


Statistics as Principled Argument 





Statistics as Principled Argument 

Robert P. Abelson 
Yale University 

Psychology Press 
Taylor & Francis Group 

New York London 



Psychology Press Psychology Press 
Taylor & Francis Group Taylor & Francis Group 
711 Third Avenue 27 Church Road 
New York, NY 10017 Hove, East Sussex BN3 2FA 

© 1995 by Taylor & Francis Group, LLC 
Originally published by Lawrence Erlbaum Associates 
Reprinted in 2009 by Psychology Press, an imprint of Taylor & Francis Group 
Cover design by Mairav Salomon-Dekel 

International Standard Book Number-13: 978-0-8058-0528-4 (Softcover) 

Except as permitted by U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or 
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including 
photocopying, microfilming, and recording, or in any information storage or retrieval system, without written 
permission from the publishers. 

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only 
for identification and explanation without intent to infringe. 

Library of Congress Cataloging-in-Publication Data 

Catalog record is available from the Library of Congress 

Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com 

and the Psychology Press Web site at 
http://www.psypress.com 

http://www.taylorandfrancis.com
http://www.psypress.com


This book is dedicated to Willa Dinwoodie Abelson and to 
John Wilder Tukey, who in their special ways have 

encouraged me in seeking wisdom’s direction. 





Contents 

Preface xi 

Abelson’s Laws xv 

1 Making Claims With Statistics 1 
Misunderstandings of Statistics 1 
Claims Made With Statistics: Comparison and Explanation 2 
Language and Limitations of Null Hypothesis Tests 8 
Persuasive Arguments: The MAGIC Criteria 11 
Style and Convention 15 
The Bottom Line 16 

2 Elementary Arguments and the Role of Chance 17 
Random Generating Processes 18 
Random Sampling Processes 27 
Summary 36 

3 Magnitude of Effects 39 
Probability Measures 39 
Effect Sizes 45 
Confidence Limits 52 

vii 



viii CONTENTS 

4 Styles of Rhetoric 54 
Brash, Stuffy, Liberal, and Conservative Styles 54 
One-Tailed, Two-Tailed, and Lopsided Tests 57 
Alternative Tests Applied to the Same Data Set 59 
Defective Observations 68 
Multiple Tests Within the Same Data Set 70 
Stating and Interpreting p Values 74 
In the Last Analysis 77 

5 On Suspecting Fishiness 78 
Strange Distributions of Observations 78 
The Occurrence of Impossible Scores 88 
Strange Test Statistics 89 
Inconsistencies Between Parallel Statistics 97 
Too Much Consistency in Parallel Statistics 100 
A Cautionary Note on the Detection of Fishiness 103 

6 Articulation of Results: Ticks and Buts 104 
Ticks and Buts 104 
Ticks and the Evolution of Knowledge 105 
Comparisons of Pairs of Means 108 
Refraining Results for Better Articulation 114 
Multiple Comparisons 118 
Contrasts 125 
More Than One Dependent Variable 127 
Further Remarks 130 

7 Generality of Effects 132 
The Nature of Generality 132 
Treatment-by-Context Interactions Within Studies 135 
Generality Across Studies: Meta-Analysis 149 
Generality Across and Within Studies: A Parallel 153 
Final Caveat 155 

8 Interestingness of Argument 156 
Can Statistics Be Interesting? 156 
Theoretical Interest 158 
Surprisingness 160 
Importance 168 



CONTENTS ix 

9 Credibility of Argument 170 
Why Research Claims Are Disbelieved 170 
The Structure of Debates on Disbelieved Claims 172 
Methodological Artifacts 180 
The Influence of Criticism on Methodology 197 

References 199 

Author Index 212 

Subject Index 216 





Preface 

This book arises from 35 years of teaching a first-year graduate statis
tics course in the Yale Psychology Department. When I think back over 
this time span I am struck both by what has changed in teaching 
statistics, and by what has remained the same. 

The most obvious changes are effects of the computer revolution. In 
the 1950s a Computing Laboratory was a room containing a large 
collection of mechanical calculators—ungainly Monroes and Marchants 
with push buttons for entering data, and an interior assembly of ratchets 
for carrying out arithmetic operations. From the clickety-clack, you 
could usually tell at a considerable distance how many students were 
working on their data late at night. I confess to occasional nostalgia for 
this period of earnest, pitiful drudgery, but then I come to my senses and 
realize that in the old days, statistical analysis was not merely noisy; it 
also took forever, and was filled with errors. Nowadays, of course, 
computing facilities and statistical packages for both mainframes and 
PCs have vastly enlarged the possibilities for fast, complex, error-free 
analysis. This is especially consequential for large data sets, iterative 
calculations, multifactor or multivariate techniques, and—as heralded 
by the founding of the Journal of Computational and Graphical Statis
tics in 1992—for the use of computers in connection with graphical 
procedures for exploring data (see also Cleveland, 1993; Schmid, 1983; 
Wainer & Thissen, 1993). I do not mean to suggest that computers 
eliminate stupidity—they may in fact encourage it. But well-conceived 
analyses can be done with extraordinarily greater speed and in much 
greater detail than was possible a few short decades ago. 

Other noteworthy developments in the last 20 years are: Exploratory 
Data Analysis (Hoaglin, Mosteller, & Tukey, 1983, 1985, 1991; Tukey, 
1977), which sharply shifts emphasis away from statistical significance 
tests toward freewheeling search for coherent patterns in data; log-lin
ear models (Goodman, 1970; Wickens, 1989) to analyze the frequencies 
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xii PREFACE 

of cases appearing in the cells of multiway tables; the Pandora’s box of 
applications of the LISREL program (Joreskog, 1978) for structural 
equations and confirmatory factor analysis; the family of techniques 
called ”bootstrapping" (Efron, 1992) for dealing with sampling variabil
ity; and the explosion of interest in ”meta-analysis" (Glass, 1978; Hedges 
& Olkin, 1985; Mullen, 1989; Rosenthal, 1991; Wachter & Straf, 1990) 
for drawing generalizations across sets of studies. 

Despite many new developments and the intensity of statistical 
training offered in several university departments, students generally 
seem as bemused as ever. From long observation of student struggles 
with statistics, I conclude that the difficulties lie not so much with 
computational mechanics as with an overall perspective on what they 
are doing. For many students, statistics is an island, separated from 
other aspects of the research enterprise. Statistics is viewed as an 
unpleasant obligation, to be dismissed as rapidly as possible so that they 
can get on with the rest of their lives. Furthermore, it is very hard to 
deal with uncertainty, whether in life or in the little world of statistical 
inference. Many students try to avoid ambiguity by seizing upon tangi
ble calculations, with stacks of computer output to add weight to their 
numbers. Students become rule-bound, thinking of statistical practice 
as a medical or religious regimen. They ask questions such as, ”Am I 
allowed to analyze my data with this method?" in the querulous manner 
of a patient or parishioner anxious to avoid sickness or sin, and they 
seem to want a prescriptive answer, such as, ”Run an analysis of 
variance according to the directions on the computer package, get lots 
of sleep, and call me in the morning." 

For years, I always responded to students who asked, ”Can I do this?" 
by saying something like, ”You can do anything you want, but if you use 
method M you’ll be open to criticism Z. You can argue your case 
effectively, however, if you use procedure P and are lucky enough to get 
result R. If you don’t get result R, then I’m afraid you’ll have to settle 
for a weaker claim." 

Eventually, I began to appreciate an underlying implication of the 
way I found myself responding: namely, that the presentation of the 
inferences drawn from statistical analysis importantly involves rheto
ric. When you do research, critics may quarrel with the interpretation 
of your results, and you had better be prepared with convincing coun
terarguments. (These critics may never in reality materialize, but the 
anticipation of criticism is fundamental to good research and data 
analysis. In fact, imagined encounters with antagonistic sharpsters 
should inform the design of your research in the first place.) There are 
analogous features between the claims of a statistical analyst and a case 
presented by a lawyer—the case can be persuasive or flimsy (even fishy), 
the style of inference may be loose or tight, prior conventions and rules 
of evidence may be invoked or flouted, and so on. 
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I have always wanted to write a statistics book, full of tips, wisdom, 
and wit—most of it fairly simple, as befits a first-year graduate or 
advanced undergraduate course in statistics for psychology or other 
social sciences. My mock title was, ”Lots of Things You Ought to Know 
About Statistics, but Are Too Stupefied to Ask." Unfortunately, I had 
lacked an underlying theme to tie together all the bits of advice, and I 
did not want to do just another cookbook. When I hit upon the notion of 
statistics as principled argument, I knew that I had a unifying theme. 

Beyond its rhetorical function, statistical analysis also has a narra
tive role. Meaningful research tells a story with some point to it, and 
statistics can sharpen the story. Students are often not mindful of this. 
Ask a student the question, ”If your study were reported in the newspa
per, what would the headline be?" and you are likely to receive in 
response a rare exhibition of incoherent mumblings, as though such a 
question had never been even remotely contemplated. 

By continually posing the newspaper headline question, I have been 
led to consider what kinds of claims a statistical story can make, and 
what makes a claim interesting. Interestingness seems to have to do 
with changing the audience’s beliefs about important relationships, 
often by articulating circumstances in which obvious explanations of 
things break down. Thus my image of the ideal statistician, already 
conceived as a good (but honest!) lawyer and a good storyteller, also includes 
the virtues of a good detective. All three roles can be fun. The detective 
work (Tukey, 1969) is playful as well as logical, and the sleuth should be 
open to unanticipated clues and unexpected relationships in the data. 

Putting this all together, I have arrived at the theme that the purpose 
of statistics is to organize a useful argument from quantitative evidence, 
using a form of principled rhetoric. The word principled is crucial. Just 
because rhetoric is unavoidable, indeed acceptable, in statistical presen
tations does not mean that you should say anything you please. I am not 
advocating total relativism or deconstructionism in the field of statistics. 
The claims made should be based clearly on the evidence. And when I 
say ”argument," I am not advocating that researchers should be surly and 
gratuitously combative. I have in mind spirited debate over issues raised 
by data, always conducted with respect for the dignity of all parties. 

My theme cannot be advanced in a technical vacuum. Particular 
statistical methods must be discussed, albeit I have minimized the use 
of formulas and heavy data sets. In most of the book, the ideas revolve 
around elementary probability theory, t tests, analysis of variance, and 
simple issues of research design. It is therefore assumed that the reader 
has already had some access to systematic coverage of elementary 
statistics, such as occurs in an undergraduate course. Chapters 1 
through 5 review and interpret basic material, and chapters 6 through 
10 develop several topics that have received insufficient attention in 
statistics and research design texts, or have not been viewed in connec-
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tion with debates about research claims. I have tried to make the 
presentation accessible and clear, but some readers may find a few 
sections cryptic (especially in chaps. 6 and 7). Use your judgment on 
what to skim. If you don’t follow the occasional formulas, read the words. 
If you don’t understand the words, follow the music and come back to 
the words later. 

I have included many examples, not for cookbook instruction on how 
to calculate this or that, but to explain the connection of statistics to 
substantive claims about the real world. These examples are often from 
the research domain I know best, experimental social psychology. (Many 
of these examples are somewhat old—but then again, so am I.) The 
remaining examples are sprinkled widely throughout a number of 
empirical disciplines. I hope that all readers who want to sharpen their 
understanding of statistical arguments will feel welcome. I also hope 
that statistical and research experts will treat with forbearance my peda
gogical oversimplifications of technical issues, and find at least as many 
pithy thoughts in the book as they do errors of omission and commission. 

Teachers and researchers may find this book valuable as a source of 
material outside the usual range of things that appear in standard texts. 
Students may use the book as a supplement to a standard statistical 
text, or as stand-alone reading. Research groups may find it valuable to 
discuss the issues in the book as they occur in their own research 
domain. It has been my observation that most students do not really 
understand statistical material until they have been through it three 
times—once for exposure, once for practice, and once for the dawn of 
genuine insight. This book is designed for the third pass-through, and I 
hope that readers will carry what they learn into their research programs. 

I am pleased to thank the many people who offered comments on 
various drafts. I list them alphabetically (an ordering principle that has 
been kind to me throughout my life): Robert M. Abelson, Willa 
Dinwoodie Abelson, Irene Blair, Jacob Cohen, Peter Frensch, Eric Gold, 
Jack Glaser, Anthony G. Greenwald, Dave Kenny, John Pawelek, Deb
orah Prentice, Robert Rosenthal, Alex Rothman, Laurie Snell, John W. 
Tukey, and Doug Whalen. Of these, special thanks go to Willa Dinwoodie 
Abelson, whose fine sense for felicity of expression was extraordinarily 
helpful; Irene Blair, who brought missing references out of hiding; Jacob 
Cohen, who upon discovering that I was saying many of the same things 
that he had for years been crying in the wilderness, responded with 
encouragement rather than pride of place; Dave Kenny, whose many 
interesting comments led me to include additional material; and to 
Deborah Prentice, who as a star teacher of statistics suggested a number 
of changes that made the statistical material more understandable. 
Judith Amsel of Lawrence Erlbaum Associates was unfailingly enthused 
about this project, and highly tolerant of my pokey rate of writing. For 
any flaws in the book, the usual rule of blame applies: Mea culpa. 



Abelson’s Laws 

1. Chance is lumpy 

2. Overconfidence abhors uncertainty. 

3. Never flout a convention just once. 

4. Don’t talk Greek if you don’t know the English 
translation. 

5. If you have nothing to say, don’t say anything. 

6. There is no free hunch. 

7. You can’t see the dust if you don’t move the couch. 

8. Criticism is the mother of methodology. 

XV 





1 Making Claims With 
Statistics  

MISUNDERSTANDINGS OF STATISTICS 

The field of statistics is misunderstood by students and nonstudents 
alike. The general public distrusts statistics because media manipula
tors often attempt to gull them with misleading statistical claims. 
Incumbent politicians, for example, quote upbeat economic statistics, 
whereas their challengers cite evidence of wrack and ruin. Advertisers 
promote pills by citing the proportion of doctors who supposedly recom
mend them, or the average time they take to enter the bloodstream. The 
public suspects that in the interest of making particular points, propa
gandists can use any numbers they like in any fashion they please. 

Suspicion of false advertising is fair enough, but to blame the problem 
on statistics is unreasonable. When people lie with words (which they 
do quite often), we do not take it out on the English language. Yes, you 
may say, but the public can more readily detect false words than 
deceitful statistics. Maybe true, maybe not, I reply, but when statistical 
analysis is carried out responsibly, blanket public skepticism under
mines its potentially useful application. Rather than mindlessly trash
ing any and all statements with numbers in them, a more mature 
response is to learn enough about statistics to distinguish honest, useful 
conclusions from skullduggery or foolishness. 

It is a hopeful sign that a considerable number of college and univer
sity students take courses in statistics. Unfortunately, the typical sta
tistics course does not deal very well, if at all, with the argumentative, 
give-and-take nature of statistical claims. As a consequence, students 
tend to develop their own characteristic misperceptions of statistics. 
They seek certainty and exactitude, and emphasize calculations rather 
than points to be drawn from statistical analysis. They tend to state 
statistical conclusions mechanically, avoiding imaginative rhetoric (lest 
they be accused of manipulativeness). 

It is the aim of this book to locate the field of statistics with respect 
to rhetoric and narrative. My central theme is that good statistics 
involves principled argument that conveys an interesting and credible 

1 
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point. Some subjectivity in statistical presentations is unavoidable, as 
acknowledged even by the rather stuffy developers of statistical hypoth
esis testing. Egon Pearson (1962), for example, wrote retrospectively of 
his work with Jerzy Neyman, ”We left in our mathematical model a gap 
for the exercise of a more intuitive process of personal judgment" (p. 
395). Meanwhile, Sir Ronald Fisher (1955) accused Neyman and Pear
son of making overmechanical recommendations, himself emphasizing 
experimentation as a continuing process requiring a community of free 
minds making their own decisions on the basis of shared information. 

Somewhere along the line in the teaching of statistics in the social 
sciences, the importance of good judgment got lost amidst the minutiae 
of null hypothesis testing. It is all right, indeed essential, to argue 
flexibly and in detail for a particular case when you use statistics. Data 
analysis should not be pointlessly formal. It should make an interesting 
claim; it should tell a story that an informed audience will care about, 
and it should do so by intelligent interpretation of appropriate evidence 
from empirical measurements or observations.1 

CLAIMS MADE WITH STATISTICS: COMPARISON 
AND EXPLANATION 

How are claims developed in statistical tales? For most of this book, we 
treat statistics in connection with systematic research programs, but to 
begin, let us discuss the case in which purportedly newsworthy statis
tical ”facts" are picked up by roving reporters and presented in the 
media. 

Stand-Alone Statistics 

Many of these statistics are isolated, stand-alone figures such as: ”The 
average life expectancy of famous orchestral conductors is 73.4 years" 
(Atlas, 1978), or ”adults who watched television 3-4 hours a day had 
nearly double the prevalence of high cholesterol as those who watched 
less than one hour a day" (Tucker & Bagwell, 1992), or ”...college-edu-

There is a different light in which some people view the field of statistics. Data gathering 
may be seen as the archival activity of assembling ”facts," which at some later time may 
be used according to the needs of particular investigators or administrators. Historically, 
statistics began with the collection of tax and census records, and the term statistics derives 
from the description of states (Cowles, 1989). Prime modern examples of archives that can 
later be used for various research purposes are census data, and public opinion survey data 
banks such as the General Social Surveys (Davis & Smith, 1991). Resources like these are 
important, and I do not underestimate their value. Nevertheless, data banking is but the 
beginning of certain research enterprises, not their culmination. It is the theoretical and 
applied payoff of data analysis that engages my attention in this book. 
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cated women who are still single at the age of thirty-five have only a 5 
percent chance of ever getting married" (”Too Late," 1986; discussed by 
Cherlin, 1990; and Maier, 1991). The point of the life-expectancy statis
tic was supposedly that conducting an orchestra is so fulfilling that it 
lengthens life. The cholesterol story was somewhat puzzling, but the 
implication was that increased junk food consumption accompanied 
heavy TV watching. The marriage statistic was based on shaky projec
tions of future trends, and could be variously explained or dismissed, 
depending on who was doing the explaining or dismissing. 

A problem in making a claim with an isolated number is that the 
audience may have no context within which to assess the meaning of 
the figure and the assertion containing it. How unusual is it to live until 
age 73.4? Does ”nearly double" mean I shouldn’t watch TV? If one can’t 
answer such questions, then a natural reaction to this type of numerical 
pronouncement would be, ”So what?" 

The Importance of Comparison 

In the example about women and percentage marrying, a background 
context is readily available, and most people would regard 5% as a 
startlingly low marriage rate compared to the general average (or 
compared to what was true 50 years ago). The idea of comparison is 
crucial. To make a point that is at all meaningful, statistical presenta
tions must refer to differences between observation and expectation, or 
differences among observations. Observed differences lead to why ques
tions, which in turn trigger a search for explanatory factors. Thus, the 
big difference between the 5% future marriage rate for 35-year-old, 
college-educated single women and one’s impression that some 80% or 
90% of women in general will marry, evokes the question, ”I wonder why 
that is? Is it career patterns, the lack of appeal of marriage, or a shortage 
of eligible men?... Or maybe the 5% figure is based on a faulty statistical 
procedure." Such candidate explanations motivate the investigators (or 
their critics) to a reanalysis of existing evidence and assumptions, or the 
collection of new data, in order to choose a preferred explanation. 

Apart from the standard statistical questions of why there is a 
difference between one summary statistic and another, or between the 
statistic and a baseline comparison figure, there occasionally arises a 
need to explain a lack of difference. When we expect a difference and 
don’t find any, we may ask, ”Why is there not a difference?" Galileo’s 
fabled demonstration that heavy and light objects take the same time 
to fall a given distance is a case in point. The observed constancy stands 
in contrast with a strong intuition that a heavy object should fall faster, 
thus posing a puzzle requiring explanation. 
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Standards of Comparison 

At the outset of the explanation process, there is a complication. Given 
a single statistic, many different observations or expectations may be 
used as standards of comparison; what is compared with what may have 
a substantial influence on the question asked and the answer given. 
Why questions are said to have a focus.2 The longevity datum on famous 
orchestral conductors (Atlas, 1978) provides a good example. With what 
should the mean age at their deaths, 73.4 years, be compared? With 
orchestral players? With nonfamous conductors? With the general pub
lic? 

All of the conductors studied were men, and almost all of them lived 
in the United States (though born in Europe). The author used the mean 
life expectancy of males in the U.S. population as the standard of 
comparison. This was 68.5 years at the time the study was done, so it 
appears that the conductors enjoyed about a 5-year extension of life— 
and indeed, the author of the study jumped to the conclusion that 
involvement in the activity of conducting causes longer life. Since the 
study appeared, others have seized upon it and even elaborated reasons 
for a causal connection (e.g., as health columnist Brody, 1991, wrote, ”it 
is believed that arm exercise plays a role in the longevity of conductors" 
[p. B8]). 

However, as Carroll (1979) pointed out in a critique of the study, there 
is a subtle flaw in life-expectancy comparisons: The calculation of 
average life expectancy includes infant deaths along with those of adults 
who survive for many years. Because no infant has ever conducted an 
orchestra, the data from infant mortalities should be excluded from the 
comparison standard. Well, then, what about teenagers? They also are 
much too young to take over a major orchestra, so their deaths should 
also be excluded from the general average. Carroll argued that an 
appropriate cutoff age for the comparison group is at least 32 years old, 
an estimate of the average age of appointment to a first orchestral 
conducting post. The mean life expectancy among U.S. males who have 
already reached the age of 32 is 72.0 years, so the relative advantage, if 
any, of being in the famous conductor category is much smaller than 
suggested by the previous, flawed comparison. One could continue to 
devise ever and ever more finely tuned comparison groups of noncon
ductors who are otherwise similar to conductors. Thoughtful attention 
to comparison standards (usually ”control groups") can substantially 
reduce the occurrence of misleading statistical interpretations. 

A shift in the focus of question and answer is well illustrated by a joke beloved among 
10-year-old children: ”Why did the turkey cross the road?"... ”Because it was the chicken’s 
day off." The reader who doesn’t understand children’s jokes can get the idea of focus by 
studying the effect of underlining different words in a why question. See Lehnert (1978). 
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Choosing Among Candidate Explanations 

For any observed comparative difference, several possible candidate 
explanations may occur to the investigator (and to critics). In a given 
case, this set of explanations may include accounts varying widely in 
their substance and generality, ranging from a dismissal of the observed 
difference as a fluke or an artifactual triviality to claims that the 
observations support or undermine some broad theoretical position. In 
our orchestra conductors example, the set of candidate explanations 
includes at least the following: (a) The result arose fortuitously from the 
particular sample of conductors included; (b) the comparison standard 
is still flawed, as it does not account for subpopulations with shorter life 
spans who are also ineligible to become conductors (e.g., the chronically 
ill); and (c) conductors do live longer, because of some common genetic 
basis for longevity and extraordinary musical talent, health benefits 
from the activity of conducting (or from a larger class of activities that 
includes conducting), or health benefits from something associated with 
conducting, such as receiving adulation from others, or having a great 
deal of control over others. 

It is the task of data analysis and statistical inference to help guide 
the choice among the candidate explanations. The chosen explanation 
becomes a claim. (If this term implies more force than appropriate, we 
may use the blander word point.) In the conductor example, it is risky 
to make a claim, because of a lack of relevant data that would help 
winnow the set of explanations. It would be helpful to have information 
on such matters as the life expectancy of well-known pianists, actors, 
professors, lawyers, and so forth; the life expectancy of eminent conduc
tors who retire early (for reasons other than health); the life expectancy 
of siblings of famous conductors (ideally, twin siblings—but there would 
not be enough cases); and the comparative life expectancies of elderly 
people who stay active and those who are inactive (for reasons other 
than poor health). 

Experimentalists would despair at the vagueness of specification of 
the needed evidence (how should one define ”poor health," ”active" 
”retire"), and the sinking feeling that there are just too many variables 
(some of them unknown) that might be associated with longevity The 
experimental investigator would be in a much more comfortable position 
if he or she could isolate and manipulate the factors assumed to be 
relevant in one or more of the proposed causal accounts. An experi
menter, as distinct from an observer, tries to create (or re-create) 
comparative differences rather than just to observe them passively. 

Consider the possible explanation that orchestral conducting is so 
personally satisfying or otherwise beneficial that it extends life beyond 
the age at which the individual would have died in the absence of this 
activity. The standard experimental way to try to recreate such an effect 
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would be to assemble a group of potentially outstanding conductors, 
arrange for a random half of them to have prestigious orchestra posts 
whereas the other half have less involving career activities, and then 
collect longevity data on all of them. Of course this test would be 
absurdly impractical. I mention it because it suggests the possibility of 
conceptually similar experiments that might be feasible. For example, 
one could recruit a group of elderly people, provide a random half of them 
with social or physical activities, or social control, and monitor their 
subsequent feelings of well-being and state of health relative to that of 
the other half, who had received no intervention.3 The bottom line for 
the conductors example, though, is that casual, one-shot tabulations of 
statistical observations will almost certainly be difficult to interpret. 
Therefore it is rhetorically weak to make claims based on them, and 
such claims deserve to be regarded with great skepticism. Well-justified 
explanations of comparative differences typically depend on well-con
trolled comparisons such as can be provided by careful experiments, and 
therefore we emphasize experimental data in this book. (Sometimes, one 
can also do well by the sophisticated collection of converging lines of 
evidence in field observations.) The quality of explanation improves 
dramatically when there are many interrelated data sets, some of them 
repeated demonstrations of the core result(s) or of closely related re
sults, some of them ruling out alternative explanations, and yet others 
showing that when the explanatory factor is absent, the result(s) fail to 
appear. 

Systematic Versus Chance Explanations 

To understand the nature of statistical argument, we must consider 
what types of explanation qualify as answers to why questions. One 
characteristic type, the chance explanation, is expressed in statements 
such as, ”These results could easily be due to chance," or ”A random 
model adequately fits the data." Indeed, statistical inference is rare 
among scientific logics in being forced to deal with chance explanations 
as alternatives or additions to systematic explanations. 

In the discussion to follow, we presume that data are generated by a 
single measurement procedure applied to a set of objects or events in a 
given domain. We suppose that the observations comprising the data set 
differ, some from others, and we ask why. A systematic factor is an 
influence that contributes an orderly relative advantage to particular 
subgroups of observations, for example, a longevity gain of a certain 
number of years by elderly people who stay active. A chance factor is an 

3There is in fact a growing literature in the field of health psychology that speaks to 
precisely this idea (Langer & Rodin, 1976; Okun, Olding, & Cohn, 1990; Rodin, 1986). 



CLAIMS MADE WITH STATISTICS 7 

influence that contributes haphazardly to each observation, with the 
amount of influence on any given observation being unspecifiable. 

The Tendency to Exaggerate Systematic Factors 

Inexperienced researchers and laypeople alike usually overestimate the 
influence of systematic factors relative to chance factors. As amateur 
everyday psychologists and would-be controllers of the world around us, 
we exaggerate our ability to predict the behavior of other people. We 
have difficulty thinking statistically about human beings. 

Kunda and Nisbett (1986) showed that in matters of human ability, 
especially athletic ability, there is some degree of appreciation of inex
plicable variations in performance from one occasion to the next. We 
understand, for example, that a tennis player might be on his game one 
day but flat the next, so that a sample of performances is necessary to 
make a reliable judgment of ability. Even so, the relative importance of 
chance influences is seriously underestimated in many athletic con
texts. Abelson (1985) asked baseball-wise psychologists to consider 
whether or not a major league batter would get a hit in a given turn at 
bat, and to estimate the proportion of variance in this event explained 
by differences in the skill of different batters, as opposed to chance 
factors affecting the success of a given batter. The median estimate was 
around 25%, but the true answer is less than one half of 1%! In part this 
is due to the highly stingy properties of ”explained variance" as a 
measure of relationship between two variables (Rosenthal & Rubin, 
1979), but more interestingly, it is because we as baseball fans are prone 
to regard a .330 hitter as a hero who will almost always come through 
in the clutch, and the .260 hitter as a practically certain out when the 
game is on the line. 

The underappreciation of chance variability extends to other do
mains. For events such as lottery drawings in which skill plays no 
objective role whatever, subjects under many conditions act as though 
some control can be exerted over the outcome (Langer, 1975). Kunda 
and Nisbett (1986) concluded that in matters of personality, inferences 
based on a single encounter are made with undue confidence, ignoring 
the possibility of situational influences that vary over time and place. 
We tend to feel, for example, that the person who is talkative on one 
occasion is a generally talkative person (the ”fundamental attribution 
error," Ross, 1977). 

The upshot of all this is a natural tendency to jump to systematic 
conclusions in preference to chance as an explanation. As researchers, 
we need principled data-handling procedures to protect us from invent
ing elaborate overinterpretations for data that could have been domi
nated by chance processes. We need to understand that even though 
statistical calculations carry an aura of numerical exactitude, debate 
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necessarily surrounds statistical conclusions, made as they are against 
a background of uncertainty. A major step in the winnowing of explana
tions for data is to make a judgment about the relative roles played by 
systematic and chance factors. 

Inasmuch as chance is not well understood—even by those who have 
had a bit of statistical training—we introduce whimsical, hopefully 
memorable metaphors for the operation of chance factors (chap. 2). 

LANGUAGE AND LIMITATIONS OF NULL 
HYPOTHESIS TESTS 

A staple procedure used in psychological research to differentiate sys
tematic from chance explanations is the significance test of a null 
hypothesis. Elementary statistics texts describe many varieties of them, 
but students often regard null hypothesis testing as counterintuitive, 
and many critics (e.g., Cohen, in press; Falk & Greenbaum, in press; 
Tukey, 1991) find much to fault in null hypothesis tests. It is worthwhile 
to set forth here the quirky logic of these tests, so that later on when we 
refer to their application, the reader will be well informed about their 
role in statistics, and the reasons for complaint about them. 

Consider the simplest type of laboratory experiment, in which sub
jects are assigned at random to either an experimental group or a control 
group. Members of the two groups perform the identical experimental 
task, except for the additional manipulation of a single factor of interest 
in the experimental group—say, the receipt of prior information or 
training, or the administration of a drug. The experimenter wishes to 
test whether the experimental factor makes a systematic difference on 
some appropriate measure of task performance. 

Presumably, performance measures on the task differ from individual 
to individual, and we ask a rhetorical why question. The systematic 
explanatory factor is the manipulation introduced by the experimenter. 
To say that this factor is systematic is to assume that on average it 
improves (or damages) task performances in the experimental group by 
some unknown amount over and above performances in the control 
group. We can try to estimate the magnitude of this systematic effect 
simply by calculating the difference between the mean performance 
scores of the two groups. 

But there are also chance factors in this situation—things that add 
noise to individual measurements in an unknown way. We mention two 
categories here: sampling errors and measurement errors. Sampling 
errors arise from the ”luck of the draw" in randomly assigning subjects 
to the two groups; the experimental group may contain a predominance 
of people with somewhat higher (or lower) task ability than members of 
the control group, thus introducing a mean difference that could be 



LANGUAGE AND LIMITATIONS OF NULL HYPOTHESIS TESTS 9 

mistaken for a systematic effect. Measurement errors refer to unknown 
and unrepeatable causes of variability in task performance over time, 
place, and circumstance. The laboratory room may be too warm when 
Subject 17 performs the task; Subject 42 may have a headache that day; 
and so on. 

In qualitative terms, there are three possible accounts for the data 
arising from this experimental design: (a) The variability of task scores 
can be entirely explained by the systematic factor, (b) the variability of 
task scores can be entirely explained by chance factors (sampling and 
measurement errors), or (c) the variability requires explanation by both 
chance factors and the systematic factor. 

The first and the second accounts are simpler, and parsimony would 
suggest that they be tested before falling back on the third account. Why 
tell a complicated story if a simpler story will do? The third account can 
be held in reserve if both of the first two accounts are inadequate. The 
first possibility, completely systematic data with no chance variability, 
would be immediately apparent in the data set: All the scores in the 
experimental group would be equal, and different from all the equal 
scores in the control group. This outcome may be approximated in the 
physical and biological sciences, where chance variability is typically 
very small. With psychological data, however, this outcome is quite 
rare—but if and when it occurs, statistical inference is not used (Skin
ner, 1963). 

Setting aside these rare, errorless cases, we are left with the choice 
between the all-chance explanation, and the systematic-plus-chance 
explanation. We can tell if we need to invoke a systematic factor by first 
testing the all-chance explanation; if chance factors do not adequately 
account for the data, then the systematic factor is needed. This is in 
essence the justification for significance tests of the null hypothesis. 

The Language of Null Hypothesis Testing 

A null hypothesis test is a ritualized exercise of devil’s advocacy. One 
assumes as a basis for argument that there is no systematic difference 
between the experimental and control scores—that except for errors of 
sampling and measurement the two groups’ performances are indistin
guishable. If (according to a formal procedure such as a t test) the data 
are not sharply inconsistent with this conception, then an all-chance 
explanation is tenable, so far as this one data set is concerned. This is 
often described as ”accepting the null hypothesis." If, on the other hand, 
the data are inconsistent with the all-chance model, the null hypothesis 
is rejected, and the systematic-plus-chance model is preferred. 

An important caveat here is that the standard terms, ”accept" or 
”reject" the null hypothesis, are semantically too strong. Statistical tests 
are aids to (hopefully wise) judgment, not two-valued logical declara-
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tions of truth or falsity. Besides, common sense tells us that the null 
hypothesis is virtually never (Cohen, 1990; Loftus, 1991) literally true 
to the last decimal place. It is thus odd to speak of accepting it. We often 
use other terms for this outcome, such as "retaining the null hypothesis" 
or ”treating the null hypothesis as viable."4 Similarly, rejection can be 
softened with alternative phrases like, ”discrediting the null hypothe
sis." 

In any case, the investigator wanting to show the influence of some 
experimental factor proceeds by discrediting the assumption that it 
doesn’t matter. The backhandedness of this procedure reflects the fact 
that null hypothesis tests are motivated by rhetorical considerations. 
Suppose an experimental investigator announces that the data 
demonstrate—despite considerable variability from case to case—the 
systematic efficacy of a particular educational or medical intervention 
or the operation of a particular theoretical principle, but a critic counters 
that the data could easily have arisen from fortuitous sampling or 
measurement errors. Who wins this scientific debate? The critic does, 
unless the investigator can come up with a counterr-counter, to the effect 
that the data are in fact quite unlikely to be explained entirely by chance 
factors. With such a rebuttal, the investigator discredits the null hypoth
esis (and therefore the critic will in practice usually be deterred from 
raising this argument in the first place). 

Significance Tests Provide Very Limited Information 

The answer to the simple question, ”Is there some systematic difference 
between the experimental group and the control group?" is not usually 
electrifying. As mentioned earlier, there is virtually always some differ
ence caused by sensible experimental manipulations. Indeed, the only 
examples where the exact satisfaction of the null hypothesis is worth 
considering occur when there is widespread disbelief that some strange 
phenomenon exists at all. For example, the null hypothesis is interest
ing when discrediting it implies that mental telepathy is possible, or 
that stimuli below the level of conscious awareness can have reliable 
effects on attitudes and behavior. The complementary case is also 
interesting, in which everybody believes beforehand that an effect must 
exist. For instance, virtually everyone who follows sports believes that 
there is such a thing as ”streak shooting" in basketball, and it caused a 
considerable furor when Gilovich, Vallone, and Tversky (1985) argued 
from a set of sensitive statistical tests on sequences of shots that the 
null hypothesis of no streak shooting is tenable. 

A good way to think about what it means to retain a null hypothesis of no mean 
difference is that the analyst is insufficiently confident to assert which mean is larger 
(Tukey, 1991). See chapter 3, footnote 1. 
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Single Studies Are Not Definitive 

Even in these rare cases, though, where the outcome of a simple 
significance test may have scientific (and possibly popular) news value, 
a single study never is so influential that it eliminates all argument. 
Replication of research findings is crucial. After all, if a result of a study 
is contrary to prior beliefs, the strongest holders of those prior beliefs 
will tend to marshall various criticisms of the study’s methodology, come 
up with alternative interpretations of the results, and spark a possibly 
long-lasting debate. 

Sometimes critics prove right in the long run, and sometimes they 
prove wrong. To take an example from the physical sciences, skepticism 
about the existence of ”cold fusion" prevailed after a year or two of debate 
(Pool, 1988) over a claim of success. The opposite outcome of debate is 
illustrated by the reality of ”subliminal perception"—meaningful stim
ulus registration without awareness—that after a period of skepticism 
has been widely accepted (Kihlstrom, 1987). 

Debate about the existence of extrasensory perception (ESP) went on 
for years in an inconclusive, rather sterile fashion (Hyman, 1991; Utts, 
1991). Argument had not progressed much beyond the ”mere existence," 
null-hypothesis-testing stage to a more interesting, focused examina
tion of the strength and generality (if any) of ESP, the conditions that 
encourage it, and the process by which it may operate. (Recently, the 
debate has become more usefully focused on the properties of a partic
ular type of demonstration, the Ganzfeld procedure [Bern & Honorton, 
1994; Hyman, 1994].) 

Thus even in the rare cases where the literal t ru th of the null 
hypothesis is at issue, and especially in the preponderance of cases 
where the null hypothesis is a straw man, the investigator wants to 
formulate a position going beyond a primitive test of a single null 
hypothesis. Scientific arguments are much more rich than that. Before 
working up to the issues in some typical debates, however, we stay at 
an elementary level and discuss in detail what makes statistical argu
ments rhetorically forceful and narratively compelling. 

PERSUASIVE ARGUMENTS: THE MAGIC CRITERIA 

There are several properties of data, and its analysis and presentation, 
that govern its persuasive force. We label these by the acronym MAGIC, 
which stands for magnitude, articulation, generality, interestingness, 
and credibility.5 

There are other schemes for classifying the quality of statistical evidence and its 
presentation. The enumeration of various forms of validity (internal, external, construct, 
trait, discriminant, ecological, predictive, etc.) is a well-known alternative (Campbell, 
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Magnitude 

The strength of a statistical argument is enhanced in accord with the 
quantitative magnitude of support for its qualitative claim. There are 
different ways to index magnitude, the most popular of which is the 
so-called ”effect size" (Cohen, 1988; Glass, 1978; Hedges & Olkin, 1985; 
Mullen, 1989; Rosenthal, 1991). In the basic case of the comparison 
between two means, effect size can be simply given as the difference 
between the means; often, however, this difference is divided by the 
standard deviation of observations within groups. In chapter 3, we bring 
up a number of alternatives, and introduce the concept of ”cause size," 
which also bears on the interpretation of magnitudes of effects. 

Articulation 

By articulation, we refer to the degree of comprehensible detail in which 
conclusions are phrased. Suppose, for example, that the investigator is 
comparing the mean outcomes of five groups: A, B, C, D, E. The 
conclusion ”there exist some systematic differences among these means" 
has a very minimum of articulation. A statement such as, ”means C, D, 
and E are each systematically higher than means A and B, although 
they are not reliably different from each other" contains more articula
tion. Still more would attach to a quantitative or near-quantitative 
specification of a pattern among the means, for example, ”in moving 
from Group A to B to C to D to E, there is a steady increase in the 
respective means." The criterion of articulation is more formally treated 
in chapter 6, where we introduce the concepts of ticks and buts, units of 
articulation of detail. 

Generality 

Generality denotes the breadth of applicability of the conclusions. The 
circumstances associated with any given study are usually quite narrow, 
even though investigators typically intend their arguments to apply 
more broadly. To support broad conclusions, it is necessary to include a 
wide range of contextual variations in a comprehensive research plan, 
or to cumulate outcome data from many interrelated but somewhat 

I960; Cook & Campbell, 1979). The analysis of validity has been very useful, but it has 
never caught on as a coherent whole. It strikes the student as rather formal and esoteric. 
Another system has been given in an exquisitely sensible little book on the importance of 
statistical analysis in medical research (Hill, 1977). This author named but did not 
elaborate on criteria similar to mine. If my approach has any claim to novelty, it is that I 
have chosen and developed my criteria within the unifying premise of statistics as 
argument, and I know of no previous source that has systematically pursued such an 
approach. 
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different studies, as can be done within the context of meta-analysis 
(Mullen, 1989; Rosenthal, 1991). In chapter 7, we present an analysis 
of variance framework for interpreting generalization. 

High-quality evidence, embodying sizeable, well-articulated, and 
general effects, is necessary for a statistical argument to have maxi
mal persuasive impact, but it is not sufficient. Also vital are the 
attributes of the research story embodying the argument. We discuss 
two criteria for an effective research narrative: interestingness, and 
credibility. 

Interestingness 

Philosophers, psychologists, and others have pondered variously what 
it means for a story to be interesting (e.g., Davis, 1971; Hidi & Baird, 
1986; Schank, 1979; Tesser, 1990), or to have a point (Wilensky, 1983). 
Our view in this book is that for a statistical story to be theoretically 
interesting, it must have the potential, through empirical analysis, to 
change what people believe about an important issue. This conceptual 
interpretation of statistical interestingness has several features requir
ing further explanation, which we undertake in chapter 8. For now, the 
key ideas are change of belief—which typically entails surprising re
sults—and the importance of the issue, which is a function of the number 
of theoretical and applied propositions needing modification in light of 
the new results. 

Credibility 

Credibility refers to the believability of a research claim. It requires both 
methodological soundness, and theoretical coherence. Claims based on 
sloppy experimental procedures or mistaken statistical analyses will 
fall victim to criticism by those with an interest in the results. Clues 
suggested by funny-looking data or wrongly framed procedures provide 
skeptics with information that something is amiss in the statistical 
analysis or research methodology. (Of course, you might yourself be in 
the role of critic, whereby you can track these clues in other people’s 
research reports.) 

Many extensive catalogs of methodological and statistical errors 
already exist in the literature (Aronson, Brewer, & Carlsmith, 1985; 
Campbell & Stanley, 1963; Evans, 1991; King, 1986). Our discussions 
differ from standard ones in two ways. We classify statistical errors 
”bottom up"—that is, in terms of various odd appearances in data, from 
which types of error may be induced (chap. 5); and we treat a selection 
of research design errors in the context of how they might affect the 
ongoing debate between an investigator and a critic (chap. 9). 



14 1. MAKING CLAIMS WITH STATISTICS 

The credibility of a research claim can sustain damage from another 
source—the claim may violate prevailing theory, or even common sense. 
The research audience cannot bring itself to believe a discrepant claim, 
such as a purported demonstration of extrasensory perception, which 
would require vast revision of existing views. In such cases, debate tends 
to occur on two fronts simultaneously. The critic will typically pick on 
suspected methodological errors, thus accounting for the claim as a 
methodological artifact. The investigator must be prepared to try to rule 
out such accounts. Also, a theoretical battle will develop, in which the 
investigator is challenged to show that her alternative theory is coher
ent, that is, capable of explaining a range of interconnected findings. If 
result A requires explanation X, result B calls forth explanation Y, and 
result C explanation Z, where explanations X, Y, and Z have little 
relation to each other, the narrative of results A, B, and C is incoherent 
(Thagard, 1989). On the other hand, if a single explanatory principle 
accounts for several different results, the story is coherent. When the 
results would be unrelated were it not for sharing the same explanation, 
the story is not only coherent, it is elegant. In chapter 9, we refer to 
coherent bundles of results as signatures. 

The outcome of a theoretical debate depends on the comparative 
adequacy of the respective accounts of existing data. But the contest 
may also hinge on who has the burden of proof in the exchange of 
criticisms and rebuttals. Usually, this burden rests with the investiga
tor, especially at the outset. Critics are often freewheeling in their 
invention of counterexplanations: It could be this, it may be that, it’s 
merely such-and-so. Some types of counterexplanations are so vague as 
to be untestable—which gives the critic a substantial debating advan
tage. Nevertheless, despite occasional abuse of the ability to criticize, 
science is better off being tolerant of kibitzers and second-guessers. The 
critic is often right. Anyway, science should have both a conservative 
bias—which prevents rapid and bewildering shifts of views—and ulti
mate openness, such that persistent innovators can ultimately tr iumph 
if their claims are indeed meritorious. These issues are discussed more 
deeply in chapter 9. 

The requisite skills for producing credible statistical narratives are 
not unlike those of a good detective (Tukey, 1969). The investigator must 
solve an interesting case, similar to the ”whodunit" of a traditional 
murder mystery, except that it is a ”howcummit"—how come the data 
fall in a particular pattern. She must be able to rule out alternatives, 
and be prepared to match wits with supercilious competitive colleagues 
who stubbornly cling to presumably false alternative accounts, based on 
somewhat different clues. (This is analogous to the problems faced by 
heroic fictional detectives who must put up with interference from 
cloddish police chiefs.) 
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STYLE AND CONVENTION 

Our five major criteria for an effective statistical argument depend on 
the quality of the data and on the skill of the investigator in designing 
research and presenting results. There are other aspects of statistical 
arguments that depend hardly at all on data or on skill—instead, they 
are matters of taste and convention. 

Style 

For our purposes, the style of the statistical argument within a research 
presentation can be loosely represented by a dimension along which 
different possible presentations of the same results can be arrayed: At 
one extreme is an assertive and incautious style, running toward reck
less and excessive claims; at the other extreme is a timid and rigid style, 
with an unwillingness to make any claims other than the most obvious 
ones. In practice, styles are not usually at the extremes, but rather at 
intermediate positions nearer to one pole than the other. We label these 
the liberal style and the conservative style (chap. 4). 

The liberal style is oriented more toward exploration of data and 
discovery of possibly systematic effects. By contrast, the conservative 
style reflects a confirmatory attitude toward research results, where one 
is willing to forego claims about marginal or unexpected findings in 
order to be more confident about the remaining claims. 

It might seem that one should be able to calibrate just how liberal to 
be if one could place relative costs on making too many claims versus 
making too few claims. Indeed, there are times when research is explic
itly exploratory, with open season on speculations, and times when it is 
explicitly confirmatory, requiring the utmost prudence. But most re
search falls somewhere in the middle, and even in explicit cases, the 
required decision calculation is impractical because the costs of the two 
types of errors are not sensibly quantifiable. There is a boundary in data 
interpretation beyond which formulas and quantitative decision proce
dures do not go, where judgment and style enter. 

Conventions 

Sometimes this subjective element is disguised by the use of conven
tions. There are many such, the most prominent of which is the notorious 
p = .05 as the ”conventional" significance level. If everyone follows the 
conventions, individual investigators are freed from the responsibility 
(but denied the opportunity) for using their own judgment. This is 
relatively benign as long as conventions are reasonable, and everyone 
realizes that they are conventions rather than commandments. 
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The Inevitability of Uncertainty 

An analogy can be drawn with a legal system. The dispensation of justice 
is fraught with uncertainty. There are imponderable costs associated 
with declaring a guilty person innocent, or an innocent person guilty. 
The balance between these two types of mistake is set by the legal 
conventions of a society, in particular, how weighty the evidence of a 
defendant’s guilt must be to justify convicting him. In the Anglo-Amer
ican tradition for capital offenses, guilt must be established ”beyond a 
reasonable doubt." Such a convention, though it may convey a reassur
ing illusion that the decision policy is exact (provided that nobody is 
lying), is itself subject to ambiguity and alternative interpretation. By 
and large, nonetheless, wise use of this imprecise tradition serves us 
well. 

In applications of statistics in the social sciences, some element of 
subjectivity is always present, and the research investigator is cast in 
a role analogous to that of a legal advocate. In this metaphor, the 
scientific audience plays the part of judge or jury hearing the testimony 
of the investigator and of those who may disagree. Though it may take 
several judicial proceedings, a judgment is eventually reached. 

THE BOTTOM LINE 

A research story can be interesting and theoretically coherent, but still 
not be persuasive—if the data provide only weak support for the rhetoric 
of the case. On the other hand, a lot of high-quality rhetoric can be 
squandered by a poor narrative—for example, if the research is so dull 
that no one cares which way the results come out. Thus rhetoric and 
narrative combine multiplicatively, as it were, in the service of persua
sive arguments based on data analysis. If either component is weak, the 
product is weak. The argument is strong only when it has the MAGIC 
properties of forceful rhetoric and effective narrative. In making his or 
her best case, the investigator must combine the skills of an honest 
lawyer, a good detective, and a good storyteller. 



2
Elementary 
Arguments and the 
Role of Chance  

I have proposed that the proper function of statistics is to formulate good 
arguments explaining comparative differences, hopefully in an interest
ing way. In this chapter the four most elementary kinds of statistical 
arguments are introduced, with a pithy illustration of each. All four are 
affected by some manifestation of chance. The first two arguments each 
involve a comparison between a set of observations and a chance 
expectation; the arguments differ in whether or not a comparative 
difference is claimed. The next pair of arguments compare the means of 
two sets of observations with each other; one argument claims that the 
observed mean difference could have been due to chance, whereas the 
other claims a systematic difference on top of chance effects. 

Common sense tells us that an explanatory argument is better if 
concise, with over explanation giving grounds for skepticism. If John 
excuses his absence from work by claiming tha t his grandmother died, 
and besides, he had a bad cold, we are inclined to doubt his sincerity. He 
has violated one of Grice’s (1975) axioms of normal discourse, namely 
that a speaker should give sufficient information to be understood, but 
no more. 

As with everyday explanations, even more so with scientific explana
tions. The ideal of parsimony gives preference to the simplest explana
tion adequate to account for a given corpus of data. In chapter 1, we 
noted that in the social sciences, part of the job of the investigator is to 
sort out the relative contributions to data from chance factors and from 
systematic factors. The most parsimonious (though often not the most 
welcome) kind of explanation is that the data can be attributed entirely 
to chance factors. This case of pure chance serves as a very low-level, 
baseline explanation that may be altered to include systematic factors 
if statistical analysis shows them to be necessary. The role of chance in 
the four simple arguments (and more complex ones to come later) is not 
entirely transparent, and requires discussion. In this chapter we offer 
two conceptions of chance—random generation and random sampling— 
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each taking advantage of a different descriptive metaphor. A third 
process, random assignment, enters our discussion briefly. 

RANDOM GENERATING PROCESSES 

To picture the vagaries of chance, I like to imagine a committee of 
leprechauns responsible for producing data on demand. They tinker 
around with odd ingredients and secret processes, chuckling to them
selves as they send bits and pieces of data from Glocca Morra to the 
investigator. They may or may not include systematic ingredients, but 
they always throw in chance variations. It is not easy to tell what they 
are doing, but sometimes their eccentric procedures for manufacturing 
randomness contain characteristic regularities, and an investigator can 
learn much by being alert to clues of assembly-line chance production, 
leprechaun style. 

One type of whimsical regularity is a random generating process. This 
term denotes the repetitive production of variable observations with 
characteristic properties of uncertainty. Unpredictable mechanical pro
cedures such as the flipping of coins, the rolling of dice, and the spinning 
of a roulette wheel are common examples of these repetitive processes. 
A classic early article on probability by Bayes (1764) used the imagery 
of an invisible hand rolling balls on a square table, and an observer 
noting whether the ball stopped before reaching an arbitrary line. In 
most such examples, the data are sequences of categorical outcomes 
(e.g., random strings of heads and tails). Sometimes there are symme
tries such that on every repetition (trial), each outcome has the same 
probability (heads and tails are 50/50). In other examples such as Bayes’ 
table, the outcomes may not be equally likely. Coins and dice, for that 
matter, can be loaded to favor one or another outcome; any mechanical 
device can have asymmetries that have unexplored consequences (im
agine, e.g., the procedure of flicking a thumbtack with a forefinger along 
a table top to see whether it lands point up or point touching the table). 
Even more exotic unpredictable physical processes can be imagined. Our 
leprechauns could toss shamrocks, or roll apples over a cliff, seeing 
whether or not each object landed in a brook below. 

The Binomial Process 

Suppose that there are two qualitative outcomes, a ”positive" outcome 
and a ”negative" outcome (say, the apple either does or does not land in 
the brook), and the probabilities of these two outcomes are constant for 
every repetition of the process. Suppose further that the outcomes are 
independent from trial to trial, meaning that the actual outcome on any 
given trial does not affect the probability of any later outcome. Coin flips 
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are usually considered independent of one another, because there is no 
physical influence, or residue of information from a given flip that will 
carry over to the next flip.1 The coin doesn’t ”remember" how it came out 
before. Day-to-day weather events provide a clear example of non-
independent outcomes. Because weather patterns tend to persist for a 
few days, a rainy day is more likely to occur following a rainy day than 
following a sunny day. 

The two conditions of constant outcome probability and trial-to-trial 
independence define a binomial process. This type of random generating 
process creates its characteristic patterns of outcomes, albeit the indi
vidual outcomes are unpredictable. Consider the sequence of outcomes 
as represented by a string of symbols, a (1) representing a positive 
outcome, and a (0), a negative outcome. A surprising and important 
feature of these patterns is that in principle they are unrelated to the 
exact physical nature of the process. Statistically speaking, a binomial 
process is a binomial process is a binomial process. Just from observing 
the outcomes, we will be unable to tell whether the leprechauns were 
flipping loaded coins, or rolling apples. When a process obeys the 
defining conditions of the binomial, its long-run statistical properties 
are completely characterized. 

Long-Run Properties of Binomial Processes. One of the long-run 
properties of binomial processes is that the relative frequency of positive 
outcomes in a long series will closely approach the single-trial probabil
ity of a positive outcome. If each apple has a 7 in 10 chance of landing 
in the brook, then over a long series of trials, the relative occurrence of 
this event will be 70%, plus or minus a small margin of error.2 Turning 
this statement around, we can regard the relative occurrence of positive 
outcomes in the data as an estimate of the constant per-trial probability, 
a feature of the process that may have been unknown before any data 
were gathered. 

Other long-run properties characterize the trial-by-trial sequence of 
positive (1) and negative (0) outcomes. Consider a string of heads (1) and 
tails (0), say, [1100010100001110...]. Agiven string contains runs of like 
outcomes; the aforementioned string starts with a run of two heads 

1To be careful about this assertion, some assumption needs to be made about the 
variability from trial to trial of the blows imparted to the coin by the flipper’s thumb. The 
reason for this is that some dextrous conjurors are able to achieve such constancy of the 
flip stroke that they can make heads come out every time. Without going into the subtleties 
of the necessary assumption, suffice to say that our hypothetical flipper is highly variable 
and erratic. 

2An appropriate version of the ”central limit theorem" (see Adams, 1974) states that as 
the number of independent events increases, the observed proportion of successes almost 
certainly gets arbitrarily close to the per-trial probability. For any specified degree of 
closeness (say .1%, or .01%), one can attain any desired odds (say, 99 to 1) of getting that 
close by taking a large enough sample. 



2 0 2. ELEMENTARY ARGUMENTS & ROLE OF CHANCE 

followed by a run of three tails. Because binomial processes are mathe
matically well specified, it is possible to calculate for a sequence of given 
length the expected frequency of occurrence of runs of length two, three, 
four, and so on, for both the positive and negative outcomes. A powerful 
mathematical analysis of several types of run counts is given by Fu and 
Koutras (1994). 

The Gambler’s Fallacy. There are two interrelated popular mis
conceptions of the nature of binomial sequences. One of these is the 
”gambler’s fallacy." If there has been a long run of one outcome, an 
observer might reason that because the two outcomes are destined to 
come out in a given ratio in a lengthy set of trials, the outcome that has 
not appeared for a while is temporarily advantaged. Upon seeing six 
straight occurrences of black from spins of a roulette wheel, a gambler 
suffering from this illusion would confidently bet on red for the next 
spin. This fallacy also occurs among baseball fans. A hitter with a batting 
average of .250 gets a hit one time in four, on average. The fan, reacting 
to the information that a .250 hitter has made an out his first three times 
up in a game, is wont to say that the batter ”is due." A hit his fourth time 
up would mimic his general average of one out of four. 

Why is it fallacious to think that sequences will self-correct for 
temporary departures from the expected ratio of the respective out
comes? As a kid, years before I was exposed to formal statistical training, 
I used to puzzle about this question in the form of the following paradox: 
Suppose that John and Bill each flip coins known to be fair; John gets 
five heads in a row, and Bill five tails in a row. Then they switch coins. 
On John’s next flip, this time with Bill’s coin, should the outcome tend 
to be tails (to even up John’s record) or heads (to even up the record of 
Bill’s coin)? As one thinks about this conundrum, more riddles tend to 
come to mind. Suppose a coin yields 10 heads in a row, and then you 
wait before the 11th flip. Maybe you even bury the coin for a year, or put 
it in a time capsule. When unearthed, how will it know to have a 
preference for tails?3 No, the gambler’s fallacy can’t be right. 

