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 Abstract. There are two cultures in the use of statistical modeling to
 reach conclusions from data. One assumes that the data are generated

 by a given stochastic data model. The other uses algorithmic models and
 treats the data mechanism as unknown. The statistical community has
 been committed to the almost exclusive use of data models. This commit-

 ment has led to irrelevant theory, questionable conclusions, and has kept
 statisticians from working on a large range of interesting current prob-

 lems. Algorithmic modeling, both in theory and practice, has developed
 rapidly in fields outside statistics. It can be used both on large complex

 data sets and as a more accurate and informative alternative to data
 modeling on smaller data sets. If our goal as a field is to use data to
 solve problems, then we need to move away from exclusive dependence
 on data models and adopt a more diverse set of tools.

 1. INTRODUCTION

 Statistics starts with data. Think of the data as
 being generated by a black box in which a vector of
 input variables x (independent variables) go in one

 side, and on the other side the response variables y
 come out. Inside the black box, nature functions to

 associate the predictor variables with the response
 variables, so the picture is like this:

 y * nature x

 There are two goals in analyzing the data:

 Prediction. To be able to predict what the responses

 are going to be to future input variables;
 Information. To extract some information about
 how nature is associating the response variables

 to the input variables.

 There are two different approaches toward these
 goals:

 The Data Modeling Culture

 The analysis in this culture starts with assuming
 a stochastic data model for the inside of the black

 box. For example, a common data model is that data
 are generated by independent draws from

 response variables = f(predictor variables,

 random noise, parameters)
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 The values of the parameters are estimated from

 the data and the model then used for information

 and/or prediction. Thus the black box is filled in like
 this:

 Y-4 linear regression L X
 logistic regression X
 Cox model

 Model validation. Yes-no using goodness-of-fit
 tests and residual examination.
 Estimated culture population. 98% of all statisti-
 cians.

 The Algorithmic Modeling Culture

 The analysis in this culture considers the inside of

 the box complex and unknown. Their approach is to
 find a function f(x)-an algorithm that operates on
 x to predict the responses y. Their black box looks

 like this:

 y unknown .4 x

 decision trees

 neural nets

 Model validation. Measured by predictive accuracy.
 Estimated culture population. 2% of statisticians,

 many in other fields.

 In this paper I will argue that the focus in the

 statistical community on data models has:

 * Led to irrelevant theory and questionable sci-

 entific conclusions;
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 200 L. BREIMAN

 * Kept statisticians from using more suitable

 algorithmic models;
 * Prevented statisticians from working on excit-

 ing new problems;

 I will also review some of the interesting new
 developments in algorithmic modeling in machine
 learning and look at applications to three data sets.

 2. ROAD MAP

 It may be revealing to understand how I became a

 member of the small second culture. After a seven-
 year stint as an academic probabilist, I resigned and
 went into full-time free-lance consulting. After thir-

 teen years of consulting I joined the Berkeley Statis-
 tics Department in 1980 and have been there since.
 My experiences as a consultant formed my views

 about algorithmic modeling. Section 3 describes two
 of the projects I worked on. These are given to show
 how my views grew from such problems.

 When I returned to the university and began
 reading statistical journals, the research was dis-

 tant from what I had done as a consultant. All

 articles begin and end with data models. My obser-
 vations about published theoretical research in
 statistics are in Section 4.

 Data modeling has given the statistics field many
 successes in analyzing data and getting informa-

 tion about the mechanisms producing the data. But
 there is also misuse leading to questionable con-

 clusions about the underlying mechanism. This is
 reviewed in Section 5. Following that is a discussion

 (Section 6) of how the commitment to data modeling
 has prevented statisticians from entering new sci-
 entific and commercial fields where the data being
 gathered is not suitable for analysis by data models.

 In the past fifteen years, the growth in algorith-

 mic modeling applications and methodology has
 been rapid. It has occurred largely outside statis-
 tics in a new community-often called machine
 learning-that is mostly young computer scientists

 (Section 7). The advances, particularly over the last
 five years, have been startling. Three of the most
 important changes in perception to be learned from
 these advances are described in Sections 8, 9, and
 10, and are associated with the following names:

 Rashomon: the multiplicity of good models;
 Occam: the conflict between simplicity and
 accuracy;

 Bellman: dimensionality-curse or blessing?

 Section 11 is titled "Information from a Black
 Box" and is important in showing that an algo-
 rithmic model can produce more and more reliable
 information about the structure of the relationship

 between inputs and outputs than data models. This
 is illustrated using two medical data sets and a

 genetic data set. A glossary at the end of the paper

 explains terms that not all statisticians may be

 familiar with.

 3. PROJECTS IN CONSULTING

 As a consultant I designed and helped supervise
 surveys for the Environmental Protection Agency
 (EPA) and the state and federal court systems. Con-

 trolled experiments were designed for the EPA, and
 I analyzed traffic data for the U.S. Department of

 Transportation and the California Transportation

 Department. Most of all, I worked on a diverse set

 of prediction projects. Here are some examples:

 Predicting next-day ozone levels.

 Using mass spectra to identify halogen-containing
 compounds.
 Predicting the class of a ship from high altitude

 radar returns.

 Using sonar returns to predict the class of a sub-
 marine.

 Identity of hand-sent Morse Code.
 Toxicity of chemicals.

 On-line prediction of the cause of a freeway traffic
 breakdown.

 Speech recognition
 The sources of delay in criminal trials in state court

 systems.

 To understand the nature of these problems and

 the approaches taken to solve them, I give a fuller
 description of the first two on the list.

 3.1 The Ozone Project

 In the mid- to late 1960s ozone levels became a

 serious health problem in the Los Angeles Basin.
 Three different alert levels were established. At the
 highest, all government workers were directed not
 to drive to work, children were kept off playgrounds
 and outdoor exercise was discouraged.

 The major source of ozone at that time was auto-

 mobile tailpipe emissions. These rose into the low
 atmosphere and were trapped there by an inversion
 layer. A complex chemical reaction, aided by sun-
 light, cooked away and produced ozone two to three
 hours after the morning commute hours. The alert
 warnings were issued in the morning, but would be
 more effective if they could be issued 12 hours in
 advance. In the mid-1970s, the EPA funded a large
 effort to see if ozone levels could be accurately pre-
 dicted 12 hours in advance.

 Commuting patterns in the Los Angeles Basin
 are regular, with the total variation in any given
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 daylight hour varying only a few percent from
 one weekday to another. With the total amount of
 emissions about constant, the resulting ozone lev-
 els depend on the meteorology of the preceding
 days. A large data base was assembled consist-
 ing of lower and upper air measurements at U.S.

 weather stations as far away as Oregon and Ari-
 zona, together with hourly readings of surface
 temperature, humidity, and wind speed at the
 dozens of air pollution stations in the Basin and
 nearby areas.

 Altogether, there were daily and hourly readings

 of over 450 meteorological variables for a period of
 seven years, with corresponding hourly values of
 ozone and other pollutants in the Basin. Let x be
 the predictor vector of meteorological variables on
 the nth day. There are more than 450 variables in
 x since information several days back is included.

