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Abstract

Determining sample size requirements for structural equation modeling (SEM) is a challenge often 

faced by investigators, peer reviewers, and grant writers. Recent years have seen a large increase 

in SEMs in the behavioral science literature, but consideration of sample size requirements for 

applied SEMs often relies on outdated rules-of-thumb. This study used Monte Carlo data 

simulation techniques to evaluate sample size requirements for common applied SEMs. Across a 

series of simulations, we systematically varied key model properties, including number of 

indicators and factors, magnitude of factor loadings and path coefficients, and amount of missing 

data. We investigated how changes in these parameters affected sample size requirements with 

respect to statistical power, bias in the parameter estimates, and overall solution propriety. Results 

revealed a range of sample size requirements (i.e., from 30 to 460 cases), meaningful patterns of 

association between parameters and sample size, and highlight the limitations of commonly cited 

rules-of-thumb. The broad “lessons learned” for determining SEM sample size requirements are 

discussed.
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Determining sample size requirements for structural equation modeling (SEM) is a 

challenge often faced by investigators, peer reviewers, and grant writers. Advances in 

approaches to statistical modeling and in the ease of use of related software programs has 

contributed not only to an increasing number of studies using latent variable analyses but 

also raises questions about how to estimate the requisite sample size for testing such models. 
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One of the strengths of SEM is its flexibility, which permits examination of complex 

associations, use of various types of data (e.g., categorical, dimensional, censored, count 

variables), and comparisons across alternative models. However, these features of SEM also 

make it difficult to develop generalized guidelines regarding sample size requirements 

(MacCallum, Widaman, Zhang, & Hong, 1999). Despite this, various rules-of-thumb have 

been advanced, including (a) a minimum sample size of 100 or 200 (Boomsma, 1982, 1985), 

(b) 5 or 10 observations per estimated parameter (Bentler & Chou, 1987; see also Bollen, 

1989), and (c) 10 cases per variable (Nunnally, 1967). Such rules are problematic because 

they are not model-specific and may lead to grossly over-or underestimated sample size 

requirements. MacCallum et al. (1999) demonstrated that model characteristics such as the 

level of communality across the variables, sample size, and degree of factor determinacy all 

affect the accuracy of the parameter estimates and model fit statistics, which raises doubts 

about applying sample size rules-of-thumb to a specific SEM.

There has been a sharp increase in the number of SEM-based research publications that 

evaluate the structure of psychopathology and the correlates and course of psychological 

disorders and symptoms, yet applied information on how to determine adequate sample size 

for these studies has lagged behind. The primary aim of this study was to evaluate sample 

size requirements for SEMs commonly applied in the behavioral sciences literature, 

including confirmatory factor analyses (CFAs), models with regressive paths, and models 

with missing data. We also sought to explore how systematically varying parameters within 

these models (i.e., number of latent variables and indicators, strength of factor loadings and 

regressive paths, type of model, degree of missing data) affected sample size requirements. 

In so doing, we aimed to demonstrate the tremendous variability in SEM sample size 

requirements and the inadequacy of common rules-of-thumb. Although statisticians have 

addressed many of these concerns in technical papers, our impression from serving as 

reviewers, consultants, and readers of other articles is that this knowledge may be 

inaccessible to many applied researchers and so our overarching objective was to 

communicate this information to a broader audience.

Sample Size Considerations

When contemplating sample size, investigators usually prioritize achieving adequate 

statistical power to observe true relationships in the data. Statistical power is the probability 

of rejecting the null hypothesis when it is false; it is the probability of not making a Type II 

error (i.e., 1 – beta; see Cohen, 1988). Power is dependent on (a) the chosen alpha level (by 

convention, typically α = .05), (b) the magnitude of the effect of interest, and (c) the sample 

size. However, power is not the only consideration in determining sample size as bias1 in 

the parameter estimates and standard errors also have bearing. Bias refers to conditions in 

which an estimated parameter value differs from the true population value (see Kelley & 

Maxwell, 2003; Maxwell, Kelley, & Rausch, 2008). A standard error may also be biased if it 

is under- or overestimated (which increases the risk of Type I and II errors, respectively). A 

1Throughout this article, we refer to the term bias in its broadest sense (i.e., a systematic misrepresentation of a parameter estimate or 
statistic due to methodological problems such as insufficient sample size or poor measurement psychometric characteristics). We also 
use this term to describe bias in the standard errors and parameter estimates due to insufficient sample size in order to maintain 
consistency with Muthén and Muthén (2002).

Wolf et al. Page 2

Educ Psychol Meas. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



third element of SEMs that is affected by sample size is solution propriety (see Gagné & 

Hancock, 2006). This is whether there are a sufficient number of cases for the model to 

converge without improper solutions or impossible parameter estimates. Models based on 

larger samples (Boomsma, 1982; Gagné & Hancock, 2006; Velicer & Fava, 1998), with 

more indicators per factor (Gagné & Hancock, 2006; Marsh, Hau, Balla, & Grayson, 1998), 

and with larger factor loadings (Gagneé & Hancock, 2006) are more likely to converge 

properly.