Chance is Lumpy. Does this mean, then, that randomly generated 
sequences don’t balance out to the proper ratio? In a way, yes, but only 
by trivial amounts when the sequence gets really long. Ten extra heads 

In a test of psychological (though surely not logical) behavior when confronted by such 
riddles, Eric Gold (personal communication, September 1991) found that when the next 
flip after a run of four heads was made with a new coin, the gambler’s fallacy sharply 
diminished. Also, when a pause of 24 minutes was introduced following a run, the fallacy 
also dropped. Intuitively, people seem to regard chance behavior (here, the putative 
compensatory tendency) as residing in the coin in use. Interestingly, in games of bridge or 
poker, particular chairs are often thought to embody consistent (rather than compensatory) 
good or bad luck. How we imbue inanimate objects with our superstitions! 
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won’t distort a 50/50 ratio much after a half million or so more heads 
and a half million or so tails. Local imbalances of one or the other 
outcome are like undigested lumps in the long stream of data. This is 
an illustration of Abelson’s First Law of statistics: Chance is lumpy.4 

People generally fail to appreciate that occasional long runs of one or 
the other outcome are a natural feature of random sequences. It has 
repeatedly been demonstrated that when subjects are asked to write 
down a series of chance outcomes such as might result from a succession 
of flips of a fair coin, they tend to avoid long runs of either outcome. The 
sequences they write usually alternate back and forth too quickly 
between the two outcomes (Wagenaar, 1972). This appears to be because 
people expect random outcomes to be representative (Kahneman & 
Tversky 1972) of the process that generates them, so that if the trial-
by-trial expectations for the two outcomes are 50/50, then the person 
will everywhere make the series come out almost evenly divided. A 
related psychological error is to judge sequences that have in fact been 
generated by a binomial process to be nonrandom, that is, to be attrib
utable to systematic causal factors. These natural errors make it very 
important to be careful in explaining sequences of qualitative outcomes, 
resisting the temptation to claim systematicity unless chance explana
tion is insufficient. 

The first two simple arguments we consider, then, are: (a) the modest 
proposal tha t a set of data could simply represent the expression of a 

Statements about randomness can readily lead into a metaphysical quagmire, but it 
is worthwhile to risk the bog with an amplification of this statement. By ”chance" I mean 
an output from a mathematically idealized, hypothetical random generating (e.g., bino
mial) or sampling process. The reason for the warning about lumpiness is that people 
generally assume too much local regularity in their concepts of chance. People are lousy 
random number generators, as discussed in the paragraph, after this footnote. 

But serious issues are raised when one asks what natural or artificial mechanism could 
in practice perfectly simulate chance behavior. Scientists in many fields need sequences 
of random numbers for modeling phenomena with probabilistic features. And they are 
needed in creating random samples or random assignments for social science research. 
The standard way to produce such sequences has been to have a computer repeatedly 
multiply varying many-digit numbers together, each time selecting scattered digits of the 
product. It has recently been discovered, however, that although such sequences obey 
simple tests for true randomness, they fail more elaborate, finicky tests by manifesting 
too much lumpiness (Ferrenberg, Landau, & Wong, 1992). This finding has caused 
considerable consternation, and a pessimistic review of possible alternatives for random 
number generation (Browne, 1993). It is conceivable that both artifice and nature are 
intrinsically incapable of generating sequences of events that mathematical statisticians 
will accept as ideally random. 

Such a metaphysical catastrophe would not have damaging consequences, however, for 
the social science research discussed in this book. The anxieties of the physicists and 
mathematicians over randomness are akin to worrying about atomic clocks drifting by .01 
seconds per century, whereas social scientists typically operate at a level of precision more 
appropriate for an alarm clock that gains or loses 6 hours a week. 
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random generating process; (b) the more forthcoming claim that some 
systematic explanation of the data is required, above and beyond the 
operation of a random generating process. 

Argument 1: The Data Could Come From a Random 
Generating Process 

We have pointed out that ”pure chance" can be a parsimonious account 
for a data set. If the data are consistent with such an account, but the 
investigator doesn’t offer it, then a critic surely will, and the investigator 
will be in an embarrassingly weak rhetorical position. 

We have also noted that data strings coming from very different 
physical realizations of random generating processes can be indistin
guishable. Different animals, so to speak, leave the same statistical 
footprints. There are even cases of sequential events not often consid
ered to be in the realm of chance, which nevertheless produce data 
strings with the characteristic features of randomness. 

Chance as a Factor in Manifestly Skilled Behaviors. Confusion 
between chance (in the sense we have been discussing) and system
atic effects is great when skilled performances are at issue. For 
example, if an athlete is trying to produce a given outcome, it goes 
against the grain to call the result of the effort chance. Yet at the same 
time, we accept as natural some variation in the success of repeated 
attempts. 

When is it appropriate to invoke systematic factors in explaining 
sequences of athletic performances, say, basketball players repeatedly 
attempting to score baskets? In general, systematicity can be claimed 
when some meaningfully identifiable portions of the data set are mark
edly different from one another. Sequences aside, if some individuals 
(and some teams) are fairly consistently more successful than others, 
then we are inclined to believe that they are really better, rather than 
just lucky. Also, when it is observed that a given player gradually 
increases his or her rate of success, the reasonable supposition is that 
the player is systematically improving in skill. Third, there are certain 
external conditions that are coherently associated with the rate of 
success, for example, playing on one’s home court (Cooper, DeNeve, & 
Mosteller, 1992; Harville & Smith, 1994). 

The effects of other external conditions, however, may be murky. 
Athletes might claim that playing four games in five nights is detrimen
tal. Or that the team is predictably worse on Sundays, or when their 
biorhythms are unfavorable. At some point, statisticians might scruti
nize performance data to try to adjudicate between real effects and 
apparent effects more parsimoniously attributed to chance. 
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Example: The Hot Hand in Basketball One such investigation 
(Gilovich, Vallone, & Tversky, 1985) has concerned the so-called ”hot hand" 
in basketball. When a player runs off a string of successful shots, aficiona
dos of the game are apt to say that the player is hot, and when in the midst 
of a series of misses, cold. These popular terms—which also arise in other 
competitive sports and games—connote supposedly causal influences of 
unknown, perhaps unknowable origin. The trained statistical investigator, 
having learned that data-generating processes can be realized by all sorts 
of physical mechanisms, thinks abstractly about sets of observations, 
temporarily stripping away the context in which they arose. 

Thus with the hot hand, what the investigator examines are the 
strings of hits and misses by each of a number of basketball players over 
a large number of games. For purposes of statistical examination, the 
data might as well have come from apple rolls by leprechauns as from 
shots by basketball players. The feature of interest in the data is whether 
successive shots by given players are nonindependent, tending to rim in 
systematic streaks with hits following hits (and misses following misses). 

When appropriate data sets were examined, what did the investigators 
of the hot hand conclude? Surprisingly, they found no evidence whatever 
to support the notion of unusually hot streaks by players. The data for each 
player were entirely consistent with a random generating process, in 
particular, a binomial process (constant probability for success on each 
shot, and independence between shots; Gilovich et al., 1985). To reach this 
conclusion, the investigators conducted several analyses, including a com
parison of the probabilities of making shots after having made or missed 
one, two, or three previous shots, a count of the number of rims of hits and 
misses in strings of consecutive shots, and a comparison with chance 
expectation of the variability of success across games. Such analyses were 
conducted for each member of the Philadelphia 76ers on both field goals 
and free throws, and for sequences of practice shots by members of the male 
and female teams from Cornell. (Analyses were later conducted on other 
pro teams, with the same conclusion.) 

Reactions to the Lack of Evidence for Hot Hands. B a s k e t b a l l 
players, coaches, writers, and fans who have heard about this conclusion 
generally find it incredible. They profess to know that hot streaks exist. 
Why? Gilovich (1991) proposed that the persistent belief in the reality 
of streakiness, as opposed to randomness, is associated with the failure 
to appreciate what random strings look like. People do not realize that 
chance is lumpy, and attribute the occasional lumps to mysterious, 
supposedly systematic processes such as hot hands. Also, many people 
may be unwilling to believe that whether or not a shot goes in is 
absolutely unrelated to the success or failure of the previous shot. Don’t 
players have periods of feeling relaxed and in a groove? Don’t offenses 
use successful plays repeatedly, until the defense gets wise? 
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There is indeed a certain fragility to the argument that the features 
of a data string are indistinguishable from those of a well-defined 
random generating process. Finite data strings cannot be guaranteed to 
be random. It requires a controversial metaphysical leap, in fact, to 
claim that specific data are random, as opposed to making the inference 
that their generating process is random. The most circumspect state
ment is that given strings are not inconsistent with the hypothesis of an 
underlying random process. But if one were to look at new data, or 
previously unanalyzed features of old data, it is conceivable that some 
evidence of nonrandomness would emerge. This possibility sustains the 
hopes of those who are true believers in a given phenomenon, and are 
frankly annoyed that spoilsport statisticians try to tell them that their 
belief is wrong-headed. They are ready to leap in with a counterargu
ment should the opportunity arise. 

Larkey, Smith, and Kadane (1989) did in fact pounce on the hot hand 
issue, claiming that the previous investigators had neglected the timing 
of shots in true manifestations of hot hands. A reanalysis considering 
only runs of shots closely spaced in time, they said, would reveal the 
hidden phenomenon. Larkey et al. presented such an analysis, purport
ing to show a hot hand for at least one player—Vinnie Johnson, nick
named ”Microwave" because of his fabled hot streaks. 

Tversky and Gilovich (1989), in rebuttal, emphasized that the reanal
ysis failed to uncover any hot players other than Johnson, and that 
Johnson’s statistically remarkable streakiness depended entirely on a 
single run of seven baskets. Furthermore, that single run of seven could 
not even be found on the videotape provided by Larkey et al.! Instead, 
there was a run of four good shots, a miss followed by a score off his own 
rebound, and then one more hit. Correcting for this tabulation error, 
even the Microwave didn’t depart from randomness.5 Undaunted by this 
setback, other believers in hot hands may yet try coming up with a 
convincing reanalysis. 

Argument 2: Unspecified Factors Cause Departures 
From Randomness 

Attributing a data set to mere chance is often deflating. It is an 
argument that something or other (such as the hot hand) doesn’t exist.6 

Rejecting the null hypothesis of mere chance, by contrast, supports the 
argument that something or other does exist. We may not know what 
the responsible systematic factor is, but we can feel some assurance that 
there is one. 

5Johnson was found to be more likely to shoot again shortly after a hit, making the 
psychological impact of the hot hand illusion more compelling. 

6There are exceptions to the general idea that chance accounts are vacuous and nihilistic. 
One exception arises from the concept of efficient markets in economics, which requires 
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Extrasensory Perception: A Good Illustration. Experiments on 
extrasensory perception (ESP), especially of mental telepathy or clair
voyance, provide appropriate illustrations. In one often-used setup 
(Whitten, 1977), an assistant selects randomly shuffled symbol cards 
one by one. The potential psychic in another place records his im
pressions of the sequence of symbols. Typically in such experiments, 
there are five possible symbols. They may sometimes be equally often 
represented in the symbol deck, but for purposes of our discussion, let 
us assume that the five symbols could occur different numbers of times 
in a deck of, say, 25 cards. 

For each run through the deck the success of telepathy or clairvoyance 
is scored by matching the impressions of the psychic against the actual 
cards, tallying the number of correspondences. The skeptical, wet blan
ket model of this situation is that ESP does not exist; the apparent 
successes are entirely due to a binomial process with a probablility of 
one out of five, or .2, on each of 25 independent trials. (The successive 
symbol impressions are not usually independent of one another, but the 
cards themselves, if well shuffled, would be independent over trials, and 
thus also would be the matches between the cards and the impressions.) 

Example: A Famous Series of Clairvoyance Tests. In the cele
brated Pearce-Pratt Series of tests conducted at Duke University in 
1933-1934 (see Rhine & Pratt, 1954), the overall percent correct over 
70 separate runs through a deck was 30%. The binomial process model 
predicts close convergence to 20% in a long series of trials, so the data 
seem a rather poor fit to this chance model. Because the expected 
variability of the chance process depends only on the number of trials 
and the probability of success on each (both of which are known here), 
one can in fact precisely assess the odds against getting a 30% success 
rate by chance. These odds are so steep they run off the available 
statistical tables—we might as well call them a skintillion to one. 
Therefore the original investigators felt supremely confident in rejecting 
the mere chance binomial model. It was inferred that something else 
was involved in the causation of success: something labeled clairvoy-

(Otherwise, rational analysts would predict the trend, and their investment behavior 
would make the trend disappear.) Relevant sequential data have been much analyzed 
(DeBondt & Thaler, 1990) to see whether a random generating process gives an adequate 
account. In several small ways, it doesn’t, creating some difficulty for economic theorists. 
Here we have the oddity of a systematic theory predicting chance data. 

Quantum theory in physics is another peculiar case. Quantum theory postulates a 
subatomic microworld in which systematic events and states are inherently probabilistic. 
Though the theory is now accepted, it still seems counterintuitive. ”I cannot believe tha t 
God would play dice with the universe," Albert Einstein is supposed to have said. In any 
case, in virtually all social science applications, chance as a complete explanation of raw 
data is a rival to systematic explanation, not its embodiment. 
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ance, the ability to gather stimulus information through other than 
normal sensory channels. 

ESP has long been controversial. Sure enough, there is a counterar
gument against the Pearce-Pratt claim, which we present in chapter 5. 
For the moment, we note that there was no analysis of the day-to-day 
variability of the success rate or of the sequential properties of the data. 
Because the level of success was higher than could reasonably be 
expected from an appropriate random generating process, there seemed 
no need to examine further properties of the data. Such an omission 
could be unfortunate, for the reason that if a binomial process is not the 
explanation, one would at least like some clues as to what is going on 
instead. Merely labeling the presumed systematic process as clairvoy
ance is not of itself a very helpful explanation. Does clairvoyant success 
come in streaks, like hypothetical hot hands? Does it improve with 
practice? How variable is it? Do people who believe in ESP have more 
of it? Further elaborations such as this are important in the articulation 
of systematic processes (chap. 6), and in the credibility of claims (chap. 
9). 

Remarks on the First Two Argument Types 

Summing up the first two argument types, each one takes advantage of 
the statistical regularities of a random generating process—a somewhat 
lumpy, patterned randomness with a specifiable rate of success in a very 
long series. We used the binomial model as the simplest illustration of 
a random generating process. Given the per-trial probability of success, 
and the assumption of independent trials, all the statistical regularities 
of the process are mathematically known. This is very important, 
because it immediately provides a rich set of expectations against which 
data can be tested. 

In our first example, it was argued on the basis of analysis of the 
sequential properties of the hot hand data that the chance model was a 
sufficiently good fit. The argument in our second example was that 
chance alone could not explain the data, at least not the overall success 
rate. (It was accidental that the chance model was accepted when 
sequential properties were examined, but was rejected when overall 
success rate was the criterion. Examples going the other way around 
could just as well have been given.) 

RANDOM SAMPLING PROCESSES 

The first way to think about chance was to imagine a random generating 
process. There is another way, using the idea of a random sampling 
process. Suppose that for a large number of individuals in a ”population," 
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measurements (or scores) are written on slips of paper by our busy 
leprechauns, and dropped into a hat. There is no patterning to the scores 
in a hat, such as was the case with the binomial generating process. All 
we can assume is that there is some distribution of these scores. The 
leprechauns know the shape and various summary properties of the 
distribution in any hat, such as the mean, but they don’t tell us. They 
merely shuffle slips without peeking at them, and deliver one or more 
samples of them. The bemused investigator who requested these sam
ples of scores must make inferences about the populations from the 
samples he sees. 

Appreciating the Omnipresence of Variability 

Psychologically, there is a tendency to underestimate the degree to 
which means (or other calculated statistics) may vary from one sample 
to another. We are inclined to endow quantities we calculate with an 
aura of exactitude and finality, not worrying enough about the results 
that might obtain were other samples to be drawn. This proclivity is 
particularly misleading when the size of the sample is small: Tversky 
and Kahneman (1971) coined the phrase, ”The law of small numbers," 
to refer to the tendency to impute too much stability to small-sample 
results. In like fashion, Kunda and Nisbett (1986) noted that in some 
everyday situations, observation of a few isolated behaviors leads too 
readily to judgments of stable personal characteristics such as friendli
ness or introversion. Here it is likely that observations of the behavior 
of another person are not perceived as potentially variable samples over 
time, but as direct indicants of stable traits. The perceiver is especially 
likely to be misled if the sample is biased with respect to time and 
place (say, the other person is seen only on Saturday evenings at 
parties). To be mindful of the ever-present possibility of limited, 
quirky samples leading to runaway intuitions, let us coin Abelson’s 
Second Law: Over confidence abhors uncertainty.7 Psychologically, 
people are prone to prefer false certitude to the daunting recognition 
of chance variability. 

Comparing the Means of Two Groups 

The uncertainty attached to statistical summaries is surprisingly great 
in comparing results from two groups (A and B), each represented by a 
sample of individuals. A standard inferential task in this situation is to 
decide whether or not the two groups of scores could plausibly be 

The tendency to overlook or downplay chance variability is but one instance of a 
pervasive ”overconfidence bias" (Fischhoff, Slovic, & Lichtenstein, 1977)—the tendency for 
people to believe themselves to be more often correct than is objectively the case. 
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regarded as two samples from the same population. The scores could be 
the results of a test, such as an IQ test. Or they could be physical 
measurements such as individuals’ weights. Or they could be scores 
derived in some fashion from other scores, say, the differences between 
average reaction times to identify words with positive versus negative 
meaning. The important features for our purposes are simply that every 
one of a large number of individuals in a population has an actual or 
potential score, and that two subsets of randomly sampled individuals 
are given special attention. 

Imagine that we are concerned with the weights of 18-year-old 
women. We want to compare the average weights of two subgroups, say, 
those who jog regularly with those who never jog. If we are to make a 
judgment about whether or not a particular systematic factor makes a 
difference, we need to appreciate the way that chance factors make their 
appearance in this situation. 

Unlike the data sets used in Arguments 1 and 2 discussed previously, 
weight data8 do not seem representable by a simple random generating 
process. The pound-by-pound details of weight accretion to a particular 
level are complex and ill-understood. But even though we cannot find 
an appropriate generating process, we can imagine leprechauns shuf
fling a hatful of weights, each identified with a distinct 18-year-old 
woman, and conducting some sampling operation(s) leading to the 
creation of data sets for Groups A and B. 

There are two major variations in the way that samples are used in 
simple comparisons of two groups. In a true experiment, the investigator 
compares average scores in two groups that differ on a factor that has 
been manipulated by the investigator. This case is treated in Argument 
4, later. 

The other case is an observational study, where the intent lies in 
comparing two natural groups on some feature of interest. In our 
illustration, we are interested in knowing if the average weight of 
18-year-old women is systematically different for those who jog regu-

If we were willing to assume that the weight of a young adult results from the 
aggregation of a large number of independent causes, each of which could be present or 
absent during preadult physical development, then it can be shown that the distribution 
of adult weights would have the shape of the normal distribution. Interestingly, this type 
of assumed aggregation can be visualized as a random generating process: A large group 
of leprechauns, each carrying an apple, walk single file past a large wooden barrel. Each 
one in turn decides with his own characteristic probability whether or not to put his apple 
into the barrel. When the last leprechaun has passed by, the weight of the barrel is noted. 
Then the barrel is emptied, and each elf retrieves his apple. The group comes round again, 
repeating its random behavior, and creating a new load of barreled apples; then again, and 
again. If this process is repeated indefinitely, the distribution of barrel weights will have 
the shape of a normal curve. It is unreasonable, however, to assume that the process 
determining biological height is analogous to this random generating process, and indeed, 
observed weights are not normally distributed (Shils & Young, 1988). 
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larly and those who have never jogged. This is a population question; if 
it were feasible to gather the information on all 18-year-old women9 who 
either jog regularly or have never jogged, a hard-working lunatic might 
do that. In practice, it is much more reasonable to take samples for the 
two groups. 

”Representative" Samples: An Attractive Illusion. How ought an 
investigator go about this? Informally speaking, she wants her samples 
to be representative of the joggers and nonjoggers, respectively. The 
concept of representativeness, however, is an appealing but misguided 
idea (much as it was when applied to random sequences). It relies on 
the image of a microcosmic population, a cleverly selected sample that 
is an exact replica of the larger universe of individuals. It is a Noah’s 
Ark sort of conception, with proportional representation of different 
types of individuals. 

If we knew exactly what measurable attributes were most predictive 
of systematic weight differences among 18-year-old women, we might 
try to design proportionalized (”stratified") samples only on these attri
butes. But often we don’t have such information. And we would enter a 
labyrinth if we tried to select sets of people with various combinations 
of these attributes. Anyway, we would still have to decide how to sample 
individual members. 

Random samples come to the rescue. These are samples in which each 
member of the relevant population has an equal chance of being chosen, 
and all possible samples are equally likely. The individual members of 
a random sample are unpredictable, but the process has statistical 
regularity tha t allows probabilistic statements to be made about the 
average scores of sample members. The variability from sample to 
sample of the average score depends only on the variability of individual 
cases and the size of the sample. 

How Can Random Numbers Be Produced? Procedures for creat
ing random samples are nontrivial. A popular misconception is that 
haphazardness is involved, so that all you need do, for example, is to put 
on a blindfold and stick pins into a master list. This is a flawed 
procedure. If you blindly stick a pin into each page of a phone book, say, 
names near the middle of the page will be more likely to be chosen than 
those at top or bottom, violating the equal-chance definition of random 
samples. Other informal schemes have similar difficulties. 

There are computer algorithms for producing random numbers, 
which can be attached to individuals in various ways, say, by dialing 

9A11?! Do we include Eskimos? Bulimics? Pygmies? Once we raise the question of who 
belongs in the population, we realize that there are boundaries to the universe of cases to 
which we intend to generalize. 
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random phone numbers. Most academic and commercial organizations 
draw samples for telephone interviewing by refinements of random digit 
dialing (see Crano & Brewer, 1986). 

However, there are a number of obstacles to the achievement of 
perfectly random samples. (In surveys of the population of people with 
telephones, e.g., what do you do about answering machines [Tuckel & 
Feinberg, 1991])? What about interview refuseniks? How do you prevent 
oversampling of people with several phone numbers, or undersampling 
people in large households with only one phone? Etc.) For the present 
discussion, we imagine that the investigator subcontracts the job of 
drawing random samples to Leprechauns Inc., an upscale firm that 
promises to produce unpredictability of precisely the style you request. 
The data for the samples are guaranteed not to be biased on any property 
of the population(s) from which the samples are drawn—but of course 
the customer has to be aware that chance is lumpy. 

The investigator wishing to compare the weights of joggers and 
nonjoggers requests two random samples, one for each group. Lepre
chauns Inc. happens to have a hatful of the weights of all 18-year-old 
female joggers, and a hatful for the weights of all nonjoggers. They draw 
a random sample from each of these hats, and present it to the investi
gator. She must decide if there is a systematic mean weight difference 
associated with jogging. Suppose that in her data the average jogger 
weighs 118 lbs., and the average nonjogger 123 lbs. Can she be confident 
that this direction of difference is a reliable result? 

If the samples were small and/or the variance of cases within the 
samples were large, a 5-lb. difference could conceivably be an accident 
of sampling variation. With larger samples or smaller within-sample 
variation, at some stage a 5-lb. difference would become convincing 
evidence that joggers (of given age and gender) on average weigh 
systematically less than nonjoggers.10 A formal statement corresponding 
to this intuition provides a statistical test procedure. 

The t Test The alert reader will long since have said never mind 
the leprechauns, here we just do a t test. That of course is the standard 
textbook recommendation for testing whether the difference between 
the means of two groups departs significantly from zero. But textbook 

10Were a systematic weight difference associated with jogging to be claimed, there would 
still arise a serious problem of interpretation. For starters, we would not know whether 
the joggers weighed less before they started jogging, or lost weight due to jogging. 
Furthermore, we would be at the mercy of critics who might suggest that social categories, 
such as yuppies, could both encourage jogging and be disproportionately composed of thin 
people. Such problems of causal interpretation were discussed in chapter 1 in connection 
with the supposedly long-lived conductors, and are treated in more detail in chapter 9 in 
connection with research debates. 
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readers are often in the position of Dylan Thomas’ (1954) autobiograph
ical child who was told ”everything about the wasp except why" (p. 25). 

The t ratio is a convenient and cogent measure: It is the observed 
mean difference between two samples, relative to an estimate of sam
pling variability. Consider the null case where the two groups of scores 
are randomly sampled from the same population. Here, it is as though 
the leprechauns draw a double-sized random sample of slips from one 
hat, and deal them like cards into two piles representing Group A and 
Group B, respectively. In this case of no systematic difference between 
the As and the Bs, the value of t will tend to come out relatively small; 
but if the two samples differ because on top of chance variability the 
Statistical Imp has added a systematic increment for one group or the 
other, t will tend to come out relatively larger. 

The tables of critical values of t are derived assuming that the overall 
distribution of scores from which samples are drawn is known to be the 
normal distribution. Now, a great many raw data distributions depart 
in some respect from the normal distribution (Mandlebrot, 1965; 
Micceri, 1989). Fortunately, the p values based on the t test (especially 
those near the .05 significance level) are insensitive to the actual shape 
of the underlying distribution for many types of realistic non-normal 
distributions (Sawilowsky & Blair, 1992). The t test is said to be ”robust" 
(Kirk, 1982; Tukey, 1962) against variations in the shape of the distri
bution.11 For rhetorical purposes, there are basically two possible out
comes to a simple t test. A skeptical account based on pure random 
sampling can either survive, or else be discredited in favor of an account 
that also includes a systematic group difference in mean score. Each 
outcome houses an elementary argument, as we now illustrate. 

Argument 3: The Data Could Come from a Random Sampling 
Process 

Example: Power to the Students. Our next example (with slight 
alteration) is from a student research project at Yale in 1992, exploring 
the psychology of participation in a campus-wide agitation by graduate 
students for several university concessions, including union recognition. 

A questionnaire designed to tap the correlates of commitment to the 
graduate students’ cause was administered to 52 randomly chosen 
students from three departments. Twenty-nine of them participated in 
a well-planned campus demonstration a couple of days later; the other 
23 did not. The mean ratings by the participants and nonparticipants 

11Contrary to prevailing supposition, however, the t test is not very robust against 
violation of the assumption of equal variances within groups. When the variances of the 
two groups are rather different (say, in a ratio of at least 3:1) the t test tends to give 
somewhat inflated values, and modifications may be in order (Wilcox, 1987). 
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on a number of attitude and self-rating scales from the questionnaire 
were compared. 

The data in Table 2.1 come from a much larger table, filled with 
comparisons between the participant and nonparticipant groups. The 
mean self-ratings in answer to the question, ”On a political spectrum 
going from very liberal to very conservative, where would you place 
yourself?" are given in the table for the two groups. This question (along 
with related others) was asked because the investigators anticipated 
that ideological differences might be among the correlates of participa
tion in such a campus demonstration; in particular, they thought that 
liberals would be more likely than conservatives to press for student 
union recognition. The usual stereotype of student demonstrators is that 
they are driven by fervent devotion to political and social causes aimed 
at changing the established order. 

However, the difference between the means on the liberalism/conser
vatism question turned out to be in the ”wrong" direction. The partici
pants were on average more conservative than were the 
nonparticipants. However, the difference between the means was only 
.02—two hundredths of a scale point on a 7-point scale. The trivial size 
of this difference can be appreciated by noting that if 1 of the 29 people 
in the participant group had given himself a rating of 2 rather than 3, 
say, the mean rating for participants would have been lower by 1/29, or 
.03 (rounded), altogether nullifying the difference between participants 
and nonparticipants. In practice, one could hardly find a mean differ
ence smaller than this, and the t of .07 and corresponding p over .90 
reflect the virtual equality of observed means in the two groups. Self-
placement on a liberalism-conservatism scale, then, bore no systematic 
relation to participation in this campus demonstration, as though liber
alism scores were sampled from a single distribution and assigned 
randomly to participants or nonparticipants. This is a bit surprising. 

Limitations to the Conclusion. What are we to make of this? Has 
the investigator established the literal conclusion that the liberalism of 
nonparticipants in campus demonstrations is exactly the same as for 
participants?! No. Although the null hypothesis is stated as an exact 
equality of the means of two groups, chance factors blur the outcome. 

TABLE 2.1 
Mean Self-Ratings of Liberalism by Participants and Nonparticipants in a 

Campus Demonstration 

Participants (N = 29) Nonparticipants (N = 23) 

2.72 2.70 

Note. On a 7-point scale, 1 = very liberal, 7 = very conservative. 
t(50) = .07, p > .90. 
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Hypotheses that the difference was +.25, +.50, or even -.50 would have 
been accepted by t-tests also. We can only specify a band of plausible 
true mean differences in the population of graduate students from which 
the samples came. In this example, such a band can be given by the 95% 
confidence limits, which run from -.54 to +.61. The range of plausible 
true differences thus includes zero, but no logic compels it to be zero. It 
appears, nonetheless, that the true difference is very apt to be no larger 
than about half a scale point. 

From another direction comes a further limitation on what conclu
sions can be drawn. The study was extremely narrow in scope—two 
groups from three departments at one university, based on participation 
in one demonstration. We consider questions of generality of claims in 
chapter 7, but for the moment we may simply note that one study 
certainly cannot establish a sweeping general claim. Yet a third problem 
with the claim of no systematic relation between ideology and partici
pation is that the self-rating measure of liberalism may have been 
unreliable or inappropriate. How do we know, for example, that the 
students took the liberalism question seriously? Or that the range of 
liberalism on a predominantly liberal campus is meaningful? 

Strengthening the Argument In recruiting all these doubts, we 
seem to be virtually dismissing the results of the study. But this is too 
precipitous a collapse in the face of criticism. There were in fact several 
pieces of collateral evidence serving to bolster the basic claim. There 
were very small and nonsignificant differences between participants 
and nonparticipants on other ideology-related questions, such as 
attitudes toward unions, or toward the Gulf War. Yet these questions 
and the self-rating of liberalism correlated significantly with one an
other, undercutting the arguments that respondents might have been 
indifferent and inattentive while answering the questions, or that the 
liberalism scale made no meaningful distinctions. Furthermore, on 
attitudes toward campus issues, including those that motivated the 
demonstration, there was no evidence of difference between participants 
and nonparticipants! 

The two groups did differ significantly and substantially, however, on 
questions concerning the desirability and likely effectiveness of a dem
onstration. For example, for the statement, ”It is important that every 
student stand up and be counted on the day of the demonstration," the 
mean score for the participants was 1.58 units higher than for the 
nonparticipants on a 7-point scale of agree/disagree. On predictions for 
the likely turnout for the demonstration, 80% of the participants but 
only 20% of the nonparticipants said it would be heavy. 

Taken together, the results in this modest study were coherent, and 
give credibility (see chap. 9) to the following argument: Under the 
circumstances of this particular demonstration, ideological and campus 
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issue positions had minimal bearing on participation; what mattered 
instead was belief in the efficacy of such action. Generalization to other 
campus demonstrations is hazardous, but nevertheless suggest a cau
tionary tale: Observers of political demonstrations should not automat
ically assume that participants are more extreme in their political 
attitudes than is typical for their interest group. They may be distin
guishable in their endorsement of political means rather than political 
ends. 

Random Assignment and Experimental Manipulation. In the 
previous example, the investigator had no control over the causal 
influences in the situation. The causes of the behavior of interest were 
unknown, and remained somewhat arguable even after a lot of good 
detective work. Causal claims can be crisper when the groups are 
defined entirely by some property introduced experimentally by the 
investigator. In order to ensure that the groups do not differ in some 
other systematic way, the experimenter uses random assignment of 
individuals to the two groups. In acting thus, the experimenter co-opts 
the sampling scheme of the leprechauns in the null case: Individuals are 
drawn from a single pool of subjects, and at random each one is labeled 
an A or a B. Thus at the outset the As and the Bs differ only by chance. 
On top of this foundation, the experimenter also attempts to take over 
the role of the Statistical Imp by treating the A’s differently from the B’s 
in some single key aspect—say by paying the As more than the Bs—and 
measures the degree of group difference on some subsequent behavior 
or judgment. The beauty part of this strategy is that if a significant 
difference is found, it permits the experimenter to claim that the 
experimental treatment caused the group difference in behavior. The 
reasoning is that because the groups differed only by chance before the 
manipulation, a systematic difference afterwards implies that the ex
perimental manipulation was responsible.12 (For a brief and especially 
readable discussion of the distinction between experimentation and 
observation, see Mosteller & Tukey, 1991; for a more extended discus
sion of experimentation in social psychology, see Aronson, et al., 1985.) 

Loopholes in the Logic of Experimental Manipulation. Most text
books convey the impression that the logic of the ”true experiment" is 
airtight. But it must be confessed that there are leaks in the this logic, 
too. As we show in the example in the next section, and several examples 

There is another excellent property of random assignment followed by an experimen
tal manipulation. When the original pool of subjects constitutes a biased, rather than 
random sample from a population (say, by taking volunteers only), the claim of a causal 
role for the experimental manipulation is unaffected. What changes is that this claim 
attaches to a biased population: for example, only to the subpopulation of those who tend 
to volunteer. 
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in chapter 9, there is a set of loopholes through which critics can slip 
alternative causal explanations. The problem is that causal force can be 
claimed either for the treatment itself, or for something about the 
treatment, usually something unintended and overlooked by the exper
imenter. The problem is usually more circumscribed in experiments 
with random assignment than in comparisons of observed groups, but 
it doesn’t go away, as treatments are never totally pure. Let us see how 
this can come about, using a famous experiment in social psychology. 

Argument 4: A Known Cause Produces Departure 
From Randomness 

Example: A Paradoxical Effect of Reward. Social psychologist 
Leon Festinger, in his development of cognitive dissonance theory 
(Festinger, 1957), put forward an interesting analysis about what would 
happen if you induced someone to defend a position they didn’t believe 
in, promising them a reward for doing so. He predicted that the smaller 
the reward, the greater the tendency for the speaker to change belief to 
conform to his insincere behavior. The reasoning behind this prediction 
is that arguing against your own beliefs creates the need to rationalize 
your inconsistency. If you have been given a large reward, you can say 
to yourself that you are only doing it for the money; but a small reward 
provides insufficient justification for the insincerity, and your main line 
of excuse comes from altering your beliefs to conform to your behavior. 

In the first of many experimental tests of this prediction, Festinger 
and Carlsmith (1959) set up a situation in which the subject, after 
performing two very boring tasks, was asked to tell the next subject that 
the tasks had been interesting. The pretext given by the experimenter 
for this request was that he was studying the psychological effects of 
expectations about tasks, and his randomized schedule called for the 
next subject to expect the tasks to be interesting. However (the experi
menter explained in evident embarrassment), the confederate who 
usually planted these expectations had just called and said he couldn’t 
come in, so the experimenter needed someone else. The experimenter 
said that he could pay $1 (or, for other subjects, $20) if the subject would 
play the needed role, and agree to be a back-up if the situation ever arose 
again. 

Subjects typically were disarmed by this request, and of the 71 asked, 
68 complied. In conversation with the next ”subject" (who was really a 
confederate), they found themselves making up various claims of how 
they had enjoyed the tasks. Following this, they were thanked by the 
experimenter, who casually reminded them that the psychology depart
ment was conducting an interview of some sort in a room down the hall, 
and would they mind stopping in? (The experimenter professed not to 
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know any details of this, other than the fact that such an interview had 
been announced in class—as indeed it had been.) 

In this subsequent interview, subjects were asked four questions 
about the tasks performed in Dr. Festinger’s lab. The key question was, 
”Were the tasks interesting and enjoyable?" Subjects were encouraged 
to talk about the matter, and then asked to rate the tasks on a scale from 
-5 (extremely dull) to +5 (extremely interesting). The mean response by 
the 20 subjects offered $1 was 1.35, whereas for the 20 subjects offered 
$20, it was -.05. The value of the t statistic given for the difference 
between these group means was 2.22, with p < .03. 

The authors therefore rejected the skeptical interpretation that the 
difference between the means was due solely to accidents of random 
sampling, and concluded that the $1 group was systematically different 
from the $20 group, in the direction predicted by dissonance theory. The 
statistical aspects of this example seem straightforward. Using a t test, 
the null hypothesis of sheer random sampling variability was dismissed 
as implausible, and the systematic prediction by dissonance theory of a 
bigger effect in the $1 condition was considered supported. We should 
note here, however, that even though the statistical argument is appar
ently strong enough, the $1 versus $20 manipulation entails many 
convolutions in the experimental procedure that provide opportunities 
for alternative, nondissonance interpretations of the systematic group 
difference. For example, one critic (Rosenberg, 1965) argued that the 
ratings of task enjoyability in the $20 condition were lowered by many 
subjects because they felt guilty about accepting an apparent bribe. 
Twenty dollars, the argument went, must have seemed excessive for 
only 5 minutes of work, and the distressed subjects used the final ratings 
as a statement that they were not to be bribed into believing that the 
tasks were interesting. In chapter 9, we discuss further elaborations in 
alternative narrative accounts of the Festinger-Carlsmith (1959) exper
iment. Additionally, we raise in chapter 5 two quibbles with the t test 
presented in the authors’report of this experiment. (Is nothing sacred?) 

SUMMARY 

I have given an example for each of four elementary arguments: the ”hot 
hand" data that fit a simple random generating process model; the 
clairvoyance data that depart from a random generation model; a 
questionnaire study of participation in a campus demonstration, where 
responses on one or more questions are consistent with a simple random 
sampling model; and the experiment on the effect of small reward, where 
a simple random sampling model is insufficient. (For the latter two 
arguments, I have arbitrarily chosen an observational study for an 
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illustration of a chance result, and an experimental study for a case of 
a systematic result. It could easily have been the other way around.) 

All four studies produce results that to many people are counterintu
itive. My choice of studies with some surprise or kick to them was 
deliberate: such examples are more interesting and more memorable. 
(See chap. 8.) They motivate more extensive searches for flaws and 
counterarguments, and as a result of such attention and debate, stimu
late theoretical extensions, generalizations, and qualifications. 

Operationally, to test the adequacy of a pure-chance account of the 
comparative differences in your data, you must begin by conceptualizing 
the operation of chance. In some situations, analogous to coin flipping 
or other repeatable generating processes, the nature of the process 
determines certain statistical regularities in that type of data. By 
testing the approximate conformity of the data to the regularities of the 
chance process, you are able to decide whether to maintain the null 
hypothesis (perhaps reluctantly), or to argue that it is implausible under 
an all-chance model. The latter rhetorical flourish clears the way for a 
claim of a systematic factor contributing to the comparative differences 
in the data. The sequence of steps is much the same when chance is 
embodied by a random sampling model, except that in tha t case our 
ignorance of the underlying distribution of scores forces us to rely on 
assumptions about its approximate shape. For the simple arguments 
we have considered here, these approximations are usually adequate. 

Caveat 

In the examples presented earlier—and elsewhere in the book—the data 
analyses provide relatively reasonable grounds for making the categor
ical arguments that have become standard in null hypothesis testing, 
that is, either accepting or rejecting the existence of a systematic factor 
differentiating the means of two groups. It is often the case, however, 
that a given research study yields ambiguous results: There may be 
some indication of a systematic factor at work, but too weakly to reject 
a chance explanation definitively. The p value attaching to a t test may 
be something insipid like p = .15, say. Such situations are extremely 
common, especially in view of the low power (Cohen, 1962,1988) typical 
of t tests in psychological research. 

The student who encounters this situation in his or her own research 
project may well become paralyzed, not knowing how to write up such 
an outcome. My aim in this book is to highlight and encourage the 
essential role of argument in social science research, but how can you 
make an argument without a supportable premise? 

The student required to submit a research report in this situation has 
six options, the first four of them unsatisfactory, the fifth honest but a 
bit nebbish, and the sixth effortful and essential. He or she can: (a) try 
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to manufacture a forced argument that the p value is really better than 
it looks; (b) give the insipid p value and then proceed to ignore it in a 
discussion that presumes the operation of the systematic factor; (c) 
limply shrug off the results as possibly due to chance; (d) tell the 
statistical facts with no attempt to interpret what they might mean; (e) 
tell and comment on the statistical facts, being straightforward and 
nondefensive about the uncertainties involved; or (f) do more research. 

The silliness and flummery associated with the first four of these 
options should greatly temper our reliance on p values. The accept-re-
ject dichotomy has a seductive appeal in the context of making categor
ical statements such as in the four examples of this chapter. But these 
examples were carefully chosen to encourage simple categorical claims, 
and for that reason alone are atypical. Every researcher should play the 
part of a ruthlessly clear-headed analyst who considers the magnitude 
of effects, along with the other MAGIC criteria. Such an analyst should 
be capable of treating his own research outcomes with humility, for 
example by acknowledging that the systematic results that have been 
claimed are in truth rather weak, inconsistent, or hard to understand. 

Of course, student research projects do not faithfully reflect the 
context within which serious research is conducted and published. 
Moreover, we have been considering only the most elementary statisti
cal arguments, based on isolated studies. In practice, real research 
investigations usually involve multiple studies conducted as part of an 
ongoing conceptual elaboration of a particular topic. This permits a 
richer variety of possible assertions about outcomes than those we have 
considered in this chapter. In any case, serious investigators do not 
ordinarily submit articles without some form of interpretive argument. 
If they did, such articles would be unlikely to be accepted for publication, 
or if published, to be read. In cases of inconclusive or messy data in an 
uncharted area, experienced researchers will usually withhold attempts 
at publication until further research either clarifies what is going on, or 
leads the investigator to abandon the line of research entirely. 

As outlined in chapter 1, there are other criteria for a good argument 
beyond having strong data. These are discussed in later chapters. We 
turn next to a detailed examination of measures of the magnitude of 
systematic effects. 



3 Magnitude of Effects 

The examples of the previous chapter were selected to lend themselves 
to fairly straightforward conclusions. To get us started, focus was placed 
on tests of statistical significance. Truth to tell, however, the information 
yield from null hypothesis tests is ordinarily quite modest, because all 
one carries away is a possibly misleading accept-reject decision. Fur
thermore, the categorical mode of thinking encouraged by significance 
tests can lead to misinterpretations of comparative results (see chap. 4; 
see also Cohen, 1990; Gigerenzer, 1993). 

For this among other reasons, it is wise to supplement or replace the 
qualitative outcome of the null hypothesis test with something more 
quantitative, indicative of the degree of difference between two means, 
or of other types of effects. There are several candidates for such 
measures, each with its own advantages and disadvantages. 

The simple idea of using the obtained p value is not satisfactory, for 
reasons to be indicated, and we discuss several other approaches: indices 
of effect size (Cohen, 1988), now in common use in meta-analysis 
(Rosenthal, 1991); the ratio of effect size to ”cause size’’ by analogy with 
dose-response analysis in biostatistics (Goldstein, 1964); and confidence 
limits. We also consider Bayesian analysis (Edwards, Lindman, & 
Savage, 1963; Winkler, 1972). Here we concentrate on the simple situ
ation of a single comparison, deferring to chapter 7 a discussion of the 
aggregation of results over many studies. 

PROBABILITY MEASURES 

The p Value from a Significance Test 

The particular level (p value) at which the null hypothesis is rejected 
(.05, .02, .01, etc.) is often used as a gauge of the degree of contempt in 
which the null hypothesis deserves to be held. Rhetorically and qualita
tively, this is perfectly reasonable. Clearly it should be hard for a skeptic 
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to maintain the null hypothesis when the data have only one chance in 
a thousand of having arisen from it. As a magnitude measure, the 
significance level has the attraction that statistical computer packages 
commonly provide the precise p values for a variety of test procedures. 
Significance levels also have the nice (though not unique) feature that 
it is easy to combine p values from several independent tests of the same 
null hypothesis to generate an overall significance test (Rosenthal, 
1978). 

But these virtues are dangerous. A major difficulty with simply using 
the significance level is that the p value depends not only on the degree 
of departure from the null hypothesis, but also on the sample size. Thus 
with very large samples, small effects can readily achieve extreme 
significance levels. With tens or hundreds of thousands of cases, as in 
mass aptitude or ability tests, or millions of cases, as with census data, 
significance tests are almost totally uninformative; whether the p value 
comes out .0001 or .00001 or .000001 is not a useful distinction.1 

A Common Confusion. There is also a common confusion when 
using the significance level as an indicator of the merit of the outcome. 
When the null hypothesis is rejected at, say, the .01 level, a correct way 
to state what has happened is as follows: ”If it were true that there were 
no systematic difference between the means in the populations from 
which the samples came, then the probability that the observed means 
would have been as different as they were, or more different, is less than 
one in a hundred. This being strong grounds for doubting the viability 
of the null hypothesis, the null hypothesis is rejected." It is only a short 
misstep from this clumsy but correct statement of the null hypothesis 
logic to the more pithy but incorrect summary, ”The probability that the 
null hypothesis is true is less than one in a hundred." Students and even 
some experienced researchers make this kind of misstatement very 
frequently (Cohen, in press; Oakes, 1986). It is a very seductive mistake, 
because the second statement is both simpler and seemingly more 
definite, and it is hard to see what is wrong with it. 

The error arises from a general confusion about conditional probabil
ities (Dawes, Mirels, Gold, & Donahue, 1993), whereby the probability 

This effect of large samples seems to trivialize the whole enterprise of significance 
testing. A Yale graduate student once put the matter this way in presenting his research: 
”I did not carry out any significance tests on my results, because all of them would be 
significant just by having the samples be large enough." This methodologically blasphe
mous statement was so suddenly and casually delivered that the audience (myself 
included) was momentarily stunned, and unable to mobilize an immediate rejoinder. The 
statement is misguided, but can the reader say why?... (For the answer, see the following 
note.)2 

2The appropriate challenge to the student should have been, ”Will you guarantee tha t 
the direction of each of your results would be as you state if you had had a larger sample?"! 
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of the data given a hypothesis is mistakenly equated with the probability 
of the hypothesis given the data. (Illustration: compare the probability 
of testing positive for a very rare disease if you have it with the 
probability of having it if you test positive for it. If you think these two 
probabilities are the same, you have failed to take the ”base rates" into 
account. The second probability is typically less than the first, because 
it is very unlikely for anybody to have a very rare disease, even those 
who test positive.) 

The Probability (?) of a Greenhouse Effect As an example of this 
error in an important practical context, consider a scientist discussing 
the potential reality of the greenhouse effect, after an unusually hot 
summer. He testifies that the average absolute value of yearly change 
in mean measured temperature over the globe is historically on the 
order of .2°F, with a standard deviation of about .25, but that the change 
during the past year had been a rise of .75°F. When referred to the 
historical distribution of mean temperature changes, a jump of as much 
as .75 has less than one chance in a hundred of belonging to that 
distribution, and therefore the null hypothesis that the rise in temper
ature that particular year was due to a random sampling process can 
be rejected at the .01 level. He then goes on to say that it is therefore 
99% certain that the warming trend was caused by the greenhouse 
effect. If the chance explanation had only a 1% probability, then the 
alternative, systematic explanation of the greenhouse effect must have 
a 99% probability... 

Sounds reasonable. What’s wrong with this reasoning? At least three 
things: First of all, increased focus was placed on the temperature 
change data mainly because the rise was so unusual, and if the only time 
you test the null hypothesis is on those rare occasions when it looks 
obviously false, then of course you increase your chances of declaring it 
false—even if it were true. This phenomenon of post hoc focusing is an 
example of the ”hocus focus" trick discussed in chapter 4. Second, no 
consideration was given to the probability that the same temperature 
rise would have occurred under a hypothetical greenhouse model. Third, 
there might be other systematic forces at work, unrelated to the green
house effect, to create a big rise in temperature. 

The Whodunit Analogy. Let us clarify the second of these prob
lems. The null hypothesis is always, implicitly or explicitly, in competi
tion with alternative hypotheses, and if one wants to make a 
quantitative statement about the probability that the null hypothesis is 
the appropriate one, the relative abilities of the competing hypotheses 
to explain the data at hand must be considered. One cannot simply 
convert the significance level at which the null hypothesis has been 
rejected into a quantitative index of its truth value. An analogy may be 
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drawn with the situation faced by a detective solving a whodunit, who 
estimates that if the butler did it, there was only one chance in a hundred 
he could have made his escape unseen. Should the detective therefore 
conclude that there is only one chance in a hundred that the butler is 
the murderer? Well, though it might seem so at first, reflection reveals 
a problem. Suppose that the only other suspects are the maid and the 
chauffeur. If the maid did it, the chances that she would have escaped 
unseen were only one in a thousand. And for the chauffeur, even less. 
But somebody must have done it. Thus when unlikely hypotheses are 
in competition with each other, the potential t ru th value of each must 
be enhanced (see Einhorn & Hogarth, 1986). In the next section, we 
consider a potential fix for this problem. 

The Bayesian Approach 

For many years, there has existed in the statistical community an 
alternative to classical significance testing. It involves the use of Bayes’ 
Theorem, and devotees of this approach are called Bayesians (Edwards 
et al., 1963). 

The theorem addresses the problem introduced earlier, namely, how 
to take account of the competition between a hypothesis and its alter
natives. A given set of data is seen as altering the odds (i.e., the relative 
likelihood) tha t a hypothesis is true, compared to its alternatives. To 
apply Bayes’Theorem, one needs some estimate of these odds before the 
data are collected. The data then may tip the balance in these odds, 
depending on the relative likelihood of the data under the hypothesis 
and its alternatives. To simplify the discussion, we take H to be a 
substantive hypothesis based on some systematic model (e.g., the green
house effect), and consider only a single alternative—not-H, the null 
hypothesis (e.g., chance variation in temperatures). (Bayesian analysis 
extends to the case of several distinct alternatives to H, and even to the 
case of a continuum of alternatives, but for clarity of the present 
discussion, we set these complications aside.) 

We use the following notation: P(H/D) = the probability that hypothe
sis H is true, given data D; P(-H/D) = the probability that not-H is true, 
given data D; P(H) = the prior probability that H was true (before the 
data); P(-H) = the prior probability that not-H was true; P(D/H) = the 
probability of the data occurring, given H as true; P(DI-H) = the 
probability of the data, given not-H as true. 

The odds-ratio form of Bayes’ Theorem (Winkler, 1972, p. 412): 

P(H/D) P(H) P(D/ H) 

P(-H/D) 
= 

P(-H) 
× 

P(D/-H) 
(1) 

says that: posterior odds = prior odds × relative likelihood. 
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The ratio on the left of the equation represents the odds favoring 
hypothesis H over not-H after the data are gathered—the posterior odds. 
The first ratio on the right gives the odds favoring H over not-H prior 
to the data collection—the prior odds; the last ratio specifies the relative 
likelihood of the data under H versus under not-H. The formula says 
that the posterior odds in favor of a hypothesis, given the data, are equal 
to the odds beforehand, multiplied by the relative likelihoods of the data 
under H versus not-H. 

Example. The Greenhouse Effect In principle th is is a swell 
scheme, as it promises to address the butler/maid and greenhouse 
interpretive problems discussed previously. Take the greenhouse prob
lem. Suppose reasonable people believed the odds were 2:1 in favor of 
the greenhouse hypothesis before the scientist’s testimony was intro
duced. Now his analysis, properly interpreted, says that if no greenhouse 
effect existed, the rise in yearly temperature he observed had a proba
bility of 1 in 100. What he did not supply, but we also need, is the 
probability of the same temperature rise if the greenhouse effect held. 
Let us pull a number out of a hat, and suppose that this probability was 
3 in 100. Then the relative likelihoods of the temperature data with 
versus without the greenhouse effect would be 3:1. Multiplying this ratio 
by the prior odds (2:1) favoring greenhouse, we end up with posterior 
odds of 6:1 in its favor. Odds can be converted back into probabilities by 
the relationship (probability = odds/(l + odds)). Thus the probability of 
greenhouse in this hypothetical case would be (6/7) = .857. 

A Bayesian Magnitude Measure. In this example, we came to the 
(hypothetical) conclusion that the increase in global temperature raised 
the odds favoring the existence of a greenhouse effect from 2:1 before
hand to 6:1 afterwards. We might wonder what index of strength to 
assign to the data in this case—and in general, how to use Bayesian 
analysis for measuring the magnitude of a data effect. The posterior 
odds on hypothesis H do not seem to yield a reasonable index of the 
strength of the data, as these odds are a function of both the data and 
the prior odds. A better index would seem to be the change in odds in 
favor of H brought about by the data D. A convenient measure of this 
change is simply the posterior odds divided by the prior odds, and we 
find by rearranging Equation 1 that this ratio equals the relative 
likelihood of the data under H and not-H: Therefore one might propose 
this relative likelihood as a measure of the strength of the data in 
support of H (and against not-H). 

Difficulties With the Bayesian Approach. In the context of testing 
the difference between two means, not-H represents the null hypothesis 
of no difference, and P(D/-H) is the ordinary p value. Hypothesis H 
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represents a systematic alternative to the null hypothesis, and P(D/H) 
the probability of the data under that hypothesis. A major problem is 
that P(D/H) is typically a composite hypothesis over different possible 
degrees of systematic effect. For each possibility, P(D/H) is different, 
and we will not know nor feel comfortable guessing how to weight them.3 

A nagging second problem is that dividing the posterior odds by the 
prior odds would be arithmetically illegitimate should P(H), the prior 
probability that H is true, be zero. The P(H) = 0 case raises interesting 
issues. 

Hypotheses That Can’t Be True: The Philpott Example. A curi
ous argument over an obscure British experiment sharply illustrates 
the issue of the zero prior probability. In the late 1940s, a British 
psychologist named S. J. F. Philpott reported a series of experiments 
that he claimed as strong support for the existence of a fundamental 
constant of mental processing time, 40.76 septillionths of a second 
(Philpott, 1950). His reasoning was based (never mind the details) on 
the distribution of times to completion of sets of arithmetic problems by 
experimental subjects. He constructed an experimental comparison 
from which he argued that if the null hypothesis of chance between-
group differences were rejected, the only alternative would be to accept 
his fundamental constant. Philpott then presented data that purport
edly required rejection of the null hypothesis at the .01 level, and touted 
this as strong evidence in favor of his proposed constant. 

In a telling critique, the redoubtable L. F. Richardson (1952) argued 
that the natural variability of the latency of each component process 
would be orders of magnitude greater than the purported constant, and 
measurement errors would swamp the investigation of Philpott’s (1950) 
assumption, anyway. This theory was so incredible, in Richardson’s 
opinion, that it deserved to be assigned a prior probability, P(H), of zero. 
If the value P(H) = 0 is inserted into the Bayesian Equation 1, then 
inexorably, P(H/D) will be zero. (The only loophole would occur if 
P(D/-H) were also zero, but that would have required that Philpott’s 
data had achieved the .00000000... significance level.) In other words, if 
a hypothesis is certainly false to begin with, then no finite set of data 
can add any credence to it. 

In the Philpott-Richardson debate, Richardson was articulate, polite, 
and undoubtedly right—indeed, Philpott’s research has faded into ob
scurity But one should appreciate that Richardson’s line of argument 
could become mischievous if applied by an irresponsible critic to any 

3When the hypothesis H is a discrete choice among two possibilities, Bayesian analysis 
proceeds with greater facility. Mosteller and Wallace (1964) carried out a famous Bayesian 
application to the question of whether Alexander Hamilton (H) or James Madison (-H) 
wrote several disputed Federalist Papers. The posterior odds came out very heavily in favor 
of Madison. This study is discussed in further detail in chapter 8. 
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novel hypothesis. In essence the argument says, ”The data be damned, 
you’re obviously wrong"—hardly an attitude in the true scientific spirit.4 

Thus the introduction of prior probabilities, the core of the Bayesian 
approach, highlights the vulnerability of the results of a single experi
ment to a debate that degenerates when a vocal critic or cabal believes 
that P(H) = 0. 

The Bayesian Reply on Impossible Hypotheses. Bayes i ans 
might reply that priors should be based on logic or on previous data, not 
on mere opinion. Anyway, P(H) = 0 is an extreme case that would stunt 
debate whether or not a Bayesian argument were made. In other cases 
what the ”priors" do is to permit investigators to reach their own 
short-run judgment of P(HID), which then becomes a prior probability 
awaiting the next set of data. In the long run, evidence from data sets 
Di, D2, D3,.- will in principle cause P(H/D1,D2,D3,...), the probability of 
the hypothesis given all the data, to converge on a consensual value, 
independent of the starting preconception P(H). In chapters 7-9, we will 
discuss repeated research tests. For the case of the single study, what 
the Bayesian approach does is to raise the important issue of the change 
in relative belief in a hypothesis from before to after the data collection. 

Having said this, however, we may be led to wonder whether change 
in belief is a measure of the magnitude of an effect, or of something else. 
A piece of research that radically changes our beliefs in alternative 
hypotheses is certainly influential, and in that sense ”strong," but one 
could have a strong belief in a small effect, or a weak belief in a large 
effect. Change of belief seems to have something to do with interesting-
ness, which we discuss in chapter 8. We turn next to measures of effect 
size per se. 

