you want to represent in the
scatterplot. If you want to add titles to the graph produced by SPSS, 
click on the “Titles” button located in the bottom of the window and 
enter that information. Click on “OK” to run the command and produce
the scatterplot.

To try out this command, use the age and arrest data from Table 14.1
again. Execute the “Scatter” command, entering the age variable in the 
“X Axis” box and the arrest variable in the “Y Axis” box. Click on “OK” 
to produce the scatterplot. The output should be very similar to 
Figure 14.1.

1. Open the caucr_ 99.sav data file. These are the data presented in

matches the value reported in the text.

b. How does the value of Pearson’s r compare to that for Spearman’s
r? What might account for this?

c. Generate a scatterplot for these data.

2. Enter the data from Exercise 14.2.

a. Compute both Pearson’s r and Spearman’s r for these data.

b. Add the extra case presented in part c of Exercise 14.2. Recompute
Pearson’s r and Spearman’s r for these data.

c. Compare your answers from parts a and b. How do you explain
this pattern?
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a. Compute Spearman’s r for these data.

Table 14.8. Compute Pearson’s r for these data and note that it

Problems
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3. Enter the data from Exercise 14.8.

a. Compute Spearman’s r for these data.

b. How does the value of Pearson’s r compare to that for Spearman’s
r? What might account for this?

c. Generate a scatterplot for these data.

4.

a. Age and number of thefts valued at less than $5 in the last year.

b. Number of times drunk and number of thefts valued at $5 to $50 in
the last year.

c. Frequency of marijuana use and number of times the youth has hit
other students in the last year.

d. Number of times the youth has hit a parent and number of thefts
valued at more than $50 in the last year.

e. Number of times the youth has been beaten up by parent and
number of times the youth has hit a teacher in the last year.

5.

Open the nys_1.sav (or nys_1_student.sav) data file into SPSS. Use a
5% level of significance and outline each of the steps required in a test 
of statistical significance for each of the following relationships:

6. Open the pcs_ 98.sav data file into SPSS. Use a 5% level of significance
and outline each of the steps required in a test of statistical significance
for each of the following relationships:

a. Age of offender and length of incarceration sentence.

b. severity of conviction offense and length of incarceration sentence.

c. Prior criminal history score and age.

d. Length of incarceration sentence and prior criminal history score.
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Exercise 4.
Generate a scatterplot for each pair of variables listed in Computer 

Exercise 6.
Generate a scatterplot for each pair of variables listed in Computer 

d. Generate a scatterplot for the 11 cases.

7.
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IN THE PREVIOUS CHAPTER, we asked how strongly two interval-level vari-
ables were correlated. In this chapter, we ask a related question that is
central to much statistical analysis in criminology and criminal justice: Can
we predict the level of one interval-level variable from the value of an-
other? As in the description of specific measures of association for nominal
and ordinal variables in Chapter 13, in regression analysis we must define
which variable is the independent variable, or predictor variable, and
which variable is the dependent variable, or the variable being predicted.
We also introduce the idea of regression modeling in this chapter. Our dis-
cussion focuses on how regression analysis is used to create a prediction
model and the statistics that researchers use to evaluate such models.

E s t i m a t i n g  t h e  I n f l u e n c e  o f  O n e  V a r i a b l e  
o n  A n o t h e r :  T h e  R e g r e s s i o n  C o e f f i c i e n t

By making only a slight change to the equation for Pearson’s correlation
coefficient, we can construct the regression coefficient b—a statistic that
estimates how much one variable influences another. As with Goodman
and Kruskal’s tau, lambda, and Somers’ d (see Chapter 13), in developing
this measure we again make a very important assumption about the rela-
tionship between the variables examined. We assume that the indepen-
dent variable (X) influences or predicts the dependent variable (Y).

The regression coefficient b asks how much impact one variable (the
independent variable) has on another (the dependent variable). It an-
swers this question not in standardized units, but in the specific units of
the variables examined. The specific interpretation of a regression coeffi-
cient will depend on the units of measurement used. Nonetheless, b has
a general interpretation in terms of X, the symbol for the independent
variable, and Y, the symbol for the dependent variable:

A change of one unit in X produces a change of b units in the estimated
value of Y.
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Let’s take a concrete example. Suppose that you are studying the rela-
tionship between education and reoffending. You assume that education
has an impact on reoffending and thus define years of education as the
independent variable, X, and number of arrests as the dependent vari-
able, Y. You calculate the regression coefficient b and find that it has a
value of �2. You can interpret this coefficient as meaning that a one-
year change (or increase) in education produces, on average, a two-unit
change—in this case, reduction—in number of rearrests. If b had been
positive, we would have concluded that a one-year increase in education
produces, on average, an increase of two arrests.

This interpretation of the regression coefficient reminds us that we are
once again concerned with linear relationships. If we say that a unit
change in X results in b units of change in Y, we are also saying that 

You can see from this example why regression analysis is such a
widely used tool in criminal justice and criminology. Contrary to what
students often fear, regression coefficients are very easy to understand
and make good intuitive sense. The regression coefficient in this case

Hypothetical Regression Line of the Relationship 
Between Number of Arrests and Years of EducationFigure 15.1
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In our example, the regression coefficient predicts that a one-year increase
in education produces a reduction of two arrests, irrespective of how 
education an offender already has. If the change is constant, then the
result is a linear relationship. This is illustrated in Figure 15.1. Importantly,
linearity is a central assumption of regression analysis. As with linear
correlation coefficients, you should always examine the scatterplot of 
the relationship between the variables to be sure that the relationship
you are estimating is a linear one.

the change produced by X is constant. By “constant” we mean that the
change produced in Y is always the same for each unit change in X.
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tells us that education reduces reoffending. It also tells us by how much.
For each year of education, there is a reduction of about two arrests.
Often, criminologists use regression coefficients to estimate how much

1

Calculating the Regression Coefficient
The calculation for the regression coefficient b (Equation 15.1) is very
similar to that for the correlation coefficient r (Equation 14.2). Once
again, the covariation between the two variables examined is in the nu-
merator, although the two variables are expressed as X and Y rather than
X1 and X2. The difference is in the denominator of the equation. Instead
of standardizing this value according to the variability found in both
measures, we now contrast the covariation of the relationship of X and Y
with the variability found only in X.

Equation 15.1 

By taking the example of age and number of arrests over the last year
from Table 14.1, we can see how a regression coefficient is calculated in
practice (see Table 15.1). Our first step, as noted above, is to examine
the scatterplot of points to make sure that the relationship we are esti-
mating is linear. This was done in Chapter 14, so we will not repeat that

(Y ). Our assumption here is that age influences the number of arrests on
an offender’s record over the previous year. As with the correlation coef-
ficient, we first calculate the covariation between age (X ) and number of
arrests (Y ), as shown in Equation 15.2.

Covariation of X and Y � Equation 15.2�
N

i�1
 (Xi � X)(Yi � Y)

b � 
�
N

i�1
 (Xi � X)(Yi � Y)

�
N

i�1
 (Xi � X)2

1Jihong Zhao and Quint Thurman, “A National Evaluation of the Effect of COPS Grants
on Crime from 1994–1999,” unpublished manuscript, University of Nebraska, Decem-
ber, 2001.
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crime-control benefit is gained from a particular strategy or from the

step here. The next step is to define X and Y. In this case, age is the inde-
pendent variable (X ), and number of arrests is the dependent variable

addition of criminal justice resources. In a report to the federal govern-
ment, for example, a group of researchers from the University of Nebraska
used regression coefficients to estimate how much each dollar spent on
additional police in the United States during the 1990s influenced crime
rates in American cities. Clearly, a statistic that can tell us how much 
change in one variable influences another can be very useful in deciding 
on criminal justice strategies or policies.
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Our result (calculated in column 6 in Table 15.1) is the same as the

simply take the sum of the squared deviations of each subject’s age from
the mean for age. The result, calculated in column 3 of Table 15.1, is
138.9326. Our regression coefficient is obtained by dividing these two
sums.

Calculations for the Regression Coefficient 
of Age and Number of Arrests for 15 Young Offenders

AGE ARRESTS

X Xi � (Xi � )2 Y Yi � (Xi � )(Yi � )
(1) (2) (3) (4) (5) (6)

14 �3.0667 9.4046 0 �4.8667 14.9247
13 �4.0667 16.5380 1 �3.8667 15.7247
15 �2.0667 4.2712 1 �3.8667 7.9913
13 �4.0667 16.5380 2 �2.8667 11.6580
14 �3.0667 9.4046 2 �2.8667 8.7913
14 �3.0667 9.4046 3 �1.8667 5.7246
17 �0.0667 0.0044 3 �1.8667 0.1245
19 1.9333 3.7376 4 �0.8667 �1.6756
21 3.9333 15.4708 4 �0.8667 �3.4090
19 1.9333 3.7376 6 1.1333 2.1910
16 �1.0667 1.1378 8 3.1333 �3.3423
18 0.9333 0.8710 9 4.1333 3.8576
20 2.9333 8.6042 9 4.1333 12.1242
21 3.9333 15.4708 10 5.1333 20.1908
22 4.9333 24.3374 11 6.1333 30.2574

� 125.1332�
N

i�1
 (Xi � X)(Yi � Y)�

N

i�1
 (Xi � X)2 � 138.9326

Y � 4.8667X � 17.0667

YXYXX

Table 15.1

W orking It Out

 � 0.9007

 � 
125.1332
138.9326

 b � 
�
N

i�1
 (Xi � X)(Yi � Y)

�
N

i�1
 (Xi � X)2

This result of 0.9007 can be interpreted as meaning that a one-year in-
crease in age produces, on average, a 0.90 increase in number of arrests.
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denominator, however, involves less work than before. In this case, we
result for the correlation coefficient: 125.1332. The calculation of the 
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A Substantive Example: Unemployment and Burglary in California
In Chapter 14, in an analysis of unemployment and burglary rates for
counties in the state of California in 1999, we reported that the correla-
tion between unemployment rates and burglary rates was r � 0.4910.
We can continue to work with these data to provide another illustration

practice in regression to start by examining a scatterplot (see Figure
15.2). Our interest is in confirming that the relationship between unem-
ployment rates and burglary rates in California counties is linear. The
scatterplot in Figure 15.2 provides no strong evidence to suggest that the
relationship is not linear.

In Table 14.9, we reported the two results needed to calculate the re-
gression coefficient b. The covariation between the unemployment rate
and the burglary rate is 37,128.9297, and the variability of the unemploy-
ment rate is 1,010.3570 (see the bottom of Table 14.9). Inserting these
values into Equation 15.1, we find that b � 36.7483.

 � 36.7483

 � 
37128.9297
1010.3570

 b � 
�
N

i�1
 (Xi � X)(Yi � Y)

�
N

i�1
 (Xi � X)2

Scatterplot of Unemployment Rates and Burglary Rates in California, 1999Figure 15.2
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relationship between unemployment rates and burglary rates, it is good
of regression analysis. While the correlation of 0.49 suggests a linear 
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This coefficient tells us that, on average, for every one-unit increase in
the unemployment rate, the burglary rate increases by about 36.75
crimes (per 100,000).

P r e d i c t i o n  i n  R e g r e s s i o n :  B u i l d i n g  t h e  R e g r e s s i o n  L i n e

The regression coefficient provides a method for estimating how
change in an independent variable influences change in a dependent
variable. However, by itself, it does not allow the researcher to predict
the actual values of the dependent variable. For example, we found in
our examination of age and number of arrests that a one-year increase
in age in our sample of young offenders was associated with a 0.9007
increase in number of arrests over the last year. Accordingly, based on
our analysis, we would predict that a 14-year-old would have about
0.9 more arrests than a 13-year-old. Someone 15 years old would be
expected to have about 1.8 more arrests over the last year than some-
one 13 years old. This is because our regression coefficient suggests

expect a county with an unemployment rate of 5.0 to have a burglary
rate that was about 36.75 (per 100,000) higher than that of a county
with an employment rate of 4.0. A county with an unemployment rate
of 6.0 would be expected to have a burglary rate that was about 36.75
(per 100,000) higher than that of the county with an unemployment
rate of 5.0.

But this still does not tell us how many arrests overall a person 13, 14,
or 15 years old would be expected to have over the last year. Nor can
we define the rate of burglary in a county with an unemployment rate of
4.0, 5.0, or 6.0. To answer these questions, we need another piece of in-
formation: a starting point from which to calculate change. That starting
point is provided by a statistic called the Y-intercept.

The Y-Intercept
The Y-intercept, or b0, is the expected value of Y when X equals 0.2 It is
calculated by taking the product of b and the mean of X, and subtracting
it from the mean of Y (Equation 15.3).

Equation 15.3b0 � Y � bX

2Note that there is no single accepted convention for representing the Y-intercept.
Some researchers use the symbol � (alpha), while others prefer to use a.
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that for each year increase in age, we can expect about 0.9 more arrests. 
Similarly, for the unemployment rate and burglary rate analysis, we would
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Let’s begin with our example of age and number of arrests. We get 
the value of b0 by first taking the product of b (0.9007) and the mean
for age (17.0667; see Table 15.1) and then subtracting that value
(15.3720) from 4.8667, the mean for arrests in the sample. The result is
�10.5053.

W orking It Out

 � �10.5053

 � 4.8667 � 15.3720

 � 4.8667 � (0.9007)(17.0667)

 b0 � Y � bX

The Regression Line
By looking at a scatterplot (see Figure 15.3), we can see how the Y-
intercept helps in developing predictions of number of arrests (Y ) from
age (X). If we put the value �10.5053 on the line where the value of age
is 0, we can then use the regression coefficient b to draw a line of pre-

Scatterplot and Regression Line Showing the Relationship 
Between Age and Number of Arrests for 15 SubjectsFigure 15.3

–10

20

0,0

10

10 20 30

Age

N
um

be
r 

of
 A

rr
es

ts

Y-intercept

428



P R E D I C T I O N I N R E G R E S S I O N

0 � 0.9007, or �10.5053 � 0.9007 � �9.6046. For 

0 � 0.9007 � 0.9007, and
so forth. By plotting these values, we can draw the regression line for
our example. This is done in Figure 15.3, which also includes the scatter-
plot of the 15 sample scores (from Table 15.1).

The predicted values of Y, designated , can also be found through a
simple equation. In this case, is equivalent to the Y-intercept plus the
regression coefficient times the value of X (Equation 15.4).

Equation 15.4

For our example, this equation may be represented as shown in Equa-
tion 15.5.

Predicted number of arrests � �10.5053 � (0.9007)(age) Equation 15.5

We now have a method for predicting the number of arrests based on
the age of subjects in our sample. For example, looking at our regression
line, we would predict that someone 13 years old would have had about
one arrest over the last year. To obtain the exact prediction, we simply
insert age 13 in Equation 15.5. The result is 1.2038:

Ŷ � b0 � bX

Ŷ
Ŷ

W orking It Out

 � 1.2038

 � �10.5053 � (0.9007)(13)

 Predicted number of arrests � �10.5053 � (0.9007)(age)

W orking It Out

 � 3.9059

 � �10.5053 � (0.9007)(16)

 Predicted number of arrests � �10.5053 � (0.9007)(age)

For someone 16 years old, we would predict about four arrests.
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us that for each increase of one year in age, there is a corresponding 
diction, called the regression line. The regression coefficient tells 

bof arrests should be  
2 years of age, the number of arrests should be b

increase of 0.9007 arrest. This means that when age is about 1, number 
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Predictions Beyond the Distribution Observed in a Sample
Are our predictions good ones? We will turn a bit later in the chapter to
methods of evaluating how well the regression line predicts or fits the
data in our sample. Nonetheless, at this point it is useful to look at Fig-
ure 15.3 and evaluate on your own how well we have done. I think you
will agree that we have done a fairly good job of drawing a line through
the data points in our sample. For the most part, the points are close to
the line, meaning that our prediction of number of arrests based on age
of the offender is fairly close to the actual scores in our sample. But what
about predicting beyond our sample scores? Can we use our regression
line to predict number of arrests for those 30 or 40 years old? What about
for offenders younger than 13?

This approach should be used with caution. In order to predict be-
yond the data points in your sample, you must assume that the relation-
ships are similar for offenders your study has not examined. As is always
the case when you try to make inferences beyond your sampling frame,

example, we would have to explain why we think that the relationship

3

W orking It Out

 � 7.5087

 � �10.5053 � (0.9007)(20)

 Predicted number of arrests � �10.5053 � (0.9007)(age)

For someone 20 years old, we would predict between seven and eight
arrests.

3For a discussion of the relationship between age and crime, see David F. Farrington,
“Age and Crime,” in Crime and Justice: An Annual Review of Research, Vol. 7
(Chicago: University of Chicago Press, 1986), pp. 189–250.
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your conclusions cannot be justified directly from the statistics you develop.
You must explain why you expect the relationships observed to con-
tinue for populations that have not been represented. In our case, for

between age and number of arrests continues for both older and youn-
ger offenders. What we know about offending in criminology suggests
that this approach would not be a good one to use for older offenders.
A number of studies have shown that offending rates often decrease
as offenders get older. Certainly our predictions of number of arrests
for those younger than age 12 are to be viewed with caution. Our
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regression line predicts negative values of arrests for these young offend-
ers. This example illustrates a very important limitation of regression
analysis. You should be very cautious about predicting beyond the distri-
bution observed in your sample. As a general rule, regression can pro-
vide good estimates of predictions for the range of offenders represented
by the data; however, it often does not provide a solid basis for predic-
tions beyond that range.

Predicting Burglary Rates from Unemployment Rates in California
What would our prediction model look like for the case of the unemploy-
ment rate and burglary rate data from counties in California? First, we
need to define the Y-intercept by using Equation 15.3. The value of b is
36.7483, the mean unemployment rate is 7.4069, and the mean burglary
rate is 790.8907 (see Table 14.9). The Y-intercept has a value of 518.6997.

W orking It Out

 � 518.6997

 � 790.8907 � (36.7483)(7.4069)

 b0 � Y � bX

Once we know the Y-intercept, we can develop the regression line. For
our unemployment and burglary example, we write the regression equa-
tion as shown in Equation 15.6.

Burglary rate � 518.6997 � 36.7483(unemployment rate) Equation 15.6

Equation 15.6 can be used to calculate the predicted value of the bur-
glary rate, given a value for the unemployment rate. For example, if a
county had an unemployment rate of 2.5, we would predict from our
model that the burglary rate would be about 610.57.

W orking It Out

 � 610.5705

 � 518.6997 � (36.7483)(2.5)

 Burglary rate � 518.6997 � 36.7483(unemployment rate)
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For a county with an unemployment rate of 4.2, we would predict a bur-
glary rate of about 673.04.

W orking It Out

 � 673.0426

 � 518.6997 � (36.7483)(4.2)

 Burglary rate � 518.6997 � 36.7483(unemployment rate)

And for a county that had an unemployment rate of 7.5, we would pre-
dict a burglary rate of about 794.31.

W orking It Out

 � 794.3120

 � 518.6997 � (36.7483)(7.5)

 Burglary rate � 518.6997 � 36.7483(unemployment rate)

How well our regression line fits the data is illustrated in Figure 15.4,
which presents the regression line in the scatterplot of the data. Overall,
it looks as though the regression line captures the relationship between
unemployment rates and burglary rates reasonably well—the values for
burglary rate tend to cluster near the regression line.

Scatterplot and Regression Line Showing the Relationship Between 
Unemployment Rate and Burglary Rate for California Counties, 1999Figure 15.4
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Choosing the Best Line of Prediction Based on Regression Error
One question we might ask is whether the regression line we identify is
the best one that could be drawn, given the data available to us. In order
to answer this question, we must first decide on the criteria that we will
use for defining the best line. In regression, as in many of the statistical
techniques we have examined, we use the criterion of minimizing error.

Regression error (e) is defined as the difference between the actual
values of Y and the predicted values of Y, or , as shown in Equation 15.7.

Equation 15.7

In Table 15.2, the actual values of Y and the predicted values ( ) are

predicted value for arrests based on our regression equation is 6.6080,
so the error in this case is �2.6080. In other words, the actual value of
Y is made up of both our prediction and some amount of error. The
equation form of this relationship gives the basic regression model for
our example. This model may be expressed either in terms of a theoret-
ical model describing the relationships in the population or in terms of
the observed relationships found in our sample. For a population

Y � �0 � �(age) � �

Ŷ

e � Y � Ŷ

Ŷ

Contrast of the Predicted Values 
for Y, or , and the Actual Values for Y

NUMBER OF
AGE ARRESTS

SUBJECT X Y Yi �

1 14 0 2.1046 �2.1046
2 13 1 1.2039 �0.2039
3 15 1 3.0053 �2.0053
4 13 2 1.2039 0.7961
5 14 2 2.1046 �0.1046
6 14 3 2.1046 0.8954
7 17 3 4.8066 �1.8066
8 19 4 6.6080 �2.6080
9 21 4 8.4093 �4.4093

10 19 6 6.6080 �0.6080
11 16 8 3.9060 4.0940
12 18 9 5.7073 3.2927
13 20 9 7.5086 1.4914
14 21 10 8.4093 1.5907
15 22 11 9.3100 1.6900

�
N

i�1
 (Yi �Ŷi ) � 0.0000

ŶiŶ

ŶTable 15.2
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arrests. Subject 8, for example, had four arrests over the last year. The
contrasted for the 15 subjects in our example of age and number of 

model, we use Greek letters to represent the parameters. So for our 
example, the population model would be
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As we see from Table 15.2, this subject’s actual value for Y is also 1 ar-
rest over the last year.

In using error as a criterion for choosing the best line, we are forced
to base our decision not on the sum of errors in our equation, but on the
sum of the squared errors. This is because the deviations above and
below the regression line cancel each other out (see Table 15.2). In re-
gression, as in deviations from the mean, the sum of the deviations of 
from Y are always equal to 0.

Squaring the deviations of from Y provides estimates with only pos-
itive signs and allows us to assess the amount of error found. The regres-
sion line we have constructed is the best line in terms of the criteria of
squared deviations of from Y. In mathematical language, the regression
line is the line for which the sum of the squared errors is a minimum
(Equation 15.8).

Equation 15.8

For this reason, we call this approach ordinary least squares regres-
sion analysis, or OLS regression. We hope you remember that we first
introduced the concept of the least squares property when we discussed
the mean in Chapter 4. As is often the case in statistics, ideas learned early
on continue to be important in understanding more complex statistics.

�
N

i�1
 (Yi � Ŷ )2 � minimum

Ŷ

Ŷ

Ŷ

W orking It Out

 � 1

 � �10.5053 � 13.5105 � (�2.0053)

 � �10.5053 � 0.9007(15) � (�2.0053)

 Y � b0 � b(age) � e

The model for the example would be expressed as

Y � b0 � b(age) � e

By looking at one of our 15 subjects, we can see this relationship in
practice. Subject 3’s age is 15. The difference between the predicted
value for arrests and the actual number of arrests, or the error (e), for
Subject 3 is �2.0053. If we add the Y-intercept, the subject’s age times
the coefficient b, and the error, we obtain a value of 1.
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E v a l u a t i n g  t h e  R e g r e s s i o n  M o d e l

Having noted that OLS regression provides the best line in terms of the
least squares criteria for error, we may still ask how well this line pre-
dicts the dependent variable. Does the regression model add to our abil-
ity to predict number of arrests in our sample? Researchers commonly
use a measure called the percent of variance explained to answer this
question.

Percent of Variance Explained
The percent of variance explained, or R2, in regression is analogous to
eta squared in analysis of variance. With eta squared, we examine the
proportion of the total sum of squares accounted for by the between (or
explained) sum of squares. In the case of regression, the explained sum
of squares (ESS) is calculated from the difference between the predicted
value of Y, or , and the mean of Y, or : ( i � )2. The total sum of
squares (TSS) is represented by the difference between Y and the mean of
Y: (Yi � )2. R 2 for regression, like eta squared for analysis of variance, is
the ratio of the explained to the total sum of squares (Equation 15.9).

Equation 15.9

Why do we define the explained and total sums of squares in terms
of the mean? If we did not have our regression model, but had only the
raw data in our sample, our best single prediction of Y would be the
mean of Y. The question answered by R 2 is “How much additional

)
).

The explained deviation thus represents the improvement in predicting
Y that the regression line provides over the mean.

To calculate the explained sum of squares for our example, we sim-
ply take the difference between the predicted score for arrests and the
mean for arrests, square that value, and sum the outcomes across the 15
subjects. This is done in column 5 of Table 15.3, where our final result is
112.7041. For the total sum of squares, we subtract the mean of arrests
for the sample from each subject’s actual number of arrests. This value is

Y

ˆ

R 

2 � ESS
TSS

 � 
�
N

i�1
 (Ŷi � Y )2

�
N

i�1
 (Yi � Y )2

Y

YŶYŶ
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knowledge have we gained by developing the regression line?” This is 
illustrated in Figure 15.5, where we take one subject from our analysis 
of the effect of age on number of arrests, Subject 13, and plot that subject’s

. The distance from the mean of Y to the explained deviation, (Y � Y
actual score for the subject is the total deviation from the mean, (Y �

between the predicted value of Y and the mean of Y represents the
score relative to the regression line and the mean of Y. The distance 

i

i
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squared, and the 15 outcomes are added together (see Table 15.3, col-
umn 7). The total sum of squares for our example is 187.7333.

To obtain the percent of variance explained, or R 2, we take the ratio
of these two values. The percent of variance explained beyond the mean
in our regression model is 0.60.4

The Explained, Unexplained, and Total Deviations 
from the Mean for Subject 13 (Age � 20; Arrests � 9)Figure 15.5
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4In the case of multivariate regression analysis (described in detail in Chapter 16),
where there are multiple independent variables, some statisticians advise using an
adjusted measure of R2. Commonly referred to as adjusted R2, it is routinely provided
by most statistical software programs. Adjusted R2 is calculated using the following
formula:

Adjusted R2 � 1 � (1 � R2)

where k equals the number of independent variables and N is the number of observa-
tions in the sample.

Adjused R2 can prevent a misleading interpretation of the strength of prediction of a
model, because it offsets the artificial inflation in the statistic that is created with every
additional variable added to a regression model. Nonetheless, the adjustment repre-
sents a transformation of the R2 value and thus alters the simple meaning of the statis-
tic. We do not advise using the adjusted R2 value unless it differs substantially from
the simple R2 value.

� N � 1
N � k � 1�
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Is an R 2 of 0.6003 large or small? As noted in earlier chapters, deter-
mining whether a relationship is large or small inevitably involves a
value judgment. In deciding on the strength of your prediction, you
would likely compare your results to those of other research on the
same or related topics. As a general rule in criminal justice, regression
models seldom result in R 2 values greater than 0.40. If your R 2 is larger
than 0.40, you can usually assume that your prediction model is a pow-
erful one. The percent of variance explained in our model accordingly
suggests a very high level of prediction. Conversely, when the percent of
variance explained is less than 0.15 or 0.20, the model is likely to be
viewed as relatively weak in terms of prediction.

W orking It Out

 � 0.6003

 � 
112.7041
187.7333

 R 

2 � ESS
TSS

 � 
�
N

i�1
 (Ŷi � Y )2

�
N

i�1
 (Yi � Y )2

Calculations for R2 Values for 15 Young Offenders

X Y i � ( i � )2 Yi � (Yi � )2

(1) (2) (3) (4) (5) (6) (7)

14 0 2.1046 �2.7621 7.6292 �4.8667 23.6848
13 1 1.2039 �3.6628 13.4158 �3.8667 14.9514
15 1 3.0053 �1.8614 3.4649 �3.8667 14.9514
13 2 1.2039 �3.6628 13.4158 �2.8667 8.2180
14 2 2.1046 �2.7621 7.6292 �2.8667 8.2180
14 3 2.1046 �2.7621 7.6292 �1.8667 3.4846
17 3 4.8066 �0.0601 0.0036 �1.8667 3.4846
19 4 6.6080 1.7413 3.0320 �0.8667 0.7512
21 4 8.4093 3.5426 12.5501 �0.8667 0.7512
19 6 6.6080 1.7413 3.0320 1.1333 1.2844
16 8 3.9060 �0.9607 0.9230 3.1333 9.8176
18 9 5.7073 0.8406 0.7066 4.1333 17.0842
20 9 7.5086 2.6419 6.9798 4.1333 17.0842
21 10 8.4093 3.5426 12.5501 5.1333 26.3508
22 11 9.3100 4.4433 19.7427 6.1333 37.6174

� 17.0667 � 112.7041 � 187.7333�
N

i�1
 (Yi � Y )2�

N

i�1
 (Ŷi � Y )2X

YYYŶYŶŶ

Table 15.3
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Percent of Variance Explained: 
Unemployment Rates and Burglary Rates in California
Returning to our example of unemployment rates and burglary rates, we
can similarly examine how well unemployment rates help to explain
burglary rates in California counties. The two key pieces of information
we need are the explained sum of squares and the total sum of squares.
The first column of Table 15.4 presents the burglary rates, and the sec-
ond column presents the predicted value of the burglary rate for each
county. The third and fourth columns present the calculations to obtain
the explained sum of squares. Column 3 displays the difference be-
tween the predicted value of the burglary rate ( ) and the mean of the
burglary rate ( ), while column 4 presents the squared difference be-
tween the predicted value and the mean. The explained sum of squares,
which has a value of 1,364,425.7358 (see the bottom of column 4), is
the sum of the squared differences between the predicted value of the
burglary rate and the mean of the burglary rate. The calculations for the
total sum of squares are presented in columns 5 and 6. The fifth column
represents the difference between the observed burglary rate (Yi ) and
the mean of the burglary rate ( ), while the sixth column contains the
squared differences between the observed burglary rate and the mean
of the burglary rate. The total sum of squares, which has a value of
5,659,404.5114 (located at the bottom of column 6), is the sum of the
squared differences between the observed burglary rate and the mean
of the burglary rate.

To obtain the value of R 2, we again use Equation 15.9, inserting our
values for the explained and total sums of squares.

Y

Y
Ŷi

W orking It Out

 � 0.2411

 � 
1,364,425.7358

5,659,404.5114

 R 

2 � ESS
TSS

 � 
�
N

i�1
 (Ŷi � Y  )2

�
N

i�1
 (Yi � Y )2

Our R 2 of 0.2411 indicates that about 24% of the variance in bur-
glary rates in California counties is explained by the unemployment
rate.
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Calculations for R2 Values for Unemployment 
Rates and Burglary Rates in California Counties

Y i � ( i � )2 Yi � (Yi � )2

(1) (2) (3) (4) (5) (6)

837.89 647.3188 �143.5720 20,612.9048 46.9993 2,208.9342
2,037.49 853.1092 62.2185 3,871.1455 1,246.5993 1,554,009.8148

818.55 687.7419 �103.1488 10,639.6791 27.6593 765.0369
865.04 768.5881 �22.3026 497.4042 74.1493 5,498.1187
989.76 772.2630 �18.6277 346.9923 198.8693 39,548.9985
520.06 1,102.9977 312.1070 97,410.7607 �270.8307 73,349.2681
664.73 628.9446 �161.9461 26,226.5393 �126.1607 15,916.5222

1,200.91 812.6861 21.7954 475.0395 410.0193 168,115.8264
509.87 662.0181 �128.8726 16,608.1548 �281.0207 78,972.6338
924.10 1,011.1269 220.2362 48,503.9926 133.2093 17,744.7176
845.29 930.2807 139.3900 19,429.5609 54.3993 2,959.2838

1,027.79 753.8888 �37.0019 1,369.1391 236.8993 56,121.2783
1,526.40 1,378.6099 587.7192 345,413.8816 735.5093 540,973.9304

511.12 728.1650 �62.7257 3,934.5122 �279.7707 78,271.6446
960.18 937.6303 146.7396 21,532.5161 169.2893 28,658.8671
649.22 1,000.1024 209.2117 43,769.5480 �141.6707 20,070.5872

1,333.21 801.6616 10.7709 116.0125 542.3193 294,110.2232
361.24 775.9378 �14.9529 223.5892 �429.6507 184,599.7240
610.28 735.5147 �55.3760 3,066.5047 �180.6107 32,620.2250
929.32 941.3052 150.4145 22,624.5068 138.4293 19,162.6711
526.98 588.5215 �202.3692 40,953.3053 �263.9107 69,648.8576
775.92 790.6371 �0.2536 0.0643 �14.9707 224.1219
843.92 764.9133 �25.9774 674.8248 53.0293 2,812.1067

1,214.69 1,007.4521 216.5614 46,898.8356 423.7993 179,605.8467
325.08 831.0603 40.1695 1,613.5927 �465.8107 216,979.6082
957.95 764.9133 �25.9774 674.8248 167.0593 27,908.8097
570.14 871.4834 80.5927 6,495.1801 �220.7507 48,730.8716
477.54 639.9691 �150.9216 22,777.3324 �313.3507 98,188.6612
455.37 669.3677 �121.5230 14,767.8322 �335.5207 112,574.1401
464.52 614.2453 �176.6454 31,203.6044 �326.3707 106,517.8338
646.12 636.2943 �154.5964 23,900.0593 �144.7707 20,958.5556

1,030.58 849.4344 58.5437 3,427.3648 239.6893 57,450.9605
1,049.18 717.1405 �73.7502 5,439.0891 258.2893 66,713.3625

925.61 673.0426 �117.8481 13,888.1841 134.7193 18,149.2898
845.75 812.6861 21.7954 475.0395 54.8593 3,009.5428
883.02 695.0915 �95.7992 9,177.4791 92.1293 8,487.8079
539.82 632.6194 �158.2713 25,049.7949 �251.0707 63,036.4964
744.81 628.9446 �161.9461 26,226.5393 �46.0807 2,123.4309
896.85 842.0847 51.1940 2,620.8297 105.9593 11,227.3733
540.79 636.2943 �154.5964 23,900.0593 �250.1007 62,550.3601
355.82 592.1963 �198.6944 39,479.4646 �435.0707 189,286.5140
444.07 662.0181 �128.8726 16,608.1548 �346.8207 120,284.5979
347.57 628.9446 �161.9461 26,226.5393 �443.3207 196,533.2430
647.73 750.2140 �40.6767 1,654.5947 �143.1607 20,494.9860
823.95 775.9378 �14.9529 223.5892 33.0593 1,092.9173
699.71 856.7841 65.8934 4,341.9349 �91.1807 8,313.9201
575.09 897.2072 106.3165 11,303.1960 �215.8007 46,569.9421
769.30 687.7419 �103.1488 10,639.6791 �21.5907 466.1583
555.44 617.9201 �172.9706 29,918.8250 �235.4507 55,437.0321

1,057.99 904.5569 113.6661 12,919.9937 267.0993 71,342.0361
859.11 996.4276 205.5369 42,245.4173 68.2193 4,653.8729
816.55 764.9133 �25.9774 674.8248 25.6593 658.3997
676.23 941.3052 150.4145 22,624.5068 �114.6607 13,147.0761

1,047.32 1,125.0467 334.1560 111,660.1989 256.4293 65,755.9859
908.79 757.5637 �33.3270 1,110.6923 117.8993 13,900.2449
491.86 695.0915 �95.7992 9,177.4791 �299.0307 89,419.3595
591.28 676.7174 �114.1733 13,035.5447 �199.6107 39,844.4316

1,366.76 944.9800 154.0893 23,743.5062 575.8693 331,625.4507

� 1,364,425.7358 � 5,659,404.5114�
N

i�1
 (Yi � Y )2�

N

i�1
 (Ŷi � Y )2

YYYŶYŶŶ

Table 15.4
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Statistical Significance of the Regression Coefficient: 
The Case of Age and Number of Arrests
In assessing the statistical significance of the regression coefficient, we
once again use the t distribution, introduced in Chapter 10.

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution of Y around each value of
X (must be assumed because N is not large).

Homoscedasticity.

Linearity.

Sampling Method: Independent random sampling.

Sampling Frame: Youth in one U.S. city.

Hypotheses:

H0: Age does not predict the number of arrests over the last year in the
population of young offenders ( � � 0).

H1: Age does predict the number of arrests over the last year in the pop-
ulation of young offenders ( � � 0).

To test the significance of a regression coefficient, we assume that
both variables are measured at the interval level. Because this is a para-
metric test of significance, we must also make assumptions regarding
the population distribution. For tests of statistical significance with b,
we must assume that for each value of X the scores of Y are normally
distributed around the regression line. We must also assume that the
variances of the distribution of Y scores around each value of X are
equal. This is the assumption of homoscedasticity, described in Chapter
14. Researchers generally rely on the central limit theorem to relax as-
sumptions of normality. As with analysis of variance and correlation,

To visualize these assumptions in the case of regression, it is once
again useful to look at a scatterplot. Suppose Figure 15.6 represents the
scatterplot of the population of scores for age and number of arrests in

joint distribution between X and Y that both is normal in form and meets
the assumption of homoscedasticity. But here, our imaginary line is actu-
ally the regression line. When we examine points above and below the
regression line, we see that there is a clustering of points close to the

440

we are generally concerned only with marked violations of the homos-
cedasticity assumption.

assumptions in terms of the correlation coefficient, this figure illustrates a
the city examined. Like Figure 14.7, which we used to examine these 

line. Farther from the line, there are fewer points. This distribution is 
basically normal in that the scores of Y for every value of X form a bell
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shape that is highest on the regression line and then slopes down in nor-
mal form away from the line. This is illustrated in the cross section for
each age group.

Also, the points around the regression line have about equal variances
(homoscedasticity). That is, the spread of the Y scores around each X in
this distribution is about equal, whether we look at the cases associated
with the youngest subjects (on the left side of the scatterplot), those asso-
ciated with average-age subjects (in the middle of the scatterplot), or those
associated with the oldest offenders (on the right side of the scatterplot).

Scatterplot Showing Normal Distribution and HomoscedasticityFigure 15.6
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In contrast, the scatterplot in Figure 15.7 shows a case that violates—
rather than meets—the assumptions for our t-test. In this scatterplot, the
points are not normally distributed around the regression line. Indeed,
they form a type of bimodal distribution with peaks above and below
the regression line (see the cross section for each age group). As
discussed in Chapter 14, heteroscedasticity refers to unequal variances
around the regression line. The scatterplot in Figure 15.7 also shows a
distribution with unequal variances. For subjects aged 17 and 19, the
scores of Y are scattered widely around the regression line. For subjects

Scatterplot Showing Nonnormal Distribution and HeteroscedasticityFigure 15.7
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aged 16 and 18, however, the scores of Y are tightly clustered around
the regression line.

In our example, we have only 15 cases, and thus we cannot invoke
the central limit theorem. As in the case of Pearson’s correlation coeffi-
cient, we recommend that the N of cases be at least 30 before this is

We also must assume linearity, which we examined in our scatterplot
of the relationship between age and number of arrests . Finally, our null
hypothesis is that age does not influence number of arrests over the last
year for the population of young offenders from which our sample was
drawn ( � � 0). Our research hypothesis is that age does influence num-
ber of arrests in that population ( � � 0).

The Sampling Distribution The sampling distribution is t, with N � 2 de-
grees of freedom. For our example, df � 15 � 2 � 13.

Significance Level and Rejection Region With a two-tailed 0.05 signifi-
cance threshold, the critical value for the t-test (with 13 degrees of free-
dom) is 2.160 (see Appendix 4). We will reject the null hypothesis if the
t-score is greater than 2.160 or less than �2.160.

The Test Statistic The t-test for the significance of the regression coeffi-
cient is performed by taking the difference between the observed value
of b and the hypothesized value � and then dividing that result by the
standard error of b, or . The formula for the t-statistic is shown in
Equation 15.10.

Equation 15.10

where b is the estimated regression coefficient, � is the hypothesized
population value, and is the standard error of b. In practice, this for-
mula can simply be written as b divided by the standard error of b, since
the null hypothesis for � ordinarily is that it is equal to 0.

�̂b

t � 
b � �

�̂b

�̂b
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done. Accordingly, our test results cannot be relied on unless the assump-
tion of a normal distribution of Y around each value of X is true for the
population to which we infer. Of course, we cannot make this assump-

indication of the form of the population distribution. Based on the scat- 
terplot shown in Figure 14.1, we concluded earlier that there was not
evidence of serious violations of this assumption.

tion without some prior knowledge of the population distribution of 
scores. With regard to the assumption of homoscedasticity, as we noted in 
Chapter 14, researchers generally use the scatterplot of sample cases as an 
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To determine the standard error of b in a bivariate regression
model (one with one dependent and one independent variable), we use
Equation 15.11.5

Equation 15.11

i

Table 15.5 presents the values for age and number of arrests for 15 of-
fenders and illustrates the calculations necessary for obtaining the standard
error of b. In the fourth column, we have calculated the difference between
the observed value for number of arrests (Yi ) and the predicted value ( ).Ŷi

ˆ
i

�̂b � ��
N

i�1
 (Yi � Ŷi )

2/(N � 2)

�
N

i�1
 (Xi � X  )2

Calculations for the Standard Error of b for Age 
and Number of Arrests for 15 Young Offenders

X Y Yi � i (Yi � i)2 Xi � (Xi � )2

(1) (2) (3) (4) (5) (6) (7)

14 0 2.1046 �2.1046 4.4294 �3.0667 9.4046
13 1 1.2039 �0.2039 0.0416 �4.0667 16.5380
15 1 3.0053 �2.0053 4.0211 �2.0667 4.2712
13 2 1.2039 0.7961 0.6337 �4.0667 16.5380
14 2 2.1046 �0.1046 0.0109 �3.0667 9.4046
14 3 2.1046 0.8954 0.8017 �3.0667 9.4046
17 3 4.8066 �1.8066 3.2639 �0.0667 0.0044
19 4 6.6080 �2.6080 6.8015 1.9333 3.7376
21 4 8.4093 �4.4093 19.4420 3.9333 15.4708
19 6 6.6080 �0.6080 0.3696 1.9333 3.7376
16 8 3.9060 4.0940 16.7612 �1.0667 1.1378
18 9 5.7073 3.2927 10.8419 0.9333 0.8710
20 9 7.5086 1.4914 2.2242 2.9333 8.6042
21 10 8.4093 1.5907 2.5303 3.9333 15.4708
22 11 9.3100 1.6900 2.8562 4.9333 24.3374

� 17.0667 � 75.0293 � 138.9326�
N

i�1
 (Xi � X )2�

N

i�1
 (Yi � Ŷi)2X

XXŶŶŶ

Table 15.5

5It is important to note that this equation for the standard error of b is appropriate
only if we have a bivariate regression model. If we have two or more independent
variables, then a modified equation is necessary to calculate the standard error of the
regression coefficients.
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the observed value of the dependent variable (Y ) and the predicted
value of the dependent variable (Y ) divided by the number of observa-
tions (N) minus 2. The denominator is the measure of variability for
the independent variable, X.

The numerator represents the sum of the squared differences between
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Once we have calculated the standard error of b, we can return to Equa-
tion 15.10 and calculate a t-score for b to obtain our test statistic. The test
statistic is 4.4195 for our example.6

W orking It Out

 � 0.2038

 � �75.0293/(15 � 2)
138.9326

 �̂b � ��
N

i �1
 (Yi � Yi

ˆ )2/(N � 2)

�
N

i �1
 (Xi � X )2

Column 5 shows the squares of the differences, which are then summed at

i

value (

appear in column 7. The sum of the squared deviations between age and
mean age is 138.9326 (see the bottom of column 7). We insert these values
into Equation 15.11 to calculate the standard error for b, which has a value
of 0.2038.

Ŷi

W orking It Out

 � 4.4195

 � 
0.9007
0.2038

 t � 
b � �

�̂b

6Except for rounding error, this result is the same as the one we obtained in testing
the significance of the correlation coefficient for this relationship (4.4195 vs. 4.4188).
In practice, you could use the correlation coefficient significance test result for defin-
ing the statistical significance of the regression coefficient. Indeed, in many texts only
one formula is provided for both coefficients.
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the bottom of the column. We find the sum of the squared deviations bet-
ween the observed value for number of arrests (Y ) and the predicted

appear in column 6, while the squared deviations between age and mean age
) to be 75.0293. The deviations between age and mean age 
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The Decision As 4.4195 is greater than our critical value of t (2.160), we
reject the null hypothesis that age does not predict number of arrests.
We conclude that there is a statistically significant relationship between
age and number of arrests in the population of young offenders. How-
ever, because we cannot strongly support the assumption of normality in
this test or relax that assumption because N is large, we cannot place
strong reliance on our test result.

Testing the Statistical Significance of the Regression Coefficient for
Unemployment Rates and Burglary Rates in California
Let’s assess the statistical significance of the regression coefficient in our
example concerning unemployment rates and burglary rates from Cali-
fornia counties. We again begin by stating the assumptions and hypothe-
ses of our test.

Assumptions:

Level of Measurement: Interval scale.

Population Distribution: Normal distribution of Y around each value of
X (relaxed because N is large).

Homoscedasticity.

Linearity.

Sampling Method: Independent random sampling (all counties are in-
cluded in one year).

Sampling Frame: Counties in California.

Hypotheses:

H0: Unemployment rates do not influence burglary rates in California
counties ( � � 0).

H1: Unemployment rates do influence burglary rates in California coun-
ties ( � � 0).

The Sampling Distribution The sampling distribution is the t distribution,
with df � 58 � 2 � 56.

Significance Level and Rejection Region Since the research hypothesis is
nondirectional, we use a two-tailed test of statistical significance and set the
significance level at 0.05. The critical values for the t-test with 56 degrees of
freedom are about �2.003 and 2.003, meaning that we will reject the null
hypothesis if the test statistic is less than �2.003 or greater than 2.003.

The Test Statistic To test the statistical significance of our regression
coefficient b, we again use Equation 15.11 to determine the standard
error of b and Equation 15.10 to calculate the t-score. Table 15.6
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Calculations for the Standard Error of b for 
Unemployment Rates and Burglary Rates for 58 California Counties

X Y Yi � i (Yi � i)2 Xi � (Xi � )2

(1) (2) (3) (4) (5) (6) (7)

3.5 837.89 647.3188 190.5712 36,317.4013 �3.9069 15.2639
9.1 2,037.49 853.1092 1,184.3808 1,402,757.8083 1.6931 2.8666
4.6 818.55 687.7419 130.8081 17,110.7643 �2.8069 7.8787
6.8 865.04 768.5881 96.4519 9,302.9613 �0.6069 0.3683
6.9 989.76 772.2630 217.4970 47,304.9581 �0.5069 0.2569

15.9 520.06 1,102.9977 �582.9377 339,816.3271 8.4931 72.1327
3.0 664.73 628.9446 35.7854 1,280.5949 �4.4069 19.4208
8.0 1,200.91 812.6861 388.2239 150,717.7965 0.5931 0.3518
3.9 509.87 662.0181 �152.1481 23,149.0352 �3.5069 12.2983

13.4 924.10 1,011.1269 �87.0269 7,573.6848 5.9931 35.9172
11.2 845.29 930.2807 �84.9907 7,223.4123 3.7931 14.3876

6.4 1,027.79 753.8888 273.9012 75,021.8564 �1.0069 1.0138
23.4 1,526.40 1,378.6099 147.7901 21,841.9077 15.9931 255.7792

5.7 511.12 728.1650 �217.0450 47,108.5364 �1.7069 2.9135
11.4 960.18 937.6303 22.5497 508.4881 3.9931 15.9448
13.1 649.22 1,000.1024 �350.8824 123,118.4797 5.6931 32.4114

7.7 1,333.21 801.6616 531.5484 282,543.6909 0.2931 0.0859
7.0 361.24 775.9378 �414.6978 171,974.2653 �0.4069 0.1656
5.9 610.28 735.5147 �125.2347 15,683.7226 �1.5069 2.2707

11.5 929.32 941.3052 �11.9851 143.6438 4.0931 16.7535
1.9 526.98 588.5215 �61.5415 3,787.3525 �5.5069 30.3259
7.4 775.92 790.6371 �14.7171 216.5936 �0.0069 0.0000
6.7 843.92 764.9133 79.0067 6,242.0571 �0.7069 0.4997

13.3 1,214.69 1,007.4521 207.2379 42,947.5513 5.8931 34.7286
8.5 325.08 831.0603 �505.9803 256,016.0134 1.0931 1.1949
6.7 957.95 764.9133 193.0367 37,263.1637 �0.7069 0.4997
9.6 570.14 871.4834 �301.3434 90,807.8327 2.1931 4.8097
3.3 477.54 639.9691 �162.4291 26,383.2093 �4.1069 16.8666
4.1 455.37 669.3677 �213.9977 45,795.0284 �3.3069 10.9356
2.6 464.52 614.2453 �149.7253 22,417.6595 �4.8069 23.1063
3.2 646.12 636.2943 9.8257 96.5452 �4.2069 17.6980
9.0 1,030.58 849.4344 181.1456 32,813.7284 1.5931 2.5380
5.4 1,049.18 717.1405 332.0395 110,250.2163 �2.0069 4.0276
4.2 925.61 673.0426 252.5674 63,790.3117 �3.2069 10.2842
8.0 845.75 812.6861 33.0639 1,093.2215 0.5931 0.3518
4.8 883.02 695.0915 187.9285 35,317.1061 �2.6069 6.7959
3.1 539.82 632.6194 �92.7994 8,611.7342 �4.3069 18.5494
3.0 744.81 628.9446 115.8654 13,424.7909 �4.4069 19.4208
8.8 896.85 842.0847 54.7653 2,999.2337 1.3931 1.9407
3.2 540.79 636.2943 �95.5043 9,121.0637 �4.2069 17.6980
2.0 355.82 592.1963 �236.3763 55,873.7552 �5.4069 29.2346
3.9 444.07 662.0181 �217.9481 47,501.3612 �3.5069 12.2983
3.0 347.57 628.9446 �281.3746 79,171.6655 �4.4069 19.4208
6.3 647.73 750.2140 �102.4840 10,502.9682 �1.1069 1.2252
7.0 823.95 775.9378 48.0122 2,305.1713 �0.4069 0.1656
9.2 699.71 856.7841 �157.0741 24,672.2603 1.7931 3.2152

10.3 575.09 897.2072 �322.1172 103,759.4841 2.8931 8.3700
4.6 769.30 687.7419 81.5581 6,651.7269 �2.8069 7.8787
2.7 555.44 617.9201 �62.4801 3,903.7641 �4.7069 22.1549

10.5 1,057.99 904.5569 153.4332 23,541.7315 3.0931 9.5673
13.0 859.11 996.4276 �137.3176 18,856.1233 5.5931 31.2828

6.7 816.55 764.9133 51.6367 2,666.3478 �0.7069 0.4997
11.5 676.23 941.3052 �265.0752 70,264.8351 4.0931 16.7535
16.5 1,047.32 1,125.0467 �77.7267 6,041.4321 9.0931 82.6845

6.5 908.79 757.5637 151.2263 22,869.4089 �0.9069 0.8225
4.8 491.86 695.0915 �203.2315 41,303.0589 �2.6069 6.7959
4.3 591.28 676.7174 �85.4374 7,299.5476 �3.1069 9.6528

11.6 1,366.76 944.9800 421.7800 177,898.3853 4.1931 17.5821

� 7.4069 � 4,294,978.7756 � 1,010.3570�
N

i�1
 (Xi � X )2�

N

i�1
 (Yi � Ŷi)2X

XXŶŶŶ

Table 15.6



C H A P T E R F I F T E E N :  B I V A R I A T E R E G R E S S I O N

presents the calculations necessary for calculating the standard error
of b. Column 4 of Table 15.6 provides the difference between the ob-
served burglary rate (Yi) and the predicted burglary rate ( i). Column
5 shows the square of each of the differences; the squares are then
summed at the bottom of the column. We find the sum of the squared
deviations between the observed burglary rate and the predicted bur-
glary rate to be 4,294,978.7756. The deviations between observed un-
employment (Xi ) and mean unemployment appear in Column 6, while
the squared deviations between unemployment and mean unemploy-
ment appear in Column 7. The sum of the squared deviations between
age and mean age is 1,010.3570 (see the bottom of Column 7). After
inserting these values into Equation 15.11, we calculate a value of
8.7126 for the standard error for b.

Ŷ

W orking It Out

 � 8.7126

 � �4,294,978.7756/(58 � 2)
1,010.3570

 �̂b � ��
N

i�1
 (Yi � Ŷi )

2/(N � 2)

�
N

i�1
 (Xi � X )2

The t-statistic is then calculated by inserting our values for b and the
standard error of b into Equation 15.10. For our example, the test statistic
is 4.2178.

W orking It Out

 � 4.2178

 � 
36.7483 � 0

8.7126

 t � 
b � �

�̂b
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The Decision Our test statistic of 4.2178 is greater than our critical 
t-value of 2.003, leading us to reject the null hypothesis that unemploy-

T h e  F - T e s t  f o r  t h e  O v e r a l l  R e g r e s s i o n

In regression analysis, we can carry out a second type of test of statistical
significance to evaluate whether the overall regression model contributes

particularly useful when we have more than one independent variable in
our model, a situation we will examine in Chapter 16. For this second
test of statistical significance, we draw on the logic we used in develop-
ing the measure of percent of variance explained, or R 2.

Percent of variance explained tells how much our model improves
our predictions beyond what can be learned from the mean. But another
question is whether we can conclude from our sample R 2 that R 2 is in
fact different from 0 in the population. This is the test of statistical signif-
icance for the regression model overall. The assumptions for this test are
the same as those described in the previous section.

To test this hypothesis, we use analysis of variance, which was intro-

Equation 15.12

The explained sum of squares was discussed above. The unexplained
sum of squares is simply the sum of the squared errors of the regression:

Age and Number of Arrests
The total sum of squares can be partitioned into its explained and unex-
plained components. The total sum of squares for our example of age

USS � �
N

i �1
 (Yi � Yi

ˆ  )2

F � 
ESS/df
USS/df
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conclude that there is a statistically significant relationship between 
unemployment rates and burglary rates.

ment rates do not influence burglary rates in California counties and 

duced in Chapter 12. Again, the F-test is based on a ratio of the explained
variance to the unexplained variance. The explained and unexplained
variance estimates are obtained by dividing the explained sum of squares
(ESS) and unexplained sum of squares (USS) by their appropriate degrees
of freedom, as shown in Equation 15.12.

7 This test issignificantly to our understanding of the dependent variable  .

7

discussed in the prior section. We assume an interval scale, a normal distribution (relaxed
While we do not state the assumption of the tests below formally, they follow those

when N is large), homoscedasticity, linearity, and independent random sampling.
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sum of squares (112.7041) plus the unexplained sum of squares, or error
sum of squares of the regression (75.0292).

The number of degrees of freedom for the ESS (df1) is k, or the num-
ber of variables in the regression. In our example, the regression in-
cludes only one independent variable—age—and thus the number of
degrees of freedom for the ESS is 1. For the USS, the number of degrees
of freedom (df2) is equal to N � k � 1. In the case of our example of
number of arrests and age, it is equal to 15 � 1 � 1, or 13. The F-statistic
for our regression is thus calculated by dividing the ratio of the ex-
plained variance (112.7041/1) by that of the unexplained variance
(75.0292/13), obtaining F � 19.53.

W orking It Out

 � 19.5278

 � 
112.7041
5.7715

 � 
112.7041/1
75.0292/13

 F � 
ESS/df
USS/df

Setting a 5% significance threshold, we can see in the F table in Ap-
pendix 5 that the critical value associated with 1 and 13 degrees of free-
dom is 4.67. If our F-statistic is larger than this value, then our observed
significance level is less than the criterion significance level we set for
our test. Our test statistic of 19.53 is much larger than this value, and

W orking It Out

 187.7333 � 112.7041 � 75.0292

 �
N

i�1
 (Yi � Y )2 � �

N

i�1
(Yi

ˆ � Y )2 � �
N

i�1
(Yi � Ŷ 

i)
2

 TSS � ESS � USS
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and number of arrests is 187.7333, which is equivalent to the explained
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plained by the regression line in the population to which we infer is 0.

Unemployment Rates and Burglary Rates in California
The F-test may also be used to assess the overall regression for the rela-
tionship between unemployment rates and burglary rates in California.
We reported in our calculations of R 2 that the value for the total sum of
squares is 5,659,404.5114 and the value for the explained sum of squares
is 1,364,425.7358, which means that the value for the unexplained sum
of squares is 4,294,978.7756.

We have likely violated the normality assumption of our test because we do not 
have knowledge about the shape of the joint distribution of age and number of arrests
in the population and N � 15 cases is not enough to safely invoke the central limit
theorem.

W orking It Out

 5,659,404.5114 � 1,364,425.7358 � 4,294,978.7756

 TSS � ESS � USS

The number of degrees of freedom for the ESS (df1) is k � 1, and the
number of degrees of freedom for the USS (df2) is N � k � 1, which is
58 � 1 � 1 � 56. The F-statistic for our regression of burglary rates on
unemployment rates is calculated by dividing the ratio of the explained
variance (1,364,425.7358/1) by that of the unexplained variance
(4,294,978.7756/56), which gives us F � 17.7900.

W orking It Out

 � 17.7900

 � 
1,364,425.7358

76,696.0496

 � 
1,364,425.7358/1

4,294,978.7756/56

 F � 
ESS/df
USS/df
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thus we would reject the null hypothesis that the percent of variance ex-
8

8
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If we set a 5% significance threshold, we see in the F table (Appendix 5)
that the critical value associated with 1 and 56 degrees of freedom is not
given in the table. Interpolating from the values for 40 degrees of free-
dom (4.008) and 60 degrees of freedom (4.000) for df2, we estimate a
critical value of 4.002. Our test statistic of 17.79 is much larger than the
critical value, so we reject the null hypothesis that the percent of vari-
ance explained by the regression line in the population to which we
infer is 0.

C h a p t e r  S u m m a r y

The regression coefficient b tells us how much one variable (the in-
dependent variable, X) influences another variable (the dependent
variable, Y ). The regression coefficient is expressed in specific units of
the dependent variable and is interpreted as follows: A change of one
unit in X produces a change of b units in the estimated value of Y.