Monte Carlo Analyses for Sample Size Determinations

Three major approaches to evaluating sample size requirements in SEMs have been 

proposed: (a) the Satorra and Saris (1985) method, which estimates power based on the 

noncentrality parameter (i.e., the amount of model misspecification); (b) the MacCallum, 

Browne, and Sugawara (1996) method, which is based on the power of the model to obtain a 

root mean square error of approximation value that is consistent with good model fit; and (c) 

the Monte Carlo simulation method (Muthén & Muthén, 2002), the focus of this research. 

With this method, associations among variables are set by the user based on a priori 

hypotheses. The specified associations are akin to the population estimates of the true 

relationships among the variables. A large number of data sets are then generated to match 

the population values; each individual data set is akin to a sample and is based on a user-

determined number of cases. The hypothesized model is then evaluated in the generated data 

sets and each parameter estimate is averaged across the simulations to determine if the 

specified number of cases is sufficient for reproducing the population values and obtaining 

statistically significant parameter estimates. This approach does not address the power of the 

overall model—it provides estimates of power and bias for individual effects of interest (i.e., 

individual factor loadings, correlations, or regressive paths). This is important as an 

investigator may only be interested in having sufficient sample size for select aspects of a 

given model. Additional details and script for conducing Monte Carlo analyses in MPlus can 

be found in Muthén and Muthén (2002), Muthén and Asparouhov (2002), and Muthén 

(2002). Readers are also referred to Paxton, Curran, Bollen, Kirby, and Chen (2001), who 

provide a useful step-by-step discussion of conducting Monte Carlo analyses.

It is important to distinguish between two overarching approaches to the use of Monte Carlo 

analyses. The first, termed proactive (see Marcoulides & Chin, in press; Marcoulides & 

Saunders, 2006), involves conducting simulation studies of a hypothesized model with 

relationships among the variables specified based on the available research literature; this 

approach is the focus of this investigation, as described above (see also Paxton et al., 2001). 

The second approach, termed reactive (Marcoulides & Chin, in press; Marcoulides & 

Saunders, 2006), involves analyzing existing data after a study has been completed to 

evaluate the hypothesized model many times over by taking repeated random draws of cases 

from the larger sample (see also Marcoulides, 1990). The model is fit in each subsample and 

the resulting parameter estimates and fit statistics are then examined across all the random 

draws. The former approach is a prospectively designed one that has its basis in theory and 

the relevant literature. The latter approach is a post hoc method that is limited by the quality 

of the existing data and may lead to unwarranted confidence in the stability of the results or 

the appropriateness of the sample for the planned analyses. Throughout this article, we 
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describe the importance of conducting proactive Monte Carlo simulation studies for the 

purposes of sample size planning.

Aims

The primary aim of this study was to provide applied behavioral science researchers with an 

accessible evaluation of sample size requirements for common types of latent variable 

models and to demonstrate the range of sample sizes that may be appropriate for SEM. We 

hope this will help researchers better understand the factors most relevant to SEM sample 

size determinations and encourage them to conduct their own Monte Carlo analyses rather 

than relying on rules-of-thumb. A second aim was to examine how sample size requirements 

change as a function of elements in an SEM, such as number of factors, number of 

indicators, strength of indicator loadings, strength of regressive paths, degree of missing 

data, and type of model.2 We evaluated these aspects of structural models in one study and 

included several permutations and combinations of each model characteristic to have broad 

applicability. Finally, this study also afforded the opportunity to compare sample size 

requirements for SEMs versus for similar models based on single indicators (i.e., traditional 

path models).

Method

Procedure

We conducted Monte Carlo simulation studies for several types of CFAs and SEMs 

following the guidelines described by Muthén and Muthén (2002). For each model, we 

systematically varied the number of indicators of the latent variable(s) and the strength of 

the factor loadings and structural elements in the model to examine how these characteristics 

would affect statistical power, the precision of the parameter estimates, and the overall 

propriety of the results. We examined models that we thought would have broad 

applicability and included models with the absolute minimum number of indicators required 

to yield overidentified measurement models (i.e., models with positive degrees of freedom, 

meaning that the total number of variances and covariances in the data set exceeded the 

number of parameter estimates in the analysis).

CFA models—Figure 1 provides an overview of the one-, two-, and three-factor CFAs 

evaluated. For illustrative purposes, suppose that the one-factor model tests the latent 

construct of depression, the two-factor model tests correlated latent constructs of depression 

and anxiety, and the three-factor model tests latent constructs of depression, anxiety, and 

substance use. We varied the number of indicators of these factors such that the one-factor 

model was indicated by four, six, or eight indicators and the two- and three-factor models 

were indicated by three, six, or eight indicators. We did not evaluate a three-indicator, one-

factor model because it would be just-identified (i.e., have 0 df and hence would estimate all 

the associations among the data perfectly and yield perfect fit; see Brown, 2006). We also 

varied the factor loadings (and hence the unreliability of the indicators) using standardized 