EFFECT SIZES 

The Raw Effect Size 

Setting aside thorny considerations of probability, the most obvious 
candidate for quantifying the strength of a conclusion from a simple 
significance test is the raw magnitude of the effect: in the case of a t test 
of a mean difference, the size of the observed mean difference. On the 

4An interesting example of the conflict between scientific open-mindedness and the 
presentation of what seems to be a totally ridiculous hypothesis occurs in an exchange of 
data (Orme-Johnson, Alexander, Davies, Chandler, & Larimore, 1988) and commentary 
(Duval, 1988; Orme-Johnson, Alexander, & Davies, 1990; Russett, 1988; Schrodt, 1990) on 
the ”Maharishi effect." The hypothesis was that the frequency and severity of wars, crimes, 
and accidents decreases as a direct function of the number of people engaged in transcen
dental meditation at an isolated site within the geographical region. 
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face of it, big effects are more impressive and important than small 
effects. 

One advantage of the raw effect size as a measure is that its expected 
value is independent of the size of the sample used to perform the 
significance test. A second advantage is that it is expressed directly in 
the units of the scale of the dependent variable, and sizes of difference 
along that scale ought to be meaningful to the investigator. 

On the other hand, it could be argued that with a smallish sample, 
one might obtain a big apparent effect without being able to reject the 
null hypothesis. In other words, an effect size ought not be judged totally 
in isolation, but in conjunction with the p value (which in turn depends 
on the sample size and the within-group variability). For fixed n, an 
observed mean difference is more impressive to the extent that it is 
statistically more reliable, that is, the within-group variability is 
smaller. In the end, of course, what the investigator would like to know 
about an effect size measure is how consistently big it is over a series of 
experiments. 

There may be a more telling disadvantage to the raw effect size 
measure. Even though one might think that the investigator ought to 
be familiar with his or her response scale, it is frequently the case in 
psychology that new scales are developed for new research purposes, 
and the units along the scale have not acquired much meaning. It takes 
experience with the research area to have a good feeling for what 
magnitude of difference along the response scale would be truly conse
quential. Is a between-group mean difference of three quarters of a point 
on a 7-point attitude scale a big difference? Is a difference of 25 milli
seconds noteworthy in a novel type of reaction time experiment? A 
one-shot study in a new area may thus suffer from the rhetorical 
weakness that the effect size is not readily interpretable. 

The Standardized Effect Size 

In view of this, it is useful to have an index that is conceptually 
independent of the response scale. Such an index is the standardized 
effect size, defined as the raw effect size divided by the standard 
deviation of scores (within groups) on the response scale. Thus if on a 
21-point scale, the experimental group has a mean of 13, the control 
group has a mean of 11, and the standard deviation of individual scores 
around their group means is 3.0, the standardized effect size is .667. 
This type of standardized measure first arose in power analysis (Cohen, 
1962, 1988), where effect sizes need to be scale independent. 

The standardized effect size is one index favored by devotees of 
meta-analysis (see chap. 7). Its independence of response scale is espe
cially advantageous when combining studies with different response 
scales. Other dimensionless indices, such as a correlation coefficient r, 
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also arise in the meta-analytic family (Mullen, 1989), and may be more 
adaptable to results arising from a mish-mash of different significance 
tests. The measure r is the ordinary Pearson product-moment correla
tion coefficient between the independent and dependent variables. In 
the case where the means of two groups are compared, r is the "point 
biserial" correlation (Mullen, 1989, p. 96). Its value can be ascertained 
readily as a function of the sample sizes and the standardized effect size 
(or the value of t in the between-group t test; Rosenthal, 1991). Another 
possible magnitude measure is r2—the proportion of explained vari
ance—but as we noted in chapter 1, this tends to convey too pessimistic 
an impression. 

Like raw effect size, we should note, the value of the standardized 
effect size (or one of its variants) does not by itself tell us that the null 
hypothesis can be rejected. That outcome depends not only on the effect 
size, but also on the sample sizes in the study (Mullen, 1989). However, 
as social scientists move gradually away from reliance on single studies 
and obsession with null hypothesis testing, effect size measures will 
become more and more popular. 

Causal Efficacy 

In an insightful article entitled ”When Small Effects are Impressive," 
Prentice and Miller (1992) argued that striking and memorable research 
results in psychology sometimes can come from studies in which effect 
sizes are small. They cited two circumstances in which this can happen: 
(a) when the manipulation of the independent variable is minimal, and 
(b) when the dependent variable seems difficult to influence. 

An example of the first case is Isen and Levin’s (1972) study of the 
effects of good mood on helping behavior, wherein students casually 
given a cookie while studying in the library were subsequently much 
more generous in volunteering to help another student than were 
students not given a cookie. (The average offers of helping time in the 
experimental and control groups were 69 minutes and 17 minutes, 
respectively.) This study makes its point pithily because a cookie seems 
a trivial and irrelevant influence on altruistic behavior. 

An example of the second case is Milgram’s (1963) famous obedience 
paradigm. Milgram’s studies feature both a seemingly small manipula
tion—an authority figure telling the subjects to continue in the experi
ment—and the unthinkable response of shocking a helpless victim 
beyond the level of clear mortal danger.5 What these examples have in 
common is that the research audiences presumably did not expect the 
effects to come out at all, much less to be as big as they were. (Working 

5Prentice and Miller (1992) did not cite the Milgram (1963) example. They were 
concerned primarily with impressive small effects, and of course the Milgram effect was 
large. 
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52 extra minutes per cookie does not translate into a living wage!) We 
propose that the rhetorical impact of a research result is a direct 
function of the raw effect size divided by the ”cause size," a ratio that 
we call causal efficacy. A large effect from a small variation in the cause 
is the most impressive, whereas a small effect arising from an appar
ently large causal manipulation is the most anticlimactic and disap
pointing. Causal efficacy is akin—in the military jargon of the late Cold 
War—to ”bang for the buck." 

Example of Low Causal Efficacy: Saccharin and Cancer. To ar
ticulate this concept further, it will help to consider an example with an 
extremely low value of causal efficacy. When the investigator labors 
mightily to bring forth a mouse, the audience is likely to be unimpressed 
to the point of scorn. This indeed happened in the study of the effects of 
saccharin on bladder cancer. The Food and Drug Administration is 
enjoined by the Delaney Amendment (National Research Council, 1979) 
to ban all substances that have been ”found to induce cancer when 
ingested by man or animal" (chap.2, p. 10). The reason animals are 
included in this injunction is that it is extraordinarily difficult to carry 
out conclusive toxicity studies on humans (true experiments with random 
assignment of subjects to toxic conditions being out of the question). 
Experiments with (say) rats are easy to run except for one catch: The cancer 
rates are generally so small that an unpractically large sample of animals 
is required to reliably demonstrate effects of small toxic dosages. 

The usual research strategy adopted in such circumstances is to use 
a modest number of animals and hype up the dosage. The most fre
quently quoted study on saccharin used such a strategy (Food and Drug 
Administration, 1973). The diet of the experimental rats was 7.5% 
saccharin daily, for a period of 2 years. At the end of that time, 7 of 23 
experimental rats had contracted bladder cancer, whereas only 1 of 25 
saccharin-free rats had done so—a statistically significant difference. 
This study was taken to be respectable and important by reputable 
scientific judges (National Research Council, 1978), but was greeted by 
public ridicule. Someone in the diet soda industry (which had a self-in
terest in keeping saccharin in their sodas) calculated that the dosage for 
the experimental rats was the equivalent of the saccharin in 800 cans 
of diet soda per day for a human. The study was editorially chastised 
(”Overstated Risks," 1979), partly on the grounds that such a huge 
intake would be preposterous even for the most devoted soda fiend, and 
therefore that the risk had been wildly exaggerated. A person drinking 
800 cans of soda a day would die from hyperextended innards long before 
succumbing to cancer, argued the study’s detractors. 

The Dose Response Curve. There are indeed difficulties in apply
ing animal research results to the danger of cancer in humans, not least 
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of which is the large variability in the susceptibility of different species 
to different forms of cancer. But the large-dosage strategy with rats is 
not as lunatic as it might sound. The scientific community is accustomed 
to thinking about systematic variations in the strength of causes, and 
how this bears upon effects. The most persuasive evidence establishing 
smoking as a cause of cancer was not simply the finding that smokers had 
higher cancer rates than nonsmokers, but the systematic climb in cancer 
rates with increases in smoking rates, among other things (see chap. 9). 

Biostatisticians refer to the probability of disease or death as a 
function of the rate of toxic exposure as the dose response curve. With 
an appropriate transformation of the probability scale,6 the curve often 
becomes a straight line. If dose response is in fact linear for rats 
ingesting saccharin, then the morbidity probability at very high dosages 
can be scaled back to get an estimate of the small probability that would 
obtain at lower, more typical dosages. If we accept this logic, and take 
the rat results to be relevant to humans, the conclusion is that saccharin 
increases the risk of bladder cancer, but not by much. 

The linearity assumption is fragile, and my point is not to defend it 
in this particular case. I cite the example simply to elaborate on the 
concept of causal efficacy, and to illustrate how unimpressed the public 
can be by research results with apparently very small efficacy. 

Objective Causal Efficacy. Dose response studies have the special 
property that the independent variable is physically quantified, so that 
cause size can be precisely specified (say, in milligrams per day). Mean
while, the raw effect size is a simple function of the relative proportions 
of death or disease in treated versus control animals. Because both 
causes and effects are objectively quantifiable, the ratio of effect size to 
cause size in this case can be termed objective causal efficacy. 

Subjective Causal Efficacy. How are we to operationalize cause 
size in the common type of psychological study with qualitative variation 
in the independent variable, such as giving the subject a free cookie? 
With respect to its effect on altruistic behavior, we should not really be 
reckoning the cause size of a free cookie by the economic value of the 
cookie. Isen and Levin (1972) hypothesized that the effect is mediated 
by good mood, and one would like to be able to scale the goodness of 
cookie-induced mood relative to other good mood inducers such as 
receiving praise for performance on a test, or finding a dime left in a 
telephone booth. One way to try this is by eliciting ratings from subjects, 

6The most common transformations of p are the cumulative normal ogive (the probit) 
and the logistic function (the logit). Both transformations act so as to ”stretch the tails" of 
p, so that the difference between the transforms of, say, .01 and .02 is a good deal larger 
than that between .49 and .50. The formula for the logit is ln[p/(l -p)]. 
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as is done with manipulation checks (Aronson et al., 1985). These ratings 
are used to check that subjects have registered the intended manipula
tion of the independent variable (e.g., good or bad mood). Applying such 
ratings to the assessment of causal efficacy would permit calculation of 
the ratio of effect size to experienced differences on the causal variable 
(e.g., a 10% increase in helping behavior per point on a 7-point rating 
scale of pleasantness of mood). Such an index might be called subjective 
causal efficacy. In forming such an efficacy ratio, both effect size and 
cause size should be raw mean differences. 

Example. A Bias in Judgments of Manuscript Quality. To illustr
ate, consider an experiment by Wilson, DePaulo, Mook, and Klaaren 
(1993). They hypothesized that a group of scientists reading flawed 
research studies about important topics (e.g., prevention of heart dis
ease) would rate them as more methodologically rigorous than would an 
equivalent group of scientists reading identical research studies about 
unimportant topics (e.g., prevention of heartburn). Six pairs of topics 
differing in importance were used. Each scientist rated three important 
and three unimportant studies on 9-point scales for methodological rigor 
and perceived importance. 

The manipulation of importance (e.g., heart attack vs. heartburn) did 
register with the subjects. The mean rating of perceived importance of 
the supposedly important studies was 7.15, and of the supposedly 
unimportant studies, 4.44, yielding a huge mean difference of 2.71. 

In the test of the hypothesized bias, the overall mean ratings of 
methodological rigor were 2.91 for the important studies, and 2.61 for 
the unimportant studies, a (statistically significant) difference of .30. 
The subjective causal efficacy is (.30/2.71) = .11 units of increase in 
judged rigor per unit of judged importance. This coefficient should be 
interpreted like a (raw) regression coefficient.7 This subjective causal 
efficacy of .11, although significantly different from zero, is rather 

Judd, McClelland, and Culhane (in press) discussed effect size estimates entirely in 
terms of the slope of the regression of the dependent on the independent variable. Formally, 
this is equivalent to the ratio we have called causal efficacy. However, for the very common 
case of the comparison of the means of two conditions differing on an unquantified variable, 
the conditions variable must be ”dummy coded" (say, +1 vs. -1). However subtly, this 
practice serves to discourage thinking about the extent to which the conditions differ in 
their cause size. It is extraordinary that the causal variable has been largely ignored in 
treatments of effect size. 

In this vein, it is interesting to compare regressionlike coefficients, such as causal 
efficacy, with correlational measures such as the r recommended by Rosenthal (1991) for 
meta-analysis. Although correlation and regression are often conflated in the minds of 
social scientists, there is an important difference. Correlation coefficients are sensitive to 
an artifact called ”restriction of range" (Cohen & Cohen, 1983, pp. 70-72): When the 
distribution of scores on variable X is for some reason truncated so as to eliminate the 
tails, the correlations between X and other variables decline. The same is not true for linear 
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modest. It signifies that even if the most extremely important study (a 
rating of 9) were compared with the most extremely unimportant study 
(a rating of 1), the difference in the expected judgment of rigor would 
only be [.11 x (9 - 1)] = .88, less than one unit on the 9-point scale. (Still, 
as the authors argued, judgments of rigor ought not to be influenced by 
perceived importance at all.) 

Unexpectedly Big Effect Sizes: The Milgram Study. There remain 
cases of qualitative variations in the independent variable that cannot 
sensibly be rated by subjects. In the famous Milgram (1963) study, for 
example, what is the cause size of an authority figure in a white coat 
telling an experimental subject that it is necessary to continue shocking 
the screaming man in the next room? The cause is not physical, and it 
is not reasonable to ask subjects how obedient they feel. Although there 
is no way in such cases to attach a number to the cause size, the observed 
effect size can still be compared to a useful baseline figure, namely the 
expected effect size. One can ask interested observers what size of raw 
effect they expect, and calculate the mean of these expectations. In the 
Milgram study a number of students were in fact asked what percentage 
of subjects would deliver the maximum shock. These worthies gave a 
mean estimate of 1.2%, whereas the actual result was 65% (Milgram, 
1963). 

Intuitively, the discrepancy between the observed raw effect size and 
the expected raw effect size is directly related to the surprisingness of 
the result. In chapter 8 we define a surprisingness coefficient (S), 
primarily as it relates to interestingness, although it might also be 
regarded as a magnitude measure. We postpone the details, other than 
to say that in the Milgram (1963) case, the surprisingness coefficient is 
1.28—where 1.0 represents a highly surprising result, and 2.0 the 
maximum possible surprise. (The latter value would arise if the ex
pected effect were 0% and the obtained effect 100%, or vice versa.) 
Milgram asked for subjective estimates as a public relations device, but 
it is reasonable to imagine less sensational experiments for which the 
experimenter asks particular research audiences for subjective esti
mates of raw effect sizes. 

Expected Effect Sizes are Like Bayesian Priors. Note that this 
line of thinking uses effect sizes to do something like what Bayesian 

regressions, however. The slope (b) of the regression line giving the expected magnitude 
of some variable as a function of X is not systematically affected by truncation. 

The relevance of this point is that small cause sizes are analogous to restricted ranges. 
Rosenthal’s (1991) measure r is therefore apt to come out too small whenever the 
independent variable is experimentally manipulated only modestly. By contrast, causal 
efficacy measures will (assuming linearity) tend to come out the same whether the cause 
sizes are small or large. 
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reasoning does with probabilities. The expected effect size acts like a 
Bayesian prior probability, and for any given effect, different investiga
tors and commentators may have different priors. The obtained outcome 
of a well-conducted study will modify the expected effect size away from 
the prior toward the observed result. Upon replication, new data may 
impel a further adjustment in the expected effect size, and so on. In 
well-behaved cases, the expected effect size will converge to the true 
effect size, independent of the original prior. The research community 
will have learned what to expect, and the surprisingness coefficient will 
approach zero. People who have been exhaustively informed about the 
Milgram (1963) study and related research now should realize that 
having an authority figure tell an experimental subject to continue a 
behavior is in fact an extremely powerful influence. Sophisticated ob
servers asked to predict the fraction of the population harming others 
at the instruction of a high-status authority figure will presumably no 
longer say 1%, but something closer to 65%. 

CONFIDENCE LIMITS 

Thus far we have discussed two types of criteria for assessing the 
magnitude of the effect in a simple study comparing the means of two 
groups: probabilities and effect sizes. The latter category includes raw 
and standardized mean differences. If we also take into account prior 
expectations or cause sizes, then we can countenance still further 
variations, namely Bayesian posterior probabilities or various estimates 
of causal efficacy. 

Another way of representing effect magnitude arises through the use 
of confidence limits. One makes statements of the form, ”With 95% 
confidence, the true experimental effect lies somewhere between A and 
B." Confidence limits on mean differences have the property that they 
bracket zero if and only if the null hypothesis is retained (at the 
significance level expressed as 100% minus the confidence level). When 
the null hypothesis is dismissed, one can be confident of the direction of 
the effect, and then use the confidence limits to establish boundaries on 
the likely size of effect. Confidence limits have been enthusiastically 
recommended (e.g., by Bailar & Mosteller, 1988; Cohen, in press; Tukey, 
1991; and many others) as an alternative top values in statements of 
results, because the confidence limits give more information: In partic
ular, they specify a plausible minimum and maximum degree of depar
ture of the mean difference from zero. 

It takes two quantities, the lower boundary and the upper boundary, 
to specify confidence limits. If we use two-index summaries, the choice 
would be between confidence limits on the one hand, and p value 
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accompanied by effect size on the other. Another possibility is to use 
confidence limits on some measure of effect size. 

As Tukey (1991) pointed out, confidence limits on raw effect sizes are 
particularly valuable when there are interesting benchmarks along the 
scale of measurement. In many applied areas where new programs or 
therapies are being evaluated, one may want to know not just whether 
the average improvement for the recipients is greater than zero. More 
relevant may be whether the improvement is above a specified threshold 
given by economic, political, or practical considerations, or by compari
son with a historically typical improvement. Or, in testing a treatment 
that costs less or has fewer side effects than the conventional therapy, 
one might want to know if the new treatment were at least (say) 90% as 
effective as the conventional one. 

In later chapters, particularly chapter 7 covering meta-analysis, we 
analyze tabulations containing one magnitude index per study, and 
therefore fall back on effect sizes. The emphasis on an effect size strategy 
entails no intended criticism of confidence limits. Indeed, with clever 
graphical techniques for representing confidence limits jointly for mul
tiple studies (Tukey, 1991), having two measures per study entails no 
serious loss of conciseness. 

In the next two chapters, we discuss styles of statistical rhetoric 
(chap. 4), and detective work (chap. 5), before returning to the exposition 
of the last four of the MAGIC criteria. 



4 Styles of Rhetoric 

The investigator’s usual desire to have strong results can exert a biasing 
influence on his or her presentation of a study’s outcomes. The indicators 
of effect magnitude discussed in chapter 3 can often be exaggerated in 
the telling, and investigators differ in their tendencies toward exagger
ation or understatement of results. Stylistic variations are most obvious 
in the t reatment of p values. Despite warning the reader of over attention 
tops, this chapter devotes attention to them because they are ubiquitous 
in the social science literature. It is clear, though, that over- or un-
derexaggeration tendencies also apply to other magnitude indicators. 
Some researchers, for example, call correlation coefficients of .35 ”mod
est," whereas others label them ”substantial." Furthermore, investiga
tors have a great deal of leeway to pick and choose which aspects of the 
results to emphasize. As Rosenthal (1991) said in reference to the 
reporting of studies, ”a fairly ambiguous result often becomes quite 
smooth and rounded in the discussion section" (p. 13). 

BRASH, STUFFY, LIBERAL, AND CONSERVATIVE 
STYLES 

Consider the situation of the investigator obsessing over prospective 
significance tests. Aside from a few rare examples such as those given 
in chapter 2, acceptance of the null hypothesis is usually a dull outcome 
that seems to brand the research a waste of time. On the other hand, 
rejection of the null hypothesis suggests that some systematic, explan
atory factor is causing the groups to be different. ”Yes, there is a group 
difference favoring Group A over Group B" is clearly a more satisfying 
statement than ”there could be a difference favoring Group A over Group 
B, but that result cannot be claimed with confidence." 

It is only natural for researchers to prefer saying something of 
substance to saying something vapid. Negative results often do not even 
get written up. Students may abandon dissertations because null 

54 
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hypotheses cannot be rejected. Faculty members, journal editors, and 
other readers of manuscripts often react less kindly toward accepted 
than rejected null hypotheses (see Greenwald, 1975, and Rosenthal, 
1979, for a discussion of these attitudes and their consequences). Given 
all this, it is very tempting for people to try desperately to make their 
results come out statistically significant. In the peculiar language of 
American politics, one might say that investigators try to exert ”spin 
control" over the interpretations of their results. This is especially true 
for outcomes that are almost significant, say, .05 < p < .10. The game 
then becomes one of somehow pushing the results toward or beyond the 
conventional p = .05 level. 

The Brash Style 

What devices are available to the desperate researcher for arguing that 
the results look good, when a dispassionate observer would say they are 
marginal or worse? There are at least five: 

1. Use a one-tailed test. 
2. When there is more than one test procedure available, use the one 

producing the most significant result(s). 
3. Either include or exclude ”outliers" from the data, depending on 

which works better. 
4. When several outcomes are tested simultaneously, focus on the 

one(s) with the best p value(s)—the ”hocus focus" trick. 
5. State the actual p value, but talk around it. 

Sophisticated readers of research reports are of course aware of these 
devices, and will recognize blatant attempts by the author to make weak 
p values sound strong. The net result of the usual built-in motivation to 
reject null hypotheses is thus to create a temptation to overstate one’s 
results, balanced by the risk that one will be found out, at some loss to 
one’s immediate case and long-run reputation. In terms of our legal 
analogy, this is the dilemma faced by a lawyer who is offered a sizable 
fee to defend a client of questionable virtue. With enough inventiveness, 
a case may be drawn in defense of almost any client; but to manufacture 
flimsy arguments may eventually justify the attribution that one is a 
shyster. This is an especially damaging attribution for a scientific 
researcher, which is why we emphasize that researchers should be like 
honest lawyers. 

We refer to the rhetorical style that overstates every statistical result 
as brash. Investigators who use the five devices previously listed, freely 
and inappropriately, invite skepticism and disfavor. 
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The Stuffy Style 

Life would be simple if one could give the unqualified advice to the 
statistics user, ”Never be brash." Among other things, this would imply 
total abstinence from any of the five devices that enhance the argument 
for rejection of the null hypothesis. Indeed, some statistics texts and 
some statistics instructors come close to this flat-out admonition. Taking 
the five devices one by one, the most complete injunction against 
brashness would be as follows: 

1. Never use one-tailed tests. 
2. Only use a single, predetermined analysis for any data set. 
3. Never exclude outliers. 
4. Avoid special focus on any particular result, especially if it is 

favorable. 
5. Stick strictly to a fixed significance level, for example, .05, and 

make no distinctions between outcomes that nearly beat it (p < 
.06, say), and those far from significance. 

When such proscriptions are packaged together, the net effect is to 
make statistical analysis into a set of legal or moral imperatives, such 
as might be announced at a public swimming pool. (ABSOLUTELY 
NO DOGS OR FRISBEES ALLOWED. VIOLATORS WILL BE PROS
ECUTED.) The teaching and learning of statistics as a series of 
”don’ts" can be so intimidating that students are often heard to ask 
the question, ”Can I do this analysis?" as though seeking permission 
from a higher authority who will guarantee their immunity from 
prosecution. This style of thinking about statistics goes to the oppo
site extreme from the excesses of brashness. We refer to it as the 
stuffy style of rhetoric. In Tukey’s (1969) terms, this approach views 
statistics as a ritual of sanctification, destroying the exercise of 
statistical detective work. 

As we see in this and subsequent chapters, there are sometimes good 
reasons to depart from the stuffy style, and the student who acts on 
these reasons should not be ”left with feelings of dishonesty and guilt at 
having violated the rules" (Gigerenzer, 1993, p. 326). To the student who 
asks, ”Can I do this?" a reasonable answer is: You can do anything you 
choose, and ponder the potential meaning of the results for your re
search. But keep in mind that the way you present the outcome(s) will 
affect the persuasiveness of the case you make. Usually it’s not good to 
be too brash, but you don’t want to be so pompous that you avoid the 
most cogent analysis. (At this point the student will probably say, ”Yes, 
but can I do this?" whereupon you should send out for pizza and repeat 
your advice as many times as necessary.) 
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Liberal and Conservative Styles 

The two extremes of unrestrained brashness and stultifying pomposity 
bracket a dimension along which styles of approach to statistics may 
vary. A liberal style emphasizes exploration of, and speculation about 
data. It is looser, more subjective, and more adventurous. Aconservative 
style is tighter, more codified, and more cautious. In statistics as in 
politics, either style can be defended, and there are individual differ
ences in preference. Also as in politics, the most successful arguments 
are those that satisfy both liberals and conservatives. This will happen 
when the investigator’s substantive claims are backed by conservative 
procedures, because in that case the claims would also be warranted by 
liberal standards. Contrariwise, when a liberal approach produces null 
results, a conservative approach will, too. 

Debatable cases arise when null hypotheses are rejected according to 
liberal test procedures, but accepted by conservative tests. In these circum
stances, reasonable people may disagree. The investigator faces an appar
ent dilemma: ”Should I pronounce my results significant according to 
liberal criteria, risking skepticism by critical readers, or should I play it 
safe with conservative procedures and have nothing much to say?" In the 
next few sections, we sketch some of the contextual features tilting the 
resolution one way or the other, keyed to our five rhetorical devices. 

ONE-TAILED, TWO-TAILED, AND LOPSIDED TESTS 

Consider the t test for the significance of the difference between the 
means (A and B) of two groups. This test is usually conducted on a 
two-tailed basis: If t has a large positive value (with A notably larger 
than B), or a large negative value (B larger than A), there are grounds 
for rejecting the null hypothesis. The rejection region—the set of out
comes that will count against the null hypothesis—is divided equally 
between the positive and negative tails of the t distribution. For the 5% 
level, each tail contains 2.5% of the total area under the t curve. 

When there is a strong theoretical expectation that any group differ
ence will be in a given direction (say, A > B), some investigators and 
textbook writers consider it permissible to use a one-tailed test, that is, 
to concentrate the rejection region all in the predicted tail (say, the upper 
5% of the positive tail). The paradigmatic example of a one-tailed 
situation is the test of whether some new medical or psychological 
treatment, or educational improvement plan (A) produces results supe
rior to the standard treatment or practice (B). Because only the outcome 
A > B is interesting, that is, will lead to a therapeutic or educational 
reform, it seems sensible to concentrate attention solely on the upper 
tail of the t distribution. 
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If the data do fall in the upper tail, the one-tailed test is more liberal 
than the two-tailed test. The one-tailed 5% level corresponds to the 
two-tailed 10% level; thus if t = 1.80, say, with 36 df, the result is 
significant by a one-tailed test (critical t = 1.69), but not with a two-tailed 
test (critical t = 2.03). Investigators with a generally liberal style are 
thus prone to view one-tailed tests permissively, whereas conservatives 
frown upon them. 

The One-and-a-Half Tailed Test 

Whatever one’s general style, the critical question with a one-tailed test is 
what you would say if the results fell far out in the ”wrong" tail. Suppose 
that in using a new therapeutic procedure, Group A, the experimental 
group, does far worse than the control Group B—so much worse, in fact, 
that using a two-tailed test, one would reject the null hypothesis and 
declare the new treatment significantly detrimental. If you start with the 
intention of using a one-tailed test, but switch to a two-tailed test when 
faced with a surprising data reversal, then your rejection region has 5% in 
the upper tail and 2.5% in the lower tail. With such a rejection region, the 
probability that a true null hypothesis will be rejected is .075, not the 
nominal .05. This is a bit too brash; the stated 5% level is misleading. 

We wryly call this a ”one-and-a-half tailed test," and note that it can 
also arise if you start with the intention of using a two-tailed test, but 
switch to a one-tailed test argument if the data show A > B, but not quite 
strongly enough to fall in the upper 2.5% tail. This happens not infre
quently, because researchers often find particular directional expecta
tions ”obvious" (more stimulus rehearsal improves memory, e.g., or more 
highly educated citizens show greater political interest, etc.). The poten
tial slipperiness of inducing arguments after the fact has to some extent 
given the one-tailed test a bad reputation. 

What, then, distinguishes the defensible one-tailed test from the 
misleading one-and-a-half tailed test? Clearly, it is the totally blank 
lower tail of the former. That is to say, a one-tailed test is only well 
justified if in addition to the existence of a strong directional hypothesis, 
it can be convincingly argued that an outcome in the wrong tail is 
meaningless and might as well be dismissed as a chance occurrence.1 

This condition is extremely difficult to meet, because researchers are 
very inventive at concocting potential explanations of wrong-tailed 

A different consideration applies to one-tailed tests in the application of meta-analysis 
(Rosenthal, 1991). This technique examines the strength and consistency of direction of a 
set of results from studies on the same topic. The meta-analyst must keep consistent track 
of the direction of each study. Therefore, in the amalgamation of p values, a one-tail 
orientation for the typical result is appropriate. A null result in any study is entered as p 
= .50, and a result at, say, the 5% value for the wrong tail is taken asp = .95. 
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results. Results in the wrong tail are rarely easy to simply ignore, as a 
pure one-tailed test would require. 

The Lopsided Test 

A compromise between the two brands of t test is possible. Consider a 
rejection region of 5% in the expected tail, and .5% in the supposedly wrong 
tail. Tests based on this region would be liberal in the expected direction, 
and conservative in the wrong tail. Such a test might be called a lopsided 
test. The rejection rule would be to declare the result statistically signifi
cant if it fell in the expected tail with two-sided p <. 10, or in the unexpected 
tail with two-sidedp < .01. This lopsided test entails a .055 probability that 
a true null hypothesis would be rejected, close to what the one- and 
two-tailed tests specify, but melding the virtues of those two alternatives. 

ALTERNATIVE TESTS APPLIED TO THE SAME 
DATA SET 

There are many other situations in which alternative test procedures 
can be applied to the same data set, to the potential confusion of the 
investigator. Nowadays, such confusion is amplified by the tendency for 
statistical analysis packages such as SAS (SAS Institute, 1985), to 
include the results of a plethora of alternative tests, some of which very 
few people ever heard of. How is one to cope with this unwelcome 
freedom of choice? To do different tests and pick the one that comes out 
best smacks of cheating, but if only a single test is to be done, which one 
should be preferred? We do not try to catalogue every such situation, 
but we broach the issues involved. 

We distinguish three cases: one that involves different ways of ex
pressing the data; the second, different calculation formulas applied to 
the same data; the third case, different philosophies for framing the 
analysis of the data configuration. 

Different Modes of Data Expression 

Parametric Versus Nonparametric Tests. In the simple situation 
of two independent samples that could be t-tested for a difference 
between means, the argument could be made that because of the 
potential lack of fit of normal distributions to the data, it is preferable 
to use the Mann-Whitney (1947) or the (equivalent) Wilcoxon (1945) 
test—a ”nonparametric’’ procedure that avoids the normality assump
tion by replacing the original quantitative measures with their rank 
orders. To make matters still more complicated, there are several other 
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nonparametric tests applicable to the same simple data situation (e.g., 
the exceedance test [Tukey, 1955]; see also Cliff, 1993; Madansky, 1988). 

The argument in favor of nonparametric tests as protection against 
non-normal distr ibutions has been undercut by demonstra t ions 
(Sawilowsky & Blair, 1992) that the t test is fairly ”robust" against (i.e., 
insensitive to) violations of the assumption of normal distributions. A 
similar statement can be made for F tests comparing the means of 
several groups. Besides the weakening of the original motivation for 
using them, non-parametric tests have also suffered from a lack of 
ability to articulate detail in presenting results (see chap. 6 on contrasts, 
comparisons, and beyond). Thus the general preference in the social 
sciences has been for parametric procedures.2 A standard exception 
occurs when the data speak with overwhelming strength to a simple 
major point, and one merely wants to state an acceptably significant p 
value in the most straightforward way. In such cases, simple methods 
like the median test (see, e.g., Siegel, 1956) may be handy 

Original Versus Transformed Data (Between-Group Analyses). 
For better articulation (chap. 6), or to repair heterogeneous variances among 
distributions, data are sometimes transformed to a different scale; for 
example, every score may be replaced by its logarithm. Significance tests 
performed both on the original data and on the transformed data typically 
yield very modest differences in p values, with the transformed version 
yielding a more conservative result. The safest procedure is to use the 
transformed scale if it homogenizes variance, although this creates a stylistic 
irony: The conservative analyst naturally prefers the more conservative 
significance test, but may be uncomfortable using a transformation, because 
the units of the new scale may not seem as ”real" as those of the original scale. 
It is difficult to get a feel for the logarithm of the time taken to solve a problem, 
for example, or the square root of the number of errors on a task. By refraining 
from the transformation, however, the conservative researcher not only 
passes up the other advantages of the transformation, but is stuck with a 
generally more liberal significance test. Thus he is hoist with his own petard.3 

Original Versus Transformed Data (Repeated Measures Analyses). 
In repeated measures designs, tha t is, situations in which subjects are 
exposed to more than one experimental t reatment or are observed for 

2My brief discussion of this many-sided topic is oversimplified. It is possible that in the 
1990s, there will be a resurgence of nonparametric procedures in the form of randomization 
tests (Edgington, 1987). These procedures are computer-intensive, but with recent in
creases of computer efficiency by orders of magnitude, formerly prohibitive calculations 
have become feasible. Another sign of the possible resurgence of nonparametric tests is 
the development of dominance statistics (Cliff, 1993). 

3For a good exposition of how to choose a transformation, with commentary on the occasional 
awkwardness of doing so, see Emerson (1991b). Incidentally, if you think that a petard is a short 
flagstaff, you are wrong. The dictionary definition refers to an explosive device. 
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more than one trial, the usefulness of transformations is sharply in
creased. In contrast to the case of between-groups analyses, F tests in 
repeated measures designs are highly vulnerable to violations of un
derlying assumptions, and in cases with such violations, a transforma
tion may be imperative. Here, unlike the simple between-groups case, 
the p values on the original and transformed data can be wildly 
discrepant. If one is unfamiliar with this pathology in repeated mea
sures designs, such an outcome can seem bizarre. Here again, the 
transformed scale that roughly equalizes variances is to be preferred, 
more urgently than in the between-groups case. 

Times Versus Speeds. A prototypical case in which a transform is 
vital arises in experiments in which time to complete a simple, unfamil
iar task is measured over a number of learning trials. Times tend to be 
highly variable from subject to subject in early trials, but become less 
variable as subjects learn the task. A transformation that often tends to 
equalize variances for different trials is the reciprocal transformation— 
which turns times into speeds. As a case in point, I have seen a data set 
of times for rats to run an alley for different sized rewards, in which the 
variances were quite heterogeneous (a ratio of 200 to 1 for the first trial 
vs. the last trial). When the null hypothesis of no reward effect was 
tested on the these data, the p value was > .90; when the times were 
transformed to speeds and the data reanalyzed, the p value was < .01! 
In this case, speed is the proper measure, and time is inappropriate. For 
designs involving replications of conditions within individuals who have 
different variances, see Bush, Hess, and Wohlford (1993). 

Absolute Versus Relative Effects 

Example: Negative Persuasion Using Insults. A common type of 
conundrum arises when an effect can be regarded in either absolute or 
relative terms. This case gives rise to a difficult stylistic issue. 

We begin with an example, a slightly simplified version of a field 
experiment conducted by Abelson and Miller (1967). Those investigators 
wanted to test for ”boomerang effects" in persuasion, that is, circum
stances in which a speaker not only fails to persuade his audience, but 
actually drives their attitudes further away from his position. This 
phenomenon almost never occurs in laboratory studies with captive, 
polite audiences. In the field experiment, the situation was engineered 
so that the speaker presented his arguments in an insulting fashion.4 

The hypothesis was that this would produce a boomerang effect. 

This experiment was performed during a period in which misgivings about the ethics 
of psychological experiments were not as widespread as they are nowadays. 
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The persuasion situation was prepared by having a confederate seat 
himself next to a potential subject on a park bench, whereupon the 
experimenter arrived as a roving reporter seeking the spontaneous 
opinions of ordinary citizens on a public issue. After obtaining agree
ment to participate, the experimenter invited the discussants to check 
their initial opinions on a 21-point rating scale and then to take turns 
offering arguments for their positions. In the Insult condition, the 
confederate ridiculed the subject’s opinions before giving his own pre
pared views. In the Control condition, the insulting remarks were 
omitted. After six turns by each participant, ratings on the opinion scale 
were again solicited by the experimenter. 

Table 4.1 presents the mean opinion scores before and after debate, 
and their differences, for each condition. A negative sign for the differ
ence indicates a change away from the confederate’s side of the issue, 
that is, a boomerang effect; a positive sign indicates change toward the 
confederate, an accommodation to his expressed views. 

The Insult group indeed demonstrates a boomerang effect; a t test of 
the mean change score of-1.81 against the zero change null hypothesis 
yields the significant value t23 = -2.16. But what about the No Insult 
control group? The conventional wisdom is that when change is mea
sured in an experimental group and a control group, one should test the 
experimental change relative to the control change. The difference 
between the mean change scores of the Insults and No Insults groups is 
-2.25, bigger than the mean change score of-1.81 for the Insults group 
alone. Yet the t test for this bigger difference is now smaller than the 
previous t, and not significant (t46 = -1.90)! For those who wish to verify 
this numerical result, we supply the additional fact that the pooled 
within group mean square was 16.86, which with n = 24 per group yields 
the standard error of each mean change as .838. The rest follows from 
standard t-test formulas. 

What’s going on here?? At first blush, an outcome like this appears to 
violate common sense, because a bigger difference yields a smaller t. The 
sophisticated reader who has seen this sort of thing before will realize 
that the paradox arises because the difference between two changes has 
a bigger standard error than either one alone. The relative effect is 

TABLE 4.1 
Opinion Scores Before and After Debate, With and Without Insults 

Before After Change t P 

Insult Group 
No Insult Group 
Differential Change: 
Insult vs. No Insult 

5.44 
5.09 

3.63 
5.53 

-1.81 
+.44 

-2.25 

-2.16 
.52 

-1.90 

<.05 
n.s. 

>.05 

Note. Group means; n = 24. 
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statistically more unstable than the absolute effect, and therefore re
quires a stronger result to achieve the same level of significance. 

The 42% Rule. Let us examine this phenomenon in more detail, in 
a more general context. Consider a 2 × 2 design, with the columns 
representing some consequential comparison or difference, and the 
rows, the presence or absence of a key experimental condition. The 
investigator is interested primarily in the comparative difference (i.e., 
column effect) in the presence of the key condition (the first row); she 
has included the second row as a control, but expects it to show no 
column difference. 

Now suppose that the experimenter t tests the comparison separately 
for the two rows and finds a significant effect for the first row, but no 
effect whatsoever for the second row. It is tempting to stop there, declare 
victory, and write it up for publication. But that would contradict the 
logic of including a control comparison in the first place. The point of 
running the control condition is to test the relative claim that the effect 
in the presence of the experimental factor exceeds the effect in its 
absence. The appropriate test seems to be a test of the interaction 
between the rows and the columns. 

Imagine the two t tests, t(1) and t(2), performed respectively on the 
two rows. Suppose further that the interaction, conventionally reported 
with an F value, is converted to a t value, call it t(*). [The square root of 
the F yields the t(*).] Assuming that the same pooled error term is used 
for all t tests, it can be shown that: 

The critical percentage is actually 41.4%, but I have rounded it up to 42%. Readers 
familiar with A Hitchhiker’s Guide to the Galaxy (Adams, 1980) will recognize the cosmic 
status of the number 42. In Adams’futuristic spoof, the most powerful computer in the universe 
is set working on the question of the meaning of life, the imiverse, and everything. After 
millions of years of contemplation, the computer—to everyone’s dismay—prints out, ”42." 

This interesting number was first noticed (Feynman, 1965) as the exponent of the ratio 
of certain fundamental physical quantities, and more recently (”Eggplant Flavor," 1992) 
has turned up in the vegetable garden. It was also Jackie Robinson’s uniform number. (But 
don’t take any of this too seriously.) 

t(*) = 
t(l)- t(2) 

√2 
(1) 

This innocent equation produces the paradoxical type of result. The 
interaction test can lead to acceptance of the null hypothesis of no 
relative difference in the column comparisons for the two rows, even 
when the test for the first row, t(1), comes out significant, and for the 
second row, t(2), yields a flat zero. In this case, the equation tells us that 
t(*), the interaction test statistic, is smaller than t(1), the simple effect 
for the first row, by a factor of the square root of two. Further tinkering 
with the equation creates the 42% Rule:5 When a mean difference in one 
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subsample is contrasted with a mean difference in a second, equally 
sized subsample, the t statistic for the interaction is larger than the t 
for the first difference if and only if the second difference is in the 
opposite direction, and is at least 42% as big as the first. 

The Insult/No Insult data provide a pernicious example of the 42% 
rule. Look back at Table 4.1. The No Insult mean change score was in 
the opposite direction from the Insult mean change score, all right, but 
it was less than 42% as big6 in absolute size [(.44/1.81) = .243], forcing 
t(*) to be less than t(1). 

The Stylistic Conundrum. I faced a stylistic conundrum when sub
mitting this study for publication. Using the .05 level, the Insult group 
by itself showed a significant boomerang effect, but when the Insult 
group was compared to the No Insult group, the boomerang finding was 
not significant. This was despite the fact that the No Insult group, taken 
alone, demonstrated nothing that would weaken the claim of a boomer
ang effect from insults. It yielded a banal and nonsignificant tendency 
of moving toward the speaker’s position. As we have seen, the villain of 
the piece is the statistical fact that every time you introduce new 
observations for purposes of comparison, the variability of the summary 
statistic (here, the mean difference) goes up, by a factor of the square 
root of 2 (if the n of additional cases = the n of old cases.) 

Well, what did I do? I could have been brash and tried to argue that 
comparison with a No Insult control group was irrelevant. Editors and 
readers, however, don’t generally like experiments with no control 
group. My eclectic solution was to give the comparisons of the Insult 
group mean change score with both the zero baseline (t = 2.16,p < .03), 
and the No Insult control group mean change score (t = 1.90, two-tailed 
p < .07; one-tailed p < .04). I argued for the one-tailed test on the 
Insult/No Insult difference, because the entire conception of the exper
iment revolved around the expectation of a boomerang effect under 
insult. (Had a positive mean change score been found in the Insult group, 
I would have gone back to the drawing board.) There are other choices 
here, such as being content with the two-tailed p of .07, or if you want 
to be really adventurous, claiming that the t of 1.90 is significant at the 
.05 level by the lopsided test (see the discussion of one-tailed tests, this 
chapter). 

I have the sense that a compromise statistical test could be invented 
that would resolve the apparent paradox in this type of situation. In any 

6Note that the difference scores indexing the experimental (Insult) and control (No 
Insult) effects are within-subject, not between-subject effects. This does not, however, affect 
the applicability of the equation. Another thing to note is that t(*) has more degrees of 
freedom than do t(1) or t(2), which helps slightly in rejecting the null hypothesis for the 
relative difference—but with groups of reasonable size, this advantage is quite small. 
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case, it is important to understand the mischievous potential conse
quences of the 42% Rule. 

Different Calculation Formulas 

There are a number of pairs of significance tests with different formulas 
for achieving the same purpose. For some pairs it is mathematically 
guaranteed that they will yield the same p value when both are applied 
to the same data set. For other pairs, the two formulas are based on 
alternative conceptions, and the results may diverge. 

Difference Between Two Means, t Test and F Test W h e n tes t 
ing for a difference between the means of two independent groups, it is 
immaterial whether a (two-tailed) t test or an F test is used. Both are 
based on the same assumptions—homogeneous variances and normal 
distributions— and it would be dastardly if they came out different. 
Fortunately they don’t, even though their formulas look rather dissimi
lar. Given k degrees of freedom for the t test (where k is the total number 
of cases in the two groups, minus 2), the corresponding F test will have 
1 and k degrees of freedom. Given the well-known mathematical rela
tionship F1,k = tk

2, it will always be the case that the square of the 
calculated t value will equal the F value for the equivalent comparison 
on the same data. The tables of significant values reflect this, and 
therefore the two tests yield exactly the same p value. It is a simple 
matter to inspect t and F tables to see the equivalence between F (with 
1 df in the numerator) and t-squared. A useful exercise for the student 
is to verify that the calculating formulas for F and t lead algebraically 
to the well-known relationship just described. Another simple case in 
which two formulas look different but yield the same result arises from 
the critical ratio test of a difference between proportions (say, the 
proportion of men who agree with an opinion item minus the proportion 
of women who agree), and the ordinary, uncorrected chi-square test of 
association in the 2 × 2 table (here, gender by agreement). 

Sometimes, of course, when two significance tests have formulas that 
look different, they are different. There are several situations in which 
the different significance test formulas can yield somewhat different 
outcomes. Some may involve ”pathology" in the data, that is, violation 
of some critical restriction. 

Different Chi-Square Formulas in Log-Linear Analysis. We men
tion here an important case that is relatively unfamiliar to psycholo
gists, but familiar to sociologists and others who deal with categorical 
data arranged as frequency counts in multiway cross-classification 
tables. (In two dimensions, this is the familiar contingency table.) The 
general method for analyzing associations among the ways of the table 
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is log-linear analysis (Fienberg, 1980; Wickens, 1989). The standard 
significance test for goodness of fit of log-linear models is a chi-square 
test, a small chi-square indicating a good fit. But there are two different 
methods for calculating a chi-square: the familiar Pearson chi-square 
as used on simple two-way contingency tables, and the chi-square 
derived from the maximum likelihood method. These two methods 
usually yield only slightly different values. 

There are two circumstances in which the difference between the two 
methods can be notable. One case is when both chi-squares are very 
large and highly significant, but they differ in size. This happens 
because the approximations to an exact chi-square gradually break 
down as the model being tested fits more and more badly. Here the 
discrepancy is rather harmless, because the conclusion is the same in 
both cases: The model being tested is resoundingly rejected. 

A more interesting circumstance that may yield a large discrepancy 
is the presence in the contingency table of one or more cells with very 
small expected frequencies (less than 1.0 or even .5). Many elementary 
statistics texts warn of inexact p values when expected frequencies are 
small, but specification of what small means depends on when and by 
whom the text was written. The point of such warnings is that the 
calculated chi-square may not approximate well the exact distribution 
given in the chi-square tables. When the two distinct chi-square formu
las —the Pearson and the maximum likelihood—give discrepant (but 
not huge) values, it is a sign that some of the expected values are indeed 
too small. In this event, one recourse is to recalculate a chi-square 
leaving out the cells with small expected frequencies. An interesting 
example of this device can be found in Duncan, Sloane, and Brody (1982). 
For an excellent discussion of small cell problems, see Wickens (1989). 

Different Ways to Frame an Analysis 

A rather different kind of case arises when alternative formulas signify 
differences in the guiding philosophy of the analysis. 

Combining p Values from Multiple Experiments. In the procedure 
of meta-analysis, discussed in chapter 7, it may be desired to combine p 
values from multiple, independent studies of the same null hypothesis, 
to create a single, omnibus test: for example, of departures of mental 
telepathy scores from chance baseline scores (Honorton et al., 1990). The 
most popular procedure for combining p values is the Stouffer test 
popularized by Mosteller and Bush (1954), but there are seven or eight 
alternative methods (Rosenthal, 1991). To make a point, we focus on one 
of these, a little-used alternative (Fisher, 1946) that involves adding 
logarithmically transformed p values. The Stouffer and Fisher tests 
yield predictably different results. The Stouffer test statistic is sensitive 
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Results From Two 
TABLE 4.2 

Ways of Combining p Values: A Vexing Comparison 

p Values From Four Independent Studies 

Procedure All Four at p = .15 Three at.50, One at.001 

Stouffer test 
Fisher test 

z = 2.07,p<.02 
x2 = 15.18,p> .05 

z= 1.54, p> 

X2= 18.71, p< 

.05 
:.02 

to consistent, even if mild, departures from the null hypothesis in 
separate studies (say, four results at p = .15), whereas the Fisher 
procedure is most sensitive to occasional, extreme departures (say, three 
results a tp = .50, and one at p = .001). Table 4.2 contrasts the results of 
the two tests for these two data situations. (The Stouffer test is based 
on critical ratios, the Fisher on a chi-square statistic with degrees of 
freedom = twice the number of p values.) 

The table gives the p value attaching to the aggregate, that is, a 
significance test of the omnibus null hypothesis, for each of the two tests 
on each of the two sets of results. When all four studies yield p < .15, the 
Stouffer test rejects the omnibus (at .02), but the Fisher test does not. 
When three of the individual results produce p < .50, but one reaches p 
< .001, the tests reverse roles. The Fisher is significant (atp < .02), but 
the Stouffer is not. If one were always to choose the test yielding the 
most extremep value, that would be too brash. The choice could be made 
resistant to criticism by using the conventional test (here, the Stouffer). 
However, there might be theoretical reasons to use the Fisher test for 
certain applications. For example, if one is to believe the rhetoric of 
proponents of ESP, success at mental telepathy comes and goes, but 
when present, is impressive. Multiple tests of mental telepathy there
fore might be a rare candidate for p value aggregation by the Fisher test. 

Summary of Alternative Test Procedures 

A breezy summary of the various cases of alternative tests applied to 
the same data set might go something like this: Often the choice between 
alternatives makes no practical difference. Occasionally (as in the 
log-linear case discussed earlier) what is important is not so much the 
choice between alternative methods, as what their discrepancy signifies 
about the nature of the data. In the remaining cases, when different 
tests do come out somewhat differently, one of them is usually conven
tional. As in the situation with two-tailed tests versus one-tailed or 
lopsided tests, a prudent policy is to choose the more conventional 
approach, but remain willing to deviate from it when an intelligent 
rationale based on appropriate special conditions can be put forward. 
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DEFECTIVE OBSERVATIONS 

”Klinkers" 

Almost all data sets contain defective observations. Recording equip
ment may fail; respondents may blatantly misperceive, misunderstand, 
or misrespond; samples of subjects may include one or more obviously 
inappropriate people (such as those who don’t understand English); 
experimenters may bollix the experimental procedure. The more obvi
ous the circumstances producing klinkers, the less problematic it is for 
the investigator simply to eliminate these observations from the data 
set,7 or to replace flawed subjects with new subjects. 

Circumstances may not be obvious, however. The investigator may 
be unsure whether or not Subject 17 was drugged out, whether Subject 
34 wrote his intended response on the wrong line of the questionnaire, 
and so on. The usual solution for ambiguous cases is to run data analysis 
both ways—that is, with and without inclusion of the questionable data 
points. The happiest outcome would be that it does not make (much of) 
a difference.8 In marginal cases when it does make a difference, a 
conservative policy would dictate that possible klinkers helping you to 
reject the null hypothesis should be thrown out, but those that hur t your 
ability to reject the null hypothesis should be kept in. This is appropri
ately cautious advice, but there is a catch. The research audience cannot 
notice possible peculiarities of individual observations, because they are 
not available to public scrutiny. Thus it is left up to the investigator to 
notice oddities, take them seriously, and nobly throw away klinkers even 
when they help you. Consider the following legend, possibly apochryphal 
but instructive nonetheless. 

An experienced experimenter, in carefully reviewing an experiment 
testing a hypothesis about overweight people, eliminated the data of one 
subject because it turned out that he was a wrestler, who should be 

The omission of observations from a carefully designed data structure may sometimes 
create awkwardness for the statistical analysis. Problems caused by missing data, and 
recommended solutions, are discussed by Cohen and Cohen (1983) and by Kirk (in press), 
among others. 

Typically, when ”both ways" of analysis are run, one way is presented in the text of the 
research report, and the alternative way in a footnote, l b the best of my recollection, such 
footnotes always say that the alternative choice made no difference. This, of course, is what 
the investigator would like to say, and I am made somewhat suspicious by the unanimity 
of happy accounts in these footnotes. The exact wording may be a tip-off to the convenient 
suppression of unpleasant details. Thus, when the footnote reads, ”...inclusion [exclusion] 
of these observations did not affect the conclusions of the study..., " it could be the case that 
inclusion (exclusion) changed a p value from p < .05 to p < .15, but that the investigator 
still drew the same conclusions. Stylistically, the conservative investigator—as opposed to 
the brash investigator—will use more precise wording of such footnotes (e.g., ”...inclu
sion...did not weaken the p level[s] by more than such and such..."). 
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considered not really overweight, merely ”bulked up." The wrestler’s 
data had gone strongly against the experimenter’s prediction. Without 
faulting the experimenter for deliberate bias, one may nevertheless 
question whether the distinction between being overweight and being 
bulked up would have been constructed had the wrestler’s data been 
supportive of the experimental hypothesis. The experimenter would 
probably not have been vigilant enough to scrutinize the details of 
favorable data, and might never even have discovered that one subject 
was a wrestler. The moral is as easy to preach as it is hard to carry out: 
Be your own toughest critic. 

Outliers 

We have labeled as klinkers those observations deemed inappropriate 
by external criteria such as failed equipment or errors in the selection 
or handling of subjects. Also vexing are outliers (Tukey, 1977)—obser
vations obtained under seemingly normal circumstances, but that turn 
out to be extremely deviant from the main body of observations. To 
illustrate, consider a reaction time study in which almost all of the 
reaction times fall, say, between .6 and 1.2 seconds, but for no apparent 
reason there suddenly arises a time of 8.5 seconds. Was the subject 
daydreaming? Did he miss the ready signal? We will never know, but it 
is clear that such an outlier will distort the mean and standard deviation 
of any group of observations within which it is included.9 This problem 
is so common in reaction time studies that cognitive psychologists have 
developed a variety of methods to handle it: for example, using ”trimmed 
means" (Bush et al., 1993; Wilcox, 1992) instead of ordinary means, or 
simply eliminating outliers entirely from the data set. An authoritative 
treatment of the various possibilities was given by Ratcliff (1993). 

General Advice 

Discussion of these alternative fixes for the outlier problem would carry 
us too far afield. A key observation here is that except for those who 
study reaction times, most psychological and other social science re
searchers have not confronted the problem of what to do with outliers— 
but they should. A generalized conservative suspicion against doing 
anything, lest it seem brash, is not a good solution. Doing nothing is as 
much a choice as is doing something. 

9The vulnerability of means and standard deviations to being overinfluenced by one or 
more wildly discrepant observations is a phenomenon much analyzed by statisticians 
under the heading of robustness. Measures of central tendency (or variability, etc.) that 
are not vulnerable to distortion by outliers are called robust statistics (Hoaglin et al., 1983; 
Tukey, 1962). 
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The general effect of doing nothing about outliers is to tolerate more 
noisiness in data, that is, to have lower power, rejecting null hypotheses 
less often. In any particular case, however, the do-nothing policy could 
either help or hur t the investigator wanting to reject the null, depending 
on the location of the outlier(s). Thus, what one wants to avoid is ad hoc 
treatment of outliers, differing by whim from one study to the next. 
Instead, one wants to develop a consistent policy applying to all studies 
of a given type. This advice gives rise to Abelson’s Third Law: Never flout 
a convention just once.10 In other words, either stick consistently to 
conventional procedures, or better, violate convention in a coherent way 
if informed consideration provides good reason for so doing. This advice 
in favor of stylistic consistency applies not only to treatment of outliers, 
but in general. 

MULTIPLE TESTS WITHIN THE SAME DATA SET 

When there are multiple tests within the same study or series of studies, 
a stylistic issue is unavoidable. As Diaconis (1985) put it, ”Multiplicity 
is one of the most prominent difficulties with data-analytic procedures. 
Roughly speaking, if enough different statistics are computed, some of 
them will be sure to show structure" (p. 9). In other words, random 
patterns will seem to contain something systematic when scrutinized in 
many particular ways. If you look at enough boulders, there is bound to 
be one that looks like a sculpted human face. Knowing this, if you apply 
extremely strict criteria for what is to be recognized as an intentionally 
carved face, you might miss the whole show on Easter Island. 

Sett ing the Error Rate 

We discuss multiplicity issues from the standpoint of the Type I error 
rate, that is, the proportion of times that hypothetically true null 
hypotheses would be rejected. The conventional .05 level signifies that 
for every 100 tests of a true null hypothesis, false significance will be 
claimed for 5 of them—an error rate of 5 in 100. This sounds precise, 
but avoids the question of the scope of each null hypothesis. A null 
hypothesis could be specific to a test on a single mean, between a pair 
of means, or among several means—or it could apply to every test 
whatsoever within a study, or over a whole series of studies. 

1 Because there is a community of researchers in any given field, the development of a 
new statistical convention requires an authoritative explicit declaration, or the implicit 
negotiation of a consensus. The former usually comes about via methodological articles in 
prestige journals (e.g., Clark, 1973; Green & Tukey, 1960). The latter could arise from the 
gradual diffusion of illustrative applications of a given policy decision, perhaps marked by 
occasional public debates over the advantages and disadvantages of alternatives. 