A researcher cannot predict values of Y using the regression coeffi-
cient alone. The additional piece of information required is the Y-
intercept (b0). The b0 coefficient may be interpreted as the expected
value of Y when X � 0. The predicted value of Y for other values of 
X can be calculated by adding b0 to the product of the regression
coefficient and X. Regression error is the difference between the
predicted and actual values of Y. The regression line is the line 
for which the sum of the squared errors is at a minimum—hence 
the name ordinary least squares regression (OLS). OLS regression
is a solid basis for prediction within, but not beyond, the sample
range.

The R2 statistic is the proportion of the total sum of squares (Y � )2

accounted for by the explained sum of squares . This propor-
tion represents the improvement in predicting Y that the regression line
provides over the mean of Y.

sured on an interval scale. There is also an assumption of normality and
a requirement of homoscedasticity. These assumptions relate to the dis-
tribution of Y around each value of X. The researcher must also assume

2 that R 2

(Ŷ � Y   )2
Y

452

regression coefficient b. It is assumed that the variables examined are mea-

linearity. The F-test for the overall regression determines whether the

The t distribution may be used to test statistical significance for the

in the population.
researcher can conclude from the sample R is different from 0 

i

i



S Y M B O L S A N D F O R M U L A S

K e y  T e r m s

bivariate regression A technique for pre-
dicting change in a dependent variable
using one independent variable.

dependent variable (Y) The variable as-
sumed by the researcher to be influenced
by one or more independent variables.

independent variable (X) A variable
assumed by the researcher to have an impact
on the value of the dependent variable, Y.

OLS regression See ordinary least squares
regression analysis.

ordinary least squares regression
analysis A type of regression analysis in
which the sum of squared errors from the
regression line is minimized.

percent of variance explained (R2) A
measure for evaluating how well the re-
gression model predicts values of Y. It rep-
resents the improvement in predicting Y
that the regression line provides over the
mean of Y.

regression coefficient b A statistic used
to assess the influence of an independent
variable, X, on a dependent variable, Y.
The regression coefficient b is interpreted
as the estimated change in Y that is associ-
ated with a one-unit change in X.

regression error (e) The difference be-
tween the predicted value of Y and the 

regression line The line predicting values
of Y. The line is plotted from knowledge of
the Y-intercept and the regression coeffi-
cient.

regression model The hypothesized
statement by the researcher of the factor or
factors that define the value of the depen-
dent variable, Y. The model is normally 

Y-intercept (b0) The expected value of Y
when X � 0. The Y-intercept is used in
predicting values of Y.

S y m b o l s  a n d  F o r m u l a s

b0 Y-intercept

�0 Y-intercept for population model

b Regression coefficient

� Regression coefficient for the population

X Independent variable

Y Dependent variable

e Error

� Error for population model

ESS Explained sum of squares
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actual value of Y.

expressed in equation form.
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USS Unexplained sum of squares

TSS Total sum of squares

k Number of variables in the overall regression model

Standard error of the regression coefficient

To determine the value of the Y-intercept:

b0 �

To predict values of the dependent variable, Y:

To identify the regression error:

e � Y �

To show that the sum of squared error in an OLS regression line is a
minimum:

� minimum

A bivariate regression model for a sample:

Y � b0 � bX � e

A bivariate regression model for a population:

Y � �0 � �X � �

To calculate the percent of explained variance:

R 2 �

To calculate the value of t for the regression coefficient b:

t �

To calculate the standard error of the regression coefficient:

�̂b � ��
N

i�1
 (Yi � Ŷi )

2/(N � 2)

�
N

i�1
 (Xi � X )2

b � �

�̂b

ESS
TSS

 � 
�
N

i�1
 (Ŷi � Y )2

�
N

i�1
 (Yi � Y )2

�
N

i�1
 (Yi � Ŷi)

2

Ŷ

Ŷ � b0 � bX

Y � bX

�̂b
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To calculate the value of F for the overall regression:

F �

E x e r c i s e s

15.1 A researcher carries out a series of regression analyses for different
studies. The results of three of the studies are given below. In each
case, explain what the results mean in plain English.

a. X � number of prior driving offenses; Y � fine in dollars imposed
by magistrate; b � 72.

b. X � number of times a household has been broken into prior 
to purchase of first burglar alarm; Y � amount of money 
in dollars spent by homeowner on first burglar alarm; 
b � 226.

c. X � number of times subject has been involved in a car accident;
Y � estimated average speed of subject when driving on a freeway
in miles per hour; b � �8.5.

15.2 Nine adolescents are interviewed about the number of hours 
per week they work and the number of times they have 
smoked marijuana in the last year. The results are recorded 
as follows:

X: Number of hours worked per week 0 10 10 15 5 30 20 40 15

Y: Number of times smoked marijuana 
in the last year 1 3 2 5 0 13 10 20 25

a. Calculate the regression coefficient b, and explain what it means in
plain English.

b. Calculate the value of the Y-intercept, b0.

c. Calculate a test of statistical significance for the regression coeffi-
cient b.

15.3 A study of sentencing decisions hypothesized that judges would
become increasingly lenient with drug offenders as they accumulated
more years of experience. To test this hypothesis, researchers
gathered data on a sample of 12 drug offenders. The data included
information on number of years on the bench for the judge and 

ESS/df
USS/df

 � 
�
N

i�1
 (Ŷi � Y )2/k

�
N

i�1
 (Yi � Ŷi

 )2/(N � k � 1)
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length of the sentence (in months). The results were recorded as
follows:

X: Number of years as a judge 3 1 0 1 2 5 9 13 17 0 6 2

Y: Length of sentence (months) 14 22 24 20 15 12 3 6 18 18 10 18

a. Calculate the regression coefficient b, and explain what it means in
plain English.

b. Calculate the value of the Y-intercept, b0.

c. Calculate a test of statistical significance for the regression coeffi-
cient b.

15.4 Ten police officers are asked how many promotions they have re-
ceived and how many years they have served on the force. The results
are recorded below:

X: Years on the force 7 1 5 3 12 2 4 1 9 6

Y: Number of promotions 5 1 3 1 8 1 2 0 7 2

a. Calculate the regression coefficient b.

b. Calculate the value of the Y-intercept, b0.

c. How many promotions would you predict for an officer who had
served 10 years on the force?

d. What is the regression error in predicting the number of
promotions for an officer who has served 12 years on the 
force?

15.5 Ten prosecutors were asked what percentage of their cases ended in
guilty pleas and how many years of experience each had as a prose-
cutor. The results were recorded as

X: Number of years of experience 
as a prosecutor 10 12 8 1 0 2 7 20 5

Y: Percentage of cases resulting in 
a guilty plea 93 90 87 72 70 70 82 97 94

a. Calculate the regression coefficient b, and explain what it means in
plain English.

b. Calculate the value of the Y-intercept, b0.

c. Calculate a test of statistical significance for the regression coeffi-
cient b.

d. If a prosecutor had six years of experience, what would be the pre-
dicted percentage of guilty pleas?

15.6 A study exploring the link between aggression and crime reported ag-
gression scores and number of arrests for six individuals who partici-
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pated in the study. The values for aggression and number of arrests
are as follows:

X: Aggression score 92 63 77 29 51 10

Y: Number of arrests 6 2 3 1 2 0

a. Calculate the regression coefficient b, and explain what it means in
plain English.

b. Calculate the value of the Y-intercept, b0.

c. Calculate a test of statistical significance for the regression
coefficient b.

d. What would be the predicted number of arrests for a person with
an aggression score of 75?

e. What would be the predicted number of arrests for a person with
an aggression score of 25?

15.7 For the last ten convicts released from Wilmslow Prison, Joan
recorded the percentage of their initial sentence from which they were
excused. She also recorded the number of times each convict was
called before a disciplinary committee over the course of his sentence.
The scores of each subject on these two variables are listed below:

X: Number of disciplinary hearings 0 5 2 1 6 4 4 0 5 3

Y: Percentage of sentence not served 33 5 18 32 0 10 5 30 0 17

a. Calculate the regression coefficient b.

b. Calculate the value of the Y-intercept, b0.

c. Using the data provided, show that the sum of the error on either
side of the regression line equals 0:

d. Using the data provided, show that

is less than

e. Explain in plain English the meaning of what you showed in part d
for the regression model.

15.8 In running a small pilot study for a large-scale research project,
George gathers data on the average number of homicides monthly for

�
N

i�1
 (Yi � Y )2

�
N

i�1
 (Yi � Ŷ )2

�
N

i�1
 (Yi � Y ̂) � 0
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five U.S. cities. While he is looking for a good predictor of the differ-
ent homicide rates, he stumbles across the following set of data on the
number of theaters in each of the cities:

X: Number of theaters 1 3 6 7 8

Y: Homicides monthly 10 14 23 26 32

a. Calculate the regression coefficient b.

b. Calculate the value of the Y-intercept, b0.

c. According to this regression model, how many homicides would a
city with ten theaters expect per month?

d. Why is this model misleading?

15.9 Lee is investigating six recent cases of vandalism in the local shopping
mall. She compares the amount of damage done in each case with the
number of vandals involved in each incident. Her findings are as follows:

X: Number of vandals 3 2 6 4 1 2

Y: Damage done ($) 1,100 1,850 3,800 3,200 250 1,200

a. Calculate the regression coefficient b.

b. Calculate the value of the Y-intercept, b0.

c. Plot the scores on a scatterplot, and draw the regression line where
you think it should go.

d. Calculate the value of R 2. What does this tell you about the model?

15.10 Refer to the data from Exercise 15.2.

a. Calculate the value of R 2. What does it tell you about the model?

b. Run an F-test for the overall regression. Remember to outline all of
the steps required in a test of statistical significance, including any
violations of your assumptions. Can you conclude that the percent
of explained variance (R 2) is different from 0 for the population?

15.11 Refer to the data from Exercise 15.5.

a. Calculate the value of R 2. What does it tell you about the model?

b. Run an F-test for the overall regression. Remember to outline all of
the steps required in a test of statistical significance, including any
violations of your assumptions. Can you conclude that the percent
of explained variance (R 2) is different from 0 for the population?

15.12 Refer to the data from Exercise 15.9.

a. Calculate the value of R 2. What does it tell you about the model?

b. Run an F-test for the overall regression. Remember to outline all of
the steps required in a test of statistical significance, including any
violations of your assumptions. Can you conclude that the percent
of explained variance (R 2) is different from 0 for the population?
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C o m p u t e r  E x e r c i s e s

Ordinary least squares regression analyses are performed with the linear re-
gression command in SPSS (Analyze l Regression l Linear). After you exe-
cute the command, a window will appear, listing all the variables in the data
file in a box on the left. On the right will be self-explanatory boxes for the
dependent and independent variables. To run a regression analysis, simply
move the names of the variables to the appropriate box and click on “OK”
to run the command.

There are three tables of results that contain the statistics discussed in this
chapter. The first table of results, labeled “Model Summary,” presents the
value for R 2.

The second table of results, labeled “ANOVA,” contains the ANOVA table
that was originally discussed in Chapter 12. In this table, you will find the val-
ues for the explained, unexplained, and total sums of squares; the F-statistic;
and the observed significance level of F. Please note, however, that the labels
for the sums of squares are different. The explained sum of squares is labeled
“Regression,” and the unexplained sum of squares is labeled “Residual.”

The third table of results presents the regression coefficients, the standard
errors of the coefficients, the t-statistic for each coefficient, and the observed
significance level for each regression coefficient. Note, too, that there is a
distinction between unstandardized and standardized regression coefficients.
The unstandardized coefficients are the regression coefficients presented in
this chapter. We discuss standardized regression coefficients in Chapter 16.

It is also possible to have SPSS calculate predicted values and residuals
for each observation in the data file. To obtain one or both of these values,
click on the “Statistics” button after entering the variables into the dependent
and independent variable boxes. In the new window that opens, click on
the box next to “Unstandardized” under the “Predicted Values” and/or
“Residuals” labels. Click on “Continue” to return to the window listing the
variables. Click on “OK” to run the command. The predicted values and
residuals will appear as new variables in your data file with the names pre_1
(for the predicted values) and res_1 (for the residuals). We will return to this
command in the computer exercises for Chapter 16.

1. Open the caucr_ 99.sav data file, which contains the data presented
in Table 14.8. Run the linear regression command in SPSS, using bur-
glary rate as the dependent variable and unemployment rate as the in-
dependent variable. Note that the values reported in the three tables
of results match those reported in the text.

2. Enter the data from Exercise 15.2.

a. Run the linear regression command, using number of times smoked
marijuana as the dependent variable and number of hours worked
per week as the independent variable.
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3. Enter the data from Exercise 15.3.

a. Run the linear regression command, using sentence length as the
dependent variable and number of years as a judge as the indepen-
dent variable.

b. What is the value of R 2?

c. Perform an F-test for the overall regression. Outline all of the steps
required in a test of statistical significance, including any violations
of your assumptions. Can you conclude that the percent of ex-
plained variance (R 2) is different from 0 for the population?

4. Enter the data from Exercise 15.7.

a. Run the linear regression command, using percentage of sentence
not served as the dependent variable and number of disciplinary
hearings as the independent variable.

b. What is the value of R 2?

c. Perform an F-test for the overall regression. Outline all of the steps
required in a test of statistical significance, including any violations
of your assumptions. Can you conclude that the percent of ex-
plained variance (R 2) is different from 0 for the population?

5.

— Explain the regression coefficient in plain English.

— Perform a t-test for the regression coefficient.

— Report the value of R 2.

— Perform an F-test for the overall regression.

b. Compare your answers to Exercises 15.2 and 15.10 with the results
produced by SPSS.

of variables listed below. Do the following for each pair of variables:
the linear regression command and run regression analyses for the pairs 

a. Age (X) and number of thefts valued at less than $5 in the last year

b. Number of times drunk (X) and number of thefts valued at $5 to
$50 in the last year (Y).

c. Frequency of marijuana use (X) and number of times the youth has
hit other students in the last year (Y).

d. Number of times the youth has hit a parent (X) and number of
thefts valued at more than $50 in the last year (Y).

e. Number of times the youth has been beaten up by a parent (X) and
number of times the youth has hit a teacher in the last year (Y).

(Y).
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— Explain the regression coefficient in plain English.

— Perform a t-test for the regression coefficient.

— Report the value of R 2.

— Perform an F-test for the overall regression.

6.
command and run regression analyses for the pairs of variables listed  
below. Do the following for each pair of variables:

a. Age (X) and length of incarceration sentence (Y).

b. Prior criminal history score (X) and length of incarceration 
sentence (Y).

c. Offense severity score (X) and length of incarceration sentence (Y).
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ONE OF THE STATISTICAL TOOLS most commonly used in criminal justice
and criminology is regression modeling. A regression model allows the
researcher to take a broad approach to criminological research problems.
It is based not simply on understanding the relationships among vari-
ables, but on specifying why changes occur and what factors are directly
responsible for these changes. In a regression model, the researcher tries
to disentangle the various potential factors that have an impact on the
dependent variable, in order to provide an accurate picture of which
variables are in fact most important in causing change.

In this chapter, we discuss why it is generally necessary to take into
account more than just one independent variable in building a regres-
sion model. Previous chapters have focused on bivariate statistical analy-
sis, in which we relate two variables—nominal, ordinal, or interval—to

T h e  I m p o r t a n c e  o f  C o r r e c t  M o d e l  S p e c i f i c a t i o n s

The most important assumption we make in regression modeling is that the
model we have estimated is specified correctly. A correctly specified re-
gression model is one in which the researcher has taken into account all
of the relevant predictors of the dependent variable and has measured
them accurately. This requirement of regression modeling is the most diffi-
cult one that researchers face. Its importance is linked both to prediction of
the dependent variable and to correct estimation of regression coefficients.

Errors in Prediction
Predictions of Y in regression are based on the factors that are included
in a regression model. So far, we have examined bivariate regression
models, in which one independent variable is used to predict values of
Y. But in the real world it is unlikely that only one variable will influence
the dependent measure you are examining. Most often, it will be neces-
sary to take into account a number of independent variables. Regression

statistical model.
researcher takes into account a series of independent variables within one
each other. This chapter introduces multivariate analysis, in which the 
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analysis that takes into account more than one independent variable is
called multivariate regression analysis. The regression model we have
discussed so far can be extended to the multivariate case simply by
adding a term for each new variable. For example, to include years of
education in the model predicting number of arrests presented earlier,
we would express our regression equation as follows:

Yarrests � b0 � b1(age) � b2(education) � e

The population model for this equation would be written as

Yarrests � �0 � �1(age) � �2(education) � �

Sometimes, when examining multiple independent variables, re-
searchers find it tedious to include the names of the variables in sub-
scripts. Accordingly, they will often use a general form of the regression
equation and then define each variable in a table or in their description
of results. For example, the above equation could be expressed in terms
of the population parameters as 

Model 1: Y � �0 � �1X1 � �2X2 � �

where Y � arrests
X1 � age
X2 � years of education

In theory, you could define all relevant predictors of Y and include them
all in your regression model. This correctly specified model would also
provide the most accurate predictions of Y. Conversely, a misspecified
model, or one that does not include all relevant predictors, will provide
biased predictions of Y.

Let’s say, for example, that family median income is also an important
predictor of arrests. In this case, the corrected population regression
equation would be written as follows:

Model 2: Y � �0 � �1X1 � �2X2 � �3X3 � �

where Y � arrests
X1 � age
X2 � years of education
X3 � family median income

By adding this additional variable, we improve our predictions of Y over
those provided by Model 1. Because we have taken into account the in-
fluence of family income on arrests, we have added to our ability to cor-
rectly predict the dependent variable. By implication, our predictions of
Y will be less trustworthy when we do not include a factor that influ-
ences the dependent variable.
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Sometimes, statisticians express this fact in terms of an assumption
about the error term in the population regression model. The error term,
�, should represent only random fluctuations that are related to the out-

residuals, since they are in theory what is left over once you have taken
into account all systematic causes of Y. However, if you fail to include an
important predictor of Y as an independent variable, then by implication
it moves to your error term. The error term now is not made up only of
random—or what statisticians sometimes call stochastic—variation in Y,
but rather includes the systematic variation that can be attributed to the
excluded variable. For example, in Model 1, the effect of median family
income is not taken into account, and thus the systematic relationship
between median family income and number of arrests is found in the
error term for that regression equation. When a model is not correctly
specified, the error term will not represent only random or stochastic
variation, as is required by the assumptions of regression analysis; it will
be systematically related to the dependent variable.

Correctly Estimating the Effect of b

dent variables. Suppose, for example, that a bivariate regression is de-
fined in which number of years in prison is identified as influencing
number of arrests after prison:

Yrearrests � b0 � b1(years in prison) � e

In estimating this relationship from the data presented in Table 16.1, we
find that the regression coefficient based on this model is 1.709. That is,
every additional year of imprisonment produces about a 1.709 increase
in our prediction of number of subsequent arrests.

W orking It Out

 � 1.7089

 � 
31.7
18.55

 b � 
�
N

i�1
 (Xi � X )(Yi � Y )

�
N

i�1
 (Xi � X )2

Our model for subsequent arrests states that the only causal factor in-
fluencing arrests is years of imprisonment. This, of course, is a question-
able statement, because common sense tells us that this model is not

researcher to present biased estimates of the effects of specific indepen-
Failure to correctly specify a regression model may also lead the 
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correctly specified. There are certainly other factors that influence arrests.
Some of those factors, in turn, may also be related to the number of
years that an offender serves in prison. If this is true—that relevant fac-
tors related to years of imprisonment have been omitted from the
model—then the regression coefficient may provide a very misleading
estimate of the effect of imprisonment on arrests.

Judges, for example, are likely to impose longer prison sentences on
offenders with more serious prior records. Using the sample data in
Table 16.2, we can look at the correlations among these three variables
(see Table 16.3). The number of prior arrests is strongly related (r �

0.63) to the length of prison term served. Prior arrests are even more
strongly related to subsequent arrests (r � 0.76). This suggests, first of
all, that prior record is a relevant factor that should be included if our
model is to be correctly specified. But it also raises a very important con-
cern: How do we know that our finding that “years in prison” increases
reoffending is not simply a result of the fact that those who serve longer
prison terms generally have more serious prior records of offending?

Number of Rearrests (Y ) and Years 
Spent in Prison (X ) for 20 Former Inmates

YEARS SPENT
REARRESTS IN PRISON

SUBJECT Y Yi � X Xi � (Xi � )2 (Xi � )(Yi � )

1 0 �3.1 2 �1.15 1.3225 3.565
2 0 �3.1 3 �0.15 0.0225 0.465
3 1 �2.1 1 �2.15 4.6225 4.515
4 1 �2.1 2 �1.15 1.3225 2.415
5 1 �2.1 3 �0.15 0.0225 0.315
6 1 �2.1 3 �0.15 0.0225 0.315
7 2 �1.1 4 0.85 0.7225 �0.935
8 2 �1.1 2 �1.15 1.3225 1.265
9 2 �1.1 2 �1.15 1.3225 1.265

10 3 �0.1 3 �0.15 0.0225 0.015
11 3 �0.1 3 �0.15 0.0225 0.015
12 3 �0.1 3 �0.15 0.0225 0.015
13 4 0.9 3 �0.15 0.0225 �0.135
14 4 0.9 4 0.85 0.7225 0.765
15 4 0.9 4 0.85 0.7225 0.765
16 4 0.9 4 0.85 0.7225 0.765
17 5 1.9 4 0.85 0.7225 1.615
18 6 2.9 4 0.85 0.7225 2.465
19 7 3.9 5 1.85 3.4225 7.215
20 9 5.9 4 0.85 0.7225 5.015

� 18.55

Bivariate Regression Model:
Dependent Variable: Subsequent Rearrests
Independent Variable: Years in Prison
Regression Coefficient: b (years in prison) � 31.7/18.55 � 1.7089

�
N

i�1
(Xi � X)(Yi � Y )�

N

i�1
 (Xi � X )2X � 3.15Y � 3.1

YXXXY

Table 16.1
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would be made with subjects who were otherwise similar. That is, we
would want to be sure that the offenders with longer and shorter prison
sentences were comparable on other characteristics, such as the serious-
ness of prior records. In this case, there would be no relationship be-
tween prior arrests and length of imprisonment, and thus we would not
have to be concerned with the possibility that the effect of length of im-

In criminal justice, this approach is taken in the development of
randomized experiments.1 A randomized study of the impact of

Number of Rearrests, Years Spent in Prison, 
and Number of Prior Arrests for 20 Former Inmates

SUBJECT REARRESTS YEARS IN PRISON PRIOR ARRESTS

1 0 2 4
2 0 3 2
3 1 1 2
4 1 2 3
5 1 3 3
6 1 3 2
7 2 4 3
8 2 2 3
9 2 2 1

10 3 3 2
11 3 3 3
12 3 3 3
13 4 3 4
14 4 4 3
15 4 4 4
16 4 4 5
17 5 4 4
18 6 4 5
19 7 5 5
20 9 4 6

= 3.10 = 3.15 = 3.35
s � 2.300 s � 0.9631 s � 1.2360

XXY

Table 16.2

Correlation Coefficients for the Variables 
Years in Prison, Prior Arrests, and Subsequent 
Rearrests Based on Data from 20 Former Inmates

YEARS IN PRISON PRIOR ARRESTS

Prior Arrests r � 0.6280
Subsequent Rearrests r � 0.7156 r � 0.7616

Table 16.3

1

Wadsworth, 1995). For a comparison of experimental and nonexperimental methods,
see D. Weisburd, C. Lum, and A. Petrosino, “Does Research Design Affect Study Out-
comes in Criminal Justice?” The Annals 578 (2001): 50–70.

In an ideal world, our comparisons of the impact of imprisonment

M. Maxfield, The Practice of Social Research in Criminal Justice (Belmont, CA:

prisonment actually reflects the influence of prior arrests on reoffending.

For a discussion of experimental methods in criminal justice, see E. Babbie and 
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length of imprisonment on reoffending would be one in which the re-
searcher took a sample of offenders and assigned them to treatment
and control conditions at random. For example, the researcher might
define a sentence of 6 months as a control condition and a sentence of
1 year as an experimental condition. In this case, the researcher could

ables. Random allocation of subjects to treatment and control condi-
tions allows the researcher to assume that other traits, such as prior
record, are randomly scattered across the treatment and control condi-
tions. Our problem in criminal justice is that it is often impractical to
develop experimental research designs. For example, it is highly un-
likely that judges would allow a researcher to randomly allocate prison
sanctions. The same is true for many other research problems relating
to crime and justice.

Fortunately for criminal justice researchers, a correctly specified re-
gression model will take into account and control for relationships that
exist among the independent variables included in the model. So, for
example, the inclusion of both length of imprisonment and prior ar-
rests in one regression model will provide regression coefficients that
reflect the specific impact of each variable, once the impact of the
other has been taken into account. This is illustrated in Equation 16.1,
which describes the calculation of a multivariate regression coefficient
in the case of two independent variables (X1 and X2). Equation 16.2
applies Equation 16.1 to the specific regression model including both
length of imprisonment and prior arrests. The model can be described
as follows:

Y � b0 � b1X1 � b2X2 � e

where Y � subsequent rearrests
X1 � years in prison
X2 � prior arrests

Here we calculate the multivariate regression coefficient b1 for length of
imprisonment.

Equation 16.1

Equation 16.2

In Equations 16.1 and 16.2, the bivariate correlations among the
three measures examined, as well as the standard deviations of years in

bX1
 � �rY,YP � (rY,PArYP,PA)

1 � r 2
YP,PA

�� sY

s �

bX1
 � �rY,X1

 � (rY,X2
rX1,X2

)

1 � r 2
X1,X2

�� sY

s �

rearrests without concern about the confounding influences of other vari-
examine the effects of a longer versus a shorter prison sentence on
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prison and rearrests, are used to calculate the multivariate regression
coefficients. The three correlations for our specific example are (1) rY,YP,
or the correlation between subsequent rearrests and years in prison; 
(2) rY,PA, or the correlation between subsequent rearrests and prior ar-
rests; and (3) rYP,PA, or the correlation between years in prison and
prior arrests.

What is most important to note in Equation 16.2 is that the numer-
ator (in the first part) takes into account the product of the relation-
ship between prior arrests and subsequent rearrests and that of prior
arrests and years in prison. This relationship is subtracted from the
simple correlation between years in prison and subsequent arrests. In
this way, multivariate regression provides an estimate of b that takes
into account that some of the impact of years in prison may be due to
the fact that longer prison terms are associated with more serious
prior records. This estimate is now purged of the bias that was intro-
duced when prior record was not included in the regression model.
The multivariate regression coefficient for years in prison when prior
record is included in the regression model (0.936) is considerably
smaller than the estimate calculated earlier in the bivariate regression
(1.709).

W orking It Out

 � 0.9358

 � �0.2373152
0.605616 �(2.388122)

 � �0.7156 � (0.7616)(0.6280)

1 � (0.6280)2 �� 2.300
0.9631�

 bX1
 � �rY,YP � (rY,PArYP,PA)

1 � r 2
YP,PA

�� sY

sYP�

With the same information, we can calculate the multivariate regres-
sion coefficient for prior arrests. We find the value for b2 to be 0.9593 (see

sults. As you can see, the value of b when we take into account years in
prison (0.96) is much smaller than that in the bivariate case (1.4).
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working it out, page 471). The bivariate regression coefficient for prior ar-
rests is calculated in the box on page 470 so that you can compare the re-



PRIOR
REARRESTS ARRESTS

SUBJECT Y Yi � X Xi � (Xi � )2 (Xi � )(Yi � )

1 0 �3.1 4 0.65 0.4225 �2.015
2 0 �3.1 2 �1.35 1.8225 4.185
3 1 �2.1 2 �1.35 1.8225 2.835
4 1 �2.1 3 �0.35 0.1225 0.735
5 1 �2.1 3 �0.35 0.1225 0.735
6 1 �2.1 2 �1.35 1.8225 2.835
7 2 �1.1 3 �0.35 0.1225 0.385
8 2 �1.1 3 �0.35 0.1225 0.385
9 2 �1.1 1 �2.35 5.5225 2.585

10 3 �0.1 2 �1.35 1.8225 0.135
11 3 �0.1 3 �0.35 0.1225 0.035
12 3 �0.1 3 �0.35 0.1225 0.035
13 4 0.9 4 0.65 0.4225 0.585
14 4 0.9 3 �0.35 0.1225 �0.315
15 4 0.9 4 0.65 0.4225 0.585
16 4 0.9 5 1.65 2.7225 1.485
17 5 1.9 4 0.65 0.4225 1.235
18 6 2.9 5 1.65 2.7225 4.785
19 7 3.9 5 1.65 2.7225 6.435
20 9 5.9 6 2.65 7.0225 15.635

= 3.10 = 3.35

� 30.55 � 43.30

Bivariate Regression Model:
Dependent Variable: Subsequent Rearrests
Independent Variable: Prior Arrests
Regression Coefficient: b (Prior Arrests) � 43.30/30.55 � 1.4173

�
N

i�1
(Xi � X )(Yi � Y )�

N

i�1
 (Xi � X )2XY

YXXXY

Calculation of Bivariate Regression 
Coefficient for Number of Rearrests (Y) 
and Number of Prior Arrests (X) for 20 Former Inmates



The fact that the results are different when we examine the effects of
years in prison and prior arrests in the multivariate regression model
shows that the bivariate regression coefficients were indeed biased. In
both cases, the estimate of the effect of b provided by the bivariate re-
gression coefficient was much too high. These differences also reflect a
difference in interpretation between the multivariate regression coeffi-

duced by a one-unit change in X. In the multivariate case, b represents
the estimated change in Y associated with a one-unit change in X when
all other independent variables in the model are held constant. Holding
prior arrests constant leads to a reduction in the impact of years in
prison. Holding years in prison constant leads to a reduction in the esti-
mate of the effect of prior arrests. These differences may be seen as the
bias introduced by misspecifying the regression model through the ex-
clusion of prior arrests.

We can also identify this bias in terms of assumptions related to the
error term in regression. It is assumed not only that the errors in the re-
gression are stochastic, but also that there is no specific systematic rela-
tionship between the error term and the independent variables included
in the regression. If there is such a relationship, the regression coefficient
will be biased. While this may seem like a new concept, it is really a re-
statement of what you learned above.

Let’s use our model predicting rearrest as a substantive example. We
saw that if we estimated the regression coefficient for years in prison
without taking into account prior arrests, the regression coefficient
would be biased—in this case, overestimated. What happens in theory to
the error term in this case? As we discussed earlier in the chapter, when
we exclude an independent variable, the effect of that variable moves to

W orking It Out

 � 0.9593

 � �0.3122032
0.605616 �(1.8608)

 � �0.7616 � (0.7156)(0.6280)

1 � (0.6280)2 �� 2.300
1.2360�

 bX2
 � �rY,PA � (rY,YPrYP,PA)

1 � r 2
YP,PA

�� sY

sPA�

regression coefficient represents the estimated change in Y that is pro-
cient and the bivariate regression coefficient. In the bivariate case, the
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the error term. In our case, the population model including both inde-
pendent variables may be stated as follows:

Y � �0 � �1X1 � �2X2 � �

where Y � subsequent rearrests
X1 � years in prison
X2 � prior arrests

When we take into account only one independent variable, the model
includes only the term X1:

Y � �0 � �1X1 � �

where Y � subsequent rearrests
X1 � years in prison

In the latter model, number of prior arrests is included by implication in
the error term. But what does this mean regarding the relationship in this
model between the error term and years in prison? Our sample data sug-
gest that the number of prior arrests is related to years in prison (as was

By looking at bias in terms of the error term, we can also specify when
excluding an independent variable will not lead to bias in our estimates
of the regression coefficients of other variables. If the excluded variable is
unrelated to other variables included in the regression, it will not cause
bias in estimates of b for those specific variables. This is the case because
when there is no systematic relationship between the excluded variable
and the included variable of interest, its exclusion does not lead to a sys-
tematic relationship between the error term and the variable of interest.

For example, if years in prison and prior arrests were not systemati-
cally related (e.g., the correlation between the variables was 0), it would
not matter whether we took into account prior arrests in estimating the re-
gression coefficient for years in prison.2 In this case, the exclusion of prior
arrests would not lead to a systematic relationship between the error term

2It is important to note that bias can be caused by a nonlinear relationship between
the excluded and the included variable. The assumption is that there is no systematic
relationship of any form.
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shown in Table 16.3). By implication, since number of prior arrests is 

related to years in prison as well. Accordingly, if we leave prior arrests
out of our equation, then we violate the assumption that there is no

varibles in the equation.

now found in the error term, the error term can now be assumed to be

systematic relationship between the error term and the independent



and years in prison, because there is no systematic relationship between
prior arrests and years in prison. However, it is important to remember
that the exclusion of prior arrests will still cause bias in our estimate of Y.
In this situation, we continue to violate the assumption that the error term
is stochastic. It now includes a systematic predictor of Y, prior arrests.

Comparing Regression Coefficients Within a Single 
Model: The Standardized Regression Coefficient
A multivariate regression model allows us to specify the impact of a spe-
cific independent variable while holding constant the impact of other in-
dependent variables. This is a very important advantage of multivariate
regression analysis over bivariate regression analysis. However, when we
include multiple variables in the same model, it is natural to want to
compare the impact of the different variables examined. For example, in
our case, does years in prison have a stronger effect on subsequent rear-
rests than number of prior arrests does? Or does number of prior arrests
have a stronger effect than years in prison? The ordinary regression coef-
ficient b does not allow us to answer this question, since it reports the
effect of a variable in its original units of measurement. Accordingly, the
regression coefficient for years in prison reports the predicted change in
subsequent rearrests for each year change in years in prison. The regres-
sion coefficient for number of prior arrests reports the predicted change
in subsequent rearrests for each change in number of prior arrests.
Though the interpretation of the regression coefficients in these cases is
straightforward, we cannot directly compare them.

Another statistic, called the standardized regression coefficient or
Beta, allows us to make direct comparisons. Beta weights take the re-
gression coefficients in an equation and standardize them according to
the ratio of the standard deviation of the variable examined to the stan-
dard deviation of the dependent variable. Beta is expressed mathemati-
cally in Equation 16.3:

Equation 16.3

The interpretation of the standardized coefficient is similar to that of b
(the unstandardized coefficient), except that we change the units. We in-
terpret Beta as the expected amount of change in the standard deviation
of the dependent variable, given a one-unit change in the standard devi-
ation of the independent variable.

For years in prison in our example, we take the regression coefficient
of 0.9358 and multiply it by the ratio of the standard deviation of years in
prison (0.9631) and subsequent rearrests (2.3000). The result is 0.3919,

Beta � b�sX

sY�
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which tells us that an increase of one standard deviation in years in
prison is expected to result in an increase of 0.392 standard deviation in
rearrests.

W orking It Out

 � 0.3919

 � 0.9358�0.9631
2.3000�

 Beta � b�sX

sY�

For prior arrests, we begin with our regression coefficient of 0.9593.
Again, we standardize our estimate by taking the ratio of the standard
deviation of prior arrests (1.2360) and subsequent rearrests (2.3000). Our
estimate of Beta here is 0.5155, which indicates that an increase of one
standard deviation in prior arrests is expected to result in an increase of
0.516 standard deviation in rearrests.

W orking It Out

 � 0.5155

 � 0.9593�1.2360
2.3000�

 Beta � b�sX

sY�

In our example, the Beta weight for prior arrests is larger than that for
years in prison. According to this estimate, the number of prior arrests
has a greater impact on subsequent rearrests than the number of years in
prison does. The standardized regression coefficient thus provides us
with an answer to our original question regarding which of the indepen-
dent variables examined has the most influence on the dependent vari-
able. As you can see, the standardized regression coefficient is a useful
tool for comparing the effects of variables measured differently within a
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single regression model. However, because standardized regression coef-
ficients are based on the standard deviations of observed samples, they
are generally considered inappropriate for making comparisons across
samples.

C o r r e c t l y  S p e c i f y i n g  t h e  R e g r e s s i o n  M o d e l

The previous section illustrated the importance of a correctly specified
regression model. If a regression model is not correctly specified, then
the predictions that are made and the coefficients that are estimated may
provide misleading results. This raises important theoretical as well as
practical questions for criminal justice research.

In criminal justice research, we can seldom say with assurance that
the models we develop include all relevant predictors of the dependent
variables examined. The problem is often that our theories are not pow-
erful enough to clearly define the factors that influence criminal justice
questions. Criminal justice is still a young science, and our theories for
explaining crime and justice issues often are not well specified. This fact
has important implications for the use of criminal justice research in de-
veloping public policy. When our predictions are weak, they do not
form a solid basis on which to inform criminal justice policies.3

One implication of our failure to develop strongly predictive models
in criminal justice is that our estimates of variable effects likely include
some degree of bias. We have stressed in this chapter the importance of
controlling for relevant predictors in regression modeling. The cost of
leaving out important causes is not just weaker prediction but also esti-
mates of variable effects that include potentially spurious components.
This fact should make you cautious in reporting regression analyses and
critical in evaluating the research of others. Just because regression coef-
ficients are reported to the fifth decimal place on a computer printout
does not mean that the estimates so obtained are solid ones.

The fact that regression models often include some degree of mis-
specification, however, should not lead you to conclude that the regres-

3Mark Moore of Harvard University has argued, for example, that legal and ethical
dilemmas make it difficult to base criminal justice policies about crime control on
models that still include a substantial degree of statistical error. See M. Moore, “Pur-
blind Justice: Normative Issues in the Use of Prediction in the Criminal Justice Sys-
tem,” in A. Blumstein, J. Cohen, A. Roth, and C. A. Visher (eds.), Criminal Careers
and “Career Criminals,” Vol. 2 (Washington, DC: National Academy Press, 1986).
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available. The researcher’s task in developing regression models is to im-
prove on models that were developed before. With each improvement,
the results we gain provide a more solid basis for making decisions
about criminal justice theory and policy. This, of course, makes the prac-
tical task of defining the correct model for the problem you are examin-
ing extremely important. How then should you begin?

Defining Relevant Independent Variables
Importantly, model specification does not begin with your data. Rather,
it starts with theory and a visit to the library or other information sys-
tems. To build a regression model, you should first identify what is al-
ready known about the dependent variable you have chosen to study. If
your interest, for example, is in the factors that influence involvement in
criminality, you will need to carefully research what others have said and
found regarding the causes of criminality. Your regression model should
take into account the main theories and perspectives that have been
raised by others.

If you do not take prior research and theory into account, then those
reviewing your work will argue that your predictions and your estimates
of variable effects are biased in one way or another. Just as the exclusion
of prior record from our example led to a misleading estimate of its im-
pact on length of imprisonment, so too the exclusion of relevant causal
factors in other models may lead to bias. The only way to refute this po-
tential criticism is to include such variables in your regression model.

Taking into account the theories and perspectives of others is the first
step in building a correctly specified regression model. However, in most
research we seek to add something new to existing knowledge. In regres-
sion modeling, this usually involves the addition of new variables. Some-
times, such new variables are drawn from an innovative change in theory.
Other times, they involve improvements in measurement. Often, the find-
ing that these new or transformed variables have an independent impact
above and beyond those of variables traditionally examined by researchers
leads to important advances in criminal justice theory and policy.

Taking into Account Ordinal- and Nominal-Scale 
Measures in a Multivariate Regression
Until now, we have assumed that ordinary least squares regression
analysis requires an interval level of measurement, both for the depen-
dent and for the independent variables. However, criminal justice re-
searchers will sometimes use this approach with ordinal-level dependent
variables when there are a number of categories and there is good rea-
son to assume that the intervals for the categories are generally similar.
In practice, you should be cautious in using OLS regression when your
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What about the inclusion of non–interval-level independent variables?
Such variables often are important in explaining criminal justice out-
comes. If we are required to include all relevant causes of Y in order to
correctly specify our model, how can we exclude ordinal- and nominal-
level measures? Fortunately, we do not have to. In multivariate regres-
sion, it is acceptable to include ordinal- and nominal-level independent
variables as long as there is at least one interval-level independent vari-
able also included in the analysis.

But even though you can include ordinal- and nominal-level variables,
you need to take into account the specific interpretation used by regres-
sion analysis for interpreting the effects of one variable on another. In-
cluding an ordinal-level measure in a multivariate regression is relatively
straightforward. This is done in Table 16.4, which presents a standard
SPSS printout for a regression analysis. The data used are drawn from a
national sample of police officers developed by the Police Foundation.4

The dependent variable in this analysis is hours worked per week. There
are two independent variables. One, years with the department, is mea-
sured at the interval level. The second, level of education, is on an ordi-

SPSS Printout for Regression Analysis of the Police Officer Example

Coefficients

Unstandardized Standardized
Coefficients Coefficients t Sig.

Model B Std. Error Beta

1 (Constant) 44.968 .749 60.031 .000

YEARS WITH �7.354E-02 .026 �.092 �2.816 .005
DEPARTMENT

LEVEL OF .456 .173 .086 2.636 .009
EDUCATION

a Dependent Variable: HOURS PER WEEK WORKED

Table 16.4

4David Weisburd et al., The Abuse of Authority: A National Study of Police Officers’ At-
titudes (Washington, DC: The Police Foundation, 2001).
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nal scale with eight levels, ranging from some high school to doctoral

regression cannot be met in the case of ordinal dependent variables, you
dependent variable is not interval level. When the assumptions of OLS 

should use ordinal regression (see Chapter 19). As will be explained
in Chapter 18, the use of OLS regression in the case of a binary dependent
variable is inappropriate.



SPSS table) are less than the conventionally applied significance level of
0.05 we would likely use in this case. This result, as in most statistical
packages, is calculated for a two-tailed test of statistical significance (gen-
erally the default option). For years with the department, we can see that
the impact is negative. When we control for the impact of level of educa-
tion, each year with the department is associated with an average de-

But what is the meaning of the effect of level of education? Here, what
we have is not an interval scale but a group of ordered categories. For the
regression, this ordinal-level scale is treated simply as an interval-level
scale. It is assumed that the categories must be roughly similar in value, or
that each level increase in that scale is related in a linear manner to the de-
pendent variable. Thus, our interpretation of this regression coefficient is
that for every one-level increase in education level, there is, on average, a
0.456 increase in the number of hours worked (once we have taken into
account years with the department). In this case, the standardized regres-
sion coefficient is very useful. It appears from the size of the coefficients

This example illustrates how we can include an ordinal-level variable
in a multivariate regression. The inclusion of an ordinal variable is
straightforward, and its interpretation follows that of an interval-level in-
dependent variable. But when we include a nominal-level variable, we
have to adjust our interpretation of the regression coefficient.

SPSS Printout for Regression Analysis 
with an Interval-Level and Nominal-Level Variable

Coefficients

Unstandardized Standardized
Coefficients Coefficients t Sig.

Model B Std. Error Beta

1 (Constant) 48.550 .977 49.672 .000

YEARS WITH �7.737E-02 .026 �.097 �2.943 .003
DEPARTMENT

RESPONDENT �1.669 .803 �.068 �2.077 .038
GENDER

a Dependent Variable: HOURS PER WEEK WORKED

Table 16.5
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hours worked per week—the observed significance levels (“Sig.” in the
degree. We can see that both of these variables have a significant impact on

crease of about 0.074 hours in number of hours worked each week.

that the overall effect of years with the department is much less than that 
of level of education. However, the standardized regression coefficients 
(represented by Beta) show that the difference between the two variables
is not large.



dependent variable and data examined in our prior example. To make
our example easier, we include only two measures in predicting number
of hours worked. Again, we have an interval-level measure, years with
the department. A binary independent variable, gender, is also included.

In regression analysis, a binary nominal-level independent variable is
generally called a dummy variable. Our first problem is to give num-
bers to this dummy variable. Multivariate regression analysis does not
recognize qualitative categories. By convention, we give one category a
value of 0 and the other a value of 1. It is generally good practice to give
the category with the largest number of cases a value of 0 because, as
we will illustrate in a moment, that category becomes the reference cate-
gory. Since this sample included many more men than women, we as-
signed men the value 0 and women the value 1.

Again, we can see that both variables have a statistically significant im-
pact on hours worked per week. The observed significance level for years
with the department is 0.003, and that for gender is 0.038. But how can
we interpret the dummy variable regression coefficient of �1.669? One
way to gain a better understanding of the interpretation of dummy vari-
able regression coefficients is to see how they affect our regression equa-
tion. Let’s begin by writing out the regression equation for our example:

Y � b0 � b1X1 � b2X2

where Y � hours worked per week
X1 � years with the department
X2 � gender of officer

As a second step, let’s insert the coefficients gained in our regression
analysis:

Y � 48.550 � (�0.077)X1 � (�1.669)X2

or

Y � 48.550 � 0.077X1 � 1.669X2

What happens if we try to write out the regression equations for men
and women separately? For men, the regression equation is

Y � 48.550 � 0.077X1 � 1.669(0)
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Table 16.5 reports the results of a regression with a single interval-
level variable and a binary nominal-level variable. We use the same



Because men are coded as 0, the second term of the equation falls out.
But what about for women? The second term in the equation is a con-
stant because all of the women have a value of 1. If we write it out, we
have the following result:

Y � 48.550 � 0.077X1 � 1.669(1) or

Y � 48.550 � 0.077X1 � 1.669

We can simplify this formula even more, because the two constants at
the beginning and the end of the equation can be added together:

Y � 46.881 � 0.077X1

What then is the difference between the regression equations for men
and women? In both cases, the slope of the regression line is given by
the term �0.077X1. The difference between the two equations lies in the
Y-intercept, as illustrated in Figure 16.1. As you can see, men and
women have parallel regression lines. However, the women’s line inter-
sects the Y-axis about 1.7 hours lower than the men’s line. This provides
us with the interpretation of our coefficient. Women police officers, on

Regression Lines for Men and Women Police OfficersFigure 16.1
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Y � 48.550 � 0.077X1

or



average, work about 1.669 hours a week less than men police officers,
taking into account years with the department.

This example also suggests why it is generally recommended that you
place the category with the largest number of cases as the 0 category of
a binary dummy variable. The category men, in this case, is the reference
category, meaning that the coefficient for gender gives us the estimate of
the female category in reference to the male category. We want our ref-
erence category to be as stable as possible, and a large number of cases
makes this category more stable.

But how can we assess the impact of a nominal variable that has
multiple categories? In fact, multiple-category nominal variables create
a good deal more complexity for the researcher than do ordinal or
binary nominal variables. In this case, you must create a separate
variable for each category in your analysis. For example, the Police
Foundation study divided the United States into four regions: North
Central, Northeast, South, and West. In practice, you would need to
create a separate variable for each of these regions. In other words,
you would define a variable North Central, which you would code 1
for all those officers in the North Central region and 0 for all other of-
ficers. You would repeat this process for each of the other regional
categories.

As with the binary independent variable, you must choose one of
the categories to be a reference category. In this case, however, the
reference category is excluded from the regression. Again, it is gener-
ally recommended that you choose as the reference category the cate-
gory with the largest number of cases.5 In our example, the largest
number of officers is drawn from the South. Suppose that we include
only one interval-level variable in our equation: years with the depart-
ment. Table 16.6 presents the results from an analysis in which years
with the department and region are used to predict number of hours
worked.

In this example, we included in the regression a single interval-level
variable and three region measures: North Central, Northeast, and West.

5There may be times when you want to choose a category that does not include the
largest number of cases as the reference. For example, if you wanted to compare a se-
ries of treatments to a no-treatment, or control, condition, it would make sense to
have the control condition as the excluded category, even if it did not include the
largest N. However, if the excluded category has a small number of cases, it may lead
to instability in the regression estimates.
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While South is not included as a variable, it is in fact the reference 



Y � b0 � b1X1 � b2X2 � b3X3 � b4X4

where Y � hours worked per week
X1 � years with department
X2 � North Central
X3 � Northeast
X4 � West

Using the results for this model presented in Table 16.6, we can write
the results in equation form as follows:

Y � 47.654 � 0.061X1 � 2.335X2 � 1.758X3 � 0.846X4

In this case, we can also write out a separate regression equation for
each of the four regions. Since the South is our reference category,
those from the South are coded 0 on the three included variables.
Thus, our equation is simply the Y-intercept and the variable years
with the department. For officers from the North Central region, 
the equation includes the Y-intercept, b1X1, and b2X2. The other para-
meters are set to 0, since those in the North Central region have 0 val-
ues on X3 and X4. Similarly, for both the Northeast and the West, only

SPSS Printout for Regression Analysis 
with Multiple-Category Nominal Variable

Coefficients

Unstandardized Standardized
Coefficients Coefficients t Sig.

Model B Std. Error Beta

1 (Constant) 47.654 .470 101.435 .000

YEARS WITH �6.138E-02 .026 �.077 �2.352 .019
DEPARTMENT

NORTH CENTRAL �2.335 .610 �.141 �3.825 .000

NORTHEAST �1.758 .573 �.114 �3.067 .002

WEST �.846 .616 �.050 �1.372 .170

a Dependent Variable: HOURS PER WEEK WORKED

Table 16.6
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category. If we again write out our regression equation, we can see why 
this is the case:



one of the three dummy variables is included. For each equation, 
we can once again add the constant for the dummy variable to the 
Y-intercept:

Officers from the South:

Y � 47.654 � 0.061X1

Officers from the North Central:

Y � 47.654 � 0.061X1 � 2.335X2 or Y � 45.319 � 0.061X1

Officers from the Northeast:

Y � 47.654 � 0.061X1 � 1.758X3 or Y � 45.896 � 0.061X1

Officers from the West:

Y � 47.654 � 0.061X1 � 0.846X4 or Y � 46.808 � 0.061X1

Once again, we can gain a better conceptual understanding of our re-
sults if we plot them, as in Figure 16.2. In this case, each of the included
categories is found to have a Y-intercept lower than that of the excluded

Plot of Hours Worked and Years with Department, by RegionFigure 16.2
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category, the South. This means that, on average, officers work fewer
hours in all of the other regions. The least number of hours worked per
week is found in the North Central region. Here, officers work, on aver-
age, about 2.335 hours less than they do in the South, once we have
taken into account years with the department. In the Northeast, officers
work about 1.758 hours less and in the West about 0.846 hour less a
week.

Are these differences statistically significant? It is important to note
that the significance statistic reported for each coefficient tells us only
whether the category is significantly different from the reference cate-
gory. This is one reason it is so important to be clear about the definition
of the reference category. In our example, the North Central and North-
east regions are significantly different from the South, using a 5% signifi-
cance threshold and a two-tailed significance test (the default option in
SPSS). The West, however, is not significantly different from the South,
using this threshold.

If you wanted to determine whether region overall as a variable
had a statistically significant impact on hours worked per week, you
would have to run an additional significance test based on the F-test
for the regression model, introduced in Chapter 15. The F-test for mul-
tiple-category dummy variables in regression compares the R 2 statistic
gained with the dummy variables included in the regression to the R 2

statistic gained without those variables. In practice, you must run two
separate regressions, although most computer programs now provide
this statistic directly. First, you calculate the regression without the
new dummy variable categories (referred to as the reduced model)
and identify its R 2. In our case, the regression without the dummy
variables produces an R 2 of only 0.008. You then compute the regres-
sion with the dummy variables, as we did earlier (referred to as the
full model). In this case, R 2 is 0.023. The F-test formula is presented in
Equation 16.4.

Equation 16.4

To apply Equation 16.4 to our example, we first subtract the R 2 of the
reduced model from the R 2 of the full model and then divide
this quantity by the number of variables in the full model (k fm) minus the
number of variables in the reduced model (k rm), which is 3. The denom-
inator is found by subtracting the R 2 of the full model from 1, and then
dividing this quantity by N � k fm � 1. For this sample, N is 923 and k fm

is 4. Our final result is F � 4.55. Looking at the F-distribution (see

(R 2
fm)(R 2

rm)

F � 
(R 2

f m � R 2
rm)/(k fm � k rm)

(1 � R 2
fm)/(N � k fm � 1)
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C H A P T E R

Appendix 5) with 3 and 918 degrees of freedom, we can see that our re-
sult is statistically significant at the 0.05 level.

W orking It Out

 � 4.5455

 � 
(0.015/3)

(0.977/918)
 � 

0.005
0.0011

 � 
(0.023 � 0.008)/(4 � 1)

(1 � 0.023)/(923 � 4 � 1)

 F � 
(R 2

fm � R 2
rm)/(k fm � krm)

(1 � R 2
fm)/(N � k fm � 1)

One final question we might ask is whether we can use the standard-
ized regression coefficient to compare dummy variables to ordinal- and
interval-level measures. In general, statisticians discourage such use of
standardized regression coefficients, since they are based on standard de-
viations and the standard deviation is not an appropriate statistic for a
nominal-level variable. Additionally, for a nominal-level variable, the
standardized regression coefficient refers only to the difference between
the reference category and the dummy variable category examined. This
may sometimes make sense in the case of a binary dummy variable, since
we can say that one category is Beta standard deviations higher or lower
on the dependent variable. But it can be extremely misleading in the case

The size of the standardized regression coefficient, like the size of the co-
efficient itself, will depend on which category is excluded. In general,
you should exercise caution when interpreting standardized regression
coefficients for dummy variables in a multivariate regression analysis.

of multi-category nominal-level variables, such as region in our example.

C h a p t e r  S u m m a r y

In a bivariate regression model, there is only one independent vari-
able, and it must be an interval-level measure. Importantly, the re-
searcher can rarely be sure that the change observed in the dependent
variable is due to one independent variable alone. And if variables that
have an impact on the dependent measure are excluded, the predictions

S U M M A R Y 485



related to the included factor, then the estimate of b for the included fac-
tor will also be biased. Randomized experiments, which scatter differ-
ent traits at random, offer a solution to the latter problem, but they are
often impractical in criminal justice research. A statistical solution that
enables us to correct for both types of bias is to create a multivariate
regression model.

In a multivariate regression model, there may be several independent
variables, only one of which needs to be interval level. Such a model
considers the effect of each independent variable, while holding all the
other variables constant. A binary nominal-level variable included in a
regression model is called a dummy variable. Regression coefficients
measured using different scales may be compared with a standardized
regression coefficient (Beta). A regression model is correctly speci-
fied if the researcher has taken into account and correctly measured all
of the relevant predictors of the dependent variable. Existing literature
and prior research are suitable places to start.

K e y  T e r m s

biased Describing a statistic when its esti-
mate of a population parameter does not
center on the true value. In regression
analysis, the omission of relevant indepen-
dent variables will lead to bias in the esti-
mate of Y. When relevant independent vari-
ables are omitted and those measures are
related to an independent variable included
in regression analysis, then the estimate of
the effect of that variable will also be biased.

correctly specified regression model A
regression model in which the researcher
has taken into account all of the relevant
predictors of the dependent variable and
has measured them correctly.

dummy variable A binary nominal-level
variable that is included in a multivariate
regression model.

multivariate regression A technique for
predicting change in a dependent variable,
using more than one independent variable.

randomized experiment A type of study
in which the effect of one variable can be
examined in isolation through random allo-
cation of subjects to treatment and control,
or comparison, groups.

standardized regression coefficient
(Beta) Weighted or standardized estimate
of b that takes into account the standard
deviation of the independent and the de-
pendent variables. The standardized regres-
sion coefficient is used to compare the ef-
fects of independent variables measured on
different scales in a multivariate regression
analysis.
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S y m b o l s  a n d  F o r m u l a s

k Number of independent variables in the overall regression model

Correlation coefficient for Y and X1

Correlation coefficient for Y and X2

Correlation coefficient for X1 and X2

sY Standard deviation for Y

Standard deviation for X1

R 2 obtained for the full regression model

R 2 obtained for the reduced regression model

k fm Number of independent variables in the full regression model

k rm Number of independent variables in the reduced regression model

To calculate a multivariate regression coefficient for two independent
variables:

and

A sample multivariate regression model with three independent variables:

0 � b1X1 � b2X2 � b3X3 � e

A population multivariate regression model with three independent
variables:

Y � �0 � �1X1 � �2X2 � �3X3 � �

To calculate the standardized coefficient (Beta):

Beta � b�sX

sY�

b  � �r )

1 � �� sY

s �

b
1
 � �rY,X1

 � (rY,X2
rX1,X2

)

1 � r 2
X1,X2

�� sY �

R  

2
rm

R  

2
fm

sX1

rX1,X2

rY,X2

rY,X1

Y,

Y � b

Y,
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x

x 2
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X1,X2
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X1

2X
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To calculate an F-test on a subset of variables in a regression model:

E x e r c i s e s

16.1 Consider the following regression model, which purports to predict
the length of sentence given to convicted thieves:

Y � b0 � bX � e

where Y � length of sentence

X � number of prior sentences

a. List the variables you might wish to include in a more comprehen-
sive model. Include a brief statement about why each additional
variable should be included.

b. Present your model in equation form.

16.2 In an article in the newspaper, a researcher claims that low self-
esteem is the cause of crime. Upon closer inspection of the results in
the paper, you learn that the researcher has computed a bivariate
model using self-reported theft as the dependent variable (Y ) and self-
esteem as the one independent variable (X ).

a. List the variables you might wish to include in a more comprehen-
sive model. Include a brief statement about why each additional
variable should be included.

b. Present your model in equation form.

16.3 A researcher has built a multivariate regression model to predict the
effect of prior offenses and years of education on the length of sen-
tence received by 100 convicted burglars. He feeds the data into a
computer package and obtains the following printout:

Dependent Variable (Y): Length of Sentence (months)

Independent Variable (X1 ): Number of Prior Offenses

Independent Variable (X2 ): Years of Education

F sig � 0.018

R Square � 0.16

X1 : b � �0.4 Sig t � 0.023

X2 : b � �0.3 Sig t � 0.310

Evaluate the results, taking care to explain the meaning of each of the
statistics produced by the computer.