2These characteristics of a model have also been shown to influence other important aspects of model output that are not under 
consideration in this study, such as the performance and stability of fit indices (see Jackson, 2001; Kim, 2005; Velicer & Fava, 1998).
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loadings of .50, .65, or .80. All loadings and structural paths in the models were completely 

standardized (factor variances were fixed to 1.0, factor means fixed to 0, and the squared 

indicator loading plus the residual indicator variance equaled 1.0). Within a model, factor 

loadings were held constant across indicators. For models with more than one factor, the 

factor intercorrelations were set to r = .30; for some models, we also evaluated the effect of 

a stronger factor intercorrelation (r = .50). We did so because determining the sample size 

required to observe a factor correlation is often an important consideration. For example, 

this is crucial when evaluating convergent or discriminant validity, in determining the 

longitudinal stability of a trait, or in determining the similarity of scores across non-

independent observations (e.g., married couples, twins, etc). Appendix A provides sample 

Mplus script for the first CFA model that was evaluated (i.e., the one-factor model with four 

indicators, each loading at .50).

Structural path models—We also evaluated a three-factor latent variable mediation 

model with regressive direct and indirect paths between factors (i.e., implying directional 

relationships) and varied the variance explained in the dependent variable. We focused on 

the mediation model because of its popularity in the behavioral science literature. This 

model is shown in Figure 2. As an applied example, suppose this model tested if chronic 

stress (the independent variable) predicted functional impairment (the dependent variable) 

via symptoms of depression (the mediator). In many mediation models, the researcher is 

primarily interested in the size and significance of the indirect effect (i.e., stress → 

depression → impairment) because this effect informs the understanding of the mechanism 

of action. Therefore, we focused these analyses on the minimum sample size required to 

observe this indirect effect. In these models, each factor was indicated by three observed 

variables, and all factor loadings were set to .65. This model was structurally saturated (i.e., 

no unanalyzed relationships among the latent variables), although the measurement portion 

of it remained overidentified because all indicators loaded on only one factor and there were 

no cross-loadings. We varied the total variance explained in the latent dependent variable 

from 16% to 45% to 75% (corresponding to standardized indirect effects of β = .06, .16, 

and .25, respectively), kept the magnitude of all structural relationships in the model equal to 

one another, and held the total variance of all latent and observed variables at 1.0.3 Sample 

Mplus script for the first SEM that was evaluated (i.e., the model explaining 16% of the 

variance in the dependent variable) is included in Appendix A.

Missing data—We next evaluated the effects of missing data on sample size requirements 

for one CFA and the latent mediation model. Prior work has evaluated the effects of missing 

data on statistical power analyses in structural equation models (i.e., Davey & Salva, 2009a, 

2009b; Dolan, van der Sluis, & Grasman, 2005), but to our knowledge, the specific models 

under investigation in this study have not been evaluated under missing data conditions with 

respect to effects on power, parameter bias, and solution propriety. The CFA that was 

3The model which explained 16% of the variance was based on standardized direct structural paths of β = .25; the model with 45% 
variance explained included standardized structural paths of β = .40, and the model with 75% of the variance explained in the latent 
dependent variable was based on standardized structural paths of β = .50. The size of the unstandardized paths was determined through 
the following equation: total variance explained in dependent variable = c2* VarianceX + b2* VarianceM + 2bc* Covariance(X, M) + 
Residual VarianceY, where c = the parameter estimate for the dependent variable (Y) regressed on the independent variable (X); b = 
the parameter estimate for the dependent variable regressed on the mediator (M) and variance explained plus residual variance = 1.0.
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evaluated was a two-factor model with each factor indicated by three observed variables 

loading on their respective factors at .65 and a correlation of .30 between the factors, 

permitting direct comparison to the same model without missing data. We also evaluated the 

effects of missing data on the mediation model (Figure 2), where each factor was indicated 

by three observed variables loading at .65, and all direct paths in the model were set to .40. 

We systematically varied the percentage of missing data on each indicator in the models 

such that each indicator was missing 2%, 5%, 10%, or 20% of its data. We did not model a 

covariate as a predictor of missingness; thus, in accord with Muthén and Muthén (2002), we 

assumed the data were missing completely at random (Little & Rubin, 1989).

Single indicators—Finally, we also compared power, bias, and solution propriety of path 

models that were based on single indicators versus latent variables (i.e., we evaluated the 

effects of unspecified measurement error in single indicator designs). To do so, we specified 

a path analysis in which the association between the observed X and Y variables was 

mediated by an observed third variable (i.e., a single indicator version of the model depicted 

in Figure 2). The standardized magnitude of the three direct paths in the model was set to .

40, and the total variance of each variable was set to 1.0 (and all means to 0). In total, 45% 

of the variance in the dependent variable was explained by the direct paths in this model. 

The reliability of each of the variables was specified in the data simulation phase of the 

analysis. Specifically, we set observed variable reliability to .42, .81, or .90, which, in the 

case of the use of completely standardized factor loadings, is equivalent to factor loadings 

of .65, .90, and .95, respectively.4 After specifying the degree of indicator reliability for data 

generation, we then purposefully misspecified the model by setting the reliability of the 

indicators to 1.0 in the data analysis phase. Essentially, this is the assumption of a single 

indicator analysis, as measurement error is not removed from the variance of the measure 

and the indicator is treated as if it is a perfect measure of the latent construct.