MULTIPLE TESTS WITHIN THE SAME DATA SET 7 1 

Manny Powers, the Psychic. Suppose, for example, that an inves
tigator interested in extrasensory perception comes across an individual 
with a reputation as a psychic (call him Manny Powers). The investiga
tor carries out 40 studies on Powers, one study per day. Each day, Powers 
is tested on five different ESP tasks (telepathy, precognition, psychoki
nesis, etc.). The goal is to find the circumstances under which Powers is 
psychic, operationally defined as performing better than chance on a 
given task on a given day 

How should the investigator specify what is meant by the .05 signifi
cance level? A skeptic who doesn’t believe in any manifestation of ESP 
whatsoever would point out tha t if a significance level of .05 is estab
lished for each task on each day, there would be 200 separate opportu
nities to reject a null hypothesis. Thus, assuming that the skeptic’s 
nonbelief is warranted, nevertheless (.05 × 200) = 10 rejections of a null 
hypothesis will be expected on average. In other words, there will be 
about 10 occasions on which extrasensory skill will be claimed for 
Powers because he performed ”better than chance" on some particular 
task. A cunning or self-deluded investigator might focus on these 10 or 
so successes, setting aside the approximately 190 failures—the hocus 
focus trick. (The lack of public knowledge of the number of failures is 
called the file drawer problem; Iyengar & Greenhouse, 1988; Rosenthal, 
1979.) 

Considering the whole series of studies and tasks as a single unit, the 
error rate is 200 times too high. To achieve an error rate of only 5 per 
100 hypothetical repetitions of the whole series of studies, the investi
gator would have to set the significance level per individual significance 
test at .05/200, or .00025. This procedure of adjusting the significance 
level according to the number of tests is called the Bonferroni method 
(Emerson, 1991a; Miller, 1981). Obviously, it would make it much harder 
to claim ESP for any specific occasion. 

However, a side effect of such a conservative procedure, as Duncan 
(1955) and others have complained, is to penalize the investigator who 
is ambitious enough to have run so many repeated tests. A lazier 
investigator who ran Manny Powers on five tasks for only 1 day would 
by the same reasoning be able to set the significance level per task at 
.05/5, or .01. And the laziest investigator of all, using one task on 1 day, 
could simply use the .05 level without modification. 

The Policy Dilemma. The stylistic debate pitting stuffiness against 
brashness is very stark here. When contemplating a significance testing 
policy for a series of studies, with multiple tests to be performed within 
each study, the most stultifyingly conservative thing to do is to set the 
error rate at 5 potentially false claims per 100 series. This forces an 
extremely high threshold for making a claim of significance from any 
single test. At the other extreme, the most loosely liberal policy is to 
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establish the error rate at 5 per 100 tests, allowing a multitude of 
potentially false claims to fall where they may. Neither extreme policy 
is particularly attractive; the best argument for each lies in the potential 
folly of the other. 

There is no universal right answer to this policy dilemma, and 
different conventional answers have grown up around different types of 
analysis. In multiway analyses of variance designed to test two or more 
main effects and some number of interactions, for example, the standard 
thing to do has been to apply the same significance level, usually .05, to 
each effect, ignoring the proliferation of tests. This extremely liberal 
policy is inconsistent with more conservative practice in other cases, but 
most researchers follow this convention without second thoughts. If a 
defense for this policy had to be spelled out, it would make two points: 
First, multiway designs are generally only run after preliminary re
search has established that there is a phenomenon to be studied; thus, 
the overall null hypothesis of no real effects whatever is even less of a 
serious possibility than it typically is. Second, the investigator is usually 
interested in a small handful of particular effects; if the analysis of 
variance table has many lines to it, scattered effects besides the inter
esting ones might well beat the .05 level by chance, but the investigator 
should not go to great lengths trying to interpret them. A clear analytic 
focus, established prior to running the study, serves to diminish the 
vagaries of multiplicity 

Focused Tests in the Many-Group Study. Conflicting standards 
also obtain for multiple tests applied to the several means of a many-
group main effect. When there are several degrees of freedom for an 
effect, the ordinary F test is called an omnibus test. It tests the overall 
null hypothesis that none of the means truly differ, against the vague 
alternative hypothesis that some of them differ to some extent from 
some of the others. The null hypothesis might come to be rejected in 
many ways, none of which are specified in advance. Specification of 
particular alternatives to the null hypothesis may involve planned 
contrasts—planned because they should be specified before looking at 
the data, and contrasts because they involve patterns of differences 
among the means (e.g., the linear contrast, whereby the means of groups 
A, B, C, etc., increase from left to right in equal sized steps). Because 
planned contrasts are usually more powerful than omnibus tests, they 
tend to yield stronger p values for rejecting the null hypothesis. They 
are also better articulated (as is discussed in chap. 7). 

An issue of style can nonetheless arise when an unusual contrast is 
chosen, because the stronger p value may come at a cost in rhetorical 
credibility—the critic may not be convinced that the quirky-looking 
contrast was really planned. Instead, it may seem like a brash attempt 
to make something out of whatever pattern happened to appear in the 
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data. In line with our Third Law, then, the reasoning behind the choice 
of a contrast must be clear and used often to be convincing. As a fallback, 
there is also a significance test appropriate for unplanned contrasts— 
the Scheffe (1959) test—but it is extremely conservative. 

Moderately conservative orientations characterize some of the many 
methods of multiple comparisons, in which each of a set of means is 
compared with every other to determine which pairs of means should 
be declared significantly different. The bellwether of the family of 
possible multiple comparisons procedures is the Tukey (1953) test. If in 
a series of experiments, each with several groups, the overall null 
hypothesis were always true, the Tukey test would on average make five 
false declarations of significance per 100 experiments. The per-experi-
ment error rate seems a reasonable compromise between per-compari-
son and per-series error rates. 

The two most ultraliberal procedures—multiple t tests and Duncan’s 
(1955) test—which base the error rate on the number of false claims per 
100 comparisons, have very bad reputations among statisticians. 
Scheffe (1959), for example, in his authoritative book on the analysis of 
variance, had the scathing footnote, ”I have not included the multiple 
comparison methods of D. B. Duncan because I am unable to understand 
their justification" (p. 78). Even the middle-of-the-road Newman-Keuls 
test (Keuls, 1952; Newman, 1937), which sets the error rate at five 
experiments out of 100, offends conservative sensibilities (Ramsey, 
1981). A reason for this is that when the Newman-Keuls does produce 
false claims in a given experiment, it may tend to produce several of 
them—and thus a higher total number of errors in 100 experiments, 
compared to the Tukey test. 

Different multiple comparison tests have proliferated like raspberry 
bushes (see Hochberg & Tamhane, 1987). Perhaps because of the con
fusion attaching to the steady introduction of new tests, different sub-
fields in psychology differ in the degree of liberality they are willing to 
tolerate in multiple comparisons tests. Social psychologists in particu
lar, for reasons that escape me, tend to be rather profligate in the use of 
multiple t tests.11 My own view is that the decision to use multiple 
comparison procedures should bring with it a somewhat conservative 
attitude. That is the price of multiplicity. If the investigator finds the 
Tukey (1953) test, or something like it, too conservative, she should 
ponder whether complete testing of every mean against every other is 
really to the point. Perhaps she really only cares about a couple of 
particular differences. Or better, perhaps she could apply a meaningful 
contrast. Conceptual focusing not only helps ease the stylistic dilemma, 
it leads to cleaner studies and clearer theories. 

Some sociologist of knowledge should study this! Differences in conventions are 
diagnostic of boundaries between different research subcultures. 
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STATING AND INTERPRETING p VALUES 

Word Play 

The desperate investigator with an almost significant result, say p = .07, 
may try to talk the result across the conventional .05 boundary, or to 
rationalize the failure to reach the boundary. 

Typical Rhetorical Flourishes. Among the phrases used to attempt 
such rhetorical feats are these: 

• The result was significant at the .07 level.... 
• The result was marginally significant (p = .07).... 
• Although the result did not reach the conventional .05 level, it is 

nevertheless highly suggestive.... 
• Because of the limited number of subjects (or low power), the result 

just missed the .05 level. Nevertheless.... 

These verbal devices, though not entirely unreasonable, make for some
what defensive rhetoric, suggesting a penchant for weaseling. (Note espe
cially the gambit in the reference to the conventional .05 level, as though 
to blame the convention rather than the result.) On the other hand, the .05 
level is admittedly an arbitrary standard, and there is not much real 
difference between results at the p = .07 and p = .05 levels. What is the 
author to do? 

Common sense suggests being straightforward—not trying to make 
too much out of the situation. Give the test statistic and the p value of 
.07. Leave it to intelligent readers to appreciate for themselves tha t your 
result just missed. 

Results That ”Lean" and ”H in t " Interestingly, John Tukey, the 
developer of moderately conservative procedures for multiple compari
sons, recently (Tukey, 1991) came out with what seems a shockingly 
radical proposal. He recommended coining new words for results at 
certain benchmark levels weaker than the .05. His starting point is the 
assertion that the null hypothesis is never literally true (see also Cohen, 
in press; Schmidt, 1992). Thus in testing the difference between two 
means, the so-called acceptance of the null hypothesis merely signifies 
a reluctance to bet on the direction of the true mean difference. If the 
two-tailed p were greater than .05, but less than, say .15, one might at 
least be tempted to bet that the observed direction of difference were the 
true one. Tukey suggested saying in this case that the difference be
tween A and B leans in the positive direction. For .15 < p < .25, he 
proposed stating that there is a hint about the direction. Imagine using 
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a level as scorned as .25 to enable a substantive statement about one’s 
results! Will wonders never cease? 

Let us take pause, however, before cheering that now we can publish 
all those lousy studies that couldn’t beat the .05 level. In using a new 
term, Tukey (1991) was not authorizing the use of .25 as a new signifi
cance level for rejecting null hypotheses. A hint is just a hint is just a 
hint. There is nothing very definitive about it. Instead, what he was 
telling us is to stop treating statistical testing as a two-valued decision 
procedure, and instead to use shades of wording to indicate different 
degrees of uncertainty. 

Replicability and Power: The Real Issues 

One can also envisage a semantics of confidence rather than of doubt. 
In a challenging article by Greenwald, Gonzalez, Harris, and Guthrie 
(1993), the authors showed that if a two-group study achieves p < .005, 
the probability that an exact replication of the study will yield p < .05 
is approximately .8. Greenwald et al. therefore suggested that the label 
replicable might be attached to a p level of .005. (This result is insensi
tive to the group nS, but does depend on the assumption that the effect 
size in the first study is the best estimate of the effect size in the 
replication.) Yes, I know that the whole thing sounds weird, because if 
the original study came out as strongly as p < .005, how could the chance 
of getting a replication to yield merely p < .05 be as modest as .8? 

The Replication Fallacy. Readers who are baffled by this assault 
on their intuitions are suffering from the replication fallacy (Gigerenzer, 
1993), an overconfidence in the repeatability of statistically significant 
results. The following thought experiment may help to correct the 
fallacy. Imagine an experimenter who has run a two-group study, and 
has found by t test the result p = .05. What is the chance that if she 
exactly repeated the study with a new sample of subjects (and the same 
n per group) that she would again get a significant result at the .05 level? 
First give an intuitive answer, and then study the analysis that follows. 

Half the time, the observed effect size from the second study ought to 
be bigger than that of the first study, and half the time, smaller. Because 
the first observed effect size was just big enough to obtain a p value of 
.05, anything smaller would yield a nonsignificant p > .05. This analysis 
thus yields an expected repeatability of 50-50, much lower than the 
usual intuition. Psychologically, overconfidence arises because once you 
find a significant result, you say to yourself, ”Ah, now I’ve got it. The 
real thing is there. No more problems!" But this falls into the trap of 
thinking that just because you have made a categorical assertion about 
a significant result, the influence of chance has disappeared. Remember 
that when we discredit a chance explanation, we are merely saying that 
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an entirely chance account is inadequate. We then claim a systematic 
effect in addition to chance effects. 

Power and the Wishful Experimenter. The probability that a sig
nificance test will reject the null hypothesis is called its power (Cohen, 
1988). Power can be increased by running more subjects, or by increas
ing the effect size via an increase in the cause size (chap. 3) and/or by a 
decrease in the influence of chance factors. Long ago, Cohen (1962) 
criticized the psychological research community for running studies 
with much too little power (about .42, on the average), and the situation 
has not improved since (Cohen, 1990). This raises a stylistic issue 
different from liberal versus conservative result presentations. It con
cerns the style of designing experiments, and we might call the poles of 
this dimension vigilant versus wishful. The experimenter who estimates 
how many subjects are needed to ensure adequate power (Cohen, 1988) 
is vigilantly guarding against the worst-case scenario of indecisive 
results. The wishful experimenter, on the other hand, assumes that a 
divine hand is guiding his research, and plunges ahead to frequent 
disappointments and blind alleys. 

Silly Significance Tests 

The ethos of doing significance tests as the hallmark of an appropriately 
conservative style is now so deeply ingrained that tests are sometimes used 
even when they need not be. Indeed, there are several contexts in which it 
is really silly to carry out a significance test (Cohen, in press), much less to 
present its result. For example, if a sample is divided at the median into 
high scorers and low scorers, there is no point in showing by a t test that 
the high scorers differ significantly from the low scorers. A somewhat 
subtler case arises when a trustworthy procedure for random assignment 
of subjects to experimental conditions seems to go awry, yielding a cluster 
of smarter or faster (or whatever) subjects in one particular group. In this 
situation, students are prone to test the significance of the difference 
between the groups. But because the null hypothesis here is that the 
samples were randomly drawn from the same population, it is true by 
definition, and needs no data. What has happened is that one of those flukey 
outcomes that arise from time to time has arisen this time. As Abelson’s 
First Law says, chance is lumpy. The investigator might want to adjust for 
the lucky advantage of the one group (say, by analysis of covariance), but 
a significance test has no relevance to this decision. 

Needless Clutter with p Values 

Meanwhile, there are some subfields of specialization within psychology 
(and other social and natural sciences) where the prevailing ethos is that 
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experimental results should be so clear that statistical tests are totally 
unnecessary. The reader need only look at a graph of the results, and 
the pertinent trends or skips or blips will be obvious. As behaviorist B. 
F. Skinner (1963) wrote, ”...in the experimental analysis of behavior... 
statistical methods are unnecessary... When a variable is changed and 
the effect on performance observed, it is for most purposes idle to prove 
statistically that a change has occurred." (p. 508) 

I have some sympathy for this position. Nothing is more tedious than 
a research report cluttered with obligatory p < .001s for every conceiv
able claim, including such blatantly obvious assertions as that perfor
mance improves with practice, or is correlated with ability. On the other 
hand, occasionally it happens that ”obvious" conclusions are false. And 
it is easy to overreact to appearances in graphs. For example, there is a 
strong tendency to perceive approximately regular cycles in the ups and 
downs of a random time series (Abelson, 1953), or to find mysterious 
coordination between separate time series, as in the ”Maharishi effect" 
(Orme-Johnson et al., 1988). 

Research reports can in various ways avoid belaboring the obvious 
with p value clutter. The most suspect way is to give a couple ofp values 
at the outset for major results, and then to focus on other data features 
merely with a look-and-see-the-graph approach. The perceptive reader 
will be wary of this potentially misleading practice. The prudent inves
tigator can anticipate objections by asking the self-critical question, 
”How can I demonstrate the statistical significance, if I have to, of each 
assertion I want to make?" Even a rough-and-ready answer would be 
salutary, and there is almost always a way to choose an approximate 
significance test. The text of the report need not be littered wi thp values. 
Sections in which all claims are judged significant can be covered by an 
opening remark or footnote stating that every claim hasp < .05, or better. 

IN THE LAST ANALYSIS 

Most of the noisy stylistic battles fought over the anxious pursuit of p < 
.05 are needless. Though contention over style will never completely 
disappear, a low level of stylistic disagreement between investigators is 
quite tolerable—perhaps even adaptive. Research conclusions arise not 
from single studies alone, but from cumulative replication. In this 
cumulative process (which we discuss in chaps. 7 and 9), liberal versus 
conservative stylistic differences will tend to cancel out, and if the 
community learns to be selective in its research designs and focused in 
its statistical tests, cumulation will be more rapid. 



5 On Suspecting 
Fishiness  

Sometimes, statistical evidence that looks good on the face of it never
theless turns out to be flawed. Broadly speaking, there are two ways in 
which an argument based on apparently persuasive evidence might lose 
its impact after further inspection. One possibility is that the data were 
mishandled or the statistical analysis misapplied. A second possibility 
is the discovery of some artifact in the research procedure, such that the 
substantive conclusions drawn by the investigator may not logically be 
warranted by the observational comparisons made. In this chapter we 
emphasize the first class of cases—mangled statistics—and save the 
treatment of artifacts until we come to counterarguments in chapter 9. 

An experienced data handler develops a nose for strange features of 
data and statistical summaries. An odd pattern, irregularity, or coinci
dence is often a clue that something fishy may be going on—a mistake 
in recording the data, a statistical miscalculation, a departure from the 
assumptions and conventions of a particular type of analysis, or in 
unusual cases even downright fraud. In this chapter, we present a 
catalog of some common types of statistical strangeness, hoping by 
examples to sharpen the reader’s skill in finding and analyzing fishi
ness. The categorization of errors is arranged according to types of clues 
a data snooper can look for. These clues can be used both to check one’s 
own results, or to prowl through other people’s. 

Our diagnostics pertain mainly to scholarly research reports giving 
more details than usually appear in sketchy news stories. For detecting 
common statistical errors or deceptions in the media, the reader is 
referred to other sources (e.g., Huff, 1954; Maier, 1991; Tufte, 1983). 

STRANGE DISTRIBUTIONS OF OBSERVATIONS 

A powerful and simple way to snoop for peculiarities in data sets is to 
plot the distributions of observations—that is, the frequencies of occur-
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rence of each score. One can use histograms, or Tukey’s (1977) stem-and-
leaf procedure. 

Looking for Outliers, Gaps, and Dips 

Repeated runs of most random processes produce smooth, single-peaked 
distributions of outcomes. Typically, strange-looking distributions arise 
because of an irregular process intruding into the production of an 
ordinary-looking distribution, as if a nonconformist leprechaun had 
joined the data generation process. The term compound distribution, or 
contaminated distribution (Hoaglin et al., 1983), refers to a distribution 
arising from a mixture of random processes—a regular process produc
ing most of the observations, mixed with a deviant process that contrib
utes the rest. Consider the likely appearance of a compound 
distribution, depending on the relation between the regular process and 
the deviant process. If the deviant process has a much larger variance 
than the regular process, one or more observations separated from the 
main body of the distribution will tend to appear. Such sports are called 
outliers. If there are a sufficient number of observations from a deviant 
process with a distinctly higher or lower mean than the regular process, 
the resulting compound will have two peaks, separated by a gap or a 
dip.1 

The appearance of outliers, gaps, or dips signals the presence of a 
deviant process, wanting explanation. Many deviant processes arise 
benignly, as when subjects become fatigued or distracted amidst a series 
of otherwise regular responses. Others suggest more mischievous 
causes, as we illustrate with the following examples. The first example 
happens not to come from an experiment, but from a naturally occurring 
set of voting data. 

Example: Suspicious Vote Totals. In the 1969 and 1971 Demo
cratic mayoral primaries in New Haven, Connecticut, the opponents 
were the same: a reform-minded candidate versus the incumbent mayor. 
More people voted in the 1971 primary than the 1969 primary, reflecting 
a more intense, bitter campaign, marked by allegations of cheating and 
mistallying of votes in particular wards. There was a rumor that party 
regulars were submitting absentee ballots in the names of dead voters. 
There was contention over voting machine tallies as well, having to do 
with whether some wards tallied all three of their voting machines. 

Another general phenomenon besides mixing can produce gaps or dips in distributions. 
The impish leprechaun, instead of mixing deviant observations in with regular ones, could 
remove or inhibit a selected subset of the regular data. This produces so-called censored 
distributions. For example, the distribution of the dates on old pennies has a substantial 
dip from 1941 to 1945—because of the military use of copper during World War II. 
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Table 5.1a gives the ratio of total vote reported on the night of the 
election in 1971 to total vote in 1969, for each of 30 wards. These ratios 
are arrayed in a stem-and-leaf plot (Tukey, 1977), shown in Table 5.1b. 
Each leaf to the right of the vertical line represents the last digit of a 
particular ratio, with the prior digit(s) given by the stem to its left. Each 

TABLE 5.1a 
Ratio of Total 1971 Vote to Total 1969 Vote in Each of 30 Wards 

Ward Ratio Ward Ratio Ward Ratio 

1 1.11 2 1.18 3 1.04 

4 1.59 5 1.15 6 1.23 

7 1.35 8 1.00 9 1.27 

10 1.15 11 1.20 12 1.20 

13 1.22 14 1.26 15 1.24 

16 1.28 17 1.03 18 1.08 

19 1.11 20 1.04 21 1.09 

22 .70 23 1.10 24 1.09 

25 1.20 26 1.05 27 1.12 

28 1.11 29 1.17 30 1.09 

TABLE 5.1b 
Stem-and-Leaf Display of the Ratios in Table 5.1a 

1.5 9 
1.5 
1.4 
1.4 
1.3 5 
1.3 
1.2 678 
1.2 000234 
1.1 5578 
1.1 01112 
1.0 58999 
1.0 0344 
.9 
.9 
.8 
.8 
.7 
.7 0 

Outer fence = 1.61 

Inner fence = 1.415 

Upper hinge = 1.22 

Median =1.135 
Lower hinge = 1.09 

Inner fence = .895 

Outer fence = .70 

Note. Tukey’s term hinges is closely related to quartiles, but may differ for small ns. 
In Tukey, Mosteller, and Youtz (1991), the term fourths is used. The step size is 1.5 times 
the difference between the hinges. This step is marked off once, then twice, beyond each 
hinge. This locates the inner and outer fences or cutoffs. Data beyond the fences are 
outliers or extreme outliers. See Tukey (1977), or Hoaglin, Iglwicz and Tukey (1986). 
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stem occurs twice, so as to sort the accompanying leaves of 0-4 from 
those of 5-9. This better articulates some distributions, such as this one. 
The display is akin to a histogram for showing the distribution, but it is 
vertical rather than horizontal, and preserves the information from the 
final digit rather than lumping data within class intervals. 

We note by eye that there is one case of an unusually high ratio, and 
one case of an unusually low ratio. The upper case, from Ward 4, shows 
a fishily large increase in 1971 vote over the 1969 vote. The lower one, 
from Ward 22, represents a substantial decrease in the 1971 vote. Both 
are suspicious because votes were fairly homogeneously increasing in 
all the other wards, and there were no major population shifts or 
redrawn ward boundaries. 

Of course, every distribution has highest and lowest observations. We 
need some orderly procedure for deciding whether extreme cases are so 
separated from the body of the distribution as to warrant concluding 
that they have come from a deviant process different from the regular 
process that generated the rest of the distribution. Tukeys (1977) 
method for identifying such outliers is indicated in the notes beneath 
the table. Here, one suspicious data point lies on the ”outer fence" at the 
bottom of the distribution, and the other one lies very close to the outer 
fence at the top of the distribution. Both may be considered so deviant 
as to need special explanation. 

Indeed, as it turned out, there were very concrete explanations for 
both of these aberrations. In Ward 22, with the low ratio, it was 
discovered the morning after the election that the count from one of the 
three machines had been omitted. With correction, the ratio became 
1.05. A year later, a scandal broke, having to do with false absentee 
ballots made out in the names of dead people. This chicanery was heavily 
concentrated in one vulnerable ward, where the ratio was 1.59—Ward 
4! 

The striking thing about this example is that a data analyst knowing 
nothing about the political foibles of New Haven, Connecticut, could be 
cued to the strong possibility that strange things were going on in two 
wards, just by following the straightforward procedure for identifying 
outliers in the distribution in Table 5.1b. 

Example: Tests of Clairvoyance. A different sort of peculiar data 
distribution arises from the Pearce-Pratt ESP study referred to in 
chapter 2. Pratt , the experimenter, turned over decks of symbol cards 
one by one. Pearce, the reputed clairvoyant, sat in a building 100 yards 
away (or on one series, 250 yards away). After completing his decks, 
Prat t wrote down the succession of symbols. The distant Pearce had 
recorded his impressions of what the symbols had been, and the two lists 
were later compared by a third party for symbol matches. Each symbol 
was one of five possibilities, so that the chance level of successful 
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matching was 20%. The reported overall success rate, with 50 trials on 
each of 35 days, was 30.1%, significant atp < .000000001. However—and 
this is what makes the example pertinent here—the success rate was 
highly variable, giving rise to what critic Morris Hansel (1980) charac
terized as a bimodal distribution. 

Hansel (1980) found the situation suspicious. Some days yielded 
upwards of 40% correct, but other days only 15% correct. Why? Inspect
ing the site on the Duke University campus, he constructed an elaborate 
hypothesis of fraud. According to Hansel, the receiver Pearce, motivated 
by notoriety as a presumed psychic, cheated. On many of the days, he 
slipped out of the other building as the trials began, hid across the hall 
from Pratt’s office, and stood on a table from which he could see Pratt’s 
symbols through a pair of open transoms. With time enough to copy some 
or all of them, he left his hiding place and simulated an arrival from the 
other building. On his symbol sheet, he made sure not to look too perfect, 
but otherwise produced strong ”data." Pratt, his back to the transoms, 
was an innocent party to the deception. 

The distribution, given by stem-and-leaf in Table 5.2, is even more 
peculiar than Hansel (1980) thought. Note that there is an apparent gap 
in the distribution at 10 correct answers; scores of 10, 11, and 12 never 
occurred. If the process generating the distribution were a binomial with 
p = .2, then 10 would be the most likely outcome, with 11 and 12 not far 
behind. There is an apparent separation of the data into two distinct 
clusters, one for successful days and one for days of negative success. 
Defenders of ESP typically account for two-mode distributions by ar
guing that extrasensory perception is a delicate process often disrupted 
by fatigue, distraction, or skepticism, producing performance at or below 
chance level (e.g., Bem & Honorton, 1994). This argument is not very 
compelling as a post hoc explanation of a given data set for which there 
is no independent evidence that such unfavorable conditions were 

TABLE 5.2 
Stem-and-Leaf of the Pratt-Pearce ESP Data: Successful Hits Per 50 Trials 

24 
2 333 
2 0000001 
1 89 
1 677 
1 445 
1 3333 
1 < Note the strange gap! 
0 8889999 
0 6 
0 55 
0 3 
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present. In any case, it is very odd that if some of the days’ performances 
were attributable to chance, there would be seven scores of 8 or 9, but 
none of 10, 11, or 12. And if some days were systematically worse than 
chance, why weren’t they more strikingly worse? The lower tail of the 
distribution is about what one would expect from a binomial process. 

If Hansel (1980) is right that cheating occurred, a speculative account 
of the strange distribution might go like this: Pearce wrote down his 
sincere guesses of the cards, hoping that he would spontaneously do 
better than chance. Upon getting a peek at Pratt’s decks, he quickly 
added up his score. If it was average or better—10 or more—he altered 
somewhere between three and eight responses to juice up his score. If 
it was 9 or worse, he left it alone, figuring that too many changes would 
be needed, and doing always better than chance would look suspicious. 

I should note that before constructing this elaborate speculation, I 
considered the possibility that the gap in the distribution in Table 5.2 
was merely a fluke departure from a smooth unimodal distribution. 
After all, chance is lumpy. We need a significance test for the presence 
of gaps in distributions. In fact, at least one such test exists (Wainer & 
Schacht, 1978). The details are not necessary for us here, but when the 
gap test is applied to the present data, the test statistic is the critical 
ratio z = 5.81, which is extraordinarily highly significant. In other words, 
even allowing for the fact that the gap was noticed post hoc, we can be 
highly confident that the gap was not a chance fluke. 

Sometimes gaps are incomplete; the number of cases in the un
derpopulated portion of the distribution may be small rather than zero. 
There exists a ”dip test," too, for assessing whether a dip is reasonably 
attributable to chance (Hartigan & Hartigan, 1985). If a significant dip is 
found, it is evidence for the mixture of two separate generating processes. 

This test is rather complex, however. The whole area of distribution 
snooping is a candidate for the development of new statistical tech
niques, to solidify the inferences we make by eyeballing distributions. 
Reliance on appearance alone risks underappreciation of the lumpiness 
of chance. These remarks apply also to two other distributional anom
alies, cliffs and peaks, discussed later. 

When Gaps or Dips Are Hypothesized 

Fishiness aside, the search for gaps and dips can also be performed as 
a test of theoretical expectations. I have run across two examples of this, 
and there are undoubtedly many more. 

Example: Bimodal Distribution of a Trait Gangestad and Snyder 
(1991) hypothesized that a subgroup of the general population is genet
ically constituted so as to be distinctly high on the personality trait of 
”self-monitoring" (Snyder, 1974). They argued that were it not for 
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environmental influences and measurement errors tending to blur the 
manifestation of this trait, its distribution in the population would be 
discontinuous. Even at that, the observed distribution on a scale assess
ing self-monitoring should be bimodal. Their article presents an analysis 
like a dip test, and concludes in favor of their hypothesis. 

Example: Is Dyslexia a Distinct Entity? The second example is of 
considerable consequence for educational policy toward children with 
learning disabilities, estimated to constitute about 15% of the school-age 
population. There is an ongoing debate (Rosenberger, 1992) as to 
whether or not children diagnosed as ”dyslexic" constitute a discrete 
group, potentially distinguishable from other children by some particu
lar brain defect, as yet undiscovered. 

Shaywitz, Escobar, Shaywitz, Fletcher, and Makuch (1992) accumu
lated the test scores used in dyslexia diagnosis on several hundred 
school children, and looked for a dip in the distribution. The reasoning 
was that if indeed dyslexia were a discrete condition (either you have it 
or you don’t), a clear dip would separate dyslexics from normals. The 
investigators found a smooth distribution with no discernible dip, and 
concluded that dyslexia cannot be characterized as discrete. Rather, it 
must be a condition that can vary in degree, some people being more 
dyslexic than others. 

This analysis might conceivably be misleading. A hidden problem of 
interpretation arises from measurement errors. The widely accepted 
diagnostic score for dyslexia, used in the Shaywitz et al. (1992) research, 
consists of the difference between an overall IQ score and the score on a 
particular reading test. Errors of measurement are especially pro
nounced for difference scores between two related ability measures 
(Cohen & Cohen, 1983). To understand the effect of measurement error, 
picture an underlying distribution of ”true" scores on a scale of dyslexia 
proneness, with a dip in it. Now turn loose a bunch of measurement-
error leprechauns who play horseshoes with the scores, tossing each of 
them haphazardly to the left or right along the scale. If the variability 
of the lengths of the tosses were great enough, the result would be that 
the dip in the distribution would be concealed (covered by sand from the 
horseshoe game, one might say). 

The lesson in this is that although a gap or dip in an observed 
distribution implies a mixture of underlying processes, the converse 
does not necessarily hold. The failure to find a gap or dip could occasion
ally be because due to the obscuring effects of measurement error. 

Cliffs 

Some frequency distributions pile up as one or the other tail is ap
proached, and then abruptly drop off entirely. The type of distribution 
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confusingly named the J-shaped distribution is of this character. There 
are very few observations in the upper tail. As we move leftward from 
the upper tail, the frequencies increase until we reach a mode at a score 
of zero. There are no scores below zero, so we might say that there is a 
cliff at zero. 

Distributions of Looking Time. As an illustration of a legitimate 
cliff, consider a study of the smiling responses of infants when they are 
presented with adult faces, real or simulated. Each face is shown for, 
say, 2 minutes, and the amount of time the infant stares at the face is 
recorded. When distributions of looking time are tallied across infants, 
times of zero (i.e., no looking) can occur often. Because negative times 
are impossible, this creates a cliff. 

A Disclaimer. The next two examples are undocumented, as my 
only exposure to them was through anonymous public statements. 
Nevertheless, they are sufficiently interesting to warrant inclusion. 

Example: Differences Between Ratings oflngroup and Outgroup. 
In the previous example, the striking occurrence of a cliff at zero has an 
obvious explanation: negative looking times are meaningless. Thus the 
cliff, although visually arresting, is not fishy. In some other cases, 
negative scores are possible but never (or hardly ever) occur, even 
though scores of zero are quite frequent. This is cause for detective work. 

Consider the bellwether finding of ”social identity theory” (Tajfel & 
Turner, 1986) that most members of racial and ethnic groups judge their 
own group to possess favorable characteristics in greater degree than 
opposing groups. This provides a useful way to diagnose racial or other 
prejudices, as asking directly about negative characteristics of out-
groups arouses resistance in the many respondents who are averse to 
blatant expression of stereotypes. 

When Whites are asked to rate on a 7-point scale various groups on 
such positive traits as ”industriousness,” for example, it is typical that 
Whites are rated higher than African Americans, consistent with a 
stereotype. There is a curious property of these ratings, however. If one 
takes for each respondent the difference between his ratings of indus
triousness for Whites and African Americans, the left-hand tail of the 
distribution of differences contains a number of respondents for whom 
the difference is as small as zero, yet there are virtually no negative 
differences! That is, there is a cliff at zero: Some Whites are willing to 
grant that African Americans are as industrious as Whites, but not that 
they are more industrious. If the ratings were made without self-con
sciousness, measurement error alone would produce a smooth tail 
containing some negative differences. The cliff suggests that, collec-
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tively, racially tolerant Whites are expressing their egalitarianism by 
highly self-conscious design. 

Peaks 

Another distributional property suggesting that something odd may be 
going on is a high peak at a central mode. Smooth distributions such as 
the normal distribution are usually referred to as “bell-shaped.” An 
important characteristic of this shape is that the central region of the 
distribution is rounded off, like the profiles of small mountains in the 
eastern United States, such as the Adirondacks. Contrast this with the 
geologically newer Rockies, which have sharp, nearly conical peaks. 
When a distribution has this shape, a possible explanation is a com
pound distribution in which a deviant process contributes extra obser
vations at the mode of the regular process (rather than outliers in the 
tails). It is also possible that the distribution is really bell-shaped, but 
has a very small standard deviation. 

To distinguish between these two possibilities, we need to consider 
the slope of the frequency distribution as we move away from a central 
peak. Like a smooth ski slope, the top is steep, but at a critical point—the 
“point of inflection”—there begins a gradual leveling off. In a (nearly) 
normal distribution, the point of inflection is (approximately) 1 SD 
(standard deviation) from the peak. If one has some estimate of the 
appropriate size for the standard deviation, one can assess whether the 
peak is too steep and narrow, thereby suggesting a deviant process. This 
becomes clearer from the example. 

Example: The Blackout and the Baby Boom. Shortly after 5 p.m. 
on November 10,1965, a huge blackout struck parts of Canada and New 
England and most of the New York metropolitan area. Elevator service 
was knocked out in offices and apartment buildings; subways didn’t run; 
dark streets and inoperative traffic lights discouraged automobile 
travel. People who somehow managed to get home, or were already 
there, spent the evening in darkness, without the diversion of television. 
The event much impressed itself on the collective consciousness of New 
Yorkers, who told stories about that night for a long time to come. 

The following August, a newspaper reporter happened to be in Belle-
vue Hospital in the maternity ward, where he noticed an unusual 
amount of activity Curious, he inquired of a nurse whether there 
seemed to be a larger than usual number of babies being born. She 
agreed that there were. In discussing this fact, the reporter recalled that 
the blackout had been exactly 9 months before. Sensing a human 
interest story, the reporter contacted several other New York hospitals, 
and all confirmed high numbers of births. 
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It was a Monday. On Tuesday, birth rates were still high in New York 
hospitals. The newspapers published figures showing that the number 
of babies born on those 2 days were far in excess of what would be 
expected from the annual birth rate, and any statistically trained reader 
who cared to apply a statistical significance test would have confirmed 
that the excess was statistically reliable. The news media circulated a 
story concluding that New Yorkers had found a productive way to use 
the darkness thrust upon them by the blackout. 

By Wednesday of the critical week the number of births fell substan
tially, and on Thursday and Friday, births leveled off. Follow-up stories 
took this downtrend as confirmation of a blackout sex spree, as the time 
gap now surpassed 9 months. 

I know of no systematic survey of belief in this charming hypothesis, 
but my recollection of informal conversations at the time the news broke 
is that the phenomenon was widely accepted. (A few years later, I asked 
an undergraduate class how many of them believed that there was an 
excess of births 9 months after the New York blackout, and about 
three-fourths raised their hands. The others weren’t disbelievers—they 
simply hadn’t heard about the blackout.) 

A thoughtful statistician (anonymous) was suspicious of the matter, 
however, because the drop-off of births seemed too sudden to him. The 
point of inflection of the slope occurred on Wednesday, 2 days after the 
critical Monday, implying a standard deviation of 2 days for human 
gestation times. The statistician knew, however, that the time from 
conception to birth has a standard deviation of about a week. 

To explore the cause of the strange peak in the distribution, the 
statistician sought comparison data. He assembled birth records from 
the major maternity wards in New York over a time period stretching 
from many weeks before the critical 9-month target date to many weeks 
after, and a remarkably consistent pattern emerged. On every Monday 
and Tuesday, births exceeded the weekly average, and on every Friday, 
Saturday, and Sunday, births were lower than average. The pattern for 
the week on which the reporter had focused was not significantly 
different from the general pattern, and there was no reliable evidence 
for an excess number of births in the target week. The newspaper 
reporter had simply stumbled upon the usual within-week trend, and 
had fallaciously associated the birth data with the blackout. (Note that 
his error falls into the general category of insufficient comparison, 
discussed in chap. 1.) 

But why, you may wonder, should there be a within-week trend? Why 
should women be differentially likely to go into labor on different days 
of the week? Upon discussion with obstetricians, a perfectly plausible 
explanation emerged. In the not inconsiderable number of cases requir
ing induced labor or Caesarean operations, doctors tend to schedule the 
procedure for the beginning of the week, rather than for a weekend. The 
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excess births reported at the beginning of the critical week had to do 
with doctors’ needs for rest and recreation rather than with the aphro
disiac properties of blackouts. 

THE OCCURRENCE OF IMPOSSIBLE SCORES 

We now shift gears to consider an oddity that arises from errors of coding 
of raw scores. It is frequently the case that data sets with many 
measures on many subjects have holes in them, that is, missing obser
vations for particular scores of a few subjects. Computer data analysis 
packages such as SAS promise the user that missing data will be 
properly handled (either by dropping some cases or by estimation of the 
missing data points). The user’s part of the bargain is to denote by a 
given code which observations are missing. In SAS, a period (.) is the 
proper code, but for one reason or another, missing data indicators may 
not find their way into the input file in the right places. 

One common error is to put blanks where periods should be. These 
will ordinarily be converted to data points with a score of zero. If zero is 
a possible score on the measure in use, these phonies are likely to go 
undetected. If, luckily, zero is an impossible score, a simple inspection 
of the distribution in the computer file will reveal the mistake. This is 
something you cannot usually do with other people’s data, but should 
get in the habit of doing with your own. 

Another variant of this situation arises often in dealing with survey 
data files obtained from established survey organizations such as the 
General Social Survey (Davis & Smith, 1991). Missing data are typically 
indicated by out-of-range response codes. For example, the respondent’s 
education is coded as number of years of school completed: 08 for 
completing grade school, 12 for completing high school, 16 for a college 
graduate, 20 for a PhD, and intermediate numbers for partial comple
tions. If a respondent fails to answer the education question (or the 
interviewer to recode it), this is coded as 99. Obviously, all statistical 
analysis programs should be told in one way or another to treat 99s as 
missing observations. Imagine the chaos caused by averaging 99s with 
12s and 16s to obtain mean numbers of school years completed; or the 
deformed correlations of education with other variables such as income, 
each variable contaminated with its bogus sets of 99s. 

The obvious prophylactic against such arithmetical butchery is to 
inspect the distributions of codes after the files have been edited. If 99s 
remain, fix them! If the 99 virus somehow survives in your data, you 
may have later chances to detect this through the occurrence of strange 
means, strange variances, or strange test statistics—but it is risky to 
let matters get that far. 
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STRANGE TEST STATISTICS 

Fishy things turn up not only in raw data, but also commonly in 
summary statistics or in the results of statistical tests. We cover several 
diagnostics tha t can be applied to these quantities. First we deal with 
null hypothesis tests, in which test statistics such as t or F that are much 
too large—or much too small—are cause for raised eyebrows. 

A Huge Test Stat is t ic 

When hoping to reject a null hypothesis, the investigator welcomes large 
values of F , or chi-square, or whatever the test statistic happens to be. 
Fs of 10 or 20 are thus cause for celebration. But when the computer 
printout tells you that you have an F of 500, hold the champagne. It is 
quite rare in psychological research for Fs to be tha t huge, except for 
crushingly obvious relationships (such as the average height of men in 
a large sample differing from the average height of women), or for 
routine checks of strong experimental manipulations. 

To give the reader some feeling for big F values, we first note tha t 
larger samples tend to produce larger Fs. For any given effect magni
tude, the average value of F is approximately proportional to the n of 
cases per group. A useful way to interpret the ratio of F to n is in terms 
of the standardized effect size (chap. 3). It is easy to show (e.g., from 
Rosenthal, 1991, Equation 2.14) that the (F/n) ratio is approximately 
equal to one half the squared standardized effect size. 

Distributions of standardized effect sizes arising in meta-analyses 
show that in domains of substantive research interest, it is unusual for 
this magnitude measure to be as big as 1.0, quite rare for it to be as big 
as 1.4, and extraordinary2 for it to be as big as 2.0. These statements of 
rarity can be translated into, “It is unusual for F/n to be as big as .5, 
quite rare for it to be 1.0 or larger, and extraordinary for it to exceed 
2.0.” In other words, if you’ve got a typically modest n, say 25, an F of 
25 would border on being amazing, and an F of 50 would represent either 
a mistake or a result so obvious tha t any child would have anticipated 
it in advance. To check the possibility of a mistake, the investigator could 

2The reader might try the following exercise. Find three or four meta-analyses in the 
journal of your choice, and for each one using the standardized effect size as their measure, 
tabulate the percentages of occurrence of values numerically greater than 1.0, 1.4, and 
2.0. I did this with the first three Psychological Bulletin articles I happened to pick up: 
Oliver and Hyde (1993), on gender differences in sexual attitudes and practices; Roese and 
Jamieson (1993) on the bogus pipeline technique for eliciting honest responses from 
subjects; and Polich, Pollock, and Bloom (1994), on the P300 brain wave in relation to 
alcoholism. In the first article, 8% of the effect sizes had absolute values above 1.0, only 
2% above 1.4, and .2% above 2.0. The second article contained 13% with values beyond 
1.0, and none at the higher levels. The third analysis had 7% above 1.0, and 3% above 1.4. 
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boxplot (Hoaglin et al., 1991; Tukey, 1977) the distributions of the 
observations to be assured that the separate groups look grossly differ
ent from one another, as implied by the humongous F. 

There is a subtle alternative explanation of many overplump Fs. This 
has to do with positive bias in F tests, arising when extra variables 
beyond those being tested contribute more variance to the numerator 
than to the denominator of the F test. A paradigmatic case is the 
following scenario: Two different educational programs are compared, 
by administering Program A to a number of randomly selected children 
in a few randomly selected schools, and Program B in similar fashion to 
other children in other schools. Suppose that the statistical analysis is 
conducted by comparing all the Program A children en masse with all 
the Program B children, without taking schools into account. If scores 
for different schools differ systematically from each other for reasons 
having nothing to do with the tested programs (as they usually will), 
then the F ratio will be artificially inflated, possibly by a considerable 
amount. 

Such cases occur in many guises, having in common that the obser
vations are not all independent (Kenny & Judd, 1986) of each other, as 
required by the statistical model for the F test. The clumping of similar 
cases (e.g., children in the same school) must be dealt with in the 
statistical analysis (see Kirk, in press). 

Parallel explanations occur for chi-squares or other test statistics 
that come out astonishingly large: Either the test was extremely unin
teresting, or a numerical error occurred, or the test was conceptually 
faulty. The general moral is, don’t be overjoyed when your test statistics 
come out whopping. Be suspicious. 

A Test Stat is t ic That S e e m s Too Good for the Data 
It Came From 

Example: Power to the Students (and to the t Test). Sometimes a 
test statistic that is not enormous in absolute terms nevertheless seems 
larger than it deserves to be. Consider the example used in Table 2.1, 
showing the mean self-ratings on a liberalism-conservatism scale for 
participants and nonparticipants in a campus demonstration. We did 
not say so in chapter 2, but those figures came from a revised calculation. 
The table originally developed by the student contained the figures in 
Table 5.3. The mean difference is the same as in the previous table, but 
the t value is much larger here. 

When I originally saw this result in a larger table, I did a double take. 
The difference between the means is said to be .02. As noted in chapter 
2, if 1 of the 29 people in the participant group had given himself a rating 
of 2 rather than 3, say, the mean rating would have been lower by 1/29, 
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TABLE 5.3 
Mean Self-Ratings of Liberalism by Participants and Nonparticipants in a 

Campus Demonstration 

Participants (N = 29) Nonparticipants (N = 23) 

2.72 2.70 

Note. On a 7-point scale, 1 = very liberal, 7 = very conservative. 
t(50) = 5.56, p<. 0001. 

or .034, reversing the direction of the difference between participants 
and nonparticipants. Yet the t value is given as 5.56, with p < .0001. 
Think! Could the formula for t possibly be so vulnerable to a minimal 
change in a single score as to drop from 5.56 to a negative value? 

When told that the means and the t value could not possibly be 
consistent, the student who generated the table said, “Well, maybe the 
assumptions of the t test were violated.” This superficially plausible 
response gets a flunking mark on that week’s test in Statistics 101. 
Satisfaction of the assumptions of the t test (normal distributions, 
homogeneous variances) guarantees the relationship between t and its 
tabled p value. If the assumptions are violated, the p value could be 
somewhat distorted. But here the t itself is arithmetically suspect, and 
the laws of arithmetic do not depend on homogeneous variances. There 
is no way a t ratio with a numerator of .02 can come out as big as 5.56 
in this situation.3 Sure enough, the student eventually discovered a data 
entry problem, and recalculated the t to be .07. 

The error here was large in absolute terms. In other cases, a large 
relative increase in a test statistic from analysis to reanalysis provides 
the clue. I call this “the Amazing Grace effect.” 

A Sharp Increase in the Test Stat ist ic on Reanalysis 

The lovely gospel song, “Amazing Grace,” expresses the feelings of a 
sinner who has miraculously found salvation. The thematic line is, “I 
once was lost, but now I’m found.” I am reminded of this theme when I 
see an incredible transformation of a dreadful statistical situation into 
a tr iumphant one. 

Here is how it goes: The investigator, desperately seeking a finding 
significant at the .05 level, is wracked with despair that tests of all the 
interesting effects yield nothing even remotely approaching significance. 
But then he rearranges the numbers, or reconceptualizes a comparison, 

3One might try to argue that the t ratio can have any large value at all, even with a 
numerator as small as .02, simply by virtue of an even smaller denominator. Here, 
however, the ratings were whole numbers on a 7-point scale, and the means came out in 
between. Given these means, there must necessarily be variability within each group. In 
fact, the denominator cannot be less than .129, and the t ratio cannot exceed .22. 
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or does an F test in some other way, and suddenly and miraculously, he 
is saved by a rejection of the null hypothesis. Redemption is at hand, as 
the born-again investigator can now claim a substantive result. 

Example: Does a Good Mood Dull the Mind? A case of an amaz
ing rescue of a null result occurred in the following example from the 
initial draft of a Yale dissertation, designed to test the joint effects of 
mood and motivation on sensitivity of judgment. 

Prior investigators (Worth & Mackie, 1987) had found that people in 
a good mood tend to be less discriminating in making stimulus judg
ments, as though lulled into an inattentive state of mind. The disserta
tion student noted that in those prior studies, however, subjects’ 
motivations for performing well in the experimental task were probably 
quite low. He set out to explore the possibility that the relative cognitive 
sluggishness of good mood would disappear if the motivation for doing 
the experimental task were at a higher level. 

Accordingly, he evoked either neutral or good moods under either 
poorly or highly motivating circumstances, with subjects randomly 
assigned to the four possible groups. Mood was manipulated with film 
and music, and motivation by varying the apparent importance of the 
results for the student community. The experimental task involved 
rating the quality of arguments in a speech that had been designed by 
the experimenter to contain some strong and some weak arguments. 
The measure of each subject’s sensitivity was the difference between his 
mean quality ratings of the good and the bad arguments. Table 5.4 shows 
the means of these measures for each of the four groups. 

The student investigator presenting these results saw a hint of 
support for his hypothesis. Under low motivation, the good-mood group 
displayed less sensitivity than did the neutral-mood group, whereas 
under high motivation, the good-mood group was more sensitive than 
the neutrals. Of course, these mood effects look small, as the student 
noted, so that a significance test is called for. The standard null hypoth
esis here would be that the superiority of the neutral- over the good-
mood condition is the same under high and low motivation, that is, that 
there is no interaction between mood and motivation. The student hoped 
to reject this null hypothesis, but alas, the appropriate F ratio came out 

TABLE 5.4 
Mean Sensitivity Scores in Rating the Quality of Arguments 

Motivation 

Mood Low High 

Neutral 
Good 

1.00 
.50 

3.05 
3.10 

Note. N = 20 per cell. Within-group mean square = 10.83. 
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F(l,76) = .14, a trifling value nowhere near the 3.96 needed to reach the 
5% rejection region. It would be extraordinarily brash to claim a system
atic interaction on the basis of these data; one can have virtually no 
confidence that the directions of difference between good mood and 
neutral mood in the two columns would hold up if a new sample of 
subjects were run. (Even taking just the low-motivation groups, a t test of 
the difference between the means of 1.00 and .50 yields a skimpy t of .48.) 

Dejected but prayerful, the student came up with a new way to look 
at the matter. What he was really claiming, he said, was that sensitivity 
of judgment was at its lowest when subjects had a good mood and low 
motivation, and any change in these conditions would produce an 
improvement. Accordingly, he calculated the contrast (Rosenthal & 
Rosnow, 1985) between the good-mood, low-motivation cell mean and 
the average of the three other cell means. Miraculously, the F test of this 
contrast yielded F(l,76) = 4.91, p < .05, and the student regarded his 
claim as supported. Amazing grace! 

What’s going on here? How did an F ratio of .14 increase 35-fold to 
4.91 with an apparently minor shift in emphasis in the statement of the 
investigator’s substantive hypothesis? Exploration of the concrete nu
merical effect of the investigator’s rescue procedure is needed. 

Looking back at Table 5.4, we see that what his procedure did was to 
compare .50 with the average of 1.00, 3.05, and 3.10, that is, .50 versus 
2.38. The difference of 1.88 was significant at the 5% level. But the 2.38 
figure was clearly pulled up by the two high-motivation means of 3.05 
and 3.10. Despite the statistical sleight of hand here, common sense 
should tell us that what the student has done is to take advantage of 
the main effect of motivation to make an unwarranted claim concerning 
the mood variable. 

I hasten to add that not every statistical salvation is illusory. In 
chapter 4, we referred to the sometimes amazing but justifiable effects 
of transformations of the response scale, and in chapter 6, we give an 
example applauding the use of a contrast of one cell against the mean 
of the other three cells of a 2 × 2 table. What we can say for sure, though, 
is that enough miracles are fraudulent to suggest very close examination 
of fantastic statistical redemptions. 

Stat i s t ics That Come Out Too Small 

Also diagnostic of potential fishiness, but less obvious, are cases when 
the test statistic comes out too small, rather than too large. Suppose, for 
example, that with four groups of 10 subjects each, the test of between-
group differences yields the value F3,36 = .005. Such a minuscule F is 
extraordinary, if you stop to think about it. It is easy to pass it by without 
notice, perhaps mistaking it for a p value instead of an F, or categorizing 
it simply as < 1, thus nonsignificant. However, it indicates that the four 
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group means are almost exactly identical, as though someone were 
naively trying to cook the data to support the null hypothesis. 

How can we test whether an F is too small, and what would such a 
result suggest? An F can be judged significantly too small by seeing if 
the associated p value on the computer printout is above .95—or more 
stringently, above .99. When you do this, you are using the lower, ra ther 
than the upper tail of the F distribution. If you are not using a computer, 
or the program doesn’t print exact p values for the lower tail, then what 
you can do is to reverse the degrees of freedom and refer the reciprocal 
of F to the usual F tables. In our example, you would get reciprocal F36,3 

= 200. This value exceeds the tabled 1% value of 26.45 with 36 and 3 
degrees of freedom. Because the reciprocal F is significantly too big, the 
original F was significantly too small. (With very few degrees of freedom 
in the denominator, the critical tabled values of F run rather large; thus 
the reciprocal F has to be quite sizable to achieve significance.) 

There are two main interpretations of an overly tiny F in one’s data. 
It could be a fluke, or (the more interesting alternative) a characteristic 
aberration in the experimental design. Not much can be said about 
flukes (chance results). An F can every once in a while come out too small 
when the null hypothesis is approximately true, just as an F can 
occasionally come out too large by chance. An isolated case of a tiny F 
can readily be dismissed as a fluke, but a consistent pattern of too-small 
Fs very likely indicates a design flaw. 

Clusters of small Fs suggest the presence of negative bias, that is, a 
systematic tendency for the mean squares in the numerators of the F 
ratios to be smaller than the error mean squares. Such negative bias 
occurs when some systematic factor contributes a lot of variance to the 
error term, but not to the numerator(s) of the F test(s). 

Example: Rats! My cousin Robert M. Abelson has suggested the 
following example, based loosely on a dissertation at the University of 
Maine: An experiment with rats is designed to compare the effects of 
three different reinforcement schedules on a bar-pressing response. For 
this study, the experimenter has available five litters of six rats each. 
Aware tha t ra ts from different litters vary a great deal, he seeks to 
balance out from the three conditions any bias due to litters: He 
randomly assigns two rats from each litter to each of the three condi
tions. The response data are analyzed by F test, with the three condi
tions as the between-groups factor, and subjects (10 per condition) as 
the within-groups factor. Litters are ignored in the analysis, because the 
experimenter feels he has balanced them out. In fact, he is so confident 
that litter bias has been eliminated that he keeps no records of which 
ra ts came from which litter. 

When he performs his F test, however, he discovers that the F for 
conditions is nowhere near significant; in fact it is considerably below 1. 
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He analyzes several different variants of the response measure, with 
the same outcome. In desperation, he revises the experimental manip
ulations to try to make them stronger, and repeats the entire study with 
rats from five new litters. The same type of analysis again yields Fs the 
size of pinheads. 

What’s the catch? Evidently, litters make a huge contribution to 
variation in the response measure. This variation enters the within-con-
dition sum of squares (because the various litters are each represented 
within each condition), but does not enter the between-condition sum of 
squares, as the experimenter so carefully equated their representation 
across conditions. The result is a large negative bias in the F ratio, 
swamping the opportunity for a systematic between-condition effect to 
manifest itself. The cure that suggests itself is to calculate and set aside 
between-litter effects by treating the design as a two-way factorial, 
Conditions by Litters, with two subjects in each cell. Alas, the experi
menter could not do this because he no longer knew which rats were 
from which litter. Ironically, had the experimenter randomly assigned 
rats to conditions without balancing for litters—causing the litters 
component of variation to inflate the between-conditions sum of squares 
as well as the within-conditions—he would have been better off than he 
was in the actual circumstances. This seems paradoxical, as it releases 
control over a known source of variance. Indeed, the resulting F test 
lacks power—but at least it is not negatively biased. 

A conceptually similar case occurs when subjects of varying skill or 
ability levels are carefully matched across experimental conditions, 
and then the data are analyzed by an ordinary t or F test. In these 
examples, the extraneous balancing factor is explicitly recognized 
(albeit mishandled) by the experimenter. More insidious are cases with 
an important but unknown source of variation unwittingly balanced 
across experimental conditions. This is especially likely to occur when, 
for convenience, subjects are run in small groups of equal size, with 
random assignment of whole groups to experimental conditions. Some 
unsuspected factor, like seating position, or particular computer termi
nal, might contribute to response variation within each group. (Say, 
people seated nearer the window consistently score worse because of 
distractions outside.) 

The inadvertent balancing of this factor across experimental condi
tions introduces a bias tending to make the F test for conditions come 
out too small. Such a factor could be subtle enough to escape notice in 
the design of the experiment, but small Fs should cue the investigator 
to look for this phenomenon. The corrective actions are comparable to 
those for the rat litter example. If the perfectly balanced factor can be 
identified, include it explicitly in the analysis. A second choice would be 
to randomize the factor among conditions in future studies rather than 
balancing it. 
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A Model That Fits Too Well 

Thus far in this book, we have dealt with statistical tests of a null 
hypothesis that the investigator hopes to discredit in favor of her 
statistical alternative. There is another whole class of applications of 
statistical tests in which the investigator tries to fit her data with a 
substantive quantitative model. The F or chi-square statistic indexes 
the degree of departure of the data from the model.4 Here the researcher 
likes to see a small value of the test statistic. 