 Let y be the ozone level on the (n + 1)st day. Then
 the problem was to construct a function f (x) such
 that for any future day and future predictor vari-
 ables x for that day, f (x) is an accurate predictor of

 the next day's ozone level y.
 To estimate predictive accuracy, the first five

 years of data were used as the training set. The
 last two years were set aside as a test set. The
 algorithmic modeling methods available in the pre-
 1980s decades seem primitive now. In this project
 large linear regressions were run, followed by vari-
 able selection. Quadratic terms in, and interactions
 among, the retained variables were added and vari-
 able selection used again to prune the equations. In
 the end, the project was a failure-the false alarm
 rate of the final predictor was too high. I have
 regrets that this project can't be revisited with the

 tools available today.

 3.2 The Chlorine Project

 The EPA samples thousands of compounds a year
 and tries to determine their potential toxicity. In
 the mid-1970s, the standard procedure was to mea-
 sure the mass spectra of the compound and to try
 to determine its chemical structure from its mass

 spectra.

 Measuring the mass spectra is fast and cheap. But
 the determination of chemical structure from the

 mass spectra requires a painstaking examination
 by a trained chemist. The cost and availability of
 enough chemists to analyze all of the mass spectra
 produced daunted the EPA. Many toxic compounds
 contain halogens. So the EPA funded a project to
 determine if the presence of chlorine in a compound
 could be reliably predicted from its mass spectra.

 Mass spectra are produced by bombarding the
 compound with ions in the presence of a magnetic

 field. The molecules of the compound split and the
 lighter fragments are bent more by the magnetic

 field than the heavier. Then the fragments hit an

 absorbing strip, with the position of the fragment on

 the strip determined by the molecular weight of the
 fragment. The intensity of the exposure at that posi-

 tion measures the frequency of the fragment. The
 resultant mass spectra has numbers reflecting fre-
 quencies of fragments from molecular weight 1 up to

 the molecular weight of the original compound. The
 peaks correspond to frequent fragments and there

 are many zeroes. The available data base consisted
 of the known chemical structure and mass spectra

 of 30,000 compounds.
 The mass spectrum predictor vector x is of vari-

 able dimensionality. Molecular weight in the data

 base varied from 30 to over 10,000. The variable to
 be predicted is

 y = 1: contains chlorine,

 y = 2: does not contain chlorine.

 The problem is to construct a function f(x) that

 is an accurate predictor of y where x is the mass

 spectrum of the compound.
 To measure predictive accuracy the data set was

 randomly divided into a 25,000 member training

 set and a 5,000 member test set. Linear discrim-
 inant analysis was tried, then quadratic discrimi-
 nant analysis. These were difficult to adapt to the
 variable dimensionality. By this time I was thinking
 about decision trees. The hallmarks of chlorine in
 mass spectra were researched. This domain knowl-
 edge was incorporated into the decision tree algo-
 rithm by the design of the set of 1,500 yes-no ques-

 tions that could be applied to a mass spectra of any
 dimensionality. The result was a decision tree that
 gave 95% accuracy on both chlorines and nonchlo-
 rines (see Breiman, Friedman, Olshen and Stone,
 1984).

 3.3 Perceptions on Statistical Analysis

 As I left consulting to go back to the university,

 these were the perceptions I had about working with
 data to find answers to problems:

 (a) Focus on finding a good solution-that's what
 consultants get paid for.

 (b) Live with the data before you plunge into
 modeling.

 (c) Search for a model that gives a good solution,
 either algorithmic or data.

 (d) Predictive accuracy on test sets is the crite-
 rion for how good the model is.

 (e) Computers are an indispensable partner.
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 4. RETURN TO THE UNIVERSITY

 I had one tip about what research in the uni-
 versity was like. A friend of mine, a prominent
 statistician from the Berkeley Statistics Depart-
 ment, visited me in Los Angeles in the late 1970s.
 After I described the decision tree method to him,
 his first question was, "What's the model for the
 data?"

 4.1 Statistical Research

 Upon my return, I started reading the Annals of
 Statistics, the flagship journal of theoretical statis-
 tics, and was bemused. Every article started with

 Assume that the data are generated by the follow-
 ing model: ...

 followed by mathematics exploring inference, hypo-
 thesis testing and asymptotics. There is a wide
 spectrum of opinion regarding the usefulness of the
 theory published in the Annals of Statistics to the
 field of statistics as a science that deals with data. I
 am at the very low end of the spectrum. Still, there
 have been some gems that have combined nice
 theory and significant applications. An example is
 wavelet theory. Even in applications, data models
 are universal. For instance, in the Journal of the
 American Statistical Association (JASA), virtually
 every article contains a statement of the form:

 Assume that the data are generated by the follow-
 ing model: ...

 I am deeply troubled by the current and past use
 of data models in applications, where quantitative
 conclusions are drawn and perhaps policy decisions
 made.

 5. THE USE OF DATA MODELS

 Statisticians in applied research consider data
 modeling as the template for statistical analysis:
 Faced with an applied problem, think of a data
 model. This enterprise has at its heart the belief
 that a statistician, by imagination and by looking
 at the data, can invent a reasonably good para-
 metric class of models for a complex mechanism
 devised by nature. Then parameters are estimated
 and conclusions are drawn. But when a model is fit
 to data to draw quantitative conclusions:

 * The conclusions are about the model's mecha-
 nism, and not about nature's mechanism.

 It follows that:

 * If the model is a poor emulation of nature, the
 conclusions may be wrong.

 These truisms have often been ignored in the enthu-

 siasm for fitting data models. A few decades ago,
 the commitment to data models was such that even
 simple precautions such as residual analysis or
 goodness-of-fit tests were not used. The belief in the
 infallibility of data models was almost religious. It
 is a strange phenomenon-once a model is made,

 then it becomes truth and the conclusions from it
 are infallible.

 5.1 An Example

 I illustrate with a famous (also infamous) exam-
 ple: assume the data is generated by independent

 draws from the model
 M

 (R) Y = bo + bmXm + 8,
 1

 where the coefficients {bm} are to be estimated, 8
 is N(O, a-2) and a-2 is to be estimated. Given that
 the data is generated this way, elegant tests of
 hypotheses, confidence intervals, distributions of
 the residual sum-of-squares and asymptotics can be
 derived. This made the model attractive in terms

 of the mathematics involved. This theory was used
 both by academic statisticians and others to derive
 significance levels for coefficients on the basis of
 model (R), with little consideration as to whether
 the data on hand could have been generated by a
 linear model. Hundreds, perhaps thousands of arti-

 cles were published claiming proof of something or
 other because the coefficient was significant at the
 5% level.

 Goodness-of-fit was demonstrated mostly by giv-
 ing the value of the multiple correlation coefficient
 R2 which was often closer to zero than one and
 which could be over inflated by the use of too many
 parameters. Besides computing R2, nothing else
 was done to see if the observational data could have

 been generated by model (R). For instance, a study
 was done several decades ago by a well-known
 member of a university statistics department to
 assess whether there was gender discrimination in
 the salaries of the faculty. All personnel files were
 examined and a data base set up which consisted of
 salary as the response variable and 25 other vari-
 ables which characterized academic performance;
 that is, papers published, quality of journals pub-
 lished in, teaching record, evaluations, etc. Gender
 appears as a binary predictor variable.