Data Analysis

Overview—All models were evaluated using Mplus version 5.2 (Muthen & Muthen, 

1998-2008). All models were based on a single group with 10,000 replications of the 

simulated data. We set the sample size of a given model and then adjusted it (upwards or 

downwards) based on whether the results met our criteria for acceptable precision of the 

estimates, statistical power, and overall solution propriety, as detailed below. In the first 

model, we started with a sample size of 200 because that has previously been suggested as 

the minimum for SEMs (Boomsma, 1982); starting sample sizes for subsequent models were 

determined based on the results of prior models. To determine the minimum sample size 

required, we tested the effects of increasing or decreasing the sample size of each model by 

n = 10 (or n = 20 when it was clear that increments of 10 were too fine to yield meaningful 

differences among the models). Next, we continued to increase the sample size by a unit of 

10 or 20 to test stability of the solution, as defined by both the minimum sample size and the 

next largest sample size meeting all a priori criteria. Finally, as recommended by Muthén 

and Muthén (2002), we tested the stability of the results by running the analyses again with a 

4Reliability = the proportion of true score variance (i.e., the squared factor loading) to total score variance (i.e., true score + error 
variance).
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new, randomly selected seed number (i.e., so that data generation began at a different point, 

resulting in a different set of 10,000 data sets compared to the analysis with the initial seed 

number).

All analyses were conducted using the maximum likelihood (ML) estimator. The simulated 

data were dimensional (i.e., continuous) and normally distributed. Models with missing data 

invoked full information ML estimation for cases with missingness as this approach 

performs well when data are missing completely at random or missing at random (Enders & 

Bandalos, 2001).

Criteria for evaluation of sample size requirements—We used several criteria to 

evaluate the minimum sample size required to achieve minimal bias, adequate statistical 

power, and overall propriety of a given model, following recommendations by Muthén and 

Muthén (2002). All criteria had to be met in order to accept a given N as the minimum 

sample size.

Bias—First, we evaluated (a) the degree of bias in the parameter estimates, (b) the degree 

of bias in the standard error estimate, and (c) the 95% confidence interval for the parameter 

estimates. Specifically, we examined the mean parameter estimates (i.e., factor loadings and 

regressive paths) across simulations in comparison to the specified population values. This 

index of parameter bias was derived by subtracting the population value from the mean 

estimated value and dividing by the population value, following Muthén and Muthén (2002). 

We specified that the most discrepant mean parameter estimate in a model had to be within 

5% of the population value. We also evaluated the potential for standard error bias in an 

analogous way, by comparing mean standard errors in the generated data sets to the SD for 

each parameter estimate (the SD of the estimates over many replications is akin to the 

population standard error; Muthén & Muthén, 2002). Acceptable standard error estimates 

also had to be within 5% of the population standard error. Finally, we specified that the 95% 

confidence interval for each parameter estimate had to include the population value in at 

least 90% of the analyses of the simulated data (i.e., achieve adequate accuracy).

Power—Second, we specified that estimated power had to be 80% or greater (with α = .05) 

for all parameters of interest (in this case, factor loadings, correlations, regressive paths) in 

the model. Thus, a model in which any one of the parameters of interest fell below 80% 

power would be rejected (this approach is conceptually similar to the “all-pairs power” 

approach described by Maxwell, 2004).

Overall solution propriety—Third, we specified that the analysis could not yield any 

errors (i.e., improper solutions or failures to converge). This is a conservative criterion as a 

single error in the analysis of 10,000 data sets is not particularly worrisome, assuming that 

all other criteria are met. However, we adopted this rule for several reasons. First, Mplus 

provides a description of any errors in the analysis of the generated data but omits these 

cases from the overall statistics summarized across replications. Depending on the number 

and type of errors, this can potentially yield overly optimistic summary statistics and also 

raises the possibility that a similarly sized sample of real data might produce improper 

solutions. Second, as is evident in this study, the number of errors in the analysis of the 
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generated data increased with decreasing sample size, which further suggests the need to 

consider such instances when evaluating sample size requirements.

Results

Orientation to Figures and Tables

Figure 3 shows the minimum sample size (meeting all a priori criteria) required for each of 

the models. Supplementary tables appear online. Although not shown in the figures or 

tables, all models yielded acceptable coverage (i.e., the 95% confidence interval for each 

parameter estimate included the population value in at least 90% of the replications), with 

the exception of the single indicator models (discussed below).

CFAs

Effect of number of factors—Within the CFAs, increasing the number of latent 

variables in a model resulted in a significant increase in the minimum sample size when 

moving from one to two factors, but this effect plateaued, as the transition from two to three 

factors was not associated with a concomitant increase in the sample size. For example, as 

shown in Figure 3 (Panels A–C) and Supplemental Tables 1–3, sample size requirements at 

least doubled when comparing the simplest possible one-factor, four-indicator model, which 

required a sample of 190, 90, and 60 participants at factor loadings of .50, .65, and .80, 

respectively, relative to the simplest possible two-factor model (with three indicators per 

factor), which required a minimum sample of 460, 200, and 120, respectively. However, this 

was not true for comparisons between two- and three-factor models. In these cases, sample 

sizes were relatively unchanged, or in some cases decreased, with the addition of the third 

factor.