If the statistic is not merely small, but is very small, there may 
occasionally be cause for suspicion. It is fine for a model to fit well, but 
it is too much to expect that it will fit perfectly.5 “Cooking” or selectively 
biasing the data so as to make the theory look good can be entertained 
as a possible explanation of one or more oversmall test statistics. 

Example. Mendel’s Pea Plants. One of the most shocking accusa
tions of data cooking concerns the pioneer geneticist Gregor Mendel, 
whose experiments with pea plants are credited with establishing the 
hereditary roles of dominant and recessive genes. 

In cross-breeding a tall plant with a short plant, for example, every 
descendant is a hybrid, having one gene for tallness and one for short
ness; because tallness is dominant, the plants will all be tall. Crossing 
a pair of these hybrid plants with each other gives rise to four equiprob-
able genotypic possibil i t ies—tall/ tall , tal l /short , short / tal l , and 
short/short—of which only the last yields a visibly short plant. This 
simple model thus predicts a 3:1 ratio favoring the dominant feature 
among offspring of hybrid parents. Observed relative frequencies from 
such breeding can be compared with the expected 3:1 ratio by a simple 
chi-square test. 

Mendel’s published data proposed in support of this analysis were 
critically scrutinized by the renowned, but crusty statistician Sir Ronald 
Fisher (1936). He noted a large number of outcomes for which the chi-
square was too small (i.e., p > .90). A typical instance was from a study 
predicting a 3:1 ratio of plants with yellow versus green seeds. The data 
presented were: (Yellow, 6,022; Green, 2,001). The chi-square on these 
frequencies is .015 with 1 df (degree of freedom), corresponding to p > .90. 
Altogether, the evidence presented in support of the theory looked to Fisher 
too good to be believed, leading him to suggest that Mendel or his 
assistants may have falsified something when presenting his data. 

A more benign explanation was given by Olby (1985). He noted that 
the frequency counts were tallied cumulatively over time, as different 

4A systematic treatment of this strategy is given by Judd and McClelland (1989). 
5My Aunt Sara tells the story of her aunt, who had a foolproof method of dismissing 

criticism. Great-aunt would draw herself up to her full 4’11”. “Poifeck?!” she would snort, 
“You want I should be poifeck?!” 
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batches of plants were processed. The stopping points were variable, 
and this led Olby to conjecture that Mendel quit each study when 
satisfied that sufficient numbers of cases had been accumulated. This 
procedure, although apparently innocently done, of course is subject to 
the bias that you can wait until things look really good for the model 
before you stop. 

Because Mendel’s theory turns out to be true despite this transgres
sion, he can be forgiven his bias. At the time Mendel performed his 
experiments, statistical sophistication was low, and chi-square tests 
were not available. Imagine the dilemma, then, when an experiment 
with 120 offspring predicted to divide 90:30 came out, say, 98:22, a ratio 
well over 4:1 instead of the predicted 3:1. Nowadays we might run the 
chi-square test, get a value of 2.84 with 1 df, insignificant at the .05 level, 
and move on happily to the next data set. But Mendel and/or his 
assistants did not appreciate exactly how large the effects of chance were 
as a function of sample size. He knew enough to distrust small samples, 
but not enough to distrust the strategy of “quit when you’re ahead.” 

INCONSISTENCIES BETWEEN PARALLEL 
STATISTICS 

With considerable frequency, research reports include batches of signif
icance tests: ts and Fs, usually, on different dependent variables, or on 
different subgroups of subjects. A few simple consistency checks in this 
sitaution often provide clues to fishiness. 

Explicit statements of consistency principles will help in this detec
tive process: 

Principle 1: With degrees of freedom held constant, the bigger the 
absolute size of t (or F), the lower the p value. This principle is self-evi
dent. All it says is that there is less area in the tails of a distribution, 
the farther out you go. Yet it is surprising tha t one can readily find 
research reports in which this principle is violated. 

A manuscript6 I reviewed in 1992 for a leading social psychological 
journal contained the following bizarre statement: “...Reliable interactions 
emerged for [Measure 1], F1,66 = 5.25, p < .001, and for [Measure 2], F1,66 = 
5.75, p < .05...” Clearly there is amistake. An Fof 5.75 can’t yield a weaker 
p level than an F of 5.25, when both are based on the same degrees of 
freedom. The first statement should say p < .05, not < .001. 

Our second principle is slightly less obvious. 
Principle 2: When two or more separate mean differences based on 

the same number of observations and the same standard error are t 
tested, the absolute sizes of the t ratios should be proportional to the 
absolute sizes of the mean differences. This principle follows from the 

The identity of the authors will be suppressed upon request. 
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TABLE 5.5 
Stated Results of a Three-Group Experiment: Mean Ratings of Task Enjoyment 

Group 

Control $1 $20 

Mean Ratings 

Differences 

Stated t Ratios 

-.45 

(1.80) 

2.48 

+1.35 
(1.40) 
2.22 

-.05 

concept of (and formula for) a t test as the ratio of a mean difference to 
its standard error.7 

Example: That $1/$20 Study Again. For an example in which 
this principle appears to have been violated, let us consider again the 
classic Festinger and Carlsmith (1959) experiment discussed in chapter 
2. Recall the dissonance theory prediction: Subjects paid $1, rather than 
$20, to tell someone that the dull experimental task had been fun would 
later agree more that the task indeed had been enjoyable. The mean 
ratings of the task as “interesting and enjoyable,” on a scale from - 3 to 
+3, were +1.35 by the $1 group, and -.05 by the $20 group. The authors 
gave the value t = 2.22 (with p < .03), for the test of the theoretically 
predicted difference between the $1 and $20 groups. The experimenters 
also ran a control group, whose subjects were asked about the enjoyabil-
ity of the task without previously having told anybody anything about 
it. The control group mean was given as - .45, and the test of the 
difference between the $1 group and the control group as t = 2.48, p < 
.02. (At the time the article was written, multiple comparison proce
dures had not been developed, and the liberal procedure of multiple t 
testing among a group of means was widely practiced.) 

In Table 5.5, the essential quantitative statements are organized for 
comparison. By Principle 2, the t values, 2.48 and 2.22, should be in the 
same ratio as the mean differences, 1.80 and 1.40. But (2.48/2.22) = 1.12, 
whereas (1.80/1.40) = 1.29. Is there statistical skullduggery going on here? 

The authors did not provide within-group variances, so we cannot 
simply recompute everything. We must use Principle 2 as our basis for 
reinterpreting the numbers. If we accept the mean differences as accu
rate, and direct our scrutiny at the t tests, we conclude that either the 
t = 2.48 between the $1 group and the control group should be bigger, or 
the t = 2.22 between the $1 group and the $20 group should be smaller. 
Because it is hard to imagine investigators erring by underclaiming a 
desirable and legitimate result, our best bet is the latter conclusion—the 
2.22 should be smaller. A simple fix for this would be to lower this t by 

7When F ratios instead of t ratios are used, the principle is that two F ratios with the 
same error terms should be proportional to the squares of the respective mean differences. 
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just enough to satisfy Principle 2. This yields a corrected t = 2.48 × 
(1.40/1.80) = 1.93, which is not significant at the (two-tailed) .05 level for 
any number of degrees of freedom. Because this t pertains to the key 
theoretical difference between the $1 and $20 conditions, a nonsignificant 
t would have been a rhetorical annoyance or worse for these researchers, 
and one could imagine them somehow inflating the 1.93 to 2.22. 

Before we jump to skullduggery as the explanation, however, a more 
benign account should be considered. Examining the fine print, as it 
were, of Principle 2, we note the presupposition that the two t ratios are 
based on the same standard error. It is conventional practice nowadays, 
when calculating more than one t value (or when performing a multiple 
comparison test) in a multiple group study, to use the pooled within-
group mean square as the basis for standard errors of all means and 
mean differences. This practice guarantees the presupposition needed 
for Principle 2. However, when the Festinger and Carlsmith (1959) 
article was written, the use of a pooled error term was sometimes 
advocated, but was not yet conventional. What they must have done8 

was to use the variability of ratings within the $1 and $20 groups for 
the t test of that group difference, and the variability within the $1 and 
control groups for the other t test. For the former t (2.22) to come out 
larger than Principle 2 requires, implies that the variability of scores 
within the $20 group was smaller than that within the control group. 

What message should one carry away from this supersleuthing job? 
One might fault the authors for the somewhat brash choice of the more 
favorable of two analytic options, though the practical difference be
tween a t of 1.93, with p < .06 and a t of 2.22, with p < .03, is not huge if 
one is not obsessed with the literal .05 level. The investigators are lucky 
that the crucial t, when “corrected,” had not shrunk to say, t = 1.00, with 
p = .32. Then the dramatic, evocative result of this classic experiment 
could have been reduced to mush by a critic sharp-eyed enough to notice 
the violation of Principle 2. 

But is the convention of using the single pooled error term “right”? 
The investigators might have made the reasonable argument that the 
variability of scores within the control group should have no bearing on 
the $1 versus $20 comparison. Statistics texts tend to tell readers (if 
they say anything at all) that the reason for pooling error is to increase 
degrees of freedom (e.g., Keppel, 1991; Kirk, in press). There is a better 
reason, however, which can best be understood in terms of: 

Principle 3: When two or more separate mean differences based on 
the same number of observations and the same standard error are t 
tested, the bigger the mean difference, the smaller the p value. 

This principle follows immediately from the conjunction of Principles 
1 and 2. Note the qualifying phrase, “the same standard error.” Omit 
this, and Principle 3 need not hold in a given case. And what a fine 

8No one connected with the analysis of the original data is still alive. 
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how-de-do that would be! You could have a bigger mean difference in a 
given data set declared less significant (i.e., having a larger p value) 
than the smaller mean difference. Such an outcome would yield different 
orderings on the two magnitude measures—raw effect size and p value 
(see chap. 3). When mean differences (or sums of squares) are tested 
with different standard errors (or mean squares) in a complex design, 
this awkward state of affairs may be unavoidable. 

In a simple, one-way analysis, the practice of using a pooled error 
guarantees against the occurrence of such embarrassing inversions. In 
the vast majority of specific cases (including the Festinger and Car-
lsmith, 1959, example), larger mean differences would be more signifi
cant even without pooling error; but the possibility of inversions argues 
for the adoption of the pooled error convention. There is a trade-off here 
between the long-run coherence of a practice and its convincingness in 
any particular case. The convention of pooled error would seem ill-ad
vised if the within-group variances were wildly different, but otherwise 
is quite sensible. 

TOO MUCH CONSISTENCY IN PARALLEL 
STATISTICS 

Jus t as one ought to be suspicious of inconsistencies between related 
statistics, one should do a double-take when parallel sets of statistical 
conclusions are too consistent. For example, there would be grounds for 
skepticism if 20 independent tests of a mean difference or correlation 
all came out in the same direction, even though the overall effect size 
was small. (The distribution of the test statistics would be strange: The 
zero value would provide a cliff, with no cases on the negative side, but 
a pileup on the positive side.) A common cause of this symptom is a 
failure by the investigator to retain negative signs in data presentations. 

Cloning 

The most extreme case of too much consistency lies in results identical 
to several digits. Occasionally one sees a data table with two perfectly 
identical means or totals in different places. We refer to such a situation 
as cloning. 

The odds that cloning is due to chance are ordinarily very small,9 and 
one should look for some other explanation. A common reason is that a 

9The odds against numerical coincidences, however, are usually not as small as one 
might think. In the classic birthday problem (Diaconis & Mosteller, 1989), a bet is offered 
to a naive subject, who is told to imagine a group of 25 randomly selected people. The 
subject wins if no two of those people have the same birthday, and loses if there is at least 
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copying error occurred—the investigator absent-mindedly entered the 
same numbers twice, once in the right place, and once in a wrong place. 

Example: The Cyril Burt Affair. Cloning was noticed in the cele
brated case of Sir Cyril Burt, who published copious research on the role 
of genetic factors in intelligence. Suspicion centered on a comparison of 
two data tables. Table 1 in Burt (1955) and Table 2 in Burt (1966) both 
give intraclass correlation coefficients on six mental tests and five 
physical measurements for six different categories of paired children: 
identical twins reared together, identical twins reared apart, noniden-
tical twins reared together, and so on. 

The later table, as far as one can figure out from the rather confusing 
presentation, includes the cases from the earlier table, aggregated with 
new cases collected between 1955 and 1966. In comparing early and late 
correlations for each of the 11 measures on children within a given 
category, curious patterns emerge. A prototypic example, abstracted 
from Burt’s two tables, is given in Table 5.6. Comparing correlation 
coefficients for pairs of siblings reared apart—131 such pairs in the early 
report and 151 in the later—one finds that on 5 of the 11 measures, the 
coefficients are identical to three decimals, whereas on the other 6 
measures, changes from early to late data occur in amounts ranging 
from -.079 to +.020. 

Burt’s views on intelligence had long been controversial, and his work 
had been criticized on several grounds. The strange numerical identities 
of these correlations became part of the bill of particulars in a general 
charge of fraud against Sir Cyril, a charge most forcefully stated by 
Dorfman(1978). 

Burt had since died, and was unable to defend himself. The assistants 
who had worked on the data were nowhere to be found. Defenders of 
Burt conjectured variously about the cloned correlations, some saying 
that maybe there really were no extra cases between 1955 and 1966, 
others that maybe a portion of the new data was overlooked, and still 
others that this was just an isolated instance of sloppiness. 

one birthday in common within the group. Most people think this bet favors the subject, 
but in fact the odds are approximately 6:5 he will lose. Diaconis and Mosteller gave several 
applications of this problem to other real-world coincidences. 

Here is a different case of numerical identity: Years ago at Yale, a campus-wide vote on 
permitting ROTC recruiting on campus came out 1,208 yes, 1,208 no. “A million to one 
shot,” was a comment often heard the next day. Actually, with 2,416 voters, there were 
only 2,417 possible numbers of yes votes (counting zero). Of these, the close ones were 
much more likely. If one takes the probability that a random Yaleperson would vote yes 
as .5, independent of other voters, then a binomial generating process can be invoked, and 
the probability of 1,208 heads in 2,416 flips estimated. This yields odds of roughly 60:1 
against a tie, not 1,000,000:1. The chance of a tie was indeed small, but not that small. 
Incidentally, the tie vote was such a conversation piece that debate over the ROTC issue 
itself faded in campus interest. 
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TABLE 5.6 
Evidence in the Cyril Burt Case: Intraclass Correlation Coefficients— 

Burt (1955) Versus Burt (1966) 

Year of Publication 1955 1966 
Number of Cases 131 151 (the 131, plus 20 new?) 
Group Siblings reared apart 
Correlations on Measures of: 

Intelligence— 
Group Test .441 .412 
Individual Test .463 .423 
Final Assessment .517 .438 

Scholastic Achievement— (Clones in boldface) 
General Attainments .526 .526 
Reading and Spelling .490 .490 
Arithmetic .563 .563 

Physical Attributes— 
Height .536 .536 
Weight .427 .427 
Head Length .536 .506 
Head Breadth .472 .492 
Eye Color .504 .524 

Green (1992), in even-handedly reviewing the Burt affair, concluded 
that Sir Cyril had been treated unfairly I agree, at least with respect to 
the infamous cloned coefficients. There is a benign explanation of the 
identity between early and late results, despite added cases. A reason
able conjecture is that not all of the measures were administered to the 
new cases. Because cases were hard to find, it is not unlikely that some 
compromises were made in the interest of fattening the total N. One 
such compromise might have been to omit some of the measures on some 
batches of cases; for siblings reared apart the omitted measures would 
have been height, weight, and the three achievement scores listed in 
Table 5.6. This would explain identity of results from early to late 
summaries. On the omitted tests, the 20 new siblings-reared-apart did 
not contribute any data. On tests administered to new cases, the new 
data shifted the overall correlations slightly. 

This speculation is, well, speculative. It leaves unexplained the 
omission of height and weight, the easiest physical measurement to 
obtain, but the inclusion of head length and head breadth. But this case 
makes the point tha t something that looks fishy might be okay (albeit 
poorly set forth by an author who did not make clear what was going 
on). Thus one should not be too quick to cry fraud. This brings me to a 
final caveat. 
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A CAUTIONARY NOTE ON THE DETECTION OF 
FISHINESS 

We have reviewed a number of clues to possible fishiness in data 
presentations: outliers, gaps, dips, cliffs, and peaks in distributions; test 
statistics that are too large, too small, or too good to be true; and pairs 
of observations or test statistics tha t are too inconsistent, or too consis
tent. There are still other types of error we have not had the space to 
discuss—the regression artifact (see Crano & Brewer, 1986), which 
because of measurement errors produces the appearance of dramatic 
improvements over time in the health, performance, or good behavior of 
the worst cases in a population. Or the apparent result that ratings of 
opposites (such as feeling good and feeling bad) seem to constitute two 
independent scales rather than a single, bipolar scale. This is often 
artifactual, resulting from correlated errors in respondents’ use of the 
scales (Green, Goldman, & Salovey, 1993). 

Therein lies a negative side effect of exercising expertise in spotting 
statistical boo-boos. There is undeniably a certain entertainment value 
in the detection of potential fishiness (and I confess that I probably have 
been too free in this chapter with some of my speculations). There is also 
a self-righteous aspect to whistle blowing, so that some people—even 
whole university departments or academic subfields—seem to relish 
challenging the integrity of the procedures and conclusions of others. 
Most people in the course of heated theoretical debates find data on their 
own side wonderfully convincing, and the other side’s data miserably 
flawed (Lord, Ross, & Lepper, 1979). 

One recommendation to counteract over permissiveness toward one’s 
own research products is to internalize a kindly but insistent critic 
(Lord, Lepper, & Preston, 1984) who brings to one’s awareness all the 
suspicions that are likely to be raised by others later on. A second useful 
inner voice would be a public defender of the integrity of the works of 
other investigators. With experience and effort, one perhaps may learn 
to calibrate the volume of these inner voices so that they are neither too 
soft to be heeded nor so loud as to be numbing. 



6
Articulation of 
Results: 
Ticks and Buts  

In the first five chapters of this book, we have discussed the role of 
statistical argument in making simple claims. Here we broach cases 
where multiple claims may be involved. 

Students and young investigators often have trouble sorting out what 
to convey in their research reports. They may get lost in a welter of 
irrelevant detail, or suffer confusion about which results to emphasize 
and which to send to footnote Siberia. These are matters of articulation, 
the topic of this chapter. My presentation is not meant to be the last 
word on articulation, but it offers a meaty introduction on which readers 
may chew. (Apologies to vegetarians.) 

A well-articulated research presentation tells readers concisely what 
they ought to know to understand the point of a given study and to tell 
the results to others. It conveys the important information in the 
clearest, simplest form. 

Putting good articulation into practice is not nearly as easy as 
trumpeting its virtues, however. Articulation depends both on thought
ful research planning and on felicitous outcomes, presented with a clear 
focus. Beyond a few simple principles, it requires judgment and wisdom. 
This should not surprise us, of course, as this is characteristic of the 
whole enterprise of statistics as principled argument. 

TICKS AND BUTS 

We discuss two concepts associated with the articulation of research 
narratives: ticks, the detailed statements of distinct research results, 
and buts, statements that qualify or constrain ticks. These concepts are 
my inventions, not to be found as such in the statistical literature. The 
term tick reflects the second syllable of articulation and the use of tick 
marks for each separate point in a summary. It is related to the concept 
of a degree of freedom, but is differently applied. The term but was 
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chosen to express reservation. A third term, blob, is used to characterize 
a cluster of undifferentiated research results. 

Defining Characteristics 

A tick is a claim of a specific comparative difference, typically stemming 
from the rejection of a focused null hypothesis, such as a comparison of 
a designated pair of means, a test of a main effect in a 2 × 2 design, or 
(much more controversially) a significant correlation coefficient. In 
other words, a tick specifies a relationship between a causal factor and 
a response variable. Empirical findings of relationships always occur in 
specific contexts, and thus every tick should be accompanied by a context 
specifier. (The generalization of a relationship over many contexts is an 
issue discussed in chap. 7.) 

A tick claim may be distinguished from other, weaker, assertions: If 
a null hypothesis survives a significance test, it is not usually clear what 
can be said. As we have noted repeatedly, this outcome does not mean 
that a value of zero can be assigned to the true comparative difference; 
it merely signifies that we are not confident of the direction of the 
(somewhat small) true difference. Thus we will ordinarily not credit a 
tick for this outcome. Exceptions occur when null results are inconsis
tent with strong expectations of a clear effect, as in our examples in 
chapter 1. 

A second type of result that does not lead to an articulated claim is 
the rejection of an omnibus null hypothesis that several means are all 
equal. The test result does not specify which means are different from 
which, and therefore is a mere blob. Omnibus testing is like playing the 
guitar with mittens on. 

There is one further case in which a tick is available to be claimed, 
but the investigator refrains from doing so because it is vacuous. For 
example, in a study on adults and children of their relative understand
ing of differing types of family budgeting and spending problems, the 
incidental result tha t the average adult did better overall than the 
average child would not be worth mentioning. 

TICKS AND THE EVOLUTION OF KNOWLEDGE 

The Lore 

When a well-articulated research claim that also satisfies the other 
MAGIC criteria is put forward in public, either by lecture or in print, it 
is likely to be absorbed and repeated by other investigators in the same 
field. When there is general acceptance by the research community of 
claims in a subfield, ticks are added to the lore of that field. This is not 
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a formal process with an award ceremony, of course. Psychologists win 
neither Nobel Prizes nor Oscars. Tick acceptance begins implicitly when 
other investigators quote the finding without challenge, and is even 
more firmly established when it is quoted in review chapters and 
textbooks on the subject matter. 

The Lore is Not Perfect Lore is expertise, much of it qualitative 
and informal in the social sciences. It is mainly shared but sometimes 
idiosyncratic. As with any individual or communal mental product, lore 
is vulnerable to error. One source of distortion comes from the strained 
reinterpretation of results so as to fit a particular investigator’s theory. 
Occasionally, a collective misunderstanding occurs, whereby a result 
based on belief rather than evidence sneaks into the lore as something 
that everybody accepts, but that has never actually been demonstrated. 
Unless its phantom quality is discovered and the relationship skepti
cally examined, for all intents and purposes it functions in the lore as 
though it were a genuine tick. Contrariwise, there may be generally 
accepted ticks that a particular investigator or subcommunity is unfa
miliar with, or regards as invalid. Thus the lore based on ticks will be 
to some extent different for different investigators. 

The Role of Buts. Some ticks enter the lore with doubt or contin
gency attached to them. A clear relationship may have been obtained 
in a well publicized experiment, but never replicated.1 Or for reasons 
that are not understood, a result may hold under one condition, but 
not under another. These buts—for that is the name we are attaching 
to such reservations—play a part in the lore as well. They prod the 
research community to explain them. They also act as warning 
signals accompanying particular ticks, telling researchers to be care
ful in accepting them too readily. (Occasionally these warnings fade 
from collective memory over time, often because the corresponding 
ticks make intriguing stories that are spoiled by the cautious addition 
of buts.)2 

Buts are related to the specifiers on ticks, in ways to be indicated. 
Sometimes, buts are removed by new research or new ways of construing 
the available evidence. Either there are successful replications of the 

One striking example was the demonstration by Miller and Banuazizi (1968) that it is 
possible to obtain changes in heart rate in laboratory animals by operant conditioning. 
The mere possibility of autonomic conditioning would have profound consequences for 
psychology, biology, and medicine. However, the result could not be clearly repeated by 
anybody, and the claim was later accorded considerable skepticism by the original 
investigator (Miller, 1972). 

2An apt example here is the experiment by Schachter and Singer (1962) supporting 
Schachter’s radical theory of emotion. In truth, the support from the data was quite weak, 
with some inconsistencies and anomalies (Marshall & Zimbardo, 1979). 
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original tick, or a refraining of results that parsimoniously explains why 
there was variation over conditions. Likewise, ticks may undergo some 
revision over time. New buts may be attached to them, as qualifications 
are discovered. Or a clever conceptual stroke may replace several old 
ticks with fewer new ones. Overall, the lore shifts and settles, with new 
research and conceptualization sometimes adding confusion, sometimes 
greater clarity. 

Despite its vicissitudes, the existence of a body of lore provides 
common ground that enhances communication in a field, and helps 
guide research. Investigators have some sense of which issues are 
currently interesting, and where the knowledge gaps lie. The formula
tion of ticks and buts should be responsive to the current and potential 
future states of the lore. The investigator should ask herself, “Where 
does my result fit?” “Why is it important?” “What do I want people to 
remember about it?” 

The Record 

Summaries of research results in the social sciences, whether we call 
them ticks and buts or something else, accentuate some outcomes at the 
expense of others. This is inevitable. The cognitive capacity of research
ers to absorb every possibly systematic signal is swamped by the noisy 
uncertainties we face. 

Therefore, every field needs the capacity to reexamine old claims, or 
recombine data from various sources, in order to facilitate challenges 
and reconceptualizations. Ideally, it should be possible to access every 
investigator’s raw data, or at a minimum, the important summary 
information (research design, means, ns, variances, and statistical 
tests). The record is the name we give to the potential data bank from 
all high-quality studies of a given type, or in a given field. The record is 
typically more reliable than the lore, but it sometimes requires effort 
and ingenuity to reconstruct. 

Ambiguity or inconsistency on an interesting particular point (e.g.,“Is 
psychoanalysis really effective?”) often motivates close examination of 
the record. The technique of meta-analysis (to which we return in chap. 
7) is designed for precisely this purpose. Effect size measures and other 
details of all high-quality studies on the point at issue are summarized 
and compared. If a meta-analysis (or any other type of careful data 
review) is successful and is noticed, it usually will have the consequence 
that the lore will be updated, with ticks being expressed at a higher level 
of generality. 

The information revolution of the 1990s may well increase practical 
access to the records in various fields. Now that virtually every investi
gator can e-mail her data files to virtually everyone else, the possibilities 
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of centralized data banking and of a norm of data-files-on-request are 
both enhanced. 

COMPARISONS OF PAIRS OF MEANS 

After this brief glimpse of research heaven, let us return to the earth of 
the individual study, and to the simplest cases of ticks and buts. In so 
doing, we refer often to the outcomes of significance tests. Despite their 
considerable limitations, such tests provide a familiar language for 
introducing the ideas of ticks and buts. 

Illustration: The Effect of an Audience on Task Performance 

The Simple One-Tick Claim. The simplest claims involve the com
parison of the mean score in an experimental group with either a 
baseline expectation or the mean of a control group (see chap. 2). For 
illustration of the latter, let us consider the old question in social 
psychology of whether the presence of an audience tends to improve or 
to damage an individual’s task performance. 

Suppose tha t an experiment obtains a positive effect of a student 
audience on subjects’rate of correct completion of easy numerical tasks 
involving elementary numerical reasoning and calculation. On average 
in this hypothetical experiment, subjects watched by an audience score 
higher on a composite index of task success than do subjects working 
alone. (Suppose t = 3.50, p < .001, with a standardized effect size of .58, 
a fairly strong value.) The claim of a beneficial audience effect is made, 
and gets a name: the “social facilitation effect.” Score one tick. 

The Next Level of Complication: A 2×2 Design. Let’s al ter this 
example. Imagine that the first study of audience effects uses both 
simple numerical tasks, as previously described, and also simple verbal 
tasks (say, easy anagrams and vocabulary items). A student sample is 
scored for rate of successful completion of tasks. Suppose the experi
menter runs four conditions in a 2 × 2 factorial design. In two of the 
conditions, subjects work on numerical tasks, with or without an audi
ence, respectively. Subjects in the two other conditions do verbal tasks, 
with or without an audience. The point of the study is to test for the 
direction of an audience effect, if any, and to explore whether and how 
such an effect depends on type of task. 

Main Effect of Audience Conditions: One Tick. One pattern of hy
pothetical results is shown in Table 6.1. We suppose tha t the scores on 
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Test Scores, With or Without 
TABLE 6.1 

an Audience (Easy Numerical and Verbal Tasks) 

(Cell n = 36) Audience No Audience Social Facilitation t 

Numerical 
Verbal 
Mean 

108.5 
104.3 

(106.4) 

101.5 
99.3 

(100.4) 

+7.0 +3.50 
+5.0 +2.50 

(+6.0) +4.24 

Note. Standard error of mean social facilitation = 2.00. 

the two types of tasks have been referred to national norms, with means 
of the college age population at 100 for both types. 

There is a significant audience effect for numerical tasks: The audi
ence group’s average score was 108.5, compared to 101.5 for the no-au
dience group, a difference of 7 points. Let us suppose tha t in this study, 
the standard error of the difference is 2.00, so that the t ratio is 3.50, 
with p < .001 and a standardized effect size of .58. If we focus only on 
this one comparative difference—a so-called “simple effect” to distin
guish it from comparisons involving more than two cells—we would 
declare one tick, as in the simpler design outlined earlier. But there is 
more to summarize in the table. 

The second row in the table, for verbal tasks, also shows a simple 
effect of the audience, consistent in direction with the numerical task 
result, albeit the comparative difference is a bit smaller—5.0 instead of 
7.0. If we consider the second row in isolation, we find t = 2.50, p < .05. 
We have the option at this point of a separate claim, namely that there 
is a social facilitation effect for verbal tasks. Should Table 6.1 thus yield 
two ticks, one for numerical and one for verbal problems? 

If separate claims were made for the two simple effects, the outcome 
statement would be a bit klutzy: “There was a social facilitation effect 
for numerical tasks. There was also a social facilitation effect for verbal 
tasks.” It is usually preferable to combine two such results into a single 
statement, “There was a social facilitation effect for basic skills.” This 
more general claim is readily conceptualized as a reference to the main 
effect in the factorial design of Table 6.1. The means for the audience 
and no audience conditions can be each averaged over the two row 
variations, and these summary means then compared. They differ by 
6.0, which yields t = 4.24 (or F = 17.98), for a summary claim with one 
tick. 

(Note that the number of problems solved in both audience and 
no-audience conditions is somewhat higher for the numerical than for 
the verbal problems, and would be significant if t-tested. But this effect 
has to do with the skills of the sample of subjects, and has no relevance 
to audience effects. It should not be given a tick, as it adds nothing to 
the lore.) 
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Choosing Between a One-Tick and a Two-Tick Summary. 
When two parallel simple effects are both significant, the goal of parsi
mony generally leads to a preference for a one-tick, main effect summary 
over a two-tick, simple effect summary. Other considerations may be 
involved, however. 

Imagine that the rows specify two types of animals as subjects, say, 
giraffes and cockroaches, each tested for the effect of an audience on the 
rate of learning to run an appropriately designed maze. It would not be 
reasonable to refer to an audience main effect defined by averaging over 
giraffes and cockroaches.3 Presumably one would state the two simple 
effects. 

The decision between one overall tick and two particularized ticks 
occurs also in the circumstance of Investigator B replicating a compar
ative difference found by Investigator A. Each researcher tends to feel 
possessive about his or her obviously brilliant research findings, and 
reluctant to pool the results with those from lesser mortals. There is 
thus the habit of summarizing the pair of parallel positive outcomes with 
something like, “He/she got it, and I got it too, better.” 

A disinterested observer, beyond the resistance to treating significant 
results like communicable diseases, would be likely instead to concep
tualize the two studies as a package, perhaps even visualizing the two 
data sets in a single array, with columns representing the experimental 
variable, and rows identifying investigators. The summary from this 
perspective would be, “They got it.” More formally, the statement would 
be of the form, “Over a pair of studies of the social facilitation effect, a 
significant positive influence of audience on simple task performance 
was shown. The average effect size was such and such.” The packaging 
of results, whether in twos or larger bundles, is an important aid in 
reducing the cognitive overload of the lore. 

One-Tick Main Effect, Despite a Nonsignificant Simple Effect 
Let us now consider other possible patterns of results for the two simple 
t values in the final column of Table 6.1. (We need consider only ts, not 
individual cell means, as this is the payoff column, and we could always 
reconstruct what mean differences would have been required to achieve 
the particular pair of t values.) We denote the t for the first row 
(numerical problems) with t(1), and for the second row (verbal prob
lems), t(2). 

Lest the reader think that the author had gone bananas when writing this section, I 
hasten to add this note: In fact there was a successful test of social facilitation for 
cockroaches learning to run a T-maze, using an “audience” of cockroaches (Zajonc, 1965). 
The author’s point was to show that audience effects do not necessarily require much in 
the way of brain work. (To my knowledge, giraffes have never been tested. And don’t hold 
your breath.) 
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Suppose that with numerical materials, the audience effect were 
significant, t(1) = 3.50, although with verbal materials, the presence of 
an audience yielded only the nonsignificant value t(2) = 1.50. Is a 
one-tick claim of an audience main effect still appropriate, when the 
simple effect of audience is not significant for verbal problems? 

If you think the answer is no, you are suffering from categoritis, the 
tendency to think too categorically about the results of significance tests. 
The audience effect for verbal materials is not sharply different from 
the effect for numerical materials. An exaggerated impression of differ
ence is due to categoritis. That one result is significant, and the other 
not significant, makes the two results seem inconsistent. But it is readily 
imaginable that the t value for the true audience effect falls in the 
general vicinity of 2.0, or 2.5, or 3.0, and the apparent discrepancy 
reflects chance variation introducing a somewhat bigger effect for nu
merical problems, and a somewhat smaller effect for verbal problems. 

In order to make a sensible claim of a larger audience effect for 
numerical than verbal problems, what ought to be tested is the interac
tion between the row (task type) factor and the column (audience) factor. 
Though interactions are ordinarily tested with the F ratio, a t value can 
be calculated in the 2 × 2 case. For t (l) = 3.50, and t(2) = 1.50, the 
interaction t would be 1.41,p = . 16, not a very strong basis for a confident 
directional claim.4 Thus our attitude toward this outcome ought to be 
similar to that toward the previous case with t(1) and t(2) both signifi
cant. As with the previous case, the single main effect tick is to be 
preferred. In the present case, the main effect t would be 3.53, p < .001. 

There is a general prescription that helps cure categoritis: Do as much 
numerical comparison as you can before categorizing. The difference 
between two numerical differences is a number that can be used as the 
basis for a categorical statement. But the difference between two cate
gorical statements does not yield a meaningful categorical statement 
(much less a number). 

Other Possible Outcomes in the 2 × 2 . Let us lay out some other 
possible tick and but statements for our 2 × 2 example in terms of the t 
values. In Table 6.2, we list t values for the simple effects, the interac
tion, and the column (audience) main effect for a series of hypothetical 

4The t values for the interaction, t(l), and the column main effect, t(M), are simple 
functions of the fs for the simple effects, t(1) and t(2): 

t(M) = 

The first formula was introduced in chapter 4, leading up to the 42% rule. The second 
formula is a simple variant of the first. 

t(l) = 
t(l) -t(2) 

√2 

t(l) + t(2) 
√2 
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TABLE 6.2 
Ticks and Buts for Several Sets of t Values 

Audience Effects 

Simple Effects Overall Effects Suggested 

Ticks 

Ticks and Buts 

Case Numerical Verbal Main Interaction 

Suggested 

Ticks Buts 

A t = 3.50 2.50 4.24 .71 Main — 
B t = 3.50 1.50 3.53 1.41 Main — 
C t = 3.50 .50 2.83 2.12 Main Interaction 
D t = 3.50 -.50 2.12 2.83 Numerical Verbal 
E t = 3.50 -1.50 1.41 3.53 Interaction — 
F t = 3.50 -2.50 .71 4.24 Interaction — 

Note. Significant ts at the 5% level are in boldface. 

cases. We limit the set of possibilities by fixing t for the simple effect on 
numerical tasks at 3.50, and we make the interaction more and more 
prominent as we go down the table. (Significant ts at the 5% level are in 
boldface.) By way of comparison, we repeat our first two cases, for which 
the single main effect tick would usually be the preferred summary. 

In Case C, we have supposed that the simple effect for verbal prob
lems is almost nil, whereas the effect for numerical problems remains 
strong. The audience main effect is still significant, but the interaction 
is now big enough to yield a significant t also. This is a case of quanti
tative interaction—two simple effects in the same direction, but differing 
in magnitude. The main effect still deserves to be cited as a tick, now 
qualified by a but. The summary statement might be, “There is a 
significant audience main effect, but its magnitude is significantly 
greater for numerical problems.” 

A reasonable alternative here is to say, “There is a significant audi
ence effect for numerical problems, but its magnitude is significantly 
smaller for verbal problems.” These two alternatives have different 
initial emphasis (main effect vs. simple effect,) but both contain essen
tially the same but. 

Case D presents the same two tick-and-a-but alternatives. Here the 
choice between them shifts toward ticking the simple effect rather than 
the main effect statement, as there is a (small) reversal of direction of 
the observed audience effect for the verbal problems (t = -.50), tarnish
ing the generality of the main effect. An interaction arising from simple 
effects in opposing directions is called a qualitative interaction (Schaffer, 
1991).5 

Here the reversal is small, so that we are not sure the interaction is 
qualitative. Still, we can safely say, “There is a significant audience 

5The term cross-over interaction is often used for the subclass of qualitative interactions 
for which the effects “cross over” on a graphical display of the four means. 



COMPARISONS OF PAIRS OF MEANS 113 

effect for numerical problems, but the effect is significantly less for 
verbal problems, and it may even reverse direction.” Were the reversal 
stronger, as in Case E, one might amend the last part to say something 
like, “...but the effect is significantly less for verbal problems, and there 
is a clear hint of a reversal in direction.” 

When Buts Become Ticks. At some point in our hypothetical se
ries with the interaction becoming stronger and stronger, the focus of 
the summary statement ought to shift to the interaction itself. Case E 
might fit this description, and Case F, with the two simple effects both 
significant and in opposite directions, clearly does. The interaction that 
in the previous cases was a but, now becomes a tick. Rather than being 
a qualification on some other result, it becomes the dominant finding. 
Though more complicated than a simple effect or main effect tick, it is 
a tick nonetheless. 

The summary statement of results might be, “There was a significant, 
strong qualitative interaction between the presence of an audience and 
the type of task, with numerical tasks yielding the positive audience 
effect.” If both simple effects are significant in opposite directions, the 
summary might break out as two ticks: “On the numerical tasks, the 
audience had a positive effect, and on the verbal tasks, a negative effect.” 

The Love-Hate Orientation Toward Interactions 

Subfields of psychology (and other social sciences) differ in their recep
tivity to interactions. Some researchers prefer to seek simple effects or 
main effects. For them, the complications come from continually puri
fying their experimental (or observational) techniques so as to reveal 
the effects most clearly. For others, interactions are intrinsically inter
esting, and their elucidation is a central concern. 

Social psychologists love 2 × 2 interactions. This is particularly so 
when the reversal of direction of an effect seems paradoxical, as in the 
Festinger and Carlsmith (1959) example we have discussed. In fact, 
Festinger’s influence is probably largely responsible for the focus in 
social psychology on surprising interactions. McGuire (1983) starkly 
stated the essence of an approach that seeks interactions when he said, 
“...all theories are right...empirical confrontation is a discovery pro
cess... clarifying circumstances under which a hypothesis is true and 
those under which it is false” (p. 7). In any event, if it is the habit in one’s 
field to cherish interactions, it becomes easier to talk about them, and 
see them as gestalts much like main effects. 

In fact, there is a general condition under which the presence of an 
audience facilitates performance, and an alternative condition under 
which an audience is inhibitory If we change the row factor in our 
example to be the difficulty of the task, then a qualitative interaction 
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occurs (Zajonc, 1965). Happily, there is a unifying concept that predicts 
and explains such an interaction. What the audience does is to produce 
general arousal in the subjects, which strengthens already dominant 
response tendencies. For easy tasks, the dominant responses are usually 
the correct ones, whereas for difficult tasks, incorrect responses are 
often stronger. Thus the audience makes easy tasks easier, and hard 
tasks harder. 

The habit-strengthening explanation provides a packaging for the 
social facilitation interaction, which makes that interaction easier to 
remember (or reconstruct). In the history of research on the audience 
phenomenon, the facilitative results came first. When inhibitory results 
first appeared, they were buts. They were exceptions that were hard to 
explain. With Zajonc’s (1965) neat synthesis, however, the but disap
peared, as both directions of result were included in a new tick.6 

REFRAMING RESULTS FOR BETTER 
ARTICULATION 

We have seen that the packaging or “framing” of pairs of results across 
studies affects their articulation, which in turn may influence the 
impact they have on the lore of a field. 

The possibility of reframing research results to eliminate buts and 
reduce the number of ticks is also available within single data sets. We 
first give a simple and noncontroversial illustration of this idea. 

Relational Relabeling 

In certain cases the columns of a 2 × 2 table can be relabeled in a way that 
turns an interaction into a main effect and vice versa. Consider the case 
where rows represent male and female subjects, and columns male and 
female conversational partners, or male and female characters in hypo
thetical situations presented to the subjects. Table 6.3 depicts this situa
tion, denoting the column variable as the gender of the “stimulus person.” 

Suppose that there were a large qualitative interaction in the original 
gender × gender table on the left side of Table 6.3, whereby the cells 
male/male and female/female on one diagonal (T and W, in boldface) 
were much larger than the cells male/female and female/male (U and 
V) on the other. 

We have seen that direction-reversing interactions in the 2×2 can be 
a source of annoying buts. Here, however, the interaction can be re-
framed as a main effect by using the relationship of the stimulus person’s 

6When a former but becomes a tick, there is a tendency for its statement to change: The 
linking but can be replaced by an and. Thus, “...the audience makes easy tasks easier, and 
hard tasks harder.” 
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TABLE 6.3 
The General Idea of Relabeling in a 2 x 2 Table 

Gender of Stimulus Gender of Stimulus Person 
Person Relative to Subject 

gender to the subject’s gender as an alternative column variable. The 
new columns, replacing the old as shown on the right side of Table 6.3, 
are same gender and opposite gender. The cells in the first row remain 
as they were, but the cells in the second row switch places. (The 
female/male cell becomes female/opposite in the new table, and fe
male/female becomes female/same.) The values V and W are flipped, and 
correspondingly, the interaction becomes a column main effect. This is 
the simplest variety of tick, because it is the easiest to communicate. 
Thus the switch helps articulate the results when cells T and W are 
relatively large. 

This switching trick will not always help. If the original data showed 
a column main effect, refraining would turn it into an interaction. One 
must be selective in using this device. In this connection, note tha t 
relational switching in the 2 × 2 does not change the set of p values for 
the collection of significance tests; it merely reallocates two of them 
between a main effect and the interaction. This is important because of 
the habitual resistance to changing the arrangement (or any other 
aspect) of data. Reluctance to tamper with data arises from anxiety 
about “capitalizing on chance,” conveying a very loose style (chap. 4). 
With the relabeling device, this misgiving is inappropriate, as there is 
no change in p values. 

Example: Gender and Emotional Expressiveness. A real research 
example illustrating relabeling is given in Table 6.4. The researcher 
(Beall, 1994) was investigating the stereotype of women as more emo
tionally expressive than men. To explore the basic phenomenon under 
controlled conditions, she presented male and female subjects with 
many short paragraphs depicting simple social behaviors (e.g., touching 
someone’s arm and saying, “Good luck with everything.”) The person 
engaging in the behavior was either a hypothetical man (John) or 
woman (Jean), and the behaviors were identical in these two versions 
of each paragraph. The experimental design was such that each subject 
got only one of the two versions of each vignette. 

Subjects were asked to rate the intensity of emotional expression by the 
person in each paragraph. The left side of Table 6.4 gives the mean ratings 

Gender of Subject Male Female Same Opposite 

Male T U T U 

Female V W < • W V 
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TABLE 6.4 
A Research Example of Relabeling (Ratings of Intensity of Emotion on a 7-Point Scale) 

Gender of Story Gender of Story Character 

Character Relative to Subject 

Gender of Subject Male Female Same Opposite 

Male 4.52 4.20 4.52 4.20 
Female 4.46 4.66 < • 4.66 4.46 
Column Means (4.49) (4.43) (4.59) (4.33) 

by male and female subjects of the intensity of emotional expression by 
the male and female characters, averaged over paragraphs. 

In the data table on the left, the two biggest of the four means lie on 
the main diagonal (indicated in boldface). This implies an interaction 
between the gender of the subject and the gender of the character. 
Indeed, this interaction was significant at p < .01. The analysis of 
variance also yielded a significant row effect at p < .01, but no significant 
column effect. The lack of a column effect warns us that the data are not 
in conformance with initial expectations—the female story characters 
are not seen as more emotional than the male characters when the 
content of the behaviors is held constant. 

Well, what then is the summary of these results? The row effect says 
that on average, female subjects impute more emotional intensity to the 
behaviors of the characters than do male subjects. However, the inter
action is pesky here, as it qualifies (buts) the row effect: Female subjects 
do not impute more emotionality when the character is male. 

Spelling out the nature of the interaction in terms of the original 
labeling of the rows and columns is confusing. The relabeling trick, 
however, comes to our aid. The right side of Table 6.4 shows what 
happens when the data are arranged according to whether the character 
is of the same gender as the subject, or the opposite gender. Now the two 
significant effects are main effects, and the interaction is not significant. 
The summary is straightforward: (a) Female subjects attribute more 
emotionality both to same-gender characters and opposite-gender char
acters than do male subjects; and (b) subjects of both genders attribute 
more emotionality to characters of their own gender.7 

The refraining strategy can be used in any 2 × 2 case for which there 
is a matching relation between the row and column factors. For example, 
if subjects trained on either Task A or Task B are then tested on a task 

7The astute reader will have noted that the effect sizes seem quite small—fractions of 
a point on a 7-point scale. This affects the impact of the results, but not the wisdom of the 
relabeling device. A summary of the reframed results would be that both men and women 
view their own gender as the one with relatively deeper feelings, albeit women give 
generally higher absolute ratings. 
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similar to A or similar to B, the original design— training (A vs. B) × test 
(A’ vs. B’)—can be repackaged as training (A vs. B) × test (similar vs. 
dissimilar). 

A general treatment of relabeling, for larger designs, was given by 
Schaffer (1977). Potential improvement of data descriptions can also be 
achieved by devices other than refraining, as demonstrated in the next 
section. 

Data Re-expression Via Transformation 

Another useful method of re-expression is the transformation of the 
response scale, say, by taking logarithms of the original observations 
(See chap. 4). Without going into much detail (for which consult Emer
son, 1991b), we simply illustrate the idea, using the hypothetical 2 × 2 
example shown in Table 6.5. 

The table shows a bigger column difference, 8, in the first row than 
in the second row, 4, and thus a putative interaction. Let us suppose 
that the standard error of the means is 1.00. The t value for the simple 
column effect in the first row is therefore t(1) = 8.00, and for the second 
row, t(2) = 4.00. Using the quick and dirty formulas in footnote 4, we 
calculate t(M) = 8.49, and t(I) = 2.83. Thus we have a column effect tick, 
and a significant interaction. 

Should we call the latter a but? It wouldn’t seem so, because the 
column effect is strong, and not called into question by the interaction. 
The interaction is just another tick. In addition, if the row main effect 
had any conceptual integrity, it too would constitute a tick. Thus this 
simple arrangement can have three ticks: both main effects and a 

TABLE 6.5 
Reducing the Tick Count by a Transformation 

Original Table 

Column 
1 

Column 
2 

Row 
Mean 

Simple Column 
Difference 

Ticks and Buts 

Row 1 
Row 2 
Means 

12 
6 

(9) 

4 
2 

(3) 

(8) 
(4) 

(8) 
(4) 

Column & row means & inter
action. Three ticks, no buts. 

Taking Logarithms of the Original Entries 

Column 
1 

Column 
2 

Row 
Mean 

Simple Column 
Difference 

Ticks and Buts 

Row 1 1.08 .60 (.84) (.48) Column & row means; no 
Row 2 .78 .30 (.54) (.48) interaction. Two ticks, no buts. 
Means (.93) (.45) 
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quantitative interaction. The latter can be worded, “The column differ
ence is larger in the first row than in the second row.” 

Now suppose we take logarithms8 of each of the four entries. The second 
table shows what happens. All the entries get squeezed down, with the 
entry 12 in the upper left-hand corner getting squeezed into greater 
proximity with the other transformed entries. The smaller entries get 
squeezed less, and the net result is that the interaction disappears. On the 
logarithmic scale we end up with two ticks rather than three. By a 
parsimony criterion, the transformation produces a preferable description. 

Readers with legal minds may protest that an unparsimonious detail 
in the table has been eliminated only by introducing a new unparsimon
ious detail under the table, so to speak. In order to communicate the 
results, the investigator must supply the information that a particular 
transformation was applied. With a single data set, the point is well 
taken. However, with repeated studies using given procedures and 
response measures, a particular transformation of scale (such as the 
logarithmic) may become a standard feature requiring no special men
tion. (See Abelson’s Third Law, chap. 4.) 

This particular tick-saving scheme works only when the effects of the 
column factor are in the same direction for each row, but differ in degree 
so as to form a fan pattern. A general treatment of transformations that 
tend to eliminate interactions in two-way tables is given by Emerson 
(1991b). 

We now consider tick and but counts for other types of data arrange
ments than factorial designs. 

MULTIPLE COMPARISONS 

Suppose we have a number of means requiring statistical comparison. 
Multiple comparison methods make declarations about every pair of 
means, claiming in each case that one mean is significantly larger than 
the other, or that the two are not reliably separated (i.e., that the 
direction of the true difference between them is not known with confi
dence). There are many multiple comparison methods, differing some
what in their details (Kirk, in press). The general preference in 
psychological research seems to be for the Tukey test (1953), but the 
particular choice is not germane to our discussion of ticks and buts. 

Common logs rather than natural logs are used because the rounded entries are more 
convenient for the example. In practice it makes no difference. In application to real 
two-way layouts instead of an oversimplified example, the logarithmic transformation 
would actually not be applied directly to the cell means. Rather, the transformation would 
be applied to every individual observation within each cell, and new means would be 
calculated on these transformed observations. The net result is qualitatively similar, 
though not numerically equivalent. 
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Counting Ticks and Buts for Multiple Comparisons 

Typically, a comparison procedure is organized by arranging the means 
in rank order from smallest to largest, and systematically applying a 
criterion of statistical significance to the several observed differences 
between them. The criterial difference for claiming significance depends 
on the standard error of the means and (most commonly) an appropriate 
tabled value of the “Studentized range.” Braces of two or more adjacent 
means all lacking significant separation are indicated by underlining, 
as illustrated by the hypothetical displays in Table 6.6. (For these 
displays, we take the criterial difference to be 10.) 

In the first display the brace of means [A,B,C] is significantly sepa
rated from the D mean, and that’s the whole story, as there is no 
articulation within the brace. In the second display, the set [P,Q,R] is 
separated from the S mean; further, there is a significant difference 
between the P and R means, but the intermediate Q mean is distinguish
able neither from P nor from R. The second display thus makes one more 
significant distinction than does the first display, but also contains a 
but—the final clause of the previous sentence. The first display is coded 
as having one tick and the second display, two ticks and a but. The 
additional detail of the second display attaches to the seemingly para
doxical conclusion that P is not statistically differentiable from Q, nor 
Q from R, though P and R can confidently be declared different. (This is 
not a real paradox—it only seems like one to those who think too 
categorically about nonsignificant differences.) 

TABLE 6.6 
Two Multiple Comparisons Displays 

/. Criterial difference = 10 

Group 
Mean 

A 
30 

B 
35 

C 
39 

D 
55 

//. Criterial difference = 10 

Group 
Mean 

P 
58 

Q 
65 

R 
71 

S 
87 

R 
71 

Note. The means for Groups A, B, and C all differ by less than the significant separation 
of 10. The underline indicates no significant differences among these three group means. 
Once it is determined that the A and C means are insignificantly separated, the B mean 
lying between them necessarily belongs to their brace. The D mean significantly separates 
from all others. 

Means P and Q differ by less than 10, so the brace consisting of P and Q is underlined. 
A similar statement applies to the Q and R brace, but P and R differ by more than 10, so 
there is no single brace connecting P, Q, and R. The mean for Group S is significantly 
separated from all others. 
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TABLE 6.7 
Ticks and Buts for Selected Multiple Comparisons of Four Means 

Structure Ticks Buts Structure Ticks Buts 

A B C D 3 0 A B C D 2 1 

A B C D 2 0 
A B C D 1 1 

A B C D 1 0 

A B C D 2 2 
A B C D 1 0 

Note. Means sharing an underline are not significantly different. 

Table 6.7 gives some of the possible outcomes of the multiple compar
ison of four means, and their associated counts of ticks and buts. The 
table only classifies the structure of an outcome, not its content. The 
lettering of the means is always given as A, B, C, D, from lowest to 
highest, without regard to which mean represents what level or version 
of the independent variable. 

The maximum number of ticks for four means is three, which occurs 
when all the means are significantly separated. It might be argued that 
there are six ticks in this case, because there are six possible compari
sons among four means. However, this argument is flawed, as there are 
redundancies among the comparisons. When the means are arranged 
from lowest to highest, as is implicit in Table 6.7, a declaration that B 
is significantly higher than A implies that C and D must also be 
significantly higher than A because they are at least as far from A as B 
is. Similarly, if C is declared significantly above B, so too must D 
significantly exceed B. Thus we should be concerned only with the 
number of nonredundant significances between means (which cannot 
exceed the number of degrees of freedom between groups)—here, 3. 

In the three patterns in the left half of Table 6.7, the number of ticks 
is found by counting how many of the adjacent pairs (AB), (BC), (CD) 
are declared significantly different. There are no buts, as none of the 
nonsignificant braces overlap. In the right half of the figure are listed 
patterns with two (or three) nonsignificant braces, some of which over
lap. Each such overlap implies that a seemingly paradoxical sentence is 
needed to describe the result —a but. The last pattern in the column has 
two regions of overlap, and therefore has two buts. Meanwhile, counting 
the number of ticks for each pattern requires examination of some 
nonadjacent means, though the count still equals the minimum number 
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of nonredundant claims of statistical inequality. For example, in the last 
pattern, C significantly exceeds A, and D significantly exceeds B; thus, 
we count 2 ticks. 

These schemes for counting ticks and buts generalize readily to cases 
involving more means. For k independent groups, the maximum num
ber of ticks is (k - 1), the number of degrees of freedom between groups. 
The maximum number of buts is (k - 2), and the number of buts can 
never exceed the number of ticks. 

Decomposition Versus Multiple Comparison 

An interesting data situation involving alternative descriptions is the case 
in which one of the means in a 2 × 2 table comes out sharply different from 
the other three, which are all about the same. This case has been much 
debated (e.g., Myer, 1991, vs. Rosnow & Rosenthal, 1991). We illustrate 
with the data in Table 6.8 from a study by Langer and Abelson (1974). 

Example: A Labeling Effect in Clinical Judgment In this study, a 
videotaped interview was shown to various clinicians, 19 of whom had been 
trained with a classical psychoanalytic orientation, and 21 as behavior 
therapists. Each viewer was asked to write a short statement about the 
personality traits of the person being interviewed. The interview featured 
a somewhat rambling and ambiguous account by the interviewee of the 
reasons he had left his job. In half the viewings, the tape was introduced 
by the experimenter as “an interview with a job applicant,” and in half as 
“an interview with a patient.” This created the 2 × 2 design pictured in 
Table 6.8, with (approximately) 10 clinician viewers per cell. 

The 40 personality sketches were randomly shuffled and given 
(source unspecified) to graduate students to rate the emotional malad
justment implied by each description, on a scale from 1 to 10. The 
hypothesis of the study was that for the analytic clinicians, the inter
viewee labeled a patient would be seen as much more deeply disturbed 
than the same interviewee labeled a job applicant, whereas for the 
behavior therapists, the label would make little or no difference. 

The pattern of means in Table 6.8 (with higher numbers denoting 
more maladjustment) appears to support the investigators’ hypothesis, 

TABLE 6.8 
Mean Ratings of Emotional Maladjustment of a Stimulus Person 

Person is Labeled 

Viewer’s Training A Patient A Job Applicant 

Psychoanalytic 
Behavior Therapy 

7.40 
5.02 

4.80 
4.74 

Note, n = 10 per cell; the mean square within cells is 2.81. 
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resoundingly. But what form of statistical analysis should be used for 
testing and framing the results? There are different choices. The 
straightforward, naive approach is to test the significance of the differ
ence the label makes, separately for the two clinician types. This would 
come down to two t tests of simple effects, one for each row of the table. 
This procedure has the defects we noted earlier in the chapter—it risks 
categoritis, whereby we would grossly overinterpret the comparison of 
the categorical outcomes for the two simple effects. 