 A linear regression was carried out on the data
 and the gender coefficient was significant at the
 5% level. That this was strong evidence of sex dis-

 crimination was accepted as gospel. The design
 of the study raises issues that enter before the
 consideration of a model-Can the data gathered
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 answer the question posed? Is inference justified
 when your sample is the entire population? Should

 a data model be used? The deficiencies in analysis

 occurred because the focus was on the model and
 not on the problem.

 The linear regression model led to many erro-

 neous conclusions that appeared in journal articles

 waving the 5% significance level without knowing
 whether the model fit the data. Nowadays, I think

 most statisticians will agree that this is a suspect
 way to arrive at conclusions. At the time, there were

 few objections from the statistical profession about
 the fairy-tale aspect of the procedure, But, hidden in
 an elementary textbook, Mosteller and Tukey (1977)

 discuss many of the fallacies possible in regression
 and write "The whole area of guided regression is
 fraught with intellectual, statistical, computational,

 and subject matter difficulties."
 Even currently, there are only rare published cri-

 tiques of the uncritical use of data models. One of

 the few is David Freedman, who examines the use
 of regression models (1994); the use of path models
 (1987) and data modeling (1991, 1995). The analysis

 in these papers is incisive.

 5.2 Problems in Current Data Modeling

 Current applied practice is to check the data
 model fit using goodness-of-fit tests and residual

 analysis. At one point, some years ago, I set up a

 simulated regression problem in seven dimensions
 with a controlled amount of nonlinearity. Standard
 tests of goodness-of-fit did not reject linearity until
 the nonlinearity was extreme. Recent theory sup-
 ports this conclusion. Work by Bickel, Ritov and
 Stoker (2001) shows that goodness-of-fit tests have
 very little power unless the direction of the alter-
 native is precisely specified. The implication is that
 omnibus goodness-of-fit tests, which test in many
 directions simultaneously, have little power, and
 will not reject until the lack of fit is extreme.

 Furthermore, if the model is tinkered with on the

 basis of the data, that is, if variables are deleted
 or nonlinear combinations of the variables added,
 then goodness-of-fit tests are not applicable. Resid-
 ual analysis is similarly unreliable. In a discussion
 after a presentation of residual analysis in a sem-
 inar at Berkeley in 1993, William Cleveland, one
 of the fathers of residual analysis, admitted that it
 could not uncover lack of fit in more than four to five

 dimensions. The papers I have read on using resid-
 ual analysis to check lack of fit are confined to data
 sets with two or three variables.

 With higher dimensions, the interactions between
 the variables can produce passable residual plots for

 a variety of models. A residual plot is a goodness-of-
 fit test, and lacks power in more than a few dimen-
 sions. An acceptable residual plot does not imply
 that the model is a good fit to the data.

 There are a variety of ways of analyzing residuals.
 For instance, Landwher, Preibon and Shoemaker
 (1984, with discussion) gives a detailed analysis of
 fitting a logistic model to a three-variable data set
 using various residual plots. But each of the four
 discussants present other methods for the analysis.
 One is left with an unsettled sense about the arbi-
 trariness of residual analysis.

 Misleading conclusions may follow from data

 models that pass goodness-of-fit tests and residual
 checks. But published applications to data often

 show little care in checking model fit using these
 methods or any other. For instance, many of the
 current application articles in JASA that fit data
 models have very little discussion of how well their
 model fits the data. The question of how well the
 model fits the data is of secondary importance com-
 pared to the construction of an ingenious stochastic
 model.

 5.3 The Multiplicity of Data Models

 One goal of statistics is to extract information
 from the data about the underlying mechanism pro-

 ducing the data. The greatest plus of data modeling
 is that it produces a simple and understandable pic-

 ture of the relationship between the input variables
 and responses. For instance, logistic regression in
 classification is frequently used because it produces
 a linear combination of the variables with weights
 that give an indication of the variable importance.
 The end result is a simple picture of how the pre-
 diction variables affect the response variable plus
 confidence intervals for the weights. Suppose two
 statisticians, each one with a different approach
 to data modeling, fit a model to the same data
 set. Assume also that each one applies standard

 goodness-of-fit tests, looks at residuals, etc., and
 is convinced that their model fits the data. Yet
 the two models give different pictures of nature's
 mechanism and lead to different conclusions.

 McCullah and Nelder (1989) write "Data will
 often point with almost equal emphasis on sev-
 eral possible models, and it is important that the
 statistician recognize and accept this." Well said,
 but different models, all of them equally good, may
 give different pictures of the relation between the
 predictor and response variables. The question of

 which one most accurately reflects the data is dif-
 ficult to resolve. One reason for this multiplicity
 is that goodness-of-fit tests and other methods for
 checking fit give a yes-no answer. With the lack of
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 power of these tests with data having more than a
 small number of dimensions, there will be a large
 number of models whose fit is acceptable. There is
 no way, among the yes-no methods for gauging fit,

 of determining which is the better model. A few
 statisticians know this. Mountain and Hsiao (1989)
 write, "It is difficult to formulate a comprehensive
 model capable of encompassing all rival models.
 Furthermore, with the use of finite samples, there
 are dubious implications with regard to the validity
 and power of various encompassing tests that rely
 on asymptotic theory."

 Data models in current use may have more dam-

 aging results than the publications in the social sci-
 ences based on a linear regression analysis. Just as
 the 5% level of significance became a de facto stan-
 dard for publication, the Cox model for the analysis
 of survival times and logistic regression for survive-
 nonsurvive data have become the de facto standard
 for publication in medical journals. That different
 survival models, equally well fitting, could give dif-
 ferent conclusions is not an issue.

 5.4 Predictive Accuracy

 The most obvious way to see how well the model
 box emulates nature's box is this: put a case x down
 nature's box getting an output y. Similarly, put the
 same case x down the model box getting an out-
 put y'. The closeness of y and y' is a measure of
 how good the emulation is. For a data model, this
 translates as: fit the parameters in your model by
 using the data, then, using the model, predict the
 data and see how good the prediction is.

 Prediction is rarely perfect. There are usu-
 ally many unmeasured variables whose effect is
 referred to as "noise." But the extent to which the
 model box emulates nature's box is a measure of
 how well our model can reproduce the natural
 phenomenon producing the data.

 McCullagh and Nelder (1989) in their book on
 generalized linear models also think the answer is
 obvious. They write, "At first sight it might seem
 as though a good model is one that fits the data
 very well; that is, one that makes ,u (the model pre-
 dicted value) very close to y (the response value)."
 Then they go on to note that the extent of the agree-
 ment is biased by the number of parameters used
 in the model and so is not a satisfactory measure.
 They are, of course, right. If the model has too many
 parameters, then it may overfit the data and give a
 biased estimate of accuracy. But there are ways to
 remove the bias. To get a more unbiased estimate
 of predictive accuracy, cross-validation can be used,
 as advocated in an important early work by Stone
 (1974). If the data set is larger, put aside a test set.

 Mosteller and Tukey (1977) were early advocates
 of cross-validation. They write, "Cross-validation is
 a natural route to the indication of the quality of any

 data-derived quantity.... We plan to cross-validate
 carefully wherever we can."

 Judging by the infrequency of estimates of pre-
 dictive accuracy in JASA, this measure of model
 fit that seems natural to me (and to Mosteller and
 Tukey) is not natural to others. More publication of
 predictive accuracy estimates would establish stan-

 dards for comparison of models, a practice that is
 common in machine learning.

