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There is no shortage of recommendations regarding the appropriate sample size to

use when conducting a factor analysis. Suggested minimums for sample size include

from 3 to 20 times the number of variables and absolute ranges from 100 to over

1,000. For the most part, there is little empirical evidence to support these recommen-

dations. This simulation study addressed minimum sample size requirements for 180

different population conditions that varied in the number of factors, the number of

variables per factor, and the level of communality. Congruence coefficients were cal-

culated to assess the agreement between population solutions and sample solutions

generated from the various population conditions. Although absolute minimums are

not presented, it was found that, in general, minimum sample sizes appear to be

smaller for higher levels of communality; minimum sample sizes appear to be

smaller for higher ratios of the number of variables to the number of factors; and

when the variables-to-factors ratio exceeds 6, the minimum sample size begins to sta-

bilize regardless of the number of factors or the level of communality.
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One of the most commonly addressed issues in all of statistical analysis is the issue

of sample size. When researchers design a study or plan a project, they must decide
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how large a sample to obtain. For many statistical procedures that involve sam-

pling from known distributions, minimum sample size determinations are straight-

forward and well known. This is not the case with all procedures, however, and,

specifically, it is not the case when conducting a factor analysis.

Factor analysis has a variety of applications in research and measurement. One

common use is in the development of tests and measures. Here, as with other uses

of factor analysis, one of the major decisions facing the researcher is the size of the

sample needed to provide an expectation that the factor solution has some founda-

tion in reality. Hence, accurate, reliable guidelines for choosing an appropriate

sample size for conducting a factor analysis could be extremely useful in many ap-

plications, including international and comparative studies of tests and measures.

The factor analysis literature contains a variety of recommendations regarding

the appropriate sample size to use for conducting a factor analysis. For the most

part, these recommendations are presented as either a suggested minimum sample

size or a suggested minimum ratio of sample size to number of variables. Girshick

(1939), Archer and Jennrich (1973), and Cudeck and O’Dell (1994) investigated

the minimum sample size issue as it relates to the standard errors of the factor load-

ings. Other researchers looked at the asymptotic standard errors of unrotated maxi-

mum likelihood loadings (Lawley, 1967) and of rotated principal components

loadings (Jennrich, 1973). MacCallum, Widaman, Zhang, and Hong (1999), how-

ever, pointed out that published guidelines for determining adequately small stan-

dard errors of loadings do not exist, and Cudeck and O’Dell concluded that a theo-

retical answer to the sample size question is too difficult to derive directly.

It is generally accepted that larger samples are better (Comrey & Lee, 1992;

Cudeck & O’Dell, 1994; Kline, 1994; MacCallum et al., 1999; Velicer, Peacock, &

Jackson, 1982), but existing recommendations are varied, even contradictory

(MacCallum et al., 1999). Gorsuch (1983) and Kline recommend a minimum sam-

ple size of at least 100, whereas Comrey and Lee said 50 is very poor, 100 is poor,

200 is fair, 300 is good, 500 is very good, and 1,000 is excellent. Kline also recom-

mended that considering the ratio of number of participants to number of variables

is a better way to determine a minimum sample size. Kline’s recommendation

seems reasonable, however, after reviewing various proposed guidelines for this

ratio; Arrindell and van der Ende (1985) concluded that these recommendations

are inconsistent. For example, Cattell (1978) recommended a ratio of three to six

times the number of variables; Everitt (1975) argued for a ratio of at least 10 to 1;

and Hair, Anderson, Tatham, and Black (1995) suggested using a ratio of 20 to 1.

Other researchers have looked at how different levels of communality (MacCallum

et al., 1999; Tucker, Koopman, & Linn, 1969; Velicer et al., 1982) and the ratio of

variables to factors affect minimum sample size (Browne, 1968; MacCallum,

Widaman, Preacher, & Hong, 2001; MacCallum et al., 1999; Preacher &

MacCallum, 2002; Tucker et al., 1969). In sum, these researchers have demon-

strated that the minimum necessary sample size in factor analysis is related to the
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number of variables, the number of factors, the number of variables per factor, and

the size of the communalities.

The purpose of this study was to determine a minimum necessary sample size in

factor analysis that would provide a factor solution in agreement with the popula-

tion structure from which the sample was taken. To accomplish this purpose, we

generated a variety of population correlation matrices under several different con-

ditions, repeatedly sampled from these population structures, and determined co-

efficients of congruence between the sample solutions and population structures.

Minimum necessary sample size recommendations were developed based on ob-

taining a high percentage of sample solutions that surpassed a preset level of agree-

ment reflected in the congruence coefficients.

METHOD

Population Correlation Matrices

For this simulation study, population correlation matrices were generated, based

on continuous data, under a variety of conditions, using a method given by Tucker

et al. (1969) for generating correlation matrices that produce solutions having a

strong, simple structure. These procedures allowed for the number of common fac-

tors to be varied from 1 to 6, the number of variables per factor to be varied from 3

to 12, and three different communality patterns: high—all communalities ranged

between .6 and .8, wide—all communalities ranged between .2 and .8, and

low—all communalities ranged between .2 and .4. A total of 3 × 6 × 10 = 180 dif-

ferent population conditions were investigated. For each of these 180 conditions,

100 different population correlation matrices were generated.