F � 
(R 2

fm � R 2
rm)/(k fm � krm)

(1 � R 2
fm)/(N � k fm � 1)
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16.4 An analysis of the predictors of physical violence at school produced
the following results:

Independent Variable b Beta

Age (Years) 0.21 0.05
Sex (Female � 1, Male � 0) �3.78 0.07

�1.34 0.06
1.96 0.33
3.19 0.24
2.05 0.27

Explain what each regression coefficient (b) and standardized regres-
sion coefficient (Beta) means in plain English.

16.5

explain variations in the amount of drugs seized per month and
runs a regression analysis to check the effect of his independent
variable—the total number of customs officers on duty for each

coefficient is �4.02. Danny is worried, however, that his bivariate
model might not be correctly specified, and he decides to add
another variable—the number of ships that arrive at the port each
month. He calculates the correlations between the three pairs of
variables, and the results are as follows:

Y (drugs seized), X1 (customs officers): �0.55

Y (drugs seized), X2 (ships arriving): �0.60

X1 (customs officers), X2 (ships arriving): �0.80

The standard deviations for the three variables are 20 kg (quantity of
drugs seized per month), 1.6 (number of customs officers on duty),
and 22.5 (number of ships arriving).

a. Calculate the regression coefficient for customs officers.

b. Calculate the regression coefficient for ships arriving.

c. How do you account for the difference between your answer to
part a and the regression coefficient of �4.02 that Danny obtained
earlier?

16.6 A study of prison violence examined the effects of two independent
variables—percent of inmates sentenced for a violent crime (X1) and
average amount of space per inmate (X2)—on the average number of
violent acts per day (Y ). All variables were measured for a random

Race (White � 1, Non-white � 0)

month—on the quantity of drugs seized. The resulting regression

Number of Friends Arrested

Danny has obtained figures on the amount of drugs seized per

Number of Times Attacked by Others

month at a seaport over the course of two years. He wishes to
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selection of cell blocks in three prisons. The researcher reported the
following results:

a. Calculate the regression coefficients for the effects of X1 and X2 on
Y. Explain what these coefficients mean in plain English.

b. Calculate the standardized regression coefficients for the effects 
of X1 and X2 on Y. Explain what these coefficients mean in plain
English.

c. Which one of the variables has the largest effect on prison vio-

16.7 A study of recidivism classified offenders by type of punishment re-
ceived: prison, jail, probation, fine, or community service. A re-
searcher interested in the effects of these different punishments ana-
lyzes data on a sample of 967 offenders. She computes two regression
models. In the first, she includes variables for age, sex, race, number
of prior arrests, severity of the last conviction offense, and length of
punishment. The R 2 for this model is 0.27. In the second model, she
adds four dummy variables for jail, probation, fine, and community
service, using prison as the reference category. The R 2 for this model
is 0.35. Explain whether the type of punishment had an effect on re-
cidivism (assume a 5% significance level).

16.8 A public opinion poll of 471 randomly selected adult respondents
asked about their views on the treatment of offenders by the courts.
Expecting race/ethnicity to be related to views about the courts, a re-
searcher classifies respondents as African American, Hispanic, and
white. To test for the effect of race/ethnicity, he computes one regres-
sion using information about the age, sex, income, and education of
the respondents and finds the R 2 for this model to be 0.11. In a sec-
ond regression, he adds two dummy variables for African American
and Hispanic, using white as the reference category. The R 2 for this
second model is 0.16. Explain whether the race/ethnicity of the re-
spondent had a statistically significant effect on views about the courts
(assume a 5% significance level).

 sX2
 � 2.64

 sX1
 � 10.52

 sY � 0.35

 rX1,X2

 rY,X2

 rY,X1
 � 0.20

 � 0.20

lence? Explain why.

 � 0.20
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C o m p u t e r  E x e r c i s e s
Multivariate Regression Analysis

In Chapter 15, we explored the basic features of the regression command in
SPSS in the computation of a bivariate regression model. To compute a mul-
tivariate regression model, we simply add additional independent variables
to the independent variables box. The following exercises illustrate some of
the additional features of the regression command.

Standardized Regression Coefficients (Betas)

The standardized regression coefficients (Betas) are part of the standard out-
put for SPSS’s regression command. In the table of results presenting the coef-
ficients, the standardized coefficients are located in the column following
those presenting the values for the regression coefficients (b) and the standard
errors of b. Nothing else is required to obtain the standardized coefficients.

F-Test for a Subset of Variables

There are two ways to obtain an F-test on a subset of variables in SPSS, nei-
ther of which is particularly convenient. The only direct way to obtain an F-
test on a subset of variables requires use of SPSS syntax—the SPSS program-
ming language. Since we have focused on the use of menus in SPSS, we will
not discuss this command. However, should you have an interest in pursu-
ing this option through the use of the syntax language, assistance is avail-
able through the SPSS help command.

You can obtain all the information you need for an F-test in a relatively
straightforward manner, however, and then enter the values into Equation
16.4. The process involves entering what SPSS refers to as blocks of variables.
When you are prompted for independent variables, note the reference to
“Block 1 of 1” above the independent variables box. To obtain the R2 results
needed for an F-test, you begin by entering the variables in the reduced
model into the first block of variables. After entering these variables into the
independent variable list, you click on the “Next” button to enter a second
block of variables. Your second group of variables (i.e., the second block of
variables), which might include a group of dummy variables indicating a mul-
ticategory nominal variable, is entered into the independent variables box.

After you click on “OK” to run the regression command with two blocks
of independent variables, note that the output window now contains ex-
panded tables for Model Summary, ANOVA, and Coefficients. In the first
row of each table, you will find the results for the reduced model: the model
with only the variables entered in the first block of independent variables.
The second row of each table presents the results for the full model.

To calculate an F-statistic for a subset of variables, use the values for R 2

presented in the Model Summary table. The R 2 for the reduced model (i.e.,
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Residual Analysis

It is also possible with the regression command to analyze residuals in ways
ranging from simple to complex. Perhaps the most straightforward way of
analyzing residuals is graphically, through the use of a residual plot that
SPSS can produce. To obtain this graph, click on the “Plots” button in the 

with several different ways of graphing residuals. The most straightforward
plot is listed in the lower left corner of this window under “Standardized
Residual Plots.” The “Histogram” option will generate a simple histogram of
residuals for your analysis and overlay a normal curve so that you can see
how closely the residuals approximate a normal distribution. If the residuals
do not resemble a normal distribution, this is often an indication of a prob-
lem with the regression model, such as one or more relevant independent

1. Enter the data from Table 16.2. Run the regression command to repro-
duce the unstandardized and standardized regression coefficients pre-
sented in this chapter.

Compute two bivariate regression models, using years in prison as the
independent variable in one regression and prior arrests as the inde-
pendent variable in the second regression. Generate a histogram of
the residuals for each regression model. What does the pattern of re-
sults in this plot suggest to you about the distribution of error terms?

residuals for this regression model. How has the pattern of error

Open the nys_1.sav data file into SPSS to do Exercises 2 through 5.

2.
student hit other students as the dependent variable. From the vari-
ables included in the data file, select at least five independent vari-
ables that you think have some relationship to hitting other students.

) is given in the first row, and the R 2 for the full model (i.e., ) is given
in the second row. The numbers of independent variables in the two models
(kfm and k rm) are indicated by the df for the regression model and presented
in the ANOVA table. The sample size used in the analysis is given by adding
1 to the total df given in the ANOVA table. You would then enter these val-
ues into Equation 16.4 to calculate the value of F.

R 

2
fmR 

2
rm

a.

b. Compute the multivariate model, and generate a histogram of the

terms changed relative to the two histograms produced in part a?

a. Explain what each regression coefficient (b) and standardized 

Compute a multivariate regression model, using number of times the

regression coefficient (Beta) means in plain English.

b. Generate a histogram of the residuals for this regression model.
What does the pattern of results in this plot suggest to you about
the distribution of error terms?
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regression window. In the new window that opens, you will be presented

Problems

variables having been omitted from the analysis.



3. Compute a multivariate regression model, using number of times
something worth $5 or less has been stolen as the dependent variable.
From the variables included in the data file, select at least five inde-
pendent variables that you think have some relationship to stealing
something worth $5 or less.

b. Generate a histogram of the residuals for this regression model.
What does the pattern of results in this plot suggest to you about
the distribution of error terms?

4. Compute a multivariate regression model, using number of times the
student cheated on exams as the dependent variable. From the vari-
ables included in the data file, select at least five independent vari-
ables that you think have some relationship to cheating on exams.

b. Generate a histogram of the residuals for this regression model.
What does the pattern of results in this plot suggest to you about
the distribution of error terms?

5. Compute a multivariate regression model, using number of times
drunk as the dependent variable. Use age, sex, race, employment sta-
tus, hours spent studying per week, grade point average, and number
of friends who use alcohol as the independent variables.

a. Use an F-test to test whether demographic characteristics—age, sex,
and race—affect drinking behavior.

b. Use an F-test to test whether academic characteristics—hours spent

a. Explain what each regression coefficient (b) and standardized
regression coefficient (Beta) means in plain English.

a. Explain what each regression coefficient (b) and standardized
regression coefficient (Beta) means in plain English.
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behavior.
studying per week and grade point average—affect drinking
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C h a p t e r  s e v e n t e e n

Multivariate Regression:

Additional Topics

N o n - l i n e a r  r e l a t i o n s h i p s

What are They?

How are They Included in Regression Models?

How are They Interpreted?

I n t e r a c t i o n  e f f e c t s

What are They?

How are They Included in Regression Models?

How are They Interpreted?

M u l t i c o l l i n e a r i t y

When Does It Arise?

How is It Diagnosed?

How is It Treated?



IN THE PREVIOUS CHAPTER we extended the bivariate regression approach
by showing how we could include multiple independent variables simulta-
neously in a single model. We illustrated how we incorporate variables
measured not only at the interval level of measurement, but also nominal
and ordinal independent variables, into a regression model. While the mod-
els we have examined so far allow us to approximate linear relationships
between various independent variables and the dependent variable, in the
real world we are sometimes confronted with more complex research ques-
tions that require us to make additional modifications to our model.

For example, in the OLS regression model, our interpretation of the coef-
ficients is based on the notion that there is a linear relationship between the
independent and the dependent variable. But what if we find evidence of
a curvilinear relationship? Or, theory suggests that there may be a non-linear
relationship between two variables? Although the OLS regression model is
based on the assumption of a linear relationship between the dependent
and each of the independent variables, non-linear relationships can be
incorporated into an OLS regression model in a straightforward manner.

Another issue in the application of OLS regression is that the interpre-
tation of the coefficients is based on the idea that each independent vari-
able has a constant effect irrespective of the levels of other independent
variables. For example, if we include a dummy variable we assume that
the effect of every other independent variable is the same for men and
women. But what if there was a good theoretical or policy reason to sus-
pect that the effect of some variable was different for men and women?
How would we incorporate that into our model? In the statistical litera-
ture, these are known as interaction effects, and they allow us to test
whether the effects of specific independent variables in a regression model
vary by the level of other independent variables.

In this chapter we also introduce an important problem that
researchers sometimes face when estimating multivariate regression mod-
els. We have emphasized so far that researchers must include all relevant
independent variables in a model if it is to be correctly specified. Correct
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model specification, in turn, is necessary to avoid bias in regression models.
But sometimes the inclusion of multiple independent variables can lead
to a problem we term multicollinearity which is likely to lead to esti-
mation of unstable regression coefficients. Multicollinearity refers to the
situation where independent variables are very highly correlated with
each other, which then makes it very difficult for OLS regression to deter-
mine the unique effects of each independent variable.

N o n - l i n e a r  R e l a t i o n s h i p s

Policy-oriented research focused on the severity of punishment for convict-
ed offenders illustrates that as the severity of an offender’s prior record and
the severity of the conviction offense increase, the severity of the punish-
ment tends to increase.1 In the interpretation of OLS regression results, we
would say something, for example, about how each one unit increase in
the severity of an offender’s prior record results in the length of a sentence
increasing by some fixed time period (e.g., 8 months). Key to the interpre-
tation of OLS regression coefficients is the idea that the level of the inde-
pendent variable does not matter – each unit change is expected to result
in the same change in the dependent variable regardless of whether we are
looking at small or large values on the independent variable. What if this is
not always the case?

For example, an assumption often made in research on sentencing out-
comes, but rarely examined, is the idea that first-time offenders (i.e., those
with no prior record) or those offenders convicted of relatively minor
forms of crime will be punished much more leniently than other offenders.
Then, as the severity of prior record or of conviction offense increase,
there is an expectation of an increasingly punitive response by the crimi-
nal justice system. Put another way, there is an expectation of a non-linear
relationship between the severity of the conviction offense or the offender’s
prior record and the severity of punishment – changes in the level of the
dependent variable may vary by the level of the independent variable.
Figure 17.1 presents a hypothetical plot for punishment severity and
prior criminal history that reflects increasingly harsher punishments for
offenders with more extensive criminal records.

As can be seen in the figure, there is a gradual increase in the severi-
ty of the punishment as the severity of the prior record increases. Then,
the increases in the severity of the punishment become larger for the same
unit increase in prior criminal history.

The range of potential non-linear relationships is limitless and is
bounded only by the imagination and creativity of the researcher and the
theoretical basis for conducting the research. Yet, while there may be a
wide range of possible non-linear relationships, most researchers will con-
fine their analyses to a relatively limited group of non-linear possibilities,

496 C H A P T E R S E V E N T E E N : M U L T I V A R I A T E R E G R E S S I O N

1 Michael H. Tonry, Sentencing Matters (New York, Oxford University Press, 1996).
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some of which are displayed in Figure 17.2. Panel (a) presents what is
referred to as a quadratic equation. All that this means is that a squared
term has been added to the equation to give it a form such as Y = X + X2.
The quadratic equation is one of the more commonly used transforma-
tions in criminology and criminal justice, and has had frequent applica-
tion in the study of age-related behavior.

Panel (b) presents an inverse function of the form Y = 1/X. This kind
of transformation helps to capture relationships where there is a decreasing
negative effect of the independent variable on the dependent variable.

Prior Criminal History
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Figure 17.1 Hypothetical Non-linear Relationship Between Punishment Severity and Prior Criminal
History

X

Y

Figure 17.2 Common Non-linear Relationships Used in Criminal Justice Research

(a) Quadratic
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Panel (c) presents a square root transformation of the form Y = X. This
kind of transformation is useful when there is a diminishing positive
impact of the independent variable on the dependent variable.

Finding a Non-linear Relationship: Graphical Assessment
Perhaps the most straightforward way of exploring data for a non-linear
relationship is to use a line graph (see Chapter 3). A simple scatterplot 
(discussed in Chapter 14) will often contain so many data points that it is
difficult, if not impossible, to discern any pattern in the data. A line graph
that plots the mean of the dependent variable against the value of the

X

Y

(b) Inverse

Figure 17.2 Continued

X

Y

(c) Square Root
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Figure 17.3 Plot for Mean Length of Sentence by Offense Severity for Offenders in Pennsylvania

independent variable will likely provide a rough indication of the nature of
the bivariate relationship between the two variables. For example, Figure 17.3
presents the mean for length of sentence against the severity of the convic-
tion offense for over 20,000 offenders sentenced in Pennsylvania in 1998.2

As you look at Figure 17.3, you can see that there is a gradual, linear
increase in length of sentence as offense severity increases to about level
6 to 7. At that point, the increases in sentence length become larger for each
additional increase in offense severity. To highlight the curvilinear nature of
the relationship between offense severity and length of punishment, the
OLS regression line for these data is overlayed in Figure 17.3, indicating that
the straight-line relationship does not capture the relationship between
length of sentence and severity of offense particularly well.

Incorporating Non-linear Relationships into an OLS Model
Assuming that we have good reason for assuming that a non-linear
relationship exists between the dependent variable and one or more of
the independent variables, how do we incorporate this information into

2 These data are available through the National Archive of Criminal Justice Data and can
be accessed at http://www.icpsr.umich.edu/NACJD



the OLS regression model? The first step, as noted above, is to try and
gain a sense of the relationship graphically. In most circumstances, if the-
ory suggests or if we find evidence of a curvilinear relationship, the most
straightforward approach is to add a quadratic term – the squared value of
the independent variable – such as that in Panel (a) of Figure 17.2. More
formally, a quadratic regression equation would have the following form:

Y = b0 + b1X1 + b2X1
2

where Y represents the dependent variable
X1 represents the independent variable

In our example presented in Figure 17.3, we have evidence of a curvi-
linear relationship that might be accounted for by adding a squared term
for offense severity to a regression equation. We begin by noting that the
OLS regression line portrayed in Figure 17.3 is

Y = −9.85 + 4.62 X1

where Y represents length of sentence (in months)
X1 represents offense severity

To incorporate a non-linear relationship, we begin by transforming the
variable – in this case offense severity – and then add this transformed
variable to the regression equation. In most statistical software packages
this would simply involve the creation of a new variable which represents
the original variable squared. When we square offense severity and add
it to the regression equation, we obtain the following equation:

Y = b0 + b1X1 + b2 (X1 * X1) = b0 + b1X1 + b2X1
2.

If we then estimate this new regression equation that includes both the
original measure of offense severity and the squared value of offense
severity, we obtain the following results:

Y = 7.07 − 3.99 X1 + 0.77 X1
2

Substantively, this regression equation captures the curvilinear rela-
tionship between offense severity and sentence length much better than
a straight-line relationship, since there are increasingly larger increases in
sentence length for each unit change in offense severity. Figure 17.4
presents the mean sentence length by offense severity (similar to that in
Figure 17.3) along with the new regression line based on including the
quadratic term.

Interpreting Non-linear Coefficients
In many practical applications of adding non-linear terms to OLS regres-
sion models, there is often less emphasis on the interpretation of the indi-
vidual coefficients that represent transformed variables. The reason for
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this is the difficulty in making sense of individual coefficients. For example,
in the example using the data on offenders sentenced in Pennsylvania, the
coefficient for the squared value of offense severity is given as 0.77. Like
any other OLS coefficient, this coefficient can be interpreted in the con-
text of one unit changes of the transformed variable:

For each one unit increase in the squared value of offense severity, the length
of sentence is expected to increase by 0.77 months.

Unfortunately, this kind of interpretation tends not to have much intu-
itive meaning for most people – researchers and others. Consequently, the
description of results using non-linear transformations in OLS regression
models will often focus on the general pattern of results, rather than on
the specific coefficients. This is not entirely satisfactory, however, because
it still leaves the reader wondering whether the transformation added
much to the analysis. Our suggestion is to use graphs, such as that pre-
sented in Figure 17.4, which do provide an effective way to convey evi-
dence of a non-linear relationship between the dependent and inde-
pendent variables. What makes this kind of plot particularly useful is that
it conveys both the pattern in the observed data and the predicted values
based on the estimated regression model.

Note on Statistical Significance
Estimating statistical significance for a non-linear term does not present any
new problem to our understanding of multivariate regression. The statisti-
cal significance of both the individual coefficients and the overall model 
in an OLS regression model incorporating non-linear terms is determined
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in the same way as for any other OLS regression model. For individual
coefficients, we use the t-test and for the overall model, we use the F-test.

Summary
How does one know whether to include a non-linear term in a regression
model? In light of the many different non-linear relationships that are pos-
sible – we could transform any number of our independent variables in
an OLS regression model – how do we settle on an appropriate model?
The single best guide for the researcher is prior theory and research. If a
theoretical perspective claims a non-linear relationship or prior research
has established a non-linear relationship between two variables, then the
researcher may want to examine a non-linear relationship in the regres-
sion analysis. Without the guidance of theory and prior research, the
researcher is better off using an OLS model without any non-linear 
relationships included. If subsequent analyses, such as a residual analysis
(discussed in Chapter 16) indicate a non-linear relationship, then some
kind of transformation of an independent variable may be in order.

I n t e r a c t i o n  E f f e c t s

A number of different theories of crime and delinquency make statements
about how the effect of one variable will vary by the level of some other
variable. A perspective known as general strain theory hypothesizes that
the effects of psychological strain (e.g., having one’s parents file for
divorce) on delinquency will vary by the ability of a youth to adapt to
strain.3 For example, if an individual characteristic, such as self-esteem,
helps individuals to adapt to various forms of strain, then the effect of that
strain may vary by the level of self-esteem: as the level of self-esteem
increases, the effect of strain on the chances of delinquency may become
smaller. Alternatively, research on criminal justice decision-making has
suggested that the effects of offender characteristics, such as the offend-
er’s age, may differentially affect the severity of punishment across differ-
ent racial or ethnic categories.4

Assuming that we have a rationale for including an interactions effect,
how do we incorporate it into our regression model? Let us begin with a
simple regression model that has two independent variables X1 and X2.

Y = b0 + b1X1 + b2X2 + e

3 R. Agnew, 1992, Foundation for a general strain theory of crime and delinquency,
Criminology, 30, 47-87.
4 D. Steffensmeier, J. Kramer, and J. Ulmer, 1995, Age differences in sentencing,
Justice Quarterly, 12, 583-602.



To add an interaction effect to a regression model, all that we need to
do is to compute the product of the two variables: X1*X2 = X3. We then
add this term to the regression equation:

Y = b0 + b1X1 + b2X2 + b3X3 + e

Where X3 = X1*X2

Note that we now have an additional regression coefficient (b3) in the
model that represents the interaction of the variables X1 and X2, which we
will need to interpret. The interpretation of interaction effects can be quite
complicated, with the degree of complexity based on the level of meas-
urement of the two variables.

Interaction of a Dummy Variable and Interval-Level Variable
To illustrate the process of interpreting interaction effects, it is useful to
begin with a relatively simple case: the interaction of a dummy variable with
a variable measured at the interval level of measurement. In the regression
model above, let us assume that X2 is a dummy variable, where the
two categories are coded as either 0 or 1.

It is now possible to work through a series of regression equations,
much like we did in the previous chapter in our discussion of dummy
variables, by inserting different values for X2. Note that the key difference
is we now have more than one place where we need to insert values for
the dummy variable.

If we set the value for X2 = 1, we have the following regression equation:

Y = b0 + b1X1 + b2X2 + b3(X1*X2) = b0 + b1X1 + b2(1) + b3 (X1*1)

Which reduces to:

Y = b0 + b1X1 + b2 + b3X1

By rearranging our terms, we can rewrite the regression equation as:

Y = (b0 + b2) + b1X1 + b3X1 = (b0 + b2) + (b1 + b3)X1

As in the previous chapter, we see that when we focus our attention
on the category with the value 1, the model intercept changes by the
value of the coefficient for that variable (i.e., b2). What is different in the
above equation is that the effect of variable X1 is now the sum of two dif-
ferent regression coefficients: the original coefficient for X1 (i.e., b1) and
the coefficient for the interaction term (i.e., b3).

How do we now interpret the effect of X1? After summing the two
regression coefficients b1 and b3, we would say that for cases that had a
value of 1 on X2 (i.e., the cases were in Group 1), for each one unit
increase in X1, Y is expected to change by b1 + b3 units.
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When we set the value for X2 = 0 (the reference category for our dummy
variable – Group 0), we now have the following regression equation:

Y = b0 + b1X1 + b2(0) + b3 (X1*0)

Which reduces to:

Y = b0 + b1X1

This indicates that the model intercept (b0) and coefficient for X1 (b1)
represent the intercept for the reference category on X2 and the effect of
X1 for cases in the reference category, respectively.

To make the example more concrete, suppose that after estimating this
regression equation, we find the following results:

b0 = 2.5
b1 = 3.2
b2 = 1.9
b3 = 1.3

By inserting the values for the regression coefficients into the regres-
sion equation, we have the following:

Y = 2.5 + 3.2 X1 + 1.9 X2 + 1.3 (X1*X2)

For X2 = 1, we have the following:

Y = 2.5 + 3.2 X1 + 1.9 (1) + 1.3 (X1*1) 
= (2.5 + 1.9) + (3.2 + 1.3) X1

= 4.4 + 4.5 X1

And for X2 = 0, we have:

Y = 2.5 + 3.2 X1 + 1.9 (0) + 1.3 (X1*0) = 2.5 + 3.2 X1

The interpretation of the effect of X1 is straightforward, but we need to
make sure that we are clear about the group for which we are interpret-
ing the effect of X1. Thus, for X2 = 1, for each one unit increase in X1, we
expect Y to increase by 4.5 units. When X2 = 0, for each one unit increase
in X1, Y is expected to increase by 3.2 units. Substantively, this type of
result would allow a researcher to say that the effect of X1 varied across
the groups measured in X2. As a visual aid to understanding these results,

X2 = 0 is represented by the dashed line and group X2 = 1 is represented
by the solid line.

Up to this point, we have assumed that all of the coefficients are positive.
Figure 17.6 presents several additional possibilities for various combinations
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we have presented the two regression lines in Figure 17.5, where group
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X2 = 1

Figure 17.5 Regression Lines for the Interaction of X1 and X2

of positive and negative values for b1 and b3 (we assumed that b0 and b2

were positive in each plot). (Keep in mind that b1 represents the effect of X1

for the reference category of the dummy variable and b3 represents the value
of the interaction effect.) Panel (a) is comparable to the preceding example,
where b1 and b3 are both positive. Panel (b) illustrates a hypothetical exam-
ple when b1 is positive and b3 is negative. Panels (c) and (d) illustrate pos-
sible patterns when b1 is negative and b3 is positive (panel (c)) or negative
(panel (d)). Clearly, there are many other possibilities, but we wanted to pro-
vide a few illustrations for different patterns that researchers have had to
address in their analyses.

A n  E x a m p l e :  R a c e  a n d  P u n i s h m e n t  S e v e r i t y

Suppose that we are interested in testing whether the severity of a crimi-
nal offense differentially affects the length of time offenders are sentenced
to prison by race. Put another way, does the severity of the conviction
offense affect the severity of punishment in the same way for offenders
of different races? We again use data on the sentences of over 20,000
offenders sentenced to prison in Pennsylvania in 1998 to illustrate the
test for an interaction effect between severity of offense and race of
offender. To simplify our model here, we measure race as a dummy vari-
able (0 = white, 1 = African American). Offense severity is scored by the
Pennsylvania Sentencing Commission and has values ranging from 1 to 14
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and sentence length is measured in months sentenced to prison. The
regression model we set out to test can be written as:

Y = b0 + b1 X1 + b2 X2 + b3 X1*X2

where Y represents length of sentence (in months)
X1 represents offense severity
X2 represents race

When we estimate this regression model, we produce the following set
of results:

Y = −8.14 + 4.12 X1 − 5.41 X2 + 1.31 X1*X2

Using the same approach as above, we begin by focusing on African
Americans (X2 = 1):

Y = −8.14 + 4.12 X1 − 5.41 (1) + 1.31 (X1*1)
= (−8.14 − 5.41) + (4.12 + 1.31) X1

= −13.55 + 5.43 X1

For whites, the equation is:

Y = −8.14 + 4.12 X1 − 5.41 (0) + 1.31 (X1*0)
= −8.14 + 4.12 X1

Substantively, we can now directly interpret the effect of offense sever-
ity for white and African American offenders separately. Among white
offenders, each one unit increase in offense severity, is expected to
increase sentence length by 4.12 months, while for African American
offenders, each one unit increase in offense severity is expected to
increase sentence length by 5.43 months. More succinctly, these results
suggest that the effect of offense severity on punishment severity is greater
for African American offenders than for white offenders. These results are
presented graphically in Figure 17.7. The dashed line reflects the slope for
offense severity on sentence length for white offenders, while the solid line
reflects the effect for African American offenders. As one moves further out
the x-axis to greater values for offense severity, there is an increasingly
greater effect for African American offenders compared to white offenders.

Interaction Effects between Two Interval-level Variables
Up to this point, our attention has been focused on interaction effects
involving one variable measured at the interval level of measurement and
one dummy variable measured at the nominal level of measurement. 
The inclusion of an interaction effect between two interval-level variables
in a regression model is done in exactly the same way – we compute a
product of the two variables and add the product to the regression equa-
tion. The interpretation of the interaction effect is much more complex,
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however, since we are no longer able to simplify the regression equation
to represent the effect of one variable for two different groups.

In some cases we may not be concerned with a specific interpretation
of the interaction term. For example, we may want to simply identify
whether the interaction between two measures is statistically significant.
A statistically significant interaction term between two measures would
suggest that their effect cannot be measured only by the additive effects
of each measure in the model, but rather there is an additional effect that
is measured by the interaction term.

It may help to conceptualize this issue if we turn to a substantive exam-
ple. Many sociologists have suggested that extra-legal variables such as
income and social status impact upon sentencing outcomes.5 In a simple
additive model each of these factors would have some defined independ-
ent effect on the severity of a sentence measured in months of imprison-
ment. This model is illustrated in equation form below.

Y = b0 + b1 X1 + b2 X2

where Y represents length of sentence (in months)
X1 represents income
X2 represents social status

A N E X A M P L E : R A C E A N D P U N I S H M E N T S E V E R I T Y 509

−20

−10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Offense Severity

L
en

g
th

 o
f 

S
en

te
n

ce
 (

M
o

n
th

s)

White African American

Figure 17.7 Regression Lines for the Effect of Offense Severity on Sentence Length by Race of
Offender

5 Donald J Black, The Behavior of Law (New York; Academic Press, 1976).
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But what if the researcher believed that the effect of income and social sta-
tus was not simply additive but also multiplicative, meaning that there was
an added effect that was due to the interaction between the two. This the-
ory is represented in the equation below:

Y = b0 + b1 X1 + b2 X2 + b3 X1 * X2

where Y represents length of sentence (in months)
X1 represents income
X2 represents social status

In this case the researcher is hypothesizing that there is not only the inde-
pendent effect of income and of social class, but that there is an additional
interaction effect that is measured by multiplying income by social class.
What if this effect is statistically significant? What interpretation can the
researcher draw? To illustrate this we take a hypothetical example of regres-
sion results as reported below:

Y = 7.2 − 2.4 X1 − 1.6 X2 − 1.1 X1 * X2

The additional interaction term in this case suggests that there is an addi-
tional benefit beyond that of the additive independent effects of income
and social status that must be taken into account. In a very simple inter-
pretation, we can say that not only does a high income high status indi-
vidual receive a benefit from their income and status, but when the
individual is high on both measures simultaneously they gain an added
benefit above and beyond that provided by each characteristic on its own.

While models specified in this way can help us to identify additional
impacts that come from the interactions between interval level variables,
it is very hard to develop interpretations beyond what we have noted
above. But the researcher can adjust such models to develop a more easily
interpretable understanding of interaction terms.

Conceptually, when we have an interaction between two interval-
level variables, we are testing the idea that the effect of one interval-level
variable varies by the level of the second interval-level variable. For
example, in the example noted above from general strain theory, the
hypothesis is that the effect of strain varies by the level of self-esteem. In
practice, the difficulty we often have in the interpretation of interaction
effects between two interval-level variables is in choosing values for one
variable to represent the effect of the other variable. In effect, we have
already done this in our example of an interaction between the dummy
variable and the interval-level variable. Recall that when we include an
interaction effect between a dummy variable and an interval-level variable,
we set the value of the dummy variable to either 0 or 1 and then inter-
pret the effect of the interval-level variable for each group represented in
the dummy variable.



In trying to determine how to interpret the interaction between two
interval-level variables, we would encourage you to first consider which
variable is of key importance for a study. The second variable would then
be set at a limited number of values, which allows the researcher to see
how the effect of the key variable changes across levels of the second
variable. For example, if we again refer to the interaction between strain
and self-esteem, the key theoretical variable is strain. Following these
guidelines, we would then want to interpret the effect of strain for several
designated values of self-esteem. Clearly, we could interpret the interaction
effect the other way: the effect of self-esteem for specified levels of strain,
but this is not a key piece of the theory.

What values do we use for the second interval-level variable? For any
given interval-level variable, there may be hundreds or thousands of real-
istic possible values that we could use. We think that a useful place to start
is to use the mean, one standard deviation above and below the mean,
and two standard deviations above and below the mean. This will cover
a wide range of possible values of the variable we are using and should
be ample for understanding how our key variable changes across values
of the second variable. In other cases, where there may be meaningful
values on the second independent variable that have more intuitive mean-
ing to the reader, these values should be used. For example, if we were
to fix years of education, we might use 8, 12, and 16 to reflect the com-
pletion of junior high school, high school, and undergraduate collegiate
education, respectively.

For example, suppose that we have estimated a regression model with
two interval-level variables X1 and X2 and the interaction of X1 and X2:

Y = 2.3 + 1.7 X1 + 2.0 X2 + 0.5 (X1 * X2)

For the purpose of this example, we will consider X1 the key variable.
We find the mean and standard deviation of X2 to be 3.2 and 1.2,
respectively.

The values that are one or two standard deviations above and below
the mean of X2 are:
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Two standard deviations above: 3.2 + 2 * 1.2 = 3.2 + 2.4 = 5.6
One standard deviation above: 3.2 + 1.2 = 4.4
One standard deviation below: 3.2 − 1.2 = 2.0
Two standard deviations below: 3.2 − 2 * 1.2 = 3.2 − 2.4 = 0.8

We can now input these values for X2 to determine the effect of X1 on Y:
Effect of X1 at the mean of X2:

Y = 2.3 + 1.7 X1 + 2.0 * (3.2) + 0.5 (X1 * 3.2)
= 2.3 + 1.7 X1 + 6.4 + 1.6 X1

= (2.3 + 6.2) + (1.7 + 1.6) X1

= 8.5 + 3.3 X1



If we wanted to interpret the effect of X1 directly, then we would state
that at the mean for X2, each one-unit increase in X1 is expected to
increase Y by 3.3 units.

Effect of X1 at one standard deviation above the mean of X2:

Y = 2.3 + 1.7 X1 + 2.0 * (4.4) + 0.5 (X1 * 4.4)
= 2.3 + 1.7 X1 + 8.8 + 2.2 X1

= (2.3 + 8.8) + (1.7 + 2.2) X1

= 11.1 + 3.9 X1

If we wanted to interpret the effect of X1 directly, then we would state
that at one standard deviation above the mean for X2, each one-unit
increase in X1 is expected to increase Y by 3.9 units.

Effect of X1 at one standard deviation below the mean of X2:

Y = 2.3 + 1.7 X1 + 2.0 * (2.0) + 0.5 (X1 * 2.0)
= 2.3 + 1.7 X1 + 4.0 + 1.0 X1

= (2.3 + 4.0) + (1.7 + 1.0) X1

= 6.3 + 2.7 X1

If we wanted to interpret the effect of X1 directly, then we would state
that at one standard deviation below the mean for X2, each one-unit
increase in X1 is expected to increase Y by 2.7 units.

Effect of X1 at two standard deviations above the mean of X2:

Y = 2.3 + 1.7 X1 + 2.0 * (5.6) + 0.5 (X1* 5.6)
= 2.3 + 1.7 X1 + 11.2 + 2.8 X1

= (2.3 + 11.2) + (1.7 + 2.8) X1

= 13.5 + 4.5 X1

If we wanted to interpret the effect of X1 directly, then we would state
that at two standard deviations above the mean for X2, each one-unit
increase in X1 is expected to increase Y by 4.5 units.

Effect of X1 at two standard deviations below the mean of X2:

Y = 2.3 + 1.7 X1 + 2.0 * (0.8) + 0.5 (X1 * 0.8)
= 2.3 + 1.7 X1 + 1.6 + 0.4 X1

= (2.3 + 1.6) + (1.7 + 0.4) X1

= 3.9 + 2.1 X1

If we wanted to interpret the effect of X1 directly, then we would state
that at two standard deviations below the mean for X2, each one-unit
increase in X1 is expected to increase Y by 2.1 units.

Aside from making direct interpretations of the effect of X1 at these five
values of X2, what we see is that as the value of X2 increases, the effect
of X1 on Y increases.
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A n  E x a m p l e :  P u n i s h m e n t  S e v e r i t y

We again use the data on the sentencing of offenders in Pennsylvania in
1998 and modify our regression model slightly. We continue to use length
of sentence as the dependent variable and severity of the offense as an
independent variable. Our second independent variable is a prior crimi-
nal history score that is computed by the Pennsylvania Sentencing
Commission and can take on values ranging from 0 to 8; larger values for
prior criminal history reflect both a greater number of prior offenses as
well as more serious prior offenses. For the purposes of this example, we
have added an interaction effect between severity of the offense and prior
criminal history and are interested in how the effect of offense severity
varies across levels of prior criminal history.

After estimating this model, we obtain the following regression equation:

Y = −7.83 + 3.58 X1 − 1.21 X2 + 0.62 X1 * X2

Where Y represents length of prison sentence (in months)
X1 represents offense severity
X2 represents prior criminal history

Since we are primarily interested in the effect of offense severity across
levels of criminal history, we have computed the mean and standard devi-
ation of the criminal history variable to be 1.51 and 1.97, respectively.
Following the same procedure as in our hypothetical example, we calcu-
late the effect of offense severity at the mean of prior criminal history.

Effect of offense severity at the mean of prior criminal history:

Y = −7.83 + 3.58 X1 – 1.21 (1.51) + 0.62 (X1 * 1.51)
= −7.83 + 3.58 X1 – 1.83 + 0.94 X1

= (−7.83 – 1.83) + (3.58 + 0.94) X1

= −9.66 + 4.52 X1

If we wanted to interpret the effect of offense severity directly, then we
would state that at the mean for prior criminal history, each one-unit
increase in offense severity is expected to increase sentence length by
4.52 months.

Since the standard deviation of prior criminal history is greater than the
mean, we cannot sensibly compute values at 1 or two standard deviations
below the mean, since the values would be negative, and prior record
score is constrained to have a value ranging from 0 to 8. In such a case,
we can choose other values for the independent variable that carry sub-
stantive meaning. For example, a prior criminal history score of 0 implies
little or no prior criminal activity, while a prior criminal history score of 8
implies an extensive history of serious and likely violent offending. By
using the minimum and maximum values for prior criminal history, along
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with the mean, we can gain a good sense of how the effect of offense
severity varies by level of prior criminal history.

Effect of offense severity at a prior criminal history score of 0:

Y = –7.83 + 3.58 X1 – 1.21 (0) + 0.62 (X1 * 0)
= –7.83 + 3.58 X1

A direct interpretation of the effect of offense severity at a prior criminal
history score of 0 indicates that each one-unit increase in offense severity
is expected to increase sentence length by 3.58 months.

Similarly, if we take the maximum value for prior criminal history score
of 8:

Y = –7.83 + 3.58 X1 – 1.21 (8) + 0.62 (X1 * 8)
= –7.83 + 3.58 X1 – 9.68 + 4.96 X1

= (–7.83 – 9.68) + (3.58 + 4.96) X1

= –17.51 + 8.54 X1

Thus, among the historically most serious offenders, these results suggest
that each one-unit increase in offense severity is expected to increase sen-
tence length by 8.54 months.

Much like the hypothetical example earlier, we see that as the value
for prior criminal history increases, the effect of offense severity increas-
es. To appreciate the change in the effect of offense severity, we have
plotted these three regression equations in Figure 17.8. We see that at a
prior criminal history score of 0, the regression line is positive, but shows
modest increases over the range of offense severity. As we move to the
mean of prior criminal history and then to the maximum value for prior
criminal history, we see the slope of the regression line become steeper,
reflecting increasingly greater effects on sentence length for any given
increase in prior criminal history.

T h e  P r o b l e m  o f  M u l t i c o l l i n e a r i t y

The use of interaction terms is very likely to create a problem in regres-
sion analyses that can lead to difficulty in estimation of the regression
equation. This is because we are likely to be interested not only in the
interaction between two variables, but also the simple additive effects of
each independently. When we include the original variables as well as the
term for their interaction, the three terms are likely to be very highly cor-
related. Even though multivariate regression was developed in part to take
into account the interrelationships among variables that predict Y, when
independent variables in a regression model are too strongly related to
one another, regression estimates become unstable. This problem is called
Multicollinearity.
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In criminal justice, the independent variables examined are generally
multicollinear, or correlated with one another. Indeed, this correlation is
one reason it is so important to use multivariate techniques in criminal jus-
tice research. When variables are intercorrelated, as in the case of our
example of years in prison and prior arrests discussed in Chapter 16, it is
important to control for the potential confounding influences of one vari-
able on the other. Failure to do so is likely to lead to bias in our estimates
of the effects of specific regression coefficients. However, the irony of mul-
ticollinearity is that when variables become too correlated, or highly mul-
ticollinear, the regression estimates become unreliable. This may happen
when models do not include interaction terms, but is a particularly serious
concern when interactions between variables are specified in a model.

Multicollinearity can be identified in one of two ways. A common
method is to look at the intercorrelations among the independent variables
included in your model. Very high correlations between independent 
variables are likely to lead to multicollinearity problems. What is considered
a very high correlation? As with many other definitions in statistics, there
is no absolute number at which multicollinearity is considered serious. As
a general rule, a correlation between two independent variables of greater
than 0.80 should be seen as a warning that serious multicollinearity may
be evident in your model.

Multicollinearity between two variables occurs less often than multi-
collinearity across a series of variables. To diagnose this type of multicolli-
nearity, we use a statistic that is usually defined as tolerance. Tolerance
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measures the extent of the intercorrelations of each independent variable
with all other independent variables. It is defined as 1 minus the percent
of variance in X explained by the other independent variable examined
(Equation 17.1).

Tolerance = 1 − RX
2

Calculation of tolerance is generally provided as an option in standard sta-
tistical computing packages, but it also can be calculated by taking each
independent variable as the dependent variable in a regression that
includes all other independent variables. This value is then subtracted
from 1. For example, let’s say we defined a model for explaining sentence
length among offenders in Pennsylvania that included three independent
variables:

Ylength = b0 + b1 (age) + b2 (offense severity) 
+ b3 (prior  criminal  history) + e

The R2
X for age would be estimated by calculating a regression in which

age was the dependent variable and offense severity and prior criminal
history were the independent variables. You would then take this R2 and
subtract it from 1. Similarly, to get R2

X for offense severity, you would
regress age and prior criminal history on offense severity and then sub-
tract the resulting R2 from 1. Table 17.1 presents the Tolerance statistics
for this regression model.

How do we know if multicollinearity is negatively effecting our model
estimates based on the tolerance statistics? A very small tolerance statistic
suggests that the model is likely to include a high level of multicollinear-
ity. Again, there is no clear yardstick for defining a level of tolerance that
is likely to lead to estimation problems. In general, however, a tolerance
level of less than 0.20 should be taken as a warning that serious multi-
collinearity may exist in your model. We see from the results in Table 17.1
that the smallest tolerance statistic has a value of 0.94, which does not
indicate any serious multicollinearity in this regression model.

Beyond these diagnostic procedures for multicollinearity, there are
warning signs that can be observed in the regressions that are estimated.
Sometimes when multicollinearity is present, the percent of explained
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Table 17.1 Tolerance Statistics for Regression of Sentence Length for Pennsylvania
Offenders

INDEPENDENT VARIABLE TOLERANCE

Age 0.940
Offense Severity 0.931
Prior Criminal History 0.975

Equation 17.1



variance in a model is high, but the regression coefficients overall fail to
reach conventional thresholds of statistical significance. Sometimes multi-
collinearity inflates coefficients to unrealistic sizes or produces coefficients
in a direction contrary to conventional wisdom. One problem in diagnos-
ing multicollinearity is that it may have such varied effects in your model
that you may have difficulty distinguishing a misleading result that is due
to multicollinearity from one that represents a new and interesting finding.

When there are indications of serious multicollinearity, you can take a
number of alternative corrective measures. The simplest is to exclude the
variable or variables that are contributing most to multicollinearity. In the
case of interaction terms this might require that one of the terms included
in the interaction be dropped from the model. In the case where a small
group of measures are highly collinear, you might choose to exclude the
one variable that appears to present the most serious problem (i.e., that has
the lowest tolerance value). The drawback of this approach is that the
exclusion of such measures is likely to lead to model misspecification and
may result in biased estimates of other regression coefficients that remain
in the model. This approach makes sense only when other variables that
remain in the model measure the same concept or theory. An approach that
achieves a similar result, without excluding specific measures, is to create
new indices from clusters of variables that are multicollinear. For example,
if a group of measures all relating to social status are multicollinear, you
may decide to create a new composite measure defined as social status and
use it as an independent variable in subsequent regressions.

C h a p t e r  S u m m a r y

Non-linear relationships refer to the effect of the independent variable
on the dependent variable not being a straight-line (linear) relationship. A
linear relationship implies that each one unit increase in the independent
variable will result in the dependent variable increasing or decreasing by
some fixed amount, regardless of the level of the independent variable.
A non-linear relationship implies that each one unit increase in the inde-
pendent variable does not result in the same amount of change in the
dependent variable – it may be larger or smaller and will vary by the level
of the independent variable. A non-linear relationship can be incorporated
into an OLS regression equation by transforming the independent variable.

Interaction effects reflect the varying effect of one independent vari-
able on the dependent variable across the levels or values of a second
independent variable. When we have an interaction effect between a
dummy variable and an interval-level variable, we can directly interpret the
effect of the interval-level variable on the dependent variable for each
group measured by the dummy variable. Interpretation of an interaction of
two interval level independent variables is much more difficult. One way
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of simplifying interpretation is to designate values for one variable, such as
the mean, one standard deviation above/below the mean, two standard
deviations above/below the mean, and so on, as fixed points to compute
the effect of the other interval-level variable on the dependent variable.

Multicollinearity occurs when independent variables in a regression
model are too strongly related. It leads to unstable results. The problem
may be diagnosed by checking the bivariate correlations between the
variables and by measuring tolerance. Multicollinearity may be dealt with
either by excluding specific variables altogether or by merging several
similar variables into one composite index.

K e y  T e r m s

interaction effect An interaction effect is
present when the effect of one independent
variable on the dependent variable is 
conditional on the level of a second 
independent variable.

multicollinearity Condition in a multi-
variate regression model in which 
independent variables examined are very 
strongly intercorrelated. Multicollinearity 
leads to unstable regression coefficients.

non-linear relationship Relationship
between the dependent and the independent
variable that is not captured by a straight line
(linear) relationship.

tolerance A measure of the extent of the
intercorrelations of each independent vari-
able with all other independent variables.
Tolerance may be used to test for 
multicollinearity in a multivariate regression
model.

S y m b o l s  a n d  F o r m u l a s

R 2
X R2 obtained when an independent variable is treated as a dependent 

variable in a test for tolerance

To calculate tolerance:

Tolerance = 1 – R 2
X

E x e r c i s e s

17.1 An analysis of shoplifting frequency among youth and young
adults included a quadratic term for age of the individual and 
produced the following results:

INDEPENDENT VARIABLE B

Age (in years) 0.35
Age2 (in years2) −0.01

Interpret the effect of age on the frequency of shoplifting.



17.2 An analysis linking level of informal social control to frequency of
delinquency produced the following results:

INDEPENDENT VARIABLE B

Age (in years) −0.12
Sex (1=Female, 0=Male) −1.50
Race (1=White, 0=Non-white) 0.27
Informal Social Control (1=Low, 10=High) −0.83

After plotting the mean level of delinquency by level of informal social con-
trol, the researcher observed what appeared to be an inverse relationship
(1/X) between delinquency and informal social control. After transforming
the measure of informal social control, the researcher estimated a new
regression and produced the following results:

INDEPENDENT VARIABLE B

Age (in years) −0.11
Sex (1=Female, 0=Male) −1.61
Race (1=White, 0=Non-white) 0.32
Inverse of Informal Social Control (1=Low, 10=High) 2.45

a. Interpret the effect of the inverse of informal social control.

b. Sketch the relationship between delinquency and informal
social control using the coefficient for the inverse of 
informal social control.

17.3 A researcher wanted to test the hypothesis that adolescent females
were more affected by parental supervision than adolescent males.
In a regression analysis incorporating an interaction effect between
sex and supervision, the researcher produced the following set of
results:

INDEPENDENT VARIABLE B

Sex (1=Female, 0=Male) −2.7
Supervision (1=Low, 10=High) −1.3
Sex * Supervision −0.5

Interpret the effect of supervision for adolescent females and males.

17.4 A study of attitudes about punishment used a scale of punitiveness
ranging in value from 1 (Low) to 100 (High). The researcher was
particularly interested in whether there was an interaction effect
between age and political conservatism. A regression analysis pro-
duced the following results:

INDEPENDENT VARIABLE B MEAN

Age (years) 1.67 44.95
Political Conservatism (1=Low, 10=High) 0.92 6.5
Age * Political Conservatism 0.56

a. What is the effect of political conservatism at the mean age of the
sample? Interpret this effect.

b. What is the effect of age at the mean level of political conser-
vatism for the sample? Interpret this effect.
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c. What is the effect of political conservatism at each of the 
following ages?

– 20
– 30
– 50
– 60

Describe how the effect of political conservatism changes as age
increases.

d. What is the effect of age at each of the following values of
political conservatism?

– 0
– 2
– 5
– 8
– 10

Describe how the effect of age changes as the level of political con-
servatism increases.

17.5 A study of violence in prison cell blocks was concerned about the
amount of space available to each inmate and the proportion of
inmates identified as gang members who had been identified as
gang members. The researcher tested the hypothesis of an interac-
tion effect between space available and the proportion of inmates
identified as gang members. A regression analysis produced the
following results:

INDEPENDENT VARIABLE B MEAN

Space available (square feet per inmate) −0.25 10.0
Proportion gang members 0.77 0.77
Space available * Proportion gang members −0.05

a. What is the effect of space available at the mean proportion of
gang members for the sample of cell blocks? Interpret this effect.

b. What is the effect of proportion of gang members at the mean
level of space available for the sample of cell blocks? Interpret
this effect.

c. What is the effect of space available at each of the following
proportions of gang membership?

– 0.2
– 0.4
– 0.6
– 0.8

Describe how the effect of space available changes as proportion of
gang membership increases.

d. What is the effect of proportion of gang membership at each of
the following values of space available?



– 3
– 6
– 12
– 15

Describe how the effect of proportion of gang membership changes as
the level of space available increases.

17.6 Rachel collects police data on a series of burglaries and wishes to
determine the factors that influence the amount of property stolen
in each case. She creates a multivariate regression model and runs
a test of tolerance for each of the independent variables. Her
results are as follows, where Y = Amount of property stolen ($):

INDEPENDENT VARIABLE SCALE TOLERANCE

X1: Time of robbery (AM or PM) Nominal 0.98
X2: Accessibility of property Ordinal 0.94
X3: Number of rooms in house Interval 0.12
X4: Size of house Interval 0.12
X5: Joint income of family Interval 0.46

Would you advise Rachel to make any changes to her model? Explain
your answer.

17.7 A researcher examining neighborhood crime rates computes a
regression model using the following variables:

Y = crime rate (per 100,000)

X1 = percent living in poverty

X2 = percent unemployed

X3 = median income

X4 = percent of homes being rented

The researcher finds the F-statistic for the overall model to be statistically
significant (with α = 0.05), but the results for each variable are as follows:

INDEPENDENT VARIABLE B SIG. TOLERANCE

X1: Percent living in poverty 52.13 0.17 0.15
X2: Percent unemployed 39.95 0.23 0.07
X3: Median income 22.64 0.12 0.19
X4: Percent of homes being rented 27.89 0.33 0.05

a. Explain why the researcher found a statistically significant
regression model, but no significant regression coefficients

b. What would you recommend the researcher do in this case?

C o m p u t e r  E x e r c i s e s

In Chapter 16, we illustrated the use of the regression command in 
SPSS to estimate multivariate regression models. The analyses described
in this chapter – non-linear terms, interaction effects, and a test for 
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multicollinearity – are also accomplished with the regression command in
SPSS. The following exercise should help to illustrate how to perform
these analyses.

Computing Non-linear and Interaction Terms
To include a non-linear or an interaction term in a multivariate regression
model, it is necessary to first compute the non-linear or the interaction term.
This computation is done with the “Compute” command (Transform →
Compute). Once the new window opens after executing this command,
you will see an empty box in the upper left corner. This is where you
would type in the name of the new variable that you are about to create.
Be sure that the name of the variable you type into this box is dif-
ferent from any of the variable names you already have in your data
file.

Below this empty box, you will see a scroll box that includes the
names of all the variables in your data file. The empty box in the upper
right corner of the window is where the calculation will be written that
will either transform a single variable or allow for the calculation of an
interaction effect.

Non-linear Terms
For example, suppose we wanted to compute a squared term for a vari-
able “Age.” We might name this new variable “age_sq” (in the box in the
upper left corner). Them, we would move the variable “Age” from the list
of variables box to the calculation box. Once in this box, we have two
choices for how we write the calculation:

1st choice: “Age**2”

In SPSS, the double asterisk (**) indicates that we want to take a vari-
able to a power. Here, we want to square “Age”, so we add the value “2.”
If, for some reason, we had wanted to cube “Age,” we would have typed
“Age**3.)

2nd choice: “Age * Age”

We could simply multiply the value of the variable by itself.
In either case, we will compute the squared value for “Age.” Once sat-

isfied with the calculation written in the box, click “OK” to perform the
actual calculation. If you return to the data view window, you will see that
an additional variable has been added to the data file.

Interaction Terms
The computation of an interaction term is as direct as the equations given in
this chapter. After executing the Compute command to open the computa-
tion window, we type in the name of the new variable that we are about to
create. (It is often helpful to make the name of the new variable represent-
ing an interaction term to contain fragments of both of the original variables
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being used in the calculation.) For example, suppose that we want to create
an interaction term for income and education. We might call the interaction
variable “income_status.” In the calculation box, we simply insert one vari-
able name (e.g., income) the multiplication symbol (*) and then the name of
the second variable (e.g., education), so that we should see something like:

income * education

After computing the non-linear or the interaction term, we then simply
treat the created variable as an additional variable added to our multi-
variate regression model. For situations where we are using non-linear
terms, we may need to drop the original variable. Prior research and the-
ory indicating a non-linear term was appropriate will often be the best
guide on what the regression equation should look like. In the case of an
interaction term, we must include both of the original variables and the
interaction term, otherwise, it will be nearly impossible to interpret the
coefficients that we do obtain from a regression analysis.

Collinearity Diagnostics
SPSS’s regression command will produce an assortment of collinearity
statistics, including the tolerance statistic discussed earlier. To obtain the
collinearity diagnostics, click on the “Statistics” button when you enter
the variable names for the dependent and independent variables in the
regression command window. In the middle of the new window that opens,
you will see an option for “Collinearity diagnostics.” Select this item to have
SPSS compute collinearity statistics.

After the regression command is run, the collinearity output is split
across two tables. The tolerance statistics are presented in the Coefficients
table, where you will also find the regression coefficients. Recall from the
discussion in the chapter that a tolerance of less than about 0.20 is indica-
tive of collinearity problems in a regression model.

Descriptive Statistics
Another useful feature of the “Statistics” button in the regression command
window is that it allows for the computation of descriptive statistics for the
variables used in a regression analysis for those cases with complete data.
To obtain these descriptive statistics, select the item “Descriptives” after
clicking on the “Statistics” button. The utility of this option is apparent in
any data file that includes missing data – for example, a person does not
respond to one of the questions that we want to use in our analysis. If we
use the general descriptive statistics commands in SPSS (and described in
Chapters 4 and 5), we obtain descriptive statistics for each variable based
on all of the cases that have a value for that variable. Unfortunately, there
are often a number of observations that do not include complete data.
Since these cases cannot be used in a multivariate regression analysis, they
are dropped from the computation. The descriptive statistics option available
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through the regression command will report the descriptive statistics only
for those cases that were used in the regression analysis. 

Open the nys_1.sav data file into SPSS to do Exercises 1 through 4.

1. Using the Line Graph command (described in Chapter 3), select the
option for a simple line plot for summaries of groups of cases. In the
next window that opens, select the option “Other summary function.”
This will highlight an adjacent box that asks for the variable name. Insert
one of the measures of delinquency from the list of variables. By default,
SPSS will compute the mean of the variable selected. Then select the age
variable as the Category Axis. The resulting line graph will plot the mean
level of delinquency for each age recorded in the NYS sample. Try this
command with other measures of delinquency and see if you notice any
variations in the shapes of the lines. Do they imply a linear relationship
between age and delinquency? A non-linear relationship? If non-linear,
what kind of non-linear relationship? (You may want to refer back to
Figure 17.2 for some approximations of different curves.)

2. Compute a squared term for the age variable as described above.
Compute a multivariate regression model using one of the measures of
delinquency as the dependent variable. Use age and age squared as the
independent variables. As noted earlier in the chapter, this will provide a
quadratic equation that will test for a non-linear relationship between age
and the measure of delinquency that you have selected.

Report the values of the regression coefficients for age and age squared
and whether or not the coefficients are statistically significant (with α = 0.05).
Interpret the effect of age on this measure of delinquency.

3. Compute a multivariate regression model using number of times drunk
as the dependent variable. Include the measures for age, sex, race
(recoded as a dummy variable), and at least two other variables that
you think are related to the number of times drunk. This will be the
“baseline model” in the following questions.
a. Compute the tolerance statistic for each of the independent variables

in the baseline model. Does it appear that there is a problem with
collinearity in the regression model? Explain why.

b. Compute an interaction term for sex with age. Add this term to the
baseline model and rerun the regression command. Is the effect of
age on number of times drunk significantly different for males and
females (i.e., is the interaction effect statistically significant)? If so,
interpret the effect of age on the number of times drunk for males
and females.
i. Compute the tolerance statistic for each of the independent vari-

ables in this model. Does it appear that there is a problem with
collinearity in this model? Explain why.

Problems



c. Compute an interaction term for race (which should be coded as a
dummy variable) and age. Add this term to the baseline model and
rerun the regression command (the interaction effect from part (a)
should no longer be included in the analysis.) Is the effect of age on
number of times drunk significantly different for these two race
groups? If so, interpret the effect of age on the number of times
drunk for each race group.
i. Compute the tolerance statistic for each of the independent vari-

ables in this model. Does it appear that there is a problem with
collinearity in this model? Explain why.

d. If one of the additional variables that you have added to your regres-
sion model is measured at the interval level of measurement, com-
pute an interaction term between this variable and either the sex or
race variable. Add this term to the baseline model (there should be
no other interaction terms included in this analysis) and rerun the
regression command. Is the effect of this variable on number of
times drunk significantly different for the two groups? If so, interpret
the effect of this variable for each group.
i. Compute the tolerance statistic for each of the independent vari-

ables in this model. Does it appear that there is a problem with
collinearity in this model? Explain why.