 6. THE LIMITATIONS OF DATA MODELS

 With the insistence on data models, multivariate
 analysis tools in statistics are frozen at discriminant
 analysis and logistic regression in classification and
 multiple linear regression in regression. Nobody
 really believes that multivariate data is multivari-
 ate normal, but that data model occupies a large
 number of pages in every graduate textbook on
 multivariate statistical analysis.

 With data gathered from uncontrolled observa-
 tions on complex systems involving unknown physi-
 cal, chemical, or biological mechanisms, the a priori
 assumption that nature would generate the data
 through a parametric model selected by the statis-
 tician can result in questionable conclusions that
 cannot be substantiated by appeal to goodness-of-fit
 tests and residual analysis. Usually, simple para-
 metric models imposed on data generated by com-
 plex systems, for example, medical data, financial
 data, result in a loss of accuracy and information as
 compared to algorithmic models (see Section 11).

 There is an old saying "If all a man has is a
 hammer, then every problem looks like a nail." The
 trouble for statisticians is that recently some of the
 problems have stopped looking like nails. I conjec-

 ture that the result of hitting this wall is that more
 complicated data models are appearing in current
 published applications. Bayesian methods combined
 with Markov Chain Monte Carlo are cropping up all
 over. This may signify that as data becomes more
 complex, the data models become more cumbersome

 and are losing the advantage of presenting a simple
 and clear picture of nature's mechanism.

 Approaching problems by looking for a data model
 imposes an a priori straight jacket that restricts the
 ability of statisticians to deal with a wide range of
 statistical problems. The best available solution to
 a data problem might be a data model; then again
 it might be an algorithmic model. The data and the
 problem guide the solution. To solve a wider range
 of data problems, a larger set of tools is needed.
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 Perhaps the damaging consequence of the insis-

 tence on data models is that statisticians have ruled

 themselves out of some of the most interesting and

 challenging statistical problems that have arisen

 out of the rapidly increasing ability of computers

 to store and manipulate data. These problems are

 increasingly present in many fields, both scientific

 and commercial, and solutions are being found by
 nonstatisticians.

 7. ALGORITHMIC MODELING

 Under other names, algorithmic modeling has
 been used by industrial statisticians for decades.
 See, for instance, the delightful book "Fitting Equa-
 tions to Data" (Daniel and Wood, 1971). It has been
 used by psychometricians and social scientists.
 Reading a preprint of Gifi's book (1990) many years

 ago uncovered a kindred spirit. It has made small
 inroads into the analysis of medical data starting

 with Richard Olshen's work in the early 1980s. For

 further work, see Zhang and Singer (1999). Jerome
 Friedman and Grace Wahba have done pioneering

 work on the development of algorithmic methods.
 But the list of statisticians in the algorithmic mod-

 eling business is short, and applications to data are
 seldom seen in the journals. The development of

 algorithmic methods was taken up by a community

 outside statistics.

 7.1 A New Research Community

 In the mid-1980s two powerful new algorithms
 for fitting data became available: neural nets and
 decision trees. A new research community using
 these tools sprang up. Their goal was predictive
 accuracy. The community consisted of young com-
 puter scientists, physicists and engineers plus a few
 aging statisticians. They began using the new tools
 in working on complex prediction problems where it
 was obvious that data models were not applicable:
 speech recognition, image recognition, nonlinear
 time series prediction, handwriting recognition,
 prediction in financial markets.

 Their interests range over many fields that were
 once considered happy hunting grounds for statisti-
 cians and have turned out thousands of interesting
 research papers related to applications and method-
 ology. A large majority of the papers analyze real
 data. The criterion for any model is what is the pre-
 dictive accuracy. An idea of the range of research
 of this group can be got by looking at the Proceed-
 ings of the Neural Information Processing Systems
 Conference (their main yearly meeting) or at the
 Machine Learning Journal.

 7.2 Theory in Algorithmic Modeling

 Data models are rarely used in this community.

 The approach is that nature produces data in a
 black box whose insides are complex, mysterious,

 and, at least, partly unknowable. What is observed
 is a set of x's that go in and a subsequent set of y's
 that come out. The problem is to find an algorithm
 f(x) such that for future x in a test set, f(x) will
 be a good predictor of y.

 The theory in this field shifts focus from data mod-
 els to the properties of algorithms. It characterizes
 their "strength" as predictors, convergence if they
 are iterative, and what gives them good predictive
 accuracy. The one assumption made in the theory
 is that the data is drawn i.i.d. from an unknown
 multivariate distribution.

 There is isolated work in statistics where the
 focus is on the theory of the algorithms. Grace
 Wahba's research on smoothing spline algo-
 rithms and their applications to data (using cross-
 validation) is built on theory involving reproducing
 kernels in Hilbert Space (1990). The final chapter
 of the CART book (Breiman et al., 1984) contains
 a proof of the asymptotic convergence of the CART
 algorithm to the Bayes risk by letting the trees grow
 as the sample size increases. There are others, but
 the relative frequency is small.

 Theory resulted in a major advance in machine
 learning. Vladimir Vapnik constructed informative
 bounds on the generalization error (infinite test set
 error) of classification algorithms which depend on
 the "capacity" of the algorithm. These theoretical
 bounds led to support vector machines (see Vapnik,
 1995, 1998) which have proved to be more accu-
 rate predictors in classification and regression then
 neural nets, and are the subject of heated current
 research (see Section 10).

 My last paper "Some infinity theory for tree
 ensembles" (Breiman, 2000) uses a function space
 analysis to try and understand the workings of tree
 ensemble methods. One section has the heading,
 "My kingdom for some good theory." There is an
 effective method for forming ensembles known as
 "boosting," but there isn't any finite sample size
 theory that tells us why it works so well.

 7.3 Recent Lessons

 The advances in methodology and increases in
 predictive accuracy since the mid-1980s that have
 occurred in the research of machine learning has
 been phenomenal. There have been particularly
 exciting developments in the last five years. What
 has been learned? The three lessons that seem most
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 important to one:

 Rashomon: the multiplicity of good models;
 Occam: the conflict between simplicity and accu-
 racy;

 Bellman: dimensionality-curse or blessing.

 8. RASHOMON AND THE MULTIPLICITY
 OF GOOD MODELS

 Rashomon is a wonderful Japanese movie in
 which four people, from different vantage points,
 witness an incident in which one person dies and
 another is supposedly raped. When they come to
 testify in court, they all report the same facts, but
 their stories of what happened are very different.

 What I call the Rashomon Effect is that there
 is often a multitude of different descriptions [equa-
 tions f(x)] in a class of functions giving about the
 same minimum error rate. The most easily under-
 stood example is subset selection in linear regres-
 sion. Suppose there are 30 variables and we want to

 find the best five variable linear regressions. There
 are about 140,000 five-variable subsets in competi-
 tion. Usually we pick the one with the lowest resid-
 ual sum-of-squares (RSS), or, if there is a test set,
 the lowest test error. But there may be (and gen-
 erally are) many five-variable equations that have
 RSS within 1.0% of the lowest RSS (see Breiman,
 1996a). The same is true if test set error is being
 measured.