Effect of number of indicators—Overall, models with fewer indicators required a 

larger sample relative to models with more indicators. A one-factor, four-indicator model 

with loadings of .50, .65, and .80 required sample sizes of 190, 90, and 60, respectively, 

while a one-factor, six-indicator model required sample sizes of 90, 60, and 40, respectively 

(see Figure 3, Panels A–C). However, this effect also leveled as the transition from six to 

eight indicators did not result in as dramatic a decrease in sample size (i.e., this dropped 

from 60 to 50 when increasing from six to eight indicators in the one-factor model with 

factor loadings of .65) and, in some instances, yielded no reduction in minimum sample size 

(i.e., both the six- and the eight-indicator one-factor model with loadings of .50 were 

associated with a minimum sample size of 90). The same general pattern held for the two- 

and three-factor models at factor loadings of .50 and .65 but the effect of increasing the 

number of indicators was less evident in the models with factor loadings of .80 (see Figure 

3, Panel C, and Supplemental Table 3).

Effect of magnitude of factor loadings—Models with stronger factor loadings 

required dramatically smaller samples relative to models with weaker factor loadings. For 

example, the one-factor, four-indicator model with loadings of .50, .65, and .80 required a 

minimum of 190, 90, and 60 observations, respectively; decreasing the strength of the factor 

loadings from .80 to .50 necessitated a threefold increase in the sample size. On average, 
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factor loadings of .50 were associated with nearly 2.5-fold increases in required sample size 

relative to an identical model with loadings of .80.

Effect of magnitude of factor correlations—As described in the notes to 

Supplementary Tables 1, 2, and 3, we also evaluated the effect of increasing the factor 

intercorrelation from .30 to .50. On average, the increased factor relationship was associated 

with 78 fewer participants in the minimum acceptable sample size for the CFA models 

with .50 factor loadings, 55 fewer participants for CFA models with .65 factor loadings, and 

37 fewer participants for CFA models with .80 factor loadings.

SEMs

Effect of magnitude of regressive paths—Mediation models with larger effects 

tended to achieve adequate statistical power for the direct and indirect effects in the model 

with smaller sample sizes. For example, the model in which the direct effects accounted for 

16% of the variance in the dependent variable required greater than 2.4 times more 

participants to achieve adequate statistical power relative to the model in which 45% of the 

variance was explained (i.e., n = 440 vs. 180). However, the model that explained 75% of 

the variance in the dependent variable actually required more participants than the model 

that explained 45% of the variance. This was not due to statistical power (which was 

sufficient even at relatively small sample sizes) but instead primarily due to bias of the 

parameter estimates in the model with larger effects. This likely reflects larger standard 

errors (evidenced by larger standard error estimates for the regressive paths) as the true 

value becomes more extreme, thus necessitating increased sample size.

Effect of Missing Data—Greater amounts of missing data in the two-factor CFA and 

mediation models generally necessitated larger sample sizes (see Figure 3, Panel E, and 

Supplemental Table 5). This was primarily due to problems with errors in the analysis of 

generated data sets. For example, the two-factor CFA model with three indicators per factor 

loading at .65 and a factor intercorrelation of .30 was associated with a minimum sample 

size of 200 when there were no missing data or only a small amount of missing data (i.e., 

2% per indicator). However, the minimum sample size increased to 260 with 5% and 10% 

missing data per indicator and to 320 with 20% missing data per indicator because of errors 

that occurred at smaller sample sizes. In contrast, power was not dramatically affected by 

the addition of missingness. The same basic pattern emerged with respect to the effect of 

missing data in the mediation models.

Effect of Latent Variables—The comparison of latent versus observed variables in the 

mediation model demonstrated that no amount of increasing the sample size of single 

indicator models could account for bias in those results; the attenuation in the magnitude of 

the parameter estimates was directly related to the degree of unspecified unreliability in the 

measure (see Cole & Maxwell, 2003). Specifically, the results showed that a measure with 

42% reliability (equivalent to a factor loading of .65) would estimate a direct path parameter 

estimate of .17 when the true population estimate was .40 (biased by 58%), whereas a 

measure with 90% reliability (equivalent to a factor loading of .95) would estimate a direct 

path parameter estimate of .36 when the true estimate was .40 (biased by 10%). Statistical 
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power was also affected because the model with reliability of 42% estimated the direct 

effect as .17 (instead of the true effect of .40) and a sample size of 180, which was sufficient 

for the equivalent latent variable mediation model, was inadequate (power = 68%) to detect 

an effect of .17. The single-indicator models with more reasonable amounts of indicator 

reliability (.81 and .90) achieved at least 99% power for all direct and indirect paths because 

the parameter estimates in these models, while still attenuated, were not so small as to affect 

statistical power. If the three observed variables in the single-indicator mediation model 

contained only true score variance (i.e., unreliability = 0), then a sample size of 50 would 

achieve 86% power to detect the smallest direct effect, and a sample size of 70 would be the 

minimum required to detect the projected indirect effect (and would achieve 81% power).