4. Compute a multivariate regression model using number of times cheated
at school as the dependent variable. Include the measures for age, sex,
race (recoded as a dummy variable), grade point average, and amount of
time spent studying as the independent variables. This will be the base-
line model in the following questions.
a. Compute an interaction term for grade point average and time spent

studying and add this term to the regression model. Prior to rerun-
ning the regression command, check the item for descriptive statis-
tics available through the regression command window. Report the
coefficient values and whether or not the coefficients are statistically
significant (with α = 0.05).

b. Compute the tolerance statistic for each of the independent vari-
ables in this model. Does it appear that there is a problem with
collinearity in this model? Explain why.

c. What is the effect of grade point average on number of times
cheated at the mean level of time spent studying? (You will need
to use the mean reported in the results for part (a).) Interpret this
effect.
i. How does the effect of grade point average change as the value

for time spent studying increases or decreases?
d. What is the effect of time spent studying on number of times cheated

at the mean grade point average? Interpret this effect.
i. How does the effect of time spent studying change as the value

for grade point average increases or decreases?
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Logistic Regression

f o r  e x a m i n i n g  a  d i c h o t o m o u s  d e p e n d e n t  v a r i a b l e

Dependent Variable?

c o e f f i c i e n t s  w i t h i n  a  s i n g l e  m o d e l

Regression Coefficients?

Interpreted?

2

Model?

C h a p t e r  e i g h t e e n

L o g i s t i c  r e g r e s s i o n  a s  a  t o o l  

I n t e r p r e t i n g  l o g i s t i c  r e g r e s s i o n  c o e f f i c i e n t s

C o m p a r i n g  l o g i s t i c  r e g r e s s i o n  

E v a l u a t i n g  t h e  l o g i s t i c  r e g r e s s i o n  m o d e l

T e s t i n g  f o r  s t a t i s t i c a l  s i g n i f i c a n c e

Why is It Inappropriate to Use OLS Regression for a Dichotomous 

How is the Outcome Altered in a Logistic Regression Model?

Why is It Difficult to Interpret the Logistic Regression Coefficient?

How Can Probability Estimates be Used to Compare the Strength of Logistic

What is the Standardized Logistic Regression Coefficient and How is It

How is the Percent of Correct Predictions Interpreted?

What is Pseudo R and How is It Interpreted?

What is the Test of Statistical Significance for the Overall Logistic Regression

What is the Test of Statistical Significance for the Logistic Regression Coefficient?

What is the Test of Statistical Significance for a Multicategory Nominal Variable?

What is an Odds Ratio and How is It Interpreted?

What Shape Does the Logistic Model Curve Take?

What is the Derivative at Mean and How is It Interpreted?



ORDINARY LEAST SQUARES REGRESSION is a very useful tool for identi-
fying how one or a series of independent variables affects an interval-
level dependent variable. As noted in Chapter 16, this method may
also be used—though with caution—to explain dependent variables
that are measured at an ordinal level. But what should the researcher
do when faced with a binary or dichotomous dependent variable?
Such situations are common in criminology and criminal justice. For
example, in examining sentencing practices, the researcher may want
to explain why certain defendants get a prison sentence while others
do not. In assessing the success of a drug treatment program, the re-
searcher may be interested in whether offenders failed a drug test or
whether they returned to prison within a fixed follow-up period. In
each of these examples, the variable that the researcher seeks to ex-
plain is a simple binary outcome. It is not appropriate to examine bi-
nary dependent variables using the regression methods that we have
reviewed thus far.

This chapter introduces a type of regression analysis that allows us to
examine a dichotomous dependent variable. Called logistic regression
analysis, it has become one of the analysis tools most frequently used in
crime and justice research. We begin the chapter by explaining why the
OLS regression approach described in Chapters 15 and 16 is not appro-

trate the interpretation of logistic regression statistics in the context of a
substantive criminal justice research example. In this chapter, as in
Chapter 16, our focus will be more on explaining how logistic regres-
sion can be used in research than on describing the mathematical prop-
erties that underlie the computations used to develop logistic regression
statistics.

logistic regression approach and the logic underlying it. Finally, we illus-
priate when the dependent variable is binary. We then describe the
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f o r  a  D i c h o t o m o u s  D e p e n d e n t  V a r i a b l e ?

In Chapter 16, you saw that we could use not only interval-level vari-
ables, but also ordinal- and nominal-level variables, as independent
measures in a multivariate ordinary least squares regression. While 
we emphasized that the assumptions regarding measurement of the
dependent variable are much more stringent in OLS regression, even 
in the case of the dependent variable the researcher may sometimes
decide to use ordinal- as well as interval-level variables. But applying
the OLS regression approach is inappropriate when the dependent
variable is nominal, as is the case with a binary or dichotomous depen-
dent variable.

Why do we state this rule so unequivocally? One reason is that the
logic underlying our explanation of a dichotomous dependent variable is
at odds with the models that we build using the OLS regression ap-
proach. In order to expand on this idea, we need to return to how pre-
dictions are developed using OLS regression. In the simple linear
model—the OLS model—we predict the value of Y based on an equation
that takes into account the values of a Y-intercept (b0) and one or a se-
ries of independent variables (e.g., b1X1). This model is represented
below for a bivariate regression example in which we seek to explain
the yearly budget of police departments based on the number of officers
employed.

where

This is an additive model, in which we predict the value of Y—in this
case, the yearly police department budget in dollars—by adding the
value of the Y-intercept to the value of the regression coefficient times
the value of X1 (the number of sworn officers in a department).

Let’s say that a representative sample of police agencies were sur-
veyed and analysis of the responses yielded the following regression
equation:

Y � 100,000 � 100,000X1

This equation suggests that for each additional officer employed, the de-
partment budget is expected to increase by $100,000. For a police
agency with 100 officers, we would expect a budget of about
$10,100,000:

 X1 � number of sworn officers

 Y � yearly police department budget in dollars

 Y � b0 � b1X1

C H A P T E R  E I G H T E E N :  L O G I S T I C  R E G R E S S I O N528

W h y  i s  I t  I n a p p r o p r i a t e  t o  U s e  O L S  R e g r e s s i o n  



For a police agency with 1,000 officers, we would expect a budget of
about $100,100,000:

W orking It Out

 � 10,100,000

 � 100,000 � 10,000,000

 � 100,000 � 100,000(100)

 Y � 100,000 � 100,000X1

W orking It Out

 � 100,100,000

 � 100,000 � 100,000,000

 � 100,000 � 100,000(1,000)

 Y � 100,000 � 100,000X1

This model, like other OLS regression models, assumes that there is
no real limit to the value that the dependent variable can attain. With
each additional officer comes an expected increase in the departmental
budget. Our model suggests that the increase is about $100,000 for each
additional officer. While this logic makes very good sense when we are
speaking about interval-scale measures, such as the budget of a police
agency, does it make sense when we are dealing with a dichotomous
dependent variable, such as whether a parolee has failed a drug test?

Let’s say that we surveyed 30 parolees who had been tested for drug
use. Our independent variable is prior drug arrests. The data in Table

ber of prior drug arrests for each parolee. We have coded a failed drug

gression results for our example. The OLS regression suggests a very
strong relationship between prior drug arrests and failing the drug test.
But if we look more closely at the regression model, we can see that this
approach may lead to outcomes that are not consistent with the
processes we seek to understand.

18.1 report whether a parolee failed the drug test and also give the num-

test as 1 and a successful drug test as 0. Table 18.2 provides the OLS re-

Figure 18.1 shows the data points for our example in a scatterplot, as
well as the regression line drawn from the outcomes in Table 18.2. It is
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Drug Testing Results and Prior Drug Arrests for 30 Parolees

DRUG TEST RESULT DRUG TEST SCORE NUMBER OF DRUG ARRESTS

Pass 0 0
Pass 0 0
Pass 0 0
Pass 0 0
Pass 0 0
Fail 1 0
Pass 0 1
Pass 0 1
Pass 0 1
Pass 0 1
Pass 0 1
Pass 0 1
Fail 1 2
Fail 1 2
Fail 1 2
Fail 1 2
Fail 1 2
Fail 1 3
Fail 1 3
Pass 0 3
Fail 1 4
Fail 1 4
Fail 1 4
Fail 1 5
Fail 1 5
Fail 1 5
Fail 1 6
Fail 1 6
Fail 1 7
Fail 1 8

OLS Regression Results for Example 
of Drug Testing and Prior Drug Arrests

Unstandardized Standardized
Coefficients Coefficients t Sig.

Model B Std. Error Beta

1 (Constant) .211 .104 2.025 .052

Drug Arrests 0.148 .030 .681 4.921 .000

a Dependent Variable: FAILURE ON DRUG TEST

Table 18.1

Table 18.2
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clear that the OLS regression approach leads to predicted outcomes that
are not possible, given our dependent variable. For example, for a parolee
with six drug arrests, our model predicts that Y will have a value of 1.099:

Scatterplot of Example of Drug Testing with the Predicted Regression Line
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W orking It Out

 � 1.099

 � 0.211 � 0.888

 � 0.211 � 0.148(6)

 Y � 0.211 � 0.148X

For a parolee with eight drug arrests, our model predicts that Y will have
a value of 1.395:

W orking It Out

 � 1.395

 � 0.211 � 1.184

 � 0.211 � 0.148(8)

 Y � 0.211 � 0.148X

Note: In this scatterplot (produced using SPSS), the points sometimes represent more
than one observation.

Figure 18.1
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But in our example, the predicted value of Y should logically be no
greater than 1 or no less than 0. A value of 1 means that the parolee
failed the drug test, and a value of 0 means that the parolee passed the
drug test. Predicting values greater than 1 or less than 0 just does not
make sense given the possible outcomes of a binary dependent variable.

This example, then, illustrates a logical problem in using OLS meth-
ods to gain estimates for cases where the dependent variable is dichoto-
mous. The OLS approach assumes that there is no limit to the predicted
value of the dependent variable. But in the case of a dichotomous de-
pendent variable, there are limits—the values 0 and 1. While this as-
sumption of predictions within the limits of the possible outcomes of the
dependent variable is also violated when OLS regression is used for an
ordinal-level dependent variable and sometimes when it is applied to
specific interval-level measures, the violation is most extreme in the case
of a binary dependent variable, such as drug testing failures. It does not
make sense to analyze such situations with a model that allows the value
of Y to increase at a constant rate for each change in the value of X. For
our analysis to be consistent with the problem we are examining, it must
provide predictions that are constrained to values between 0 and 1.

method in a case where the dependent variable is dichotomous. In our
discussion of excluded variables in Chapter 16, we noted that a central
assumption of the regression approach is that there is no systematic rela-
tionship between the error term and the independent variables included
in the regression. When a systematic relationship exists, estimates of the
regression coefficients are likely to be biased. But if you look at parolees
for whom the value of prior drug arrests is greater than 5 (see Figure

gression error and the independent variable. Because the actual value of
Y cannot be greater than 1, and the predicted values continue to increase
in a linear fashion (as evidenced by the regression line), the regression
error increases in the negative direction as the number of prior drug ar-
rests increases. This means that as the number of prior drug arrests gets
larger and larger, we will make larger and larger negative errors in pre-
diction. When OLS regression is used to examine a binary dependent
variable, we are very likely to have a systematic relationship between the
independent variable and the errors we make in predicting Y, because 
Y-values are constrained to 0 and 1 and predicted values of Y have no
limit.

pendent variable, we violate assumptions important to making statistical
inferences with OLS regression. We noted in Chapter 15 that two para-
metric assumptions of our tests of statistical significance in regression are
that the values of X are normally distributed around the regression line

Figure 18.1 illustrates additional problems that arise in using the OLS

18.1), you can see that there is a consistent relationship between the re-

Figure 18.1 also illustrates why, when we examine a dichotomous de-
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and that they meet an assumption of homoscedasticity (equal variances
around the regression line). The normality assumption is clearly violated

the shape of the distribution of X around Y will be bimodal because the
observed values of our dependent variable are constrained in practice to
0 and 1. However, if our sample is large enough, we generally allow vio-
lations of this assumption. Our problem in regard to homoscedasticity is
more serious. We noted in Chapter 15 that violations of the assumption
of homoscedasticity must be large before they become a concern. In the
case of a binary dependent variable, heteroscedasticity (violation of the
homoscedasticity assumption) is likely to be large. As shown in Figure

scores of X around the regression line is likely to vary widely in form,
depending on the scores of the independent variable.

L o g i s t i c  R e g r e s s i o n

While the application of OLS regression methods to a dichotomous de-
pendent variable raises a number of substantive and statistical concerns,
there are many advantages to the basic form of the regression approach
introduced in previous chapters. For example, the effect of each b was
constant. That is, we could define a single constant effect for each vari-
able in the regression model. That effect took into account the other
variables in the model. And we could add all of these effects and the Y-
intercept to get a predicted value for Y. Because of the utility of the re-
gression approach, statisticians have developed alternative methods for
conducting regression analysis with dichotomous dependent variables
that do not violate basic assumptions but allow us to continue to use the
overall regression approach. Perhaps the most widely used of these
methods is logistic regression analysis.1 Logistic regression analysis is

1A method called generalized least squares might also be used to deal with violations
of our assumptions, though logistic regression analysis is generally the preferred
method. See E. A. Hanushek and J. E. Jackson, Statistical Methods for Social Scientists
(New York: Academic Press, 1977) for a comparison of these approaches. See also
David W. Hosmer and Stanley Lemeshow, Applied Regression Analysis, 2nd ed. (New
York: Wiley, 2000). Another method, probit regression analysis, is very similar to that
presented here, though it is based on the standard normal distribution rather than the
logistic model curve. The estimates gained from probit regression are likely to be very
similar to those gained from logistic regression. Because logistic regression analysis
has become much more widely used and is available in most statistical software pack-
ages, we focus on logistic regression in this chapter.

when we have a dichotomous dependent variable. As Figure 18.1 shows,

18.1 for our distribution of drug testing failures, the distribution of the
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based on a transformation of the regression model that allows the out-
comes of the regression equation to vary without limit, but constrains the
predictions of the dependent variable to values between 0 and 1. At the
same time, the inferential statistics used in logistic regression do not rely
on assumptions regarding the population distribution of scores.

In fitting the data that are analyzed, logistic regression analysis uses

the logistic model curve for the probability that Y � 1. While the logis-
tic regression curve follows the linear model in the middle of its distribu-
tion, it does not allow values below 0 or above 1. Indeed, as the logistic
curve approaches 0 or 1, it begins to flatten, so it keeps coming closer
to—but never actually reaches—either of these two values. The logistic
curve thus satisfies our primary objection to the linear OLS regression
method. That is, it does not allow predictions greater than or less than the
actual values of the distribution of scores that we are trying to predict.

The logistic model curve provides a solution to the problem of pre-
dictions beyond the observed distribution. However, in order to gain the
desired property of outcomes between 0 and 1, we have to alter the
form of our regression equation. Using OLS regression, we represent our
equation for the prediction of Y with one independent variable as
follows:

Y � b0 � b1X1

As noted earlier, this approach may yield values that are greater than 1
or less than 0, as was the case in our drug testing example.

The Logistic Model Curve
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the logic of a curve rather than that of a straight line. Figure 18.2 shows

Figure 18.2
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In logistic regression, we alter the form of what we are trying to pre-
dict. Rather than predicting Y, as in OLS regression, we now predict the
natural logarithm (ln) of the odds of getting a 1 on the dependent vari-
able. Although this sounds very imposing, it is simply a transformation of

equation for a bivariate logistic regression:

There is no change on the right side of this equation. We have the
constant b0 and the regression coefficient b1 that reflects a constant effect
for the independent variable examined. Moreover, the outcome of this
formula has no limit. But on the left side of the equation, we now have
the natural logarithm of the odds of Y, or what statisticians call the
logit of Y. A logarithm, or log, is the exponent of the power to which
a fixed number (called a base) must be raised to produce another num-
ber. So, for example, if the base is 10, the logarithm of 100 is 2. That is, if
we take 10 to the 2nd power (102), we get 100. In logistic regression, we
do not use a base of 10, which is associated with what is called the com-
mon logarithm; rather, we use a base of 2.71828, which is associated
with what is called the natural logarithm and is represented in symbol
form as ln. The base of the natural logarithm, 2.71828, is also known as
Euler’s constant and is denoted by the symbol e. What this means is that
ln(x) is the power to which e must be raised to get x.

This represents the odds of getting an outcome of 1, rather than 0, on
the dependent variable. The odds are determined by dividing the proba-
bility of getting a 1 [P(Y � 1)] by the probability of not getting a 1 [1 �
P(Y � 1)]. In our drug testing example, this would be the odds of failing
a drug test divided by those of not failing the test. If an individual had an
80% predicted likelihood of failing the drug test, then the odds would be
0.80/0.20, or 4 to 1.

ln � P(Y � 1)
1 � P(Y � 1)� � ln �P(Y � 1)

P(Y � 0)� � b0 � b1X1

W orking It Out

 � 4.0

 � 0.80
0.20

 Odds � 
P(Y � 1)

1 � P(Y � 1)

the equation presented above. Equation 18.1 represents the prediction

Equation 18.1

What about the notation P(Y � 1)/[1�P(Y � 1)] in Equation 18.1?
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If we transform this equation further, we see that it gives us the prop-
erty we are looking for. That is, the predicted values of Y produced by
our regression equation will vary between 0 and 1, despite the fact that
the outcomes in our regression equation can reach any value between
plus and minus infinity. In the box above, we show how to transform
the equation so that the outcome is the probability that Y will be 1. The

We begin with the specification of the logistic regression model:

To simplify, we let

and

Using these simplifications, we can rewrite the logistic regression equa-
tion as

If we exponentiate both sides of the equation (i.e., take the value of e to
the power of both sides of the equation), we obtain

Then, ln is the power to which we must raise e to get ; that is,

e ln[P/(1�P)] � P
1 �P

P
1 � P� P

1 � P�
e ln[P/(1�P)] � e Xb

ln� P
1 � P� � Xb

P � P (Y � 1) ⇒ 1 � P (Y � 1) � 1 � P

Xb � b0 � b1X1

ln� P (Y � 1)
1 � P (Y � 1)� � b0 � b1X1

Derivation of P (Y � 1) 
from the Cumulative Logistic Probability Function



end result is a simple equation that can be calculated on a hand calcula-
tor with a natural log function. This equation is often called the cumula-
tive logistic probability function.

P(Y � 1) � 1
1 � e�(b0�b1X1)

This leads to rewriting the logistic regression equation as

We multiply both sides of the equation by (1 � P):

Then we add PeXb to both sides of the equation:

Next we rewrite the equation to pull out the common factor, P :

Now we divide both sides of the equation by (1 + e Xb) to solve for P :

Since, as noted above, P � P (Y � 1),

P (Y � 1) � 1
1 � e�Xb

 � 1
1 � e�Xb

 P � e Xb

1 � e Xb
 � 1

�1 � e Xb

e Xb �
 � 1

� 1
e Xb

 � 1�

P (1 � e Xb) � e Xb

P � Pe Xb � e Xb

P � e Xb(1 � P) � e Xb � Pe Xb

P
1 � P

 � e Xb

Equation 18.2



By using the term Xb to represent the right side of the regression equa-

any number of independent variables:

What this equation does is divide 1 by the sum of 1 and e (the value
2.71828) taken to the �Xb power. The process of taking a number to
some power is referred to as exponentiation. Here we exponentiate e to
the power �Xb. Exponentiation may also be familiar to you as the an-
tilog or inverse log.2

P(Y � 1) � 1
1 � e�Xb

Illustration of the Fact That 
P(Y � 1) Will Not Exceed 1 
or Be Less Than 0

Xb P (Y � 1)

�25 0.000000000014
�20 0.000000002061
�15 0.000000305902
�10 0.000045397669
�5 0.006692850924
�4 0.017986209962
�3 0.047425873178
�2 0.119202922022
�1 0.268941421370

0 0.500000000000
1 0.731058578630
2 0.880797077978
3 0.952574126822
4 0.982013790038
5 0.993307149076

10 0.999954602131
15 0.999999694098
20 0.999999997939
25 0.999999999986

2Your calculator likely has a button labeled “e x,” which performs this operation. If
there is no ex button, then you should be able to locate a button labeled “INV” and
another for the natural logarithm, ln. By pushing “INV” and then “ln” (the inverse or
antilog), you will be able to perform this operation.

Equation 18.3

tion, we may write Equation 18.2 more generally to take into account

Table 18.3
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Importantly, whatever the value associated with Xb, the value of 
P(Y � 1) will always be between 0 and 1. The value of P(Y � 1) can get
closer and closer to 1 or to 0, but it will never exceed that number. This

tive values of Xb. As the values get very large, the gain for each increase
in Xb becomes smaller and smaller. Logistic regression, then, allows us
to use the traditional regression format in which the outcome, Xb, can
achieve any size without limit. However, since we have converted what
we are predicting to the logit of Y, our predictions of Y are bounded by
0 and 1.

comes of Y are constrained between 0 and 1. But what does a prediction
between the values 0 and 1 mean? As we have already noted, the ob-
served outcomes for a dichotomous dependent variable have a score of
either 0 or 1. For example, in our drug testing example, either parolees
failed the drug test (coded as 1) or they passed the test (coded as 0).
When we examined the regression approach in previous chapters, the

pendent variable, our interpretation must be different. The predicted
value of Y in this case is the predicted probability of getting an outcome
of 1. So, for example, a value of 0.50 in our drug testing example would
mean that, according to our model, an individual was predicted to have
about an equal chance of failing and not failing drug testing. A value of
0.90 would suggest that an individual was highly likely to have a drug
testing failure.

To estimate the coefficients of a logistic regression, we use a much
more complex mathematical process than was used in OLS regression.
It is based on maximum likelihood estimation (MLE) techniques.
Using these techniques, we try to maximize the probability that our re-
gression estimates will produce a distribution similar to that of the ob-
served data. With this approach, we do not simply derive a single
mathematical solution for obtaining the regression estimates.3 Rather,
we begin by identifying a tentative solution, which we then try to im-
prove upon. Our criterion for improvement is termed a likelihood func-
tion. A likelihood function measures the probability of observing the

3It should be noted, however, that maximum likelihood techniques do not always re-
quire an iterative process.

is illustrated in Table 18.3, where we take very large negative and posi-

allowed us to develop a regression model in which the predicted out-
Use of the natural logarithm of the odds of Y, or the logit of Y, has

bution of scores on our interval-level measure. With a dichotomous de-
predicted value of Y was simply one of the possible values in the distri-
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results in the sample, given the coefficient estimates in our model. By
convention in logistic regression, we use �2 times the natural loga-
rithm of the likelihood function (or �2LL), which is defined as the log
likelihood function. We repeat this process again and again, until the
change in the likelihood function is considered negligible. Each time
we repeat the process and reestimate our coefficients is called an itera-
tion. Logistic regression is said to be an iterative procedure, because it
tries a number of solutions before arriving at a final result—or, in statis-
tical terms, converging.

Most packaged statistical programs set a default limit on the num-
ber of iterations that can be tried. In SPSS, that limit is 20 iterations.
Lack of convergence in a standard number of iterations may indi-
cate some type of problem in the regression model. Often, it occurs
when the number of variables examined is large relative to the
number of cases in the study. John Tukey, a noted statistician who
taught at Princeton University, has suggested a rule for logistic regres-
sion: that there be at least five cases and preferably at least ten in 
the smaller category of the dependent variable for each independent
variable examined.4 Whatever the cause, if you receive a message
from a packaged statistical analysis program that your regression has
failed to converge, you should look carefully at your model and your
measures.

We have now looked at the basic logic of the logistic regression
model. While the logistic regression model differs from the OLS re-
gression model in the outcome predicted, the basic form of the addi-
tive linear model has been maintained. The right side of the equation
remains an additive function of the Y-intercept and the independent
variables (multiplied by their associated regression coefficients). The
effect of each independent variable remains its independent effect,
with the other variables in the model controlled. We also continue 
to be constrained by the same regression assumptions regarding cor-
rect model specification. Excluding variables from the regression will
lead to bias, either in our prediction of Y or in our estimates of
specific regression coefficients. The models are also sensitive to prob-
lems of multicollinearity. These concepts were reviewed in Chapter

4See John Tukey, Report to the Special Master, p. 5; Report to the New Jersey Supreme
Court 27 (1997).

logistic regression.
16, but you should remember that they apply to our discussion of
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A Substantive Example: Adoption of Compstat in U.S. Police Agencies
Application of logistic regression to a substantive problem will help you
to understand the use of logistic regression, as well as the different coef-
ficients associated with the technique. The example we use is drawn
from a Police Foundation survey of U.S. police agencies, begun in 1999

5

stat, a management system first developed in New York City in order to
reduce crime and improve quality of life, had been widely adopted in
some form by other U.S. police agencies. It was theorized that Compstat
would be much more likely to be adopted by larger police agencies.
Using logistic regression analysis, we will examine whether this hypothe-
sis is supported by the Police Foundation data.

The dependent variable in our analysis is dichotomous, measuring
whether the department claimed to have adopted a “Compstat-like pro-
gram.” The main independent variable is the number of sworn officers
serving in the department at the time of survey.6 We also include, as a
second independent variable, region, which divides the country into four
regions: South, West, North Central, and Northeast. For this multicate-
gory nominal variable, we use three dummy variables to represent re-
gion and define the North Central region as the reference, or excluded,

 X4 � West
 X3 � South
 X2 � Northeast

 where X1 � number of sworn officers

 Xb � b0 � b1X1 � b2X2 � b3X3 � b4X4

5For a description of this study, see David Weisburd, Stephen Mastrofski, Ann Marie
McNally, and Rosann Greenspan, Compstat and Organizational Change (Washington,
DC: The Police Foundation, 2001).
6Departments with 1,300 or more officers were coded in our example as 1,300 officers.
This transformation was used in order to take into account the fact that only 5% of the
departments surveyed had more than this number of officers and their totals varied very
widely relative to the overall distribution. Another solution that could be used to address
the problem of outliers is to define the measure as the logarithm of the number of sworn
officers, rather than the raw scores. We relied on the former solution for our example be-
cause interpretation of the coefficients is more straightforward. In an analysis of this
problem, a researcher would ordinarily want to compare different transformations of the
dependent variable in order to define the one that best fit the data being examined.

police agencies with more than 100 sworn officers (N � 515) and got a 
The Police Foundation surveyed all and completed in the year 2000.

response rate of 86%. A main concern of the survey was whether Comp-

category. Our regression model (Xb) is represented in Equation 18.4:

Equation 18.4
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Summary of the Logistic Regression Coefficients 
Using SPSS’s Logistic Regression Program

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1 NORTHEAST .359 .372 .931 1 .335 1.432

SOUTH .805 .332 5.883 1 .015 2.237

WEST .428 .367 1.360 1 .244 1.534

#SWORN .002 .000 24.842 1 .000 1.002

Constant �1.795 .311 33.378 1 .000 .166

a Variable(s) entered on step 1: NORTHEAST, SOUTH, WEST, #SWORN.

As you can see, it took only three iterations to achieve convergence. The
convergence criterion used in this SPSS run was that the log likelihood
function declined by less than 0.010%. As noted earlier, we use �2 times
the natural logarithm of the likelihood function (�2LL) to define the log
likelihood function. The final coefficients listed in this table are the same
as the regression coefficients (B) reported in the summary of the regres-

Iteration History Using SPSS’s Logistic Regression Program

Iteration History

�2 Log Coefficients
likelihood

Iteration Constant NOREAST SOUTH WEST NMSWORN

Step 1 1 493.418 �1.555 .258 .629 .308 .001

2 492.515 �1.783 .351 .795 .419 .002

3 492.513 �1.795 .359 .805 .428 .002

a Method: Enter
b Constant is included in the model.
c Initial �2 Log Likelihood: 528.171
d Estimation terminated at iteration number 3 because log likelihood decreased by less than .010 percent.

Table 18.4

Table 18.4 shows the iteration history for estimating this regression.

Table 18.5

sion results provided in Table 18.5.
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We can now express our regression equation in terms of the outcomes

Inserting the values from our regression analysis, we can express the
equation as follows (note that the constant in the SPSS printout is the 
Y-intercept, b0):

Xb � �1.75 � 0.002X1 � 0.359X2 � 0.805X 3 � 0.428X 4

We can also develop predictions of Y from this model, as in the case
of the OLS model. However, as explained above, our predictions of Y
are not the direct outcome of our additive regression model. Rather, the

lative logistic probability function:

For example, let’s say that we want to predict the probability of 

Because North Central is the reference category, the equation contains
only the Y-intercept and the effect of the number of sworn officers:

P(Y � 1) � 1
1 � e�Xb

 X 4 � West
 X 3 � South
 X2 � Northeast

 where X1 � number of sworn officers

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X 4

W orking It Out

 X 4 � West

 X 3 � South

 X2 � Northeast

 where X1 � number of sworn officers

 � 0.205
 � �1.795 � 2
 � �1.795 � 0.002(1000)

 � �1.795 � 0.002(1000) � 0.359(0) � 0.805(0) � 0.428(0)

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X4

of our analysis. Above, we defined our regression model using the term Xb :

probability of Y occurring was expressed in Equation 18.3 for the cumu-

a Compstat-like program in a department with 1,000 officers in the
North Central region. Our first task is to define the value of Xb. We do
that by applying coefficients gained in our logistic regression analysis.
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For a police department in the South with 1,000 officers, the predicted
probability of having a Compstat-like program is fully 73%:

W orking It Out

And,

 � 0.7330

 � 1
1 � 0.3642

 � 1
1 � e�1.01

 P(Y � 1) � 1
1 � e�Xb

 � 1.01

 � �1.795 � 2 � 0.805

 � �1.795 � 0.002(1000) � 0.805(1)

 � �1.795 � 0.002(1000) � 0.359(0) � 0.805(1) � 0.428(0)

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X 4

Applying this result to our equation, we see that, according to our re-
gression model, the probability of having a Compstat-like program in
such a department is about 55%.

W orking It Out

 � 0.55

 � 1
1 � 0.8146

 � 1
1 � e�0.205

P(Y � 1) � 1
1 � e�Xb
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in our model. In this case, the logistic regression coefficients are listed in
the column labeled B. As expected, the coefficient for the number of
sworn officers (#SWORN) is positive; that is, as the number of sworn offi-
cers increases, the likelihood of having a Compstat-like program also in-

category. This means that in the Police Foundation sample, police depart-
ments in the Northeast, West, and South regions were more likely to claim
to have a Compstat-like program than those in the North Central region.

What about the exact interpretation of the logistic regression coefficient?
Here, we can see the price we pay for developing a regression model in

W orking It Out

And,

 � 0.3122

 � 1
1 � 2.2034

 � 1
1 � e�(�0.79)

 P(Y � 1) � 1
1 � e�Xb

 � �0.79

 � �1.795 � 0.2 � 0.805

 � �1.795 � 0.002(100) � 0.805(1)

 � �1.795 � 0.002(100) � 0.359(0) � 0.805(1) � 0.428(0)

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X 4

If we apply our prediction model to smaller departments, we see that
they are less likely, according to our estimates, to have a Compstat-like
program. For example, our model suggests that a police agency with
only 100 officers from the South would have a probability of only 31% of
having a Compstat-like program:

increases. The three dummy variables included for region also have a 
positive impact relative to the North Central region, which is the excluded

which the predictions of the probability of Y are constrained between 

Using Table 18.5, we can also define the specific effects of the variables
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increase in Y (all other included independent variables held constant).
The interpretation of the logistic regression coefficient is not as

straightforward. Our regression equation is predicting not Y, but the loga-
rithm of the odds of getting a 1—or, in our example, the log of the odds of
having a Compstat-like program. In a multivariate logistic regression, b rep-
resents the estimated change in the log of the odds of Y occurring when all
other independent variables are held constant. The coefficient for number
of sworn officers is 0.002, meaning that each additional officer increases by
0.002 the log of the odds of having a Compstat-like program. While some
researchers may have an intuitive understanding of the change in the log of
the odds, the transformation of the outcome measure in the logistic regres-
sion model has made the regression coefficients very difficult to explain or
interpret in a way that nonstatisticians will understand.

The Odds Ratio
To make results easier to understand, statisticians have developed other
methods of interpreting logistic regression coefficients. An approach
commonly used is to report the regression coefficient in terms of its odds
ratio. The odds ratio, sometimes called the exponent of B, is reported

the impact of a one-unit change in X on the ratio of the probability of an
event occurring to the probability of the event not occurring. Equation

events separated by a change of one unit in X:

An odds ratio greater than 1 indicates that the odds of getting a 1 on
the dependent variable increase when the independent variable increases.
An odds ratio less than 1 indicates that the odds of getting a 1 on the de-
pendent variable decreases when the independent variable increases. For
our example, an odds ratio greater than 1 indicates that as the indepen-
dent variable increases, the odds of having a Compstat-like program also
increase. If the odds ratio were 3, for example, then a one-unit change in

  where P(Y � 1) � 1
1 � e�Xb

 Odds ratio � 
� P(Y � 1)

1 � P(Y � 1)�X

� P(Y � 1)
1 � P(Y � 1)�X � 1

0 and 1. In the OLS regression case, the interpretation of b is in reference 
to units of measurement of Y. In the multivariate case, b represents the 
estimated change in Y associated with a unit change in X, when all other 
independent variables in the model are held constant. So a b of 2 in an OLS 
regression suggests that a unit increase in X is associated with a two-unit

as Exp(B) in the SPSS printout in Table 18.5. The odds ratio represents

18.5 defines the odds ratio in terms of the calculation of the odds for two

Equation 18.5
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X would make the event Y about three times as likely to occur. An odds
ratio less than 1 would suggest that the likelihood of having a Compstat-
like program decreased as the independent variable increased.

To calculate the odds ratio, we need to define the probability of get-
ting a 1 [i.e., P(Y � 1)] on our dependent variable at two values, X and 
X � 1. We can choose any two consecutive values of the independent
variable; our odds ratio will be the same, no matter what consecutive val-
ues we choose. Let’s start with number of sworn officers. For simplicity,
we will take 101 and 100 as X and X � 1 and we will calculate the proba-
bilities when a department is in the North Central region. We first need to
work out the odds of getting a Compstat-like program from our model for
the case of 101 sworn officers. As shown below, the result is 0.2034.

W orking It Out Number of Sworn Officers � 101

Step 1: Defining the probability of Y � 1.

Step 2: Defining P(Y � 1).

Step 3: Defining the odds.

 � 0.2034

 � P(Y � 1)
1 � P(Y � 1)�X

 � 
0.1690
0.8310

 � 0.1690

 � 1
1 � 4.9185

 � 1
1 � e�(�1.593)

 P(Y � 1) � 1
1 � e�Xb

 X 4 � West
 X 3 � South
 X2 � Northeast

 where X1 � number of sworn officers

 � �1.593

 � �1.795 � 0.202

 � �1.795 � 0.002(101)

 � �1.795 � 0.002(101) � 0.359(0) � 0.805(0) � 0.428(0)

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X 4
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We then need to follow the same procedure for 100 sworn officers. As
shown below, the odds in the case of 100 sworn officers in the North
Central region are 0.2029.

W orking It Out Number of Sworn Officers � 100

Step 1: Defining the probability of Y � 1.

Step 2: Defining P (Y � 1).

Step 3: Defining the odds.

 � 0.2029

 � P(Y � 1)
1 � P(Y � 1)�X�1

 � 
0.1687
0.8313

 � 0.1687

  � 1
1 � 4.9283

 � 1
1 � e�(�1.595)

 P(Y � 1) � 1
1 � e�Xb

 X 4 � West

 X 3 � South

 X2 � Northeast

 where X1 � number of sworn officers

 � �1.595

 � �1.795 � 0.2

 � �1.795 � 0.002(100)

 � �1.795 � 0.002(100) � 0.359(0) � 0.805(0) � 0.428(0)

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X 4
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Finally, using these two odds, we can estimate our odds ratio, which is
simply the ratio of these two numbers, or 1.002:

W orking It Out

 � 1.002

 � 
0.2034
0.2029

 Odds ratio � 
� P(Y � 1)

1 � P(Y � 1)�X

� P(Y � 1)
1 � P(Y � 1)�X�1

Of course, it would be a lot easier to just look at your computer print-
out, which provides the same outcome. You will probably not calculate
odds ratios by hand outside your statistics class. But working out the
odds ratio gives you a better understanding of what it is and where it
comes from.

ber of sworn officers. Instead of working through the three steps
above, we can move directly from the logistic regression coefficient to
the odds ratio by exponentiating the value of the coefficient b. As
noted earlier in the chapter, when we exponentiate the value of the co-
efficient b, we take e—the value 2.71828—to the power of the coeffi-
cient b. For number of sworn officers, it is e (0.002) � 1.002. What this
means is that for any logistic regression analysis, all we need to do is
exponentiate the logistic regression coefficient to calculate the odds
ratio. SPSS, like most other statistical software, will automatically report
the odds ratios for each of the independent variables included in the
analysis.

It is important to keep in mind that the odds ratio provides an esti-
mate for only a single one-unit increase in the independent variable. The
odds ratio is not a linear function of the coefficients; thus, we cannot say
that for each one-unit increase in the independent variable, the odds in-
crease by some amount. If we are interested in a change of more than
one unit in our independent variable—say 2, 5, 10, or 100 units— we
multiply that number by our coefficient b and then exponentiate that
value. For example, returning to the number of sworn officers, suppose
we are interested in the odds of adopting a Compstat-like program for a

In Table 18.5, we see that b � 0.002 and Exp(B) � 1.002 for num-
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department that added 100 officers. We multiply our coefficient of 0.002
by 100, getting a value of 0.2, and then take e to the power of 0.2, which
gives us a value of 1.2214.

W orking It Out

Odds ratio � e (0.002)(100) � e (0.2) � 1.2214

This odds ratio tells us that the odds of adopting a Compstat-like
program increase by a factor of 1.22 for a department with 100 addi-
tional officers. As an exercise, take the odds of adopting a Compstat-
like program for a department with 100 officers in the North Central

with 200 officers. Then take the ratio of these two odds—it will equal
1.2214.

Our focus on the number of sworn officers illustrates another fea-
ture of logistic regression coefficients that is easily overlooked. There
are times—usually for an interval-level independent variable— when
the logistic regression coefficient will appear to have a small value.
Yet, when we begin to account for the range of the independent vari-
able and start to look at increases of 10, 100, or even 1,000 in the inde-
pendent variable, we may find that the odds increase by a substantial
amount.

For our regional dummy variables, it should be remembered that the
three measures are compared to the reference category, the North Cen-
tral region. Because working out the odds ratio is tedious, we will carry
out the calculations only for the South. According to the results pre-

meaning that being in the South region of the country, as opposed to the
North Central region, more than doubles the odds of having a Compstat-
like program. As with our number of sworn officers coefficient, we get a
value of 2.2367 by taking e to the power of 0.805, which is the logistic
regression coefficient for the South region.

W orking It Out

Odds ratio � e (0.805) � 2.2367

sented in Table 18.5, the South has an associated odds ratio of 2.237,
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Alternatively, we can work through the calculation of the odds ratio
to arrive at the same conclusion. Setting the number of sworn officers at
100, we will calculate the odds ratio of a Compstat-like program for the
case where a department is in the South versus the case where it is in
the North Central region.

W orking It Out Departments in the South

Step 1: Defining the probability of Y � 1.

Step 2: Defining P(Y � 1).

Step 3: Defining the odds.

 � 0.4539

 � P(Y � 1)
1 � P(Y � 1)�X

 � 
0.3122
0.6878

 � 0.3122

 � 1
1 � 2.2033

 � 1
1 � e�(�0.790)

 P(Y � 1) � 1
1 � e�Xb

 X 4 � West

 X 3 � South

 X2 � Northeast

 where X1 � number of sworn officers

 � �0.790

 � �1.795 � 0.200 � 0.805

 � �1.795 � 0.002(100) � 0.805(1)

 � �1.795 � 0.002(100) � 0.359(0) � 0.805(1) � 0.428(0)

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X 4
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W orking It Out Departments in the North Central Region

Step 1: Defining the probability of Y � 1.

Step 2: Defining P (Y � 1).

Step 3: Defining the odds.

 � 0.2029

 � P(Y � 1)
1 � P(Y � 1)�X�1

 � 
0.1687
0.8313

 � 0.1687

 � 1
1 � 4.9283

 � 1
1 � e�(�1.595)

P(Y � 1) � 1
1 � e�Xb

 X 4 � West
 X 3 � South
 X2 � Northeast

 where X1 � number of sworn officers

 � �1.595

 � �1.795 � 0.2

 � �1.795 � 0.002(100)

 � �1.795 � 0.002(100) � 0.359(0) � 0.805(0) � 0.428(0)

 Xb � b0 � b1X1 � b2X2 � b3X 3 � b4X 4

W orking It Out

 � 2.2367

 � 
0.4539
0.2029

 Odds ratio � 
� P(Y �1)

1 �P (Y �1)�X

� P (Y � 1)
1 � P(Y � 1)�X�1
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Turning to the odds comparing the West and Northeast regions with
the North Central region, we can see that the differences are smaller (see

meaning that departments in these regions have a higher likelihood of
reporting a Compstat-like program. The odds ratios for both regions are
about 1.5. A police department in these regions is about 1.5 times as
likely to have a Compstat-like program as a department in the North
Central region.

The Derivative at Mean

tic regression coefficient into a simple linear regression coefficient.
Accordingly, it has the advantage of having the same interpretation as
the result would have had if OLS regression had been appropriate to the
problem. The disadvantage of the derivative at mean is that it calculates
the regression coefficient as if it had a constant effect over the entire dis-
tribution of predicted values of Y, based on the change observed when
the predicted value of Y is at its mean. In fact, the logistic curve in Figure

derivative at mean will be largest when the mean of the dependent vari-
able is close to the middle of the logistic curve. As the mean of the distri-

The interpretation of the derivative at mean is similar to that of the
OLS regression coefficient. The derivative at mean may be defined as the
change in Y associated with a unit change in X at the mean value of 
the dependent variable. The derivative at mean is defined mathemati-

where is the mean of the dependent variable (i.e., the proportion of
cases having a value of 1 for the dependent variable).

in our regression model. Since about 33% of the sample claimed to have
implemented a Compstat-like program, the derivative at mean is calcu-
lated for a mean of Y of 0.33. If we look at the derivative at mean for 
the dummy variables associated with region, we can see the advantage
of this approach. Taking the South region, for which the difference 

Y

DM � Y (1 � Y )bi

regression coefficient (but that is not reported in SPSS) is the derivative
at mean (DM). The derivative at mean converts the nonlinear logis-

18.2 shows that the impact of the parameters will change in absolute

cally in Equation 18.6:

Table 18.6 provides the derivative at mean for each of the coefficients

Equation 18.6

terms, depending on where in the distribution they are calculated. The

bution moves closer to the tails of the logistic curve, the derivative will
be smaller.

Table 18.5). Like the South region statistic, these coefficients are positive,

Another measure that sometimes makes it easier to understand the logistic
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from the excluded category is largest, we calculate the derivative at
mean below:

W orking It Out

 � 0.1778

 � (0.33)(0.67)(0.805)

 � (0.33)(1 � 0.33)(0.805)

 DM � Y (1 � Y )bi

We can interpret this coefficient much as we interpreted the dummy
variable regression coefficients in Chapter 16. If a police department is
located in the South as opposed to the North Central region, its outcome
on the dependent variable is about 0.1778 unit higher. Since the depen-
dent variable has values ranging between 0 and 1, we can interpret this
coefficient in terms of percentages. Departments in the South have, on
average, about an 18 percentage-point higher chance of claiming to have
a Compstat-like program when Y is at its mean.

The derivative at mean for number of sworn officers is about 0.0004.
This suggests that for each additional officer, there is a 0.0004 increase in
the value of Y. According to the derivative at mean, an increase in 100
officers would lead to a 4 percentage-point increase in the likelihood of
having a Compstat-like program. An increase of 1,000 officers would
lead to a 40 percentage-point increase.

W orking It Out

 � 0.0004

 � (0.33)(0.67)(0.002)

 � (0.33)(1 � 0.33)(0.002)

 DM � Y (1 � Y )bi

Derivative at Mean for Each of the Regression 
Coefficients in the Compstat Example

VARIABLE b

Northeast 0.359 (0.33)(0.67)(0.359) � 0.0794
South 0.805 (0.33)(0.67)(0.805) � 0.1778
West 0.428 (0.33)(0.67)(0.428) � 0.0946
Number of Sworn Officers 0.002 (0.33)(0.67)(0.002) � 0.0004

DM � Y (1 � Y )bi

Table 18.6
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In Chapter 16, you saw how standardized regression coefficients could
be used to compare the magnitude of regression coefficients measured
on different scales. There is no widely accepted method for comparing
the magnitude of the coefficients in logistic regression. When variables
are measured on the same scale, we can rely on comparisons of the sta-
tistics we have reviewed so far. For example, if our model includes two
binary dummy variables, we can easily gain a sense of the impact of
each variable by comparing the size of each odds ratio.

Let’s say that we are interested in predicting the likelihood of getting a
prison sentence for a sample of convicted burglars. We include two bi-
nary dummy variables in our analysis. The odds ratio for the first variable,
gender (0 � female; 1 � male), is 1.5. The odds ratio for the second,
whether a gun was used in the burglary (0 � no; 1 � yes), is 2.0. In this
case, we could say that use of a weapon has a larger effect on the likeli-
hood of getting a prison sentence than does gender. In the case of gen-
der, being a male as opposed to a female increases the odds of getting a
prison sentence by about 50%. However, according to these estimates,
using a gun in the burglary doubles the odds of getting a prison sentence.

Using Probability Estimates to Compare Coefficients
If variables are measured on very different scales, comparing the magni-
tude of effects from one variable to another is often difficult. One easily
understood and transparent method for doing this is to rely on the pre-
dicted probabilities of Y. In a study using logistic regression, Wheeler,
Weisburd, and Bode were confronted with a large number of statistically
significant independent variables measured on very different scales.7

They decided to calculate probability estimates for measures at selected
intervals when the scores of all other predictors were held at their mean.
They also calculated a range of predictions computed from the 5th to
95th percentile scores for the measure of interest. The table they devel-

The study examined factors that explained whether or not white-
collar offenders convicted in federal courts were sentenced to prison.
The table gives the reader a sense of how changes in the independent
variable affect changes in the dependent variable, as well as a general
idea (using the range) of the overall influence of the measure examined.
For example, the amount of “dollar victimization” in an offense (variable
2) and “role in offense” (variable 13) are both ordinal-level variables but
are measured with a different number of categories. Looking at the table,

7See Stanton Wheeler, David Weisburd, and Nancy Bode, “Sentencing the White Col-
lar Offender: Rhetoric and Reality,” American Sociological Review 47 (1982): 641–659.

oped is reproduced in Table 18.7.
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Selected Probability Estimates and Calculated Range 
for Significant Variables in Wheeler, Weisburd, 
and Bode’s Study of White-Collar-Crime Sentencing

PROBABILITY PROBABILTY
INDEPENDENT VARIABLES ESTIMATESa RANGEb INDEPENDENT VARIABLES ESTIMATESa RANGEb

I. Act-Related Variables
1) Maximum Exposure to

Prison 44
1 day–1 year 32
1 year & 1 day–2 years 35
4 years & 1 day–5 years 45
14 years & 1 day–15 years 76

2) Dollar Victimization 41
$101–$500 27
$2,501–$5,000 38
$10,001–$25,000 47
$25,001–$100,000 51
over $2,500,000 68

3) Complexity/Sophistication 27
4 32
6 38
8 45

10 52
12 59

4) Spread of Illegality 21
Individual 40
Local 47
Regional 54
National/International 61

II. Actor-Related Variables
7) Social Background: 

Duncan S.E.I. 29
15.1 28
49.4 41
62.0 47
66.1 49
84.0 57

8) Social Background: 
Impeccability 17

7 54
11 49
14 45
17 42
21 37

9) Criminal Background:
Number of Arrests 22

0 37
1 43
2 45
5 51
9 59

10) Criminal Background:
Most Serious Prior 
Conviction 20

None 37
Minor Offense 46
Low Felony 52
Moderate Felony 57

13) Role in Offense 24
Minor 26
Missing 33
Single/Primary 50

III. Legal Process Variables
16) Statutory Offense Category 39

Antitrust Violations 28
Bribery 30
Bank Embezzlement 36
False Claims 36
Postal Fraud 38
Lending/Credit Fraud 45
SEC Violations 65
Tax Violations 69

IV. Other Variables 30
17) Sex

Male 50
Female 20

18) Age ——c

22 42
30 48
39 50
48 46
61 32

21) District 28
Northern Georgia 34
Southern New York 34
Central California 43
Western Washington 43
Maryland 50
Northern Illinois 53
Northern Texas 62

aEstimated likelihood of imprisonment when scores on all other variables are held at their mean.
bRange computed from 5th to 95th percentile score.
cBecause of the curvilinear effect measured here, the range is not relevant.

Table 18.7
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we can see that a person playing a minor role in an offense had a pre-
dicted probability of imprisonment of about 26%, while someone playing
a primary role had a 50% likelihood of imprisonment, according to the
model estimated (and holding all other independent variables constant at
their mean). A crime involving less than $500 in victimization led to an
estimated likelihood of imprisonment of 27%. A crime netting over
$2,500,000 led to an estimated likelihood of imprisonment of 68%. If we
compare the range of predicted values between the 5th and 95th per-
centile scores for each variable, our calculation suggests that dollar vic-
timization (with a range of 41%) has a much larger impact than role in
an offense (with a range of 24%). Of course, the choice of the 5th and
95th percentiles is arbitrary. And this method also arbitrarily holds every
other independent variable to its mean. Nonetheless, the advantage of
this approach is that it provides a method of comparison that is straight-
forward and easy for the nonstatistician to understand.

To apply this method to our data, we need information on the mean
for each independent variable. For our data, the means are

Northeast: 0.225

South: 0.373

West: 0.229

Number of sworn officers: 334.784

scribes the results. Using this table, we can see that there are very large
differences in the predicted probabilities of a Compstat-like program for
departments of varying size. This illustrates a point made earlier, when
we noted that the odds ratio for each change in number of sworn officers
was small. Though the change per unit change in X is small in this case
(because departments differ widely in size), the predicted change can be
very large. Under this approach, the range variable suggests a larger im-
pact for number of sworn officers than for region of country.

Table of Selected Probability Estimates 
and Range for the Compstat Model

VARIABLE PROBABILITY ESTIMATE RANGE

Number of sworn officers:
100 (5th percentile) 0.2468 0.53
500 0.4217
1,300 (95th percentile) 0.7831

Northeast 0.4090 ——
South 0.4647 ——
West 0.4216 ——

Table 18.8

the method employed by Wheeler, Weisburd, and Bode. Table 18.8 de-
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“Standardized” Logistic Regression Coefficients
Some statistical software programs list the standardized logistic regres-
sion coefficient Beta, which is analogous to the standardized regression
coefficient. Like the standardized regression coefficient, the standardized
logistic regression coefficient can be interpreted relative to changes

For all of the following calculations,

P (Y � 1) � 1
1 � e�[�1.3159 � (0.002)(1300)]

 � 1
1 � e�(1.2841)

 � 0.7831

P (Y � 1) � 1
1 � e�[�1.3159 � (0.002)(500)]

 � 1
1 � e�(�0.3159)

 � 0.4217

P (Y � 1) � 1
1 � e�[�1.3159 � (0.002)(100)]

 � 1
1 � e�(�1.1159)

 � 0.2468

P (Y � 1) � 1
1 � e�(�1.3159�0.002X1)

 � �1.3159 � 0.002X1

 � �1.795 � 0.002X1 � 0.0808 � 0.3003 � 0.0980
 � �1.795 � 0.002X1 � 0.359(0.225) � 0.805(0.373) � 0.428(0.229)

 Xb � b0 � b1 X1 � b2 X2 � b3 X3 � b4 X4

 X 4 � West
 X 3 � South
 X2 � Northeast
 X1 � number of sworn officers

Calculating Selected Probability Estimates 
and Range for the Compstat Model

Probability estimate for number of sworn officers:

P (Y � 1) for 100 officers:

P (Y � 1) for number of sworn officers:

P (Y � 1) for 500 officers:

P (Y � 1) for 1,300 officers:



(measured in standard deviation units) in the independent variable. The
magnitude of the standardized logistic regression coefficient allows us to
compare the relative influence of the independent variables, since a
larger value for the standardized coefficient means that a greater change
in the log of the odds is expected. In contrast to the standardized regres-

Probability estimate for Northeast:

Probability estimate for South:

Probability estimate for West:

P (Y � 1) � 1
1 � e�(�0.7443 � 0.428X4)

 � 1
1 � e 0.3163 � 0.4216

P (Y � 1) for West:

 � �0.7443 � 0.428X4

 � �1.795 � 0.6696 � 0.0808 � 0.3003 � 0.428X4

 � �1.795 � 0.002(334.784) � 0.359(0.225) � 0.805(0.373) � 0.428X4

 Xb � b0 � b1X1 � b2 X2 � b3 X 3 � b4 X 4

P (Y � 1) � 1
1 � e�(�0.9466 � 0.805X3)

 � 1
1 � e 0.1416 � 0.4647

P (Y � 1) for South:

 � �0.9466 � 0.805X 3

 � �1.795 � 0.6696 � 0.0808 � 0.805X3 � 0.0980
 � �1.795 � 0.002(334.784) � 0.359(0.225) � 0.805X3 � 0.428(0.229)

 Xb � b0 � b1X1 � b2 X2 � b3 X 3 � b4 X 4

P (Y � 1) � 1
1 � e�(�0.7271 � 0.359X2)

  � 1
1 �e 0.3681 � 0.4090

P (Y � 1) for Northeast:

 � �0.7271 � 0.359X2

 � �1.795 � 0.6696 � 0.359X2 � 0.3003 � 0.0980
 � �1.795 � 0.002(334.784) � 0.359X2 � 0.805(0.373) � 0.428(0.229)

 Xb � b0 � b1X1 � b2 X2 � b3 X3 � b4X 4



gistic regression models does not fall between 0 and 1, but can take on
any value.8 Some statisticians warn that such coefficients should be inter-
preted with caution.9 Nonetheless, they can provide a method for gain-
ing a general sense of the strength of coefficients in logistic regression.
The standardized logistic regression coefficient is calculated using

where bi is the unstandardized coefficient for variable i from the origi-
nal logistic regression model and si is the standard deviation for vari-
able i. We interpret Beta as the change in the log of the odds of 
P (Y � 1) relative to changes (measured in standard deviation units) 
in the independent variable. For example, a Beta of 0.4 implies that
for a one-standard-deviation change in the independent variable, 
the log of the odds is expected to increase by 0.4. Alternatively, if 
Beta � �0.9, a one-standard-deviation change in the independent
variable is expected to result in a decrease of 0.9 in the log of the
odds that P (Y � 1).

Returning to our example using the Compstat data, we find the stan-
dardized coefficient for number of sworn officers to be 0.6616.

Betai � bisi

8Some researchers have proposed alternative ways of calculating standardized logistic re-
gression coefficients that allow for interpretations related to changes in probabilities. See,
for example, Robert L. Kaufman, “Comparing Effects in Dichotomous Logistic Regression:
A Variety of Standardized Coefficients,” Social Science Quarterly 77 (1996): 90–109.
9For example, see Andy Field, Discovering Statistics Using SPSS for Windows (London:
Sage Publications, 2000).

W orking It Out

 � 0.6616

 � (0.002)(330.797)

Beta � bisi

model and present the accompanying unstandardized logistic regression
coefficients. Though the unstandardized logistic regression coefficient for
the South (0.805) seems very large relative to that for number of sworn

Equation 18.7:

Equation 18.7

In Table 18.9, we calculate Beta for all four of the coefficients in the
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sion coefficients for linear regression models, the Beta calculated for log-
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officers (0.002), the reverse relationship is found when we look at the
standardized coefficients. The standardized coefficient for number of
sworn officers is 0.662, while that for the South is 0.390. This is consis-
tent with our analysis of the probability estimates. Both of these methods
take into account the fact that the scales of measurement for these mea-
sures differ widely. While you should use caution in relying on standard-

coefficients within regression models.10

E v a l u a t i n g  t h e  L o g i s t i c  R e g r e s s i o n  M o d e l

In OLS regression, to assess how well our model explains the data, we
use a straightforward measure of the percent of variance explained be-

2

Nonetheless, a number of measures have been proposed for assessing
how well a model predicts the data.