 So here are three possible pictures with RSS or
 test set error within 1.0% of each other:

 Picture 1

 y = 2.1 + 3.8x3 - 0.6x8 + 83.2x12

 - 2.1x17 + 3.2x27,

 Picture 2

 y = -8.9 + 4.6x5 + 0.01x6 + 12.0x15

 + 17.5X21 + 0.2X22,

 Picture 3

 y = -76.7 + 9.3x2 + 22.0x7 - 13.2x8

 + 3.4x11 + 7.2X28.

 Which one is better? The problem is that each one
 tells a different story about which variables are
 important.

 The Rashomon Effect also occurs with decision

 trees and neural nets. In my experiments with trees,
 if the training set is perturbed only slightly, say by
 removing a random 2-3% of the data, I can get
 a tree quite different from the original but with
 almost the same test set error. I once ran a small

 neural net 100 times on simple three-dimensional

 data reselecting the initial weights to be small and
 random on each run. I found 32 distinct minima,

 each of which gave a different picture, and having
 about equal test set error.

 This effect is closely connected to what I call

 instability (Breiman, 1996a) that occurs when there

 are many different models crowded together that
 have about the same training or test set error. Then
 a slight perturbation of the data or in the model
 construction will cause a skip from one model to
 another. The two models are close to each other in

 terms of error, but can be distant in terms of the
 form of the model.

 If, in logistic regression or the Cox model, the

 common practice of deleting the less important

 covariates is carried out, then the model becomes

 unstable-there are too many competing models.
 Say you are deleting from 15 variables to 4 vari-

 ables. Perturb the data slightly and you will very
 possibly get a different four-variable model and
 a different conclusion about which variables are
 important. To improve accuracy by weeding out less

 important covariates you run into the multiplicity

 problem. The picture of which covariates are impor-
 tant can vary significantly between two models
 having about the same deviance.

 Aggregating over a large set of competing mod-
 els can reduce the nonuniqueness while improving
 accuracy. Arena et al. (2000) bagged (see Glossary)
 logistic regression models on a data base of toxic and
 nontoxic chemicals where the number of covariates

 in each model was reduced from 15 to 4 by stan-

 dard best subset selection. On a test set, the bagged
 model was significantly more accurate than the sin-
 gle model with four covariates. It is also more stable.
 This is one possible fix. The multiplicity problem
 and its effect on conclusions drawn from models

 needs serious attention.

 9. OCCAM AND SIMPLICITY VS. ACCURACY

 Occam's Razor, long admired, is usually inter-
 preted to mean that simpler is better. Unfortunately,
 in prediction, accuracy and simplicity (interpretabil-
 ity) are in conflict. For instance, linear regression
 gives a fairly interpretable picture of the y, x rela-
 tion. But its accuracy is usually less than that
 of the less interpretable neural nets. An example
 closer to my work involves trees.

 On interpretability, trees rate an A+. A project
 I worked on in the late 1970s was the analysis of
 delay in criminal cases in state court systems. The
 Constitution gives the accused the right to a speedy
 trial. The Center for the State Courts was concerned
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 TABLE 1

 Data set descriptions

 Training Test

 Data set Sample size Sample size Variables Classes

 Cancer 699 9 2

 Ionosphere 351 34 2

 Diabetes 768 8 2

 Glass 214 9 6

 Soybean 683 35 19

 Letters 15,000 5000 16 26

 Satellite 4,435 2000 36 6

 Shuttle 43,500 14,500 9 7

 DNA 2,000 1,186 60 3

 Digit 7,291 2,007 256 10

 that in many states, the trials were anything but
 speedy. It funded a study of the causes of the delay.
 I visited many states and decided to do the anal-
 ysis in Colorado, which had an excellent computer-
 ized court data system. A wealth of information was

 extracted and processed.
 The dependent variable for each criminal case

 was the time from arraignment to the time of sen-
 tencing. All of the other information in the trial his-
 tory were the predictor variables. A large decision
 tree was grown, and I showed it on an overhead and
 explained it to the assembled Colorado judges. One
 of the splits was on District N which had a larger
 delay time than the other districts. I refrained from
 commenting on this. But as I walked out I heard one

 judge say to another, "I knew those guys in District
 N were dragging their feet."

 While trees rate an A+ on interpretability, they
 are good, but not great, predictors. Give them, say,
 a B on prediction.

 9.1 Growing Forests for Prediction

 Instead of a single tree predictor, grow a forest of

 trees on the same data-say 50 or 100. If we are
 classifying, put the new x down each tree in the for-
 est and get a vote for the predicted class. Let the for-
 est prediction be the class that gets the most votes.
 There has been a lot of work in the last five years on
 ways to grow the forest. All of the well-known meth-
 ods grow the forest by perturbing the training set,
 growing a tree on the perturbed training set, per-
 turbing the training set again, growing another tree,
 etc. Some familiar methods are bagging (Breiman,
 1996b), boosting (Freund and Schapire, 1996), arc-
 ing (Breiman, 1998), and additive logistic regression
 (Friedman, Hastie and Tibshirani, 1998).

 My preferred method to date is random forests. In
 this approach successive decision trees are grown by
 introducing a random element into their construc-

 tion. For example, suppose there are 20 predictor

 variables. At each node choose several of the 20 at
 random to use to split the node. Or use a random

 combination of a random selection of a few vari-
 ables. This idea appears in Ho (1998), in Amit and

 Geman (1997) and is developed in Breiman (1999).

 9.2 Forests Compared to Trees

 We compare the performance of single trees
 (CART) to random forests on a number of small
 and large data sets, mostly from the UCI repository
 (ftp.ics.uci.edulpub/MachineLearningDatabases). A
 summary of the data sets is given in Table 1.

 Table 2 compares the test set error of a single tree

 to that of the forest. For the five smaller data sets
 above the line, the test set error was estimated by
 leaving out a random 10% of the data, then run-

 ning CART and the forest on the other 90%. The
 left-out 10% was run down the tree and the forest

 and the error on this 10% computed for both. This
 was repeated 100 times and the errors averaged.
 The larger data sets below the line came with a

 separate test set. People who have been in the clas-
 sification field for a while find these increases in

 accuracy startling. Some errors are halved. Others
 are reduced by one-third. In regression, where the

 TABLE 2

 Test set misclassification error (%)

 Data set Forest Single tree

 Breast cancer 2.9 5.9

 Ionosphere 5.5 11.2

 Diabetes 24.2 25.3

 Glass 22.0 30.4

 Soybean 5.7 8.6

 Letters 3.4 12.4

 Satellite 8.6 14.8

 Shuttle X 103 7.0 62.0
 DNA 3.9 6.2

 Digit 6.2 17.1
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 forest prediction is the average over the individual
 tree predictions, the decreases in mean-squared test
 set error are similar.

 9.3 Random Forests are A + Predictors

 The Statlog Project (Mitchie, Spiegelhalter and

 Taylor, 1994) compared 18 different classifiers.

 Included were neural nets, CART, linear and

 quadratic discriminant analysis, nearest neighbor,
 etc. The first four data sets below the line in Table 1
 were the only ones used in the Statlog Project that
 came with separate test sets. In terms of rank of
 accuracy on these four data sets, the forest comes
 in 1, 1, 1, 1 for an average rank of 1.0. The next
 best classifier had an average rank of 7.3.

 The fifth data set below the line consists of 16 x 16

 pixel gray scale depictions of handwritten ZIP Code
 numerals. It has been extensively used by AT&T
 Bell Labs to test a variety of prediction methods.
 A neural net handcrafted to the data got a test set

 error of 5.1% vs. 6.2% for a standard run of random

 forest.