The standard advice in a case like this, therefore, is to test the 
interaction in the 2 × 2 table. Because the habitual decomposition of the 
2 × 2 includes this interaction, the stock advice is to run the usual 
analysis of variance and test the two main effects and the interaction 
all in one package. 

A funny thing happens on the way to the conclusions when this 
conventional advice is applied to the data in Table 6.8, however. Not only 
does the interaction come out significant, but both main effects do also. 
The conventional research report for these results would go something 
like this: “The main effect for label is significant (F1,36 = 7.38; p = .01), 
as is the main effect for clinician type (F1.36 = 5.30; p < .05). Most 
important, there is a significant interaction between clinician type and 
label (F1,36 = 4.79; p < .05) in the predicted direction. For the analytic 
clinicians, labeling the stimulus person a patient rather than a job 
applicant raises the mean maladjustment rating from 4.80 to 7.40, 
whereas for the behavior therapists, the difference in rated maladjust
ment due to the labeling manipulation is much less (4.74 vs. 5.02).” 

The major disadvantage of this conventional summary is that it 
contains uninteresting statements about the main effects, before we get 
to the crucial interaction. The suggestion of putting the main effect 
statements after the interaction does not really solve anything. The 
basic problem is tha t commitment to the conventional 2 × 2 analysis 
obliges you to say something about all significant effects—there are, 
after all, three potential ticks from the standard decomposition. The 
verbal statement of the results is correspondingly bulky, and would be 
even more so if some verbal elaboration of the main effects—including 
the fact tha t the interaction buts them—had been given. 

There is an alternative set of significance tests that can be applied to 
Table 6.8, yielding fewer ticks and no buts. Even a statistically untu
tored person looking at the table would notice tha t the mean in the upper 
left-hand corner differs markedly from the other three means. Why then 
should we not test this appearance directly?! A Tukey multiple compar
isons test on the four means yields the result that the (analytic clinician; 
patient) group provides the only significant differences. On average, 
members of this group perceive the interviewee as significantly more 
maladjusted than in any other group, and there are no reliable differ
ences between the other three groups. Referring to Table 6.7, we find 



MULTIPLE COMPARISONS 1 2 3 

this case at the bottom of the left-hand panel, having one tick and no 
buts. The parsimony principle tells us that a summary with one tick is 
preferable to a three-tick summary. Thus, this criterion provides 
grounds for preferring the multiple comparisons procedure to the stan
dard 2×2 decomposition. The substantive conclusion is that conjunction 
of an analytic orientation and the patient label is necessary to produce 
a sharp increase in the perception of maladjustment. 

The habit of doing the standard decomposition is so overlearned by most 
students of analysis of variance9 that it has become virtually automatic: 
The stimulus of a 2 × 2 table elicits the response of calculating two main 
effects and an interaction. Here, as we have seen, this habitual response 
entails a loss of parsimony in the results, and therefore it seems advanta
geous to abandon it in favor of the Tukey test. Habits, after all, are mindless. 
They should be canceled if there is a sufficiently good reason. My advice of 
analyzing the three-the-same, one-different pattern of means via multiple 
comparisons rather than the standard decomposition, by the way, has been 
advocated by others (e.g., Schmid, 1991), but the tick/but approach provides 
a rationale that heretofore has been lacking. 

Example: Group Conflict in South Korea. At the risk of running 
our point into the ground, consider the 2 × 2 × 2 data in Table 6.9, from 
a Yale dissertation (Na, 1992). 

Half of the subjects were from a low-status group of South Koreans, half 
from a high-status group. All subjects read a news story about the political 
relations between the groups. For half of each group, the story reported 
developments favoring the low-status group, and for the other half, the 
high-status group. Each of these four subgroups was further subdivided by 
whether previous subjects from the two groups were said to have been in 
conflict with each other about the issue in the story, or not. The dependent 
measure was agreement with the main point of the story, on a 9-point scale 
from 1 (absolutely disagree) to 9 (absolutely agree). 

There were 20 subjects per cell, and the within-cell mean square was 
2.43. The standard analysis of variance of this 2 × 2 × 2 design produced 
mean squares for three main effects, three two-way interactions, and 
one three-way interaction. Six of these seven effects are significant at p 
< .05. Each is a tick. Four of these ticks are butted by qualitative 
interactions, undercutting their interpretation. Six ticks and four buts! 
A real mess.10 

9It has also been a habitual response by many journal editors. For a particularly 
egregious example in which the authors were compelled to present a totally unintelligible 
traditional analysis to legitimize a very clear nontraditional summary, see Salovey and 
Rodin (1984). 

10The mess can be cleaned slightly by the matching trick from an earlier section. We do 
not present either the original mess or its reframing here. The ambitious reader can try 
developing the analysis of variance tables from the information given. 
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TABLE 6.9 
Group Ratings of Agreement with a Story Favoring the High- or Low-Status Group Under 

Conditions of Perceived Conflict or Nonconflict 

Group Story Favoritism Conflict Nonconflict 

Low-Status 

High-Status 

Pro High-Status 

Pro Low-Status 

Pro High-Status 

Pro Low-Status 

1.05(a) 

7.75 (d) 

3.20 (b) 

2.95 (b) 

1.40(a) 

5.35 (c) 

3.05 (b) 

2.95 (b) 

Note. Any two means marked by the same letter are not significantly different. 

An alternative try is simply to apply the Tukey Test to the set of eight 
means, ignoring the 2 × 2 × 2 structure. The results are indicated by the 
marker letters beside the means in the table. Any two means marked 
by the same letter are not significantly different.11 We see that four 
distinct letters are needed, and none of the means requires multiple 
letters, that is, there are four nonoverlapping regions of nonsignificance. 
Thus there are three ticks and no buts. The significant results can be 
described concisely, as follows: 

The high-status group shows roughly the same moderate level of 
disagreement with the stories in all cases. By contrast, the low-status 
group is very sensitive to story favoritism, absolutely disagreeing with 
stories slanted against them, and tending to agree with stories in their 
favor. Such agreement by them is greater under the condition of per
ceived intergroup conflict. 

The general theoretical point is that a low-status group can be highly 
responsive to potential slights at the hands of a high-status group, all 
the while the high-status group is oblivious to the conflict. This point is 
brought out clearly in the three-tick summary, but would be totally 
obscured by the welter of ticks and buts in the standard decomposition. 

“Can I Do That?” 

When presented with unconventional approaches to conventional re
search designs, students often say, “Can I do that?” ”What do you mean, 
Can I do that?,” I reply. “Well, you know, is it... all right?” they say, looking 
at the floor. The conversation has become clinical. 

Because of such student anxieties, it is useful to broach once again 
the stylistic problems accompanying unconventionality We are not 
arguing that a multiple-comparisons procedure on the four means of a 
2 × 2, or the eight means of a 2 × 2 × 2, always provides better articulation 
than the standard decomposition. Indeed, examples can readily be given 

11This notation is an alternative to the use of underlines in expressing the results of a 
multiple comparisons test. It is more flexible for tabular presentations. Each letter is 
equivalent to a separate underline. 
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in which the articulatory advantage lies very much with the decompo
sition. And therein lies a rub. If two (or more) statistically different 
procedures are tried with any given data set, there is always a suspicion 
that the investigator ended up choosing the one that yielded the statis
tically significant appearance, thereby capitalizing on chance. A conser
vative critic might go so far as to dismiss articulatory advantage as a 
rationalization, not a reason, for the choice of analysis. 

In the examples in this chapter, the fussy issue of capitalizing on 
chance did not arise—both statistical procedures yielded highly signif
icant results. In such a happy circumstance, the investigator(s) can 
highlight the more well-articulated procedure, and provide a footnote 
saying that some other procedure also yielded convincing p values. In 
the example of the clinicians watching the videotape of the person 
labeled either a patient or a job applicant, the text would feature the 
Tukey test, and the footnote would follow convention by giving the 
significant F for the interaction. (This stroke nicely avoids the burden 
of commenting on the uninteresting main effects.) 

A crunch comes in 2 × 2 examples if the Tukey test yields one cell 
significantly different from the other three cells, but the interaction F 
based on [(T - U) - (V - W)] comes out nonsignificant. Then, even though 
the unconventional analysis is better articulated, presenting it in lieu 
of the conventional procedure might seem too brash. A timorous inves
tigator would feature the conventional analysis and footnote the uncon
ventional one. However, I think a good case can be made that better 
articulation is usually worth a modest increase in the Type I error rate. 
I myself would therefore be willing to emphasize the well-articulated 
alternative in the text, footnote the conventional analysis, and argue the 
point with a squeamish editor, if necessary. 

CONTRASTS 

A third method of articulation involves the calculation and F-testing of 
contrasts between means (Rosenthal & Rosnow, 1985; Kirk, in press), as 
opposed to an omnibus one-way F test on the whole set of means. The 
particular case of linear trend testing is fairly common, and as a method 
of articulation it presents new problems and opportunities. In this section, 
we use the linear contrast on four means to illustrate tick and but counts. 

A contrast is specified by a set of weights [w(j)] to be applied to the 
respective group means [M(j)]. Simple formulas involving the sum over the 
group index j of the products w(j) • M(j) produce a mean square and an F 
test associated with the contrast. Relative to the omnibus F ratio, the 
contrast F ratio is potentially (g - 1 ) times as large (where g is the number 
of groups). This potential for a stronger result tends to be realized to the 
degree that the pattern of weights captures the pattern of means. 
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There is a metaphor that I find helpful in comparing a contrast test 
with an omnibus test. At the beginning of this chapter I used the 
metaphor of guitar playing with or without mittens, and I risk mixing 
metaphors—nevertheless, let’s go full hog ahead. Picture a sentry 
perched in a castle tower, scanning the nearby countryside for violations 
of the null hypothesis. If the sentry walks slowly around the tower, 
spreading his limited attention over the full 360°, that’s like the omnibus 
test. If, however, he looks only in a single direction, he will be more 
sensitive to occurrences close to his line of vision, and totally oblivious 
to those at right angles. This represents the contrast test. 

The contrast [-3, - 1 , +1, +3], for example, is “looking’’ for a pattern 
of steady increase from the first mean to the second mean to the third 
mean to the fourth mean; that is, a linear pattern or trend. If the data 
show such a steady increase, the contrast F will be at its relative 
maximum. If there is a pattern of irregular increase, however, or a 
pattern of successively diminishing increase (or no net increase at all), 
the contrast F will be less than maximum. Note that in the case of steady 
and sizable increases, a multiple comparisons test such as the Tukey 
may well yield a significant difference between every adjacent pair of 
means. This would produce three ticks in the case of four groups, and 
even more ticks with more groups. 

How many ticks should we assign to a significant linear contrast? To 
answer this, we note that certain sets of contrast weights yield signifi
cance tests conceptually identical to the decomposition procedures dis
cussed earlier. The main effect of columns in a 2 × 2, for example, can 
be tested with the one degree of freedom contrast [+1, - 1 , +1, -1], which 
looks at the difference between the means in the first and second 
columns, aggregated over rows. Because a significant column main 
effect counted as one tick in that case, it is reasonable to accord one tick 
to any significant contrast. Typically, therefore, well-fitting contrasts 
give a more parsimonious description than multiple comparisons (fewer 
ticks), and a more informative description than an omnibus test, which 
at best gives a blob. (An additional articulatory advantage of some 
contrasts is that their ticks contain specific quantitative information, 
e.g., that a pattern of means can be roughly characterized as linear. We 
do not pursue the quantitative aspects of ticks here, however.) 

Albeit the linear (or any other precisely specified) contrast counts as 
one tick, possible departures from trend raise the question of the number 
of buts. If there is a clearly nonsignificant residual sum of squares after 
extracting the linear trend sum of squares, then the linear trend is an 
adequate description of the data, and we have an ideally parsimonious 
one-tick, no-but summary. If, however, the residual is significant, then 
the trend’s tick is butted (so to speak). A strong residual says that the 
linear description may be misleading—something else is going on, and 
this case deserves a but. (The significant residual does not earn a tick 
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Ticks, 
TABLE 6.10 

Buts, and Blobs for Contrasts Among Four Group Means 

Source of Variation df Outcome Ticks Buts Blobs 

Omnibus between 3 significant 0 0 1 

Linear contrast 
Residual 

1 
2 

significant 
nonsignificant 

1 
0 

0 
0 

0 
0 

Linear contrast 
Residual 

1 
2 

significant 
significant 

1 
0 

0 
1 

0 
1 

Linear contrast 
Quadratic contrast 
Residual (cubic) 

1 
1 
1 

significant 
significant 

nonsignificant 

1 
1 
0 

0 
1 
0 

0 
0 
0 

Linear contrast 
Quadratic contrast 
Residual (cubic) 

1 
1 
1 

significant 
significant 
significant 

1 
1 
1 

0 
1 
1 

0 
0 
0 

of its own, because with four or more groups, the test of the residual is 
an undiscriminating omnibus test that can only yield a blob.) If the 
residual sum of squares can be fitted by a second contrast, say, a 
quadratic trend, then that adds another tick. Whether or not a third tick 
and second but are added depends on whether or nor the final residual 
is significant. The possible cases for four means are listed in Table 6.10. 

The message here is this: Application of a patterned contrast such as 
a linear trend potentially provides good articulation of results, but the 
articulatory advantage of the contrast is undercut when the residual is 
significant. Research reports frequently give significant trends without 
comment about residual variation, and this is very careless. 

MORE THAN ONE DEPENDENT VARIABLE 

Beyond the various ways of detailing differences or patterns among 
means, the need for articulation also arises when there are two or more 
dependent variables. This situation occurs very often in psychological 
research. In studies using questionnaire measures of attitude, more 
than one question may index the attitude. In studies of memory, differ
ent memory tasks can be employed. And so on. 

Alternative Methods of Dealing With Multiple 
Dependent Variables 

In such cases, the investigator faces a choice of whether to present the 
results for each variable separately, to aggregate them in some way 
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before analysis, or to use multivariate analysis of variance (MANOVA). 
If the variables all refer to the same response scale, there is also the 
alternative of doing a standard “repeated measures” analysis of vari
ance. 

One of these alternatives—MANOVA—stands at the bottom of my 
list of options. Imagine a 2 x 2 design, say, with four response variables. 
Many an intimidated student will be led by the formal structure of the 
design to seize upon MANOVA as the “appropriate” analysis. 

Technical discussion of MANOVA would carry us too far afield, but 
my experience with the method is that it is effortful to articulate its 
results. The output tables from a MANOVA are replete with omnibus 
tests, and unless the investigator is sophisticated enough to penetrate 
beyond this level, the results remain unarticulated blobs. Furthermore, 
when MANOVA comes out with simple results, there is almost always 
a way to present the same outcome with one of the simpler analytical 
alternatives. Manova mania is my name for the urge to use this 
technique. The risk from indulging this compulsion is that one may not 
fully digest the output, and end up by presenting the results with a 
murky profusion ofp values. I hasten to add, however, tha t if used deftly 
and in moderation, MANOVAs can occasionally be helpful. Perhaps the 
matter can best be captured by Abelson’s Fourth Law: Don’t talk Greek 
if you don’t know the English translation. A wise general practice in the 
statistical t reatment of complex data arrays is first to display them 
graphically, and do rough, simple quantitative analyses. These will give 
a feel for the potential meaning of the results; only then should you 
resort to complex refinements. 

Articulation When Each Variable Is Analyzed Separately 

Returning to our discussion of ticks and buts, let us consider the simplest 
multivariate case: two dependent variables. We further simplify by 
supposing that the influence of the independent variables (in a 2 × 2 
design, for example) is examined for each dependent variable separately. 

We distinguish two possible situations, each with three types of 
outcome. The two dependent variables might be alternative measures 
of the same construct (e.g., two measures of the same attitude) or of 
different constructs (e.g., a belief and a behavior). In turn, the pattern 
of results (whether tested by decomposition, comparisons, or contrasts) 
may yield the same outcomes for both variables, a single difference 
between the outcomes for the two variables, or many differences. These 
six cases are shown12 in Table 6.11. In the simplest case, when two 
measures of the same construct yield the same patterns of significant 

12Cases with two or three differences in outcome could be treated like one-difference 
cases or many-difference cases, at the judgment of the investigator. 
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Changes in 
TABLE 6.11 

Ticks and Buts When Using a Second Dependent Variable 

Results Are 

Variables Are All the Same One Different Many Different 

Measures of the same 
construct 

Measures of different 
constructs 

No change 

Add one tick 

Add one but 

Add a tick and a but 

Reckon for the second 
variable separately 

Reckon for the second 
variable separately 

results, separate presentations would be redundant. The tick and but 
counts for one variable would be the same as for the other—and the same 
as the counts for a two-variable aggregate. The most streamlined pres
entation would simply use the aggregated data (as in fact we recom
mended for the case of significant social facilitation on both numerical 
and verbal tasks). 

If measures presumed to represent the same construct yield the 
same results save for a single difference, tha t exception costs a single 
but. If there are many differences, then the measures are apparently 
behaving differently despite a presumption of similarity, and the 
investigator had better consider separately the ticks and buts attach
ing to each measure. 

The case with conceptually distinct dependent variables is different. 
Consider, for example, the speed and the accuracy of response in a long 
series of simple stimulus judgments. For example, various letter strings 
may be flashed upon a screen and the subject asked to indicate whether 
the string represents an English word or not (the “lexical decision task”; 
Meyer & Schvanevelt, 1971). Accuracy data are important because 
theoretical models of reaction times often are different for correct and 
incorrect responses. But let us imagine an experimenter intrinsically 
interested in using both measures as dependent variables. Fast re
sponses might be more accurate because of variation in stimulus famili
arity, or more inaccurate because some stimuli have alternative 
meanings, creating confusion leading to slow responses and many 
errors. In principle, these two variables might have any net relationship 
whatever. If some experimental treatment produces the same pattern 
of significant results for the two measures, that is nonredundant and 
worth noting. A commentator might say, “These results hold not only for 
speed, but also for accuracy.” A’not only statement represents one tick. 

If the pattern of results on two conceptually distinct measures is 
almost the same, with only a single exception, then an additional but is 
counted along with the additional tick. Finally, if the results for the two 
measures differ in several respects, it behooves the investigator to 
examine the patterns separately. 
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FURTHER REMARKS 

We have set forth a scheme for choosing between alternative descrip
tions, based on clarity—for which buts should be minimized—and 
parsimony—for which ticks should be minimized. 

Articulating Research Plans 

We have not yet mentioned the questions that typically arise at the stage 
of designing an experiment. The investigator might ask what tick and 
but counts she would like the outcome to have. Is she concerned only 
with a single claim (one tick), or two claims, or more? What about buts? 
Buts in general are bad news for the investigator, but in some cases the 
researcher might want a but, principally to challenge the ticks set forth 
by someone else, or to demonstrate that the phenomenon in question is 
conditional on certain factors that should not be overlooked. This line of 
thought leads to consideration of interestingness, the topic of chapter 8. 

Uncooperative Data 

In our discussion and our examples, we have presumed tidy data, but a 
note of realism should be injected in the discussion. Sometimes real data 
allow parsimonious description, with few ticks and even fewer buts. On 
other occasions, however, real data are uncooperative. Either there are 
no ticks at all (because there are no significant effects), or a single 
omnibus blob, or an incoherent profusion of ticks and buts, with no 
apparent redescription trick available to simplify the mess. There is not 
too much that can be said about such cases. When nothing works, 
nothing works. The investigator should consider the possibility, how
ever, that it was not bad luck that did him in, but a vague, messy 
research conception. If this is true, then it is better to return to the 
drawing board to design a cleaner study than to pile statistics higgledy-
piggledy before befuddled readers. This caution leads to Abelson’s Fifth 
Law: If you have nothing to say, don’t say anything. 

Staying Loose 

From John Tukey I have learned the old Scotch proverb, “A man may 
ha’ a gay, foine hoose, but he maun sit loose t’ it.” He means that we 
should not be so enamored of our rules and procedures that we stick 
with them under all conceivable circumstances. There comes a time 
when it is wise to abandon the house. 

This brings us back to significance tests. Several times throughout 
this book, I have inveighed against the usual emphasis on significance 
testing as too categorical and hidebound a way of thinking. Now I come 



FURTHER REMARKS 131 

along in this chapter to discuss the concept of articulation, and my 
analysis of ticks and buts relies on categorical claims of significance. 
Categorization of results obviously brings some clarity to the analysis 
of articulation, and was advantageous to use in this chapter. One should 
still, however, allow for flexibility in significance statements. It might 
be, for example, that a pattern of results that is messy using the .05 level 
becomes neat using the .01 level. Or perhaps everything would be fine 
at the .05 level except for one result at .06, and there would be consid
erable narrative advantage to relaxing the significance level to .06. 
Thus, though one cannot avoid a categorical view of articulation, at least 
one can try to employ it with less than total rigidity. 



7 Generality of Effects 

As we have noted before, it is always appropriate to question the 
generality of effects found in any one study. The investigator and the 
critic alike wonder whether the results would come out the same if the 
study were replicated. 

Unfortunately, the admonition to replicate does not come equipped 
with instructions. What contexts should be varied to try to establish 
generality? What aspects of the original study should be kept the same, 
in order to be sure that each new replication is testing for the “same” 
result? How shall we express different degrees of generality? 

We first discuss the concept of generality, and then relate our discus
sion to the statistical issues involved. 

THE NATURE OF GENERALITY 

Any given experimental study1 is conducted by a research team at a 
particular place and time, running groups of subjects through a carefully 
designed procedure to test the effects of some experimental treatments. 
Everything about the experiment beyond the critical manipulation of 
the treatment—research team, time, place, subjects, and ancillary as
pects of the procedure and materials—becomes context. 

The Variety of Contextual Features 

There are so many aspects of context that the investigation of generality 
of treatment effects spawns many questions. If a study provides strong 
evidence that Treatment A differs from Treatment B in its effect on variable 
X, we can ask if this would remain the case if the study were run by a 
different research team at a different time and place, with different 
subjects, procedures, materials, and so on. The list of questions generated 

1The points to be made in this chapter apply in essence also to observational studies. For 
conciseness, however, we use the terminology of the experimental approach throughout. 

132 
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by enumerating contextual features of a study gives us some guidance on 
how to rim replications to probe for generality, but unfortunately it is quite 
vague. What do we mean, “at a different time”? Time of day? Time of the 
year? Time in history? How should we interpret “in a different place”? On 
the next floor? At a different university? In a different country? 

The narrower the interpretation of generality, the more similar a 
replication would be to the original study, and the more likely (one would 
guess) to support the original claim. The narrowest possible replication 
of a study occurs when the same experimenters run it again in the same 
place with the same procedures, materials, measures, and pool of 
available subjects, changing only the date and the particular subjects.2 

Exact Replication. The term exact replication refers to the strategy 
of repeating a study in as nearly identical a form as can be managed. 
One cannot safely assume that a putatively exact replication will pro
duce the same experimental result. The research literature in psychol
ogy—as well as in the physical sciences—is sprinkled with results 
failing the test of exact replication (e.g., Dworkin & Miller, 1986; Mayer 
& Bower, 1985; Pool, 1988; Pratkanis, Greenwald, Leippe, & Baumgart-
ner, 1988). Therefore, it is a good idea for researchers themselves to 
conduct one or two replications before getting too carried away by the 
force of their initial claims. Indeed, it is a standard journal editorial 
policy to require of authors that they report experiments in clusters of 
three or more interrelated studies, serving (among other things) to 
provide a modicum of replication. Clusters of totally exact replications 
are usually felt to be on the overcautious side, however. Thus the usual 
practice is to provide modest breadth in initial replications, for example, 
by changing one or two aspects, such as the response measures and the 
procedures embodying the treatments. 

The Influences of History, Culture, and the Laboratory. The other 
extreme on the range of generality, where the context varies a great deal 
from one study to another, raises a different set of questions. If the time of 
two studies is separated by decades rather than weeks, one may find in 
some research areas that societal developments can change the results. A 
case in point is given by Eagly (1978) in reviewing laboratory studies of 
gender differences in susceptibility to social conformity pressures. The 
author categorized each of a number of conformity studies as to whether 
women conformed more than men, or whether the genders conformed 
equally. (In two cases, men conformed more; these studies were grouped 
into the “equally” category.) Eagly conjectured that with the historical 

2For a few phenomena, particular individuals with spectacular abilities or unusual 
defects are retained as subjects worthy of repeated study. This category would include 
idiots savants, reputed psychics, eidetic imagers, and people with unusual amnesias 
caused by brain injury. 
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growth of the women’s rights movement, women have become generally 
more resistant to social pressures. Since 1970 or so, then, gender differ
ences in observed conformity should tend to diminish, disappear, or con
ceivably even reverse. Sure enough, of 59 conformity studies run before 
1970, women conformed more than men in 23 of them; of 64 studies run 
after 1970, women conformed more in only 8. 

Some commentators (e.g., Gergen, 1973) have argued that if research 
results are particular to historical eras, and also to the language and 
culture of the research location, then it may be virtually impossible to 
establish a body of social science knowledge with any assurance of 
validity and permanence. The only stable findings, the argument goes, 
would be a small corpus of results with complete generality—so-called 
cultural universals (see, e.g., Jaynes & Bressler, 1971). 

Anthropology and cultural psychology (Price-Williams, 1985) have 
struggled for many years with the question of what types of human 
behavior might be universal. Some universals have been claimed: for 
example, the sameness of the emotional responses of infants to the tone 
and inflectional pattern of maternal vocalizations, irrespective of par
ticular language (Fernald, 1993); the emotional meaning of prototypic 
facial expressions, such as the furrowed brow of anger (Ekman, 1980; 
Mesquita & Frijda, 1992); and certain general value orientations 
(Schwartz, 1992). However, universals are rare, and notoriously debat
able (Ekman, 1994; Russell, 1994). 

Another possible constraint on generality is raised by the argument 
that research conducted in the laboratory does not generalize to the “real 
world.” It is frequently asserted that laboratory settings are artificial— 
subjects are placed in an isolated environment, possibly with strange 
recording instruments, or computer displays; an experimenter instructs 
them to perform an unfamiliar task with unfamiliar stimuli, and keeps 
track of how they do it; subjects are concerned about the impression they 
will make; and so on. Will not subjects respond differently in these situa
tions from the way they would in daily life (cf. Neisser & Winograd, 1988)? 

There are several counterarguments to this thesis, among them the 
staunch endorsement of experimental control and inference (Banaji & 
Crowder, 1989) combined with a skepticism that there is any consequen
tial loss of generality in using a laboratory environment. A milder, more 
eclectic reply is to urge the use of a mixture of techniques, inside and 
outside the laboratory (Jones, 1985). 

Another counterargument to the assertion that laboratories are 
strange places is that real life often involves artificialities, too. Doctors 
and dentists use forbidding instruments and issue authoritative instruc
tions. (Ever had a CAT scan?) Teachers give unintelligible assignments to 
students, and monitor their performance. And we are often mindful of the 
impression we will make on authority figures, not to mention co-workers 
and friends. Thus in several respects, life imitates science. 
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Aronson et al. (1985) distinguished between the mundane realism 
and the experimental realism of an experimental study. Mundane real
ism involves making the environment of the study more representative 
of the outside world in its surface features. By contrast, Aronson et al. 
emphasized experimental realism, by which they meant making the 
laboratory situation psychologically realistic and compelling for the 
subjects, regardless of the unfamiliarity of its surface features. 

That the generality of research findings in the social sciences may 
well be constrained by history, culture, and the sometime leap between 
laboratory and life does not inexorably support the pessimistic conclu
sion that a psychological science is impossible. The appropriate reaction 
is not despair, but humility. True, we should often expect interactions 
between effects and contexts, and this should temper the grandiosity of 
our claims. But the interactions we encounter (e.g., the diminished 
gender difference in conformity after 1970) are more often lawful than 
capricious. In initial research in an area, unexplained interactions of 
effects with contexts are nuisances. They may cloud the articulation of 
results by introducing new buts (chap. 6), and they may even kill off our 
ability to establish significant main effects in the first place. But as we 
slowly develop sophistication in an area, we should begin to focus on the 
interactions rather than the main effects as the ticks of interest. 

TREATMENT-BY-CONTEXT INTERACTIONS 
WITHIN STUDIES 

Interactions of effects with contexts are by no means limited to sweeping 
historical or cultural factors. The size and direction of experimental 
effects can be influenced by modest experimental variables, ranging 
from the general intelligence of the subjects to minute details of the 
instructions or stimulus materials. We now turn to the statistical 
analysis of these narrow, frequently encountered contextual influences. 

Manageable Contextual Influences 

Contextual influences may be investigated within studies, or across 
studies. The former application is related to what has been called 
“generalizability theory” (Shavelson & Webb, 1991),3 and the latter to 

Generalizability theory arose in the field of mental testing, where one desires to 
generalize observed ability differences between people, over test items, occasions, raters, 
and other context factors or “facets.” In the present discussion, the aim is to generalize 
experimental treatment differences over subjects and contexts. There is a formal analogy 
between the two situations, but translating from one to the other requires alertness to the 
switch in focus of the target of generalization. 
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meta-analysis. In our treatment, we attempt to exploit the similarities 
between the two. 

Example: The Persuasive Influence of Expert Communicators. 
Consider a research project on the relative persuasive influence of 
communicators with different degrees of expertise. The typical research 
finding is that expert communicators are more influential than nonex
perts (Hovland, Janis, & Kelley, 1953). However, the magnitude of this 
expertness effect can be somewhat variable, depending among other 
things on the topic of the communication.4 Imagine an exploratory study 
of the generality of the expertness effect across opinion topics. (The 
design we present is not the same as that of the actual early studies, but 
is more suitable for the present discussion.) 

Four disparate controversial opinion topics are selected as vehicles 
for persuasive messages. On each topic, the consensus of opinion has 
been investigated in advance for the target audience, and an essay 
disagreeing with that consensus is written. For example, there might 
be one essay advocating that there be no regulation of genetic engineer
ing whatever, one endorsing a comprehensive exam for college seniors, 
one arguing for a constitutional amendment denying statehood for 
Puerto Rico, and one urging mandatory parental consent for teenage 
abortion. There are two versions of each essay, identical except for 
attributed authorship: One author is described with authoritative cre
dentials in the topic area, (say, genetic engineering) “Dr. X.Q., Professor 
of Genetics,” and the other is said to be “X.Q., a local high school 
student.” In a class of 80 students, 20 receive an essay on each topic, 
half of them attributed to the expert, half to the nonexpert. The students 
are then asked their opinions on the essay topics. Degree of agreement 
with the communicator’s (previously unpopular) position is noted. The 
experimenter tabulates the difference between the mean agreement 
with the “expert”5 and the ”nonexpert” versions for each of the four 
topics. Consider these raw mean differences as measures of the effect 
sizes for expertness on each of the four topics. 

Some variability of expertness effects was in fact found across topics by Hovland and 
Weiss (1951), but not much commented upon. The raw effect sizes, assessed by the 
difference in net proportions changing opinions to agree with the communicator, were -.04, 
.09, .27., and .36 for their four particular topics. 

5When we title a treatment factor, there is always a danger that we will proceed to use 
that label in our thinking and ignore the idiosyncratic nature of the actual treatment 
manipulation. I call this conflation of the title with its object the “knighthood fallacy.” 
Here, we extend our conceptual sword, and vest the professor with expertness in public 
issues, and the student with nonexpertness, ignoring the fact that professors and high 
school students differ not only in expertness, but also in age, absent-mindedness, typical 
interests, and so forth. The professor-student manipulation, therefore, is not merely a 
variation in expertness. For that matter, the choice of essay topics carries with it 
variability in writing style, in importance, and so on, as well as in sheer topic content. 
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In the illustrative outcome given in the first part of Table 7.1, three 
of the four effects are in the direction of greater persuasiveness for the 
expert than the nonexpert. Two of these three effects are large, and one 
is small. The effect in the opposite direction is also small. The second 
part of Table 7.1 gives the analysis of variance, treating these data as a 
two-way factorial (Expertness x Communication Topic), with 10 subjects 
per cell. 

What can we say from these results about the generality over topics 
of the expertness effect? First of all, based on the illustrative value of 
2.50 for the pooled within-cell mean square, there seems to be a signif
icant main effect for expertness. The F ratio for Expertness, using the 
within-cell MS as error term, is F1,72 = 8.60, p < .01. Following through 
on the standard two-way analysis, the Topic effect is also significant, 
with F3,72 = 9.73, p < .01, but this is not interesting (and would earn no 
ticks in a summary)—it simply indicates that some opinion statements 
housed in particular communications elicit more agreement than oth
ers. The Expertness by Communication Topic interaction is barely 
significant: F3,72 = 2.81, p < .05. The analysis gives no further details 
localizing this interaction. 

Thus a mechanical application of statistical procedure to these 
illustrative data would lead to the conclusion that the expertness effect 
is significant, and appears to be somewhat variable across topics. This 
description has one tick (the main effect of expertness), and one blob 
(the undifferentiated interaction of expertness and topic). We cannot 

TABLE 7.1 
Analysis of Mean Agreements With Writer’s Opinion 

Part 1: Mean Agreement With Writer’s Opinion 

Communication Topic Expert Nonexpert Effect Size 

Genetic .20 -2.25 2.45 
Senior Exam .75 .30 .45 
Puerto Rico 3.00 1.50 1.50 
Abortion -.90 -.65 -.25 
Mean (.76) (-.28) (1.04) 

Part 2: Analysis of Variance 

Source SS df MS F P 

E: Expertness 
C: Communication Topic 
E × C 
Within cell (illustrative) 

21.53 1 
72.96 3 
21.10 3 

72 

21.53 
24.32 
7.03 
2.50 

8.60a 

9.73 
2.81 

<.01 
<.01 
<.05 

Note. In Par t 1, n = 10 per cell; scale of agreement runs from - 5 to +5. 
aWith an alternative analysis, this would be F = 3.06. See text. 
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definitely say in what way the interaction buts the main effect, because 
the interaction has not been articulated. 

The Fixed Effects Model and the Embarrassing Footnote 

There is a huge catch to this analysis. The underlying assumption of the 
usual two-way factorial analysis of variance is that the levels of the two 
factors are fixed. The fundamental statistical model specifying the main 
effect and interaction parameters (the equation with all those Greek 
letters and subscripts; see e.g., Blackwell, Brown, & Mosteller, 1991; 
Winer, 1971) limits statistical inferences about the factors to the partic
ular levels tha t the investigator specifies in advance. Thus, the signifi
cant main effect of Expertness strictly applies only to the particular 
versions of high expertness (a professor) and low expertness (a high 
school student) used here. (See footnote 5.) All statements about Topics, 
including the Expertness × Topics interaction—which speaks to the 
generality of the Expertness effect—apply only to the set of topics 
actually used. 

If the investigator desires broad generality, such a limitation is 
painful. Its full impact can be appreciated from the feeble disclaimer 
that one ought to state for the analysis of Table 7.1: 

“We can say with confidence only that the main effect of expertness 
is general over our particular set of communication topics—Genetic 
Engineering, Senior Exam, Puerto Rico, and Abortion. The effect seems 
to be somewhat variable in degree for these four topics. No statement 
can be made about its generality across other topics, nor other essays 
on the same topics.” 

Imagine a parallel disclaimer for generalizations of a main effect across 
the set of individual research subjects: “This main effect is general for the 
set of individuals [Tom Smith, Alice Johnson, Flavius Dibble, Mary Green, 
and...]. No statement can be made about its generality across other indi
viduals.” This type of disclaimer I call the “embarrassing footnote.” It flatly 
states that the purported main effect has no generality beyond Tom, Alice, 
Flavius, Mary, and so forth. If another investigator wanted to replicate the 
study exactly, she would have to ask the original researcher to send Tom, 
Alice, et al. for use as subjects. 

This embarrassment does not occur in practice with research subjects 
because subjects are not treated as fixed effects, that is, as particular 
“levels” of a factor in a factorial design. Rather, individual subjects are 
treated as nameless versions of a random factor, that is, as random effects. 

The Random Effects Model and the Weak Test of Generality 

If we want to avoid a similar embarrassment for generalizations across 
topics, we must consider treating topics as a random factor. This would 
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mean withdrawing our focus from the particularities of individual 
topics, regarding them merely as tokens sampled from an infinite 
collection of appropriate topics. As Shavelson and Webb (1991) put it, 
one would have to be willing to exchange the communication topics in 
the sample for any other same-size set in an appropriate universe. 
Generalization to other, untried topics would thereby be encouraged— 
but a price would have to be paid for this generalization. 

Look back at Table 7.1. The designation of topics as a random effect 
entails using F = MS(Expertness)/MS(Expertness × Communication 
Topic) as a test of the expertness main effect (Blackwell et al., 1991). 
The reason for this is that random sampling of topics might well 
introduce E × C interactions that, on average over repetitions of the 
random selection process, would inflate the size of the expertness mean 
square. The MS(Within) contains no information about this noising 
influence of interactions, and therefore will tend to be too small, biasing 
the F test upward. Here, instead of the F of 8.60 in the second part of 
Table 7.1, using the MS(Within) as the error term, the value F = 3.06 
with (1,3) degrees of freedomis obtained when the MS(Expertness × 
Communication Topic) is the error term—clearly a nonsignificant value, 
as the critical F1,3 at the .05 level is 10.13. This threshold value of F is 
unusually high because there are merely 3 df for the interaction mean 
square. 

The reason there are only 3 df here is that only four topics were used. 
When we want to generalize over topics, the “N” is the N of topics, not 
the N of subjects. Think of it this way: The expertness effect has been 
tested four times, giving the raw effect size estimates 2.45, .45,1.50, and 
-.25. These are rather different from one another. The mean of the four, 
1.04, does not correspond closely with any of them. What, then, is the 
conceptual status of this mean, purported to indicate the general effect 
of expertness? If we regard topics as fixed—thereby abandoning license 
to generalize beyond the four topics used—the mean represents an 
arithmetic compromise, a single summary value for the four effects. On 
the other hand, if we treat Communication Topics as a random factor, 
the observed mean effect of expertness is an estimate of what the 
average effect would be if tested across an indefinitely large number of 
topics. This latter concept is what we ideally intend when investigating 
the true generality of an effect across a contextual factor. 

Note, however, that with a small set of exemplars of that factor—here, 
only four topics—the estimate of the average effect of Expertness (1.04) 
is bound to be quite fuzzy. In our example, the great uncertainty of the 
estimated mean Expertness effect can be appreciated by establishing 
confidence limits on the true value. We use the square root of the 
Expertness × Communication Topic mean square as a basis for the 
standard error, along with the two-tailed .05 level for t with 3 degrees 
of freedom. We obtain the 95% confidence limits: -2.74 < Expertness 
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main effect < 4.82. That the possible null value 0.00 is within these 
confidence limits is another way of indicating that when the data are 
interpreted by the random effects model, the evidence is insufficient 
even to claim a direction of the Expertness effect! Thus the investigator 
ends up without a satisfying story about generality over topics. The fixed 
effects model entails the embarrassing footnote, and the random effects 
model fatally weakens the claim of a general main effect of Expertness. 

Minimizing the Dilemma 

The serious dilemma we have illustrated here often occurs, but need not 
always. There are five circumstances that could help the investigator 
avoid getting stuck between the rock of the fixed model and the hard 
place of the random model. The first three apply to the random effects 
model, the last two to the fixed effects model. 

1. Huge main effect: The main effect of the experimental treatment 
factor, call it E, might be of such great relative magnitude that it is 
significant even when the mean square for E is tested against the 
interaction of E with the context factor, C, despite the small number of 
degrees of freedom. This outcome would provide support for a claim of 
generality for the main effect of E over the universe of contexts from 
which the particular versions of C were drawn. 

2. Small interaction of effects with contexts: Additionally or alterna
tively, the mean square for Effects × Contexts might be minimal, ideally 
no bigger than would arise from the variable samples of subjects 
contributing to the different cell means. This would legitimize the use 
of the MS(Within) as the error term, as in the fixed model. 

3. Many levels of the context factor: If the effect of interest were 
studied in more contexts (e.g., if there were more topics for testing the 
expertness effect), the degrees of freedom for interaction would be larger, 
and the test would be more sensitive. This is the technical side of the 
commonsense idea that you get a better test of generality by trying more 
contexts. Of course, it takes more resources of one kind or another to 
run a larger study. 

4. Ordered context variables: Sometimes a context factor varies along 
a continuum, in which case it can be well mapped with a few strategi
cally placed levels, and be treated as a fixed factor that nevertheless 
allows sensible generalization. For example, in studies of the compara
tive performances of different groups of elementary school children (say, 
male vs. female, or standard educational program vs. experimental 
program), the age variable may be considered a context factor. That is, 
any between-group assertion such as, “Girls perform better than boys 
on tests of verbal ability” might have to be qualified by age. Suppose 
that tests were conducted at ages 7,10,13, and 17, and that boys showed 
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a trivial advantage at age 7, girls a small advantage at age 10, a 
moderate advantage at age 13, and a notable advantage at age 17. What 
general statement would be warranted? Presumably it would go some
thing like this: “Girls outperformed boys on tests of verbal ability. No 
gender difference was evident at age 7, but a gap opened by age 10, and 
increased steadily throughout the school years.” 

Note that this statement implicitly generalizes to other, untested 
ages. No tests were conducted at ages 8, 9, 11, 12, 14, 15, and 16. Yet it 
does not seem unreasonable to assume that if a graph were drawn by 
connecting data points for the tested ages, it would not seriously mis
represent the situation at the intermediate ages. We expect age-related 
functions to be smooth, not to go jumping about from one year to the 
next. Given this expectation, we can treat the age levels as fixed, yet 
still be able to generalize over other ages. 

5. Exhaustive levels of the context factor: When all possible levels of 
a fixed context factor are represented in the design, then there is no 
generalization problem. (There are no other levels to which to general
ize.) Gender is an obvious example. If a given treatment effect is found 
equally for both men and women, then one can cross gender off the list 
of contextual factors likely to interact with treatments. 

Caveat 

In toting up the advantages and disadvantages of treating contexts as 
random effects, there is one further consideration. Herbert Clark’s 
(1973) seminal article recommending much more frequent use of the 
random effects model brought forth hecklers (e.g., Wike & Church, 1976) 
who were sticklers about the logic of Clark’s advice. The problem, they 
said, was that merely declaring a set of variations to be random does not 
make it so. The levels of contextual variables (in Clark’s case, linguistic 
stimuli) are rarely chosen by an explicitly random process; rather, they 
are strategically selected to meet certain criteria, with an attempt to 
choose a variety of exemplars. How then can one have warrant to 
generalize to a population? 

Essentially, Clark’s reply (Clark, Cohen, Smith, & Keppel, 1976) was 
that the main function of the random effects model is to restrain 
investigators from easy generalization. The type of experimental lay
outs he analyzed were different from our experimental treatments × 
contexts design, but in both designs, random effects models create very 
high thresholds for rejecting the null hypothesis of no treatment effects. 
In other words, generalization does not come cheaply. But making the 
attempt to generalize is better than accepting the embarrassing footnote 
of the fixed effects model. To be sure, if the generalization test succeeds, 
one should carefully define the characteristics of the population of 
contexts to which generalization is claimed. For example, with our 
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communication topics in Table 7.1, we can hardly pretend that we have 
a random sample of all possible topics, but we might plausibly argue 
that we have a quasi-random sample of mildly controversial, imperso
nal, relatively undiscussed issues on which undergraduates generally 
agree, but are influenceable. 

In sum, it is fundamental to specify the boundaries of generalization 
of one’s claims. At one extreme, (the fixed effects model), these bound
aries are usually painfully narrow. At the other extreme (the random 
effects model), the price of trying to broaden the boundaries is either to 
make them somewhat vague—or worse, to lose warrant to claim any 
generality at all. This is simply the way the research life is. One does 
not deserve a general result by wishing it. This leads us to coin Abelson’s 
Sixth Law: There is no free hunch. 

Consistency of Effect Direction Across Contexts 

In chapter 6, we introduced the distinction between quantitative and 
qualitative interaction. In terms of the present discussion, purely quan
titative interaction corresponds to the situation of consistent direction 
of the main effect across contexts, and qualitative interaction to demon
strable inconsistency in direction. 

Inconsistency of Directions of Results: Systematic, or Chance? 
Although multicontext results entirely consistent in direction would 
support a claim of qualitative generality, it is not true that one or two 
results in the opposite direction would necessarily rule out such a claim. 
Because there is sampling variability affecting every cell of a design 
such as that of Table 7.1, a wrong-way effect might be produced by 
chance. Looking again at Table 7.1, the results come out in the negative 
direction for the abortion topic, but it is easy to imagine that the raw 
effect for this topic might have come out positive, consistent with the 
other three topics. A simple t test for the departure from zero of this 
single wrong-way result yields t = -.36, hardly a convincing demonstra
tion that we really know the true direction of the effect for the abortion 
topic. If we had some theoretical reason to believe that the expertness 
by topic interaction were quantitative but not qualitative, the given data 
would not provide strong contrary evidence. 

In one-tailed situations (see chap. 3), where one direction of effect is 
much more sensible than the other direction, the investigator might 
require strong evidence before accepting the reality of an apparent 
qualitative interaction. Ciminera, Heyse, Nguyen, and Tukey (1992) 
discussed this issue for medical experiments run concurrently at a 
number of medical centers. In this treatment-by-center design, each 
center has an experimental group and a control group for testing the 
efficacy of a new drug or other therapeutic intervention. Center is taken 
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to be a random factor. Suppose there is a significant treatment effect 
despite a significant treatment by center interaction. Suppose further 
that the research team has the initial supposition that any such inter
action will be quantitative and not qualitative. (If the treated subjects 
at any center do not show a better result than the controls, so be it, but 
there is no reason to expect them to be significantly worse.) 

If the research yields no centers with the wrong directionality, every
thing is fine. The treatment generally works, though in varying degree 
from center to center. If in one or more centers, the experimental group 
does worse than the control group, a correction for random variability 
(called the pushback procedure) is applied. If these reversals are elimi
nated by the pushback, then the same conclusions as in the previous 
case apply. However, if any reversed results remain after the pushback,6 

then systematic qualitative interaction is indicated, contradicting the 
initial optimism that the treatment could never be more damaging than 
doing nothing. 

Direction Reversal Can Be Interesting 

Although qualitative generality across a context variable is desirable on 
grounds of parsimony and simplicity of application, the occurrence of 
systematic qualitative interactions is more interesting and theoretically 
informative. The famous mathematical sociologist Paul Lazarsfeld once 
said, “You never understand a phenomenon unless you can make it go 
away.”7 We might add, “or unless you can reverse its direction.” 

Psychologist William McGuire (1983,1989) suggested as one of many 
ways to develop new hypotheses that you take some seemingly obvious 
relationship and imagine conditions where its opposite would hold. 

Example: The “Risky Shift” in Group Decision Making. Often the 
crucial properties of direction-reversing contexts are discovered by 
flashes of insight, after a long period of inconclusive research. A cele
brated and instructive example of this in social psychology stems from 
the so-called “risky shift effect” (Bern, Wallach, & Kogan, 1965; Wallach 
& Kogan, 1965), which was concerned with differences between individ
uals and groups in attitudes toward risk. For 12 different decision 
scenarios pitting the status quo against a promising but risky alterna
tive, individuals were asked what advice they would give. For example, 
a writer unhappy at turning out popular pulp fiction considers abandon-

An additional way to test the interpretation of results in the wrong direction is to apply 
the procedures for diagnosing outliers given in Table 1.1. The pushback approach is 
distinct, however, because it assumes a smooth-tailed distribution of treatment effects over 
contexts. For a third approach to directional errors, see Schaffer (1991). 

7I cannot find a written citation for this profound remark. I am quoting from memory 
of a seminar Lazarsfeld gave in 1962. 
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ing his steady income to spend all his time on an epic novel. Should he 
attempt this if the probability of success is only 1 in 10?; 2 in 10?; (etc.). 
(Being willing to accept a lower probability is taken as more risky.) After 
making their ratings, business school students were gathered into 
discussion groups, with instructions to reach consensus on the best 
rating. The research question was whether the advice for the protago
nists became more conservative or more risky after group discussion. 

In their study, Wallach and Kogan (1965) averaged the shifts over the 
12 scenarios, and made the striking claim that group discussion encour
ages riskier decisions—the risky shift effect. This contradicted the lore 
on group behavior in business contexts. 

However, if the investigators had jumped into a time machine and 
traveled forward far enough, they would have realized the great import
ance of a qualitative interaction of the shift effect with scenarios. This 
interaction was clearly present in their data, but its implications were 
not appreciated. Ten of the original scenarios demonstrated a reliable 
risky shift, but two showed a reliable cautious shift. According to the 
Lazarsfeld dictum, the two scenarios that make the risky shift go away 
are the clue to understanding the nature of that shift. For many years, 
insufficient heed was paid to the importance of scenario differences. 
Finally, several people realized that the two examples yielding a cau
tious shift had the distinct property that the risky behavior was socially 
undesirable (e.g., the protagonist investing his family’s life savings in a 
highly speculative South Seas stock), whereas in the 10 examples that 
gave risky shifts, the risky behavior was socially desirable (e.g., the pulp 
writer trying the epic novel). The history of this slow discovery was 
nicely summarized by Roger Brown (1986). 

In subjecting the qualitative interaction to close scrutiny, the entire 
interpretation of the group-induced shifts of attitude was altered. The 
phenomenon was relabeled as group polarization—the tendency for 
group discussion to develop increased support for attitudes or behaviors 
initially considered somewhat desirable, whether risky or cautious. It 
was soon discovered (Myers & Lamm, 1976) that group polarization was 
generalized beyond the context of risky decisions, applying to dozens of 
other topics of group discussion. Group discussion increases the extrem
ity of positions initially favored by the bulk of the members. 

The Art of Explaining Treatment-by-Context Interactions 

In a prior section, we made the distinction between fixed and random 
context factors. Levels of fixed factors are labeled and particular, con
straining generalization; levels of random factors dot the landscape of 
possibilities, permitting wide (but perhaps vague) generalization if the 
interactions of effects with contexts are small, and/or the N of contexts 
is sizable. 
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Textbooks tell the student that factors are either fixed or random. If 
one thinks hard about it, however, it becomes clear that most factors— 
especially context factors—have aspects both fixed and random. A 
specified medical center has intrinsic, relatively constant particularities 
affecting the success of a treatment, such as the quality of their person
nel and equipment. Each center also has extrinsic, transient conditions 
affecting success—say, a strike of technicians during the period of the 
experiment, or a defective batch of medication. Specified scenarios in 
the risky shift experiment or persuasive essays in the communication 
study are composed of deliberate variations in story plots or topics, and 
more or less arbitrary embellishments of these themes. In trying to 
understand significant treatment by context interaction, it is difficult to 
sort out the relative contributions of stable and transient aspects of 
contexts, especially when we don’t know what essential features of 
contexts influence the magnitude of the treatment effect. 

In any case, it is usually misleading to think of context variations 
strictly in terms of the name of the context factor (see footnote 5 on the 
“knighthood fallacy”). For example, in the communication study with its 
variation of topics, we should remember that each persuasive essay is 
a complex creation, by no means uniquely constrained by the topic name. 
In the jargon of computer programmers, much of the material in the 
essay is a “kludge” (pronounced klooge)—a bunch of stuff necessary to 
implement the experimental task, and meant to be otherwise inessen
tial. The problem is that the supposedly inessential filler in a commu
nication (e.g., an unexpected turn of phrase that puts some readers off) 
may be the crucial factor producing an expertness by topic interaction, 
not the topic itself. 

What Features of Context Are Essential? Almost all context vari
ations in psychological experiments represent some mixture of the 
essential and the inessential.8 It would be convenient and incisive if we 
could guarantee that essential variations mapped into fixed levels of a 
context factor, and transient or inessential variations into assorted 
versions of random factors. Unfortunately, this is frequently not the 
case. The context variations (topics, scenarios, centers, etc.) we create 
or observe are not necessarily the essential variations. Sometimes, if we 
are lucky, exploratory studies across different contexts provide useful 
clues as to what context variations matter, should the main effect of 
treatments prove insufficiently general. The risky shift research is one 
example of the occurrence of such clues (albeit investigators were slow 
to realize their importance). 

The elaborate orchestration of some psychological experiments (particularly in social 
psychology) raises sharp issues about essentiality. We treat this topic in chapter 9. 
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Clues From the Data Another illustration arises from a second 
look at the information in Table 7.1, on expert versus nonexpert com
municators. Notice that the two topics with the biggest effects of exper
tise—genetic engineering and Puerto Rican statehood—are remote from 
the personal concerns of the typical undergraduate, whereas the two 
with near-zero effects—senior exams and parental consent for abor
tion—have potentially great relevance for college students. Let us call 
the distinction between the two pairs of topics ego-involvement (again, 
being mindful of the knighthood fallacy). The hypothesis is that the 
persuasive effect of expertness is lower when the ego-involvement of the 
audience in the topic is high. The rationale is that when the audience 
member is personally involved by the topics, he or she will attend closely 
to the arguments per se, caring little for the credentials of the commu
nicator. 

If we cleave the topics factor into two fixed categories, high and low 
ego-involvement, each represented by a pair of random topics, we can 
take the means shown in the first part of Table 7.1 and create the more 
informative display in the first part of Table 7.2. 

We notice that the interaction between expertness and ego-involve
ment is very sharp. There is a substantial effect of communication 
expertness when involvement is low, and virtually no observed effect 
when involvement is high. The analysis of variance (ANOVA) of the 
second part of Table 7.2 shows how neat the results become when topics 
are categorized by the ego-involvement variable. Involvement (I) is 
regarded as a fixed factor (with 1 df), and communication topics within 
involvement level (C(I))—the residual properties of topics—as a random 
factor (with 2 df). When tested against the MS(Within), the E × I 

TABLE 7.2 
Analysis of Agreements with Writer’s Opinion, Summarized by Ego-Involvement of Topic 

Part 1: Mean Agreement with Writer’s Opinion 

Ego-Involvement of Topic Expert Nonexpert Effect Size 

High (Exam; Abortion) -.08 -.18 .10 
Low (Genetic; Puerto Rico) 1.60 -.38 1.98 
Mean (.76) (-.28) (1.04) 

Part 2: Expanded Analysis of Variance 

Source SS df MS F P 

Expertness(E) 21.53 1 21.53 8.60 <.01 
Communication Topic (C) 72.96 3 24.32 9.73 <.01 
E × Involvement (I) 17.53 1 17.53 7.01 <.01 
E × Residual C (I) 3.57 2 1.78 .71 n.s. 
Within cell 72 2.50 
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interaction is significant at p < .01, and the residual interaction E × C(I) 
yields a clearly nonsignificant F < 1. 

As a consequence, we have cleaned up the noise-creating influence of 
the E x C interaction. Random expertness × topic residual effects no 
longer inflate the expected value of the Expertness main effect. Thus 
testing the main effect of expertness against the within-cell error term 
is now defensible, justifying the F of 8.60 with its decisive p < .01. (See 
Item 2 in the section Minimizing the Dilemma.) 

We emerge from the analysis with two ticks concerning the expertness 
factor: a main effect of expertness, and an interaction between expertness 
and involvement. The latter is a quantitative, not a qualitative interaction. 
(Under high involvement, the expertness effect drops near zero, but does 
not reverse direction.) Nevertheless, it constitutes a but. 

This example illustrates a style of exploring treatment by context 
interactions when a diffuse context factor such as topics is varied within 
a study. The mean square for Treatments × Contexts is F tested against 
its appropriate error term. If the F is significant or suggestive,9 this 
indicates a “camel in the tent,” that is, some aspect of the context factor 
that systematically interacts with treatments, but that may be hard to 
identify amidst the random variation and the multi-aspect nature of the 
context factor. The detective game is to discern the camel—to point to 
an essential aspect of context that moderates the treatment effect. When 
this camel is removed from the tent (i.e., isolated in an analysis such as 
that of the second part of Table 7.2), the process may be repeated if there 
is any indication of more camels. (In our example, there was no such 
indication. The residual interaction was quite nonsignificant.) 

Guessing Has Its Downside. This approach sounds swell, but has 
drawbacks. As presented earlier, the identification of the essential 
aspect of context (ego-involvement) was by hunch rather than by theory, 
and was based on a tiny sample of topics. This is stylistically brash, wide 
open to criticism as a case of hocus-focus. One can very often search the 
details of contexts and come up with some cockamamie distinction 
between those that yield large treatment effects and those yielding no 
effects or reverse effects. (An experiment is run separately by four 
different experimenters. Joe and Jane get significant results, whereas 
Bill and Karen get none. Are we to believe that the experimental 
phenomenon is contingent upon the experimenter’s name beginning 
with J?) 

9“Suggestive” is meant to indicate a very liberal threshold, as one does not want too 
readily to dismiss the possibility of systematic treatment x context interactions. A conven
tional rule of thumb is to take the interaction seriously if its F> 2 (Anscombe, 1967; Green 
& Tukey, 1960; Hedges, 1983; Tukey et al., 1991). 