Percent of Correct Predictions
One widely accepted method for assessing how well a logistic regression
model predicts the dependent variable is to compare the values of Y pre-
dicted by the model to those that would be obtained simply by taking
the observed distribution of the dependent variable. This statistic is com-

Beta and Associated Logistic Regression 
Coefficients for the Compstat Model

STANDARD
VARIABLE DEVIATION b BETA

Number of sworn officers 330.797 0.002 (330.797)(0.002) � 0.6616
Northeast 0.416 0.359 (0.416)(0.359) � 0.1493
South 0.484 0.805 (0.484)(0.805) � 0.3896
West 0.421 0.428 (0.421)(0.428) � 0.1802

10As with standardized regression coefficients in OLS regression, you should not com-
pare standardized logistic regression coefficients across models. Moreover, while we
report standardized regression coefficients for the dummy variables included in the
model, you should use caution in interpreting standardized coefficients for dummy

Table 18.9

provide a general yardstick for comparing the relative strength of
ized logistic regression coefficients, here, as in other cases, they can 

). There is no equivalent statistic in logistic regression.yond the mean (R

monly described as the percent of correct predictions. Table 18.10

E V A L U A T I N G  T H E  L O G I S T I C  R E G R E S S I O N  M O D E L

variables. See Chapter 16, pages 474–475, for a discussion of this problem.
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shows the percent of correct predictions for our Compstat example. The

Percent of correct predictions �

The observed predictions in our example represent the observed pro-
portion of departments that report having a Compstat-like program. As
we noted before, this number is about 0.33 (or 33%). We add the 106

vide this number by the total number of cases in the analysis (N � 419).

order to compare these predicted values with the observed values, we
must assign each case a 0 or a 1. The decision as to whether to define
the predicted value as a 1 or a 0 is based on a set cut-off point. Herein
lies the main drawback of this approach: The point at which you deter-
mine that the prediction is a 1 is arbitrary. In SPSS, as in other standard
software packages, 0.50 is used as a natural cut-off point. That is, if we
get a predicted probability of 0.50 or greater for a case in our study, it
will be counted as a prediction of 1. Remember that a 1 in our case
means that the department has a Compstat-like program. In this analysis,
if the prediction is 0.495, the case is given a 0. Clearly, by using a single
and arbitrary cut-off point, we are losing a good deal of information
about how well the model fits the data.

The proportion of correct predictions is worked out below, using

for which the actual and predicted values are the same. In 264 cases, the

�Ncorrrect predictions

Ntotal
� � 100

Percent of Correct Predictions 
for the Logistic Regression of the Compstat Data

Classification Table

Predicted

COMPSTAT Percentage
Correct

Observed .00 1.00

Step 1 COMPSTAT .00 264 19 93.3

1.00 106 30 22.1

Overall 70.2

a The cut value is .500.

Table 18.10

formula for percent of correct predictions is presented in Equation 18.8.

Equation 18.8

and 30 cases in Table 18.7 where the observed value is 1 and then di-

The predicted values are drawn from Equation 18.3. But, importantly, in

Equation 18.8. The N of correct predictions is found by taking each case
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actual and predicted values are 0. In only 30 cases are the actual and
predicted values equal to 1. These are the correct predictions in our
analysis, so the total number of correct predictions is 264 � 30 � 294.
The percent of correct predictions is 70.2. This seems like a very high
level of prediction. However, to interpret this statistic, we must compare
it with the level we would have reached if we had not used our regres-
sion model. In that case, we would have had information only on the
split in the dependent variable. As noted earlier, 33% of the departments
claim to have implemented a Compstat-like program. Knowing only this,
our best bet would have been to predict that every department did not
have a Compstat-like program. If we did this, we would be correct about
67% of the time. Thus, our model did not improve our prediction very
much over what we would have predicted with knowledge of only the
outcomes of the dependent variable.

W orking It Out

 � 70.17

 � (0.7017) � 100

 � �294
419� � 100

 Percent of correct predictions � �Ncorrect predictions

Ntotal
� � 100

Pseudo R 2

While there is no direct R2 measure for logistic regression, a number of
what may be termed pseudo R2 measures have been proposed. Like stan-
dardized logistic regression coefficients, these measures are not well ac-
cepted and must be used with caution. Nonetheless, by providing a general
sense of the prediction level of a model, they can add information to other
statistics, such as the percent of correct predictions. A commonly used
pseudo R2 measure is Cox and Snell’s R2.11 As with other pseudo R2 sta-
tistics, a main component of this measure is the log likelihood function
(�2LL). It makes good sense to rely on the log likelihood function, since it
measures the degree to which a proposed model predicts the data exam-
ined. In this case, we compare the difference between the �2LL estimate

11D. R. Cox and E. J. Snell, The Analysis of Binary Data, 2nd ed. (London: Chapman
and Hall, 1989).
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obtained when no independent variables are included (the null model) and
the �2LL estimate obtained when all the independent variables are in-
cluded (the full model). The �2LL value for the null model (528.171) is

vides the method of calculation for Cox and Snell’s R2.

While this equation looks intimidating, it can be solved in two easy
steps. First, we calculate the number that appears above e, or the expo-
nent of the natural log:

R 

2 � 1 � e�[(�2LLnull model) � (�2LLfull model)]/N

Pseudo R2 Statistics as Reported in SPSS

Model Summary

Step �2 Log Cox & Snell R Nagelkerke R
likelihood Square Square

1 492.513 .082 .114

W orking It Out Step 1

  � �0.085

  � �35.658/419

  � �[(528.171) � (492.513)]/419

�[(�2LLnull model) � (�2LLfull model)]/N

We then take e to the power of �0.085, which, as we noted earlier, can
be done simply on a basic scientific calculator. We next subtract this
number from 1:

W orking It Out Step 2

 � 0.0816

 � 1 � 0.9185

 Cox and Snell’s R 2 � 1 � e�0.085

Table 18.11

given in Table 18.4. The �2LL value for the full model (492.513) is given in
the model summary statistics provided in Table 18.11. Equation 18.9 pro-

Equation 18.9
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Rounding 0.0816 to three decimal places gives a result of 0.082, which is
identical to that produced in the SPSS printout.

Like the percent of correct predictions, Cox and Snells R 2 suggests
that our model does not provide for a very strong level of prediction.
SPSS produces another R 2 statistic: the Nagelkerke R 2. This statistic cor-
rects for the fact that Cox and Snell’s estimate, as well as many other
pseudo R 2 statistics, often have a maximum value of less than 1 (which

2 2

12 Other pseudo 
R 2

these values should be seen as an exact representation of the percent of
variance explained in your model. But they can give you a rough sense
of how well your model predicts the outcome measure.

S t a t i s t i c a l  S i g n i f i c a n c e  i n  L o g i s t i c  R e g r e s s i o n

Statistical significance for a logistic regression can be interpreted in much
the same way as it was for the regression models discussed in Chapters
15 and 16. However, a chi-square distribution is used, and thus we do
not have to be concerned with assumptions regarding the population
distribution in our tests. For the overall model, there is a general test,
based on the difference between the �2LL statistics for the full and null
models. The chi-square formula for the overall model in logistic regres-

Model chi-square � (�2LLnull model) � (�2LLfull model)

next page). The number of degrees of freedom is determined by the
number of independent variables included in the model estimated. In
our case, there are three regression coefficients for the variable region
and the measure number of sworn officers. The number of degrees of
freedom thus equals 4. Looking at Appendix 2, we can see that a chi-
square statistic of greater than 18.465 is needed for a statistically signifi-
cant result at the 0.001 level. Because our chi-square statistic is much
larger than this, our observed significance level is less than 0.001. Using

12See N. J. D. Nagelkerke, “A Note on a General Definition of the Coefficient of Deter-
mination, Biometrika 78 (1991): 691–692.

erke’s R is thus generally larger than Cox and Snell’s R , which—
especially with large values—will be too conservative.

explained by the independent variables included in the model). Nagelk-
would indicate that all of the variance in the dependent variable was 

statistics will give estimates similar to those produced here. None of

sion is represented in Equation 18.10.

Equation 18.10
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For our example, the model chi-square is 35.658 (see working it out,

conventional significance criteria, we would reject the null hypothesis



and conclude that the model estimated provides significant improvement
over that without any independent variables.

W orking It Out

 � 35.658

 � 528.171 � 492.513

 Model chi-square � (�2LLnull model) � (�2LLfull model)

In testing the statistical significance of individual parameters, statistical
This statistic

also has a chi-square distribution, and so the statistical significance of a
result may be checked in a chi-square table. The Wald statistic takes the
ratio of the logistic regression coefficient to its standard error (see Equa-

the South and North Central regions (the latter being the excluded cate-
gory), we take the logistic regression coefficient of 0.805 and divide it by
the reported standard error of 0.332. To get the Wald statistic, we square
this number. The result is 5.879.

W 

2 � � b
SEb

�2

13

W orking It Out South Region Measure

 � 5.879

 � �0.805
0.332�

2

 W 

2 � � b
SEb

�2

tion 18.11). The standard error of the logistic regression coefficient is
provided in the SPSS printout (see Table 18.12). For the comparison of

Equation 18.11
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13software packages ordinarily provide the Wald statistic.

14

error.

We discuss the Wald statistic in detail here, because it is the most common test of 

14

chapter and in more detail in Chapter 19 offers an alternative test for statistical significance 

for Categorical and Limited Dependent Variables (Thousand Oaks, CA, Sage, 1997).
that is appropriate to both small and large samples (see J. Scott Long, Regression Models 

The difference between our result and that shown in Table 18.12 is due to rounding

statistical significance reported in many statistical software applications. it should be noted,
however, that some researchers have noted that the Wald statistic is sensitive to small
sample sizes (e.g., less than 100 cases). The likelihood-ratio test discussed later in this



To determine whether this coefficient is statistically significant, we can
refer to the chi-square table for 1 degree of freedom. The number of de-
grees of freedom for an individual variable in a logistic regression will al-
ways be 1. Looking at Appendix 2, we see that a chi-square of 10.827 is
required for a result to be statistically significant at the 0.001 level. A chi-
square of 6.635 is required at the 0.01 level, and a chi-square of 5.412 at
the 0.02 level. Our observed significance level can therefore be defined
as falling between 0.01 and 0.02. The SPSS printout gives the exact ob-
served significance level as 0.015. Using conventional levels of statistical
significance, we would conclude that we can reject the null hypothesis
that there is no difference in the reported implementation of Compstat-
like programs in the South versus the North Central region.

that the number of sworn officers is also statistically significant—in this
case, at greater than the 0.001 level. It is important to note that the statistics
reported in this table, as well as in most statistical software, are for two-
tailed significance tests. We mentioned at the outset that there was a strong
hypothesis that larger departments are more likely to report a Compstat-like
program. If we wanted to use a directional test of statistical significance, we
would simply divide the observed significance level in our test by 2.

Looking at the other region dummy variables, we can see that there is
not a statistically significant difference between the Northeast and North
Central regions or between the West and North Central regions. But, as
noted in Chapter 16, it is important to ask whether the variable region
overall contributes significantly to the regression. To test this hypothesis,
we can conduct a likelihood ratio chi-square test, which compares the

SPSS Printout with B, SE of B, and Wald Statistics

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1 NORTHEAST .359 .372 .931 1 .335 1.432

SOUTH .805 .332 5.883 1 .015 2.237

WEST .428 .367 1.360 1 .244 1.534

#SWORN .002 .000 24.842 1 .000 1.002

Constant �1.795 .311 33.378 1 .000 .166

a Variable(s) entered on step 1: NORTHEAST, SOUTH, WEST, #SWORN.

Looking at the significance statistics column in Table 18.12, we can see

This printout is identical to that in Table 18.5. It is reproduced here for easy reference
as you work through the computations presented in this section.

Table 18.12
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log likelihood function of the model with the multicategory nominal vari-
able (the full model) with the log likelihood function of the model without

details the likelihood ratio chi-square test. The number of degrees of free-
dom is defined as the number of dummy variables added by the multicate-
gory nominal variable. In our case, it is 3 for the three included regions.

Likelihood ratio chi-square test � (�2LLreduced model) � (�2LLfull model)

We can get the statistics for the test by running two separate regres-
sions. The reduced model regression excludes the dummy variables as-
sociated with region. The �2LL for this model is shown in the model

the full model—the model we have been using throughout the chapter,
with the region dummy variables included. The model statistics were re-

Below, we work out the likelihood ratio chi-square using these two
estimates. The likelihood ratio chi-square for the region variable is 6.934,

Compstat-like program at the 0.05 significance threshold. Because our
chi-square statistic is smaller than this number, we cannot conclude that
there is overall a statistically significant relationship between region and
claimed development of a Compstat-like program.

W orking It Out

 � 6.934

 � 499.447 � 492.513

 Likelihood ratio chi-square test � (�2LLreduced model) � (�2LLfull model)

Model Summary for the Reduced Model

Model Summary

Step �2 Log Cox & Snell R Nagelkerke R
likelihood Square Square

1 499.447 .066 .092

Table 18.13

the multicategory nominal variable (the reduced model). Equation 18.12

Equation 18.12

summary from an SPSS printout in Table 18.13. The second regression is

ported in Table 18.11.

with 3 degrees of freedom (the number of dummy variable measures 
included in the model). Looking at Appendix 2, we can see that with 3 
degrees of freedom, a chi-square of 7.815 would be needed to reject 
the null hypothesis of no relationship between region and a reported
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C h a p t e r  S u m m a r y

Ordinary least squares regression is not an appropriate tool for analyzing
a problem in which the dependent variable is dichotomous. In such
cases, OLS regression is likely to predict values that are greater than 1
and less than 0 and thus outside the observed distribution of Y. Using
the OLS approach in this case will also lead to violations of parametric
assumptions required for associated statistical tests. Logistic regression
analysis uses a logistic model curve, rather than a straight line, to pre-
dict outcomes for Y in the case of a dichotomous dependent variable.
This constrains predictions to between 0 and 1.

While the logistic model curve provides a solution to predictions be-
yond the observed distribution, the outcome variable is transformed into
the natural logarithm of the odds of Y, or the logit of Y. Through use
of the cumulative logistic probability function, the logistic regression
equation may be used to predict the likelihood of Y occurring. Maxi-
mum likelihood techniques are used to estimate the coefficients in a
logistic regression analysis. In this approach, we begin by identifying a
tentative solution, which we then try to improve upon. Our criterion for
improvement is termed the log likelihood function (�2LL). We repeat
this process again and again until the change in the likelihood function
is considered negligible. Each time we repeat the process and reestimate
our coefficients is called an iteration. Lack of convergence in a stan-
dard number of iterations indicates some type of problem in the regres-
sion model that is being estimated.

The multivariate logistic regression coefficient, b, may be inter-
preted as the increase in the log of the odds of Y associated with a one-
unit increase in X (with all other independent variables in the model
held constant). The odds ratio, or Exp(B), and the derivative at
mean, DM, provide more easily interpreted representations of the logis-

change in Y associated with a unit change in X. The DM will change de-
pending on the mean value of Y in the problem examined.

There is no widely accepted method for comparing logistic regression
coefficients measured on different scales. One method is to compare
probability estimates at selected intervals. Standardized regression coeffi-
cients have been suggested for logistic regression, though they should be
interpreted with caution. There is no single widely accepted statistic for
assessing how well the logistic regression model predicts the observed
data. An approach commonly used is to calculate the percent of cor-
rect predictions. This method establishes an arbitrary decision point

regression coefficient, the derivative at mean may be interpreted as the

tic regression coefficient. The odds ratio represents the impact of a one-
unit change in X on the ratio of the probability of Y. Like an ordinary
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(usually 0.50) for deciding when a predicted value should be set at 1.
These predictions are then compared to the observed data. Pseudo R2

statistics have also been developed, though they remain a subject of
debate.

Statistical significance for the overall logistic regression model is as-
sessed through computation of the model chi-square. Statistical signifi-
cance for individual regression coefficients is evaluated with the Wald
statistic. A likelihood ratio chi-square test can be used to calculate
the statistical significance of a multicategory nominal variable.

K e y  T e r m s

Cox and Snell’s R2 A commonly used
pseudo R 2 measure whose main compo-
nent, as in other pseudo R2 statistics, is the
log likelihood function (�2LL).

cumulative logistic probability func-
tion A transformation of the logistic
probability function that allows
computation of the probability that 
Y will occur, given a certain combination
of characteristics of the independent
variables.

derivative at mean (DM) A measure that
converts the nonlinear logistic regression
coefficient to a simple linear regression co-
efficient, which may be interpreted as the
change in Y associated with a unit change
in X.

iteration Each time we identify another
tentative solution and reestimate our logis-
tic regression coefficients.

lack of convergence Failure of a logistic
regression analysis to reach a result that
meets the criterion of reduction in the log
likelihood function.

likelihood ratio chi-square test A test
for statistical significance that allows the re-
searcher to examine whether a subset of
independent variables in a logistic regres-

sion is statistically significant. It compares
�2LL for a full model to �2LL for a re-
duced model.

log likelihood function A measure of the
probability of observing the results in the
sample, given the coefficient estimates in
the model. In logistic regression, the log
likelihood function (�2LL) is defined as �2
times the natural logarithm of the likeli-
hood function.

logarithm The power to which a fixed
number (the base) must be raised to pro-
duce another number.

logistic model curve The form of the pre-
dicted outcomes of a logistic regression
analysis. Shaped like an S, the logistic
curve begins to flatten as it approaches 

never actually reaches—either of these two
values.

logistic regression analysis A type of re-
gression analysis that allows the researcher
to make predictions about dichotomous de-
pendent variables in terms of the log of the
odds of Y.

logistic regression coefficient The coef-
ficient b produced in a logistic regression

0 or 1, so it keeps coming closer to—but

C H A P T E R  E I G H T E E N :  L O G I S T I C  R E G R E S S I O N
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S y m b o l s  a n d  F o r m u l a s

e Base of the natural logarithm

ln Natural logarithm

�2LL �2 times the log likelihood function

The natural logarithm of the odds of P(Y � 1) to P(Y � 0):

ln � P(Y � 1)
1 � P(Y � 1)� � ln �P(Y � 1)

P(Y � 0)� � b0 � b1X1

ated with a one-unit increase in X.

maximum likelihood estimation A tech-
nique for estimating the parameters or co-
efficients of a model that maximizes the
probability that the estimates obtained will
produce a distribution similar to that of the
observed data.

model chi-square The statistical test used
to assess the statistical significance of the
overall logistic regression model. It com-
pares the �2LL for the full model with the
�2LL calculated without any independent
variables included.

Nagelkerke R2 A pseudo R 2 statistic that
corrects for the fact that Cox and Snell’s es-
timates, as well as many other pseudo R 2

statistics, often have a maximum value of
less than 1.

natural logarithm of the odds of Y (logit
of Y) The outcome predicted in a logistic
regression analysis.

odds ratio [Exp(B)] A statistic used to in-
terpret the logistic regression coefficient. It
represents the impact of a one-unit change
in X on the ratio of the probability of Y.

percent of correct predictions A 
statistic used to assess how well a logistic
regression model explains the observed
data. An arbitrary decision point (usually
0.50) is established for deciding when a
predicted value should be set at 1, and
then the predictions are compared to the
observed data.

pseudo R2 The term generally used for a
group of measures used in logistic regres-
sion to create an approximation of the OLS
regression R 2. They are generally based on
comparisons of �2LL for a full model and
a null model (without any independent
variables).

standardized logistic regression
coefficient A statistic used to compare
logistic regression coefficients that use
different scales of measurement. It is 
meant to approximate Beta, the
standardized regression coefficient in 
OLS regression.

Wald statistic A statistic used to assess the
statistical significance of coefficients in a 
logistic regression model.

S Y M B O L S  A N D  F O R M U L A S 571

change in the log of the odds of Y associ-



To calculate the probability that Y � 1:

To calculate the odds ratio for P(Y � 1), given a one-unit change in the
independent variable X:

� Exp(B)

To calculate the derivative at mean:

To calculate the standardized logistic regression coefficient:

Betai = bisi

To calculate the percent of correct predictions:

Percent correct �

To calculate Cox and Snell’s R 2:

To calculate the model chi-square:

Model chi-square � (�2LLnull model) � (�2LLfull model)

To calculate the Wald statistic:

To calculate the likelihood ratio chi-square statistic for a subset of
independent variables:

Likelihood ratio chi-square test � (�2LLreduced model) � (�2LLfull model)

 W 2 � � b
SEb

�2

R 2 � 1 � e�[(�2LLnull model) � (�2LLfull model)]/N

�Ncorrrect predictions

Ntotal
� � 100

DM � Y (1 � Y )bi

Odds ratio � 
� P(Y � 1)

1 � P(Y � 1)�X

� P(Y � 1)
1 � P(Y � 1)�X�1

P(Y � 1) � 1
1 � e�Xb
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E x e r c i s e s

As part of a research project for a class, a student analyzed data on a
sample of adults who had been asked about their decision to report
being assaulted to the police. Their decision was coded as 1 � assault

age (in years), sex (0 � male, 1 � female), and race (0 � white, 
1 � nonwhite). The student reported the regression results as

Variable b

Age 0.01
Sex 0.5
Race �0.2
Constant �0.1

a. Calculate the predicted values for each of the following persons:

— A 65-year-old white female

— A 25-year-old nonwhite male

— A 40-year-old white male

— A 30-year-old nonwhite female

b. Should any of the student’s predicted values lead the student to
question the use of ordinary least squares regression? Explain why.

A research institute concerned with raising public attention about the use
of force by school children calculates the following effects on the likeli-
hood of hitting another child at school, using logistic regression analysis:

Variable b

Sex (0 � girl, 1 � boy) 0.7
Grade in school �0.1
Constant �0.4

Hitting another child was coded as 1; no hitting was coded as 0.

a. Interpret the effects of sex and grade in school on the log of the
odds that P(Y � 1).

b. Calculate and interpret the odds ratios for the effects of sex and
grade in school on use of force.

Supervision of defendants on pretrial release is thought to reduce the
chance that defendants will flee the community. A government agency
funds a small study to examine whether supervision affects pretrial

E X E R C I S E S

student used ordinary least squares regression to estimate the effects of
reported to the police, 0 � assault not reported to the police. The 
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flight (flight � 1, no flight � 0) and reports the following logistic
regression results:

Variable b Standard Error of b

Age (years) �0.01 0.02

Sex ( 1 � male, 0.67 0.25
0 � female)

Severity of offense 0.21 0.03
scale (0 to 10)

Number of prior 0.35 0.09
felony convictions

Number of contacts with �0.13 0.03
supervision caseworker

Constant �0.52

a. Calculate and interpret the odds ratio for each of the independent
variables.

b. Can the government agency conclude that supervision in the form
of contact with a caseworker has a statistically significant effect on
pretrial flight? Explain why.

c. If the agency reports that the �2LLnull model is 653.2 and the 
�2LLfull model is 597.6, can it conclude that the model is statistically
significant? Explain why.

A survey of adolescents indicated that 17% had used marijuana in the
last year. In addition to standard demographic predictors of drug use,
a researcher expects that school performance also affects the likeli-
hood of marijuana use. The researcher’s table of results follows.

Standard Standard 
Variable Mean Deviation b Error of b

Age (years) 14.6 3.1 0.07 0.03

Sex (1 � male, 0 � female) 0.55 0.50 0.36 0.15

Race (1 � white, 0 � nonwhite) 0.75 0.43 �0.42 0.30

Grade point average 2.76 1.98 �0.89 0.24

Think of self as a good 0.59 0.49 �0.65 0.33
student (1 � yes, 0 � no)

Constant �0.87

a. Calculate the predicted probability of marijuana use for each of the
following persons:

— A 14-year-old white male who does not think of himself as a
good student and has a GPA of 3.07.
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— A 17-year-old nonwhite female who thinks of herself as a good
student and has a GPA of 3.22.

— A 15-year-old white female who thinks of herself as a good stu-
dent and has a GPA of 2.53.

b. Calculate the standardized coefficient for each of the independent
variables in the model. Which variable appears to have the largest
effect on marijuana use?

c. Calculate the derivative at mean for each of the independent vari-

d. Compare your answers for parts b and c. How do you explain this
pattern?

After losing a court battle over a requirement that it reduce its jail
population, a county conducted an analysis to predict which offenders
would pose the greatest threat of committing a violent offense if re-
leased early. A random sample of 500 inmates released from the jail in
the last three years was analyzed to see what factors predicted arrest
for a violent crime in the 12 months after release. For the final model,
which included five predictors of violent arrest, the county reported
the following statistics:

Predicted Predicted 
No Violent Arrest Violent Arrest

Observed No Violent Arrest 439 19
Observed Violent Arrest 27 15

a. Calculate the percent correctly predicted for this model. What does
this statistic indicate about the county’s prediction model?

b. Calculate the model chi-square for this model. Interpret this
statistic.

c. Calculate Cox and Snell’s R 2 for this model. Interpret this statistic.

d. How do you explain the difference in the results for parts a
through c?

Hopeful that media attention to wrongful convictions has increased
public opinion in favor of abolishing the death penalty, an abolitionist
organization conducts a study to assess public support for abolishing
the death penalty. Overall, the organization finds that 35% would sup-
port abolishing the death penalty if offenders could be sentenced to
life without the option of parole (coded as 1 � abolish the death
penalty, 0 � do not abolish the death penalty). In a logistic regression

 �2LLfull model � 861.3

 �2LLnull model � 876.5

effect on marijuana use?
ables in the model. Which variable appears to have the largest 
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model examining the effects of respondent characteristics on support,
the organization finds the following:

Standard Standard 
Variable Mean Deviation b Error of b

Age (years) 41.2 15.4 �0.01 0.01
Sex (1 � male, 0 � female) 0.44 0.50 �0.42 0.19
Race (1 � white, 0 � nonwhite) 0.76 0.43 �0.24 0.09

Political conservative 0.33 0.47 �1.12 0.22
(1 � yes, 0 � no)

Region of Country:
South 0.23 0.42 �0.19 0.11
West 0.31 0.46 �0.09 0.04
North 0.27 0.44 0.27 0.12
(omitted � Central)

Constant 0.11

a. Which variable has a relatively greater impact on support for abol-
ishing the death penalty? Explain why.

b. If �2LLreduced model � 376.19 and �2LLfull model � 364.72 when region
variables are omitted from the analysis, do the region variables
have a statistically significant effect on support for abolishing the
death penalty?

C o m p u t e r  E x e r c i s e s
Obtaining Logistic Regression Results in SPSS

Logistic regression analyses are performed in SPSS with the binary logistic
command (Analyze l Regression l Binary Logistic). After you execute the
command, a window appears in which all the variables in the data file are
listed on the left. On the right side of the window are self-explanatory boxes
for the dependent and independent variables. To run a logistic regression
analysis, simply move the names of the variables to the appropriate box and
click on “OK” to run the command.

Much of the output from running this command has been discussed in
this chapter. The difference between the linear regression command and the
logistic regression command is that the output from a logistic regression pre-

“Block 1,” and it contains the results discussed above: Omnibus Tests of
Model Coefficients, Model Summary, Classification Table, and Variables in
the Equation.

It is possible to have SPSS calculate the predicted probability and residual
for each observation in the data file. To obtain one or both of these values,
click on the “Save” button after entering the variables into the dependent

labeled “Block 0” in the SPSS output. The next section of output is labeled
sents information for the model that includes only the intercept and is
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and independent variable boxes. In the new window that opens, click on
the box next to “Probabilities” under the “Predicted Values” label and/or the
box next to “Unstandardized” under the “Residuals” label. Click on “Con-
tinue” to return to the window listing the variables. Click on “OK” to run the
command. The predicted values and residuals will appear as new variables
in your data file with the names pre_1 (for the predicted values) and res_1
(for the residuals).

1. Open the compstat.sav data file. These are the data analyzed in this
chapter. Run the binary logistic regression command in SPSS, using
Compstat as the dependent variable and number of sworn officers,
Northeast, South, and West as the independent variables. Note that the
values reported in the SPSS output match those reported in the text in

— Explain the odds ratios in plain English.

— Interpret the results of the Wald statistic for each of the logistic re-
gression coefficients.

.

— Perform a chi-square test for the overall regression model.

a. Number of thefts valued at less than $5 in the last year; convert to
any thefts in the last year.

b. Number of times drunk in the last year; convert to any times drunk
in the last year.

2.

b. Explain the odds ratios for each independent variable in plain English.

c. Interpret the results of the Wald statistic for each of the logistic 
    regression coefficients.

d. Interpret the value of Cox and  Snell’s .

3.

measures of delinquency below. As in the computer exercises in Chapter 

— Explain the logistic regression coefficients in plain English.

the binary logistic regression command, run an analysis for each of the

16 and 17, you will  need to select a set of independent variables that 
you think are related to the dependent variable. Note that each of the

or not the act was committed. Do the following for each analysis:
delinquency items will need to be recoded as 0 or 1 to represent whether 

— Interpret the value of Cox and Snell’s 

Open the pcs_ 98.sav data file into SPSS. Run the binary logistic regre-

Open the nys_1.sav (or nys_1_student.sav) data file into SPSS. Using 

Problems

Tables 18.4, 18.5, 18.10, and 18.11.

ssion command in SPSS, using Incarceration as the dependent variable
and age, race, sex, offense severity score, and prior criminal history 
score as the independent variables. 

a.  Explain the logistic regression coefficients in plain English.

R 2

R 2

e. Perform a chi-square test for the overall regression model.
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c. Number of times the youth has hit other students in the last year;
convert to any times the youth has hit other students in the last
year.

d. Number of times the youth has hit a parent in the last year;
convert to any times the youth has hit a parent in the last year.
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C h a p t e r  n i n e t e e n

Multivariate Regression with Multiple
Category Nominal or Ordinal Measures:
Extending the Basic Logistic Regression
Model

H o w  d o  w e  a n a l y z e  a  d e p e n d e n t  v a r i a b l e  w i t h
m o r e  t h a n  t w o  c a t e g o r i e s ?

M u l t i n o m i a l  l o g i s t i c  r e g r e s s i o n

How Do We Interpret the Multinomial Logistic Regression Model?

Does the Reference Category Make a Difference?

What is the Test of Statistical Significance for Single Coefficients?

What is the Test of Statistical Significance for Multiple Coefficients?

What are the Practical Limits of the Multinomial Logistic Regression

Model?

O r d i n a l  l o g i s t i c  r e g r e s s i o n

How Do We Interpret the Ordinal Logistic Regression Model?

How Do We Interpret Cumulative Probabilities?

How are Cumulative Probabilities Related to Odds Ratios?

How Do We Interpret Ordinal Logistic Coefficients?

What is the Test of Statistical Significance for Coefficients?

What is the Parallel Slopes Test?



IN THE PREVIOUS CHAPTER, we examined how to analyze data in a binary
logistic regression model that included a dependent variable with two cat-
egories. This allowed us to overcome problems associated with using
Ordinary Least Squares Regression in cases where the variable that is
being explained is measured as a simple dichotomy. Accordingly, we
have now described tools that allow the researcher to develop explana-
tory models with either an interval dependent variable or a dichotomous
dependent variable.

But there are many situations in which researchers are faced with ana-
lyzing dependent variables that include more than two categories, or that
are measured on an ordinal scale. For example, we may want to identify
the factors that lead to a dismissal, a guilty plea conviction, or a trial con-
viction in court. The methods we have covered so far do not allow us to
examine this problem in a single multivariate statistical model. We have
also not discussed how a researcher should deal with dependent vari-
ables such as fear of crime, which are measured on an ordinal scale. As
we noted in Chapter 16, the assumptions of Ordinary Least Squares

variables.
Fortunately, we can extend our discussion of the logistic regression

model to consider such dependent variables. However, such logistic
regression models need to be modified to take into account these new sit-
uations. In this chapter we provide an introduction to multinomial and
logistic regression. Though these topics are generally not included in an
introductory statistics text, we think the problems that these approaches
address are becoming very common in criminal research and even for a
basic understanding of statistical methods in criminal justice it is impor-
tant to be able to understand and apply them.
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M u l t i n o m i a l  L o g i s t i c  R e g r e s s i o n

Multinomial logistic regression is used to examine problems where
there are more than two nominal categories in the dependent variable. We
have already mentioned the case where a researcher wants to explain
why convicted offenders are sentenced to prison, probation or fines, but
there are many situations in criminal justice in which dependent variables
include multiple nominal categories. For example, a researcher may want
to explain why certain offenders tend to specialize in either violent crime,
property crime, or white collar crime. Multinomial regression is particu-
larly useful when researchers create categorizations for groups of offenders
and then want to explain why certain people fall into those groups. This
is common, for example, in recent studies in developmental criminology
where offenders are placed into a small number of groups that evidence
different crime trajectories.1 It is then natural to ask why offenders fall
into those groups. Multinomial regression provides a very useful tool for
conducting multivariate analyses in such situations.

Multinomial regression is conceptually a straightforward extension of
the binary logistic regression model that we discussed in the previous
chapter. Recall that in the binary logistic regression model, we designated
one of the two outcome categories as the presence of a given trait and
the second as the absence of that trait. For example, we compared police
departments that had adopted Compstat (Y=1) versus those that did not
adopt the Compstat program (Y=0). In logistic regression the left side of
the regression equation is the natural logarithm (ln) of the odds of hav-
ing a 1 on the dependent variable (Y=1) as opposed to having a 0 (Y=0).
This transformation, illustrated in Equation 19.1, allowed us to develop a
prediction model in which the predictions of the regression equation are
constrained to fall between 0 and 1. We called this transformation the
logit of Y:

( )
( )

ln
P Y
P Y

b b X
0
1

0 1 1=

=
= +e o

What happens when the outcome variable has more than two categories?
The problem here is that we do not have a simple change in the odds for
one outcome, as we did with the example of Compstat in the prior chap-
ter. Here we have to take into account changes in the odds in relation to
more than two categories. The logit of Y in Equation 19.1 requires that
there be only the absence (Y=0) or the presence (Y=1) of a trait. This sit-
uation is not appropriate when you have the possibility of the presence of
more than one positive outcome (e.g. dismissal, a guilty plea conviction,

1See, for example, D. Nagin, Group-based Modeling of Development (Cambridge,
MA: Harvard University Press, 2005).

Equation 19.1
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or a trial conviction) and you want to distinguish among them. Of course,
you could simply argue that you are only interested for example, in
whether individuals received a dismissal. However, you would not have
the possibility in the simple logistic model to predict why they received
alternatively a guilty plea conviction, or a trial conviction. This is the prob-
lem that multinomial regression seeks to solve.

Suppose that our outcome variable has three categories (C1, C2, and
C3) with the number of observations in each being represented by NC1,
NC2, and NC3. We could begin by estimating three binary logistic regression
models that would allow for all possible comparisons of the outcome cate-
gories – the logits for C1 and C2, C2 and C3, and C1 and C3. The logit of
Y for each regression could be written simply as:

( )
( )

,
( )
( )

,
( )
( )

ln ln ln
P Y C
P Y C

P Y C
P Y C

P Y C
P Y C

and
2
1

3
2

3
1

=

=

=

=

=

=
e e eo o o for each comparison,

respectively.

Interestingly, these three logits can be linked in what can be defined as
an identity equation that illustrates how knowledge of any two logits can
produce the values of the third. The identity equation2 can be stated as:

( )
( )

( )
( )

( )
( )

ln ln ln
P Y C
P Y C

P Y C
P Y C

P Y C
P Y C

2
1

3
2

3
1

=

=
+

=

=
=

=

=
e e eo o o

If we were to estimate these three separate logits, the coefficients would
be interpreted in the same way as we described in Chapter 18. While this
approach would allow us to make comparisons of the likelihood of sub-
jects falling in each of the three categories examined as compared to each

2You can verify this identity by using the fact that the logarithm of a fraction is equal
to the logarithm of the numerator minus the logarithm of the denominator: ln(x/y) =
ln(x) − ln(y). Specifically, for this equality, we note that

( )
( )

( ( ) ) ( ( ) )ln ln ln
P Y C
P Y C

P Y C P Y C
2
1

1 2
=

=
= = - =e o

and

( )
( )

( ( ) ) ( ( ) )ln ln ln
P Y C
P Y C

P Y C P Y C
3
2

2 3
=

=
= = - =e o .

When we put these two pieces together in a single equation, we have

[ ( ( ) ) ( ( ) )] [ ( ( ) ) ( ( ) )]

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

( ( ) )
( ( ) )

ln ln ln ln

ln ln ln ln

ln ln

ln
ln
ln

P Y C P Y C P Y C P Y C

P Y C P Y C P Y C P Y C

P Y C P Y C

P Y C
P Y C

1 2 2 3

1 2 2 3

1 3

3
1

= - = + = - =

= = - = + = - =

= = - =

=
=

=
e o

Which establishes the equality. We explain the practical implication of this equality
below in our discussion of the interpretation of the coefficients from a multinomial
logistic regression model.
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other, it would require us to run three separate regressions. Moreover, and
more importantly from a statistical point of view, we would likely be
working with three completely different samples in each of the three
analyses: NC1+ NC2, NC2+ NC3, and NC1+ NC3. This is because the cases on
the dependent variable are unlikely to be distributed evenly. For exam-
ple, we would not expect sentences for 300 offenders to be distributed
with exactly one hundred in each group (e.g. dismissal, a guilty plea con-
viction, or a trial conviction). Given this, each of our comparisons would
be based on different samples. In comparing NC 1 to NC2 we would have
only defendants who had outcomes C1 and C2. Defendants that had out-
come C3 would not be included in that comparison. But what we are
really interested in is the choice among the three outcomes and how this
choice is distributed in our entire sample. The statistical problem here is
that the varying sample sizes would then result in incorrect standard
errors for the coefficients, leading to inaccurate tests of statistical signifi-
cance. The multinomial logistic regression model simultaneously accounts
for these different sample sizes, ensuring a more valid estimate of signif-
icance levels. It also has the benefit of allowing us to conduct our analysis
using only one regression model.

A Substantive Example: Case Dispositions in California
The State Court Processing Statistics database includes information on ran-
dom samples of individuals arrested for felony offenses in the largest court
districts in the United States. To illustrate the application of the multino-
mial logistic regression model, we focus on a random sample of 10,230
felony arrestees in California in the 1990s. A question of both policy and
theoretical relevance is the study of the factors that affect the type of case
disposition (outcome) – whether a dismissal, a guilty plea conviction, or a
trial conviction.3

A first step in a multinomial regression is to define a “reference cate-
gory.” This is necessary because we need to decide which category we
want to use as a baseline. It is an arbitrary decision about which category
is designated the reference category, but to the extent that we can make a
choice that has some theoretical relevance or makes the interpretation of
the results simpler, that would be the preferred choice. For case disposi-
tion, suppose that we choose dismissal as the reference category, which
then allows us to make two comparisons between a type of conviction –
guilty plea or trial – and dismissal. More directly, our multinomial logistic

3While it may appear odd at first glance that we have not included those individuals
who were acquitted at a trial, there were very few individuals who fell into this cate-
gory. Like most jurisdictions, courts in California acquit relatively few individuals
through a trial – it was about 1% of all cases in the 1990s. What this means is that once
the prosecutor has filed charges against a defendant, rather than dismiss the case, it
will likely result in the conviction of the defendant through either a guilty plea or a
trial conviction. This also implies that a dismissal of the case functions much like an
acquittal, but one made by the prosecuting attorney rather than a judge or jury.
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regression results will indicate (1) the relative likelihood of a guilty plea
conviction compared to a dismissal and (2) the relative likelihood of a trial
conviction compared to a dismissal. The one comparison we did not men-
tion was the relative likelihood of a guilty plea conviction compared to a
trial conviction. In the multinomial logistic regression model, this compar-
ison is not directly estimated, but as we illustrate shortly, the results can be
obtained very simply from the results for the comparison of each convic-
tion type to a dismissal.

In equation form, the multinomial model can be written as either a
probability model or an odds ratio model. In Equation 19.2 we provide
an example of the probability equation.

Probability Equation

)j

( )
(

( )

exp

exp
P Y m

Xb

Xb

j

J
m

1

= =

=
/

In this equation, m refers to the outcome category of interest and has val-
ues ranging from 1 to J (the last category). The numerator to the equa-
tion tells us to exponentiate the value of Xb for category m. The
denominator, in turn, tells us that we need to exponentiate the value of
Xb for all categories and then sum these values together. Since there is a
redundancy built into the values of the coefficients in a multinomial
logistic model, the values for one set of coefficients are set at 0 (e.g., 
b1 = 0). This is the reference category and leads to the estimation of 
coefficients for the total number of categories minus 1 ( i.e., J − 1).

For our three-category case disposition variable, m = 1, 2, or 3. Writing
out the probability equations for each outcome leads to the following for-
mulations of the probability of each of the three outcomes in our example.
For m = 1, b = 0 and
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For m = 2 and m = 3, we have
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Odds Ratio Equation
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Equation 19.2

Equation 19.3
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We provide the odds ratio equation in Equation 19.3. Although this equa-
tion may look much more complicated, it uses the information in Equation
19.2 for the probabilities of each category. The equation reduces to some-
thing less complex, because the denominators in the fraction in the mid-
dle of the equation cancel each other out. The only notable difference here
is the notation of a second category by the subscript n. Thus, for any odds
ratio that we may be interested in between categories m and n, Equation
19.3 illustrates that it can be obtained from the respective probabilities.

If we are interested in computing the odds ratio for a comparison
between any category and the reference category (m = 1), where b1 = 0,
we obtain

( )
( )

( )
( )

( )
exp

exp
expOR

P Y
P Y m

X1 0/m n
m

m=
=

=
= =

Xb
Xb

This last result confirms how we are then to interpret the coefficients from
the multinomial logistic regression model. Since the coefficients for the ref-
erence category have been fixed at 0, the coefficients for each of the
remaining outcome categories will compare the relative likelihood of that
category compared to the reference category.4

In practice, what these equations tell us is that we will have J − 1 sets
of coefficients from a multinomial logistic regression model that can be
interpreted in the same way as binary logistic coefficients, where we com-
pare each outcome (m) to the reference category (m = 1) for the outcome
variable. In our example for case disposition, where we have designated
dismissal as the reference category, one set of coefficients will give us the
log of the odds or the odds ratios comparing the likelihood of a guilty
plea conviction relative to a dismissal, while the second set of coefficients
will give us the log of the odds or the odds ratios comparing the likelihood
of a trial conviction relative to a dismissal.

Table 19.1 presents the results from our application of the multinomial
logistic regression model. We have kept the multivariate model simple and
used age, sex (males = 1, females = 0), race (non-white = 1, white = 0),

Table 19.1 Multinomial Logistic Regression Coefficients

INDEPENDENT TRIAL CONVICTION V. GUILTY PLEA CONVICTION V. 
VARIABLES DISMISSAL DISMISSAL

Age .016 .004
Male 1.123 −.013
Non-white .043 −.266
Violent Offense .657 −.525
Number of Charges .325 .192
Intercept −4.767 1.318

4It is worth pointing out that the binary logistic regression model presented in Chapter
18 is a special case of the multinomial logistic regression model, where m = 2. If you
work through both Equations 19.2 and 19.3 above assuming that m = 2, you will be
able to replicate the equations in the previous chapter.
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type of crime (violent =1, non-violent=0), and total number of charges as
predictors of the type of case disposition for the sample of 10,230 arrestees
in California in the 1990s. The first column lists all the independent vari-
ables, while the second and third columns present the coefficients for each
of the two comparisons: Column 2 presents the comparison of trial con-
viction to dismissal, while Column 3 presents the comparison of guilty plea
conviction to dismissal.

The results in Column 2 show that as age and the number of charges
increase, the likelihood of a trial conviction increases relative to a dis-
missal. Similarly, defendants who are male, non-white, and charged with
a violent offense are also more likely to be convicted at trial than to have
their case dismissed. As in the previous chapter, we can also interpret
each of these coefficients more directly as odds ratios. (Recall from the
previous chapter that the exponentiation of the coefficient provides us
with the odds ratio given a one-unit change in the independent variable.)

● If age is increased by one year, the odds of a trial conviction versus a
dismissal increase by a factor of exp(.016) = 1.016, controlling for all
other variables in the model.

● The odds of a trial conviction versus a dismissal are exp(1.123) = 3.074
times higher for male than for female defendants, controlling for all
other variables in the model.

● The odds of a trial conviction versus a dismissal are exp(.043) = 1.044
times higher for non-white than white defendants, controlling for all
other variables in the model.

● The odds of a trial conviction versus a dismissal are exp(.657) = 1.929
times higher for defendants charged with a violent rather than a non-
violent offense, controlling for all other variables in the model.

● If the number of charges is increased by one, the odds of a trial con-
viction versus a dismissal increase by a factor of exp(.325) = 1.384, con-
trolling for all other variables in the model.

We can similarly interpret the results in Column 3, which show that as
age and number of charges increase, the likelihood of a guilty plea con-
viction relative to a dismissal increases. We also see from these results that
defendants who are male, non-white and charged with a violent offense
will be less likely to be convicted with a guilty plea than to have their
cases dismissed. Again, the direct interpretations of the coefficients would
be the following:

● If age is increased by one year, the odds of a guilty plea conviction ver-
sus a dismissal increase by a factor of exp(.004) = 1.004, controlling for
all other variables in the model.

● The odds of a guilty plea conviction versus a dismissal are exp(−.013)
= .987 times smaller for male than for female defendants, controlling for
all other variables in the model.
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● The odds of a guilty plea conviction versus a dismissal are exp(−.266)
= .766 times smaller for non-white than white defendants, controlling
for all other variables in the model.

● The odds of a guilty plea conviction versus a dismissal are exp(−.525)
= .592 times smaller for defendants charged with a violent rather than a
non-violent offense, controlling for all other variables in the model.

● If the number of charges is increased by one, the odds of a guilty plea
conviction versus a dismissal increase by a factor of exp(.192) = 1.212,
controlling for all other variables in the model.

The Missing Set of Coefficients
As we noted earlier, when we estimate a multinomial logistic regression
model, we obtain coefficients for all contrasts but one. In the example of
case disposition, we are missing the contrast between guilty plea convic-
tion and trial conviction. Based on the identity relationship of multiple
logits that we described earlier in the chapter (see, also, footnote 2), for
all possible comparisons of the outcome categories, the most direct way
of obtaining the missing coefficients is to simply subtract one set of coef-
ficients from another set of coefficients. In Table 19.1, the results in
Column 2 represent the logit for Trial Conviction and Dismissal, while
those in Column 3 represent the logit for Guilty Plea Conviction and
Dismissal.

Since the logarithm of a fraction can be rewritten as the subtraction of
the logarithm of the denominator from the logarithm of the numerator, the
logits can be rewritten as
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By performing simple subtractions of the logits, we can generate addi-
tional contrasts between the outcome categories. To obtain the missing
coefficients for the comparison of Guilty Plea Conviction to Trial
Conviction, we subtract the logit for Trial Conviction and Dismissal from the
logit for Guilty Plea Conviction and Dismissal:

( )
( )

( )
( )

( ( )) ( ( ))

( ( )) ( ( ))

ln ln

ln ln

ln ln

P Y Dismissal
P Y Guilty Plea Conviction

P Y Dismissal
P Y Trial Conviction

P Y Guilty Plea Conviction P Y Dismissal

P Y Trial Conviction P Y Dismissal

=

=
-

=

=

= = - =

- = - =

e eo o

7

7

A

A

( ( )) ( ( ))ln lnP Y Guilty Plea Conviction P Y Trial Conviction= = - =



588 C H A P T E R N I N E T E E N : M U L T I V A R I A T E R E G R E S S I O N

( )
( )

ln
P Y Trial Conviction

P Y Guilty Plea Conviction
=

=

=
e o

In other words, what this algebraic manipulation of logits shows us is
that we can obtain the coefficients for the omitted contrast simply by sub-
tracting one set of coefficients from another set of coefficients.

When applied to our case disposition coefficients, we obtain the results
presented in Table 19.2. Here, we see that as age and the number of
charges increase, the likelihood of a guilty plea conviction relative to a trial
conviction decrease. Similarly, defendants who are male, non-white and
charged with a violent offense will be less likely to be convicted through a
guilty plea than through a trial.

In regard to the direct interpretation of the coefficients, we have the
following:

● If age is increased by one year, the odds of a guilty plea conviction ver-
sus a trial conviction decrease by a factor of exp(−.012) = .988, con-
trolling for all other variables in the model.

● The odds of a guilty plea conviction versus a trial conviction are 
exp(−1.136) = .321 times smaller for male than for female defendants, con-
trolling for all other variables in the model.

● The odds of a guilty plea conviction versus a trial conviction are 
exp(−.309) = .734 times smaller for non-white than white defendants,
controlling for all other variables in the model.

● The odds of a guilty plea conviction versus a trial conviction are 
exp(−1.182) = .307 times smaller for defendants charged with a violent
rather than a non-violent offense, controlling for all other variables in
the model.

● If the number of charges is increased by one, the odds of a guilty plea
conviction versus a trial conviction increase by a factor of exp(−.133) =
875, controlling for all other variables in the model.

A second way to obtain the coefficients for the comparison of guilty
plea conviction to trial conviction would be to simply redefine our statis-
tical model so that trial conviction was chosen as the reference category
and re-estimate our multinomial model. Upon rerunning the multinomial
logistic regression model, we obtain the results presented in Table 19.3.

Table 19.2 Coefficients for the Omitted Contrast of Guilty Plea Conviction v.Trial
Conviction through Subtraction of Coefficients

INDEPENDENT VARIABLES GUILTY PLEA CONVICTION V. TRIAL CONVICTION

Age .004 –.016 = −.012
Male −.013 – 1.123 = −1.136
Non-white −.266 –.043 = −.309
Violent Offense −.525 –.657 = −1.182
Number of Charges .192 –.325 = −.133
Intercept 1.318 – (−4.767) = 6.085
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Note that Column 2 contains the coefficients for the contrast between dis-
missal v. trial conviction, which substantively gets at the same compari-
son that appears in Table 19.1, Column 2, except for the order of the
comparison (trial conviction v. dismissal). The only difference between
the results presented in Column 2 of both Tables 19.1 and 19.3 are the
signs of the coefficients, reflecting the order of comparison of the out-
come categories. Again, what this indicates to us is that the selection of
reference categories is arbitrary and that we will obtain the same sub-
stantive results, regardless of which category is selected. At the same time,
we need to be aware of the selection of categories so that we correctly
interpret our results.

Column 3 presents the contrast for guilty plea conviction relative to trial
conviction. The results in this column are identical to those appearing in
column 2 of Table 19.2, which were based on simply subtracting one set of
coefficients from another.

Had we been interested in the contrast of Trial Conviction relative to Guilty
Plea Conviction, we would have reversed the original order of subtraction
(i.e., the coefficients in Column 3 would have been subtracted from the 
coefficients in Column 2). Then, the only difference that we would have seen
in Table 19.2 is that the signs of the coefficients would have been reversed.
Otherwise, the substantive interpretation of the results would be identical.

Statistical Inference
Single Coefficients
The results from a multinomial logistic regression analysis complicate
slightly tests of statistical significance. Since we now have multiple coef-
ficients for each independent variable, there are questions about how to
discern whether an independent variable has an effect on the dependent
variable. Specifically, there are two issues of statistical inference that are
important for interpreting the results from a multinomial logistic regres-
sion analysis. For each coefficient we can estimate the statistical signifi-
cance of each category compared to the reference category. But we also
can estimate the overall significance of the independent variable in 
predicting the multi-category dependent variable.

Table 19.3 Multinomial Logistic Regression Coefficients Using Trial Conviction as the
Reference Category from Re-estimated Model

GUILTY PLEA CONVICTION 
INDEPENDENT VARIABLES DISMISSAL V. TRIAL CONVICTION V. TRIAL CONVICTION

Age −.016 −.012
Male −1.123 −1.136
Non-white −.043 −.309
Violent Offense −.657 −1.182
Number of Charges −.325 −.133
Intercept 4.767 6.085
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To test the effect of each individual coefficient in comparison to the
reference category, we would again use the Wald statistic described in
Chapter 18, with degrees of freedom equal to 1. As noted in Chapter 18,
the Wald statistic has a chi-square distribution, and so the statistical sig-
nificance of a result may be checked in the chi–square table. Table 19.4
presents the Multinomial Logistic Coefficients from the original model
along with the standard errors (se) of the coefficients and value of the
Wald statistic (W).

If we set the significance level at 5%, the critical value of the Wald sta-
tistic with df = 1, is 3.841 (see Appendix 2). We can see that the violent
offense charge and number of charges have statistically significant effects
for both pairs of outcomes. The demographic characteristics have varying
effects, where age and sex have statistically significant effects on the like-
lihood of a trial conviction compared to a dismissal, but race has a statis-
tically significant effect on the likelihood of a guilty plea conviction
compared to a dismissal.

Multiple Coefficients
Note in Table 19.4 that there are two coefficients for each independent
variable. As we noted above, the number of coefficients from a multino-
mial logistic regression model for each independent variable will be one less
than the number of categories on the dependent variable (i.e., J – 1). How
do we assess the overall effect of each independent variable on the depend-
ent variable? There are two key ways of doing this – one is a likelihood
ratio test similar to the test we discussed in the previous chapter on binary
logistic regression. The other test is an extension of the Wald test we have
also already used. Regardless of the statistical software package one uses
to estimate a multinomial logistic regression model, one of these two meth-
ods will be reported to test the overall effect of each independent variable.

The likelihood ratio test involves estimating the full multinomial logistic
regression equation with all variables and then estimating reduced models
that eliminate one independent variable from each analysis. The difference
in the −2 log-likelihood function for each equation will then allow for the
test of each independent variable.

Table 19.4 Multinomial Logistic Regression Coefficients, Standard Errors, and Wald Test
Results

GUILTY PLEA CONVICTION V. 
TRIAL CONVICTION V. DISMISSAL DISMISSAL

INDEPENDENT 
VARIABLES B SE W B SE W

Age .016 .008 4.181 .004 .003 2.110
Male 1.123 .373 11.350 −.013 .071 .032
Non-white .043 .158 .072 −.266 .053 24.827
Violent Offense .657 .160 16.834 −.525 .060 76.287
Number of Charges .325 .043 58.524 .192 .021 82.642
Intercept −4.767 .438 118.726 1.318 .124 112.754



For example, in the case dismissal analysis, the value of the −2 log-like-
lihood for the full model is 3625.670. When we estimate the same model,
but eliminate the variable non-white from the analysis, the value of the −
2 log-likelihood is 3653.501. The difference of the two log-likelihood func-
tions is 3653.501 – 3625.670 = 27.831. By eliminating the variable for
non-white, we have removed two coefficients from the analysis. If you
refer again to Table 19.4, you will see that each independent variable
appears twice to indicate its overall effect on case disposition – once to
represent the effect on trial conviction versus dismissal and once more
to represent the effect on guilty plea conviction versus dismissal. The degrees
of freedom for the test will be df = 2 to reflect the removal of the two coef-
ficients. At a significance level of 5%, the critical value of the chi-square is
5.991. This means that we would conclude that the race of the defendant
has a statistically significant effect on the type of case disposition. Table
19.5 presents the vales of the −2 log-likelihood function for each of
the reduced models and the value of the likelihood ratio test for each inde-
pendent variable. Based on the critical value of the chi-square of 5.991, we
see that race and sex of defendant, violent offense charge, and number of
charges all have statistically significant effects on type of case disposition,
while age of defendant does not have a statistically significant effect.

An alternative test of each independent variable is to use the Wald sta-
tistic. Up to this point, we have used the Wald statistic to test the statistical
significance of a single coefficient, but it can also be used to test the group
of coefficients representing the effect of any given independent variable.
Recall that the Wald test statistic for a single coefficient is computed by
dividing the coefficient by its standard error and then squaring this value.
The Wald statistic for a group of coefficients involves an analogous calcu-
lation, but requires the use of matrix algebra – a topic beyond the scope
of our text. That said, many statistical software packages will generate the
results for the Wald test as part of the standard output, and our attention
here is focused more on illustrating the interpretation of the results, rather
than the actual calculation. In most applications, the value of the Wald
statistic will be very similar to the value of the LR test.5
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Table 19.5 Likelihood Ratio and Wald Statistic Results for the Overall Effect of Each
Independent Variable

−2 LOG-LIKELIHOOD FOR 
INDEPENDENT VARIABLE DF THE REDUCED MODEL LR TEST STATISTIC WALD

Age 2 3630.528 4.859 4.94
Male 2 3642.342 16.672 11.98
Non-white 2 3653.501 27.831 27.77
Violent Offense 2 3747.168 121.498 125.95
Number of Charges 2 3737.877 112.207 99.08

5Recall from footnote # 13 in Chapter 18 that the Wald statistic is sensitive to small
samples (e.g., less than 100), while the LR test is not.



To test the overall effect of an independent variable with the Wald sta-
tistic, we continue to use a chi-square distribution with degrees of free-
dom equal to the number of coefficients being tested – the number of
outcome categories minus 1 (i.e., df = J – 1).

In our case disposition example, we have three outcome categories
( J = 3), so the degrees of freedom will be 3 – 1 = 2, which again corre-
sponds to the number of sets of coefficients that have been estimated. The
values of the Wald test for each of the independent variables included in
our analysis are presented in Table 19.5.

Using a significance level of 5%, we see from Appendix 2 that the crit-
ical chi-square statistic has a value of 5.991. Based on this value, we see
that all the independent variables, except for age of defendant, have sta-
tistically significant effects on type of case disposition. The substance of
these results is identical to that using the LR test.

How should we address mixed results? For example, it is not uncom-
mon for a researcher to find that the overall effect of an independent
variable is not statistically significant, but one of the individual coeffi-
cients does have a significant effect on a comparison of two outcome 
categories. Alternatively, the Wald test for the overall effect of an inde-
pendent variable may show it to have a statistically significant effect, but
there may be individual coefficients representing the effect of that inde-
pendent variable on a specific comparison that are not statistically 
significant.

This kind of difficulty is illustrated in the results presented in Tables
19.4 and 19.5. Age of defendant does not have a statistically significant
effect on case disposition overall, yet age does have a statistically signifi-
cant effect on the comparison of trial conviction to dismissal. In such a
case, the researcher should carefully note the pattern of results, explain-
ing that overall age does not affect case disposition but that there appears
to be a statistically significant impact of age on gaining a trial conviction
as compared to a dismissal.

Alternatively, we also see that the overall effect of race is statistically
significant, but the individual coefficient for race on the comparison
between trial conviction and dismissal is not statistically significant. The
safest approach for the researcher in this type of situation is to note the
significance of the overall effect of the independent variable, but again
to clearly explain the pattern of results for the individual coefficients. In
this case, our model suggests that race has an overall impact on case
disposition but our data do not allow us to conclude, despite this, that
race has a significant effect on gaining a trial conviction as opposed to a
dismissal.