 9.4 The Occam Dilemma

 So forests are A+ predictors. But their mechanism
 for producing a prediction is difficult to understand.
 Trying to delve into the tangled web that generated

 a plurality vote from 100 trees is a Herculean task.
 So on interpretability, they rate an F. Which brings
 us to the Occam dilemma:

 * Accuracy generally requires more complex pre-

 diction methods. Simple and interpretable functions
 do not make the most accurate predictors.

 Using complex predictors may be unpleasant, but
 the soundest path is to go for predictive accuracy
 first, then try to understand why. In fact, Section

 10 points out that from a goal-oriented statistical
 viewpoint, there is no Occam's dilemma. (For more
 on Occam's Razor see Domingos, 1998, 1999.)

 10. BELLMAN AND THE CURSE OF
 DIMENSIONALITY

 The title of this section refers to Richard Bell-

 man's famous phrase, "the curse of dimensionality."
 For decades, the first step in prediction methodol-
 ogy was to avoid the curse. If there were too many
 prediction variables, the recipe was to find a few
 features (functions of the predictor variables) that
 "contain most of the information" and then use
 these features to replace the original variables. In
 procedures common in statistics such as regres-
 sion, logistic regression and survival models the
 advised practice is to use variable deletion to reduce

 the dimensionality. The published advice was that
 high dimensionality is dangerous. For instance, a
 well-regarded book on pattern recognition (Meisel,
 1972) states "the features... must be relatively
 few in number." But recent work has shown that

 dimensionality can be a blessing.

 10.1 Digging It Out in Small Pieces

 Reducing dimensionality reduces the amount of
 information available for prediction. The more pre-
 dictor variables, the more information. There is also
 information in various combinations of the predictor
 variables. Let's try going in the opposite direction:

 * Instead of reducing dimensionality, increase it
 by adding many functions of the predictor variables.

 There may now be thousands of features. Each
 potentially contains a small amount of information.
 The problem is how to extract and put together
 these little pieces of information. There are two
 outstanding examples of work in this direction, The
 Shape Recognition Forest (Y. Amit and D. Geman,
 1997) and Support Vector Machines (V. Vapnik,
 1995, 1998).

 10.2 The Shape Recognition Forest

 In 1992, the National Institute of Standards and
 Technology (NIST) set up a competition for machine
 algorithms to read handwritten numerals. They put
 together a large set of pixel pictures of handwritten
 numbers (223,000) written by over 2,000 individ-
 uals. The competition attracted wide interest, and
 diverse approaches were tried.

 The Amit-Geman approach defined many thou-
 sands of small geometric features in a hierarchi-
 cal assembly. Shallow trees are grown, such that at
 each node, 100 features are chosen at random from
 the appropriate level of the hierarchy; and the opti-
 mal split of the node based on the selected features
 is found.

 When a pixel picture of a number is dropped down
 a single tree, the terminal node it lands in gives
 probability estimates po, ..., p9 that it represents
 numbers 0, 1, ... ,9. Over 1,000 trees are grown, the
 probabilities averaged over this forest, and the pre-
 dicted number is assigned to the largest averaged
 probability.

 Using a 100,000 example training set and a
 50,000 test set, the Amit-Geman method gives a
 test set error of 0.7%-close to the limits of human
 error.

 10.3 Support Vector Machines

 Suppose there is two-class data having prediction
 vectors in M-dimensional Euclidean space. The pre-
 diction vectors for class #1 are {x(1)} and those for
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 class #2 are {x(2)}. If these two sets of vectors can
 be separated by a hyperplane then there is an opti-
 mal separating hyperplane. "Optimal" is defined as

 meaning that the distance of the hyperplane to any
 prediction vector is maximal (see below).

 The set of vectors in {x(1)} and in {x(2)} that

 achieve the minimum distance to the optimal
 separating hyperplane are called the support vec-
 tors. Their coordinates determine the equation of
 the hyperplane. Vapnik (1995) showed that if a
 separating hyperplane exists, then the optimal sep-
 arating hyperplane has low generalization error
 (see Glossary).

 O /4- optimal hyperplane

 support vector

 0 0
 0

 In two-class data, separability by a hyperplane

 does not often occur. However, let us increase the
 dimensionality by adding as additional predictor
 variables all quadratic monomials in the original
 predictor variables; that is, all terms of the form

 XmlXm2. A hyperplane in the original variables plus
 quadratic monomials in the original variables is a
 more complex creature. The possibility of separa-

 tion is greater. If no separation occurs, add cubic
 monomials as input features. If there are originally
 30 predictor variables, then there are about 40,000
 features if monomials up to the fourth degree are
 added.

 The higher the dimensionality of the set of fea-

 tures, the more likely it is that separation occurs. In
 the ZIP Code data set, separation occurs with fourth
 degree monomials added. The test set error is 4.1%.
 Using a large subset of the NIST data base as a
 training set, separation also occurred after adding
 up to fourth degree monomials and gave a test set
 error rate of 1.1%.

 Separation can always be had by raising the
 dimensionality high enough. But if the separating
 hyperplane becomes too complex, the generalization
 error becomes large. An elegant theorem (Vapnik,
 1995) gives this bound for the expected generaliza-
 tion error:

 Ex(GE) < Ex(number of support vectors)/(N - 1),

 where N is the sample size and the expectation is
 over all training sets of size N drawn from the same
 underlying distribution as the original training set.

 The number of support vectors increases with the

 dimensionality of the feature space. If this number

 becomes too large, the separating hyperplane will
 not give low generalization error. If separation can-

 not be realized with a relatively small number of

 support vectors, there is another version of support
 vector machines that defines optimality by adding

 a penalty term for the vectors on the wrong side of
 the hyperplane.

 Some ingenious algorithms make finding the opti-
 mal separating hyperplane computationally feasi-
 ble. These devices reduce the search to a solution
 of a quadratic programming problem with linear
 inequality constraints that are of the order of the

 number N of cases, independent of the dimension

 of the feature space. Methods tailored to this partic-
 ular problem produce speed-ups of an order of mag-
 nitude over standard methods for solving quadratic

 programming problems.
 Support vector machines can also be used to

 provide accurate predictions in other areas (e.g.,
 regression). It is an exciting idea that gives excel-

 lent performance and is beginning to supplant the

 use of neural nets. A readable introduction is in

 Cristianini and Shawe-Taylor (2000).

 11. INFORMATION FROM A BLACK BOX

 The dilemma posed in the last section is that
 the models that best emulate nature in terms of
 predictive accuracy are also the most complex and
 inscrutable. But this dilemma can be resolved by

 realizing the wrong question is being asked. Nature

 forms the outputs y from the inputs x by means of
 a black box with complex and unknown interior.

 y H nature 4 x

 Current accurate prediction methods are also
 complex black boxes.

 neural nets
 Y < forests < x

 support vectors

 So we are facing two black boxes, where ours
 seems only slightly less inscrutable than nature's.
 In data generated by medical experiments, ensem-

 bles of predictors can give cross-validated error
 rates significantly lower than logistic regression.

 My biostatistician friends tell me, "Doctors can
 interpret logistic regression." There is no way they

 can interpret a black box containing fifty trees
 hooked together. In a choice between accuracy and
 interpretability, they'll go for interpretability.