148 7. GENERALITY OF EFFECTS 

The possibility of misidentification of the truly essential aspects of 
context is diminished—but not eliminated—by using a larger number 
of context levels. By far the best approach to the dilemma of identifying 
the essential features of contexts lies in the prior development of 
theoretical hypotheses why particular context variables might amplify, 
diminish, or reverse the treatment effect. This permits clean variations 
of fixed context effects, forestalls any hocus-focus, and if the hypotheses 
are verified, creates a much more compelling story about treatment by 
context interaction. 

Theoretically Predicted Contextual Interactions. There are many 
illustrations of theoretical accounts of contextual interactions. One nice 
example concerns the interaction of communicator expertness with 
subjects’ ego-involvement in persuasion settings, just as in our earlier 
discussion. In fact, I made up the example of Tables 7.1 and 7.2 to mimic 
the usual systematic findings from somewhat more complicated exper
imental designs. Petty and Cacioppo (1979) theorized that there are two 
essentially different routes to persuasion: the “central route,” by which 
the target of persuasion considers and weighs the content of the argu
ments in the communication, and the less effortful “peripheral route,” 
whereby the target uses some readily available cue to guess whether 
the arguments are likely to be sound. Such cues include the expertness 
of the communicator, the confidence of the tone of the communication, 
the presence of an enthusiastic audience, and so on. Because mental 
effort is less likely to be exerted if the target does not really care about 
the issue, the general prediction is that the presence of a cue such as 
communicator expertness will make more of a difference for subjects 
with low ego involvement in the issue. 

In a test of this prediction, Petty, Cacioppo, and Goldman (1981) 
varied expertness by pitting a professor against a high school student 
as in our example. Ego involvement was manipulated in an elegant way, 
avoiding the introduction of fuzzy inessentials attached to differences 
in topics. They used a single topic, the establishment of a comprehensive 
exam for all seniors, but manipulated the proposed date on which such 
an exam was to go into effect. In the high-involvement condition, the 
date was the following year, so that all the subjects in the experiment 
would have to take it. Under low involvement, the date was set 5 years 
off, when the subjects would be long gone from the university. 

The predicted interaction between expertness and involvement was 
obtained, such that expertness made more difference under high in
volvement than low involvement, and (unsurprisingly) the expert com
municator was more persuasive than the nonexpert. Score one tick for 
expertness, and one tick for a quantitative interaction with involvement. 
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GENERALITY ACROSS STUDIES: META-ANALYSIS 

Examples such as the one just given are not as frequent as one would 
like. Generalizations by individual investigators from single studies are 
usually rather weak (and the more the effect of interest might interact 
with many context variables, the weaker the generalization). One might 
say that isolated claims are not robust. Investigators who feel that their 
results march with full generality into the annals of science are kidding 
themselves. 

Communal Testing of Generality 

A research community, however, can do what an individual investigator 
cannot. Many research teams working on the same phenomenon are 
capable of manipulating a greater number of context variables, and of 
testing a variety of theoretical explanations of the phenomenon. 

It may seem that the communal advantage over the individual would 
be maximized if the community were well organized. To caricature such 
a state of affairs, suppose that there were an Office of Research Gover
nance (ORG) with the authority to specify which context factors should 
be manipulated, and by whom, in order best to cumulate knowledge of 
important phenomena. 

It hardly needs saying that such centralized control by an ORG would 
go against the individualistic and democratic grain of American scien
tists. The stultifying effect of centralized control of research agendas in 
the social sciences was evident in the dismal state of Soviet social 
psychology. 

It might be argued that federal agencies such as the National Science 
Foundation and National Institutes of Health do control the research 
agenda, by funding only those projects judged to be important by a 
scientific panel. This centralized influence, however, is rather loose, 
serving mainly to emphasize research directions that look most prom
ising. The majority of researchers are not federally funded, and those 
that are often deviate in their actual research from what they put 
forward in their proposals. The net effect of decentralization is to 
generate in the literature a cacophony of claims for and against the 
generality of any phenomenon that seizes the imagination of the re
search community. 

Meta-Analysis 

Psychology and other social sciences have therefore embraced meta
analysis, a set of techniques for pooling results across different studies 
of the same phenomenon. Up until 20 years ago or so, the problem of 
variable, often contradictory results across studies was handled by 
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verbal summaries, perhaps supplemented by a simple count of studies 
favoring a particular hypothesis, studies favoring the contrary hypoth
esis, and those with essentially null results. Additionally, the reviewer 
might suggest context variables that appeared to moderate the size and 
direction of results. Such reviews were criticized as too subjective and 
informal, and the careful, quantitative methodology of meta-analysis 
(Glass, 1978; Hedges & Olkin, 1985; Rosenthal, 1991) evolved as a 
potentially superior alternative. 

We review here neither the history of the gradual acceptance of 
meta-analysis within the social sciences, nor all the computational ins 
and outs of the method. Rather, we try to integrate the conceptual basis 
of meta-analysis—a between-study generalization technique—with our 
within-study analysis of generalization. 

Meta-Analytic Procedures. Meta-analysis begins with the assem
bly of all the well-conducted studies of a given effect the meta-analyst 
can find in the research literature, in press, or in dissertation archives. 
For each study of acceptable quality, a record is kept of all the interesting 
variables that characterize it. These would include the methods of 
experimental manipulation and of response measurement, along with 
whatever contextual features seem potentially relevant. Effect size 
measures of the authors’ claims (or ticks, in our terms) are transcribed 
if given, or else calculated from other information. Formulas for effect 
sizes as a function of ts or Fs or means and standard errors, along with 
sample ns, can be found in various sources (e.g., Mullen, 1989; 
Rosenthal, 1991.) The effect size measures are then combined across 
studies, and compared between studies. 

The combination operation aims to generate an average effect size 
measure across all studies, and to perform a significance test of its 
difference from zero (or better, to establish confidence limits on the true 
average effect size). Comparison of effect sizes across studies has more 
ambitious goals. If by a chi-square test, the study-by-study effect sizes 
are significantly heterogeneous—as they almost always are—then a 
further set of tests is performed on the distinguishing variations char
acterizing different sets of studies. This is to see if contextual or 
methodological variables can be identified that will explain some or all 
of the heterogeneity of effect sizes between studies. 

If one or more such variables are found, they may suggest or support 
particular contextual mechanisms that produce interactions with the 
effect of interest. This is analogous to the steps we took for Table 7.1, 
introducing the variable of Ego-Involvement to account in Table 7.2 for 
the significant Expertness × Topic interaction. 

Example: Pygmalion in the Classroom. Let us consider a meta
analysis, given the following background: Rosenthal and Jacobson 
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(1968) conducted an experiment to test what they called the “Pygmalion 
effect in the classroom.” They arranged to tell elementary school teach
ers that some of the children in their classes had been identified by a 
special test as being likely to display future excellence. These “bloomers” 
were actually chosen at random. The investigators hypothesized that 
the useless information supplied to the teachers would set in motion a 
self-fulfilling prophecy, whereby the teachers would be uncharacteristi
cally attentive to the bloomers. This in turn would increase the class
room involvement and self-confidence of these students, resulting in 
increased learning and better scores on objective tests. At year’s end, 
several tests of mental ability were administered, and the bloomers 
compared with control children. 

The results supported the prediction, but created considerable con
troversy. Especially debatable was the authors’ finding that the mean 
IQ scores of bloomers were 4 to 6 points higher than the IQ scores of 
control subjects. There is a widespread supposition that IQ tests mea
sure intellectual aptitude, not achievement, and therefore that IQ scores 
should not be sensitive to short-term situational manipulations. Addi
tionally, questions had been raised about some of the details of 
Rosenthal and Jacobson’s (1968) statistical analysis of the IQ data. 

The purported phenomenon was so interesting (see chap. 8), however, 
that an avalanche of replication studies followed, many in other envi
ronments such as workplaces, ships at sea, and organizational hierar
chies. Meanwhile, the vast majority of classroom studies dealt with 
possible gains in achievement and comportment, not with IQ. (This 
neglect was probably due to early failures to replicate the IQ findings, 
so that attention turned to other measures.) 

A meta-analysis of Pygmalion effects on IQ scores was eventually 
undertaken by Raudenbush (1984). He identified 18 relevant studies 
with acceptable quality, including the original Rosenthal and Jacobson 
(1968) experiment. Table 7.3 displays the standardized effect sizes for 
the set of 18 studies, taken from Table 1 of Raudenbush and rearranged 

TABLE 7.3 
A Meta-Analysis of Pygmalion Effects on IQ Scores— 
Stem-and-Leaf Diagram of Effect Sizes in 18 Studies 

.5 2 5 

.4 

.3 0 

.2 17 

.1 468 

.0 25 
-.0 643221 
-.1 33 

Note. Data adapted from Raudenbush (1984). 
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in a stem-and-leaf diagram (see chap. 5). Each entry represents, for a 
particular study, the mean difference between the IQ scores of bloomers 
and controls, divided by the pooled within-group standard deviation. 
Minus signs indicate results contrary to the predicted direction. For 
now, ignore the distinctions between standard, bold, and italic fonts in 
Table 7.3. 

Only a bare majority of studies give results in the predicted direc
tion—10 positive effects and 8 negative effects. The median effect size 
is a mere .035. However, the distribution has positive skewness; that is, 
when positive results are obtained, their effects are much bigger in 
absolute size than those for negative results. As a consequence, the 
algebraic mean effect size—.109—is bigger than the median. 
Raudenbush (1984) reported standard meta-analytic statistical tests, 
establishing that the mean effect size is significantly different from zero, 
and that the spread of effect sizes is much greater than one would expect 
if only chance variability were operating from one study to another. 

It must be said, though, that the mean effect size of .109 is not very 
consequential. In relative IQ gain, it amounts to a bit more than 1½ 
points. But what of the cases in the upper tail of the distribution? Could 
Raudenbush (1984) account for the handful of effect sizes of .20 or more 
(representing differential IQ gains of some 3 to 8 points) by some 
distinguishing attribute(s) of the studies from which they came? Indeed 
he could. 

One feature that had been recorded for each study was the number 
of weeks the teacher had known the children in the class before he or 
she was told which were the bloomers. In four studies, the teachers had 
had no contact with the children before receiving information favorable 
to some of them. The effect size results for these cases are given in bold 
italics in Table 7.3. In three other cases, prior contact had been for 
approximately 1 week, and these are indicated in simple italics. 

It is evident at a glance, even without a formal statistical test, that the 
previous contact variable systematically explains a substantial amount of 
the effect size variation. The six highest effect sizes come from the four 
no-prior-contact cases and two of the three with 1-week-prior contact. (The 
original Pygmalion study is one of the latter, with effect size .21.) 

Commonsense reasoning supports a clear mediating role for the prior 
contact variable. If a teacher has had little or no prior contact with a 
group of students, “information” about which ones have superior poten
tial capabilities will exert an influence on how the teacher behaves 
toward them. But if he or she already knows the group fairly well, then 
habits already formed in interacting with these individuals will take 
precedence over abstract predictions based on some esoteric test. 

The inverse relationship between prior contact and a Pygmalion 
effect can be seen as a particular case of the general social psychological 
proposition that subjective impressions of people are more manipulable 
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when previous information is ambiguous or missing. This may seem 
obvious once it is stated, but with all the other variations from one 
Pygmalion study to the next, it might easily have been missed without 
the discipline of a meta-analysis. 

GENERALITY ACROSS AND WITHIN STUDIES: A 
PARALLEL 

A Thought Experiment 

To appreciate the conceptual parallel between contextually qualified 
generalizations based on meta-analyses and those based on single 
studies with contextual variations, let us perform a thought experiment. 

Pygmalion Again. Suppose that 18 Pygmalion manipulations had 
been carried out within a single study, each in a different school. 
Associate each of the 18 outcomes tabulated in Table 7.3 with a partic
ular school. These 18 pieces of data would represent the differences 
between the mean IQs of bloomers and of control group children in each 
of the schools. (To be faithful to the Raudenbush [1984] analysis, we 
should note that he tabulated standardized, not raw differences. How
ever, the standard deviation of IQ scores is approximately 15 in typical 
samples, so that the relation between raw and standardized measures 
can be roughly characterized as simply that of a multiplying constant.) 

The 18 schools in our reinterpretation can be divided into two sets: 
In 4 of them, the teachers had no prior contact with the children involved 
in the experiment, whereas in the remaining 14 they did have contact. 
The main variation of interest is the Expectancy (Pygmalion) treatment. 
Prior contact is a context variable, and the experimental arrangement 
is an Expectancy by Context design. Contexts are subdivided into a fixed 
factor—prior Contact—and a random factor, Schools-Within-Contact. 
We can now subject the 18 data points to an ANOVA, and Table 7.4 
displays the results. 

TABLE 7.4 
Analysis of Variance of Meta-Analytic Data 

Source SS df MS F P 

Expectancy(E) .1067 1 .1067 7.36 <.05 
School(S) ??a 17 ?? — — 
E × Contact(C) .1119 1 .1119 7.72 <.05 
E × S-Within-C .2319 16 .0145 — — 

aSum of squares cannot be computed from available information, but variations in school 
IQ means are of no interest here. 
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The grand mean of the effect sizes, .1089, serves as the basis for 
calculating the Expectancy sum of squares.10 There are 17 df having to 
do with variation of effect sizes over schools. One of these degrees of 
freedom corresponds to the potentially systematic interaction of Expec
tancy with prior Contact. The remaining 16 df include residual interac
tions, if any, between Expectancy and other aspects of context. The sum 
of squares for this source of variation is labeled E × Schools-Within-Con
tact. The corresponding mean square (.0145) serves as the error term 
for the respective F tests of the overall E effect, and the E × C interaction. 
These Fs both come out fairly large (above 7), and are significant at the 
.05 level. 

We therefore would end up claiming one tick—a main effect of teacher 
expectancy, with one but—an interaction between expectancy and prior 
contact. The summary of the results would be something like: 

“The analysis supports the existence of a systematic Pygmalion effect 
on IQ scores, but we find that this effect interacts with the length of 
prior contact between teacher and students. With no prior contact, the 
average standardized effect size is .32. With some prior contact, the 
average size is .05.”11 

Comparing this ANOVA approach with the meta-analytic techniques 
applied by Raudenbush (1984), the same conclusions are reached. How
ever, he was able to apply an additional test, to see whether the residual 
variation in effect sizes exceeded the theoretical chance level. This could 
be done also in our paradigm, by noting the number of students in each 
experimental and each control group, and redoing the analysis with 
Fisher’s z (Mullen, 1989) as the effect size measure. 

Meta-Analysis in Relation to Treatment-by-Context Designs 

That meta-analyses can be framed in terms of a traditional, single-study 
ANOVA is not meant as a criticism of meta-analysis. Indeed, it is 
reassuring tha t the two points of view converge. Meta-analysis can be 
learned as a more or less self-contained tool kit. It has the advantage 
that several contextual variables can be examined simultaneously for 

In an ANOVA on N observations, one ordinarily regards the number of degrees of 
freedom as (N - 1). Here we have 18 observations and 18 df. The “extra” df attaches to the 
difference of the grand mean from zero, that is, a test of the average effect size. 

111An interesting exercise here is to set aside the four no-contact cases, and examine the 
stem-and-leaf of the remaining 14. It turns out that by Tukey’s procedure, the effect size 
of .55 is an outlier (falling not in the “far out” region, but beyond the inner fence as an 
“outside point”—see chap. 5). If this one case is set aside, the mean of the remaining effect 
sizes is .01, and we can feel safe in characterizing the phenomenon as having vanished. 
An alternative is to redo the whole analysis, making a separate context category of the 
three cases where the teachers had 1 month of prior contact with the students (this includes 
the outlier from the some-prior-contact distribution). Close scrutiny of the details of the 
outlier study with the effect size of .55 would be useful. 
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interactions with the treatment effect, which is awkward to do from a 
simple ANOVA perspective. Another advantage is tha t it makes conve
nient the simultaneous inspection of a large number of studies with 
different response measures and different significance tests. 

On the other side of the ledger, meta-analysis tends to rely on chance 
models that do not take into account the interactions of t reatments with 
random context effects. Because such interactions are almost always 
present, the standard significance tests in meta-analysis are too gener
ous, much like the analysis in the second part of Table 7.1. Indeed, this 
has been recognized by statistical experts in meta-analysis (Hedges, 
1983), though not widely appreciated. 

Another potential—but avoidable—drawback is that if meta-analysis 
became a virtually inevitable procedure for any given phenomenon, 
focused theoretical arguments might be weakened. There might be a 
temptation for individual experimenters to take a laissez-faire attitude 
toward contextual influences, reckoning that other people will vary this 
and that, and meta-analysis will sweep it all up. The result could be a 
more willy-nilly choice of experimental designs, and a consequent loss 
of conceptual acumen. To avoid this, social science should still retain the 
basic functions of a lore sensitive to dialogue among investigators, with 
meta-analysis waiting in the wings. For unresolved, interesting issues, 
careful quantitative scrutiny of the record will prove superior to sole 
reliance on the lore. 

FINAL CAVEAT 

We have seen that the manipulation or meta-analysis of a context 
variable can provide good articulation of the interaction of treatments 
with that context variable. But what of context variables that are not 
explicitly varied? Clearly there is no end to the list of contextual 
variations. One cannot explicitly vary more than a couple of context 
variables in a big experiment, or perhaps half a dozen in a typical 
meta-analysis. Thus one can only try to deal with the most important 
of them, that is, the ones that are most theoretically critical, and most 
likely to produce quantitative or qualitative treatment by context inter
actions. Our ability to generalize is always weaker than we think. 

This seems so obvious as to hardly need stating. Yet it is amazing to 
what extent investigators hold the illusion that if some context variable 
has not been tried, it has no effects. One can make reasonable guesses, 
but the only sure way to have knowledge of the importance of a context 
variable is to vary it. Thus Abelson’s Seventh Law: You can’t see the dust 
if you don’t move the couch. 



8 Interestingness of 
Argument  

In this chapter and the next, we broaden our discussion of the narrative 
aspects of statistical claims. We ask what makes a statistical claim 
interesting to a research audience. This is an important issue, because 
when a statistical story becomes a conversation piece, further research 
is likely to be generated. If a claim is so blah that no one cares to read 
or talk about it, the chances are small that it will enter the lore of a 
field—much less stimulate further investigation. Thus high interest 
acts as a magnifier, and low interest as a filter, shaping the body of lore 
in the direction of more interesting claims. 

Yet the nature of interestingness is elusive. Philosophers (Davis, 
1971), psychologists (Hidi & Baird, 1986; Tesser, 1990), computer scien
tists (Schank, 1979; Wilensky, 1983), and others have grappled with this 
concept. After a preliminary discussion, we focus on the question of what 
makes research claims theoretically interesting, and only make passing 
reference to popular interest, or pizazz. 

CAN STATISTICS BE INTERESTING? 

At the outset, we must confront the widespread stereotype of statistics 
as a dull subject. (When working on this book, friends and acquaintances 
would ask me what it was about. “Statistics,” I would say. “Oh... Yes...”, 
would come the reply. “...And how is your family?”) 

Interesting Claims and Interesting Methods 

The reputed dullness of statistics is often assumed to spread like some 
musty odor, covering everything statistical with a layer of suffocating 
tedium. Students burdened with this stereotype fail to realize that the 
point of a statistical argument can be interesting, even if the technical 
substance of its rhetoric is somewhat dry. What is more, in some cases 

156 
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a clever statistical analysis can itself be interesting in the way it 
manages to reveal something not previously known or properly under
stood. 

Example: A Case of Disputed Authorship. A topic may not of it
self be of great importance to nonspecialists, but a statistical story 
about it may be interesting because of the unexpected use of a pattern 
of clues, much as in a satisfying detective story. In a classic example of 
a scholarly “whodunit,” statisticians Mosteller and Wallace (1964) set 
out to infer the true authorship of several Federalist Papers long in 
dispute as between James Madison and Alexander Hamilton. For many 
years, inconclusive debate had raged about stylistic similarities be
tween the unattributed papers and the Federalist Papers known to 
have been written by Madison and by Hamilton, respectively. Author
ship arguments based on ideological content had gotten nowhere, and 
scholars had begun to look at quantitative indices such as sentence 
length or average numbers of subordinate clauses per sentence. After 
study, Mosteller and Wallace rejected these methods; instead, they 
counted particular word usages—such as while versus whilst—in the 
disputed papers and the known papers of these two authors. With the 
aid of Bayesian reasoning they came to the conclusion that the contested 
manuscripts were almost certainly penned by James Madison. It is 
surprising that idiosyncracy in skilled human expression could be much 
more readily identified by very concrete details than by general stylistic 
tendencies. 

The Statistician as Grinch. Interest in the authorship example 
requires academic curiosity. There are many other examples of clever 
statistical detective work, dealing with hotter topics than Hamilton 
and Madison, and bearing on beliefs held by the general public. In 
chapter 1, we mentioned the statistical sleuthing by Carroll (1979) that 
exposed the flaw in the claim of special longevity for orchestra conduc
tors. In chapter 2 we saw a statistical reinterpretation of the legendary 
hot hand in basketball, and in chapter 5, the revelation of a statistical 
peculiarity in some mental telepathy data. Also in chapter 5, we 
presented an incisive debunking job on the supposed baby boom from 
the New York blackout. 

In many such examples, the statistician is cast in the role of a 
skeptical investigator who does not readily accept a popular explana
tion of some newsworthy phenomenon. His statistical reanalysis im
pugns the credibility of an existing belief, showing that the true 
magnitude of a hypothesized effect was nil, or its basis artifactual. As 
we elaborate next, the potential to change belief is characteristic of 
interesting statistical stories. 
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In cases where beliefs are spoiled,1 a regrettable side effect is that 
statisticians are made to seem like grinches who loiter about, waiting for 
opportunities to snatch legends from unsuspecting populaces. In practice, 
the public is protected from such unpleasantness by its imperviousness to 
statistics, either because skeptical reanalyses are not sufficiently publi
cized, or because the public is inattentive or disbelieving. 

Like the general public, researchers do not readily abandon their pet 
hypotheses either. But they must face evidence and argument more 
squarely than the public does. Debate over the interpretation of results is 
commonplace, and interestingness plays a role in these confrontations. 

THEORETICAL INTEREST 

Let us turn to the concept of theoretical interest. Here we are concerned 
specifically with the interestingness of research claims based on statis
tical evidence; thus, we might equally well use the term, scientific 
interest. This might be variously defined, but for our purposes the 
following conception is appropriate: A statistical story is scientifically 
interesting when it has the potential to change what scientists believe2 

about important causal relationships. 

Change of Belief 

The key concept is change of belief, which could consist of strengthening 
old or creating new beliefs, of weakening existing beliefs, or of modifying 
beliefs depending on context. New results may create a disparity be
tween observation and expectation, putting pressure on research audi
ence members to re-examine the basis for their expectations, which in 
turn may change their beliefs. In other words, research must be surpris
ing in order to play a role in potential belief change. Thus interest arises 
from surprising results on an important issue. 

Note that we refer to potential belief change. An investigator may 
make claims that are not accepted, and therefore do not actually change 
what people believe. If flaws in the conduct and analysis of the research 

There are examples, of course, in which statistical analysis supports a popular belief. 
One illustration concerns the “long, hot summer” hypothesis for the urban riots of the late 
1960s, namely, tha t the probability of riot occurrence increased with increasing tempera
ture. The psychological notion here is that the hotter the day, the greater the discomfort 
of an already frustrated inner-city population, lowering its threshold for an explosion of 
anger. Baron and Ransberger (1978) examined maximum ambient temperatures for the 
dates and locations of the occurrence of riots during the turbulent summers of 1967-1971. 
On the basis of their statistical analysis and a refined reanalysis by Carlsmith and 
Anderson (1979), one can be quite confident that higher temperatures were systematically 
associated with greater riot propensity in those summers. 

For a discussion of distinctions between knowledge and belief, see Abelson (1979). 
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are obvious, it might be dismissed out of hand, and never even be seen 
as interesting. In other cases, acceptance depends on the persuasive 
force of the statistical evidence. This depends on the magnitude (chap. 
3), articulation (chap. 6), generality (chap. 7), and credibility (chap. 9) 
of the effects. Claims that are highly surprising, and of great theoretical 
(or applied) consequence excite great interest and great skepticism 
simultaneously. The claim by Wilson and Herrnstein (1985) that crimi
nality is genetically transmitted is an illustration of a startling proposal 
that invokes resistance. 

Important beliefs are not readily changed in the typical research 
community. Beliefs acquire their importance by being anchored in 
networks of interrelated propositions, often as part of a theory. Change 
in one belief usually entails changes in others, which in turn imply still 
further changes, foreshadowing an unwelcome cascade of alterations. 
As a result, even if the surprising claim is persuasive on paper, cycles 
of argument and counterargument—to say nothing of further re
search—may be necessary before beliefs change. During the period 
following the claim, interest hangs in limbo, the research community 
collectively not knowing whether to take the claim seriously. Attitudes 
toward the claim during this limbo period could be paraphrased as, “It 
seems interesting, but....”3 

The tension might finally be resolved by the acceptance, rejection, or 
modification of the initial claim. Following the change or reaffirmation 
of all the relevant beliefs, the claim loses current interest. Alternatively, 
the research community may divide into camps with rival beliefs, in 
which case interest may last until both sides exhaust their ideas on how 
to do further useful research. 

Too Incredible to Be True. In the extreme, if a claim were so totally 
bizarre that almost anyone hearing it would immediately dismiss it as 
incredible, then its interest value for all but true believers would be nil. To 
give a cockeyed geophysical example, I once heard about a theory that the 
earth was spherical, all right, but with everyone living on the inside of the 
sphere, and the heavens in the center. This theory is not an interesting 
topic for empirical research (though it might be interesting as a delusion), 
because there are many ways to falsify it with existing knowledge. The 
incredible claim by Philpott (1950) of an infinitesimal mental time unit, 
discussed in chapter 3, is a case in point from the psychological literature.4 

Anyone who has ever heard old-style Soviet academics argue will recognize the typical 
opening line of vicious criticisms: “Comrade Potchky’s analysis of the problem is very 
interesting. However,...[whamski, bamski, socko].” 

4The “thin red line” between implausibility and sheer lunacy is notoriously difficult to 
locate, unfortunately, so that we encounter here a problem similar to the one we met in 
chapter 3 in our discussion of Bayesian prior probabilities. From the standpoint of the 
challenger of orthodoxy, to have one’s creative visions dismissed out of hand as mad 
delusions seems quite unfair. Indeed, once in a blue moon, it is. 
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SURPRISINGNESS 

Our emphasis on surprisingness is consistent with the advice of Leon 
Festinger and his students that counterintuitiveness should be a major 
criterion for good research hypotheses. He argued that if you performed 
a piece of research that provided evidence for something your grand
mother could have told you already, then you had wasted your time. In 
this view, for example, it is uninteresting to show that individuals dislike 
people who disagree with them, or that people will exert greater effort 
for a larger reward. This doctrine has a weak spot, however: Sometimes 
what your grandmother (or anyone else) “knows” coexists with knowl
edge of its opposite. (“Out of sight, out of mind,” plus “Absence makes 
the heart grow fonder.”) 

I agree, however, that when an unambiguous prediction of a folk 
theory or a scientific theory is generally believed, it is usually more 
interesting to cast doubt on it than to provide evidence strengthening 
it. Also interesting would be research and statistical analysis illuminat
ing the particular circumstances under which the existing theory holds 
or fails to hold. According to McGuire’s (1989) perspectivist view of 
psychology, conditions can virtually always be arranged under which 
any given relationship, even the most obvious, can be reversed. It is 
instructive to take examples and try to dream up what such conditions 
might be. When, perchance, might people show increased liking for 
someone who had been critical of them? (When they knew they had 
performed badly, and deserved criticism. See Deutsch & Solomon, 1959.) 
The bottom line in all this is that to be interesting, a result has to make 
you think about the topic—or at least make you want to think. 

Surprising Ticks in a New Area 

One way to create surprise is with a research initiative on a neglected 
topic, producing results that bruise our intuitions or seem to defy 
logic. 

Example: Milgram’s Study of Obedience. A sensation was cre
ated by Milgram’s (1963) obedience study, in which a majority of ordi
nary people were induced by an “experimenter” to deliver apparently 
dangerous levels of electric shock to a helpless victim. Hardly anyone 
predicted this outcome. Every time a new tick surprises us because it 
contradicts common wisdom, there are actually two interrelated 
changes of belief we are called upon to make. One is the acceptance of 
the reality of the new phenomenon, and the other is a diminution in the 
perceived force of the prior wisdom. 

In the Milgram (1963) case, the common assumption is that evil 
things are done by evil people, not by evil situations. This is a hard 
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assumption to free ourselves from, as it seems to provide a simple 
explanation of many events in the social world, and it is a tenet that 
often arises in law, politics, and religion. Milgram argued against the 
evildoer theory of cruelty by characterizing the people who obediently 
deliver the shocks as obedient sheep rather than predatory wolves. 
Even with the intellectual help of this metaphor, however, it is still 
difficult not to feel repeatedly surprised every time one thinks of the 
Milgram study. 

Example: Comprehension and Belief. In a less dramatic, yet 
quite important way, the research of Daniel Gilbert (1991) provides 
another example that promotes the replacement of a lifelong presup
position in favor of a new conception. Gilbert was concerned with the 
general relationship between one’s comprehension of novel statements 
and one’s belief in them. 

The usual view of the matter is that when a statement is presented, 
the first cognitive task for the receiver is to comprehend it. If the 
statement is understood, a subsequent decision is made whether to 
believe or disbelieve it. Since the early years of persuasion research 
(Hovland et al., 1953), investigators have posited that the comprehen
sion of a persuasive passage is followed by a process of acceptance or 
rejection. In fact, this conception predates psychological research by 
more than three centuries, going back at least to Descartes. 

A radical alternative view, credited to Spinoza, is that comprehen
sion entails initial belief, following which there is the possibility of 
later unbelief. In this way of putting the matter, belief is the default 
state. Barring an active subsequent process of rejection, “perceiving is 
believing.” 

If the Spinozan view is correct, then early interruption of the cognitive 
processing of each of a mixed set of true and false statements ought to 
yield a bias toward accepting the false ones as true, compared to a 
control condition with no interruption. An appropriate experiment by 
Gilbert (1991) yielded just such a surprising result. This will probably 
require a great deal of rethinking of the relation between comprehension 
and belief.5 

5If replications support Gilbert’s (1991) findings in favor of the Spinozan conception, 
the implications are extensive. At an informal level, light is shed on several apparently 
senseless eccentricities of human behavior, such as why people deliberately set their 
watches 5 minutes fast, and why children are so monumentally upset when repeatedly 
called by the wrong name. At a theoretical level, a number of phenomena in the literatures 
on persuasion and propaganda become more intelligible: the surprising effectiveness of 
the Big Lie in propaganda, the persuasive effects of distraction in communication (Festin-
ger & Maccoby, 1964), and the success of persuasion in fiction (Gerrig & Prentice, 1991), 
to name three. 
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Accumulating Buts 

In chapter 7, on generality, we discussed the various kinds of replication 
attempts that may follow on the publication of claims in a new area. 
Replications are especially likely when the initial study is interesting. 

Suppose that almost every replication agrees with the initial claim. 
If we imagine a cumulative meta-analysis updated after each new 
replication, the changes in the estimated overall effect size will tend to 
be smaller and smaller, thus less and less surprising and interesting. 
After 20 studies, we usually won’t know much more than we did after 
19 studies. 

This decrease of interest with increasing replication is especially 
pronounced if replications are performed mindlessly, each time with 
some haphazardly chosen, minor variation. The way to revive interest 
in an effect is to find contextual factors that qualify it, either by 
nullifying it, or (even more interesting) reversing it. Hopefully, such 
qualifying factors would be meaningfully related to the effect in ques
tion. If a particular laboratory effect failed to occur only when the moon 
was full, that might make an interesting story, but it would be incoher
ent unless further explicated. (See chap. 9.) 

When many replications are carried out, it is quite likely that under 
some conditions there will be failure to reproduce the original result. If 
these failures are credible (see chap. 9), then the initial tick will 
accumulate buts. 

Example: Butting an Early Claim of Dissonance Theory. In the 
dissonant situation in which someone is rewarded for speaking out 
contrary to his original beliefs, the claim coming out of the Festinger 
and Carlsmith (1959) study was that a small reward ($1) is more 
influential than a large reward ($20) in causing the person to change 
his beliefs (chap. 2). 

Many investigators subsequently performed similar studies (with 
smaller overall rewards to meet criticism of the $20 amount), and at 
least three clear buts emerged. Linder, Cooper, and Jones (1967) showed 
a qualitative interaction in a 2 × 2 design: When subjects were given a 
choice whether to write an essay counter to their opinions,6 a group paid 
50c indeed changed their opinions more than a group paid $2.50, but 
when subjects had no choice, the relative effects of the rewards reversed. 
Helmreich and Collins (1968) tested whether public commitment by the 
subject was a necessary condition for replicating the dissonance predic
tion. They had subjects agree to argue against their own point of view, 

The subjects really only have an illusion of free choice. In the typical high-choice 
manipulation, the experimenter gives the subject a very effective soft sell, emphasizing 
that the subject’s participation would really be appreciated, but that “It’s entirely up to 
you.’’ Virtually all subjects cooperate. 
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some to make a videotape with their names and faces prominent, and 
others to record their statements anonymously on audiotape. Under the 
public video manipulation, small reward was more effective than large 
reward, but under the anonymous audio condition, the effect of reward 
disappeared. 

A third limiting condition was the nature of the consequences likely 
to follow from the counterattitudinal performance. Nel, Helmreich, and 
Aronson (1969) gently persuaded some squeaky clean Texas undergrad
uates to prepare to speak for the virtues of marijuana to an audience of 
nonsmoking young high school students, and others to speak to a college 
audience already favorable to marijuana. The former audience was the 
more consequential one, because the speech might push the innocents 
down the path to drug abuse. Dissonance predictions held only for this 
consequential condition, not for the speech to the already corrupted 
collegians. 

The upshot of these studies (and others—we have simplified matters) 
was the eventual appearance of summary statements in journals and 
books, to the effect that opinion or belief change from expressing the 
other side of an issue is indeed greater when the reward is smaller, but 
only if the behavior is voluntary, publicly committal, and perceived to 
have negative consequences. 

Actually, the first qualification, that subjects should think they had 
a free choice, had been predicted by dissonance theory (Brehm & Cohen, 
1962). The necessity for subjects to be committed to their behavior was 
strongly implicit in the theory as well. The requirement that the 
subject’s behavior have negative consequences did not flow so readily 
from the theory, and required some effort to make it fit. The procedures 
of the Festinger and Carlsmith (1959) experiment, it should be noted, 
satisfied the three constraints, although only the factor of choice was 
explicit. This could be considered lucky for the investigators, although 
I suspect that Festinger knew intuitively what sort of scenario would 
work. 

Interest in a striking phenomenon tends to be maintained when its 
prevailing explanation does not quite cover all the empirical buts. 
Typically there is tension between the integrity of a theory and the need 
to stretch it to accommodate qualifications. If the theory is stretched, it 
may no longer be the same theory. An often cited example is the addition 
of ugly epicycles to make Ptolemy’s conception of the heavenly bodies fit 
orbital observations. 

In the dissonance case, the account of self-persuasion for a small 
reward has gradually been bent into a different form. The subject is no 
longer seen as motivated merely by inconsistency between his beliefs 
and his behavior. When he voluntarily agrees to exercise a harmful 
public deception for a payment of 50c or $1, he is making a fool of 
himself. Belief change can be seen as an attempt to justify an otherwise 
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sleazy performance (Aronson, 1969). Under this view, variously articu
lated by several social psychologists, the subject is motivated by self-es
teem maintenance rather than mere inconsistency reduction. 

Thesis, Antithesis, Synthesis 

In a very thoughtful article, Tesser (1990) discussed the nature of 
interesting ideas in psychological research. He suggested that ideally, 
psychological hypotheses should be about processes rather than static 
abstractions, and that empirical results should tell a story. (As he put 
it, if you want to avoid boring ideas, tell yourself “process, process, 
process, plot, plot, plot.”) 

One of his formulas for producing surprise and interest is this: For 
any thesis, generate the antithesis, and propose a synthesis. In our 
lingo, start with a tick, find a but for it, and finally reframe the issue so 
that the but becomes another tick. In one example Tesser (1990) gave, 
the thesis is that an outstanding performance by someone produces 
jealousy in those close to him. But the opposite can also be demon
strated, whereby an excellent performance arouses pride in close others, 
a “basking in reflected glory” (Cialdini et al., 1976). The resolution of 
this contradiction (Tesser, 1988) is that what is at stake for the close 
other is the maintenance of his self-esteem. (The reappearance here of 
this particular concept is coincidental.) If the outstanding performance 
is on some activity that is relevant to his self-esteem, he is likely to be 
jealous; if it is irrelevant, he will bask in reflected glory. 

Quantifying Surprisingness 

A Basic Formula. If we attend not merely to ticks and buts, but 
also to the magnitudes of expected and observed effects, we can roughly 
quantify our intuitions about surprisingness. In chapter 3 we mentioned 
a surprisingness coefficient (S); we now formalize it. 

That a result is surprising means that it is much stronger or weaker, 
or even in the reverse direction from what we expected. This suggests 
that we choose some directional magnitude measure by which expecta
tion and observation can be compared. In the simplest type of Bayesian 
analysis, the probability of a hypothesis is assessed after the data are 
gathered, and can be compared with the prior probability. For the 
reasons given in chapter 3, however, an observed effect size in relation 
to the expected effect size seems a preferable magnitude concept to use 
for indexing surprisingness. 

The measure of effect size could be a mean difference, raw or stan
dardized; a correlation coefficient (Rosenthal, 1991); or a causal efficacy, 
objective or subjective. Staunch Bayesians could, if they wished, stick 



SURPRISINGNESS 165 

TABLE 8.1 
Potential Values of the Surprisingness Coefficient 

Case Expected Effect Size Observed Effect Size Surprisingness Coefficient 

A 0 .5 .5 
B .1 .5 .27 
C .3 .5 .05 
D .5 .5 0 
E .5 .3 .05 
F .5 0 .5 
G .5 -.5 1.0 
H .7 -.7 1.4 
I u -v u + v when u,v > 0. 

with probability as a measure. Denoting the measure of magnitude by 
m, our surprisingness coefficient is: S = (m[o] - m[e])2 /| m[o] | + | m[e] |. 
Here, m[o] is the observed magnitude of effect for the comparison of 
interest in a specified context, and m[e] is the expected magnitude, 
assuming general consensus for the expectation. A null outcome would 
set m[o] to zero,7 and a null expectation would set m[e] to zero. (If the 
study concerned a novel relationship about which there was no expec
tation one way or another, then m[e] would be undefined, and the 
formula inapplicable.) Effect sizes are of course directional; when m[e] 
and m[o] are opposite in sign, this indicates that the outcome was the 
reverse of what was expected. The rationale for the formula is that it is 
the simplest expression intuitively capturing how surprise arises as a 
function of effect size, with the constraint that we want the measure of 
surprise to be in the same units as the measures of effect size. 

Behavior of the Coefficient It proves helpful to play with the 
aforementioned formula, inserting different hypothetical values for the 
effect magnitude. For simplicity of illustration, let us take the correla
tion coefficient8 as the measure m, potentially ranging from - 1 to +1. 
Table 8.1 specifies the coefficient S for several basic situations. 

As the table indicates for Cases A-D, when the observed effect size is 
.5 (i.e., when the observed correlation between some putative cause and 
its claimed effect is .5), the surprisingness coefficient S is itself .5 when 
the expected correlation was zero, but declines very sharply as the 
expected correlation increases. Of course, if the expected correlation 
were also .5, there would be no surprise whatever. 

In symmetrical fashion, if we fix the expected correlation at .5, and 
ask how S varies as the observed correlation falls off below .5 (Cases 

If probability were used as the magnitude measure, the nil value for directional 
hypotheses would be p = .5. 

Any other measure of effect size, such as d, could be used instead of r in the formula. 
The measure S is to be interpreted in the scale units of the measure of effect magnitude. 
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D-G), we find that surprisingness increases. This increase is gradual at 
first, but when the observed correlation is zero in the face of the 
expectation that the correlation should be about .5, S is again .5. If we 
expect .5 and we get minus .5, surprisingness doubles, to 1.0. As Cases 
H and I indicate, surprisingness can go even higher, if expectation and 
observation are both strong, and opposite in direction. Using correlation 
as the effect size measure, the maximum value of S is 2.0. 

Blurring of the Coefficient According to our formula, the absence 
of an effect that everybody expected is as surprising as the presence of 
an effect that nobody expected. This seems to be a reasonable intuition, 
although we should note a qualification. Expectations can sometimes be 
sharply focused at the exact value of zero; for example, doubters of ESP 
can believe that there simply is no such thing. By contrast, outcomes are 
never sharply focused at exactly zero (or at any other exact value, for 
that matter)—there is always some confidence interval within which 
the results may be said to lie. (Gilovich et al., 1985, didn’t prove the 
nonexistence of the hot hand in basketball; their results only imply that 
the effect, if any, is of limited magnitude.) Demonstrations of the absence 
of an effect are thus apt to be more uncertain than expectations of its 
absence. Accordingly, allowance should be made for the blurring of an 
m[o] of zero (or any other fixed central value) throughout some range 
around zero (or other central value). Actually, if we follow this line of 
reasoning, we should also allow for the blurring of expected effect 
magnitudes other than zero. The general case, then, would be one in 
which m[o] and m[e] had probability distributions, the only fixed case 
being an occasional m[e] of zero. In all cases, the coefficient S would have 
a distribution, rather than a single value. However, this analysis carries 
us beyond the level of sophistication we need or wish to achieve here. 
When we refer to m [o] and m [e], therefore, we are supposing that central 
values for each are sufficiently exact for our purposes. 

Heterogeneous Initial Beliefs 

Although we are choosing not to analyze variations within research 
observers, we must confront variations between observers. This is 
because, in any real research situation, different investigators may have 
different beliefs about the magnitude (or even the very existence) of a 
given phenomenon. 

Consider the simplest case of heterogeneous beliefs, in which there 
are two groups of scientists, each with a different level of belief in a 
theoretically important phenomenon. Suppose that for the larger of the 
two groups, the expected effect size is zero; that is, they disbelieve the 
existence of the phenomenon. The minority group has some positive 
expectation, m[e]. Imagine that members of this group want to convince 
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the skeptical majority. They run an experiment on the phenomenon, and 
observe a positive result with effect size m[o] precisely equal to their 
expectation m[e]. The surprisingness of this result stands to be different 
for the two groups: For the skeptical majority, the surprisingness coef
ficient apparently equals m[o], the magnitude of the unanticipated 
effect; for the minority group, the coefficient equals zero, because the 
result is exactly what they expected. 

At this point, if the two groups were rivalrous and uncivil, the 
dialogue between them might be caricatured thus: 

Minority: There, you see! That result ought to surprise you! 
Majority: (Defensively): Doesn’t surprise us at all. It’s only an illu

sion. Your experiment is flawed, and we don’t accept your 
claim. 

Minority: And why is that? 
Majority: Because... [ARGUMENT]. 
Minority: But...[COUNTERARGUMENT]! And furthermore.... 
Majority: Don’t waste your breath. We’re not interested. 
Minority: And you call yourselves scientists! 

Here, one group tries to command the attention of the other by 
surprising them with data they don’t expect, and—because surprising
ness along with importance creates interest—thence to interest them. 
The second group can appear unsurprised and disinterested by declining 
to accept the validity of the data.9 This of course requires the develop
ment of an argument criticizing the claim made by the first group, 
possibly supported by the presentation of a replication that fails to 
confirm the claim (see chap. 9.) If the majority is unable to damage the 
claim by the minority, but is not yet willing to give up, their state of mind 
might be described as reluctant interest: They have to pay attention. 

Contextual Qualification of Beliefs 

Let us elaborate our analysis of surprisingness to apply to the case in 
which the expected effect size is of magnitude r, but the observed effect 
is contingent upon some context variable. In the presence of a particular 
context variable, the result indeed comes out to be of magnitude r, but 
in its absence, the effect vanishes. How surprised ought the observer to 
be? 

Old-timers in psychology will recall the feisty exchanges between the Hullians, with 
their behaviorist view of learning, and the cognitivist Tolmanians. Poor Tolman kept 
inventing ever and ever more colorful attempts to demonstrate the existence of “cognitive 
maps” in rats, hoping to get a rise out of the Hullians. He never succeeded, although years 
later, cognitive approaches became respectable in learning theory. 
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A simple approach to this type of question is to take the mean of the 
surprisingness coefficients calculated with the context factor present 
and with it absent, respectively. In the specified case, the coefficients for 
these two situations are 0 and r, yielding an average surprisingness of 
r/2. In other words, when an observer expects a general effect, and it 
fails in half the situations, he will be half as surprised as he would be 
were the expected effect to fail universally. This is of course a rough way 
of stating our intuitions. 

If the observer were to anticipate that the context variable might 
make a difference, she could have different expectations about the effect 
size for the context present and context absent situations. The observer 
might be somewhat off in one or both of her two expectations, and this 
would occasion a modicum of surprise. If, on the other hand, she 
correctly foresaw the two respective effect sizes, her surprise would be 
zero. Of course, other researchers might be surprised and interested, 
and their beliefs might change. 

The process of introducing further context variables that produce 
unanticipated differences, and therefore elicit surprise, could in princi
ple continue indefinitely. However, the greater the number of combina
tions of context factors, the less impact minor contextual refinements 
would have—which is another way of saying that research areas tend 
to lose interest when everyone learns to understand approximately what 
outcomes to expect under the most crucial circumstances. 

IMPORTANCE 

Interestingness, we have said, depends on importance as well as sur
prisingness. The importance of any single empirical result is a direct 
function of the number of consequences it has for relationships between 
variables pertinent to the issue at hand. The importance of the issue, in 
turn, depends on its density of connections to other (important) issues. 
Insights about cancer are more important than insights about callouses, 
because more people (and more biological and psychological phenom
ena) are more deeply affected by the former. This example is obvious, 
and may make it seem that a judgment of importance is easy. In fact 
this is a hard judgment to make, especially for theoretical rather than 
applied research, because the ramifications of theories are often difficult 
to anticipate. 

Differences in Importance for Different Investigators 

What seems important to some investigators may seem unimportant to 
others. If I have heard somewhere that all mammals have periods of 
rapid eye movements (REM) during sleep, and I idly run across a 
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research report that there is an Australian armadillo that does not show 
REM sleep, I will hardly be riveted with fascination. I care so little one 
way or the other that as I write this, I’m not even sure I have my facts 
straight. Of course, there will be researchers or others who have con
cerned themselves with REM sleep or armadillos, who would find the 
new fact interesting. For me, the matter is peripheral; for them, it is 
central. 

The Rlusion of Importance. Indeed, scholars of a particular topic 
are prone to generate dense networks of conceptual relationships within 
the topic area, thus lending by the sheer weight of number of relation
ships an aura of apparent importance to each contribution to the topic.10 

But to nonspecialists in the area, the topic might have very little 
importance, because knowledge gained therein does not shed much light 
on the understanding of other topics. We refer to this phenomenon as 
the illusion of importance. 

This skeptical characterization of narrow, ingrown fields of research 
may seem unfair, because one cannot confidently anticipate whether 
connections to other research fields or practical applications will be 
forthcoming in any given case. In my framing of this phenomenon, I 
mainly want to emphasize that knowing a lot about a particular subject 
matter creates subjective importance for it, whether or not it is objec
tively warranted. 

The exhaustive study within cognitive psychology many years ago of 
the principles of learning of lists of nonsense syllables may be a case in 
point. Despite the density of knowledge on this topic, the whole enter
prise (arguably) lacked major importance because its findings did not 
extend well to the learning of meaningful prose—or for that matter, to 
the learning of content material that was not in the form of lists 
requiring rote memorization. 

We do not attempt to develop a formula for importance. That would 
require a model of knowledge representations carrying us far afield from 
our core concerns. Nevertheless, the key question to ask in diagnosing 
the importance of a given result is, “What can I learn from this about 
other things that are also important?” 

10The tendency for scholars to want to become expert in tiny domains has been 
lampooned in the old aphorism, “College deans learn less and less about more and more, 
until they know nothing about everything. Professors learn more and more about less and 
less, until they know everything about nothing.” 

With a cosmic metaphor, social psychologist Richard Nisbett (personal communication, 
April 30, 1994) said of a particular field of psychology, “Sometimes I think that...[this 
field]... has imploded, and become a white dwarf.” 



Credibility of 
Argument 

To this point, we have discussed four criteria affecting the persuasive
ness of arguments based on the statistical analysis and interpretation 
of empirical data: magnitude, articulation, generality, and interesting-
ness. Failure to satisfy one or more of these criteria will weaken the 
force of the investigator’s argument, increasing the likelihood that the 
results will be ignored. Indeed, the research may not even be published. 
A good rule of thumb—the rule of two criticisms—is that two deficiencies 
among these four criteria will result in rejection by journal editors.1 

By contrast, if these four criteria are apparently met satisfactorily, 
but the research claim lacks credibility, the reported results will be 
likely to set off debate. When research presentations advance claims 
that many or most readers deem incredible, these claims are vulnerable 
to severe challenge. In response, there will typically be a rebuttal by the 
investigator, and then a fresh round of criticism. The burden of proof 
shifts back and forth between the investigator and the critic in what 
might be called the game of ”burden tennis.” 

WHY RESEARCH CLAIMS ARE DISBELIEVED 

There are two different ways in which a research claim may not seem 
credible to an audience: The claim may be based on poor methodology; 

The basis for this rule of thumb is that journal reviewers’ evaluations of manuscripts 
usually take the form of informal scorecards, using criteria that can be mapped onto the 
ones I have proposed. If the research claims are strong, well articulated, and interesting, 
a reviewer will tend to be tolerant of a lack of generality. Or if the claims are well-articu
lated, interesting, and general, weakness of magnitude can be tolerated. One limitation is 
forgivable; after all, nobody is perfect. But it is hard to champion a research report with 
two unmet criteria. A referee feeling favorable toward such a report would find herself in 
the unenviable position of the fictional baseball scout whose report on a young prospect 
read, “Although he is a terrible fielder, he is a lousy hitter.” 
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or it may contradict a strongly held conception—a popular theory, a 
world view, or even just common sense. 

Characteristically, the critic who disbelieves a research claim pri
marily for conceptual reasons will nevertheless bolster his case by 
putting forward one or more methodological objections, that is, com
plaints about the research design or the statistical analysis. It is 
contrary to scientific norms to reject an empirical finding solely. 
because the critic does not believe it. It would seem arrogant for a 
journal editor to write the investigator, “We are rejecting your manu
script, The Life Force in Snails, because we just don’t believe it.” The 
editor and the reviewers might feel that way, but protocol restrains 
such brutal frankness. The editor might politely suggest another 
journal as more suitable for this manuscript, or—more interesting 
for our discussion—the editor might follow the rule of two criticisms. 
That is, there would be some mention of objections to the questionable 
conceptual status of the result being proposed, but also an elaboration 
of one or more methodological criticisms. Often there is consensus 
about poor methodology in a field,2 so that such criticism can be 
powerful. 

If, however, the methodological attack is persuasively countered by 
the investigator, there is a chance that a revised manuscript might be 
reconsidered and accepted, thus opening the matter for general debate. 
Among other conceivable outcomes, the claim that was once incredible 
might eventually be vindicated. 

Although not always perfect models of objectivity and decorum, 
debates can be creatively constructive. This is among the reasons why 
it has lately become fashionable for various disciplines in the behavioral 
sciences to sponsor journals such as The Behavioral and Brain Sciences 
that welcome—indeed, promote—clashing views. A scholar with a posi
tion considered controversial or outrageous is asked to write a target 
article. A number of critics, supporters, and wise old heads contribute 
commentaries, to which the target person responds. 

Empirical evidence free of methodological flaws is crucial to putting 
one’s best case forward in an extended public debate. Success depends 
on the details of research design and procedure, and of statistical 
analysis, in relation to the status of the debate. Good research manage
ment includes good debate management. In the examples that follow, 
we consider how empirical results influence argument, and how argu
ment stimulates new studies. 

2Of course, from time to time there are debates about proper methodology. As we saw 
in chapter 5, these debates may be touched off by the publication of a number of 
counterintuitive results, suggesting something fishy about the prevailing methodology or 
statistical analysis. 
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THE STRUCTURE OF DEBATES ON DISBELIEVED 
CLAIMS 

When a Posit ive Universal i s Challenged by a Counterexample 

The prototypic debate starts with a research result tha t challenges a 
strongly held current theory or belief system. Often, the nature of the 
challenged belief is that of a positive or negative universal, a statement 
with the structure, “All X is Y,” or ”Under conditions C, phenomenon P 
is impossible.” Challenge comes in the form of an empirical counterex
ample purporting to show an X that is not Y, or an instance of P under 
conditions C. For example, the universal proposition that all human 
behavior is self-interested would be challenged by a research demon
stration of pure altruism. 

To give life to the subsequent dialogue in these scripted debates, we 
name the character expressing the universal Professor Neat, and the 
rebel with the counterexample Professor Scruffy. (The former name 
suggests a preference for orderly, formal statements and procedures; the 
latter connotes a tolerance for realism and messiness; Abelson, 1981). 
Their dialogue might go like this: 

Neat: Xs are always Y. 
Scruffy: In my experiment, subjects high on X were randomly as

signed to a foofram or a no-foofram condition. Sixty-three 
percent of the foofram subjects showed no Y whatsoever. 
Thus Y is not inevitably associated with X. 

Neat: The so-called refutation by Scroughy3 of the (X,Y) Law is 
clearly an artifact. Fooframming inhibits the registration of 
Y on the standard measure. Thus it is not surprising tha t 
many subjects appeared to be at zero. 

[or] 
Scruffy’s attack on the (X,Y) law is not justified by his 
experiment. His data are irrelevant, for the reason that true 
Xs do not occur in his subject population. 

These two possible volleys by Neat are similar in style—they dismiss 
the challenge—but they differ in nature. The first puts it that the 
methodology was biased so as to disconfirm the universal. The second 
states, in effect, that Scruffy lacked conceptual understanding of the 
universal, as he didn’t even use a relevant sample of subjects. 

3It is not altogether rare for Neat to misspell Scruffy’s name. As a target of criticism 
myself, I have been called Adelson, and Ableson, and have acquired new middle initials. I 
interpret this as motivated inattention to details about the target person, rather than as 
deliberate gamesmanship. 
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Scruffy has potential ways to respond to each of these shots. To the 
accusation of artifact, an effective line of defense is to give statistical or 
procedural details that undercut the accusation (e.g., by revealing that 
34% of the non-foofram group also showed zero Y). To the conceptual 
criticism, he must respond conceptually (e.g., by arguing why his sub
jects are indeed Xs). 

An entirely different tack may be taken by Scruffy. He or she may 
produce another counterexample. If the same rejoinders by Neat do not 
apply to the new study, then Neat is driven into the position of proposing 
different artifacts and conceptual rationalizations for each example. 
Extrapolate to a half-dozen counterexamples, and Neat’s ability to retort 
coherently seems to shrink to zero. Yet, as we soon see, Neat has a 
last-ditch rhetorical weapon. 

Example: The Model of the Rational Actor. The interdisciplinary 
field of behavioral economics has produced controversy that illustrates 
the phenomenon of repeated exceptions to a universal. Mainstream 
economic theory depends heavily on a universalistic model of rational 
actors all trying to maximize their economic well-being. Political theory, 
meanwhile, has been massively influenced by the analogue model of 
political actors seeking to maximize their political self interests. Suit
ably mathematized and operationalized, this model has the facility to 
spin out predictions and explanations in a wide variety of economic and 
political situations. 

Neats love the model. If data would conform to its predictions, the 
model would unify an impressive array of phenomena. When the ratio
nal actor model has been tested, however, either the tests have been 
weak or trite, or the model falsified by anomalous results (Green & 
Shapiro, 1994). The research on decision heuristics and biases con
ducted by Tversky and Kahneman (1974) and further elaborated by 
Nisbett and Ross (1980) has explicated many anomalies of decision and 
judgment. 

When anomalies first appeared, economists were inclined to ignore 
them as esoteric exceptions to the mainstream model. As counterexam
ples began to accumulate, however, it became necessary to develop a 
single, coherent response. A meta-criticism, sweepingly applicable to 
dozens of purported anomalies, is what was needed. The most popular 
such critique was the complaint that psychological experiments, done 
in the laboratory (often with paper-and-pencil methods), were not pre
dictive of economic situations in which real money was at stake. 

But the size of payoffs did not seem to be much of a predictor of 
laboratory results (Grether & Plott, 1979). Worse yet for the critics, 
anomalies in actual market behavior began to appear. Richard Thaler 
(1991), an economist in the Scruffy role, collected a large number of such 
anomalies and challenged economists to deal with them. 
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Defenders of the model are now increasingly forced to rely on the more 
desperate criticism of acknowledging anomalies, but inviting opponents 
of the rational actor conception to come up with a better model that 
would explain more data. As a play in burden tennis, this rejoinder is a 
high, wind-blown lob sent up with the prayer that the opponent’s arm 
is too weak to smash it back. That is probably true in this case, and the 
game may continue for some time. 