Our suggestion is to use caution in interpreting the results and to be
as clear as possible in explaining the nature and type of effect that is sta-
tistically significant. In multinomial regression, a number of statistical out-
comes are included and the researcher should be careful not to draw
selectively from the results gained.
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Overall Model
In addition to testing the statistical significance of the individual coeffi-
cients, we are also often interested in assessing the statistical significance
of the overall model. To assess the statistical significance of the full multi-
nomial regression model, we compute a model chi–square statistic that is
identical in form to that used for the binary logistic regression model dis-
cussed in Chapter 18. Recall that the model chi–square is computed as:

Model chi–square = (−2LLnull model ) – (−2LLfull model )

For our case disposition analysis, the −2LLnull model = 3923.540 and the 
−2LLfull model = 3625.670, resulting in a model chi-square of 3923.540 –
3625.670 = 297.870. We have already noted that a total of 10 coefficients
have been estimated (2 for each of the 5 independent variables), which
gives us a degrees of freedom value for this test equal to 10. Looking at
Appendix 2, we see that at a significance level of 5%, we see that a chi–
square statistic greater than 18.307 is needed to reject the null hypothesis
that the model has no statistically significant effect on case disposition.
Since our model chi-square is larger than the critical value of the chi–
square, we conclude that the overall model has a statistically significant
effect on case disposition.

A Concluding Observation about Multinomial Logistic Regression Models
In our substantive example, we selected a dependent variable with only
three categories. Realistic applications of multinomial logistic regression
models with more than three categories can quickly become unwieldy in
regard to the number of contrasts that are being analyzed. For example, if
we had a dependent variable with four categories, we would have three
sets of coefficients to represent a total of six different contrasts (C1 and C2,
C1 and C3, C1 and C4, C2 and C3, C2 and C4, and C3 and C4). If we
increased the number of outcome categories to five, we would have four
sets of coefficients to represent a total of ten different contrasts, at which
point the results from a multinomial logistic regression analysis likely
become too difficult for most researchers to summarize in a coherent and
concise way.

O r d i n a l  L o g i s t i c  R e g r e s s i o n

Multinomial regression provides a solution to the important problem of
predicting multiple nominal category dependent variables. But in our dis-
cussions so far we have not examined how to analyze ordinal level
dependent variables. For many years researchers simply used Ordinary
Least Squares Regression to deal with this type of analysis. There are times
when this approach makes sense, and is unlikely to lead to estimation
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problems that are important. For example, if a researcher is examining an
ordinal level variable that is measured as ten ascending categories, and
can easily assume that the interval each category represents is the same
as the prior interval, OLS estimates are likely to be satisfactory from a 
statistical perspective. In this case, the ordinal level variable of interest can
be assumed to have characteristics close to that of an interval level
dependent variable.

However, because until recently other estimation approaches for ordi-
nal dependent variables were not easily accessible, researchers often
made assumptions regarding an ordinal dependent variable that was
examined that were clearly not appropriate. For example, when we exam-
ine fear of crime measured as a series of categories from “very fearful” to
“not fearful at all” it is very hard to assume that there are equal intervals
between these qualitative responses. Today, with the availability of statis-
tical software packages that will estimate ordinal regression models,
researchers should be cautious in applying OLS regression to ordinal level
measures. In this section, we present the ordinal logistic regression
model that explicitly takes into account an ordered categorical dependent
variable.

In order to set up the application and interpretation of the ordinal
logistic model, we need to reconsider what a variable measured at the
ordinal level tells us. Recall from Chapter 2 that an ordinal variable has
ranked categories that are assumed to represent an underlying continuum.
For example, when respondents to a survey are presented with a state-
ment that has as response choices Strongly Agree, Agree, Disagree, and
Strongly Disagree, the variable is assumed to represent an underlying con-
tinuum of agreement-disagreement with some issue. Yet, we know that
however an individual responds to the question, any two individuals
falling in the same category may not mean exactly the same thing. For
example, if we randomly selected two individuals who had responded
Strongly Disagree with a policy statement and we were able to ask more
in-depth follow-up questions, we would likely discover that there were
degrees of how strongly each disagreed.

If we assume that an ordinal variable’s categories represent an under-
lying continuum, we can think of thresholds as those points where an
individual may move from one ordinal category to another (adjacent) cat-
egory. In the example above, we could make note of the thresholds
between Strongly Agree and Agree, Agree and Disagree, and Disagree
and Strongly Disagree. Figure 19.1 illustrates the link between the
underlying continuum and the variable measured at the ordinal level. In
Figure 19.1, each dot represents the “true value” for an individual’s attitudes
about a given issue – but this true value cannot be measured directly, and
we are left with the four response choices indicating degree of agreement
or disagreement. Each of the vertical lines marks the point between one
of the possible response choices and indicates the threshold for each
response category.
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The ordinal logistic regression model represents something of a hybrid
of the binary logistic and multinomial logistic regression models. Similar
to the multinomial logistic regression model’s estimation of multiple
model intercepts, the ordinal logistic model estimates multiple intercepts
that represent the values of the thresholds. Comparable to the binary
logistic model, the ordinal logistic model estimates one coefficient for the
effect of each independent variable on the dependent variable. In part,
this is due to the added information contained in an ordinal variable,
rather than a multi-category nominal variable. The interpretation of the
results from the ordinal logistic model is also potentially much simpler
than the results from the multinomial logistic model.

One of the key differences between the ordinal logistic model and
other logistic models is that rather than estimating the probability of a sin-
gle category as in the binary and multinomial logistic models, the ordinal
logistic model estimates a cumulative probability – the probability that
the outcome is equal to or less than the category of interest. In equation
format:

Figure 19.1 Hypothetical Ordinal Variable and Underlying Continuum
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Cumulative Probability
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In Equation 19.4, m is the category of interest and can take on values rang-
ing from 1 to J − 1, while j denotes each individual category. The summa-
tion sign tells us that we are to add the probabilities for each individual
outcome from the first category (i.e., Y = 1) to the last category of interest
(i.e., Y = m). For example, using the four response categories above would
mean that J = 4, and we could compute a total of J − 1 = 4 − 1 = 3 cumu-
lative probabilities. If we define a Strongly Agree response as 1 and
Strongly Disagree response as 4, we could then compute probabilities for
P(Y ≤ 1), P(Y ≤ 2), and P(Y ≤ 3), representing P(Y ≤ Strongly Agree),
P(Y ≤ Agree), and P(Y ≤ Disagree), respectively. We would not include the
final category (i.e., P(Y ≤ 4) or P(Y ≤ Strongly Disagree)), since it would
have to be equal to 1 (or 100%) – all possible values have to fall in one of
the four response categories.

Using the cumulative probabilities, we can then compute odds ratios to
represent the effects of the independent variables on the dependent vari-
able. Again, there is a slight variation to the construction and interpretation
of the odds ratios, since we are using cumulative probabilities:

Odds Ratio Using Cumulative Probabilities
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Substantively, the odds ratio presented in Equation 19.5 indicates the odds
of an outcome less than or equal to category m versus the odds of a cat-
egory greater than m. In the context of our four response choices, the three
odds ratios that we could make reference to would be the following:

● Odds of a Strongly Agree response versus the combined outcomes of
Agree, Disagree, and Strongly Disagree.

● Odds of the combined outcomes of Strongly Agree and Agree response
versus the combined outcomes of Disagree and Strongly Disagree.

● Odds of the combined outcomes of Strongly Agree, Agree, and Disagree
versus Strongly Disagree.

We can take Equation 19.5 for the odds ratio and rewrite it as a linear
model, similar to that for the binary and multinomial logistic models.
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The general form for this equation is very similar to that for either the binary
or multinomial logistic model, except that we have introduced a new term
(τm) and now have a negative sign to the left of Xb. The (τm) represent the

Equation 19.4

Equation 19.5



threshold parameters, which function as intercepts in the model and will
take on values for j = 1 to J − 1.

By taking the natural logarithm of the odds ratio equation, we produce
the logit Equation 19.6:

Ordinal Logit Equation
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Equation 19.6 forms the basis for estimating ordinal logistic regression
models.

Interpretation of Ordinal Logistic Regression Coefficients
In our discussion of the binary logistic regression model, we illustrated
how a one-unit increase in the independent variable would modify the
odds of the different outcomes by a factor of exp(b). Since the form of
the ordinal logistic equation is slightly different, we cannot simply expo-
nentiate b to obtain the effect of the independent variable.

To illustrate the modification, suppose we have two values of X: x and
x + 1. The odds ratio for x and x + 1 would be
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Thus, to interpret the effect of a one-unit change in the independent vari-
able in an ordinal logistic regression model, we will need to exponentiate
the negative value of the estimated coefficient. We can then interpret the
coefficient as indicating the odds of an outcome less than or equal to cate-
gory m versus the odds of a category greater than m.

S u b s t a n t i v e  E x a m p l e :  S e v e r i t y  o f  P u n i s h m e n t
D e c i s i o n s

Using the State Court Processing data for California in the 1990s resulted
in a sample of 8,197 individuals being convicted for some type of crime.
The primary punishment outcomes – community-based, jail, and prison –
represent a continuum of punishment severity with prison the most severe
sentence. Again, if we keep our set of independent variables limited by
using the same variables as in our case disposition example above, we
have measures of age, sex (males = 1, females = 0), race (non-white = 1,
white = 0), type of crime (violent =1, non-violent=0), and total number of
charges as predictors of severity of punishment. Table 19.6 presents the
results of our ordinal logistic regression model. You will notice that ordi-
nal regression, like multinomial regression uses the Wald statistic to assess
the statistical significance of individual parameters.
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Equation 19.6



Interpreting the Coefficients
While ordinal regression accounts for the fact that the categories in the
dependent variable are ranked, for example in our case from less to more
severe sanctions, the interpretation of the coefficients is similar to that
used in multinomial regression. In this case, we can compare lower cate-
gories to the categories ranked above them. For example, in the case of
sentences, we can compare either community-based punishment to jail
and prison sentences, or community-based punishment and jail sentences
to prison sentences. In both these cases, the exponent of the negative of
the coefficient provides the odds ratio for change. Since age, for example,
is measured at the interval level of measurement, we would note that
for a one year increase in age, the odds ratio changes by a factor of
exp(−.004) = .996, controlling for the other variables in the model. We can
write out the interpretations as follows:

● The odds of receiving a community-based punishment versus a jail and
prison punishment decrease by a factor of .996 for a one year increase
in age, controlling for all other variables in the model.

● The odds of receiving a community-based and a jail punishment versus
a prison punishment decrease by a factor of .996 for a one year increase
in age, controlling for all other variables in the model.

We see that the coefficient for male is .821. By exponentiating the negative
of .821 (exp(−.821) = .440), we see that males are likely to receive more
severe punishments than females, controlling for the other independent
variables in the model. More concretely, we can state the following about
the punishment of male offenders:

● The odds of receiving a community-based punishment versus a jail and
prison punishment are .440 times smaller for males than for females,
controlling for all other variables in the model.

● The odds of receiving a community-based and jail punishment versus a
prison punishment are .440 times smaller for males than for females,
controlling for all other variables in the model.

The effect of race on punishment severity is exp(−.166) = .847. Writing out
direct interpretations of this coefficient leads to the following statements:
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Table 19.6 Ordinal Logistic Regression Results for Severity of Punishment

INDEPENDENT VARIABLE B SE WALD

Age .004 .002 4.000
Male .821 .058 202.991
Non-white .166 .043 14.862
Violent Offense .328 .053 38.312
Number of Charges .014 .014 1.000
τ1 −.881 .099 79.175
τ2 1.720 .101 291.980
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● The odds of receiving a community-based punishment versus a jail and
prison punishment are .847 times smaller for non-whites than for
whites, controlling for all other variables in the model.

● The odds of receiving a community-based and jail punishment versus a
prison punishment are .847 times smaller for non-whites than for
whites, controlling for all other variables in the model.

The effect of a violent offense charge is exp(−.328) = .720, indicating that
a violent offense is likely to result in more severe forms of punishment
(as we would expect):

● The odds of receiving a community-based punishment versus a jail and
prison punishment are .720 times smaller for individuals charged with a
violent offense rather than a non-violent offense, controlling for all
other variables in the model.

● The odds of receiving a community-based and jail punishment versus a
prison punishment are .720 times smaller for individuals charged with a
violent offense rather than a non-violent offense, controlling for all
other variables in the model.

Finally, the effect of a one unit increase in the number of charges is exp
(−.014) = .986. In practice, we would not spend much time interpreting this
coefficient, since the Wald statistic indicates it is not significantly different
from 0.6 However, as another illustration for how to interpret coefficients
from an ordinal logistic regression model, it is useful to write out the inter-
pretations of this coefficient:

● The odds of receiving a community-based punishment versus a jail and
prison punishment decrease by a factor of .986 for a one unit increase
in the number of charges, controlling for all other variables in the model.

● The odds of receiving a community-based and a jail punishment versus
a prison punishment decrease by a factor of .986 for a one unit increase
in the number of charges, controlling for all other variables in the model.

Note, too, that there are two threshold parameters representing the thresh-
old points between each of the ordered categories (i.e., community-based
and jail punishments and then between jail and prison punishments).

Statistical Significance
As we noted above, the test of statistical significance for each individual
coefficient is a Wald statistic that is computed and is interpreted in exactly
the same way as the Wald statistic for binary logistic and multinomial logistic
regression models. Table 19.6 reports the values of the Wald statistic for

6You should verify the statistical significance of each coefficient presented in Table 19.6
using a Wald test statistic with df = 1.
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each independent variable. The statistical significance of the overall model
is based on a model chi-square statistic that is also computed and inter-
preted in exactly the same way as for the binary logistic and multinomial
logistic regression models. In our punishment example, the −2LLnull model =
5883.113 and the −2LLfull model = 5601.386, resulting in a model chi–square
of 5883.113 – 5601.386 = 281.727. Since a total of 5 coefficients have been
estimated (one for each independent variable), the degrees of freedom
value for this test is equal to 5. Looking at Appendix 2, we see that at a
significance level of 5%, a chi–square statistic greater than 11.070 is needed
to reject the null hypothesis that the model had no effect on punishment
severity. Since our model chi–square is larger than the critical value of 
the chi–square, we conclude that the overall model had a statistically 
significant effect on punishment severity.

Parallel Slopes Test
As we noted earlier, the ordinal logistic regression model assumes that the
effects of the independent variables are constant across all categories of
the dependent variable, which is analogous to our interpretation of coef-
ficients in a multivariate linear regression model. Regardless of the level
(or category) of the dependent variable, we expect the independent vari-
able to exert a constant effect on the dependent variable. The constant
effect of each independent variable should have also been clear in the
direct interpretations of the coefficients noted in the previous section. This
is known as the parallel slopes assumption. Most statistical packages
include a score test of this assumption that informs the user of the appro-
priateness of the ordinal logistic model.

Conceptually, the parallel slopes score test is based on the idea that we
could estimate a series of J − 1 binary logistic regression models (i.e., one
model less than the number of categories in the dependent variable) of
the form P (Y ≤ m) that allowed the effects for all K independent variables
to vary by outcome category on the dependent variable. The test would
then focus on whether a single coefficient or multiple coefficients best
represented the effect of the independent variables on the dependent
variable. Technically, the score test uses information about the log-likeli-
hood for the ordinal logistic regression model and assesses how much it
would change by allowing the coefficients for all the independent vari-
ables to vary by the outcome category on the dependent variable. The
degree of change in the likelihood function then indicates whether the
parallel slopes assumption is met.

In the language of other tests we have discussed in this text, the null
hypothesis of the parallel slopes score test is parallel (equal) slopes. The
research hypothesis is that the slopes are not parallel (equal). The value
of the score test (reported in most statistical software) is distributed as a
chi-square with K(J − 2) degrees of freedom.

For our punishment severity example, we have K = 5 (i.e., five inde-
pendent variables) and J = 3 (i.e., three outcome categories on the



dependent variable). The corresponding degrees of freedom for our score
test is equal to 5(3-2) = 5. Based on the critical values for the chi-square
reported in Appendix 2, the critical chi-square for a significance level of
5% is 11.070. The value of the score test reported in the statistical software
for the punishment severity example is 57.890, which indicates that we
should reject our null hypothesis of parallel slopes and conclude that our
model does not meet the parallel slopes assumption.

While you may wonder why we used an example in which the paral-
lel slopes test led to rejection of the appropriateness of ordinal regression,
we wanted to emphasize that this test does need to be done. In practice,
it is not uncommon for the parallel slopes assumption not to be met. In
that case, the researcher’s best approach may be to consider the applica-
tion of the multinomial logistic regression model. Unfortunately, this will
result in a much more complicated set of findings to report, but the
researcher will have some assurance that the results more accurately
reflect the effects of the independent variables on the dependent variable.

C h a p t e r  S u m m a r y

In this chapter, we have examined two different multivariate statistical
models to be used when we are confronted with a categorical dependent
variable that has more than two categories. When the dependent variable
has three or more categories, we can use the multinomial logistic
regression model. The multinomial logistic regression model allows for
the computation of probabilities and odds ratios that indicate the effects
of the independent variables on the relative likelihood of the different
outcome categories.

Since the multinomial logistic regression model estimates a set of coef-
ficients for each independent variable, we have two issues of statistical
significance to assess: the individual coefficients and the overall effect of
the independent variable on the dependent variable. For the individual
coefficients, we continue to use the Wald statistic, which is distributed as
a chi-square statistic with one degree of freedom. For the overall effect of
the independent variable on the dependent variable, where we are test-
ing multiple coefficients, we can use the likelihood ratio (LR) test or the
Wald statistic. Both test statistics are distributed as a chi-square with J − 1
degrees of freedom.

When the dependent variable is measured at the ordinal level of meas-
urement, we can use the ordinal logistic regression model. The ordinal
logistic regression model also allows for the computation of probabilities
and odds ratios, but the focus is on the likelihood of increasing or decreas-
ing categories on the ordered dependent variable. The ordinal logistic model
assumes that the effects of the independent variables are constant across
the categories of the dependent variable, which can be tested with the
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parallel slopes test that is commonly reported in the output of most sta-
tistical programs. The parallel slopes test statistic is distributed as a chi–
square with K( J − 2) degrees of freedom. The null hypothesis in such a
test is that the slopes are parallel, while the research hypothesis is that the
slopes are not parallel.

K e y  T e r m s
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multinomial logistic regression A statisti-
cal technique to predict the value of a
dependent variable with three or more cate-
gories measured at the nominal level of
measurement.

ordinal logistic regression A statistical
technique to predict the value of a 
dependent variable with three or more 
categories measured at the ordinal level 
of measurement.

parallel slopes assumption In an ordinal
logistic regression model, the effect of each
independent variable is assumed to be 
constant across all categories of the 
dependent variable.

thresholds Points that mark the limits of
the underlying continuum measured by an
ordinal variable.

S y m b o l s  a n d  F o r m u l a s
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To calculate the odds ratio in a multinomial logistic regression model for
P (Y =m) relative to P (Y =n), given a one-unit change in an independent
variable:
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To calculate the cumulative probability of P (Y ≤ m):
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To calculate the odds ratio in an ordinal logistic regression model using
cumulative probabilities:
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Ordinal logit equation:
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E x e r c i s e s

19.1 A large survey of adults asked about violent victimization experi-
ences. A question of particular interest to one researcher was the
location of the victimization event – home, work, or elsewhere.
She computed a multinomial logistic regression model that pro-
duced the following results:

INDEPENDENT VARIABLE HOME V. WORK ELSEWHERE V. WORK

Age (years) 0.01 0.05
Sex (1=Male, 0=Female) −0.19 0.22
Married (1=Yes, 0=No) 0.37 −0.13
Number of nights out per week for leisure 0.07 0.16

a. Calculate the odds ratio for each coefficient and explain what
each odds ratio means.

b. Calculate the coefficients and the odds ratios for the omitted
comparison and explain what each odds ratio means.

19.2 In an attempt to better understand how non-incarcerative punish-
ments were being used by judges, Blue State funded an evaluation
study of misdemeanor punishment decisions. The evaluators classi-
fied non-incarcerative sentences in the following four categories:
fine, restitution, community service, and electronic monitoring. The
researchers’ final analysis produced the following results:

COMMUNITY 
FINE V. RESTITUTION V. SERVICE V. 
ELECTRONIC ELECTRONIC ELECTRONIC 

INDEPENDENT VARIABLE MONITORING MONITORING MONITORING

Any prior criminal record (1=Yes, 0=No) −0.06 −0.07 −0.10
Severity of offense −0.10 −0.12 −0.14
Employed (1=Yes, 0=No) 0.25 0.23 0.36

a. Calculate the odds ratios for the effect of any prior record and
explain what each odds ratio means.

b. Calculate the odds ratios for the effect of severity of offense and
explain what each odds ratio means.

c. Calculate the odds ratios for the effect of employed and explain
what each odds ratio means.

d. Calculate the coefficients and the odds ratios for the comparison
between Fine and Community Service. Explain what each odds
ratio means.
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19.3 Criminological theory has attempted to explain both the fre-
quency of delinquency as well as the type of delinquency an
individual is likely to commit. A longitudinal study of adolescents
tested for the effects of several background characteristics on the
likelihood an individual would commit a drug, property, violent,
or public order offense. The researchers used a multinomial
logistic regression model and found the value of the −2 log-
likelihood for the full model to be 5263.1. The values for the −2
log-likelihood for each of the independent variables was 
reported as:

INDEPENDENT VARIABLE −2 LOG-LIKELIHOOD

Age 5264.7
Sex 5322.5
Race 5271.1
Grade point average 5267.9
Employment status 5414.6
Parental supervision 5272.3
Number of friends who had been arrested 5459.4

Calculate the LR Test statistic for each independent variable and
state whether this variable has a statistically significant effect on
type of crime (assume α = 0.05).

19.4 In response to public perceptions that the police in Riverside City
were too prone to use physical force on suspects, a study was
commissioned to examine the factors related to when police did
use physical force. After a year of data collection, the researchers
classified police use of force into the following three categories:

regression model of only demographic characteristics produced the
following results:

INDEPENDENT VARIABLE B

Age of officer (years) −0.02
Sex of officer (1 = Male, 0 = Female) 0.18
Race of officer (1 = White, 0 = Non-white) 0.13
Age of suspect (years) −0.03
Sex of suspect (1 = Male, 0 = Female) 0.33
Race of suspect (1 = White, 0 = Non-white) −0.11

Calculate the odds ratio for each coefficient and explain what each
odds ratio means.

19.5 A survey of adults in the US asked a series of questions about sup-
port for various policies related to the treatment of criminal
offenders. One question focused on the level of support for the
use of the death penalty – whether the respondent was opposed
to its use, neutral, or favored its use. An ordinal logistic regression
model that included age (years), sex (1 = male, 0 = female), race
(1 = African American, 0 = white), education (number of years
completed), and degree of political liberalism (1 = low, 10 = High) 
produced the following results:
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None, Mild restraint, and Complete restraint. The ordinal logistic



INDEPENDENT VARIABLE B

Age 0.03
Sex 0.41
Race −0.65
Education −0.18
Liberalism −0.21

Calculate the odds ratio for each coefficient and explain what each
odds ratio means.

C o m p u t e r  E x e r c i s e s

In order to estimate multinomial logistic regression and ordinal regression
models in SPSS, we will use two new commands. However, the interface
and windows in SPSS for estimating these two models are virtually identi-
cal to the multivariate regression commands discussed in previous chapters.

Multinomial Logistic Regression
To estimate a multinomial logistic regression model, follow the link to the
“Multinomial logistic” command (Analyze → Regression → Multinomial
logistic). In the window that opens, you should observe a very familiar lay-
out. The box labeled “Dependent” is where we would insert the name of
the categorical dependent variable we are analyzing. There are two addi-
tional boxes located below the dependent variable box: Factor(s) and
Covariate(s). Because of the manner in which we have encouraged you to
code categorical independent variables as dummy variables, we will insert
the names of all independent variables into the “Covariate(s)” box. (We do
encourage students who are curious to explore the SPSS manual to learn
how to use the “Factor(s)” box.) Once the dependent and independent
variables have been moved to the appropriate boxes, click “OK” to estimate
the model.

Ordinal Logistic Regression
To estimate an ordinal logistic regression model, follow the link to the
“Ordinal regression” command (Analyze → Regression → Ordinal). In the
window that opens, you should once again see a familiar layout with
boxes for the dependent variable, factor(s), and covariate(s). The ordinal
dependent variable being analyzed should be moved into the
“Dependent” box and the independent variables should be moved into
the “Covariate(s)” box (for the same reasons noted in the multinomial
analysis above).

To test the parallel slopes assumption, click on the “Options” button. In
the following window, select the option “Test of parallel lines” and click
“Continue” to return to the primary command window. Once the depend-
ent and independent variables have been moved to the appropriate boxes,
and any other options selected, click “OK” to estimate the model.
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Problems
1. As a first step in working with these two commands, open the data file

ca_scps9098.sav. This data file contains the felony arrest cases used
in the examples in this chapter.

a. To reproduce the results in Table 19.4, estimate a multinomial logistic
regression model using case disposition as the dependent variable,
and all remaining variables except punishment outcome as the
independent variables (be sure that they are listed as “covariates”).

b. To reproduce the results in Table 19.6, estimate an ordinal logis-
tic regression using punishment outcome as the dependent vari-
able and all remaining variables except case disposition as the
independent variables (i.e., covariates). To reproduce the parallel
slopes test result, be sure to select the “test of parallel lines”
option prior to estimating the multivariate model.

Open the data file nys_1.sav (or nys_1_student.sav) to answer questions 2
through 4.

2. Compute a multinomial logistic regression model using employment
status (full-time, part-time, and not employed) as the dependent vari-
able. From the remaining variables included in the data file, select at
least five variables that you think might have some relationship to an
adolescent’s employment status. Calculate the odds ratio for each coef-
ficient and explain what each odds ratio means in plain English.

3. Compute an ordinal logistic regression model using the same set of
dependent and independent variables that you used in Question 2.

a. Calculate the odds ratio for each coefficient and explain what
each odds ratio means in plain English.

b. Test the parallel slopes assumption. What does this result mean?
Which of the two models tested – the multinomial or the ordinal
logistic regression – appears to be the most appropriate?

4. Select one of the measures of delinquency and recode it into three cat-
egories representing no delinquency (a score of 0), one delinquent act,
and two or more delinquent acts. Compute an ordinal logistic regres-
sion model using this recoded measure of delinquency as the depend-
ent variable. From the remaining variables in the data file, select at least
five variables that you think might have some relationship with this
measure of delinquency.

a. Calculate the odds ratio for each coefficient and explain what
each odds ratio means in plain English.

b. Test the parallel slopes assumption. What does this result mean?
c. Estimate a multinomial logistic regression model using the same

dependent and independent variables. Calculate the odds ratio for
each coefficient and explain what each odds ratio means in plain
English.

d. How does the substance of the results from the ordinal logistic
regression model compare to the substance of the results from the
multinomial logistic regression model?
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ONE OF THE MAIN CONCERNS of this text has been to define how we
make inferences from samples to populations. This is also one of the
main concerns of researchers, since in most cases they must make deci-
sions about population parameters on the basis of sample statistics. Our
approach has been to use the logic of statistical inference, which begins
with the creation of a null hypothesis. Importantly, the logic of statistical
inference we have reviewed so far is concerned primarily with the deci-
sion as to whether to reject or fail to reject the null hypothesis. This
means in practice that we have relied on a logic that allows us to make a
statement about where the population parameter is not.

This approach has enabled us to come to concrete decisions about
population parameters on the basis of sample statistics. When we reject
the null hypothesis on the basis of a statistical test, we conclude that the
relationship we have examined is statistically significant. For example,
when we reject the null hypothesis on the basis of our sample statistics
in a statistical test of the difference of means, we have confidence that
there is a difference between the means of the two populations. When
we reject the null hypothesis that there is not a linear correlation be-
tween two variables, we have confidence that there is in fact a linear
correlation between these two variables in the population. But the logic
we have used so far does not allow us to zero in on the value of the
population parameter. When we find that the relationship between two
variables in a sample is statistically significant, we conclude that there is
likely to be a relationship in the population from which the sample was
drawn. But this decision does not provide us with an estimate of the size
of that relationship in the population.

In this chapter, we turn to an approach to statistical inference that
leads us to make specific statements about population parameters from
sample statistics. The logic used in this approach is very similar to that
described in earlier chapters. However, we do not make a single deci-
sion about the null hypothesis. Rather, we create an interval of values
within which we can be fairly confident that the true parameter lies. Of
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course, without data on the population itself, we can never be certain of
the value of the population parameter. This interval is generally called a
confidence interval. In this chapter, we begin by explaining the logic be-
hind confidence intervals and how they are used. We then illustrate how
confidence intervals are constructed for the main statistics reviewed in
this text.

C o n f i d e n c e  I n t e r v a l s

In the statistical tests presented in earlier chapters, we began by setting a
null hypothesis. Our null hypothesis made a statement about the value
of the population parameter. In practice, the null hypothesis generally
stated that a statistic had a value of 0. For example, for the difference of
means test, the null hypothesis generally stated that the difference be-
tween two population means was 0; for the correlation coefficient, that
the population correlation had a value of 0; or for the regression coeffi-
cient, that the population regression coefficient had a value of 0. When
the results of our statistical test indicated that we should reject the null
hypothesis, we concluded that it was unlikely that the population para-
meter had the value stated in the null hypothesis. Since the null hypothe-
sis was generally 0 or no difference, we rejected the hypothesis that the
population parameter had this null value.

We can use similar logic to make a very different statement about
population parameters. In this case, we ask where the population para-
meters are likely to be found. In statistics, the interval of values around
the sample statistic within which we can be fairly confident that the
true parameter lies is called a confidence interval. A confidence in-
terval makes it possible for us to state where we think the population
parameter is likely to be—that is, the range of values within which we
feel statistically confident that the true population parameter is likely to
be found. Importantly, the fact that we are confident does not mean
that the population parameter actually lies in that range of values. As 
in tests of statistical significance, we rely on probabilities in making 
our decisions.

One common illustration of confidence intervals comes from newspa-

results typically make reference to a range of values. For example, a poll
might indicate that 60% of adults in the United States favor using the
death penalty for convicted murderers, �4% (plus or minus 4 percent).

per articles and television news programs reporting the results from public
 opinion polls. In addition to stating that some percentage of the population
 supports a particular political candidate in an upcoming election or a 
particular policy, more thorough accounts of these kinds of survey
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The value of 60% is often described in statistics as a point estimate. Ab-
sent knowledge of the population parameter, the statistic we obtain for
our sample is generally used as an estimate—in statistical terms, a point
estimate—of the population parameter. The range of values represented
by �4% is sometimes described as the margin of error of a poll. In sta-
tistics, we prefer to call this margin of error a confidence interval. Based
on a very specific set of statistical assumptions, it is the interval within
which the true population value is expected to fall.

Confidence intervals are based on the same statistical logic as tests of
statistical significance. It will be easier to understand the relationship be-
tween tests of statistical significance and the construction of confidence
intervals if we start with an example that—although it is very unusual—
allows us to make a straightforward link between these two concepts.
Let’s say that we gather data on attitudes toward the death penalty using
an interval-scale measure that has both positive values, indicating sup-
port for the death penalty, and negative values, indicating opposition to
the death penalty. We use an independent random sampling method to
draw our sample from the population of all adult Americans. After com-
pleting our study, we find that the mean score for attitudes toward the
death penalty is 0.

In determining a confidence interval, we rely on the same basic as-
sumptions that we use for tests of statistical significance. If we were
going to compare the mean in our sample to some hypothesized popula-
tion mean, we would use a t-test as our test of statistical significance.
This means that the t-test also underlies our confidence interval. Accord-
ingly, we have to assume an interval level of measurement and make
parametric assumptions regarding the population distribution. Let’s as-
sume that our sample is very large, so we can relax the assumption of a
normal population distribution. We have already noted that the sampling
method meets the requirements of a t-test.

If we intended to conduct a test of statistical significance for this ex-
ample, we would have stated a null hypothesis and an alternative hy-
pothesis and set a level of statistical significance. Let’s say that the null
hypothesis is that Americans are neutral regarding the death penalty.
This means that H0 for our example will be 0.0, as the scale is divided

for our sample that is greater than 1.96 or less than �1.96. Since our ob-
served value of the measure is 0, the value of t will also be 0. Clearly, we
would not reject the null hypothesis in this case.

between positive attitudes greater than 0 and negative attitudes less than 0.
There is no reason to posit a directional research hypothesis, so our test
will be two-tailed. We will use a standard 0.05 significance level.

Figure 20.1 illustrates the t-test for this example. The rejection region
begins at a t- value of 1.96 either above or below the null hypothesis of 0.
In order to reject the null hypothesis, we need an observed value of t
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But what would a confidence interval for this example look like?
With a confidence interval, we are not concerned about whether the
population parameter is not at a specific value (for example, the null
hypothesis); rather, we are concerned about specifying a range of val-
ues within which we can be fairly confident (though not certain) that
the population parameter lies. How do we choose this range of values?
Clearly, we want to make the interval large enough that, given the ob-
served statistic in our sample, the population parameter is unlikely to
lie outside it. As in tests of statistical significance, our choice is based
on convention. With a test of statistical significance, it is common to set
a threshold of 5% for the risk we are willing to take of falsely rejecting
the null hypothesis. With confidence intervals, we define the width of
the interval so that we can be very confident that the true population
value lies within it. The confidence interval most commonly used is a

terval for our example. As you can see, the confidence interval extends
until the rejection region begins. It is, in this sense, the flip side of the
rejection region.

The 5% Rejection Region and 95% Confidence Interval 
on a Normal Frequency Distribution (where and H0 � 0)X

95% Confidence Interval

Rejection
Region
0.025

Rejection
Region
0.025

Rejection Region for Two-Tailed Test
   = 0.05

t = –1.96 t = +1.960

α

Figure 20.1

95% confidence interval. Figure 20.1 illustrates the 95% confidence in-

Thus, a 95% confidence interval and a 5% significance level are directly
 related. In our example, the 5% significance rejection region represents
 values far enough away from the null hypothesis that we are confident
 in rejecting it. The 95% confidence interval represents values close enough
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Of course, in practical examples it is very unlikely that our observed
sample statistic will be the same as the population parameter hypothe-
sized by the null hypothesis. A more common situation is that of the
opinion poll described earlier. What would the confidence interval look
like for our opinion poll? We have all the information we need to illus-
trate that example, except that the level of confidence of the interval was
not specified. Let’s assume that a 95% confidence interval was used in ar-
riving at the margin of error. The observed statistic, or point estimate, of
60% will be the mean of the distribution. We would use a z-test rather
than a t-test because we are concerned with only a single proportion.
Let’s assume that the other assumptions of the test were met. The margin

shows the confidence interval relative to the z distribution. As you can
see, the interval ranges between 56% and 64%.

But how does this confidence interval relate to a test of statistical sig-
nificance? First, we need to identify a null hypothesis. Suppose we make
the null hypothesis for our test that the population is evenly divided in
their attitudes toward the death penalty. In this case, the H0 takes on a
value of 0.50, meaning that about half of the population to which the
sample infers are for and half against the use of the death penalty for

95% Confidence Interval for the Public Opinion Poll Example

Test of Statistical
Significance for
Opinion Poll

95% Confidence
for

Opinion Poll

95%
Confidence

Interval

Rejection
Region 
0.025

Rejection
Region 
0.025

P = 0.50
H0

p = 0.600.56 0.64
–1.96 1.96

to our observed statistic, or point estimate, that we are confident that the
population parameter lies within that interval.

of error of the test, or size of the confidence interval, is 4%. Figure 20.2

Figure 20.2
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convicted murderers. Note that this value is very far outside the confi-
dence interval that we have defined for our example.

can see, our point estimate of 0.60 falls much to the right of the critical
value (t � �1.96) of our test of statistical significance. As a general rule,
if the null hypothesis for a test of statistical significance lies outside the
confidence interval for the statistic (and the confidence interval and the
significance level represent opposite parts of the same criterion—for ex-
ample, 0.95 and 0.05; 0.99 and 0.01), then you may assume that the re-
sult is statistically significant. This again points to the close relationship
between tests of statistical significance and confidence intervals.

While we use the logic of confidence intervals to define where a pop-
ulation parameter is likely to be found, the confidence interval has a
very specific statistical interpretation. Were we to draw repeated samples
of a specific sample size from the same population, using a 95% confi-
dence interval, we would expect that in 95% of these samples the confi-
dence interval would include the population parameter. That is, we

C o n s t r u c t i n g  C o n f i d e n c e  I n t e r v a l s

Confidence intervals for many different sample statistics can be constructed
using the same basic equation. To illustrate how we construct a confidence
interval, we use the example of a t-statistic. The most general equation for
calculating a t-statistic for a sample statistic is written as follows:

To construct a confidence interval, we adjust this equation so that we
can solve it for the population parameter. We can do this through simple
algebra. Solving for the population parameter produces the following
equation:

Population parameter � �sample
statistic� � t � standard error of

sampling distribution�

t � 
sample statistic � population parameter

standard error of sampling distribution

Figure 20.2 shows the sampling distribution for our example. As you

would expect that in only 5 out of every 100 samples would the parameter
lie outside the confidence interval. As in tests of statistical significance,
we must be aware at the outset that we are only making an informed
decision about the value of the population parameter. Using a 95%
confidence interval, we will make the wrong decision about 5 in a 100
times.
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In setting the boundaries for the confidence interval, we will use the
positive and negative values associated with a two-tailed t-test to provide

account for the positive and negative t-values, our confidence interval is

The t-value in the equation coincides with the level of confidence we re-
quire (i.e., the critical t-value). Following our earlier logic, this t-value is
the flip side of the significance threshold. For a 95% confidence interval,
we use a t-value associated with a two-tailed 0.05 significance level. For
a 99% confidence interval, we use a t-value associated with a two-tailed
0.01 significance level. In general, if � is our significance level for a 
two-tailed test, then we can construct a confidence interval for 100 �

(1 � �) using the same critical t-values.

Confidence Intervals for Sample Means
Let’s start by constructing a confidence interval for a sample mean ( ). If

where is the sample mean, s is the sample standard deviation, N is the
sample size, and t is the critical t-value associated with a given signifi-
cance level. To determine our critical t, we use df � N � 1, as in the
single-sample t-test (see Chapter 10).

For an illustration of the calculation of a confidence interval for a
sample mean, consider a recent study of fear of crime among Korean
Americans living in the Chicago area.1 The investigators constructed a
fear of crime instrument that was measured on an interval scale and
ranged in value from 11.00 to 110.00. The mean fear of crime score for
the 721 respondents was 81.05, with a standard deviation of 23.41.

To calculate a 99% confidence interval for the fear of crime instrument,
we use the t-value associated with a 0.01 significance level and 720 de-
grees of freedom (df � 721 � 1). Using the last line of the t distribution
table in Appendix 4, we find the corresponding critical t-value to be 2.576.

X

Confidence limit � X � t � s

�N � 1�

X

Confidence limit � �sample
statistic� � t � standard error of

sampling distribution�

1Min Sik Lee and Jeffery T. Ulmer, “Fear of Crime Among Korean Americans in
Chicago Communities,” Criminology 38:4 (2000): 1173–1206.

the upper and lower boundaries, respectively (see Figure 20.1). After we

given by Equation 20.1.

Equation 20.1

we rewrite Equation 20.1 to replace the general terms with the mean and
the standard error, we have Equation 20.2.

Equation 20.2
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W orking It Out

 � 81.05 � 2.25

 � 81.05 � 2.576� 23.41

�721 � 1�

 Confidence limit � X � t � s

�N � 1�

The result of �2.25 indicates that the 99% confidence interval includes
values ranging from a low of 78.80 (81.05 � 2.25) to a high of 83.30
(81.05 � 2.25). By using a 99% confidence interval, we can be very con-
fident that the population mean lies somewhere between 78.80 and
83.30. In statistical terms, if we were to observe repeated samples of this
size drawn from this population and calculate a confidence interval for
each of them, only about 1 in 100 would fail to include the true popula-
tion parameter.

Confidence Intervals for Sample Proportions We can apply the same type of
logic to calculating a confidence interval for a sample proportion, modi-

value. To calculate a confidence interval for a sample proportion, we use

where p is the sample proportion, q is 1 � p, N is the sample size, and
z is the critical z-value associated with a given significance level.

In their study of fear of crime among Korean Americans in the
Chicago area, the investigators also included a question about the re-
spondent’s victimization experiences. Specifically, respondents were
asked whether they had experienced any kind of victimization in the
past three years. Included in this global indicator of victimization were
violent as well as property crime victimizations. The investigators re-
ported that 27% of the 721 respondents had experienced some form of
victimization during this time period.

Confidence limit � p � z��pq
N �

A 99% confidence interval for the fear of crime instrument has the
following values:

fying Equation 20.1 by replacing the critical t-value with the critical z-

Equation 20.3:

Equation 20.3
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Knowing that the sample proportion is 0.27 and the z-score is 1.96,
we can calculate a 95% confidence interval for this proportion. We insert

W orking It Out

 � 0.27 � 0.03

 � 0.27 � 1.960(0.0165)

 � 0.27 � 1.960�(0.27)(1 � 0.27)
721

 Confidence limit � p � z �pq
N

The 95% confidence interval is �3% around the sample mean of 27%. It
suggests that we can be confident that the percentage of Korean Ameri-
cans living in and around Chicago who experienced some form of crimi-
nal victimization within the three-year period lies between 24% and 30%.

Confidence Intervals for a Difference of Sample Means In Chapter 11, we
discussed calculating t-statistics to test for significant differences between
two sample means. Another way of calculating a confidence interval for

place the sample mean with the difference of sample means and insert
the appropriate standard error for the difference of two sample means.
Recall from Chapter 11, however, that there are two methods for calcu-
lating the standard error of the sampling distribution: the separate vari-

interval for a difference of two sample means, using either the separate
variance method or the pooled variance method.

Confidence limit � (X1 � X2) � t �� N1s
2
1 � N2s

2
2

N1 � N2 � 2
 �N1 � N2

N1N2 �

Confidence limit � (X1 � X2) � t � s 2
1

N1 � 1
 � 

s 2
2

N2 � 1

our values for p, q, and N into Equation 20.3.

Equations 20.4a and 20.4b present formulas for calculating a confidence

Equation 20.4a Separate Variance Method

Equation 20.4b Pooled Variance Method

the difference of two sample means is by modifying Equation 20.1 to re-
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In both equations, represent the two sample means, 
represent the two sample variances, N1 and N2 represent the two sample
sizes, and t is the critical t-value associated with a given significance level.
As with the two-sample t-test (see Chapter 11), the number of degrees of
freedom for determining the critical t-value will be df � N1 � N2 � 2.

Chapter 11 presented a test for differences in bail amounts required of
African American and Hispanic defendants in Los Angeles County. A
sample of 1,121 African Americans were required to post a mean bail
amount of $50,841 (s � 115,565), while a sample of 1,798 Hispanics
were required to post a mean bail amount of $66,552 (s � 190,801). The
difference in the two sample means is $15,711, where Hispanics were re-
quired to post higher bail amounts, on average.

interval for this difference of sample means. For both equations, we use
the t-value associated with a 0.05 significance level and 2,917 degrees of
freedom. From the last line of the t distribution table in Appendix 4, we
find that critical t � 1.960.

s 2
1 and s 2

2X1 and X2

W orking It Out Separate Variance Method

 � �15,711 � 11,119.12

 � �15,711 � 1.960(5,673.02)

 � (50,841 � 66,552) � 1.960 � 115,5652

1,121 � 1
 � 

190,8012

1,798 � 1

 Confidence limit � (X1 � X2) � t � s 2
1

N1 � 1
 � 

s 2
2

N2 � 1

W orking It Out Pooled Variance Method

 � �15,711 � 12,385.38

 � �15,711 � 1.960(6,319.07)

 � 1.960 ��(1,121)(115,5652) � (1,798)(190,8012)
1,121 � 1,798 � 2

 �1,121 � 1,798
(1,121)(1,798)�

 � (50,841 � 66,552)

 Confidence limit � (X1 � X2) � t�� N1s
2
1

 

 � N2s
2
2

N1 � N2 � 2
 �N1 � N2

N1N2 �

Using Equations 20.4a and 20.4b, we can calculate a 95% confidence
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Using the separate variance method, we find that the confidence in-
terval is �11,119.12 around the difference of sample means of 15,711.
This interval suggests that we can be confident, based on our sample
findings, that the average bail amounts posted in Los Angeles by African
Americans were from $4,591.88 to $26,830.12 less than the average bail
amounts required of Hispanics. The pooled variance method provides
very similar results, indicating that the confidence interval is �12,385.38
around the difference of sample means. Again, this interval suggests that
we can be fairly confident that African Americans were required to post
average bail amounts from $3,325.62 to $28,096.38 less than those re-
quired of Hispanics.

Confidence Intervals for Pearson’s Correlation Coefficient, r
The calculation of confidence intervals for Pearson’s correlation coeffi-
cient, r, relies on a similar logic, but requires an additional step. In
contrast to that for sample means, sample proportions, or differences
of means, the sampling distribution for Pearson’s r is not normal or
even approximately normal.2 Consequently, we need to convert r into

3

equation, we take the natural logarithm of 1 plus r divided by 1 minus r
and multiply this value by .

Values for Z* for correlation coefficients ranging in value from 0.000 to
1.000 are given in Appendix 8. Note that the correlations given in the ap-
pendix are all positive. If r is negative, then Z* will also be negative.

In Chapter 14, we reported that the correlation between unemploy-
ment rates and burglary rates for 58 counties in California was 0.491. If

Z * � 1
2

 � ln �1 � r
1 � r�

1
\2

2The sampling distribution for r will generally be normal and symmetric only for the
case where r � 0, which is what allowed us to use the t distribution to test whether 
rp � 0 (i.e., the null hypothesis) in Chapter 14. When r � 0, the sampling distribution
is not symmetric around r, so we cannot calculate a confidence interval for r in the
same way we did for sample means or the difference of sample means.
3Ronald A. Fisher, Statistical Methods for Research Workers, 14th ed. (New York:
Hafner, 1970).

another statistic, Z *, that does have a normal distribution. The conversion
After calculating of r is known as the Fisher r-to-Z * transformation.

  a confidence interval for Z *. Since the values for Z * are not directly
 interpretable, we will then convert the confidence limits back into 
values of r.

The Fisher r-to-Z* transformation is given in Equation 20.5. In this

 the standard error for Z *, we can then modify Equation 20.1 to calculate

Equation 20.5
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we locate r � 0.491 in Appendix 8, we find Z* to be 0.5374. We obtain

W orking It Out

 � 0.5374

 � 1
2

 � ln �1 � 0.491
1 � 0.491�

 Z * � 1
2

 � ln �1 � r
1 � r�

The standard error of Z*, which is based on the size of the sample

In our example concerning unemployment rates and burglary rates for
California counties, we have 58 observations, so the standard error of Z*
is 0.1348.

�sd(Z*) � 1

�N � 3

W orking It Out

 � 0.1348

 � 1

�58 � 3

 �sd(Z*) � 1

�N � 3

tistic, a critical z-value (since Z* is approximately normally distributed),
and the equation for the standard error of Z*. The formula for the confi-

Confidence limit � Z * � z � 1

�N � 3�

the same value for Z* if we use Equation 20.5.

Equation 20.6

(N), is presented in Equation 20.6.

dence interval for Z* is given in Equation 20.7.

Equation 20.7
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We can now modify Equation 20.1 by inserting Z* as the sample sta-
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where Z* is based on the Fisher r -to-Z* transformation, N is the sample
size, and z is the critical z-value associated with a given significance
level.

Continuing our example for Z* � 0.5374 and N � 58, we calculate a
95% confidence interval for Z* by using critical z � 1.960 and inserting

W orking It Out

 � 0.5374 � 0.2642

 � 0.5374 � 1.960 � 1

�58 �3�

 Confidence limit � Z * � z � 1

�N � 3�

The confidence interval is �0.2642 around Z* � 0.5374, indicating
that the range for Z* is 0.2732 to 0.8016. Since we are unable to directly
interpret values of Z*, we should convert the values of Z* back to values
of r, using Appendix 8. The conversion of Z* back to r will provide us
with the confidence interval for r. For Z* � 0.2732, we find that r �

0.267. For Z* � 0.8016, we find that r � 0.665. For both values of Z*, we
used the closest Z*-value reported in Appendix 8 to determine the val-
ues for r, since an exact match could not be found. These results suggest
that we can be confident that the population value for the correlation co-
efficient falls between 0.267 and 0.665. Note that the upper and lower
confidence limits are not symmetric around r —the lower limit is farther
away from r � 0.491 than is the upper limit.

Confidence Intervals for Regression Coefficients
Confidence intervals for regression coefficients are nearly identical in form
to confidence intervals for sample means. The formula for calculating con-

where b is the regression coefficient, is the standard error of b, and t
is the critical t -value associated with a given level of significance. The
number of degrees of freedom for the critical t will be equal to N � k �

1, where N is the sample size and k is the number of independent vari-
ables in the regression model.

�̂b

ˆb

the values into Equation 20.7.

fidence intervals for regression coefficients is given in Equation 20.8.

Equation 20.8
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In Chapter 15, we reported that the regression coefficient representing
the effect of unemployment rates on burglary rates in California was

calculate a 99% confidence interval, the number of degrees of freedom
will be 56 (df � 58 � 1 � 1 � 56), so the critical t we will use is 2.669
(see Appendix 4).

W orking It Out

 � 36.7483 � 23.2539

 � 36.7483 � 2.669(8.7126)

 Confidence limit � b �  t  �̂b

The result of �23.2539 indicates that the 99% confidence interval in-
cludes values ranging from a low of 13.4944 to a high of 60.0022. The
99% confidence interval suggests that we can be very confident that the
population value of the regression coefficient representing the effect of
unemployment rates on burglary rates lies somewhere between 13.4944
and 60.0022.

Confidence Intervals for Logistic Regression Coefficients and Odds Ratios
Confidence intervals for logistic regression coefficients are calculated in

The number of degrees of freedom for determining the critical t-value
also equals N � k � 1.

In addition to being able to calculate confidence intervals for the orig-

formed coefficients, which are difficult to interpret.
An illustration of the use of confidence intervals for logistic regression

coefficients is provided by a recent study examining the link between
mental disorders and violent victimization for a sample of 747 adults.4

The dependent variable measured whether the individual had reported a

4 Eric Silver, “Mental Disorder and Violent Victimization: The Mediating Role of In-
volvement in Conflicted Social Relationships,” Criminology 40 (2002): 191–212.

exactly the same way as logistic regression coefficients (Equation 20.8).

inal logistic regression coefficients, we can also refer to confidence inter-

regression coefficients into odds ratios by exponentiating the coefficient b. 
This means that we can take the lower and upper limits of our confi-
dence interval for b and convert them to odds ratios. We can then 
discuss the confidence interval relative to the odds, rather than the untrans-
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36.7483 and the standard error for b was 8.7126 (see page 448). If we

vals for odds ratios. As noted in Chapter 18, we can convert our logistic
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violent victimization in the preceding ten weeks. One of the nine inde-
pendent variables used by the researcher was the level of neighborhood
disadvantage, which was an interval-level instrument that combined eco-
nomic indicators, such as poverty rate, unemployment rate, and income.
The effect of neighborhood disadvantage was positive (b � 0.33), mean-
ing the greater the level of neighborhood disadvantage, the more likely
the individual was to have experienced a violent victimization. The stan-
dard error for b was reported to be 0.09.

To calculate a 99% confidence interval for b, we use critical t � 2.576,

W orking It Out

 � 0.33 � 0.23

 � 0.33 � 2.576(0.09)

 Confidence limit � b �  t  �̂b

The result of �0.23 tells us that the 99% confidence interval includes
values ranging from a low of 0.10 to a high of 0.56. If we exponentiate

The lower limit of the confidence interval for the odds ratio is 1.105
[Exp(0.10)], and the upper limit of the confidence interval for the odds
ratio is 1.751 [Exp(0.56)]. These results suggest that we can be very confi-
dent that the population value of the odds ratio lies somewhere between
1.105 and 1.751. If we took repeated random samples of the size exam-
ined here and calculated a confidence interval for each, then in only
about 1 in 100 cases would that interval fail to include the true odds
ratio.

C h a p t e r  S u m m a r y

In tests of statistical significance, we make a statement about where the
population parameter is not. In this chapter, we turned to an approach
to statistical inference that leads us to make a very different type of state-
ment about population parameters. The logic used in this approach is
similar to that described in earlier chapters. However, we do not make a
single decision about the null hypothesis. Rather, we create an interval

since df � 747 � 9 � 1 � 737, and insert the values into Equation 20.8.

the lower and upper limits of the confidence interval for b, we will have the
lower and upper limits of the confidence interval for the odds ratio.
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of values within which we can be fairly confident that the true parameter
lies—although, without data on the population itself, we can never be
certain of the value of the population parameter. This interval is gener-
ally called a confidence interval.

A confidence interval makes it possible for us to say where we
think the population parameter is likely to be—that is, the range of
values within which we feel statistically confident that the true popula-
tion parameter is likely to be found. A confidence interval is generally
constructed around the observed statistic of interest, commonly called
a point estimate. Absent knowledge of the population parameter, the
statistic we obtain for our sample is generally used as an estimate—in
statistical terms, a point estimate—of the population parameter. The
size of the confidence interval is often referred to as the margin of
error.

Confidence intervals may be constructed at any level of confidence.
By convention, we use 95% and 99% confidence levels, which are
based on 5% and 1% significance thresholds. While it is commonly
said, when using a confidence interval, that the researcher is confident
that the true parameter lies in the interval defined, confidence inter-
vals have a specific statistical interpretation. Suppose we find, using a
95% or 99% criterion, that a confidence interval is of a certain size. If
we were to draw repeated samples of the same size, using the same
methods, and calculate a confidence interval for each sample, then in
only 5 in 100 (for a 95% interval) or 1 in 100 (for a 99% interval) of
these samples would the interval fail to include the true population
parameter.

K e y  T e r m s

confidence interval An interval of values
around a statistic (usually a point estimate).
If we were to draw repeated samples and
calculate a 95% confidence interval for each,
then in only 5 in 100 of these samples would
the interval fail to include the true popula-
tion parameter. In the case of a 99% confi-
dence interval, only 1 in 100 samples would
fail to include the true population parameter.

margin of error The size of the confi-
dence interval for a test. A margin of error

of �3% in an opinion poll means that the
confidence interval ranged between 3%
above and 3% below the point estimate or
observed statistic.

point estimate An estimate of the
population parameter. Absent knowledge
of the population parameter, the statistic
we obtain for a sample is generally used
as an estimate—or, in statistical terms, 
a point estimate—of the population
parameter.
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S y m b o l s  a n d  F o r m u l a s

To calculate the confidence interval for a sample mean:

To calculate the confidence interval for a sample proportion:

To calculate the confidence interval for a difference of sample means,
using the separate variance method:

To calculate the confidence interval for a difference of sample means,
using the pooled variance method:

To convert r to Z* (Fisher r -to-Z* transformation):

To calculate the confidence interval for Z*:

To calculate the confidence interval for a regression or logistic
regression coefficient:

E x e r c i s e s

In a study of self-reported marijuana use, a sample of high school stu-
dents were asked how many times they had smoked marijuana in the
last month. Researchers reported that the average for the sample was

 Confidence limit � b �  t �̂b

Confidence limit � Z * � z � 1

�N � 3�

Z * � 1
2

 � ln �1 � r
1 � r�

Confidence limit � (X1 � X2) � t �� N1s
2
1 � N2s

2
2

N1 � N2 � 2�N1 � N2

 N1N2
�

Confidence limit � (X1 � X2) � t� s 2
1

N1 � 1
 � 

s 2
2

N2 � 1

Confidence limit � p � z ��pq
N �

Confidence limit � X � t � s

�N � 1�
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2.4 times, with a 95% confidence interval of �1.3. Explain what this
result means in plain English.

Following a revolution, the new leadership of the nation of Kippax
intends to hold a national referendum on whether the practice of
capital punishment should be introduced. In the buildup to the refer-
endum, a leading army general wishes to gauge how the people are
likely to vote so that he can make a public statement in line with
popular feeling on the issue. He commissions Greg, a statistician, to
carry out a secret poll of how people plan to vote. The results of
Greg’s poll are as follows: The sample proportion in favor of intro-
ducing capital punishment is 52%; the sample has a 95% confidence
interval of �10%. How should Greg explain these results to the army
general?

Concerned that taxpayers were not reporting incomes honestly, a state
department of revenue commissioned an independent study to esti-
mate the number of times people had cheated on their tax returns in
the last five years. The researchers interviewed a random sample of
121 adults and found that the mean number of times they had cheated
on their income taxes in the last five years was 2.7, with a standard
deviation of 1.1.

a. Calculate a 95% confidence interval for this sample mean.

b. Explain what this result means.

The country of Mifflin is preparing for an upcoming presidential elec-
tion. A random sample of 200 likely voters in Mifflin indicates that
57% are going to vote for the Hawk Party candidate, while the remain-
ing 43% are planning on voting for the Gopher Party candidate.

a. Calculate a 95% confidence interval for the proportion voting for
the Hawk Party candidate.

b. Calculate a 99% confidence interval for the proportion voting for
the Hawk Party candidate.

c. Which of the two confidence intervals provides a better indicator 

election?