Stability of Results—With a few exceptions, solutions that met all a priori criteria at a 

given sample size were stable relative to the results of the analysis at the next largest sample 

size. We observed somewhat greater instability of results, however, with respect to the 

reanalysis of the best solutions using a new seed number. Specifically, in 34% of the 

analyses, the minimum sample size increased (average increase in sample size = 24 cases, 

range = 10–50); in 16% of the analyses, the minimum sample size decreased (average 

decrease in sample size = 18 cases, range = 10–30); and in 50% of the analyses, the 

minimum necessary sample size was equal across analyses using the two seed numbers. 

When reevaluated with the new seed number, 41% of the CFA models, 67% of the SEM 

models (note that there were only three total), and 75% of the missingness models required a 

change in sample size. In the majority of the cases, errors caused the increase in sample size 

in the models with the new seed number; however, in a minority of cases, power (when it 

was just on the threshold of .80 using the first seed number), and bias were the unstable 

factors that necessitated increased sample size.

Discussion

In this study, we systematically evaluated sample size requirements for common types of 

SEMs by performing Monte Carlo analyses that varied by type of model, number of factors, 

number of indicators, strength of the indicator loadings and regressive paths, and the amount 

of missing data per indicator. We evaluated the extent to which statistical power, parameter 

estimate bias, and the overall propriety of the results affected sample size requirements for 

these different models. In so doing, we aimed to demonstrate to applied researchers the 

broad variability in sample size requirements for latent variable models and show how the 

sample size estimates vary greatly from model to model. This is important as the results of 

methods-focused articles are not always accessible and interpretable to applied researchers, 

thus misinformation about sample size requirements persists in the literature and in reviewer 

feedback on manuscripts and grant applications. In the paragraphs that follow, we describe 

our results with respect to the broad “lessons learned” from this study.

Optimizing Model Characteristics

Lesson 1A: One size does not fit all—The results of this study demonstrate the great 

variability in SEM sample size requirements and highlight the problem with a “one size fits 

all” approach, consistent with the observations of MacCallum et al. (1999). More 
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specifically, required sample sizes ranged from 30 cases (for the one-factor CFA with four 

indicators loading at .80) to 460 (for the two-factor CFA with three indicators loading at .

50). In comparison, the 10 cases per variable rule-of-thumb would have led to sample size 

recommendations ranging from 40 to 240, respectively. Furthermore, rather than increasing 

linearly with number of estimated parameters or number of variables, we found that sample 

size requirements actually decreased when the number of indicators of a factor increased. 

This was likely a result of the increase in information available for use in solving the 

simultaneous regression equations. This effect was particularly evident in moving from three 

or four indicators to six, but less so when transitioning from six to eight indicators. This is 

consistent with prior work suggesting that increasing the number of indicators per factor 

may be one way to compensate for an overall small sample size and preserve statistical 

power (Marsh et al., 1998). This suggests that researchers may wish to design models in 

which the number of indicators per factor is greater than the minimum number of indicators 

required for model identification. Investigators should consider the tradeoff between the 

simplicity of having fewer indicators per factor versus the benefits of enhanced power and 

precision that come with having more than the minimum number of indicators per factor.

Lesson 1B: More is not always better—While the number of indicators in a model 

had an inverse effect on sample size requirements (i.e., models with more indicators per 

factor required fewer cases), other types of increases to the complexity of the model 

necessitated increased sample size requirements. For example, increasing the number of 

factors yielded a commensurate increase in the minimum sample size required. This was 

likely a function of the need to have adequate power to detect the correlation between the 

factors. This is an important point as it is not uncommon to have a measurement model in 

which the correlation between the factors is the focus of investigation and is expected to be 

small to moderate in magnitude (i.e., when evaluating the discriminant validity of 

constructs). Thus, evaluating a multifactor measurement model in which the factors are 

thought to be distinct but correlated may require larger samples compared to a model in 

which the factor correlation is not of interest and the researcher is focused only on obtaining 

adequate sample size to estimate the factor loadings.

While models with stronger effects generally required fewer cases, this effect was nonlinear, 

as SEM models with large path coefficients actually required substantially more cases 

relative to the same models with more moderate strengths of association due to bias in the 

parameter estimates. In general, models with indicators with strong relationships to the 

latent variables yielded more problems with biased and error-prone solutions, even after 

power reached acceptable levels. In contrast, models with weaker factor loadings tended to 

have problems with power, even when bias and errors were not a problem.

The broad take home message is that, with respect to the strength of the factor loadings and 

the magnitude of regressive effects in the model, effects that are very weak or very strong 

may require larger samples relative to effects that are more moderate in magnitude; albeit 

this effect is more pronounced in models with very weak effects. This implies that 

researchers need to carefully consider these parameters when planning an SEM and to keep 

in mind that having large effects, while associated with generally improved statistical power, 
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yields new concerns about parameter bias that may ultimately result in increased sample size 

requirements in order to obtain sufficiently accurate estimates.

The Perils of Ignoring Bias, Errors, Small Effects, and Missing Data

Lesson 2A: Power is not enough—This study highlights how attending only to 

statistical power is problematic when contemplating sample size requirements. In many 

models, statistical power was not the limiting factor driving sample size requirements, but 

rather, bias or errors (i.e., solution propriety) were the culprit. It is our impression that 

applied researchers often consider sample size needs only in relationship to achieving 

adequate statistical power.