When Counterexamples Are Given Before the 
Universal Is Explicit 

Sometimes in a debate between defenders and opponents of a position, 
its universality is initially implicit, that is, not directly articulated in its 
strongest form. But when apparently challenging evidence is presented, 
supporters of the universal may feel compelled to articulate it explicitly 
as an absolute. 

Neat: To study X, we should model Y. 
Scruffy: To study X in my experiment, I found it more profitable to 

ignore Y and model Z. 
Neat: A poor choice. All Xs are Y. And in fact no X is based on Z. 
Scruffy: Then how do you account for my data? 
Neat: Your method contains artifacts. 
[or] 

What you are calling Z is really Y in disguise. 

Example: All Knowledge is Propositional. Since the 1960s, psy
chology has been massively influenced by information processing mod
els of cognition. Human reasoning, problem solving, and language 
processing have all been simulated by computer programs operating on 
some knowledge base. Typically, bits of knowledge were represented as 
propositions linking elements in the base. 

It was not asserted in the literature on computer models of human 
cognition that propositions were the only possible way of representing 
human knowledge. Typically, computer programs worked only within a 
given specialized domain, such as chess playing, and there was no 
commitment to representations outside that content area. That chess 
knowledge is conveniently considered propositional does not suggest 
whether or not knowledge of the Mona Lisa is propositional. 

In the 1970s, two independent results appeared that seemed to 
demonstrate striking processes of mental imagery qualitatively differ
ent from the manipulation of propositions. Shepard and Metzler (1971) 
asked subjects to judge whether paired geometric figures with different 
orientations, each made up of a set of cubes arranged in a knobby 
L-shaped configuration, were actually the same or were mirror images 



THE STRUCTURE OF DEBATES ON DISBELIEVED CLAIMS 175 

of each other. This task appears to require subjects to imagine the 
rotation of one diagram to superimpose it on the other diagram. The 
interesting result was that the average time taken to verify the identity 
of paired figures was proportional to the angle of the required rotation. 
This finding suggested a cognitive process isomorphic with the physical 
rotation of a visual object.4 

Meanwhile, Kosslyn (1975) tested hypothesized consequences of in
structing subjects to form mental images of objects with implicitly 
different sizes. For example, subjects were asked to imagine a rabbit 
sitting beside an elephant, or alternatively, beside a fly. Questions about 
details of the target objects were then posed, such as, “Does a rabbit 
have whiskers?” The time to answer was longer when the target image 
(the rabbit) was paired with the larger companion (the elephant). This 
prediction supposes that subjects refer to their mental images, and “read 
off the answers from details “seen” in the image. If images are con
strained within boundaries like scenes in a camera window, then to 
accommodate an elephant in the same image as a rabbit, the rabbit must 
be shrunk. The existence of whiskers (and other small details) should 
take longer to identify on a shrunken than on a big rabbit, as indeed 
they did. 

Such a result would not naturally follow from a propositional view of 
knowledge, which would presume that knowledge of the whiskeredness 
of bunny rabbits would consist of a single affirmative proposition. The 
size of the rabbit would have no bearing on the question—which makes 
it hard for a propositionalist to explain the result. However, a disbeliever 
in mental imagery might still find bizarre the notion that subjects 
construct mental pictures and read information from them, and would 
argue that the mind does not need an imagery capacity, because any
thing visual could somehow be represented propositionally. 

Of critics of this type, one of the most vocal and persistent was 
Pylyshyn (1973). The image theorists were only trying to advance 
understanding of a seemingly nonpropositional type of knowledge, but 
Pylyshyn took these experiments as a kind of hostile take-over of the 
field of information processing. He declared that all knowledge is prop
ositional. The experimental results of these renegades were to be ex
plained without reference to mental imagery. 

Pylyshyn’s (1973) account of the Shepard and Metzler (1971) mental 
rotation result involved a hypothetical recoding of the spatial informa
tion in the figures as a network of propositions, with the property that 
the more different the angles of orientation, the longer it would take to 
compare the networks for figural identity. The argument that Zs are 
really Ys—that images are just networks of propositions—is a common 

4Note here the vital importance of a quantitative tick. It would be weak to state only 
that the time taken to answer the question was significantly different for different angles 
of rotation. 
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defense of universals against counterexamples. (If you can’t beat them, 
incorporate them.) Images can in fact be represented propositionally.5 

The moot point is whether any such representation would mimic the 
properties of the experimental results. 

Indeed, the response of the proponents of imagery was to produce 
demonstrations of ever and ever more specialized properties of mental 
images, anchored by neurophysiological findings (Kosslyn, 1994). By 
now, the debate has subsided. It was evident that imagery was a 
coherent set of processes, with lawful experimental consequences. 
Therefore, even if it was “really” only a brand of network processing, it 
was different enough to require separate analysis. 

The grounds for deciding on the true essences of ill-fitting subcategor
ies have been at one time or another a source of debate in the arts (“Is 
computer-composed music really music?”) and the physical sciences (“Is 
light really a particle, or is it a wave?”), as well as in psychology. I find 
such debates insipid and pointless. The sensible questions have to do 
with the coherence of the properties of the subcategory. Does the sub
category have what might be called a recognizable signature? In the 
imagery debate, the answer is yes. In the rational actor argument, the 
answer might be yes, but the signature is not yet clear. 

For the investigator in a field afflicted with a case of the “reallies,” 
the moral is clear: Do not take the debate very seriously. Work on the 
coherence of the set of counterexamples to the universal. 

When a Claim Runs Counter to Common Sense 

Scientific disciplines are supposed to be self-contained, with formal 
definitions of their primitive constructs, and theories based on formal 
relationships between them. There is ultimate reference to the real 
world, but it is constrained by particular rules and operations. What is 
not supposed to happen is for commonsense intuitions to sneak ad hoc 
into explanations of particular phenomena. 

Physicists are rather good at following this precept. Most of their 
observations and theories deal with things that are totally out of the 
realm of human experience. Common sense does not have anything to 
say about distances as small as 10-8 cm, or as large as a million 
light-years. Ditto for time intervals as short as nanoseconds or as long 
as ten billion years. In fact, common sense rebels at small and large 
magnitudes far less extreme than these. (That is one reason why 
ordinary citizens have so much trouble understanding federal budgets 
and the theory of evolution.) By contrast, psychologists are lax about 
screening ordinary intuitions out of their subject matter. Psychology is 

5Modern technology has thoroughly digitized sound and sight. Images can of course be 
digitized, which in a formal sense propositionalizes them. 



THE STRUCTURE OF DEBATES ON DISBELIEVED CLAIMS 177 

far from adequately formalized, and most psychologists can’t prevent 
common sense explanations of human behavior from implicitly suggest
ing themselves. One entry point for common sense is in judging the 
credibility of research claims; if a result seems to violate common sense, 
it is likely to be as much criticized as a result tha t violates a modest 
psychological theory. Our next example is one in which both theory and 
common sense are violated. 

Example: Do Infants Understand Simple Numerosity? In devel
opmental and educational psychology, quarrels often occur concerning 
the earliest age at which children are capable of such and such. The 
Neats tend to believe in an orderly sequence of unfolding abilities, each 
with its appropriate age. In his highly celebrated theory, Jean Piaget 
(1954) postulated a series of stages of mental ability from the most 
concrete to the most abstract, each step in the progression occurring at 
a roughly specifiable age. 

Such views were inviting targets for countertheories. Bruner (1971) 
maintained that any child could learn anything at any given age, given 
appropriate instruction. Specific counterexamples to Piaget’s strictures 
were proposed. Gelman (e.g., Gelman & Mack, 1983) claimed that 
children aged 3 and 4 years could master all the logical tasks necessary 
for counting, even though children of this age were not supposed to be 
ready for the appropriate Piagetian stage. In what became a scruffy 
game of “Can you top this?,” researchers tried to extend potentialities 
to earlier and earlier ages. 

In what seems to be the ultimate stretch, Wynn (1992) claimed to 
have demonstrated that infants as young as 5 months old understood 
concepts of simple numerosity—that is, they can distinguish oneness 
from twoness, and in some abstract sense, understood addition and 
subtraction. Further, she postulated tha t such competence is innate. 
Her claim was so astonishing that it provoked a flurry of reactions (and 
was even covered in the mass media). Here was a claim that not only 
ran counter to formal theory (however tattered that had become), but 
also flew in the face of common sense. 

In her complex and novel experimental procedure, one or two identi
cal puppetlike dolls were exposed to the child’s view on one side of a little 
arena like a puppet stage, and then a screen was raised in front of that 
side, blocking the child’s view of the puppets. Next, a clearly visible adult 
hand appeared on the other side of the stage. For one group of infants, 
the hand held a puppet, which it then put behind the screen. For a second 
group of infants the hand was initially empty, but it reached behind the 
screen, emerging with a puppet that it took off stage. The former 
operation was called addition, and the latter, subtraction. Finally, the 
screen was lowered to reveal either an arithmetically correct or incorrect 
number of dolls. 
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Specifically, starting with one puppet on stage, the addition of one 
should reveal two puppets when the screen is lowered. On half the trials, 
two puppets correctly appeared, whereas for the other half, only one 
could be seen—the other having been sneaked out through a trapdoor 
by the experimenter. For the subtraction condition, two puppets initially 
appeared on stage, and the final presentation revealed either one 
(correct), or two (incorrect)—the extra one having been sneaked in 
through the trapdoor. Six trials were run per infant, alternating correct 
and incorrect trials. 

The dependent variable was the time in seconds the infant spent 
gazing at the stage after the screen was lowered. This measure has often 
been used with infants to index surprise, a reaction akin to an adult 
double take. Here, the assumption was that the incorrect condition 
would elicit longer gazing times. After t testing the mean differences 
across infants between correct and incorrect trials for both the addition 
and subtraction conditions, Wynn (1992) concluded that the infants 
were indeed differentially responsive to correct and incorrect arithme
tic. 

This is the sort of complicated experiment with an unlikely claim that 
gives its research community the shakes. It becomes a conversation 
piece, and there arises a “find the artifact” challenge. As I write this, all 
sorts of artifacts and objections have been proposed, including unreli
able time measurement, biased hands, squeaky trapdoor, the question
able feature of alternating correct and incorrect trials, and the 
marginality of the p values (.03-ish at best). By the time the reader reads 
this, some clarity may have been achieved—but more likely, it will take 
more time for the dust to settle. 

When a Seemingly Impossible Effect Is Claimed 

When systematic research purports to demonstrate a phenomenon 
completely outside the boundaries of prevailing science, the reaction of 
the audience is even sharper than in examples such as the one just 
discussed, and this creates a vexing conflict. The debate over extrasen
sory perception, referred to in several sections of this book, is a proto-
typic example. Here, we briefly give a related illustration. 

Example: Can Group Meditation Affect Behavior at a Distance? 
At Maharishi University training centers around the world, students 
are taught transcendental meditation, alone or in groups. One conse
quence of shared mental activity is said to be the emergence of a “field 
of unified consciousness,” This field can, according to its proponents, 
inhibit deaths and accidents at other locations, hundreds of miles away. 

In an effort to establish empirical support for this seemingly bizarre 
claim, Orme-Johnson et al. (1988) performed an elaborate statistical 
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study of the effects of group meditation sessions, held daily at a hotel in 
East Jerusalem in the summer of 1983. The independent variable was 
the number of meditators, and the dependent variables were crime 
rates, auto accidents, and fires in Jerusalem, and war fatalities in 
Lebanon, among others. Each variable comprised a day-by-day time 
series over the 61 days of the study. 

The statistical analysis was complex, but the heart of the matter is 
that significant correlations over days were found. On days when more 
meditators were meditating, there were fewer crimes, auto accidents, 
and war fatalities. A causal interpretation was given to these connec
tions, and the research report was submitted to a journal. 

If you were the journal editor, how would you handle this? There is 
no known physical principle that could account coherently for direct 
causation of such an effect. Nor is there any articulation of how the 
unified field, if somehow active on its target people and institutions, 
would translate itself into the necessary psychological and political 
behaviors. In Bayesian terms (chap. 3), the prior probability of a 
“Maharishi effect” is practically zero. Yet, if the study appears to be 
methodologically sound, it would be contrary to the ideal of scientific 
openness to give it no hearing whatever, no matter how seemingly 
cockamamie its claims. The editor has a problem. 

The Bayesian argument is of course rejected by Maharishi adherents, 
for whom the prior probability is close to 1.0. In response to claims that 
the effect is impossible, its supporters quote yoga traditions in India to 
the effect that transcendent states of mind achieve a level of pure 
consciousness like a “wave settling to become the silent, unbounded 
surface of the ocean... [creating]...fieldlike effects...said to quell animos
ity in its vicinity” (Orme-Johnson et al., 1988, p. 779). Such a mystical 
metaphor comes from a world view so different from that of Western 
empirical science that it is hard to imagine a meaningful translation 
from one to the other. 

In critiques (Duval, 1988; Schrodt, 1990) and defense (Orme-Johnson 
et al., 1990) of the eventually published Orme-Johnson et al. (1988) 
study, disputes about what was and was not believable were of no avail. 
The comprehensible part of the argument came down to a methodolog
ical point: Could the apparent relationship between the size of the 
meditating group and the lessening of various tragedies be due to a 
coincident time pattern followed by each? On weekends, for example, 
the number of meditators might be higher (because it was most conve
nient for them to arrive at the hotel on Wednesday or Thursday night, 
and leave on Sunday morning), and traffic deaths might be lower 
(because religious Jews would refrain from Sabbath travel). Had the 
daily numbers of meditators been randomly assigned by the investiga
tors, this would have ruled out such artifacts. 
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Orme-Johnson et al. (1988) claimed that the day-to-day variation in 
number of meditators was virtually random, but this statement is 
disingenuous. The number rose systematically throughout the first 
month, and then settled into a clear weekly cycle during the second 
month. On whom does the burden of proof fall in this situation? The 
critic says there could have been an artifactual time patterning due to 
a variety of unknown factors. The investigators might say yes, but you 
have not demonstrated that any particular factor is responsible. 

The standards in such a dispute are clear: The burden of proof is on 
the investigator. Research claims are regarded as guilty of obvious 
artifactual possibilities unless these are explicitly and adequately dealt 
with. In the Maharishi study, the observation of a correlation over time 
between the number of meditators and various dependent variables is 
a very weak datum. Correlations over time are notoriously subject to 
artifacts. The authors tried to upgrade their study to the level of a 
quasi-experiment, in which levels of the independent variable happen 
to occur at random in time. The failure of random occurrence demotes 
the study back to mere correlational status, and the burden ball is back 
in Maharishi’s court. In the nature of such cases, furthermore, the less 
credible the results, the greater the burden falling on the claimant. 

METHODOLOGICAL ARTIFACTS 

When the smoke clears in the previous examples, criticism motivated 
by a challenge to a conceptual universal gets played out at the method
ological level. In many less dramatic cases, debate may be almost 
entirely methodological from the start. 

We have seen tha t the category of methodological artifacts is a broad 
one.6 Here we discuss three general categories that come up repeatedly: 
the influence of third variables; the presence of impurities in the vari
ables; and procedural bias. Cases involving third variables typically 
apply to correlational studies, procedural bias to experimental studies, 
and impurities to both types of studies. 

Third Variables 

We go back to basics and begin our discussion by considering an 
elementary claim from a correlational study that two variables are 
related as cause and effect. We saw in chapter 1, in our discussion of the 
purported longevity of conductors, how misleading such claims can be. 

6Campbell and Stanley (1963) gave an excellent treatment of some very specific sources 
of artifact in the class of studies known as quasi-experiments. It is must reading for any 
serious student planning to do applied research in which there is little control over the 
crucial independent variables. 
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Every student in the social sciences is to a greater or lesser degree 
taught to be reluctant to draw causal conclusions from correlations, but 
it is surprising how causal implications nonetheless sneak insidiously 
into interpretations of correlations. 

An investigator who takes her correlational results as indicating a 
causal relationship is subject to a plentiful source of criticisms—the 
artifact of the third variable. If it be asserted from a significant correla
tion of A with B that A causes B, the critic can usually rebut forcefully 
by proposing some variable C as the underlying causal agent7 for both 
AandB. 

In fact, the investigator typically starts out so much on the defensive 
in making claims from correlations that critics don’t often feel compelled 
to present empirical evidence in favor of their proposed artifacts. They 
simply trot out the usual suspects: “How do you know,” they challenge 
the investigator, “that the relationship is not just an artifact of social 
class? Of education? Of age?” and so forth. Because the burden of proof 
is considered to be on the investigator, she typically loses if she presents 
little or no further data or analysis. Causal conclusions from correlations 
do not get accepted at face value by the trained research community. 

Power Dressing: A Whimsical Example. As a hypothetical exam
ple, consider a relationship for high school seniors between the sizes of 
their wardrobes and scores on the Scholastic Aptitude Test (SAT). Let 
us imagine that a significant correlation of .40 between these two 
variables is announced by an investigator, who weaves a tale about the 
importance of power dressing for success in life. 

A critic cries humbug, noting that the relation could easily be ex
plained as an artifact of income differences. Socially advantaged kids 
have lots of clothes, and by and large do well on standardized tests, 
whereas disadvantaged kids have fewer clothes, and perform less well 
on tests. 

The critic may make this shot overpowering by reanalyzing the 
investigator’s data (or by analyzing new data), showing that when 
income differences are partialed out, or when income is held constant, 
the relationship between wardrobe size and SAT scores disappears. One 
way to look for such an outcome—awkward in practice but conceptually 
clear—is to sort cases on the income variable into class intervals, and 
then for the cases within each class interval, see whether there is any 

A further ambiguity with correlational results is that cause and effect might be in the 
reverse direction from the one the investigator favors. For example, consider the empirical 
finding that children with pet dogs are more well-behaved than those without them. The 
investigator might go on to say that the responsibility of caring for an animal is a maturing 
influence on the child. In an equally plausible, reverse interpretation of cause and effect, 
however, the association could come about because ill-behaved children are not allowed to 
have dogs. 
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relationship between the original two variables. If there is very little or 
none, the third variable can be said to explain the relation between the 
other two. The investigator will usually be left without any satisfactory 
rejoinder.8 Presumably this is what would happen in the hypothetical 
example of the wardrobes. 

Thus far, I have given a stock analysis of the lack of credibility of 
simple interpretations of correlations. Actually, the epistemological 
situation is somewhat more complicated, as there are examples of highly 
believable inferences from correlational data. Single, isolated correla
tions are always doomed to ambiguity, but patterns of covariation can 
offer some hope for a reasonable rejoinder by the investigator. For one 
thing, multiple regression techniques can damage the plausibility of 
some artifacts a critic might dredge up, provided the investigator has 
had the foresight to get reliable data on each such possibility. The 
presumed artifact, say, age or gender, is partialed out of the relationship 
of interest. If a significant correlation still remains, the artifactual factor 
may be discredited as a sufficient explanation. 

Even more general than multiple regression, there is a class of 
techniques known as structural equations modeling or “path analysis” 
(Kenny, 1979), specifically designed to test alternative models of net
works of influence within a set of correlated variables. The influences 
are hypothesized to flow from independent (exogenous) to dependent 
(endogenous) variables, with mediating variables in between. Different 
models are distinguished by the particular variables taken to influence 
other particular variables in a network of relationships. Each plausible 
model can be subjected to a statistical goodness-of-fit test, and the poorly 
fitting models weeded out. Successful models are not unique, but the set 
of viable models can be considerably narrowed. 

Another possibility for turning leaden correlations into golden causal 
statements lies in testing several implications of a postulated mecha
nism explaining the correlation at hand. This possibility is easier to 
understand than the somewhat arcane applications of structural equa
tions modeling. We illustrate this in our next, quite consequential, 
example. 

Example: Does Smoking Cause Lung Cancer? Picture the situa
tion when it was first authoritatively claimed that heavy smokers more 

Occasionally, an investigator might be able to prepare a shrewd retort to an anticipated 
stock criticism. I remember a colloquium many years ago at which Hyman Witkin 
presented his research on the personality characteristic of field independence (Witkin et 
al., 1954). He made much of his result that so-called field independent subjects, categorized 
on the basis of their ability to find hidden figures in complex designs, had little difficulty 
locating a true vertical position when seated in a tilted chair in a tilted room. Feeling a bit 
sheepish to make such an obvious criticism, I said, “Have you partialed out intelligence? , , 

“Partialed it out?” he snorted. “Field independence is intelligence!” 
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frequently contract lung cancer than do nonsmokers (U.S. Surgeon 
General, 1964). What could critics, many of them apologists for the 
tobacco industry or smokers trying to rationalize their habit, come up 
with in the way of other explanatory variables? Here are some samples: 
Maybe smokers are on the average more tense than nonsmokers, and it 
is tension that disposes toward getting cancer; maybe smokers tend to 
drink a lot of coffee when smoking, and it is coffee that causes cancer; 
maybe it’s just that men happen to smoke more than women, and men 
also happen to be more vulnerable to lung cancer. 

In each of these speculations, the critic names a factor, fortuitously 
correlated with smoking, that could perhaps itself cause lung cancer. 
However, one can’t just name any old variable as a possible artifact. It 
would be a very weak criticism to propose that the smoking-cancer link 
is an artifact of astrological signs. There is no reason to believe that 
smokers tend disproportionately to have particular astrological signs, 
even if one could manage to persuade one’s audience that those partic
ular signs are more deadly than others. In the game of burden tennis, 
this shot wouldn’t make it over the net. 

Confining attention to plausible third-variable artifacts, many of 
these can be rebutted by showing that controlling for them does not 
eliminate the relationship between smoking and cancer. For example, 
gender is a totally insufficient explanatory variable: The cancer rates 
are substantially higher for smokers than nonsmokers, within both the 
male population and the female population. 

The limitation on such rebuttals is that a new third variable of the 
month can be proposed by critics. Even with the motivation and the 
resources to meet each new criticism, the process would be foiled by 
variables for which no good data were available—levels of nervous 
tension, for example. 

A more powerful strategy is to spell out the details of the proposed 
causal mechanism implicating smoking, and then test the consequences 
this mechanism would entail. Such a strategy was indeed followed by 
the cancer research community. 

The postulated mechanism for the causal link, in simplified, nontech
nical form, is that tobacco smoke contains substances that are toxic to 
human tissue when deposited by contact. The more contact, the more 
toxicity. Now, what are some empirical implications of such a mecha
nism? 

1. The longer a person has smoked cigarettes, the greater the risk of 
cancer. 

2. The more cigarettes a person smokes over a given time period, the 
greater the risk of cancer. 

3. People who stop smoking have lower cancer rates than do those 
who keep smoking. 
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4. Smokers’ cancers tend to occur in the lungs, and to be of a 
particular type. 

5. Smokers have elevated rates of other respiratory diseases. 
6. People who smoke cigars or pipes, the smoke usually not being 

inhaled, have abnormally high rates of lip cancer. 
7. Smokers of filter-tipped cigarettes have somewhat lower cancer 

rates than do other cigarette smokers. 
8. Nonsmokers who live with smokers have elevated cancer rates 

(presumably by passive exposure to smoke). 

All of these implications have moderate to strong empirical support 
in U.S. Surgeon General (1964) and a succession of later reports. All of 
them9 were established correlationally (by comparing cancer rates in 
different population subgroups). Yet the case is extremely persuasive 
because it is so coherent, with so many consequences implied by the toxic 
smoke mechanism supported by strong evidence. Furthermore, no ad
ditional explanatory mechanism seems required, as there are no anom
alous results that remain to be explained. If smokers were found to have 
four times the rate of fallen arches as nonsmokers, this would create a 
nagging bit of incoherence when included along with items 1-8 listed 
earlier, and keep the search for causes open to new ideas. 

Note that the smoke toxicity explanation of the evidence has a 
comparative advantage over alternative explanations. If a factor asso
ciated with a smoking habit, such as coffee drinking or an anxious 
personality were the true cancer cause, it would be very difficult to 
explain results 3, 4, 5, 6, and 7. 

Thus a tight bundle of strong, plausible correlational results can 
indeed be causally compelling. A set of ticks connected by a single 
hypothesized underlying process is its signature, so to speak. Thus we 
call this rebuttal strategy the method of signatures.10 The specification 
of a recognizable signature enhances the credibility of claims that 
particular underlying processes are operative, much as would a 
coroner’s report (Scriven, 1974) of seven different signs of a heart attack 
(and no signs of any other cause of death). This simple idea is quite 
important, and justifies a second example, one in which the claim sounds 
quite implausible at the outset. 

Example: Suicides and Motor Vehicle Fatalities. Phillips (1977) 
claimed a systematic connection between the dates of widely publicized 

9Implication 8, concerning “passive smoking,” has been independently disputed by some 
who otherwise concede the direct dangers of smoking. The interchange between Gross 
(1994) and Rockette (1994) is a prototypic statistical argument on this point. 

10This same idea is part of good test development practice, too, often under the name of 
construct validity. Experienced experimental psychologists employ this type of strategy as 
well. 
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suicides, such as those of eminent people, and the number of motor 
vehicle fatalities within the 7–day periods following these particular 
dates. The hypothesis behind this mysterious connection is that publi
cized suicides encourage people with suicidal inclinations to take a 
self–destructive action, one form of which is to deliberately crash a car. 

His analysis (Phillips, 1977) covered the period from 1966 through 
1973, and was carried out with data from California. (The reason for the 
latter choice was that the California Highway Patrol had very detailed 
automobile fatality data, and not, as the reader might have conjectured, 
because every conceivable craziness can be found out there.) Phillips 
compiled an exhaustive list of the front–page suicide stories covered by 
one or more leading metropolitan newspapers in the state during the 
8–year period. The 20 dates associated with these suicides were noted, 
along with the total number of motor vehicle fatalities in the week 
following each critical date. 

Phillips (1977) faced a difficult comparison problem in proceeding 
with his analysis. How was he to tell whether the fatality rates were 
especially high in those critical weeks? Appropriate nonsuicide weeks 
were necessary for comparison. What Phillips did was to pick weeks 
from years before and after the critical weeks, located at nearly identical 
positions on the calendar, and starting on the same day of the week. The 
presence or absence of a holiday in each critical week was matched in 
the choice of a comparison week. 

Finally, for each critical week, the percentage by which its fatality 
rate exceeded or fell short of the comparison fatality rate was calculated. 
The 20 resulting percentages, rounded to the nearest whole number, are 
shown in the stem–and–leaf of Table 9.1 (a minus indicates a lower rate 
in the suicide week). Fifteen of these 20 comparisons were in the 
direction of the hypothesis, and the mean of all 20 was +9.12, signifi
cantly different from zero by a t test. (With a one–tailed t test, the p value 
is .01.) 

The claim, then, was that in California for the years indicated, highly 
publicized suicide stories systematically produced an average increase 
in motor vehicle fatalities of about 9% in the week following. This seems 

TABLE 9.1 
Excess Automobile Fatalities 2 Days After Publicized Suicides 

3 056 
2 09 
1 248 
0 0445778 
–0 

1 

422 

1 

–2 00 

Note. Data are in percentage over and under baseline. N = 20. 
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a surprising effect on motor vehicle fatalities from such an apparently 
irrelevant influence as suicide stories. One can mitigate one’s sense of 
incredulity somewhat by noting that the 9% increase in fatality rates 
amounted to only 7.5 extra deaths per suicide week, as the comparison 
death rate ran to about 88 per week. One can further cushion the 
surprise by realizing that the 9% figure is merely an estimate, subject 
to chance variation. Ninety–five percent confidence limits on this esti
mate run from 1.7% to 16.5%, and values in the lower part of this interval 
don’t seem jarringly implausible. 

Still, the proposed mechanism may seem far–fetched. As we have 
seen, one should be especially suspicious of correlations between vari
ables over time, because all kinds of events that have nothing to do with 
each other can co–occur in yearly, monthly, or weekly synchrony, like leap 
years and presidential elections, or church attendance and betting on 
professional football games. Candidates for third variables that would 
create an artifactual appearance of a suicide–motor accident relation
ship come readily to mind. Perhaps certain days of the week have more 
suicides, and 2 days later in the week, more traffic accidents. Maybe 
there is some connection with holiday weekends. Another line of expla
nation would invoke short periods of national or international crisis: 
When war is threatened, or terrorism strikes, or the stock market 
declines precipitously, mass stress induces more suicides and worse 
driving. 

The list could go on, but skeptics can do quite nicely without one. In 
the language of our tennis metaphor, the toughest critics wouldn’t even 
acknowledge tha t the ball was in their court. If they saw only the 
allegation that publicized suicides were systematically followed by 
traffic accidents, they would call the author’s shot out of bounds, and not 
respond until the opponent produced a better serve. (This case is similar 
to the Maharishi example, albeit less extreme.) 

Therefore, it behooved the investigator to present a signature—a 
bundle of evidence consistent with the hypothesis that suicidal crashes 
are activated by suicide publicity, and inconsistent with other explana
tions. Such evidence was indeed adduced. For starters, Phillips (1986) 
found that suicides that received heavier publicity were followed by 
more automobile fatalities. 

As Phillips and Bollen (1985) argued, the most compelling kind of 
supporting evidence for an initially implausible relationship involves 
selective variations in the focus of the analysis, such that the relation
ship should go away if the investigator’s hypothesized mechanism for 
the relationship is correct. (Recall Lazarsfeld’s dictum from chap. 7.) If 
Phillips’ (1986) analysis is on the mark, one ought to find that if time 
were reckoned backwards, with auto fatalities tallied in the week before 
the suicides, there would be no relationship. Indeed, there was none. A 
subtler point pertaining to the original data is that the increase in fatal 
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traffic accidents should be confined to cases with a lone driver. There is 
no reason to expect an increase in fatal accidents involving vehicles with 
passengers, and in fact, there was no relation between publicized 
suicides and such crashes. These three ancillary results begin to fill in 
a signature characterizing a genuine link between publicized suicides 
and passengerless auto crashes. 

The authors of the Maharishi study can be faulted for not sufficiently 
pursuing this type of conceptual protection against artifacts. Keeping 
the sequence of number of meditators as the day–by–day independent 
variable, they could have taken as dependent variables the daily crime, 
accident, fire, and war death figures from summers before and after the 
year of the study. Nonzero relationships would be inexplicable as other 
than calendar–related artifacts, and would damage the original claim of 
a Maharishi effect. Another test of this nature would be to take as 
independent variable some other measure of daily activity by intellec
tuals, such as attendance at music festivals or coffee houses. If an 
appropriate data series of this kind showed a mock Maharishi effect, 
that too would undercut the hypothesis that the meditators as such were 
causing benign effects. One can imagine many other tests as well. The 
failure to run such self–skeptical analyses leaves the investigation 
without an intelligible signature. 

Impurities in Correlations 

An important variant of the third–factor type of criticism of correlational 
results occurs when the artifactual variable is attached to one of the 
explicit variables as an impurity, like barnacles to rocks, or MSG in food. 
This category produces subtleties of causal interpretation, illustrated 
next with fanciful and serious examples sharing the following formal 
structure: The investigator asserts that X causes Y; the critic replies that 
it is not X that causes Y, it is unmentioned Q, attached to X, that causes 
Y. Variable Q thus mediates the relation between X and Y. This media
tion can be extrinsic or intrinsic. 

First, consider the results proclaimed by the imaginary Professor I. 
B. Fenstermacher, based on his extensive studies of the health conse
quences of frequent picnicking. Although he found no significant differ
ence in cholesterol count between frequent and infrequent picnickers, 
he did find a significant and strong difference in the average number of 
itchy red spots on exposed skin surfaces. He concluded that picnics 
systematically cause this peculiar malady. Objection was raised by the 
critic M. Neffer, who had immediately recognized that these red spots 
were in fact mosquito bites. He went on to argue that despite the 
systematic relationship between the event of picnicking and the occur
rence of mosquito bites, it makes more sense to say that mosquitoes 
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cause mosquito bites, and it just so happens that mosquitoes show up 
with annoying frequency at picnics. 

A similar, but far less frivolous example arises from the claim that 
there is an association between peanut butter consumption and in
creased risk of cancer. Yes, peanut butter! The mechanism is that a small 
subset of peanut shipments to peanut processers are contaminated with 
a mold containing aflatoxin, a substance known to be highly carcino
genic for animals (National Research Council, 1978). Here, a critic might 
say that it is not peanut butter that causes higher vulnerability to 
cancer, it is aflatoxin—the more proximate cause. However, insisting 
that peanut butter is not the real cause is small comfort to the person 
who loves peanut butter and fears cancer. A de facto risk (small though 
it may be) lurks in the long line of Skippy® jars consumed in a lifetime. 
Thus the bald assertion that peanut butter is cancer causing may not 
be all that silly. 

For our third example, let us return to the imaginary Professor I.B. 
Fenstermacher. Having been embarrassed by Neffer ’s scathing criticism 
of the conclusions he drew from his picnic study, Fenstermacher tries to 
get revenge. Neffer has published an article claiming that smoking 
causes lung cancer. Fenstermacher has by this time learned the struc
ture of the argument for artifactual causation. He submits a rejoinder 
stating, “Smoking doesn’t cause lung cancer. Tar and nicotine in the 
lungs cause cancer.” 

It appears that Fenstermacher has made another stupid mistake, 
because the tar and nicotine deposits are themselves caused by, rather 
than being fortuitously associated with smoking. This seems to be a case 
where the proposed artifact is the phenomenon itself. The critic citing 
the artifact speaks unintentionally in favor of the phenomenon (see 
footnote 8). 

Let us take a closer look at these three examples. All three refer to 
dangers attaching to pleasurable substances or activities, but the dan
ger is more and more irrevocable—that is, intrinsic to the activity—as 
we progress from the first example to the third. 

There are practical ways to minimize the presence or the bites of 
mosquitoes at picnics: insect repellant, for example. It is not necessary 
to suffer mosquito bites at picnics, though it may be statistically fre
quent. Similarly, there are conceivable ways to eliminate aflatoxin from 
peanut butter, albeit they may be impractical and/or extremely expen
sive with available technology. (Both reasons have been advanced 
against the idea of universal inspection of peanut crops.) In any case, 
there is no absolute necessity for peanuts to be carcinogenic. 

Purification of the causal variable in these two cases removes its 
association with negative consequences. In the smoking case, the con
nection between cause and effect seems more unavoidable, as all ciga
rettes contain tar and nicotine. Still, from a logical point of view, one 
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might suggest that if these two substances were removed from ciga
rettes, then smoking might no longer cause cancer. Lord knows, ciga
rette companies have thought of and worked on this scenario. 

The difficulty is that nicotine removal, in particular, would spoil an 
essential aspect of the smoking experience. The dangerous impurity is 
inseparable from the pleasure of smoking, and thus smoking takes the 
rap for the danger. (This would change if some new tobacco substitute 
gained currency, were proven safe, and became labeled as a new activ
ity—call it schmoking. Then one could say that whereas smoking causes 
cancer, schmoking doesn’t. The cancer–causing agents lie in some or all 
of the features distinguishing schmoking from smoking.) At the root of 
arguments about impurities as artifacts, therefore, lie quarrels about 
the true essences of things. (This is reminiscent of the argument on 
whether or not mental images are essentially different from networks 
of propositions.) 

We next consider impurities in experimentally manipulated vari
ables, which sometimes also spur murky debates about psychological 
essences. 

Impurities in Experiments 

Experiments with random assignment of subjects to experimental con
ditions have a deservedly better reputation for avoiding artifacts than 
do correlational studies. This is because random assignment rules out 
all third–variable explanations of results. The subjects experiencing a 
particular condition cannot be said to differ systematically on some third 
variable (say, intelligence, or family income) from subjects not placed in 
the condition. The experimenter, not the real world, causes subjects to 
be assigned to conditions, and random assignment assures the absence 
of systematic biases. (Recall the hypothetical orchestra conductor exper
iment in chap. 1.) 

However, though this has not been well advertised, experiments are 
as vulnerable to artifacts of impurity as are correlational studies. 
Something about the experimental treatments can create the results, 
rather than the treatments per se. The impurity could in principle be 
removed (like aflatoxin from peanuts), but in a given experiment may 
not have been. Criticisms of experimental investigations and rebuttals 
by investigators very frequently revolve around whether supposed im
purities were present, and if so, whether they are intrinsic to the 
experimental variable or only gratuitously attached. 

This type of issue is likely to arise when specific experimental 
manipulations and measurements are designed to represent broader 
concepts. The interpretation of results is then meant to be general, not 
literal. The experimenter wants to examine the connection between a 
class of causes and a class of effects, and in order to do this, he has to 
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operationalize cause and effect with particular procedures and measure
ments. One might say that general cause and general effect are each 
instantiated by particular cause and particular effect. The critic may 
claim that there were extraneous influences—impurities, if you will—in 
the operations used by the investigator to achieve the intended concepts. 
We consider the character of debate surrounding possible operational 
impurities, using two quite different types of example. 

Example: Impurity in Manipulation of Perceived Gender. A very 
clever, simple method for detecting gender bias was initiated somewhat 
casually by Goldberg (1968). He presented a group of subjects with 
identical essay material, but randomly varied the author’s name at the 
top to be, for example, either John Smith or Jane Smith. After reading 
an essay, subjects were asked to evaluate its quality in several respects 
(whether it was well written, persausive, etc.). These quality ratings 
were higher when the author had a male, rather than a female name— 
even for female subjects. 

A very large number of investigators have since used experimental 
devices akin to Goldberg’s (1968) in all sorts of contexts. The results are 
quite variable, but many of them demonstrate the attribution of superior 
intellectual competence to the male figure, and stereotypic, largely 
negative attributes to the female figure. 

The method seems to eliminate the possibility of experimental im
purities. The change of name is a minimal manipulation, of the kind 
that warms the hearts of experimental design mavens. Nothing is varied 
except the name. One is hard put to imagine a cleaner, more artifact–free 
manipulation. 

Guess what? An impurity was recently discovered (Kasof, 1993)! This 
critic’s argument was that all names, male or female, have evaluative 
connotations. A Waldo is viewed less favorably than a William or a 
Walter, and a Donna compares poorly with a Diana. Kasof had subjects 
rate the attractiveness of each of a large corpus of names, and then he 
inspected the attractiveness of names used in the gender bias type of 
experiment. 

In selecting pairs of names (or sometimes, lists of names), one male, 
the other female, experimenters had unwittingly used less attractive 
names for their female figures. This is particularly obvious in pairs 
constructed by appending the suffix “a” to feminize a male name—Rob
ert/Roberta, Paul/Paula, Donald/Donna, and so forth. The suffixed ver
sions are generally less appealing names. Therefore, experiments 
purporting to show sexism might instead be illustrations of nameism— 
the tendency to attribute incompetence to people with klutzy names. 
Kasof (1993) concluded that this artifact was indeed generally operative 
in the literature, as studies using equally attractive male and female 
names tended to show relatively small or zero gender effects. 
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The objection might be raised that if female names tend on average 
to be more negatively viewed than male names, this is another manifes
tation of sexism. Female names like Roberta, and so on, might carry 
negative connotations because they are female names. Thus, the artifact 
would be the phenomenon. 

Kasof (1993) anticipated this objection. He noted that there is no 
mean difference in the rated attractiveness of male and female names 
in the entire corpus of available names. There is, however, an attrac
tiveness difference (on average) between the sets of male and female 
names used by experimenters. It looks as though experimenters unwit
tingly tended to choose names that would (artifactually) demonstrate 
apparent gender effects. 

Like any overview of a many–sided literature, Kasof’s (1993) analysis 
may be modified by later scrutiny. For our purposes, it is a very striking 
demonstration of the lurking impurities that can contaminate even 
apparently pure experimental manipulations. 

Example: The Dissonance Theory of the Effects of Incentives. In 
contrast to the elegant argument in the previous example of experimen
tal impurity, our next example is somewhat murky. Recall the essence 
of the Festinger and Carlsmith (1959) study: Subjects offered $1 to 
publicly misrepresent the interestingness of a task they had just per
formed came to agree that it was indeed somewhat interesting, more so 
than did subjects paid $20. The theoretical reasoning from dissonance 
theory is that the $1 incentive seems to subjects insufficient for them to 
have agreed to say that the dull task was interesting. To reduce the 
dissonance (discomfort) of these thoughts, subjects persuade themselves 
that the task was really somewhat interesting after all, and judge it to 
be so in making task ratings. By contrast, those promised $20 consider 
themselves more than amply compensated, give the matter little further 
thought, and subsequently rate the task as not having been interesting. 

There were many critiques of this experiment (Chapanis & Chapanis, 
1964; Elms & Janis, 1965). After all, the experimental procedure was 
quite complicated (see chap. 2), with many seeming opportunities for 
impurities and biases to creep in. In one critique, Rosenberg (1965) 
argued that there was an artifact contaminating the $20 condition. He 
had expected—for reasons that need not concern us—that the effect of 
incentive on self–persuasion would increase with increasing incentive, 
not decrease. Thus subjects in the $20 condition ought to have judged 
the task as having been more interesting than did the $1 subjects. Why 
didn’t they? 

According to Rosenberg (1965), it was not because they were in a state 
of low dissonance. It was because a $20 incentive seemed excessive, and 
the subjects in the $20 condition wanted to show the experimenter that 
they couldn’t be bought so easily. Sure, they would agree to take the 
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money and go through their act, but their later ratings of the interesting– 
ness of the task would show the experimenter tha t his bribe had been 
resisted. 

This criticism established a clear disagreement over the essence of 
the $20 condition. For Festinger and Carlsmith (1959), $20 was a 
sufficient justification for an inauthentic performance; for Rosenberg 
(1965), it was a bribe. Rosenberg was pointing to a possible impurity, 
that is, an unintended, misleading feature of the offer of $20. He tried 
to sharpen his criticism by showing in a study of his own tha t if 
self–persuasion effects were compared for a $1 and a $5 condition, 
subjects offered the larger incentive would show the greater self–persua
sion. 

In his experiment (Rosenberg, 1965), he asked Ohio State students 
to write essays on why the Ohio State football team should refuse to go 
to the Rose Bowl, should an invitation come. Some subjects chosen at 
random were offered $1, others $5. After writing the essays, the $5 
subjects indicated a greater average degree of opposition to the attrac
tive Rose Bowl bid. Rosenberg interpreted his results as showing that 
when precautions are taken to remove the gratuitous influence of 
excessive incentive, the dissonance prediction fails. 

There was an oversight in Rosenberg’s (1965) experimental design, 
however. With his $1 and $5 conditions, he had shown that a larger 
incentive produced more self–persuasion. To make his case complete, he 
should have included a $20 condition. If self–persuasion against going 
to the Rose Bowl had been weaker here than in the $5 condition, it would 
have established tha t too much reward produces a backlash, just as he 
had predicted. On the other hand, more Rose Bowl opposition for $20 
than for $5 would have undercut his criticism of $20 as a perceived bribe. 

To argue convincingly that there was an artifactual feature in some
one else’s experiment, therefore, one should not simply do one’s own 
study with the offending feature removed. It is important also to 
replicate the original, with the feature included. This way, you can be 
clear about whether the feature seems truly to produce artifactual 
results, or whether there is some other difference between the compet
ing experiments (such as whether the subjects were asked to speak out, 
or to write an essay against their own opinions). 

It is astonishing how often this replication procedure is not followed. 
This may be because critics convince themselves that the original 
investigator did something wrong, and they know how to do it right, and 
get the right result. It does not occur to the critic to repeat the experi
ment the “wrong” way 

As postscript on the argument over the $20 payment, we note that in 
the subsequent dissonance theory literature, the issue was simply 
avoided by using a smaller range of payments or by manipulating other 
justifications for action than monetary incentives. The dissonance the– 
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ory prediction was massively confirmed in later experiments, though 
not without theoretical modification (see chap. 8; see also Cooper & 
Fazio, 1984). 

Procedural Bias 

Impurities as artifacts are generally unintended by the experimenter. 
Somewhat distinct from this are cases in which bias is associated 
directly with the role played by the experimenter—who typically has a 
preference for one outcome over others. Rather than using single, focal 
examples, we treat this category of potential artifacts by general discus
sion. 

Experimenter Bias. Investigators typically want the results of 
their experiments to come out in a particular way At a minimum, they 
wish to make one of the elementary arguments of chapter 2, say, tha t a 
particular causal factor is responsible for a systematic difference be
tween experimental groups. If their wishes became experimental reali
ties, they would be happy But short of sheer fraud, carelessly slanted 
data tabulation, or a brash style of analysis and presentation, can 
experimenters bias, knowingly or unknowingly, the outcomes of their 
experiments? 

The answer appears to be yes. Robert Rosenthal (1963), in a series of 
studies some years ago, showed that different experimenters induced to 
believe in different experimental hypotheses tended to come up with 
results supporting their particular sides. He called this tendency the 
“experimenter expectancy effect.” It might be due to the increased 
enthusiasm or attention lavished on subjects in the experimental group, 
as opposed to the control group. Or the bias could be mediated by subtle, 
nonlinguistic cues given off by the experimenter. (For reviews of the 
evidence for, and explanations of experimenter expectancy effects, see 
Rosenthal, 1976; and Rosenthal & Rubin, 1978.) 

There are standard precautions to forestall critics waiting to pounce 
on the mere possibility of experimenter bias effects. The best rhetorical 
protection is provided by having the experimenter be unaware of, or 
blind, to which condition each individual subject is in. The most foolproof 
way to do this is to confine the experimenter’s contact with the subject 
to the time period before the subject is randomly assigned to a condition. 
The experimenter might give the general instructions applying to all 
subjects, and then have the specific instructions, varying by condition, 
administered by computer. 

A less than absolutely perfect, but still very good precautionary 
method is to divide the administration of the experiment between two 
experimenters, one who introduces the critical experimental manipula
tion, and the other who obtains the final response measures (whatever 
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else the two of them do). The second experimenter should be blind to the 
condition the first experimenter has introduced. 

There are many cases in which such less than perfect protection 
against experimenter bias is the best one can do, because any attempt 
to keep the main experimenter blind to the experimental conditions 
produces an awkward or even bizarre situation. Suppose a therapist 
were comparing two kinds of therapy each kind to be tried on a random 
half of her patients. We could not reasonably demand of the therapist 
that she not know what kind of therapy she was providing to each 
individual patient. However, we could ensure that evaluation of clinical 
benefits be done by someone else who was kept blind to the therapy 

Despite its ready availability as a criticism, there is uncertain rhe
torical force behind the assertion that the experimenter might have 
biased the results in such and such a way. In questions of potential 
experimenter bias, what seems to tip the balance of debate is whether 
or not the experimenter took every reasonable precaution. An investi
gator who overlooks the need to keep the experimenter blind to condi
tion, or an assistant blind to the hypothesis, is especially vulnerable 
when it would have been relatively simple to take these steps. As we 
have seen in cases of potential experimental impurities, prevention is 
the best defense—although sometimes it is not simple to maintain 
investigator blindness. An alternative, albeit weaker line of defense is 
to show that though an experimenter bias effect was a conceptual 
possibility, it in fact was not likely to have occurred. This requires that 
some written or filmed record of the experimenter’s (or assistant’s) 
behaviors has been kept, and that judges cannot distinguish the sets of 
behaviors toward different experimental groups. 

Demand Characteristics. When an investigator puts forward a 
claim that a particular experimentally manipulated factor produced a 
systematic difference between groups of randomly selected individuals, 
critics may point out that human subjects are capable of deliberate, 
strategic responses to the experimental situation. Subjects may wonder 
what is going on, they may be suspicious,11 they may try to please the 
experimenter, and so on. The term demand characteristics is used to 
evoke the possibility that subjects ask themselves, “What does the 
experimenter want me to do? What demands are being made upon me?” 
and then they behave so as to satisfy (or in some cases, resist) those 
perceived demands. Other variants of this criticism are that subjects try 

In psychological experimentation, the preponderance of studies have been run using 
college undergraduates as subjects (see Sears, 1986), usually through recruitment proce
dures that remain constant year after year. Word about tricky experimental procedures 
has gotten around, and nowadays undergraduate subjects are chronically suspicious, or 
at least skeptical of experiments. 
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to respond in the most socially desirable way, or that they regard the 
experiment as some kind of a test of character. 

Potential artifacts in the demand characteristics category do not 
concern the direct influences of the experimenter; rather, they depend 
on subjects’ interpretations of the experimenter’s behavior and purposes. 
Such interpretations, judging by what subjects say afterward, are 
commonly highly inaccurate. 

The demand characteristic argument is quite difficult to meet. Inves
tigators have very limited access, at best, to subjects’ states of mind. In 
fact, subjects may have very limited access to their own states of mind, 
especially concerning why they may have acted in a certain way (Nisbett 
& Wilson, 1977). The most secure protection against demand character
istics arises in experimental designs that can be arranged so that 
subjects are blind to condition, or where the response is not under 
conscious control. The first condition often is mitigated in between– 
group experiments. Each subject experiences the critical manipulation 
along with a lot of other procedural stuff, and ordinarily does not know 
which feature of the design is the one that subjects in other groups will 
experience differently. The second condition, lack of conscious control, 
obtains for many physiological response measures, and arguably can be 
achieved using reaction time as the measure. For experiments lacking 
such fortunate circumstances, procedural precautions against demand 
characteristics may be hard to devise, and they are best employed 
severally.12 

Among the steps a reasonable experimenter might take are the 
following: 

1. Emphasize to the subjects their personal anonymity. 
2. Deemphasize testlike aspects of the procedure. 
3. Make the instructions straightforward and credible. 
4. Interview pilot subjects about their interpretations. 
5. If necessary, redesign the study to alleviate suspicions. 
6. Separate response measures from treatment manipulations. 
7. Use unobtrusive or nonreactive response measures. 
8. Use procedures to diagnose demand characteristics. 

Example: Attitude Extremity and Biased Processing. Most of the 
precautions in the previous list are self–explanatory. The device (Item 
8) of creating extra materials to diagnose attempts to conform to exper
imental demands can be illustrated by the Lord et al. (1984) study of 
the stubbornness associated with strong attitudes. In this study as well 

12No single rejoinder by itself may be very compelling, yet the totality may be persuasive. 
This circumstance is satirized by the tailor’s boast: “We lose money on each suit, but we 
sell so many we make a profit.,, 
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in previous research (Lord et al., 1979), people with extreme attitudes 
for or against capital punishment were found to twist mixed evidence 
concerning its deterrent effects so much that people on the two sides 
were more polarized in their attitudes after exposure to the evidence 
than before. 

In a consider–the–opposite condition, all the partisans were told prior 
to seeing the evidence that most people find more flaws in data critical 
of their point of view than in data supporting it. They were urged to ask 
themselves when examining each bit of evidence whether they would 
have had the same evaluation of it if the results had favored the other 
side of the issue. As the investigators predicted, the consider–the–oppo
site instruction produced almost even–handed treatment of the evidence, 
and eliminated the polarization effect. However, this is the sort of 
finding that is most vulnerable to a demand characteristics explanation. 
A critic might say that the investigators flatly told the subjects what to 
do—treat all evidence equally critically—and by golly, the subjects did 
it. 

Anticipating both the finding and the criticism, Lord et al. (1984) ran 
a third group, a be–unbiased condition, with instructions to the subjects 
to be as objective and unbiased as possible, like a judge or juror weighing 
evidence fairly and impartially. The results for this condition showed as 
much bias and polarization as in the condition with no special instruc
tion. Jus t telling subjects to be impartial does not work. Moreover, an 
independent group of people, when shown the consider–the–opposite and 
be–unbiased instructions, rated the latter as more likely to apply pres
sure to subjects to do what the experimenters wanted. From this, the 
authors argued that the whole pattern of results of the experiment was 
not plausibly explained by demand characteristics. 

Because the demand characteristics explanation is so often available 
and applicable in principle, it is an easy criticism to make. However, if 
the experimenter has employed reasonable preventive devices, one 
might hope tha t critics would refrain from automatically jerking their 
demand–characteristics knee. 

Bias Associated With Stimulus Materials: An ESP Example. 
There are possibilities for a number of other extraneous influences to 
creep into psychological experiments. We will cover just one more, 
chosen because of its relevance to the thematic mental telepathy experi
ments discussed in chapters 2 and 5. 

In all experiments on ESP, it is of course a presumption tha t cues 
from normal sensory channels have been ruled out. Stage magicians 
often rely on the devious use of ordinary information channels in 
demonstrations of mind reading, such as having an accomplice eaves
drop in the lobby as the audience files in. (I was once the butt of a 
classroom demonstration in which the “psychic” told the class exactly 
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what I had eaten for dinner the night before. He obtained this informa
tion in a telephone conversation with my wife, who promised to go along 
with the gag.) 

Responsible experimenters in parapsychology, of which there are 
many, sincerely try to eliminate ordinary information channels. Yet on 
occasion information is unintentionally conveyed in some subtle but 
normal way. One example of this possibility arises in Ganzfeld studies 
of mental telepathy (see Bern & Honorton, 1994). 

In this paradigm, the isolated receiver is cut off from visual informa
tion by a ping–pong ball, halved and cupped over his eyes, and from 
auditory information by white noise in his earphones. The sender has 
30 minutes to try to convey by telepathy the essence of a visual scene 
from a picture that has been randomly chosen from a set of four pictures. 
The sender is permitted to hold the chosen picture. Subsequently, the 
receiver is given the set of four pictures from which the target was 
chosen, and (in the simplest version of the procedure) is asked to name 
the target picture. 

A meta–analysis of Ganzfeld studies (Bern & Honorton, 1994; 
Honorton, 1985) produced claims of hit rates significantly above the 
chance level of .25. Several of the skeptics who pored over the details of 
the early Ganzfeld experiments, however, noticed a possible channel of 
sensory leakage: The receiver, given a set of four pictures including the 
target—the only picture handled by the sender—can be correctly cued 
by smudges, fingerprints, or even a temperature difference. 

This critique was like the $20 critique of the Festinger and Carlsmith 
(1959) study in that it had face credibility, with the upshot of throwing 
the investigator on the defensive. The best way to handle this was (as 
in the $20 case) to avoid the problem procedurally in later studies. What 
was subsequently done in the Ganzfeld protocol was to have duplicate 
sets of pictures, so that the copy of the target in the receiver’s set had 
not been handled or even seen by the sender. This effectively eliminates 
the purported artifact. 

Interestingly, there is no evidence that hypothetical smudges on 
target pictures actually helped receivers to score more highly. Hyman 
(1985), a persistent critic of parapsychology, reported no correlation 
between opportunity for sensory leakage and telepathic hit rate. Yet, 
protective measures against leakage, including duplicate sets of pic
tures, are now included in the design of any Ganzfeld study. 

THE INFLUENCE OF CRITICISM ON 
METHODOLOGY 

In two of our examples of criticism of experiments, one based on an 
impurity in a manipulation (the $20 incentive) and one based on a 
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procedural bias (sensory leakage), we saw that the subsequent strategy 
of researchers in the particular domain was to change the design to avoid 
the potential impurity This was the case even though there was no 
evidence in either case that the experimental results were affected in 
any way by the supposed artifacts. 

I believe that this peculiar phenomenon obtains rather generally, not 
only in science, but in other arenas such as politics. When a particular 
criticism is widely raised, and the rebuttal seems insufficient, the 
criticism will tend to become even stronger and more fashionable, and 
be used again in similar circumstances. Targets of such criticisms may 
conclude tha t the only way to survive is to accept the criticism as valid 
(even though it may not be), and avoid precipitating it in the future. 
Thus, any celebrated flurry of criticism is likely to provoke a methodo
logical change in future studies of the same type—especially if it is as 
easy to implement as was the introduction of duplicate picture sets in 
the Ganzfeld paradigm. 

In any discipline aspiring to excellence in its research methods, the 
long–run consequence of measures designed to protect against criticism 
will be the accretion of a body of practices that become habitualized in 
its methodology. Today’s complaint becomes tomorrow’s precaution. In 
the words of Abelson’s Eighth Law, Criticism is the mother of methodol
ogy. This is a major feature of my thesis that argument is intrinsic to 
statistical and conceptual analysis of research outcomes, and is good for 
the health of science. 

We have come full circle. Research results are articulated with 
particular arguments, supported by disciplined research procedures and 
statistical analyses. As research cumulates under pressure from the 
exchange of counterarguments, previous theoretical generalizations 
will be supported, modified, or abandoned, and new generalizations may 
emerge. Beyond the development of theories and general findings, 
wisdom accumulates on the pitfalls and benefits of particular research 
and statistical methods. Over time, albeit slowly, methodological criti
cism becomes more trenchant and demanding, and investigators must 
conduct research with more intelligence and care. Each new generation 
of research workers in the social sciences, therefore, is exposed to a more 
sophisticated scientific culture than the previous cohort. Thus, princi
pled statistical argument is not only unavoidable, it is fundamental. 
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