A long-running disagreement between science and humanities profes-
sors at Big Time University focuses on which department has the

grade point average for a random sample of 322 recent science gradu-
ates was 3.51 (s � 1.2). Asserting that there is no meaningful differ-
ence, a history professor shows that the mean grade point average for
a sample of 485 recent humanities graduates was 3.36 (s � 1.6). Con-

20.2

20.3

20.4

20.5

E X E R C I S E S

of who will win the election? Who do you predict will win the

smarter students. As evidence supportive of the contention that 

explain which professor appears to be more correct.

science students are smarter, a physics professor shows that the mean

struct a 99% confidence interval for this difference of means, and 
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Interested in the effects of income and poverty on robbery rates, a stu-
dent selected a random sample of 125 cities and correlated average in-
come and percentage of persons living in poverty with the robbery
rate. She reported the following correlations:

Income and robbery: r � �0.215

Poverty and robbery: r � 0.478

a. Calculate a 95% confidence interval for each correlation.

b. Explain what these results mean.

adolescents about their behavior. The researchers estimated a regres-

Variable b Standard Error

Intercept �0.21 0.15
Age �0.02 0.01
Number of friends arrested 2.56 0.73
Number of hours per week studying �0.17 0.08
Number of hours per week working 0.09 0.03
Self-esteem �1.05 0.51

a. Calculate a 95% confidence interval for each of the independent
variable regression coefficients.

b. Explain what these results mean.

searchers recoded delinquency as 0 � no delinquency and 1 � one or
more delinquent acts. They estimated a logistic regression model and
found the following:

Variable b Standard Error

Intercept 0.05 0.04
Age �0.12 0.05
Number of friends arrested 1.86 0.57
Number of hours per week studying �0.23 0.09
Number of hours per week working 0.44 0.17
Self-esteem �0.79 0.38

a. Calculate a 95% confidence interval for each of the independent
variable regression coefficients.

b. Explain what these results mean.

20.6

20.7

20.8 In a follow-up to the analysis reported in Exercise 20.7, the re-
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dependent variable. The table of results follows:

Delinquency researchers at DP Institute interviewed a sample of 96

sion model, using number of delinquent acts in the last year as the 
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C o m p u t e r  E x e r c i s e s
Many of the statistical procedures available in SPSS allow for the calculation
of confidence intervals. Four of the confidence intervals discussed in this
chapter—sample mean, difference of means, regression, and logistic regres-
sion—may be computed easily in SPSS. There is no option in SPSS at this
time for computing confidence intervals for Pearson’s r.

To obtain the confidence interval for a sample mean, use the “One Sam-

Click on the “Options” button located in the lower right corner of the win-
dow. The next window that opens will allow you to specify the size of the
confidence interval. The default value is a 95% confidence interval.

corner of the window. As with the single-sample command, the next win-
dow that opens will allow you to specify the size of the confidence interval.
The default value is again 95%.

For regression coefficients, use the linear regression command (Analyze
l Regression l Linear). In the window that allows you to specify the de-
pendent and independent variables, click on the “Statistics” button in the
lower left section. Select the box next to “Confidence Intervals”—this will
produce 95% confidence intervals for the independent variables included in
the regression model. Note that there is no option to specify a different con-
fidence interval for the regression coefficients.

The logistic regression command (Analyze l Regression l Binary Logis-
tic) also allows for the computation of confidence intervals. After you exe-
cute the command, you will be presented with a window in which to enter
the dependent and independent variables. Click on the “Options” button in
the lower right corner. In the next window that opens, select the box next
to “CI for Exp(B).” You may specify a confidence interval other than 95% at
this time. Please note that the confidence interval SPSS will compute is for
the odds ratio [Exp(B)], not the original coefficient (B).

1. For each of the following measures of delinquency, compute a 95%
confidence interval and explain what it means.

a. Number of times the youth has stolen something valued at less than
$5.

b. Number of times the youth has cheated on exams at school.

c. Number of times the youth has been drunk.

2. For each of the following difference of means tests, compute a 95%
confidence interval and explain what it means.

a. Does the number of times the youth has taken something valued at
less than $5 differ for males and females?

ple T Test” command (Analyze l Compare Means l One-Sample T Test).

To obtain the confidence interval for a difference of means -test, use thet
“Independent-Samples T Test” command (Analyze l Compare Means l In-
dependent-Samples T Test). Click on the “Options” button in the lower right

_1
 questions 1 through 4.
Open the nys_1.sav (or nys _student.sav) data file into SPSS to answer 

Problems
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b. Does the number of times the youth has hit his or her parents differ
for whites and African Americans?

c. Does the number of times the youth has cheated on exams differ
for students earning mostly Bs and students earning mostly Cs?

3. Rerun two of the regression models you estimated in the Chapter 16

4. Rerun two of the logistic regression models you estimated in the

pute the confidence intervals for the odds ratios and explain what
each result means.

Open the pcs_ 98.sav data file into SPSS to answer questions 5 and 6. 

5. Run a regression model using length of incarceration sentence as the  

dence intervals for the regression coefficients and explain what each 
criminal history score as the independent variables. Computer the Confi- 

6. Run a binary logistic regression model using Incarceration as the depen-

history score as the independent variables (this is the model you estimated 

fot the odds ratios and explain what each result means.

 result means.

dependent variable and age, race, sex, offense severity score, and prior

dent variable and age, race, sex, offense severity score, and prior criminal
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Chapter 18 computer exercises (see page 577). For each model, com-

in the Chapter 18 computer exercises). Computer the confidence intervals

computer exercises (see pages 492– 493). For each model, compute the 
confidence intervals for the regression coefficients and explain what 
each result means.



Special Topics: Statistical Power

How Do Significance Criteria Influence Statistical Power?

How Does Effect Size Influence Statistical Power?

How Does Sample Size Influence Statistical Power?

How Do We Define the Significance Criteria 
and Effect Size in a Statistical Power Analysis?

How Do We Determine the Sample Size Needed 
to Ensure a Statistically Powerful Study?

C h a p t e r  t w e n t y  o n e

A s s e s s i n g  t h e  r i s k  o f  T y p e  I I  e r r o r

E s t i m a t i n g  s t a t i s t i c a l  p o w e r

How is Statistical Power Defined?



AS WE HAVE SEEN in earlier chapters, criminal justice researchers place
a strong emphasis on statistical inference and its use in making decisions
about population parameters from sample statistics. In statistical signifi-
cance, we focus on the problem of Type I, or alpha, error: the risk of
falsely rejecting the null hypothesis. Paying attention to the statistical sig-
nificance of a finding keeps researchers honest, because it provides a
systematic approach for deciding when the observed statistics are con-
vincing enough for the researcher to state that they reflect broader
processes or relationships in the general population from which the sam-
ple was drawn. If the threshold of statistical significance is not met, then
the researcher cannot reject the null hypothesis and cannot conclude
that a relationship exists.

But there is another type of error that should concern the re-
searcher developing or evaluating research studies. This is Type II
error, originally introduced in Chapter 6. A Type II error occurs when,
based on sample statistics, the researcher fails to reject the null hy-
pothesis when it is false in the population of interest. A study that has
a high risk of Type II error is very likely to mistakenly conclude that
treatments are not worthwhile or that a relationship does not exist
when in fact it does.

Traditionally, researchers in criminal justice, as in other fields, have
placed much more emphasis on statistical significance than on statistical
power, the area of statistics concerned with estimating the risk of Type II
error. However, recently researchers and those who fund research have
begun to pay a good deal more attention to this problem and its implica-
tions for research studies. In this chapter, we introduce the concept of
statistical power and explain why it is important to those who design
and evaluate criminal justice research. We also examine the different fac-
tors that affect statistical power and the methods used to increase the
power of a test.
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S t a t i s t i c a l  P o w e r

The most common way to assess the risk of a Type II error in a study
is to measure its level of statistical power. Statistical power may be
defined as 1 � P (Type II error), or one minus the probability of
falsely failing to reject the null hypothesis. In contrast to statistical
significance, which identifies for the researcher the risk of stating that
factors are related when they are not, statistical power questions how
often one would fail to identify a relationship that in fact exists in 
the population.

As the statistical power of a study gets higher, the risk of making a
Type II error, or failing to identify a relationship, gets smaller. For exam-
ple, a study with a statistical power level of 0.90 has only a 10% proba-
bility of failing to reject the null hypothesis when it is false. Conversely,
as the power level of a study gets lower, the risk of making a Type II
error gets larger. A study in which the statistical power level is only 0.10
has a 90% probability of falsely failing to reject the null hypothesis.

Sometimes statistical power is defined as the probability that a test
will lead to rejection of the null hypothesis. If the power of a test is high
and the null hypothesis is false for the population under study, then it is
very likely that the researcher will reject the null hypothesis and con-
clude that there is a statistically significant finding. If the power of a test
is very low, it is unlikely to yield a statistically significant finding even if
the research hypothesis is in fact true. Studies with very low statistical
power are sometimes described as being “designed for failure,” because
a study that is underpowered is unlikely to yield a statistically significant
result even when the outcomes observed are consistent with the re-
search hypothesis.

Think for a moment of the implications for theory and practice in
criminal justice of a study that has low statistical power. For example,
let’s say that a promising new program has been developed for dealing
with spouse assault. If you evaluate that program with a study that has
very low statistical power, you are very likely to fail to reject the null hy-
pothesis based on your sample statistics, even if the program does in-
deed have the potential for reducing spouse assault. Although you are
likely to say that the program does not have a statistically significant im-
pact on spouse assault, this is not because the program is not an effec-
tive one, but because you have designed your study in such a way that it
is unlikely to be able to identify program success. The same problem ap-
plies in the case of establishing a relationship between two theoretically
important variables. Even if a relationship exists in the population, a
study with low statistical power is unlikely to conclude that the relation-
ship is statistically significant.
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One might assume that researchers in criminal justice would work
very hard to develop statistically powerful studies because such studies
are more likely to support the research hypothesis proposed by the in-
vestigators. In fact, however, statistical power is often ignored by crimi-
nal justice researchers, and thus criminal justice studies often have a low
level of statistical power.1

It is generally recommended that a statistical test have a power level
greater than 0.50, meaning that it is more likely than not to show a sig-
nificant result if the null hypothesis is false in the population under
study. But it is generally accepted that the most powerful studies seek a
power level of 0.80 or above. Such studies are highly likely to evidence
a significant finding based on sample statistics if there is an effect or rela-
tionship in the population to which the researcher seeks to infer.

Statistical Significance and Statistical Power
In Chapter 6, we adjusted the levels of statistical significance used to
take into account both Type I and Type II errors in our statistical tests.
Indeed, the most straightforward way to increase the statistical power of
a test is to change the significance level used.

A significance level of 0.05 results in a more powerful test than a sig-
nificance level of 0.01 because it is easier to reject the null hypothesis
using more lenient significance criteria. A 0.20 level of significance
would, of course, make it even easier to reject the null hypothesis, as il-

than �1.282 to reject the null hypothesis in a two-tailed test with � �

0.20, a z-value greater than 1.960 or less than �1.960 with � � 0.05, and
a z-value greater than 2.576 or less than �2.576 with � � 0.01. Clearly, it
is much easier to reject the null hypothesis with a 0.20 significance
threshold than with a 0.01 significance threshold.

This method for increasing statistical power is direct, but it means that
any benefit we gain in reducing the risk of a Type II error is offset by an

1 See S. E. Brown “Statistical Power and Criminal Justice Research,” Journal of Crimi-
nal Justice 17 (1989): 115–122. However, criminal justice researchers are not very dif-
ferent from researchers in other areas of social science; see also D. Weisburd “Design
Sensitivity in Criminal Justice Experiments,” Crime and Justice 17 (1991): 337–379.

The z-Score Needed to Reject H0 in a Two-Tailed 
Significance Test at Different Levels of Statistical Significance

� 0.20 0.10 0.05 0.01 0.001

z 1.282 1.645 1.960 2.576 3.291

lustrated in Table 21.1. It would take a z-value greater than 1.282 or less

Table 21.1
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increase in the risk of a Type I error. By setting a less strict significance
threshold, we do indeed gain a more statistically powerful research
study. However, the level of statistical significance of our test also de-
clines. Moreover, as has been pointed out throughout this book, norms
concerning statistical significance are strongly established in criminal jus-
tice. Generally, a 0.05 significance level is expected in research. When
significance thresholds that make it easier to reject the null hypothesis
are used, the researcher is expected to carefully explain this departure
from established convention.

A related method for increasing the statistical power of a study is to
limit the direction of the research hypothesis. A one-tailed test provides
greater power than a two-tailed test for the same reason that a less strin-
gent level of statistical significance provides more power than a more

z-values needed to reject the null hypothesis in one- and two-tailed tests
for five different levels of statistical significance.

At each level, as in other statistical tests, the test statistic required to re-
ject the null hypothesis is smaller in the case of a one-tailed test. For ex-
ample, at the 0.05 level, a z-value greater than or equal to 1.960 or less
than or equal to �1.960 is needed to reject the null hypothesis in a two-
tailed test, whereas in a one-tailed test z need only be greater than or
equal to 1.645. At the 0.01 level, a z-value greater than or equal to 2.576
or less than or equal to �2.576 is needed to reject the null hypothesis in a
two-tailed test, whereas in a one-tailed test z need only be greater than or
equal to 2.326. As discussed in earlier chapters, in a one-tailed test all of
the rejection region is on one side of the sampling distribution; thus, the
rejection region is larger, and it is easier to reject the null hypothesis.

Although the researcher can increase the statistical power of a study
by using a directional, as opposed to a nondirectional, research hypothe-
sis, there is a price for shifting the rejection region to one side of the
sampling distribution. Once a one-directional test is defined, a finding in
the direction opposite to that originally predicted cannot be recognized.
To do otherwise would bring into question the integrity of the assump-
tions of the statistical test you have defined.

The z-Score Needed to Reject H0 in One-Tailed 
and Two-Tailed Tests of Significance

� 0.20 0.10 0.05 0.01 0.001

z-Score, one-tailed test 0.842 1.282 1.645 2.326 3.090
z-Score, two-tailed test 1.282 1.645 1.960 2.576 3.260

again, we can see this in practice with the z-test. Table 21.2 lists the 

Table 21.2

stringent one. By choosing a one-tailed test, the researcher reduces
the value of the test statistic needed to reject the null hypothesis. Once
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Effect Size and Statistical Power
Effect size (ES) is a component of statistical power that is unrelated to
the criteria for statistical significance used in a test. Effect size measures
the difference between the actual parameters in the population and
those hypothesized in the null hypothesis. Its relationship to statistical
power is clear. When the population parameters differ strongly from the
null hypothesis, you are more likely to observe a significant difference in
a particular sample.

In defining effect size, statisticians take into account both the raw dif-
ferences between scores and the degree of variability found in the mea-
sures examined. Taking into account variability in effect size is a method
of standardization that allows comparison of effects between studies that
use different scales or different types of measures. Generally, effect size

0�1 0 2

1 2
2

Because the null hypothesis for a difference of means test is ordinarily
that the two population means are equal, we can simplify this formula

ES � 
(�1 � �2) � (H0�1 � H0�2)

�  

ES � 
Parameter � H0

�

2Effect size can also be calculated for observed differences in a study. This is a com-
mon approach in meta-analysis, where a large group of studies are summarized for a
single analysis. For example, in calculating effect size for a randomized experiment
with one treatment and one control group, the researcher would substitute the out-
come scores for both groups in the numerator of the ES equation, and the pooled
standard deviation for the two outcome measures in the denominator. For a more de-
tailed discussion of effect size and its use generally for comparing effects across differ-
ent studies, see Mark Lipsey and David Wilson, Practical Meta-Analysis, Applied So-
cial Research Methods Series 49 (Thousand Oaks, CA: Sage, 2001).

is defined as in Equation 21.1.

Equation 21.1

Equation 21.2

Effect size will increase either as the difference between the actual
parameter and the hypothesized parameter under the null hypothesis in-

and include only the difference between the actual population parameters.
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creases or as the variability in the measure examined decreases. When two

(H
 (� � � ). This value is then divided by the  common 

the null hypothesis �H � ) from the difference between the true means 
in the population
standard deviation for the two populations studied (see Equation 21.2).

populations are compared, variability is generally defined as the pooled 

populations. For example, for a difference of means test, effect size would
or common standard deviation of the outcome measures in the two

be calculated by first subtracting the population difference as stated in 



tion means is greater, ES for the difference of means will be larger. Also,
as the variability of the scores of the parameters grows, as represented
by the standard deviation of the estimates, ES will get smaller.

power in practice. It presents the number of statistically significant out-
comes expected in 100 t-tests (using a 0.05 significance threshold and a
nondirectional research hypothesis, �1 � �2), each with 100 cases per
sample, under six different scenarios. In the first three scenarios, the
mean differences between the two populations are varied and the stan-
dard deviations for the populations are the same. In the last three scenar-
ios, the mean differences are the same and the standard deviations differ.

comes is expected in either the comparisons with the largest differences
between mean scores or the comparisons with the smallest standard de-
viations. As the differences between the population means grow (scenar-

ES � 
�1 � �2

�

Number of Statistically Significant Outcomes Expected 
in 100 Two-Sample t-Tests for Six Different Scenarios

GROUP A: MEANS DIFFER; STANDARD DEVIATIONS HELD CONSTANT

EXPECTED
SIGNIFICANT

SCENARIO �1 �2 � OUTCOMES

1 0.3 0.5 2 10
2 0.3 0.9 2 56
3 0.3 1.3 2 94

GROUP B: MEANS HELD CONSTANT; STANDARD DEVIATIONS DIFFER

EXPECTED
SIGNIFICANT

SCENARIO �1 �2 � OUTCOMES

4 0.3 0.5 0.5 80
5 0.3 0.5 1 29
6 0.3 0.5 2 10

Note: Each test has 100 cases per sample, a 0.05 significance threshold, and a 
nondirectional research hypothesis (�1 � �2).

Thus, ES for a difference of means test may be defined simply as the
raw difference between the two population parameters divided by their
common standard deviation, as shown in Equation 21.3.

As Equation 21.3 illustrates, when the difference between the popula-

Table 21.3 shows the relationship between effect size and statistical

As Table 21.3 shows, the largest number of statistically significant out-

Table 21.3

Equation 21.3
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ios 1, 2, and 3), so too does the likelihood of obtaining a statistically sig-
nificant result. Conversely, as the population standard deviations of the
comparisons get larger (scenarios 4, 5, and 6), the expected number of
significant outcomes decreases.

As this exercise illustrates, there is a direct relationship between the
two components of effect size and statistical power. Studies that examine
populations in which there is a larger effect size will, all else being
equal, have a higher level of statistical power. Importantly, the relation-
ship between effect size and statistical power is unrelated to the signifi-

Type II error) while minimizing the risk of Type I error (through the es-
tablishment of rigorous levels of statistical significance).

Even though effect size is often considered the most important com-
ponent of statistical power,3 it is generally very difficult for the researcher
to manipulate in a specific study. Ordinarily, a study is initiated in order
to determine the type of relationship that exists in a population. In many
cases, the researcher has no influence at all over the raw differences, or
the variability of the scores on the measures examined. For example, if
the researcher is interested in identifying whether men and women po-
lice officers have different attitudes toward corruption, the nature of
these attitudes, or their variability, is a given that the researcher does not
influence.

Nonetheless, particularly in evaluation research—in which the study
attempts to evaluate a specific program or intervention—the researcher
can influence the effect size of a study and thus minimize the risk of
making a Type II error. There is growing recognition, for example, of the
importance of ensuring the strength and integrity of criminal justice inter-
ventions.4 Many criminal justice evaluations fail to show a statistically sig-
nificant result simply because the interventions are too weak to have the
desired impact or the outcomes are too variable to allow a statistically
significant finding.

Statistical power suggests that researchers should be very concerned
with the effect size of their evaluation studies if they want to develop a
fair test of the research hypothesis. First, the interventions should be
strong enough to lead to the expected differences in the populations
under study. Of course, the larger the differences expected, the greater

3See M. W. Lipsey, Design Sensitivity: Statistical Power for Experimental Research
(Newbury Park, CA: Sage, 1990).
4For example, see J. Petersilia “Randomized Experiments: Lessons from BJA’s Intensive
Supervision Project,” Evaluation Review 13 (1989): 435–458; and D. Weisburd, “Design
Sensitivity in Criminal Justice Experiments,”Crime and Justice 17 (1991): 337–379.

cance criteria we use in a test. In this sense, effect size allows for 
increasing the statistical power of a study (and thus reducing the risk of
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the statistical power of an investigation. Second, interventions should be
administered in ways that maximize the homogeneity of outcomes. For
example, interventions applied differently to each subject will likely in-
crease the variability of outcomes and thus the standard deviation of
those scores. Finally, researchers should recognize that the heterogeneity
of the subjects studied (and thus the heterogeneity of the populations to
which they infer) will often influence the statistical power of their tests.
Different types of people are likely to respond in different ways to treat-
ment or interventions. If they do respond differently, the variability of
outcomes will be larger, and thus the likelihood of making a Type II
error will grow.

Sample Size and Statistical Power
The method used most often to manipulate statistical power in social sci-
ence research is to vary sample size. Like effect size, sample size can be
manipulated without altering the risk of a Type I error in a test. In con-
trast to effect size, the number of subjects included in an investigation
is—in most circumstances—under the control of the researcher.

The relationship between statistical power and sample size is straight-
forward. Larger samples, all else being equal, provide more stable esti-

of heads in three tosses of an honest coin. However, getting 25 heads in
25 coin tosses would lead even the most trusting person to doubt the
fairness of the coin. In statistics, we have a more formal measure for as-
sessing the reliability of results in a study—the standard error. When the
standard error is smaller, reliability is greater. Importantly, as the number
of cases studied increases, the standard error of the sampling distribution
used in a test decreases. This relationship can be illustrated simply by
looking at the calculation for the standard error in the single-sample 
t-test:

The standard error for this distribution is obtained by dividing the
standard deviation of the population parameter by the square root of N.
As N gets larger, irrespective of the value of the standard deviation itself,
the standard error of the estimate gets smaller. For example, when the

cases is twice as large as it is with a sample of 100.
As the standard error of a test declines, the likelihood of achieving

statistical significance grows, because the test statistic for a test of statisti-
cal significance is calculated by taking the ratio of the observed differ-

�sd � �

�N

mates than do smaller samples. As discussed in Chapter 7, this makes
intuitive sense. One would not be too surprised to throw a successive run

standard deviation is 10, Table 21.4 shows that the standard error with 25
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ence from the null hypothesis to the standard error of that difference.
For example, in the t-test for two independent samples (see Equation

tween the observed means minus the difference between the population
means under the null hypothesis (generally 0) by the standard error of
the estimates .

For the difference of means test, as for other statistical tests of signifi-
cance, as the standard error gets smaller, the test statistic grows. Accord-

because larger samples lead to smaller standard errors and smaller stan-
dard errors lead to larger test statistics. Of course, a larger test statistic
will lead to a larger likelihood of rejecting the null hypothesis.

tical power in practice. The number of statistically significant outcomes
expected in 100 two-sample t-tests in which there is a mean difference

t � 
(X1 � X2) � (�1 � �2)

�sd(X1�X2)

(�̂sd(X1�X2) )

Changes in the Standard Error of the Sampling Distribution 
for the Single Sample t-Test as Sample Size Increases, � � 10

STANDARD ERROR
SAMPLE SIZE OF SAMPLING DISTRIBUTION

10 3.16
25 2.00
75 1.15

100 1.00
200 0.71
500 0.45

Number of Statistically Significant Outcomes Expected 
in 100 Two-Sample t-Tests for Four Different Scenarios

EXPECTED
SAMPLE SIZE SIGNIFICANT

SCENARIO (PER GROUP) �1 � �2 � OUTCOMES

1 35 0.2 1 13
2 100 0.2 1 29
3 200 0.2 1 51
4 1,000 0.2 1 99

Note: The parameters are held constant but the sample size varies. The tests have a 0.05 
significance threshold and a nondirectional research hypothesis.

Table 21.4

Equation 21.4

Table 21.5 illustrates the relationship between sample size and statis-

21.4), the value of the t-statistic is obtained by dividing the difference be-

Table 21.5
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ingly, there is a direct relationship between sample size and statistical power,



of two arrests between groups (� � 1) is examined for four different
scenarios (using a 5% significance threshold and a two-tailed test). In

null hypothesis changes greatly with each of these scenarios, even
though the population parameters remain the same. Under the first sce-
nario, we would expect only about 13 statistically significant outcomes
in 100 tests. In the second scenario, 29 significant outcomes would be
expected; and in the third, 51. In the final scenario of samples of 1,000,
nearly every test (99 out of 100) would be expected to lead to a signifi-
cant result.

Sample size is often a primary concern in statistical power analysis be-
cause (1) it is directly related to statistical power, (2) it is a factor usually
under the control of the researcher, and (3) it can be manipulated with-
out altering the criteria for statistical significance of a study.

In most cases, researchers maximize the statistical power of a study
by increasing sample size. However, sometimes adding cases to a study
can have unanticipated consequences on other factors that influence sta-
tistical power.5 This is most likely to occur in evaluation research. For ex-
ample, let’s say that a researcher has developed a complex and intensive
method for intervening with high-risk youth. The impact of the treatment
is dependent on the subjects’ receiving the “full dosage” of the treatment
for a six-month period. If the researcher were to increase the sample size
of this study, it might become more difficult to deliver the treatments in
the way they were intended. More generally, when increasing the sam-
ple size of a study, you should be careful not to decrease the integrity or
dosage of the interventions that are applied.6

5For a review of this issue in criminal justice experiments, see D. Weisburd, “Design
Sensitivity in Criminal Justice Experiments,” Crime and Justice 17 (1991): 337–379.
6Increasing the size of a sample may also affect the variability of study estimates in
other ways. For example, it may become more difficult to monitor implementation of
treatments as a study grows. It is one thing to make sure that 100 people or places re-
ceive a certain intervention, but quite another to ensure consistency of interventions
across hundreds or thousands of subjects. Also, studies are likely to include more het-
erogeneous groups of subjects as sample size increases. For example, in one intensive
probation study, eligibility requirements were continually relaxed in order to meet
project goals regarding the number of participants; see J. Petersilia, “Randomized Ex-
periments: Lessons from BJA’s Intensive Supervision Project,” Evaluation Review 13
(1989): 435–458. As noted earlier, as the heterogeneity of treatments or subjects in a
study grows, it is likely that the standard deviations of the outcomes examined will
also get larger. This, in turn, leads to a smaller effect size for the study and thus a
lower level of statistical power.

the first scenario, the sample size for each group is only 35 cases; in 
the second scenario, the sample size is 100; in the third, 200; and in the
fourth, fully 1,000. Table 21.5 shows that the likelihood of rejecting the
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P a r a m e t r i c  v e r s u s  N o n p a r a m e t r i c  T e s t s

Before we turn to methods for calculating the statistical power of a test,
it is important to note that the type of statistical test used in a study can
affect its statistical power. The differences in power of various tests (as-
suming that the tests are equally appropriate for making statistical infer-
ences from the data) are usually relatively small. However, in the case of
one general group of comparisons, differences can often be more mean-
ingful: As a general rule, parametric tests are more statistically powerful
than nonparametric tests. This is one reason researchers generally prefer
to use parametric tests, even though they require more assumptions than
do their nonparametric counterparts.

Why do parametric tests lead to a smaller risk of Type II error? The an-
swer lies in a principle stated much earlier in the book: If all else is equal,
researchers should give preference to statistics that take advantage of
more information. This is why interval measures are generally preferred
over ordinal measures, and ordinal measures over nominal measures.
Parametric tests generally involve comparisons among interval-level mea-
sures. Nonparametric tests make comparisons based on nominal- or ordi-
nal-level data—for example, groupings or rankings in a distribution. Be-
cause parametric tests take into account more information in arriving at a
conclusion about the statistical significance of findings, they are more sta-
tistically powerful, or more sensitive, tests of hypotheses.

E s t i m a t i n g  S t a t i s t i c a l  P o w e r :  W h a t  S i z e  S a m p l e  
I s  N e e d e d  f o r  a  S t a t i s t i c a l l y  P o w e r f u l  S t u d y ?

A number of texts have been written that provide detailed tables for defin-
ing the statistical power of a study.7 You can also calculate the statistical
power of specific examples by hand, although this can be a very tedious
exercise. Calculation of specific power estimates is beyond the scope of
this text. Nonetheless, it is possible to develop some basic rules for statisti-
cal power analysis that rely on standardized estimates of effect size.

7For example, see Jacob Cohen, Statistical Power Analysis for the Behavioral Sciences
(Hillsdale, NJ: Lawrence Erlbaum, 1988); M. W. Lipsey, Design Sensitivity: Statistical
Power for Experimental Research (Newbury Park, CA: Sage, 1990); and H. C. Kraemer
and S. Thiemann, How Many Subjects: Statistical Power Analysis in Research (New-
bury Park, CA: Sage, 1987). There also are software packages for computing statistical
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Statistical power analysis is generally used to define the sample size
needed to achieve a statistically powerful study. We have already noted
that increasing the size of a sample can sometimes affect other features
of statistical power. Thus, in using increased sample size to minimize
Type II error, we must consider the potential consequences that larger
samples might have on the nature of interventions or subjects studied.
Nonetheless, sample size remains the tool most frequently used for ad-
justing the power of studies because it can be manipulated by the re-
searcher and does not require changes in the significance criteria of 
a test.

To define how many cases should be included in a study, we must
conduct power analyses before the study is begun. However, we can
also use the methods described here to evaluate whether studies already
conducted have acceptable levels of statistical power.

To define the sample size needed for a powerful study, we must first
clearly define each of the components of statistical power other than
sample size. These include

1. The statistical test

2. The significance level

3. The research hypothesis (whether directional or nondirectional)

4. The effect size

The first three of these elements are familiar and based on our assump-
tions made in developing tests of hypotheses. The statistical test is cho-
sen based on the type of measurement and the extent to which the study
can meet certain assumptions. For example, if we want to compare three
sample means, we will likely use analysis of variance as our test. If we
are comparing means from two samples, we will likely use a two-sample
t-test.

To calculate statistical power, we must also define the significance
level of a test and its research hypothesis. By convention, we generally
use a 0.05 significance threshold, and thus we are likely to compute sta-
tistical power estimates based on this criterion. The research hypothesis

ferent types of outcomes that can be found in a study. If we were evalu-
ating an existing study, we would use the decisions as stated by the
researchers in assessing its level of statistical power.

The fourth element, defining effect size, is more difficult. How can we
estimate the effect size in the population? It is perhaps better to define
this criterion a bit differently. The purpose of a power analysis is to see
whether our study is likely to detect an effect of a certain size. Usually

defines whether a test is directional or nondirectional. Again, in most
circumstances, we choose a nondirectional test to take into account the dif-
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we define that effect in terms of what is a meaningful outcome in a
study. A power analysis, then, tells us whether our study is designed in a
way that is likely to detect that outcome (i.e., reject the null hypothesis
on the basis of our sample statistics). This is one of the reasons why sta-
tistical power is sometimes defined as design sensitivity. It assesses
whether our study is designed with enough sensitivity to be likely to re-
ject the null hypothesis if an effect of a certain size exists in the popula-
tion under study.

Statisticians have made the task of defining effect size easier by identi-
fying broad categories of effect size. That is, they have developed a gen-
eral scale for comparing effect size within and across studies. Jacob
Cohen has suggested one widely used measure that simply divides effect
size into small, medium, and large.8 For example, for a proportion,
Cohen defines a difference of 0.50 versus 0.40 between the two popula-
tions under study as a small effect, a difference of 0.65 versus 0.40 as a
medium effect, and a difference of 0.78 versus 0.40 as a large effect.
Cohen has developed similar estimates for other statistical tests, trying to
use a similar standard in each of the cases. Regarding these standardized
estimates of effect size, he states,

Although arbitrary, the proposed conventions will be found to be reason-
able by reasonable people. An effort was made in selecting these opera-
tional criteria to use levels of ES which accord with a subjective average
of effect sizes such as are encountered in behavioral sciences. “Small” ef-
fect sizes must not be so small that seeking them amidst the inevitable op-
eration of measurement and experimental bias and lack of fidelity is a
bootless task, yet not so large as to make them fairly perceptible to the
naked observational eye. . . . In contrast, large effects must not be defined
as so large that their quest by statistical methods is wholly a labor of
supererogation, or to use Tukey’s delightful term “statistical sanctifica-
tion.” That is, the difference in size between apples and pineapples is of
an order which hardly requires an approach via statistical analysis. 
(p. 13)

Put simply, Cohen suggests that his estimates make good common sense.
As we have emphasized throughout this text, common sense is at the
root of most statistics.

8Jacob Cohen, Statistical Power Analysis for the Behavioral Sciences (Hillsdale, NJ:
Lawrence Erlbaum, 1988).
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importance of sample size in statistical power. The sample sizes needed
to achieve a statistical power level of 0.80 or above, under assumptions
of small, medium, and large effect size, are provided for a two-sample 

threshold and a nondirectional research hypothesis.
If we define the effect size for the test as large, it does not take a very

in each group. To achieve the same threshold with a moderate effect
size, we must have 64 cases in each group. If the effect size in the popu-

study. However, if we seek to identify a relationship with a small effect
size, a very large number of cases will be required.

These standardized estimates of effect size allow us to identify the
size sample needed to achieve a statistically powerful study, given a spe-
cific set of assumptions. They also enable us to assess the statistical
power of a study that has been conducted by another researcher. Was
the study designed in a way that would enable the detection of moderate
or small effects? Certainly, if a study was underpowered for detecting
large effects, you would want to be cautious in interpreting a finding that
was not statistically significant.

monly used statistical tests of significance. In each case, we use a 0.05

provides the number of cases needed to achieve a statistical power level
of 0.80. As noted earlier, this is the threshold generally used for defining
a powerful study. Estimates are given for small, medium, and large
effects.

Sample Size per Group Required to Achieve 
a Statistical Power Level of 0.80 for a Two-Sample t-Test of Means

EFFECT SIZE REQUIRED SAMPLE SIZE

Small ES
Medium ES 64
Large ES

Table 21.6

Using standardized measures of effect size, Table 21.6 illustrates the

t-test of means. Table 21.6 is based on a test with a 5% significance

ample shows how important effect size is in statistical power. When
effects are assumed to be large, it is relatively easy to design a powerful

Table 21.7 provides similar statistical power estimates for some com-

significance threshold and a nondirectional test. For each test, Table 21.7
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394

26

large sample to achieve a power level of 0.80. Only 26 cases are needed

lation is small, then fully 394 cases are needed in each group. This ex-

You can get a general sense of the requirements of sample size from Table
21.7, although you should use caution in applying it to specific cases. In gene-
ral, if you are trying to identify small effects, your overall sample will have to 

� be very large. For example, in a non-directional two-sample t-test (  = .05),



In contrast, for large effects you can generally use very small samples

statistical power in a t-test for means. The sample sizes needed for a sta-
tistically powerful study for medium effect size do not fall midway be-
tween the estimates for large and small effect size but are generally

S u m m i n g  U p :  A v o i d i n g  S t u d i e s  D e s i g n e d  f o r  F a i l u r e

The statistical power of a test can be compared to the sensitivity of a ra-
diation meter. A very sensitive meter will be able to identify even the
smallest deposits of radioactivity. A meter that is not very sensitive will
often miss such small deposits, although it likely will detect very large ra-
diation signals from areas rich in radioactivity. Similarly, a statistically
sensitive study will be able to identify even small effects. This is usually
because the researcher has increased the sample size of the study to
make it more statistically powerful. Conversely, a study that has little
sensitivity is unlikely to yield a statistically significant result even when

Overall Sample Size Required to Achieve 

EFFECT SIZE

Small ES Medium ES Large ES

Binomial 783 85
Chi-square*
Two-sample t-test 128
ANOVA (3 Groups)
t-Test for correlation and regression

Table 21.7
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776 124
29
52
52
66
26

788
969
779

159
82

you will need 788 cases (394 cases per group) to achieve a statistical

and still have a statistically powerful study. For example, only 26 cases
are needed to achieve a statistical power level of .80 for a non-directional

�

cases (26 per group) would be required to achieve a similar threshold of

much closer to the sample size required for large effects. For a non-

�

for each group.

group) would be required to achieve a .80 level of statistical power. For an

# 

# 

Two-tailed test of statistical significance.

*
Equal group sizes assumed. 

power level of 0.80. In an Analysis of Variance with 3 independent samples,

# 

�

Analysis of Variance with three groups (  = .05), 53 cases would be needed

t-test ( = .05) for a correlation or regression coefficient.  Fifty-two cases 

†

you would need fully 969 cases (323 cases per group).

directional difference of means test (  = .05), for example, 128 cases (64 per 

a Statistical Power Level of 0.80 for Selected Statistical Tests (p < .05)

†#

†
For a 2-by-2 table.



relatively large differences or program impacts are observed. Such stud-
ies may be seen as “designed for failure,” not because of inadequacies in
the theories or programs evaluated, but because the investigator failed to
consider statistical power at the outset of the study.

You might question why we would even bother to define the size of
the sample needed for statistically powerful studies. Why not just collect
1,000 or more cases in every study and be almost assured of a statisti-
cally powerful result? The simple answer is that although you should try
to sample as many cases as you can in a study, there are generally con-
straints in developing samples. These constraints may be monetary, re-
lated to time, or associated with access to subjects. It is often important
to know the minimum number of cases needed to achieve a certain
threshold of statistical power so that you can try, within the constraints
of the research setting, to reach an adequate level of statistical power in
your study. It is also important to be able to assess whether studies that
you read or evaluate were designed in such a way that they are reason-
able tests of the hypotheses presented. If such studies are strongly un-
derpowered, then you should have much less confidence in findings that
do not support the research hypothesis.

C h a p t e r  S u m m a r y

A statistically powerful test is one for which there is a low risk of making
a Type II error. Statistical power can be defined as 1 minus the proba-
bility of falsely accepting the null hypothesis. A test with a statistical
power of 0.90 is one for which there is only a 10% probability of making
a Type II error. If the power of a test is 0.10, the probability of a Type II
error is 90%. A minimum statistical power level of at least 0.50 is recom-
mended. However, it is generally accepted that in better studies, the
level of statistical power will be at least 0.80. A study with a low level of
statistical power can be described as “designed for failure,” as it is un-
likely to produce a statistically significant result even if the expected ef-
fect exists in the population under study.

There are several ways in which statistical power can be maximized.
First, we may raise the significance threshold. Doing so, however, also
increases the risk of a Type I error. Second, we may limit the direction
of the research hypothesis and conduct a one-tailed test. Doing so,
though, will necessarily ignore outcomes in the opposite direction.
Third, we may try to maximize the effect size. The greater the differ-
ences betwen the populations and the smaller the variability of those
differences, the larger the population effect size will be. Effect size,
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however, is usually beyond the control of the researcher. Fourth, we
may increase the sample size. A larger sample produces a smaller stan-
dard error for the sampling distribution and a larger test statistic. The
larger the sample, all else being equal, the greater the chance of reject-
ing the null hypothesis.

Sample size is generally the most useful tool for maximizing statistical
power. A power analysis before a study is begun will define the number
of cases needed to identify a particular size effect—small, medium, or
large. A power analysis of an existing study will help to identify whether
it was well designed to assess the questions that were examined. To
identify a small effect size, the overall sample must be very large. For a
large effect size, a much smaller sample will suffice.

K e y  T e r m s

design sensitivity The statistical power
of a research study. In a sensitive study
design, statistical power will be maxi-
mized, and the statistical test employed
will be more capable of identifying an
effect.

effect size (ES) A standardized measure
derived by taking the effect size (e.g., the
difference between two populations), mea-

sured in the raw units of the outcome mea-
sure examined, and dividing it by the
pooled or common standard deviation of
the outcome measure.

statistical power One minus the probabil-
ity of a Type II error. The greater the statis-
tical power of a test, the less chance there
is that a researcher will mistakenly fail to
reject the null hypothesis.

S y m b o l s  a n d  F o r m u l a s

ES Effect size

To calculate effect size:

To calculate the effect size for a difference of means test:

ES � 
(�1��2) � (H0�1 � H0�2)

�

ES � 
Parameter � H0

�
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E x e r c i s e s

Emma wishes to run a series of statistical tests comparing samples
drawn from two different populations. She devises four scenarios:

Scenario 1: One-tailed test, 0.01 significance level

Sample size � 100 each

�1 � 15, �2 � 10, � � 2

Scenario 2: One-tailed test, 0.05 significance level

Sample size � 100 each

�1 � 15, �2 � 10, � � 2

Scenario 3: Two-tailed test, 0.01 significance level

Sample size � 100 each

�1 � 15, �2 � 10, � � 2

Scenario 4: Two-tailed test, 0.05 significance level

Sample size � 100 each

�1 � 15, �2 � 10, � � 2

a. What is the effect size for each of the four scenarios?

b. In which of these scenarios would the test have the highest level of
statistical power? Explain your answer.

A joint Swedish-U.S. research foundation wishes to sponsor research
to investigate whether parents in the two countries have different
ways of disciplining their children. Four researchers—Anna, Bert,
Christina, and Dave—have each submitted a proposal. The researchers
intend to run a two-tailed test of statistical significance, except for
Anna, who proposes a one-tailed test. The researchers intend to set a
5% level of significance, except for Dave, who proposes a 1% level.
Anna and Bert propose samples of 400 Swedish parents and 400 U.S.
parents, Christina proposes samples of 70 each, and Dave proposes
samples of 40 each. Each of the researchers expects a moderate size
effect from his or her test.

a. Do any of these proposals appear to you to be “designed for fail-
ure”? Explain your answer.

b. Which researcher’s proposal would you recommend for accep-
tance? Explain your answer.

Fiona wishes to run a series of statistical tests comparing samples
drawn from two different populations. She devises four scenarios.

Scenario 1: Two-tailed test, 0.05 significance level

Sample size � 100 each

�1 � 15, �2 � 14, � � 5

21.1

21.2

21.3
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Scenario 2: Two-tailed test, 0.05 significance level

Sample size � 100 each

�1 � 13, �2 � 16, � � 5

Scenario 3: Two-tailed test, 0.05 significance level

Sample size � 100 each

�1 � 8, �2 � 10, � � 5

Scenario 4: Two-tailed test, 0.05 significance level

Sample size � 100 each

�1 � 11.5, �2 � 9, � � 5

a. What is the effect size for each of the four scenarios?

b. In which of these scenarios would the test have the highest level of
statistical power? Explain your answer.

Philip is studying the attitudes of members of a newly formed police
precinct toward drug offenders. He has prepared a 45-minute film, in
which offenders talk frankly about their backgrounds and how they
came to be involved in crime, as well as a questionnaire, which
should take about 15 minutes to complete. He has been given permis-
sion to show the film and distribute the questionnaire in a one-hour
lunch break on a specific day only, in a lecture room that holds no
more than 25 people.

For the planned study, Philip intends to draw two independent
random samples of 25 officers. Both groups will be asked to complete
a questionnaire assessing their attitudes toward drug offenders. One
group (the research group) will have seen the film; the other (the
control group) will not. The researcher plans to check for differences
between the research and control groups by running a two-sample 
t-test and making a decision about his null hypothesis on the basis of
a two-tailed test of statistical significance, setting the significance
threshold at 0.05. He is worried, however, about the statistical power
of the test.

Philip’s assistant suggests three different ways of increasing the
statistical power of the test. Discuss the merits and pitfalls of each
suggestion.

a. Run a one-tailed test of statistical significance instead of a two-
tailed test.

b. Increase the size of the rejection region by changing the signifi-
cance threshold from 0.05 to 0.10.

c. Double the size of each sample to 50. Because of limitations on
time and space, the film would have to be shown in two sittings.
The research group would have to be split into two subgroups of
25. Each subgroup would watch the first 20 minutes of the 45-
minute film and then spend 10 minutes filling in the questionnaire.

21.4
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Caroline wishes to run a series of statistical tests comparing 
samples drawn from two different populations. She devises four
scenarios.

Scenario 1: Two-tailed test, 0.05 significance level

Sample size � 50 each

�1 � 16, �2 � 10, � � 2

Scenario 2: One-tailed test, 0.05 significance level

Sample size � 150 each

�1 � 16, �2 � 10, � � 2

Scenario 3: Two-tailed test, 0.05 significance level

Sample size � 150 each

�1 � 16, �2 � 10, � � 2

Scenario 4: Two-tailed test, 0.05 significance level

Sample size � 100 each

�1 � 16, �2 � 10, � � 2

a. What is the standard error of the sampling distribution for each of
the four scenarios?

b. In which of these scenarios would the test have the highest level of
statistical power? Explain your answer.

Robert drew an independent random sample of 100 men and 100
women from Chaos Town and questioned them about their fear of
crime, scoring each one on an index from 0 to 20 and then comparing
the sample means using a two-sample t-test.

A few months later, he decided to repeat the experiment, but this
time by comparing a random sample of youngsters under the age of
18 with a random sample of adults aged 18 or older.

Assume that for his first experiment the population mean for men
was 11 and for women was 14 (with a common standard deviation of
6). For his second experiment, assume that the population mean for
the youngsters was 10 and for the adults was 14 (with a common stan-
dard deviation of 8).

a. If the sample sizes in the second experiment were the same as
those in the first experiment, would the statistical power of the two
tests be the same?

b. How large would the samples need to be in the second experiment
for the standard error of the sampling distributions in both tests to
be the same?

In an analysis of after-school supervision programs, a group of re-
searchers reported the following proportions for self-reported delin-

21.5

21.6

21.7
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quency of youth under supervision and those not under supervision
by time of day:

Unsupervised Supervised

Time Period Proportion N Proportion N s

Before school 0.14 199 0.01 97 0.295
During school 0.18 203 0.03 98 0.313
End of school through 6 P.M. 0.15 199 0.03 98 0.308
6 P.M. through 12 A.M. 0.14 200 0.04 97 0.313
12 A.M. through 6 A.M. 0.07 198 0.01 97 0.214
Weekends 0.24 200 0.04 97 0.370

Source: D. C. Gottfredson, G. D. Gottfredson, and S. A. Weisman, “The Timing of Delinquent Behavior and Its
Implications for After-School Programs,” Criminology and Public Policy 1 (2001): 79.

a. On average, was this study designed to have a high level of statisti-
cal power to identify medium ES? What about small ES?

b. If you assumed that the observed differences between the samples
were reflective of the population differences, which comparison
would have the highest level of statistical power? Explain why.
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Appendix 1
Factorials

0! � 1
1! � 1
2! � 2
3! � 6
4! � 24
5! � 120
6! � 720
7! � 5,040
8! � 40,320
9! � 362,880

10! � 3,628,800
11! � 39,916,800
12! � 479,001,600
13! � 6,227,020,800
14! � 87,178,291,200
15! � 1,307,674,368,000
16! � 20,922,789,888,000
17! � 355,687,428,096,000
18! � 6,402,373,705,728,000
19! � 121,645,100,408,832,000
20! � 2,432,902,008,176,640,000
21! � 51,090,942,171,709,440,000
22! � 1,124,000,727,777,607,680,000
23! � 25,852,016,738,884,976,640,000
24! � 620,448,401,733,239,439,360,000
25! � 15,511,210,043,330,985,984,000,000

651



Appendix 2
Critical Values of �2 Distribution

�

df 0.20 0.10 0.05 0.02 0.01 0.001

1 1.642 2.706 3.841 5.412 6.635 10.827
2 3.219 4.605 5.991 7.824 9.210 13.815
3 4.642 6.251 7.815 9.837 11.341 16.268
4 5.989 7.779 9.488 11.668 13.277 18.465
5 7.289 9.236 11.070 13.388 15.086 20.517
6 8.558 10.645 12.592 15.033 16.812 22.457
7 9.803 12.017 14.067 16.622 18.475 24.322
8 11.030 13.362 15.507 18.168 20.090 26.125
9 12.242 14.684 16.919 19.679 21.666 27.877

10 13.442 15.987 18.307 21.161 23.209 29.588
11 14.631 17.275 19.675 22.618 24.725 31.264
12 15.812 18.549 21.026 24.054 26.217 32.909
13 16.985 19.812 22.362 25.472 27.688 34.528
14 18.151 21.064 23.685 26.873 29.141 36.123
15 19.311 22.307 24.996 28.259 30.578 37.697
16 20.465 23.542 26.296 29.633 32.000 39.252
17 21.615 24.769 27.587 30.995 33.409 40.790
18 22.760 25.989 28.869 32.346 34.805 42.312
19 23.900 27.204 30.144 33.687 36.191 43.820
20 25.038 28.412 31.410 35.020 37.566 45.315
21 26.171 29.615 32.671 36.343 38.932 46.797
22 27.301 30.813 33.924 37.659 40.289 48.268
23 28.429 32.007 35.172 38.968 41.638 49.728
24 29.553 33.196 36.415 40.270 42.980 51.179
25 30.675 34.382 37.652 41.566 44.314 52.620
26 31.795 35.563 38.885 42.856 45.642 54.052
27 32.912 36.741 40.113 44.140 46.963 55.476
28 34.027 37.916 41.337 45.419 48.278 56.893
29 35.139 39.087 42.557 46.693 49.588 58.302
30 36.250 40.256 43.773 47.962 50.892 59.703

Source: From Table IV of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research
(London: Longman Group Ltd., 1974). (Previously published by Oliver & Boyd, Edinburgh.) Reprinted by permission of
Pearson Education Ltd.
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Appendix 3
The entries in this table are the proportion of the cases in a standard
normal distribution that lie between 0 and z.

SECOND DECIMAL PLACE IN z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998

3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999
4.0 0.49997
4.5 0.499997
5.0 0.4999997

Source: R. Johnson, Elementary Statistics (Belmont, CA: Duxbury Press, 1996).

Areas of the Standard 
Normal Distribution
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Appendix 4
ONE-TAILED VALUE

Degrees 0.25 0.10 0.05 0.025 0.01 0.005

of TWO-TAILED VALUE

Freedom 0.50 0.20 0.10 0.05 0.02 0.01

1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707
7 0.711 1.415 1.895 2.365 2.998 3.499
8 0.706 1.397 1.860 2.306 2.896 3.355
9 0.703 1.383 1.833 2.262 2.821 3.250

10 0.700 1.372 1.812 2.228 2.764 3.169
11 0.697 1.363 1.796 2.201 2.718 3.106
12 0.695 1.356 1.782 2.179 2.681 3.055
13 0.694 1.350 1.771 2.160 2.650 3.012
14 0.692 1.345 1.761 2.145 2.626 2.977
15 0.691 1.341 1.753 2.131 2.602 2.947
16 0.690 1.337 1.746 2.120 2.583 2.921
17 0.689 1.333 1.740 2.110 2.567 2.898
18 0.688 1.330 1.734 2.101 2.552 2.878
19 0.688 1.328 1.729 2.093 2.539 2.861
20 0.687 1.325 1.725 2.086 2.528 2.845
21 0.686 1.323 1.721 2.080 2.518 2.831
22 0.686 1.321 1.717 2.074 2.508 2.819
23 0.685 1.319 1.714 2.069 2.500 2.807
24 0.685 1.318 1.711 2.064 2.492 2.797
25 0.684 1.316 1.708 2.060 2.485 2.787
26 0.684 1.315 1.706 2.056 2.479 2.779
27 0.684 1.314 1.703 2.052 2.473 2.771
28 0.683 1.313 1.701 2.048 2.467 2.763
29 0.683 1.311 1.699 2.045 2.462 2.756
30 0.683 1.310 1.697 2.042 2.457 2.750
31 0.682 1.309 1.696 2.040 2.453 2.744
32 0.682 1.309 1.694 2.037 2.449 2.739
33 0.682 1.308 1.692 2.035 2.445 2.733
34 0.682 1.307 1.691 2.032 2.441 2.728
35 0.682 1.306 1.690 2.030 2.438 2.724
40 0.681 1.303 1.684 2.021 2.423 2.704
45 0.680 1.301 1.680 2.014 2.412 2.690
50 0.680 1.299 1.676 2.008 2.403 2.678
55 0.679 1.297 1.673 2.004 2.396 2.669
60 0.679 1.296 1.671 2.000 2.390 2.660
70 0.678 1.294 1.667 1.994 2.381 2.648
80 0.678 1.293 1.665 1.989 2.374 2.638
90 0.678 1.291 1.662 1.986 2.368 2.631

100 0.677 1.290 1.661 1.982 2.364 2.625
120 0.677 1.289 1.658 1.980 2.358 2.617

�500 0.674 1.282 1.645 1.960 2.326 2.576

Source: “Table D, The t Table” adapted from SCIENTIFIC TABLES, published by Ciba-Geigy, in WAYS AND MEANS OF
STATISTICS by Leonard Tashman and Kathleen Lamborn, Copyright � 1979 by Harcourt Brace & Company, reprinted
by permission of Harcourt Brace & Company.

Critical Values 
of Student’s t Distribution

One-tailed value

Two-tailed value
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Appendix 5
Critical Values of the F-Statistic

(� � 0.05)
NUMERATOR DEGREES OF FREEDOM

df1

df2 1 2 3 4 5 6 8 12 24 �

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 249.0 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40
12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30
13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73
25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71
26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67
28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65
29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51
60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25
�500 3.84 2.99 2.60 2.37 2.21 2.09 1.94 1.75 1.52 1.00
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(� � 0.01)
NUMERATOR DEGREES OF FREEDOM

df1

df2 1 2 3 4 5 6 8 12 24 �

1 4052 4999 5403 5625 5764 5859 5981 6106 6234 6366
2 98.49 99.01 99.17 99.25 99.30 99.33 99.36 99.42 99.46 99.50
3 34.12 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12
4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.27 9.89 9.47 9.02
6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91
11 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36
13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16
14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65
18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36
22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38
�500 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00
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(� � 0.001)
NUMERATOR DEGREES OF FREEDOM

df1

df2 1 2 3 4 5 6 8 12 24 �

1 405284 500000 540379 562500 576405 585937 598144 610667 623497 636619
2 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.5 999.5
3 167.5 148.5 141.1 137.1 134.6 132.8 130.6 128.3 125.9 123.5
4 74.14 61.25 56.18 53.44 51.71 50.53 49.00 47.41 45.77 44.05
5 47.04 36.61 33.20 31.09 29.75 28.84 27.64 26.42 25.14 23.78
6 35.51 27.00 23.70 21.90 20.81 20.03 19.03 17.99 16.89 15.75
7 29.22 21.69 18.77 17.19 16.21 15.52 14.63 13.71 12.73 11.69
8 25.42 18.49 15.83 14.39 13.49 12.86 12.04 11.19 10.30 9.34
9 22.86 16.39 13.90 12.56 11.71 11.13 10.37 9.57 8.72 7.81

10 21.04 14.91 12.55 11.28 10.48 9.92 9.20 8.45 7.64 6.76
11 19.69 13.81 11.56 10.35 9.58 9.05 8.35 7.63 6.85 6.00
12 18.64 12.97 10.80 9.63 8.89 8.38 7.71 7.00 6.25 5.42
13 17.81 12.31 10.21 9.07 8.35 7.86 7.21 6.52 5.78 4.97
14 17.14 11.78 9.73 8.62 7.92 7.43 6.80 6.13 5.41 4.60
15 16.59 11.34 9.34 8.25 7.57 7.09 6.47 5.81 5.10 4.31
16 16.12 10.97 9.00 7.94 7.27 6.81 6.19 5.55 4.85 4.06
17 15.72 10.66 8.73 7.68 7.02 6.56 5.96 5.32 4.63 3.85
18 15.38 10.39 8.49 7.46 6.81 6.35 5.76 5.13 4.45 3.67
19 15.08 10.16 8.28 7.26 6.61 6.18 5.59 4.97 4.29 3.52
20 14.82 9.95 8.10 7.10 6.46 6.02 5.44 4.82 4.15 3.38
21 14.59 9.77 7.94 6.95 6.32 5.88 5.31 4.70 4.03 3.26
22 14.38 9.61 7.80 6.81 6.19 5.76 5.19 4.58 3.92 3.15
23 14.19 9.47 7.67 6.69 6.08 5.65 5.09 4.48 3.82 3.05
24 14.03 9.34 7.55 6.59 5.98 5.55 4.99 4.39 3.74 2.97
25 13.88 9.22 7.45 6.49 5.88 5.46 4.91 4.31 3.66 2.89
26 13.74 9.12 7.36 6.41 5.80 5.38 4.83 4.24 3.59 2.82
27 13.61 9.02 7.27 6.33 5.73 5.31 4.76 4.17 3.52 2.75
28 13.50 8.93 7.19 6.25 5.66 5.24 4.69 4.11 3.46 2.70
29 13.39 8.85 7.12 6.19 5.59 5.18 4.64 4.05 3.41 2.64
30 13.29 8.77 7.05 6.12 5.53 5.12 4.58 4.00 3.36 2.59
40 12.61 8.25 6.60 5.70 5.13 4.73 4.21 3.64 3.01 2.23
60 11.97 7.76 6.17 5.31 4.76 4.37 3.87 3.31 2.69 1.90

120 11.38 7.31 5.79 4.95 4.42 4.04 3.55 3.02 2.40 1.56
�500 10.83 6.91 5.42 4.62 4.10 3.74 3.27 2.74 2.13 1.00

Source: From Table IV of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (London: Longman Group Ltd.,
1974). (Previously published by Oliver & Boyd, Edinburgh.) Reprinted by permission of Pearson Education Ltd.
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Appendix 6
Critical Value for P (Pcrit), Tukey’s HSD Test

LEVEL OF SIGNIFICANCE (� � 0.05)
k � THE NUMBER OF MEANS OR

NUMBER OF STEPS BETWEEN ORDERED MEANS

dfw 2 3 4 5 6 7 8 9 10 12 15 20

1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07 51.96 55.36 59.56
2 6.08 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 14.75 15.65 16.77
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.95 10.52 11.24
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.21 8.66 9.23
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.32 7.72 8.21
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.79 7.14 7.59
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.43 6.76 7.17
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.18 6.48 6.87
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.98 6.28 6.64

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.83 6.11 6.47
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.71 5.98 6.33
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.61 5.88 6.21
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.53 5.79 6.11
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.46 5.71 6.03
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.40 5.65 5.96
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.35 5.59 5.90
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.31 5.54 5.84
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.27 5.50 5.79
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.23 5.46 5.75
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.20 5.43 5.71
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.10 5.32 5.59
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 5.00 5.21 5.47
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.90 5.11 5.36
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.81 5.00 5.24

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.71 4.90 5.13
� 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.62 4.80 5.01

Source: From Comprehending Behavioral Statistics, by R. T. Hurlburt, Copyright � 1994, Brooks/Cole Publishing Company, Pacific Grove, CA 93950, a
division of International Thomson Publishing Inc. By permission of the publisher. Adapted from Biometrika Tables for Statisticians, vol. 1, 3rd ed., E. S.
Pearson and H. O. Hartley (eds.). Copyright � 1966, Cambridge University Press for Biometrika Trust. By permission of the Biometrika Trust.
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Appendix 7
Critical Values for Spearman’s 
Rank-Order Correlation Coefficient

LEVEL OF SIGNIFICANCE (�) FOR ONE-TAILED TEST

0.05 0.025 0.01 0.005

LEVEL OF SIGNIFICANCE (�) FOR TWO-TAILED TEST

n 0.10 0.05 0.02 0.01

5 0.900 — — —
6 0.829 0.886 0.943 —
7 0.714 0.786 0.893 0.929
8 0.643 0.738 0.833 0.881
9 0.600 0.700 0.783 0.833

10 0.564 0.648 0.745 0.794
11 0.536 0.618 0.709 0.818
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689
16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591
21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526
26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Source: From Comprehending Behavioral Statistics, by R. T. Hurlburt, Copyright � 1994, Brooks/Cole Publishing
Company, Pacific Grove, CA 93950, a division of International Thomson Publishing Inc. By permission of the publisher.
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Appendix 8 Fisher r-to-Z* Transformation

The entries in this table are the Z-values for correlations ranging from 0.000 to 0.999.