Sample Correlation Matrices

Sample correlation matrices were generated from each of these 18,000 population

matrices using a variety of sample sizes. A “small” sample size was used as a start-

ing point, with the exact size determined by the number of variables. Sample sizes

were systematically increased according to the following scheme:

If the sample size was less than 30, then it increased by 1 at each stage.

If the sample size was between 30 and 100, then it increased by 5 at each

stage.

If it was between 100 and 300, it increased by 10 at each stage.

If it was between 300 and 500, it increased by 50 at each stage.

If it was greater than 500, it increased by 100 at each stage.
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This procedure continued until criteria were satisfied for either good or excellent

agreement. These criteria are explained later.

Factor Analyses

All of the factor analyses performed in this study used the maximum likelihood es-

timation procedure and a varimax rotation. Then, the rotated population solutions

were used as target matrices, and each sample solution was subjected to target rota-

tion using a procrustrian rotation method developed by Tucker and Korth (1976).

Once the rotated solutions were obtained, a coefficient of congruence between

each factor from the sample solution and the corresponding factor from the popu-

lation solution was calculated using the following formula:
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where fjk(t) is the population factor loading for variable j on factor k and fjk(s) is the

corresponding sample loading. To assess the degree of congruence across m fac-

tors, the mean value of Φk across the m factors is computed. This average is de-

noted as K and is given by

K =
m

k
k =1

m
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For any particular m-factor solution, however, m! different Ks can be obtained by

rearranging the order of the m columns. In this study, the maximum value of K in

this group of m! Ks was used to represent the measure of agreement between any

particular sample’s rotated solution and the rotated solution from its parent popula-

tion. For each of the 18,000 population conditions and for each specific sample

size investigated, 100 sample correlation matrices were generated and factor ana-

lyzed, resulting in 100 values of K for each of the population-sample size scenar-

ios. These 100 Ks were arranged so that K(1) ≤ K(2) ≤ … ≤ K(100). Then, the value

of
( ) ( )K K

2

5 6
+

was used to represent the lower boundary of a 95% confidence inter-

val for this population correlation condition with this particular sample size and

was denoted as K0.95. One hundred K0.95s were obtained in this way for each popu-

lation-sample size scenario.
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Criteria for Good and Excellent Agreement

MacCallum et al. (1999) followed the guidelines set forth in Tucker et al. (1969) for

the interpretation of the coefficient of congruence, K. A value of K between 0.98 and

1.00 is considered excellent agreement, between 0.92 and 0.98 is considered good

agreement,between0.82and0.92 isconsideredborderline,between0.68and0.82 is

considered poor, and below 0.68 is considered terrible. In this study, because the fo-

cus isonminimum necessarysamplesize toachieveacceptableagreement,valuesof

K set at 0.98 and 0.92 were used as thresholds to determine sample size recommen-

dations. In particular, P0.92 is defined as the percentage of the number of K0.95s that

are larger than 0.92 in the 100 K0.95s from a particular population-sample size sce-

nario, and P0.98 is defined as the percentage of the number of K0.95s that are larger

than 0.98 in the 100 K0.95s from a particular population-sample size scenario.

To determine the minimum necessary sample size for any population correla-

tion matrix condition, the following criteria were used as a threshold for “good”

agreement between the population solution and the sample solutions:

1. The P0.92 values from three successive sample sizes are greater than or

equal to 0.95, or

2. The P0.92 values from two successive sample sizes are greater than or equal

to 0.95, the P0.92 value from the next sample size is less than 0.95, and the

P0.92 values from the next two successive sample sizes are greater than or

equal to 0.95.

The following criteria were used as a threshold for “excellent” agreement:

3. The P0.98 values from three successive sample sizes are greater than or

equal to 0.95, or

4. The P0.98 values from two successive sample sizes are greater than or equal

to 0.95, the P0.98 value from the next sample size is less than 0.95, and the

P0.98 values from the next two successive sample sizes are greater than or

equal to 0.95.

RESULTS

In this study, two minimum necessary sample sizes are determined for 180 differ-

ent population conditions: one that allows for “good” agreement between sample

and population solutions (i.e., K values at least as high as 0.92) and one that allows

for “excellent” agreement between sample and population solutions (i.e., K values

at least as high as 0.98). To make these determinations, 371,600 population corre-

lation matrices were generated, and 37,160,000 sample correlation matrices were

generated. The results are presented in Table 1.
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TABLE 1
The Minimum Necessary Sample Sizes for Each Condition Under Two