Lesson 2B: Latent variable models have benefits—Results of this study also reveal 

the advantages associated with the use of latent variables and the inclusion of error theory in 

the model. Although a path model composed of only single indicators certainly requires 

fewer participants than the equivalent model evaluated with latent variables, this is based on 

the almost certainly false tenet that the single indicators are perfect measures of the 

underlying construct (i.e., in the behavioral sciences, most phenomena of interest are not 

directly observable and thus are measured with error). To the extent that a single indicator is 

not reliable, then it is clear from these results that bias in the parameter estimates is 

introduced (in direct relation to the degree of error in the indicator). Prior work has arrived 

at this same general conclusion (Cole & Maxwell, 2003), although to our knowledge, no 

prior study has systematically evaluated and compared sample size requirements with 

respect to statistical power, bias, and solution propriety under varying parameter conditions 

across latent-variable and single-indicator models. No amount of increasing the sample size 

in a single-indicator model will compensate for inadequate reliability of the measures. In 

most single-indicator designs, concerns regarding bias are not considered when evaluating 

minimum sample size as only statistical power is typically evaluated. If an investigator has 

no choice but to use single indicators of a given construct, then it is generally advisable to 

attempt to account for measurement error in the indicator by estimating it (see Brown, 

2006). Doing so will likely improve the strength and accuracy of the parameter estimates, 

and hence, statistical power to detect them.

Lesson 2C: Don’t ignore the weakest link—In addition, these results demonstrate the 

need to attend to sample size requirements for the smallest effect of interest in the model. 

For example, in a mediation model, the strength of the indirect effect (often the effect of 

greatest interest to researchers) is always weaker than its component parts and this indirect 

effect may not be a focus of the Monte Carlo modeling. In fact, the Monte Carlo simulation 

could proceed without inclusion of the line in the model script that estimates the size and 

significance of the indirect effect, and a researcher might erroneously determine sample size 

requirements based only on the weakest projected direct effect. For example, note that in the 

simulations in which an impressive 75% of the variance in the dependent variable was 

explained, the magnitude of the indirect effect was still modest at best (β = .25). Failing to 

focus on the magnitude of the indirect effect could lead to a study with insufficient sample 

size.
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Lesson 2D: Missing data matter—Results of this study also highlight problems with 

not accounting for missing data in determining sample size requirements. Models with 20% 

missing data per indicator necessitated, on average, nearly 50% increase in sample size 

requirements (due to problems with error and bias). This is a substantial relative increase in 

the sample size requirement and implies that failure to account for missing data when 

determining sample size requirements may ultimately lead to sample size benchmarks that 

are not sufficient. Prior work suggests that researchers must consider if missing data are 

missing at random versus missing completely at random, as this distinction will likewise 

affect statistical power and sample size requirements (Davey & Salva, 2009a; Dolan et al., 

2005). Although judging the effects of missing data may add an additional layer of 

complexity and time to the planning phase of research, the results of this study (and prior 

work) suggest that attending to the relationship between missing data and sample size 

requirements is time well spent.

To summarize, failure to consider potential measurement error, the effects of parameter bias, 

unevaluated weak effects, and the amount of missing data is likely to lead to sample size 

estimates that are inappropriate for the planned analyses. Participant and investigator time 

and effort, and research dollars, may be wasted if these contributors to sample size needs are 

overlooked. Attending to potential sources of bias and error is important for ensuring the 

validity of the results and their interpretation.

Ensuring Stability of Sample Size Requirements

Lesson 3A: Sample size estimates may vary—This study also demonstrated that the 

minimum sample required for a given model was not always stable, with respect to (a) 

having the next largest sample size yield acceptable results and (b) evaluating the same 

model with a new seed number. This problem was particularly evident in models that 

included missing data. Researchers may want to assess the cause of the instability of sample 

size requirements before determining how to respond to it. If reanalysis with a new seed 

number reveals bias in a primary parameter estimate, it may warrant choosing the most 

conservative sample size estimate, whereas a single error resulting from reanalysis may not 

warrant increasing the sample size. The difference in sample size requirements when 

evaluated with different seed numbers was sometimes quite meaningful—in one instance, 

there was a discrepancy of 50 cases across the two simulations. Depending on the participant 

pool, 50 additional cases may be unattainable. Investigators may want to combine across 

sample size estimates, for example, by taking the mean minimum sample size based on 

analyses with several different seed numbers. The lesson here is that, rather than focusing on 

a single minimum sample size requirement, it is preferable for investigators to think of 

acceptable sample size estimates as falling within a range.