THIRD DECIMAL PLACE IN r

r 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.00 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090
0.01 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190
0.02 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290
0.03 0.0300 0.0310 0.0320 0.0330 0.0340 0.0350 0.0360 0.0370 0.0380 0.0390
0.04 0.0400 0.0410 0.0420 0.0430 0.0440 0.0450 0.0460 0.0470 0.0480 0.0490
0.05 0.0500 0.0510 0.0520 0.0530 0.0541 0.0551 0.0561 0.0571 0.0581 0.0591
0.06 0.0601 0.0611 0.0621 0.0631 0.0641 0.0651 0.0661 0.0671 0.0681 0.0691
0.07 0.0701 0.0711 0.0721 0.0731 0.0741 0.0751 0.0761 0.0772 0.0782 0.0792
0.08 0.0802 0.0812 0.0822 0.0832 0.0842 0.0852 0.0862 0.0872 0.0882 0.0892
0.09 0.0902 0.0913 0.0923 0.0933 0.0943 0.0953 0.0963 0.0973 0.0983 0.0993
0.10 0.1003 0.1013 0.1024 0.1034 0.1044 0.1054 0.1064 0.1074 0.1084 0.1094
0.11 0.1104 0.1115 0.1125 0.1135 0.1145 0.1155 0.1165 0.1175 0.1186 0.1196
0.12 0.1206 0.1216 0.1226 0.1236 0.1246 0.1257 0.1267 0.1277 0.1287 0.1297
0.13 0.1307 0.1318 0.1328 0.1338 0.1348 0.1358 0.1368 0.1379 0.1389 0.1399
0.14 0.1409 0.1419 0.1430 0.1440 0.1450 0.1460 0.1471 0.1481 0.1491 0.1501
0.15 0.1511 0.1522 0.1532 0.1542 0.1552 0.1563 0.1573 0.1583 0.1593 0.1604
0.16 0.1614 0.1624 0.1634 0.1645 0.1655 0.1665 0.1676 0.1686 0.1696 0.1706
0.17 0.1717 0.1727 0.1737 0.1748 0.1758 0.1768 0.1779 0.1789 0.1799 0.1809
0.18 0.1820 0.1830 0.1841 0.1851 0.1861 0.1872 0.1882 0.1892 0.1903 0.1913
0.19 0.1923 0.1934 0.1944 0.1955 0.1965 0.1975 0.1986 0.1996 0.2007 0.2017
0.20 0.2027 0.2038 0.2048 0.2059 0.2069 0.2079 0.2090 0.2100 0.2111 0.2121
0.21 0.2132 0.2142 0.2153 0.2163 0.2174 0.2184 0.2195 0.2205 0.2216 0.2226
0.22 0.2237 0.2247 0.2258 0.2268 0.2279 0.2289 0.2300 0.2310 0.2321 0.2331
0.23 0.2342 0.2352 0.2363 0.2374 0.2384 0.2395 0.2405 0.2416 0.2427 0.2437
0.24 0.2448 0.2458 0.2469 0.2480 0.2490 0.2501 0.2512 0.2522 0.2533 0.2543
0.25 0.2554 0.2565 0.2575 0.2586 0.2597 0.2608 0.2618 0.2629 0.2640 0.2650
0.26 0.2661 0.2672 0.2683 0.2693 0.2704 0.2715 0.2726 0.2736 0.2747 0.2758
0.27 0.2769 0.2779 0.2790 0.2801 0.2812 0.2823 0.2833 0.2844 0.2855 0.2866
0.28 0.2877 0.2888 0.2899 0.2909 0.2920 0.2931 0.2942 0.2953 0.2964 0.2975
0.29 0.2986 0.2997 0.3008 0.3018 0.3029 0.3040 0.3051 0.3062 0.3073 0.3084
0.30 0.3095 0.3106 0.3117 0.3128 0.3139 0.3150 0.3161 0.3172 0.3183 0.3194
0.31 0.3205 0.3217 0.3228 0.3239 0.3250 0.3261 0.3272 0.3283 0.3294 0.3305
0.32 0.3316 0.3328 0.3339 0.3350 0.3361 0.3372 0.3383 0.3395 0.3406 0.3417
0.33 0.3428 0.3440 0.3451 0.3462 0.3473 0.3484 0.3496 0.3507 0.3518 0.3530
0.34 0.3541 0.3552 0.3564 0.3575 0.3586 0.3598 0.3609 0.3620 0.3632 0.3643
0.35 0.3654 0.3666 0.3677 0.3689 0.3700 0.3712 0.3723 0.3734 0.3746 0.3757
0.36 0.3769 0.3780 0.3792 0.3803 0.3815 0.3826 0.3838 0.3850 0.3861 0.3873
0.37 0.3884 0.3896 0.3907 0.3919 0.3931 0.3942 0.3954 0.3966 0.3977 0.3989
0.38 0.4001 0.4012 0.4024 0.4036 0.4047 0.4059 0.4071 0.4083 0.4094 0.4106
0.39 0.4118 0.4130 0.4142 0.4153 0.4165 0.4177 0.4189 0.4201 0.4213 0.4225
0.40 0.4236 0.4248 0.4260 0.4272 0.4284 0.4296 0.4308 0.4320 0.4332 0.4344
0.41 0.4356 0.4368 0.4380 0.4392 0.4404 0.4416 0.4428 0.4441 0.4453 0.4465
0.42 0.4477 0.4489 0.4501 0.4513 0.4526 0.4538 0.4550 0.4562 0.4574 0.4587
0.43 0.4599 0.4611 0.4624 0.4636 0.4648 0.4660 0.4673 0.4685 0.4698 0.4710
0.44 0.4722 0.4735 0.4747 0.4760 0.4772 0.4784 0.4797 0.4809 0.4822 0.4834
0.45 0.4847 0.4860 0.4872 0.4885 0.4897 0.4910 0.4922 0.4935 0.4948 0.4960
0.46 0.4973 0.4986 0.4999 0.5011 0.5024 0.5037 0.5049 0.5062 0.5075 0.5088
0.47 0.5101 0.5114 0.5126 0.5139 0.5152 0.5165 0.5178 0.5191 0.5204 0.5217
0.48 0.5230 0.5243 0.5256 0.5269 0.5282 0.5295 0.5308 0.5321 0.5334 0.5347
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THIRD DECIMAL PLACE IN r

r 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.49 0.5361 0.5374 0.5387 0.5400 0.5413 0.5427 0.5440 0.5453 0.5466 0.5480
0.50 0.5493 0.5506 0.5520 0.5533 0.5547 0.5560 0.5573 0.5587 0.5600 0.5614
0.51 0.5627 0.5641 0.5654 0.5668 0.5682 0.5695 0.5709 0.5722 0.5736 0.5750
0.52 0.5763 0.5777 0.5791 0.5805 0.5818 0.5832 0.5846 0.5860 0.5874 0.5888
0.53 0.5901 0.5915 0.5929 0.5943 0.5957 0.5971 0.5985 0.5999 0.6013 0.6027
0.54 0.6042 0.6056 0.6070 0.6084 0.6098 0.6112 0.6127 0.6141 0.6155 0.6169
0.55 0.6184 0.6198 0.6213 0.6227 0.6241 0.6256 0.6270 0.6285 0.6299 0.6314
0.56 0.6328 0.6343 0.6358 0.6372 0.6387 0.6401 0.6416 0.6431 0.6446 0.6460
0.57 0.6475 0.6490 0.6505 0.6520 0.6535 0.6550 0.6565 0.6580 0.6595 0.6610
0.58 0.6625 0.6640 0.6655 0.6670 0.6685 0.6700 0.6716 0.6731 0.6746 0.6761
0.59 0.6777 0.6792 0.6807 0.6823 0.6838 0.6854 0.6869 0.6885 0.6900 0.6916
0.60 0.6931 0.6947 0.6963 0.6978 0.6994 0.7010 0.7026 0.7042 0.7057 0.7073
0.61 0.7089 0.7105 0.7121 0.7137 0.7153 0.7169 0.7185 0.7201 0.7218 0.7234
0.62 0.7250 0.7266 0.7283 0.7299 0.7315 0.7332 0.7348 0.7365 0.7381 0.7398
0.63 0.7414 0.7431 0.7447 0.7464 0.7481 0.7498 0.7514 0.7531 0.7548 0.7565
0.64 0.7582 0.7599 0.7616 0.7633 0.7650 0.7667 0.7684 0.7701 0.7718 0.7736
0.65 0.7753 0.7770 0.7788 0.7805 0.7823 0.7840 0.7858 0.7875 0.7893 0.7910
0.66 0.7928 0.7946 0.7964 0.7981 0.7999 0.8017 0.8035 0.8053 0.8071 0.8089
0.67 0.8107 0.8126 0.8144 0.8162 0.8180 0.8199 0.8217 0.8236 0.8254 0.8273
0.68 0.8291 0.8310 0.8328 0.8347 0.8366 0.8385 0.8404 0.8423 0.8441 0.8460
0.69 0.8480 0.8499 0.8518 0.8537 0.8556 0.8576 0.8595 0.8614 0.8634 0.8653
0.70 0.8673 0.8693 0.8712 0.8732 0.8752 0.8772 0.8792 0.8812 0.8832 0.8852
0.71 0.8872 0.8892 0.8912 0.8933 0.8953 0.8973 0.8994 0.9014 0.9035 0.9056
0.72 0.9076 0.9097 0.9118 0.9139 0.9160 0.9181 0.9202 0.9223 0.9245 0.9266
0.73 0.9287 0.9309 0.9330 0.9352 0.9373 0.9395 0.9417 0.9439 0.9461 0.9483
0.74 0.9505 0.9527 0.9549 0.9571 0.9594 0.9616 0.9639 0.9661 0.9684 0.9707
0.75 0.9730 0.9752 0.9775 0.9798 0.9822 0.9845 0.9868 0.9892 0.9915 0.9939
0.76 0.9962 0.9986 1.0010 1.0034 1.0058 1.0082 1.0106 1.0130 1.0154 1.0179
0.77 1.0203 1.0228 1.0253 1.0277 1.0302 1.0327 1.0352 1.0378 1.0403 1.0428
0.78 1.0454 1.0479 1.0505 1.0531 1.0557 1.0583 1.0609 1.0635 1.0661 1.0688
0.79 1.0714 1.0741 1.0768 1.0795 1.0822 1.0849 1.0876 1.0903 1.0931 1.0958
0.80 1.0986 1.1014 1.1042 1.1070 1.1098 1.1127 1.1155 1.1184 1.1212 1.1241
0.81 1.1270 1.1299 1.1329 1.1358 1.1388 1.1417 1.1447 1.1477 1.1507 1.1538
0.82 1.1568 1.1599 1.1630 1.1660 1.1692 1.1723 1.1754 1.1786 1.1817 1.1849
0.83 1.1881 1.1914 1.1946 1.1979 1.2011 1.2044 1.2077 1.2111 1.2144 1.2178
0.84 1.2212 1.2246 1.2280 1.2315 1.2349 1.2384 1.2419 1.2454 1.2490 1.2526
0.85 1.2562 1.2598 1.2634 1.2671 1.2707 1.2745 1.2782 1.2819 1.2857 1.2895
0.86 1.2933 1.2972 1.3011 1.3050 1.3089 1.3129 1.3169 1.3209 1.3249 1.3290
0.87 1.3331 1.3372 1.3414 1.3456 1.3498 1.3540 1.3583 1.3626 1.3670 1.3714
0.88 1.3758 1.3802 1.3847 1.3892 1.3938 1.3984 1.4030 1.4077 1.4124 1.4171
0.89 1.4219 1.4268 1.4316 1.4365 1.4415 1.4465 1.4516 1.4566 1.4618 1.4670
0.90 1.4722 1.4775 1.4828 1.4882 1.4937 1.4992 1.5047 1.5103 1.5160 1.5217
0.91 1.5275 1.5334 1.5393 1.5453 1.5513 1.5574 1.5636 1.5698 1.5762 1.5826
0.92 1.5890 1.5956 1.6022 1.6089 1.6157 1.6226 1.6296 1.6366 1.6438 1.6510
0.93 1.6584 1.6658 1.6734 1.6811 1.6888 1.6967 1.7047 1.7129 1.7211 1.7295
0.94 1.7380 1.7467 1.7555 1.7645 1.7736 1.7828 1.7923 1.8019 1.8117 1.8216
0.95 1.8318 1.8421 1.8527 1.8635 1.8745 1.8857 1.8972 1.9090 1.9210 1.9333
0.96 1.9459 1.9588 1.9721 1.9857 1.9996 2.0139 2.0287 2.0439 2.0595 2.0756
0.97 2.0923 2.1095 2.1273 2.1457 2.1649 2.1847 2.2054 2.2269 2.2494 2.2729
0.98 2.2976 2.3235 2.3507 2.3796 2.4101 2.4427 2.4774 2.5147 2.5550 2.5987
0.99 2.6467 2.6996 2.7587 2.8257 2.9031 2.9945 3.1063 3.2504 3.4534 3.8002

Note: Values were computed using the equation for the Fisher r-to-Z* transformation.
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Glossary

analysis of variance (ANOVA) A parametric test
of statistical significance that assesses whether
differences in the means of several samples
(groups) can lead the researcher to reject the
null hypothesis that the means of the popula-
tions from which the samples are drawn are the
same.

arrangements The different ways events can be
ordered and yet result in a single outcome. For
example, there is only one arrangement for
gaining the outcome of ten heads in ten tosses
of a coin. There are, however, ten different
arrangements for gaining the outcome of nine
heads in ten tosses of a coin.

assumptions Statements that identify the require-
ments and characteristics of a test of statistical
significance. These are the foundations on
which the rest of the test is built.

bar chart A graph in which bars represent frequen-
cies, percentages, or proportions for the cate-
gories or values of a variable.

between sum of squares (BSS) A measure of the
variability between samples (groups). The be-
tween sum of squares is calculated by taking the
sum of the squared deviation of each sample
mean from the grand mean multiplied by the
number of cases in that sample.

biased Describing a statistic when its estimate of
a population parameter does not center on the
true value. In regression analysis, the omission
of relevant independent variables will lead to
bias in the estimate of Y. When relevant inde-
pendent variables are omitted and those mea-
sures are related to an independent variable
included in regression analysis, then the esti-
mate of the effect of that variable will also be
biased.

binomial distribution The probability or sampling
distribution for an event that has only two possi-
ble outcomes.

binomial formula The means of determining the
probability that a given set of binomial events
will occur in all its possible arrangements.

bivariate regression A technique for predicting
change in a dependent variable using one inde-
pendent variable.

cells The various entries in a table, each of which 
is identified by a particular row and column.
When we use a table to compare two variables,
it is convenient to refer to each combination of
categories as a cell.

central limit theorem A theorem that states: “If re-
peated independent random samples of size N

are drawn from a population, as N grows large,
the sampling distribution of sample means will
be approximately normal.” The central limit the-
orem enables the researcher to make inferences
about an unknown population using a normal
sampling distribution.

chi-square distribution A sampling distribution
that is used to conduct tests of statistical signifi-
cance with binary or multicategory nominal vari-
ables. The distribution is nonsymmetrical and
varies according to degrees of freedom. All the
values in the distribution are positive.

chi-square statistic The test statistic resulting from
applying the chi-square formula to the observed
and expected frequencies for each cell. This statis-
tic tells us how much the observed distribution dif-
fers from that expected under the null hypothesis.

classification The process whereby data are orga-
nized into categories or groups.

coefficient of relative variation A measure of dis-
persion calculated by dividing the standard devi-
ation by the mean.

concordant pairs of observations Pairs of obser-
vations that have consistent rankings on two or-
dinal variables.

confidence interval An interval of values around a
statistic (usually a point estimate). If we were to
draw repeated samples and calculate a 95% con-
fidence interval for each, then in only 5 in 100
of these samples would the interval fail to in-
clude the true population parameter. In the case
of a 99% confidence interval, only 1 in 100 sam-
ples would fail to include the true population
parameter.

convenience sample A sample chosen not at ran-
dom, but according to criteria of expedience or
accessibility to the researcher.

correctly specified regression model A regres-
sion model in which the researcher has taken
into account all of the relevant predictors of the
dependent variable and has measured them cor-
rectly.

correlation A measure of the strength of a relation-
ship between two variables.

covariation A measure of the extent to which two
variables vary together relative to their respec-
tive means. The covariation between the two
variables serves as the numerator for the equa-
tion to calculate Pearson’s r.

Cox and Snell’s R2 A commonly used pseudo R 2

measure whose main component, as in other
pseudo R 2 statistics, is the log likelihood func-
tion (�2LL).



Cramer’s V A measure of association for two nomi-
nal variables that adjusts the chi-square statistic
by the sample size. V is appropriate when at
least one of the nominal variables has more than
two categories.

critical value The point at which the rejection re-
gion begins.

cumulative logistic probability function A trans-
formation of the logistic probability function that
allows computation of the probability that Y will
occur, given a certain combination of character-
istics of the independent variables.

curvilinear relationship An association between
two variables whose values may be represented
as a curved line when plotted on a scatter dia-
gram.

data Information used to answer a research ques-
tion.

degrees of freedom A mathematical index that
places a value on the extent to which a particu-
lar operation is free to vary after certain limita-

determines which chi-square probability distrib-
ution we use.

dependent variable (Y) The variable assumed by
the researcher to be influenced by one or more
independent variables; the outcome variable;
the phenomenon that we are interested in ex-
plaining. It is dependent on other variables in
the sense that it is influenced—or we expect it
to be influenced—by other variables.

derivative at mean (DM) A measure that converts
the nonlinear logistic regression coefficient to a
simple linear regression coefficient, which may
be interpreted as the change in Y associated
with a unit change in X.

descriptive statistics A broad area of statistics that
is concerned with summarizing large amounts of
information in an efficient manner. Descriptive
statistics are used to describe or represent in
summary form the characteristics of a sample or
population.

design sensitivity The statistical power of a re-
search study. In a sensitive study design, statisti-
cal power will be maximized, and the statistical
test employed will be more capable of identify-
ing an effect.

deviation from the mean The extent to which
each individual score differs from the mean of
all the scores.

directional hypothesis A research hypothesis that
indicates a specific type of outcome by specify-
ing the nature of the relationship that is ex-
pected.

discordant pairs of observations Pairs of obser-
vations that have inconsistent rankings on two
ordinal variables.

distribution-free tests Another name for nonpara-
metric tests.

dummy variable A binary nominal-level variable
that is included in a multivariate regression
model.

effect size (ES) A standardized measure derived by
taking the effect size (e.g., the difference be-
tween two populations), measured in the raw
units of the outcome measure examined, and di-
viding it by the pooled or common standard de-
viation of the outcome measure.

eta A measure of the degree of correlation between
an interval-level and a nominal-level variable.

eta squared The proportion of the total sum of
squares that is accounted for by the between
sum of squares. Eta squared is sometimes re-
ferred to as the percent of variance explained.

expected frequency The number of observations
one would predict for a cell if the null hypothe-
sis were true.

explained sum of squares (ESS) Another name
for the between sum of squares. The explained
sum of squares is the part of the total variability
that can be explained by visible differences be-
tween the groups.

external validity The extent to which a study sam-
ple is reflective of the population from which it
is drawn. A study is said to have high external
validity when the sample used is representative
of the population to which inferences are made.

factorial The product of a number and all the posi-
tive whole numbers lower than it.

frequency The number of times that a score or
value occurs.

frequency distribution An arrangement of scores
in order from the lowest to the highest, accompa-
nied by the number of times each score occurs.

gamma (�) PRE measure of association for two or-
dinal variables that uses information about con-
cordant and discordant pairs of observations
within a table. Gamma has a standardized scale
ranging from �1.0 to 1.0.

Goodman and Kruskal’s tau (�) PRE measure of
association for two nominal variables that uses
information about the proportional distribution
of cases within a table. Tau has a standardized
scale ranging from 0 to 1.0. For this measure,
the researcher must define the independent and
dependent variables.

grand mean The overall mean of every single case
across all of the samples.

heteroscedasticity A situation in which the vari-
ances of scores on two or more variables are
not equal. Heteroscedasticity violates one of the
assumptions of the parametric test of statistical
significance for the correlation coefficient.

histogram A bar graph used to represent a fre-
quency distribution.

tions have been imposed. Calculating the
degrees of freedom for a chi-square test
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homoscedasticity A statement that the variances
and standard deviations of two or more popula-
tions are the same.

honestly significant difference (HSD) test A
parametric test of statistical significance, ad-
justed for making pairwise comparisons. The
HSD test defines the difference between the
pairwise comparisons required to reject the null
hypothesis.

independent Describing two events when the oc-
currence of one does not affect the occurrence
of the other.

independent random sampling A form of ran-
dom sampling in which the fact that one subject
is drawn from a population in no way affects
the probability of drawing any other subject
from that population.

independent variable (X) A variable assumed by
the researcher to have an impact on or influence
the value of the dependent variable, Y.

index of qualitative variation A measure of dis-
persion calculated by dividing the sum of the
possible pairs of observed scores by the sum of
the possible pairs of expected scores (when

inferential, or inductive, statistics A broad area
of statistics that provides the researcher with
tools for making statements about populations
on the basis of knowledge about samples. Infer-
ential statistics allow the researcher to make in-
ferences regarding populations from information
gained in samples.

interval scale A scale of measurement that uses a
common and standard unit and enables the re-
searcher to calculate exact differences between
scores, in addition to categorizing and ordering
data.

iteration Each time we identify another tentative
solution and reestimate our logistic regression
coefficients.

Kendall’s �b PRE measure of association for two or-
dinal variables that uses information about con-

b

has a standardized scale ranging from �1.0 to
1.0 and is appropriate only when the number of
rows equals the number of columns in a table.

Kendall’s �c A measure of association for two ordi-
nal variables that uses information about con-

c

has a standardized scale ranging from �1.0 to
1.0 and is appropriate when the number of rows
is not equal to the number of columns in a
table.

lack of convergence Failure of a logistic regression
analysis to reach a result that meets the criterion
of reduction in the log likelihood function.

lambda (�) PRE measure of association for two
nominal variables that uses information about

least squares property A characteristic of the
mean whereby the sum of all the squared devia-
tions from the mean is a minimum—it is lower
than the sum of the squared deviations from any
other fixed point.

levels of measurement Types of measurement
that make use of progressively larger amounts
of information.

likelihood ratio chi-square test A test for statisti-

ables in a logistic regression is statistically
significant. It compares �2LL for a full model to
�2LL for a reduced model.

linear relationship An association between two
variables whose joint distribution may be repre-
sented in linear form when plotted on a scatter
diagram.

log likelihood function A measure of the proba-
bility of observing the results in the sample,
given the coefficient estimates in the model. In
logistic regression, the log likelihood function
(�2LL) is defined as �2 times the natural loga-
rithm of the likelihood function.

logarithm The power to which a fixed number
(the base) must be raised to produce another
number.

logistic model curve The form of the predicted
outcomes of a logistic regression analysis.
Shaped like an S, the logistic curve begins to
flatten as it approaches 0 or 1, so it keeps com-
ing closer to—but never actually reaches—either
of these two values.

logistic regression analysis A type of regression
analysis that allows the researcher to make pre-
dictions about dichotomous dependent variables
in terms of the log of the odds of Y.

logistic regression coefficient The coefficient b
produced in a logistic regression analysis. It
may be interpreted as the increase in the log of
the odds of Y associated with a one-unit in-

margin of error The size of the confidence inter-
val for a test. A margin of error of �3% in an
opinion poll means that the confidence interval
ranged between 3% above and 3% below the
point estimate or observed statistic. 

cal significance that allows the researcher to
examine whether a subset of independent vari-

cordant pairs, discordant pairs, and pairs of 
observations tied on both variables examined. �

cordant pairs, discordant pairs, and pairs of 
observations tied on both variables examined. �

crease in X. 
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variable on the dependent variable is conditional

Kruskal-Wallis test A nonparametric test of statisti-
cal significance for multiple groups, requiring at
least an ordinal scale of measurement.

the modal category of the dependent variable for 
each category of the independent variable. Lambda
has a standardized scale ranging from 0 to 1.0.

on the level of a second independent variable.

cases are equally distributed across categories).

sent when the effect of one independent 
interaction effect An interaction effect is pre-



maximum likelihood estimation A technique for
estimating the parameters or coefficients of a
model that maximizes the probability that the
estimates obtained will produce a distribution
similar to that of the observed data. 

mean A measure of central tendency calculated by
dividing the sum of the scores by the number of
cases. 

mean deviation A measure of dispersion calcu-
lated by adding the absolute deviation of each
score from the mean and then dividing the sum
by the number of cases. 

measurement The assignment of numerical values
to objects, characteristics, or events in a system-
atic manner. 

measures of central tendency Descriptive statis-
tics that allow us to identify the typical case in a
sample or population. Measures of central ten-
dency are measures of typicality. 

measures of dispersion Descriptive statistics that
tell us how tightly clustered or dispersed the
cases in a sample or population are. They answer
the question “How typical is the typical case?” 

median A measure of central tendency calculated
by identifying the value or category of the score
that occupies the middle position in the distribu-
tion of scores. 

mode A measure of central tendency calculated by
identifying the score or category that occurs
most frequently. 

model chi-square The statistical test used to assess
the statistical significance of the overall logistic
regression model. It compares the �2LL for the
full model with the �2LL calculated without any
independent variables included. 

multicollinearity Condition in a multivariate re-
gression model in which independent variables
examined are very strongly intercorrelated. Mul-
ticollinearity leads to unstable regression coeffi-
cients. 

probability that a series of events will jointly occur. 
multivariate regression A technique for predict-

ing change in a dependent variable, using more
than one independent variable. 

multivariate statistics Statistics that examine the
relationships among variables while taking into
account the possible influences of other con-
founding factors. Multivariate statistics allow the
researcher to isolate the impact of one variable
from others that may distort his or her results.

Nagelkerke R2 A pseudo R 2 statistic that corrects
for the fact that Cox and Snell’s estimates, as
well as many other pseudo R 2 statistics, often
have a maximum value of less than 1.

natural logarithm of the odds of Y (logit of Y)
The outcome predicted in a logistic regression
analysis.

nominal scale A scale of measurement that assigns
each piece of information to an appropriate cat-
egory without suggesting any order for the cate-
gories created.

nondirectional hypothesis A research hypothesis
that does not indicate a specific type of out-
come, stating only that there is a relationship or
a difference.

nonparametric tests Tests of statistical signifi-
cance that make no assumptions as to the shape
of the population distribution.

normal curve A normal frequency distribution rep-
resented on a graph by a continuous line.

normal frequency distribution A bell-shaped fre-
quency distribution, symmetrical in form. Its
mean, mode, and median are always the same.
The percentage of cases between the mean and
points at a measured distance from the mean is
fixed.

null hypothesis A statement that reduces the re-
search question to a simple assertion to be
tested by the researcher. The null hypothesis
normally suggests that there is no relationship or
no difference.

observed frequency The observed result of the
study, recorded in a cell.

observed significance level The risk of Type I
error associated with a specific sample statistic
in a test. When the observed significance level is
less than the criterion significance level in a test
of statistical significance, the researcher will re-
ject the null hypothesis.

odds ratio [Exp(B)] A statistic used to interpret the
logistic regression coefficient. It represents the
impact of a one-unit change in X on the ratio of
the probability of Y.

OLS regression See ordinary least squares regres-
sion analysis.

one-tailed test of significance A test of statistical
significance in which the region for rejecting the
null hypothesis falls on only one side of the
sampling distribution. One-tailed tests are based
on directional research hypotheses.
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marginal The value in the margin of a table that to-
tals the scores in the appropriate column or row. 

 

multiplication rule The means for determining the

dependent and the independent variable that is

ordinal logistic regression A statistical technique

level of measurement.

multinomial logistic regression A statistical te-

variable with three or more categories measured
chnique to predict the value of a dependent

at the nominal level of measurement.

non-linear relationship Relationship between the

not captured by a straight line (linear) relationship.

three or more categories measured at the ordinal
to predict the value of a dependent variable with



parameter A characteristic of the population—for
example, the mean number of previous convic-
tions for all U.S. prisoners.

parametric tests Tests of statistical significance
that make assumptions as to the shape of the
population distribution.

Pearson’s correlation coefficient See Pearson’s r.

tionships on a standardized scale from �1.0 to
1.0.

percent of correct predictions A statistic used to
assess how well a logistic regression model ex-
plains the observed data. An arbitrary decision
point (usually 0.50) is set for deciding when a
predicted value should be set at 1, and then the
predictions are compared to the observed data.

percent of variance explained (1) R 2, a measure
for evaluating how well the regression model
predicts values of Y; it represents the improve-
ment in predicting Y that the regression line
provides over the mean of Y. (2) �2, the propor-
tion of the total sum of squares that is ac-
counted for by the explained sum of squares.

percentage A relation between two numbers in
which the whole is accorded a value of 100 and
the other number is given a numerical value
corresponding to its share of the whole.

phi (�) A measure of association for two nominal
variables that adjusts the chi-square statistic by
the sample size. Phi is appropriate only for
nominal variables that each have two categories.

pie chart A graph in which a circle (called a pie) is
cut into wedges to represent the relative size of
each category’s frequency count.

point estimate An estimate of the population para-
meter. Absent knowledge of the population pa-
rameter, the statistic we obtain for a sample is

the other number is given a numerical value
corresponding to its share of the whole.

proportional reduction in error (PRE) The pro-
portional reduction in errors made when the
value of one measure is predicted using infor-
mation about the second measure.

pseudo R2 The term generally used for a group of
measures used in logistic regression to create an
approximation of the OLS regression R 2. They
are generally based on comparisons of �2LL for
a full model and a null model (without any in-
dependent variables).

random sampling Drawing samples from the pop-
ulation in a manner that ensures every individ-
ual in that population an equal chance of being
selected.

randomized experiment A type of study in which
the effect of one variable can be examined in
isolation through random allocation of subjects
to treatment and control, or comparison, groups.

range A measure of dispersion calculated by sub-
tracting the smallest score from the largest score.
The range may also be calculated from specific
points in a distribution, such as the 5th and 95th
percentile scores.

rank-order test A test of statistical significance that
uses information relating to the relative order, or
rank, of variable scores.

ratio scale A scale of measurement identical to an
interval scale in every respect except that, in ad-
dition, a value of zero on the scale represents
the absence of the phenomenon.

regression coefficient b A statistic used to assess
the influence of an independent variable, X, on a
dependent variable, Y. The regression coefficient
b is interpreted as the estimated change in Y that
is associated with a one-unit change in X.

regression error (e) The difference between the
predicted value of Y and the actual value of Y.

r
Pearson’s r A commonly used measure of asso-

ciation between two variables. Pearson’s 
measures the strength and direction of linear rela-
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parallel slopes assumption In an ordinal logistic

ordinal scale A scale of measurement that catego-
rizes information and assigns it an order of mag-
nitude without using a standard scale of equal
intervals.

ordinary least squares regression analysis A
type of regression analysis in which the sum of
squared errors from the regression line is mini-
mized.

outlier(s) A single or small number of exceptional
cases that substantially deviate from the general
pattern of scores.

overall mean See grand mean.
pairwise comparisons Comparisons made be-

tween two sample means extracted from a
larger statistical analysis.

generally used as an estimate—or, in statistical
terms, a point estimate—of the population para-
meter.

pooled variance A method of obtaining the standard
error of the sampling distribution for a difference
of means test. The pooled variance method re-
quires an assumption of homoscedasticity.

population The universe of cases that the re-
searcher seeks to study. The population of cases
is fixed at a particular time (e.g., the population
of the United States). However, populations
usually change across time.

population distribution The frequency distribu-
tion of a particular variable within a population.

probability distribution A theoretical distribution
consisting of the probabilities expected in the
long run for all possible outcomes of an event.

proportion A relation between two numbers in
which the whole is accorded a value of 1 andcategories of the dependent variable.

regression model, be effect of each independent
variable is assumed to be constant across all



representative sample A sample that reflects the
population from which it is drawn.

research hypothesis The antithesis of the null hy-
pothesis. The statement normally answers the
initial research question by suggesting that there
is a relationship or a difference.

research question The question the researcher
hopes to be able to answer by means of a study.

sample A set of actual observations or cases drawn
from a population.

sample distribution The frequency distribution of
a particular variable within a sample drawn from
a population.

sample statistic A characteristic of a sample—for
example, the mean number of previous convic-
tions in a random sample of 1,000 prisoners.

sampling distribution A distribution of all the re-
sults of a very large number of samples, each
one of the same size and drawn from the same
population under the same conditions. Ordinar-
ily, sampling distributions are derived using
probability theory and are based on probability
distributions.

sampling frame The universe of eligible cases
from which a sample is drawn.

sampling with replacement A sampling method
in which individuals in a sample are returned to
the sampling frame after they have been se-
lected. This raises the possibility that certain in-

scale of measurement Type of categorization
used to arrange or assign values to data.

scatter diagram See scatterplot.
scatterplot A graph whose two axes are defined by

two variables and upon which a point is plotted
for each subject in a sample according to its
score on the two variables.

separate variance A method of obtaining the stan-
dard error of the sampling distribution for a dif-

or—as in the case of a proportion—is defined
by the null hypothesis.

skewed Describing a spread of scores that is clearly
weighted to one side.

Somers’ d PRE measure of association for two ordi-
nal variables that uses information about con-

Somers’ d has a standardized scale ranging from
�1.0 to 1.0.

Spearman’s correlation coefficient See Spear-
man’s r.

Spearman’s r (rs) A measure of association be-
tween two rank-ordered variables. Spearman’s r
measures the strength and direction of linear re-
lationships on a standardized scale between
�1.0 and 1.0.

standard deviation A measure of dispersion calcu-
lated by taking the square root of the variance.

standard deviation unit A unit of measurement
used to describe the deviation of a specific score
or value from the mean in a z distribution.

standard error The standard deviation of a sam-
pling distribution.

standard normal distribution A normal fre-
quency distribution with a mean of 0 and a stan-
dard deviation of 1. Any normal frequency dis-
tribution can be transformed into the standard
normal distribution by using the z formula.

standardized logistic regression coefficient A
statistic used to compare logistic regression coef-
ficients that use different scales of measurement.
It is meant to approximate Beta, the standardized
regression coefficient in OLS regression.

standardized regression coefficient (Beta)
Weighted or standardized estimate of b that
takes into account the standard deviation of the
independent and the dependent variables. The
standardized regression coefficient is used to
compare the effects of independent variables

dividuals in a population may appear in a 
sample more than once.

observations tied on the independent variable.
cordant pairs, discordant pairs, and pairs of 
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regression line The line predicting values of Y.
The line is plotted from knowledge of the 
Y-intercept and the regression coefficient.

regression model The hypothesized statement by
the researcher of the factor or factors that define
the value of the dependent variable, Y. The
model is normally expressed in equation form.

rejection region The area of a sampling distribu-
tion containing the test statistic values that will

relaxing an assumption Deciding that we need
not be concerned with that assumption. For ex-
ample, the assumption that a population is nor-
mal may be relaxed if the sample size is suffi-
ciently large to invoke the central limit theorem.

reliability The extent to which a measure provides
consistent results across subjects or units of
study.

cause the researcher to reject the null hypothesis.

ference of means test. The separate variance
method does not require an assumption of ho-
moscedasticity.

significance level The level of Type I error a re-
searcher is willing to risk in a test of statistical
significance.

single-sample t-test A test of statistical significance
that is used to examine whether a sample is
drawn from a specific population with a known
or hypothesized mean. In a t-test, the standard
deviation of the population to which the sample
is being compared is unknown.

single-sample z-test A test of statistical signifi-
cance that is used to examine whether a sample
is drawn from a specific population with a
known or hypothesized mean. In a z-test, the
standard deviation of the population to which
the sample is being compared either is known



tails of the distribution The extremes on the sides
of a sampling distribution. The events repre-
sented by the tails of a sampling distribution are
those deemed least likely to occur if the null hy-
pothesis is true for the population.

test of statistical significance A test in which a
researcher makes a decision to reject or to fail to
reject the null hypothesis on the basis of a sam-
ple statistic.

test statistic The outcome of the study, expressed
in units of the sampling distribution. A test sta-
tistic that falls within the rejection region will
lead the researcher to reject the null hypothesis.

tied pairs of observations (ties) Pairs of observa-
tions that have the same ranking on two ordinal
variables.

time series data Repeated measures of the same

time series plot A line graph that connects re-
peated measures of the same variable over some
regularly occurring time period, such as days,
months, or years.

tolerance A measure of the extent of the intercor-
relations of each independent variable with all
other independent variables. Tolerance may be
used to test for multicollinearity in a multivariate
regression model.

total sum of squares (TSS) A measure of the total
amount of variability across all of the groups ex-
amined. The total sum of squares is calculated
by summing the squared deviation of each score
from the grand mean.

t-test for dependent samples A test of statistical
significance that is used when two samples are
not independent.

two-sample t-test A test of statistical significance
that examines the difference observed between
the means or proportions of two samples.

two-tailed test of significance A test of statistical
significance in which the region for rejecting the
null hypothesis falls on both sides of the sam-
pling distribution. Two-tailed tests are based on
nondirectional research hypotheses.

Type I error Also known as alpha error. The mis-
take made when a researcher rejects the null hy-
pothesis on the basis of a sample statistic (i.e.,
claiming that there is a relationship) when in
fact the null hypothesis is true (i.e., there is ac-
tually no such relationship in the population).

Type II error Also known as beta error. The mis-
take made when a researcher fails to reject the
null hypothesis on the basis of a sample statistic
(i.e., failing to claim that there is a relationship)
when in fact the null hypothesis is false (i.e.,
there actually is a relationship).

unexplained sum of squares (USS) Another
name for the within sum of squares. The unex-
plained sum of squares is the part of the total
variability that cannot be explained by visible
differences between the groups.

universe The total population of cases.
validity The extent to which a variable accurately

reflects the concept being measured.
variable A trait, characteristic, or attribute of a per-

son/object/event that can be measured at least
at the nominal-scale level.

variance (s2) A measure of dispersion calculated
by adding together the squared deviation of
each score from the mean and then dividing the
sum by the number of cases.

variation ratio A measure of dispersion calculated
by subtracting the proportion of cases in the
modal category from 1.

Wald statistic A statistic used to assess the statisti-
cal significance of coefficients in a logistic re-
gression model.

within sum of squares (WSS) A measure of the vari-
ability within samples (groups). The within sum of
squares is calculated by summing the squared de-
viation of each score from its sample mean.

Y-intercept (b0) The expected value of Y when 
X � 0. The Y-intercept is used in predicting
values of Y.

z-score Score that represents standard deviation
units for a standard normal distribution.

period, such as days, months, or years.
variable over some regularly occurring  time
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tresholds Points that mark the limits of the under

measured on different scales in a multivariate re-
gression analysis.

statistical inference The process of making gener-
alizations from sample statistics to population
parameters.

statistical power One minus the probability of a
Type II error. The greater the statistical power
of a test, the less chance there is that a re-
searcher will mistakenly fail to reject the null
hypothesis.

statistically significant Describing a test statistic
that falls within the rejection region defined by
the researcher. When this occurs, the researcher
is prepared to reject the null hypothesis and
state that the outcome or relationship is statisti-
cally significant.

sum of squares The sum of squared deviations of
scores from a mean or set of means.

lying continuum measured by an ordinal variable.



alpha error. See Type I error 
analysis of variance (ANOVA), 293–323 
arrangements, 142–147, 153 

equation for, 142  

351, 353, 366–367, 370–372 
Cramer’s V, 340, 342, 370, 372–373 
gamma (γ), 357, 363, 372, 374–375 

371–372 
Kendall’s taub (τb) and tauc (τc), 352, 358, 365, 

371–372, 374–375 
lambda (λ), 342, 371–372, 374 

ordinal measures of statistical significance, 
351–352 

phi (φ), 348, 372–373 
Somers’ d, 352–353, 360, 364, 369, 371–375 

203 
 
b (regression coefficient), 422–429, 440, 443, 446, 

452–454  
calculation of, 424  

statistical significance of, 440–449  
b0(Y-intercept), 427–429, 431, 452–454 

 equation for, 427, 429  
bar charts, 40–41, 52–53 

horizontal, 41–42  
for nominal and ordinal data, 47 
vertical, 40–41  

beta error. See Type II error 
between sum of squares (BSS), 296–297,  

299–301, 306, 315–316, 323–325  
equation for, 296, 325 

binomial distribution, 145–154 
binomial formula, 146 

equation for, 146, 154 
bivariate regression, 421–455  
BSS. see between sum of squares  
 
cells, 198, 212  
central limit theorem, 238–239, 249 
central tendency, 8, 60, 67 

chi-square (χ2) distribution, 188–191, 212 
chi-square (χ 2) statistic, 190–192, 212 

for relating two measures, 199 
chi-square (χ 2) table, 191–192 
chi-square (χ 2 ) test, 192–195 

with multicategory variables, 201–206 
with ordinal variables, 206–211 
with small samples, 211 

classification, 14–15, 26 
coefficient of relative variation (CRV), 103–104, 

108  
equation for, 105, 110  
coin toss, fair, 137–141  
column marginals, 198 
confidence intervals, 607–624 

compared to rejection region, 611–612 
for logistic regression coefficient, 621, 624 
for Pearson’s r, 618 
for regression coefficient, 621, 624 
for sample mean,  616–618 
for sample proportion,  615–618 

confidence limit equations, 614–616, 619–620, 
624 

convenience samples, 165, 179 
correct model specification, 463–465 

correlation, 324. See also eta (η), Pearson’s r, 
Spearman’s r covariation, 386–387 

 equation for, 386, 414 
Cramer’s V, 338, 370  

statistical significance of, 347–348 
critical region. See rejection region  
critical value, 172, 179 
CRV. See coefficient of relative variation 
curvilinear relationship, 44, 394–395, 413 
 
data, 22–23, 26. See also decisions about data,  

making analysis of, 6–11, 351–352 
collection of, 18 
decisions about data, making, 170 
with chi-square test, 188–191 
by comparing sample means, 257–262, 265 
with Kruskal-Wallis test, 320–321 
with logistic regression coefficients, 545–554 
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assumptions, for statistical inference, 164–170,

nominal measures of statistical significance, 349 

Goodman and Kruskal’s tau (τ), 342, 344, 347, 

association, measures of, 338–339, 343, 348–349, 

correctly specified model, 464–465 



with Pearson’s r, 384, 386–388, 380 
with regression coefficients, 438–444 
with single-sample t test, 244–248 
with Spearman’s r, 403–404 
with t-test for dependent samples, 276–278, 

281–282 
with z-test for proportions, 239–244 

degrees of freedom (df), 188–189, 191–192, 194, 
198, 307, 349, 409, 411, 443 

dependent variable (Y), 422, 444, 581 
derivative at mean, 553–554, 569, 572 
descriptive statistics, 7–8, 11 
design sensitivity, 642, 646 
deviation from the mean, 75, 79–80, 96–97,  

106–107, 296, 387, 434 
equation for, 74–76, 241 

differen es from the mean. See deviation from the 
mean 

directional hypotheses, 169, 175 
dispersion measures, 8 
distribution 

binomial, 146–148, 182–183, 188 
normal, 222–228 
normal frequency, 223–224, 231, 233,  

249-250 
predictions beyond observed, 430–431, 534 
probability, 137–139, 148, 153–154 
rejection region of, 172–173 
sampling, 136–138, 154, 164, 170–173 
skewed, 77 
standard normal, 226–228, 232, 243, 249–250 
tails of, 173–174, 179, 231–232 
types of, 116–117, 128 

distribution-free tests. See nonparametric tests  
 
e (regression error), 433–435, 452 
effect size (ES), 634–637, 640–646 

equation for, 573, 585  
error 

in prediction, 432 
reduction of, 5, 365 
risk of in hypothesis testing, 123–125 
standard, 230–232 
Type I, 124–125, 129–130 
Type II, 124–125, 127–130 

ESS, 299, 324 
eta (η), 315–317, 324 

equation for, 315–316, 326 

eta squared (η2), 315–316, 324. See also percent of 
variance explained  

equation for, 315–316, 324 
expected frequency, 190, 194, 200, 201, 205 

external validity, 165, 168, 178  
 
F equation, 305, 323  
-test for overall regression, 449–452 
factorials (!), 143, 651 
studies designed for, 644–645 
frequency, expected, 190, 194, 211, 212 
frequency distribution, 34–35, 53  
 
gamma (γ), 357, 372 

statistical significance of, 365 
Goodman and Kruskal’s tau (τ), 342, 344, 347, 

371–372 
statistical significance of, 349 
grand mean, 295–296, 324 

group variability, 295–296, 299, 323 
 
H0 (null hypothesis), 121–123 
H1 (research hypothesis), 119–121  
heteroscedasticity, 407–408, 413 
histogram, 36–40, 53 
homoscedasticity, 261, 282 
honestly significant difference (HSD), 318–320, 

324 
equation for, 318, 326 

hypotheses, 119–123 
and risk of error, 123–126 

 
independence, defined, 154 
independent random sampling, 166–168, 179 
independent variable (X ), 342–349, 372, 374 
index of qualitative variation (IQV), 92–94, 108 

equation for, 92, 109 
inferential statistics, 9–10 

interpretation of dummy variable  
and interval-level variable, 479–480 

interpretation of two interval-level variables,  
510–512 

interval scales, 19–21, 26 
measuring dispersion in, 94–103 

IQV. See index of qualitative variation  
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interaction effects, 502–505, 508–512, 517–518 

323–324 
explained sum of squares (ESS), 299, 315,



Kendall’s taub (τ b) and tau c (τ c), 352, 358, 365, 
371–372, 374–375 

statistical significance of, 365–367 
Kruskal-Wallis test, 320–323 

equation for, 322, 325–326 
 
lambda (λ), 342, 371–372, 374  

statistical significance of, 347 
levels of measurement, 15–21, 26 
likelihood ratio chi-square test, 567–568, 570, 572 
linear relationship, 394, 413 
logistic model curve, 534, 570 
logistic regression, 527–572 

compared to OLS regression, 528–533 
estimating coefficients for,  528, 532 
statistical significance for, 533–536 

logistic regression coefficients, 545–546, 550, 
558–561, 570, 572 

comparing, 555–561 
confidence interval for, 560 
statistical significance of, 565–568 

 
marginals, 198, 212 
maximum likelihood estimation (MLE),  539, 571 
mean, 68–75, 79–80 

comparing to median, 71–74 
computing, 84–85  
confidence interval for,  616 
equation for, 68, 81 
grand, 293 
for noninterval scales, 76 
overall, 295 

mean deviation, 105–107, 108  
measurement  

concept of, 14–15, 26 
ladder of, 16 
levels of, 15–16, 26 
scales of, 16  

measures  

of central tendency, 8, 60–71  
of dispersion, 9, 87–103 

median, 60–68, 80 
comparing to mean, 71–74 

mode, 60–62, 80 
multicollinearity, 496, 514–518 
multinomial logistic regression, 581–593 

identity equation, 582 

interpretation, 586–587 
odds ratios, 585 
omitted coefficients, 587–589 
probability equation, 584 
statistical significance of, 581–593  

multiplication rule, 139–141, 154 
multivariate regression, 462–488 
multivariate statistics, 7, 10–12 
 
nominal-level data, 16–18 
nominal-level variable, 17 
nominal scales, 16–18, 26 

bar charts with, 47 
central tendency in, 60–62  
chi-square test with, 187–191 
measures of association for, 339–349  
relating to other scales, 22–23 

nondirectional hypotheses, 169 
non-linear relationship, 496–502 

coefficients, 499–501 
detecting with line graphs, 497–499 
statistical significance, 502 

nonparametric tests, 165, 179. See also Kruskal-
Wallis test  

normal curve, 222–234, 249 
normal frequency distribution, 222–234, 249 
null hypothesis (H0), 121–123 
 
observed frequencies, 190–191, 205 
odds ratio, 546–547, 549–550, 621–622 
OLS regression, 434, 452 
one-tailed rejection region, 173 
one-tailed test of significance, 173, 176, 178, 274 
ordinal-level data, 18–19 
ordinal logistic regression, 594–595, 597–599,  

601 
cumulative probability equation, 596 
interpretation, 597–599 
odds ratios, 596–597 
ordinal logit equation, 597 
parallel slopes assumption, 600–601 
statistical significance of, 599–600 
thresholds, 594 

ordinal scales, 18–20, 26 
bar charts with, 47 
measures of association for, 351–353, 365  

ordinary least squares regression analysis, 434, 
476–477 
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of association, 338–369 



outlier, 6, 73–74, 77–80 
overall mean, 295, 324 
 
pairwise comparisons, 317–320, 325 

between groups studied, 317–320 
parameters, 117, 129–130 
parametric tests, 164, 222  

versus nonparametric tests, 640 
Pearson, Karl, 384 
Pearson’s correlation coefficient. See Pearson’s r  
Pearson’s r, 384–388, 413–414 

calculation of, 388–390 
confidence interval for, 618–620 
equation for, 422–424 
for nonlinear relationships, 394–398 
statistical significance of, 404–409 

percent of variance explained (R
2
), 435–437, 449, 

452. See also eta squared (η ) equation for, 435 
percentage, 45–46, 53  

equation for, 45–46, 54 
phi (φ), 337, 370  
pie charts, 48–49, 52–53 
pooled variance method, 261, 263–264, 269, 275, 

281–282 
equation for, 269  

population, 130 
population distribution, 116, 130  
positivism, 15  
probability distributions, 137–139, 154  
problem-oriented policing (POP) approach, 163  
proportion, 45, 53 

confidence interval for, 615–616 
equation for, 45, 53  

pseudo R2, 563–565, 570 
 
r. See Pearson’s r,  
rs. See Spearman’s r 
R 

2
. See percent of variance explained 

random sampling, 165, 179 
randomized experiments, 467, 486 
range, 94–95, 108 
rank order test, 320, 324, 325. See also  

nonparametric tests 
ratio scales, 19–21, 26 
regression  

bivariate, 421, 444, 453–454, 463, 465, 466, 
469 

F-test, 449–452 

regression coefficient (b), 422–426, 446, 452, 453 
calculation of, 422–425 
confidence interval for, 620  
correctly estimating, 463–473 
statistical significance of, 440–443   

regression error (e), 433–434, 453  
regression line, 428–432 
regression model, 431–432, 451  

Reiss, Albert J., Jr., 6  

in ANOVA, 305–307 
with chi-square test, 191–192 
compared to confidence interval, 611–612 
with Kruskal-Wallis test, 320 
for logistic regression coefficients, 545–546 
for Pearson’s r, 404–409 
for regression coefficients, 446 
for Spearman’s r, 411 
with t-test for dependent samples, 276–278 
with two-sample t-test, 264–265 
with z-test for proportions, 239–244  

relationship 
defining strength of, 314–317 
linear, 394, 397 

relaxing assumptions, 246, 250 
relevant independent variables, defining, 476 
reliability, 24–25  
representative sample, 165, 179 
research  

measurement in, 14–15 
purpose of, 15  

research hypothesis (H1), 119–121, 130 
research questions, 119, 129–130 

equation for, 431, 452 
row marginals, 198 
 
s. See standard deviation sample, 130  

representative, 163 
sample distribution, 116, 130 
sample statistics, 117–119, 130 
sampling, 165–168  

random, 165–166 
with replacement, 166, 179 

sampling distribution, 137–139, 154  
for chi-square test, 197–198 
for comparing sample means, 260–264 

2

multivariate, 463,  471, 473, 475,  486  
predictions in 427–431 

rejection region, 172–176, 178  
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for Kruskal-Wallis test, 322 
for nonnormal populations, 234–239 
for proportion, 239–241 
selecting, 170–171 
for single-sample t-test, 245–247 
for Spearman’s r, 412 
for t-test for dependent samples, 278 

sampling frame, 166, 179  
scales, measurement, 16, 26 

interval, 19–21, 26 
mean and, 76 
nominal, 16–18, 26 
ordinal, 18–19, 26 
ratio, 19–21, 26  

scatter diagrams, 394–398, 414 
scatterplots, 394–398, 414 
science and measurement, 14–15 
separate variance method, 61–265, 282 
significance criteria, 127–128 
significance level 

in ANOVA, 305–306 
with chi-square test, 191–192, 194 
with Kruskal-Wallis test, 322 
for logistic regression coefficients, 535–536 
for nominal measures of association, 349–351 
for ordinal measures of association, 365–367 
for Pearson’s r, 409 
for regression coefficients, 444  
and rejection region, 172–173  
for Spearman’s r, 412 
with t-test for dependent samples, 278 
with two-sample t-test, 264–265 
with z-test for proportions, 231 

skewed, 77–80, 211 
Somers’ d, 352–353, 360, 364, 369, 371–375 

statistical significance of, 365–366 
Spearman’s correlation coefficient. See 

Spearman’s r 
Spearman’s r, 353, 401–404, 413–414 

equation for, 402, 414  
statistical significance of, 411–412 

standard deviation (s), 99–103, 108 
equation for, 99, 109 
estimate of, 245, 251 
of population distribution, 226–230 
of sampling distribution of a proportion,  

239–241 
standard deviation unit, 225–227, 250 

standard error, 230, 239, 250 
standard normal distribution, 226, 250 
statistical error, 124–128 
statistical inference, 119–128 
statistical significance, 125, 130 

test of, 125, 130  
statistical power, 631–632, 646 

components of, 641 
and effect size, 634–637 
estimating, 640–644 
and sample size, 637–639 
and statistical significance, 632–633 

statistics 
descriptive, 7–9 
faulty, 7 
fear of, 5 
inductive, 7 
inferential, 9–10 
multivariate, 10–12 
problem solving with, 4–5 
purpose of, 3–4 
techniques of, 5–6 

Student’s t. See t distribution 
studies designed for failure, 631, 644–645 
sum of deviations from the mean, equation for, 

74, 80 
sums of squares, 298–299, 323 

partitioning of, 298–299 
 

t distribution, 245–247, 268, 270, 273–274, 278, 
293, 404, 406, 413, 440, 446, 452, 614,  
617–618, 654  

t-test  
for dependent samples, 275–278, 281–283, 290  
for means, 258, 267–268, 281, 283, 644 
for ordinal scales, 281 
tails of the distribution, 173–174, 179, 231 

test statistic, 177–179, 194, 199, 204–205, 209, 

in ANOVA, 305, 310 
for chi-square test, 190 
for comparing sample means, 265, 274 
for Kruskal-Wallis test, 321, 323–326, 331–332  
for logistic regression coefficients, 542,  

545–546, 550, 558, 560–561, 563, 569, 585, 
589, 590, 597, 621  

for Pearson’s r, 388, 414 
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for regression coefficients,  459 

232, 244, 247, 268 



for Spearman’s r, 411 
for t-test for dependent samples, 275–277,  

281–282 
for z-test for proportions, 239 

time series data, 49–50, 53  
time series plot, 50–52, 53 
tolerance,  

equation for, 516, 518 
total sum of squares (TSS), 298, 325, 435 

equation for, 298–300, 308, 316, 326, 450 
two-sample t-test, 258, 264, 267, 271, 272, 281, 282 

equations for, 264, 282, 283 
two-tailed rejection region, 171 
two-tailed test of significance, 173–175, 412 
Type I error, 124–130 
Type II error, 124–130 
 
unbiased estimate of standard error equation, 

264, 282 
unexplained sum of squares (USS), 299, 323, 325, 

449, 450–451, 454 
universe, 117, 130, 166, 179 
unknown population, 239, 241, 246, 249  

validity, 23–27, 32, 165–166, 168, 178–179, 260, 
317 

variable, 16–17, 19–22, 31–32 
variance, 96–99, 108 

between and within groups, 299 
equation for, 96, 109 
pooled, 261–262, 259, 265, 281 
separate, 261, 282 
variation ratio, 90–92, 107–109 
equation for, 96, 109 

 
Wald statistic, 566, 567, 571, 572, 577, 590–592, 

597, 599, 601 
within group variance equation, 301, 326 
within sum of squares (WSS), 297, 323, 325 

equation for, 297–299, 326 
 
X (independent variable), 422–423, 453  
 
Y (dependent variable), 422–423, 453 
 
z-score, 226–228 
z-test for proportions, 239–244  
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