 Framing the question as the choice between accu-
 racy and interpretability is an incorrect interpre-
 tation of what the goal of a statistical analysis is.
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 The point of a model is to get useful information

 about the relation between the response and pre-
 dictor variables. Interpretability is a way of getting
 information. But a model does not have to be simple

 to provide reliable information about the relation

 between predictor and response variables; neither
 does it have to be a data model.

 * The goal is not interpretability, but accurate
 information.

 The following three examples illustrate this point.
 The first shows that random forests applied to a

 medical data set can give more reliable informa-
 tion about covariate strengths than logistic regres-

 sion. The second shows that it can give interesting
 information that could not be revealed by a logistic
 regression. The third is an application to a microar-
 ray data where it is difficult to conceive of a data

 model that would uncover similar information.

 11.1 Example 1: Variable Importance in a

 Survival Data Set

 The data set contains survival or nonsurvival

 of 155 hepatitis patients with 19 covariates. It is
 available at ftp.ics.uci.edu/pub/MachineLearning-
 Databases and was contributed by Gail Gong. The
 description is in a file called hepatitis.names. The
 data set has been previously analyzed by Diaconis
 and Efron (1983), and Cestnik, Konenenko and
 Bratko (1987). The lowest reported error rate to

 date, 17%, is in the latter paper.
 Diaconis and Efron refer to work by Peter Gre-

 gory of the Stanford Medical School who analyzed
 this data and concluded that the important vari-
 ables were numbers 6, 12, 14, 19 and reports an esti-
 mated 20% predictive accuracy. The variables were
 reduced in two stages-the first was by informal
 data analysis. The second refers to a more formal

 (unspecified) statistical procedure which I assume

 was logistic regression.
 Efron and Diaconis drew 500 bootstrap samples

 from the original data set and used a similar pro-

 cedure to isolate the important variables in each

 bootstrapped data set. The authors comment, "Of
 the four variables originally selected not one was
 selected in more than 60 percent of the samples.
 Hence the variables identified in the original analy-
 sis cannot be taken too seriously." We will come back
 to this conclusion later.

 Logistic Regression

 The predictive error rate for logistic regression on
 the hepatitis data set is 17.4%. This was evaluated
 by doing 100 runs, each time leaving out a randomly
 selected 10% of the data as a test set, and then
 averaging over the test set errors.

 Usually, the initial evaluation of which variables
 are important is based on examining the absolute
 values of the coefficients of the variables in the logis-
 tic regression divided by their standard deviations.
 Figure 1 is a plot of these values.

 The conclusion from looking at the standard-
 ized coefficients is that variables 7 and 11 are the
 most important covariates. When logistic regres-
 sion is run using only these two variables, the
 cross-validated error rate rises to 22.9%. Another
 way to find important variables is to run a best
 subsets search which, for any value k, finds the
 subset of k variables having lowest deviance.

 This procedure raises the problems of instability
 and multiplicity of models (see Section 7.1). There
 are about 4,000 subsets containing four variables.
 Of these, there are almost certainly a substantial
 number that have deviance close to the minimum
 and give different pictures of what the underlying
 mechanism is.

 3.5.
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 FIG. 1. Standardized coefficients logistic regression.
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 FIG. 2. Variable importance-random forest.

 Random Forests

 The random forests predictive error rate, evalu-
 ated by averaging errors over 100 runs, each time
 leaving out 10% of the data as a test set, is 12.3%-

 almost a 30% reduction from the logistic regression
 error.

 Random forests consists of a large number of
 randomly constructed trees, each voting for a class.

 Similar to bagging (Breiman, 1996), a bootstrap
 sample of the training set is used to construct each
 tree. A random selection of the input variables is
 searched to find the best split for each node.

 To measure the importance of the mth variable,

 the values of the mth variable are randomly per-
 muted in all of the cases left out in the current

 bootstrap sample. Then these cases are run down
 the current tree and their classification noted. At
 the end of a run consisting of growing many trees,
 the percent increase in misclassification rate due to
 noising up each variable is computed. This is the

 measure of variable importance that is shown in

 Figure 1.

 Random forests singles out two variables, the

 12th and the 17th, as being important. As a verifi-

 cation both variables were run in random forests,

 individually and together. The test set error rates

 over 100 replications were 14.3% each. Running

 both together did no better. We conclude that virtu-
 ally all of the predictive capability is provided by a
 single variable, either 12 or 17.

 To explore the interaction between 12 and 17 a bit

 further, at the end of a random forest run using all
 variables, the output includes the estimated value
 of the probability of each class vs. the case number.
 This information is used to get plots of the vari-

 able values (normalized to mean zero and standard

 deviation one) vs. the probability of death. The vari-
 able values are smoothed using a weighted linear
 regression smoother. The results are in Figure 3 for

 variables 12 and 17.

 VARIABLE 12 vs PROBABILITY #1 VARIABLE 17 vs PROBABILITY #1
 1 1

 0

 co :2-1

 -2
 -3

 4 3

 0 .2 .4 .6 .8 1 0 .2 .4 .6 .8
 class 1 probability class 1 probability

 FIG. 3. Variable 17 vs. probability #1.
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 FIG. 4. Variable importance-Bupa data.

 The graphs of the variable values vs. class death
 probability are almost linear and similar. The two

 variables turn out to be highly correlated. Thinking
 that this might have affected the logistic regression
 results, it was run again with one or the other of

 these two variables deleted. There was little change.

 Out of curiosity, I evaluated variable impor-
 tance in logistic regression in the same way that I

 did in random forests, by permuting variable val-
 ues in the 10% test set and computing how much
 that increased the test set error. Not much help-
 variables 12 and 17 were not among the 3 variables
 ranked as most important. In partial verification

 of the importance of 12 and 17, I tried them sep-
 arately as single variables in logistic regression.

 Variable 12 gave a 15.7% error rate, variable 17
 came in at 19.3%.

 To go back to the original Diaconis-Efron analy-
 sis, the problem is clear. Variables 12 and 17 are sur-
 rogates for each other. If one of them appears impor-
 tant in a model built on a bootstrap sample, the

 other does not. So each one's frequency of occurrence

 is automatically less than 50%. The paper lists the

 variables selected in ten of the samples. Either 12

 or 17 appear in seven of the ten.

 11.2 Example 11 Clustering in Medical Data

 The Bupa liver data set is a two-class biomedical
 data set also available at ftp.ics.uci.edu/pub/Mac-

 hineLearningDatabases. The covariates are:

 1. mcv mean corpuscular volume
 2. alkphos alkaline phosphotase

 3. sgpt alamine aminotransferase
 4. sgot aspartate aminotransferase
 5. gammagt gamma-glutamyl transpeptidase
 6. drinks half-pint equivalents of alcoholic

 beverage drunk per day

 The first five attributes are the results of blood
 tests thought to be related to liver functioning. The
 345 patients are classified into two classes by the
 severity of their liver malfunctioning. Class two is
 severe malfunctioning. In a random forests run,

 1 - cluster 1 class 2

 cluster2 class 2

 5 _ cluster -class 1 7

 (a . =...................... ....

 0 3 5 6 7
 variable

 FIG. 5. Cluster averages-Bupa data.
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 the misclassification error rate is 28%. The variable
 importance given by random forests is in Figure 4.