Limitations and Conclusion

This study was limited in that we did not evaluate all of the possible factors that could have 

bearing on sample size requirements. For example, we did not evaluate the effects of 

nonnormal data (see Enders, 2001), or of the use of categorical, count, censored, or item 

parceled data (see Alhija & Wisenbaker, 2006). We did not evaluate models in which 

indicators loaded very weakly on the latent variables. In addition, for the sake of simplicity 
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and consistency, we held the size of all equivalent parameter estimates in a model 

consistent, but of course this pattern of associations is unlikely in real data sets. We did not 

evaluate the sample size necessary to obtain overall good model fit (e.g., Kim, 2005) and 

there are many other types of models including longitudinal designs (see Hertzog, von 

Oertzen, Ghisletta, & Lindenberger, 2008), multigroup designs (see Hancock, Lawrence, & 

Nevitt, 2000), and power equivalence designs (see MacCallum, Lee, & Browne, 2010) that 

we did not evaluate. We limited the models under consideration to those that we thought 

would have the widest appeal and that would be most readily interpretable.

We hope that researchers will find the examples in this study relevant to their own work and 

use them to help arrive at initial estimates for sample size that are then evaluated fully 

through additional analyses matched to the researcher’s specific study. Use of popular rules-

of-thumb for such purposes may be quick and handy, but they are insufficient. Just as 

clinicians must take an individualized approach to the assessment and treatment of the client 

in the therapy office, so too, must researchers individualize their sample size planning to the 

specific model under consideration. The final lesson learned is that determining sample size 

requirements for SEM necessitates careful, deliberate evaluation of the specific model at 

hand.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Annotated Mplus Monte Carlo Script for the First Confirmatory Factor 

Model Evaluated

TITLE: Monte Carlo simulation of 1 factor CFA with 4 items and .50 loadings

MONTECARLO:

NAMES ARE A1-A4;

NOBSERVATIONS = 200; !* specifies sample size

NREPS = 10000;

SEED = 53487;

NGROUPS = 1;

MODEL POPULATION: ! specifies population parameters

F1 BY A1*.50; ! sets factor loadings

F1 BY A2*.50;

F1 BY A3*.50;

F1 BY A4*.50;

F1@1.0; ! specifies factor variance

A1*.75; ! specifies residual variance of the indicators

A2*.75;

A3*.75;

A4*.75;

MODEL : ! specifies model to be tested

F1 BY A1*.50;

F1 BY A2*.50;

F1 BY A3*.50;

F1 BY A4*.50;

F1@1.0; ! this parameter is not estimated as it is set using the “@” symbol

A1*.75;

A2*.75;

A3*.75;

A4*.75;

OUTPUT: TECH9;

*! Is used for annotation purposes; Mplus will not read script beyond the !
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Annotated Mplus Monte Carlo Script for the First Regressive Structural 

Equation Model Evaluated

TITLE: Monte Carlo simulation for mediation model explaining 16 percent 

variance in F3

MONTECARLO: NAMES ARE A1-A3 B1-B3 C1-C3;

NOBSERVATIONS = 200;

NREPS = 10000;

SEED = 53487;

NGROUPS = 1;

MODEL POPULATION:

F1 BY A1-A3*.65;

F2 BY B1-B3*.65;

F3 BY C1-C3*.65;

F1@1.0; ! sets factor variance

F2@.94; ! sets residual factor variance

F3@.84;

[F1-F3@0]; ! sets factor means to 0

A1-A3*.5775;

B1-B3*.5775;

C1-C3*.5775;

F3 ON F1*.25; ! sets regressive path

F3 ON F2*.25;

F2 ON F1*.25;

[A1-A3@0]; ! sets indicator intercepts to 0

[B1-B3@0];

[C1-C3@0];

Model Indirect: F3 IND F2 F1*.06; ! sets magnitude of indirect effect

MODEL:

F1 BY A1-A3*.65;

F2 BY B1-B3*.65;

F3 BY C1-C3*.65;

F1@1.0;

F2@.94;

F3@.84;

[F1-F3@0];

A1-A3*.5775;

B1-B3*.5775;

C1-C3*.5775;

F3 ON F1*.25;

F3 on F2*.25;

F2 on F1*.25;

[A1-A3@0];
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[B1-B3@0];

[C1-C3@0];

Model Indirect: F3 IND F2 F1*.06;

OUTPUT: TECH9;
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Figure 1. Schematic diagram of CFA model permutations
Note. The figure shows a representation of the model characteristics that were varied in the 

Monte Carlo analyses of the CFAs. We evaluated models with one to three factors and each 

factor in the model was indicated by three to eight indicators, which loaded on their 

respective factors at .50, .65, or .80. The factor correlation(s) was set to r = .30 or .50. CFA 

= confirmatory factor analysis; mag = magnitude.
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Figure 2. Schematic diagram of mediation model permutations
Note. The strength of all the direct regressive paths was varied from .25 to .40 to .50 to 

account for 16%, 45%, and 75% of the variance in the dependent variable, respectively. All 

variables were set to have a variance of 1.0 and mean of 0. Arrows pointing toward the 

dependent variable show the amount of residual variance in each variable.
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Figure 3. Minimum sample size required for CFA, SEM, and missingness models
Note. Ind = indicator; CFA = confirmatory factor analysis. Panels A to E show the results of 

the Monte Carlo simulation studies. Each panel shows the minimum sample size required 

for each permutation of each type of model that was evaluated. For panel E, Model A is the 

CFA model and Model B is the SEM model. The permutations of the regressive model (i.e., 

mediation model) differed in both the magnitude of the structural parameters and the total 

variance explained in the dependent variable (as shown in parentheses).
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