 Blood tests 3 and 5 are the most important, fol-
 lowed by test 4. Random forests also outputs an
 intrinsic similarity measure which can be used to

 cluster. When this was applied, two clusters were
 discovered in class two. The average of each variable
 is computed and plotted in each of these clusters in
 Figure 5.

 An interesting facet emerges. The class two sub-
 jects consist of two distinct groups: those that have
 high scores on blood tests 3, 4, and 5 and those that
 have low scores on those tests.

 11.3 Example Ill: Microarray Data

 Random forests was run on a microarray lym-
 phoma data set with three classes, sample size of
 81 and 4,682 variables (genes) without any variable
 selection [for more information about this data set,
 see Dudoit, Fridlyand and Speed, (2000)]. The error
 rate was low. What was also interesting from a sci-
 entific viewpoint was an estimate of the importance
 of each of the 4,682 gene expressions.

 The graph in Figure 6 was produced by a run
 of random forests. This result is consistent with
 assessments of variable importance made using
 other algorithmic methods, but appears to have
 sharper detail.

 11.4 Remarks about the Examples

 The examples show that much information is

 available from an algorithmic model. Friedman

 (1999) derives similar variable information from a

 different way of constructing a forest. The similar-

 ity is that they are both built as ways to give low

 predictive error.

 There are 32 deaths and 123 survivors in the hep-

 atitis data set. Calling everyone a survivor gives a

 baseline error rate of 20.6%. Logistic regression low-

 ers this to 17.4%. It is not extracting much useful

 information from the data, which may explain its

 inability to find the important variables. Its weak-

 ness might have been unknown and the variable

 importances accepted at face value if its predictive

 accuracy was not evaluated.

 Random forests is also capable of discovering

 important aspects of the data that standard data

 models cannot uncover. The potentially interesting

 clustering of class two patients in Example II is an

 illustration. The standard procedure when fitting

 data models such as logistic regression is to delete

 variables; to quote from Diaconis and Efron (1983)

 again, "...statistical experience suggests that it is

 unwise to fit a model that depends on 19 variables

 with only 155 data points available." Newer meth-

 ods in machine learning thrive on variables-the

 more the better. For instance, random forests does

 not overfit. It gives excellent accuracy on the lym-

 phoma data set of Example III which has over 4,600

 variables, with no variable deletion and is capable

 of extracting variable importance information from

 the data.
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 FIG. 6. Microarray variable importance.
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 These examples illustrate the following points:

 * Higher predictive accuracy is associated with

 more reliable information about the underlying data
 mechanism. Weak predictive accuracy can lead to

 questionable conclusions.
 * Algorithmic models can give better predictive

 accuracy than data models, and provide better infor-
 mation about the underlying mechanism.

 12. FINAL REMARKS

 The goals in statistics are to use data to predict

 and to get information about the underlying data
 mechanism. Nowhere is it written on a stone tablet

 what kind of model should be used to solve problems
 involving data. To make my position clear, I am not

 against data models per se. In some situations they
 are the most appropriate way to solve the problem.
 But the emphasis needs to be on the problem and
 on the data.

 Unfortunately, our field has a vested interest in
 data models, come hell or high water. For instance,
 see Dempster's (1998) paper on modeling. His posi-
 tion on the 1990 Census adjustment controversy is
 particularly interesting. He admits that he doesn't
 know much about the data or the details, but argues

 that the problem can be solved by a strong dose
 of modeling. That more modeling can make error-
 ridden data accurate seems highly unlikely to me.

 Terrabytes of data are pouring into computers
 from many sources, both scientific, and commer-
 cial, and there is a need to analyze and understand
 the data. For instance, data is being generated
 at an awesome rate by telescopes and radio tele-
 scopes scanning the skies. Images containing mil-
 lions of stellar objects are stored on tape or disk.
 Astronomers need automated ways to scan their

 data to find certain types of stellar objects or novel
 objects. This is a fascinating enterprise, and I doubt
 if data models are applicable. Yet I would enter this
 in my ledger as a statistical problem.

 The analysis of genetic data is one of the most
 challenging and interesting statistical problems
 around. Microarray data, like that analyzed in
 Section 11.3 can lead to significant advances in
 understanding genetic effects. But the analysis
 of variable importance in Section 11.3 would be
 difficult to do accurately using a stochastic data
 model.

 Problems such as stellar recognition or analysis
 of gene expression data could be high adventure for
 statisticians. But it requires that they focus on solv-
 ing the problem instead of asking what data model
 they can create. The best solution could be an algo-
 rithmic model, or maybe a data model, or maybe a

 combination. But the trick to being a scientist is to
 be open to using a wide variety of tools.

 The roots of statistics, as in science, lie in work-
 ing with data and checking theory against data. I
 hope in this century our field will return to its roots.

 There are signs that this hope is not illusory. Over

 the last ten years, there has been a noticeable move
 toward statistical work on real world problems and
 reaching out by statisticians toward collaborative
 work with other disciplines. I believe this trend will
 continue and, in fact, has to continue if we are to
 survive as an energetic and creative field.

 GLOSSARY

 Since some of the terms used in this paper may
 not be familiar to all statisticians, I append some
 definitions.

 Infinite test set error. Assume a loss function
 L(y, 9) that is a measure of the error when y is
 the true response and 9 the predicted response.
 In classification, the usual loss is 1 if y 7 9 and
 zero if y = 9. In regression, the usual loss is
 (y - 9)2. Given a set of data (training set) consist-

 ing of {(Yn Xn)n = 1, 2, ..., N}, use it to construct
 a predictor function +(x) of y. Assume that the
 training set is i.i.d drawn from the distribution of
 the random vector Y, X. The infinite test set error
 is E(L(Y, +(X))). This is called the generalization
 error in machine learning.

 The generalization error is estimated either by

 setting aside a part of the data as a test set or by
 cross-validation.

 Predictive accuracy. This refers to the size of
 the estimated generalization error. Good predictive
 accuracy means low estimated error.

 Thees and nodes. This terminology refers to deci-
 sion trees as described in the Breiman et al book
 (1984).

 Dropping an x down a tree. When a vector of pre-
 dictor variables is "dropped" down a tree, at each
 intermediate node it has instructions whether to go
 left or right depending on the coordinates of x. It
 stops at a terminal node and is assigned the predic-
 tion given by that node.

 Bagging. An acronym for "bootstrap aggregat-
 ing." Start with an algorithm such that given any

 training set, the algorithm produces a prediction
 function +(x). The algorithm can be a decision tree
 construction, logistic regression with variable dele-

 tion, etc. Take a bootstrap sample from the training
 set and use this bootstrap training set to construct
 the predictor +1(x). Take another bootstrap sam-
 ple and using this second training set construct the
 predictor 42(x). Continue this way for K steps. In
 regression, average all of the { k(X)} to get the
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 bagged predictor at x. In classification, that class

 which has the plurality vote of the {4k(X)} is the
 bagged predictor. Bagging has been shown effective
 in variance reduction (Breiman, 1996b).

 Boosting. This is a more complex way of forming

 an ensemble of predictors in classification than bag-
 ging (Freund and Schapire, 1996). It uses no ran-

 domization but proceeds by altering the weights on
 the training set. Its performance in terms of low pre-
 diction error is excellent (for details see Breiman,
 1998).
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