Criteria

Excellent-Level Criterion (0.98) Good-Level Criterion (0.92)

p/f F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

Level of communality: High

3 32 320 600 800 1,000 1,200 13 90 170 260 300 350

4 27 150 260 350 450 500 13 75 120 170 220 170

5 21 75 130 260 260 300 11 45 65 90 130 110

6 19 55 95 160 200 160 12 40 50 55 70 70

7 18 45 75 110 130 110 11 40 40 55 55 55

8 18 45 75 90 75 70 11 40 30 40 45 55

9 17 40 60 65 80 80 12 35 30 40 50 60

10 15 35 60 70 65 65 13 35 35 45 55 65

11 16 35 55 60 60 75 14 35 40 55 60 70

12 15 35 55 55 65 75 15 35 40 55 65 75

Level of communality: Wide

3 110 710 1,300 1,400 1,400 1,600 35 160 450 500 700 600

4 65 220 350 700 900 900 25 90 130 240 320 300

5 50 130 200 300 300 350 30 60 80 110 140 130

6 50 95 140 180 200 180 20 55 65 75 70 100

7 40 75 105 160 150 130 20 50 55 75 65 60

8 36 65 90 90 130 110 15 45 45 50 55 60

9 33 55 70 85 90 100 15 40 40 50 50 60

10 32 55 75 80 85 95 14 35 35 45 55 65

11 36 50 65 75 85 95 14 35 40 50 60 70

12 30 50 70 75 85 95 15 35 40 50 65 75

Level of communality: Low

3 150 900 1,700 2,600 3,000 3,800 45 600 1,200 1,200 1,300 1,200

4 95 270 450 800 1,000 1,400 35 120 230 250 400 400

5 75 150 220 370 430 400 35 75 85 170 180 160

6 70 120 160 190 200 260 30 60 85 130 120 120

7 60 80 100 180 170 140 30 60 65 75 85 80

8 55 75 100 100 130 130 23 60 60 75 80 75

9 50 70 85 110 100 120 22 50 60 60 65 70

10 50 70 85 90 110 110 20 45 40 60 60 70

11 50 60 75 95 95 105 20 45 45 50 60 70

12 50 60 75 85 100 110 20 40 40 55 65 75

Note. p/f is the ratio of variables to factors. F1 denotes a one-factor solution, F2 a two-factor solu-

tion, and so forth.



The following relations are evident from the table: (a) for a fixed vari-

ables-to-factors ratio (p/f), as the number of factors increases, the minimum sam-

ple size increases; (b) for a fixed number of factors, as the level of communality de-

creases, the minimum sample size increases; (c) for a fixed number of factors, as

the number of variables increases, the minimum sample size decreases (although

in the lower portion of each section of the table for some factor numbers, the mini-

mum sample size increases slightly because the sample size cannot be smaller than

the total number of variables); and (d) to have “good” agreement between sample

and population, once the variables-to-factors ratio reaches at least 7, the minimum

sample size begins to stabilize.

Tables 2 and 3 summarize the ranges for the minimum necessary sample sizes

with the variables-to-factors ratio set at 7 and the number of factors varying. For

example, in Table 3, with high levels of communality and the “excellent” agree-

ment criterion, the minimum sample size varies from 75 to 100 depending on the

number of factors that are present in the data. And if one is satisfied with “good”

agreement, then the sample size need not ever exceed 85, regardless of the level of

communality or the number of factors.

Tables 1, 2, and 3 are presented in terms of the number of variables to number of

factors ratio (p/f). If one considers the number of variables involved rather than the

variables-to-factors ratio, it is also evident in Table 1 that as the total number of

variables increases into the 40 to 50 range, the minimum sample size required to
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TABLE 2
The Ranges of Minimum Necessary Sample Sizes in 12 Different

Conditions for Variables-to-Factors Ratio of 7

Number of Factors Excellent-Level Criterion 0.98 Good-Level Criterion 0.92

1 18–60 11–30

2 45–80 40–60

3 75–100 40–65

4 110–180 55–75

5 130–170 55–85

6 110–140 55–80

TABLE 3
The Range of the Maximum Necessary Sample Sizes With Number of

Factors From 2 to 6, Three Levels of Communality, and Two Criteria When
the Variables-to-Factors Ratio is 7

Criterion High Wide Low

0.98 75–130 105–160 100–180

0.92 40–55 50–75 60–85



meet the “good” level of agreement criterion begins to stabilize, in just about every

case, at a point below 100.

CONCLUSION

The aim of this study was to investigate the minimum necessary sample size for

conducting factor analyses under a variety of conditions. The intent was that rec-

ommendations could be made that could serve as more or less universal guidelines

for use when planning studies involving factor analyses. With that in mind, the fol-

lowing conclusions are drawn.

First, the number of variables may not be an appropriate index to use to deter-

mine the size of the sample. Cattell (1978), Nunnally (1967), Everitt (1975), and

others all proposed various ratios of participants to variables ranging from 3 to 1,

10 to 1, and even higher for such an index. In this study, with the number of factors

fixed, the ratio of sample size to number of variables exhibits an inverse relation.

Using the coefficient of congruence criteria described earlier and a fixed number

of factors, a small number of variables requires a larger minimum sample size than

does a large number of variables. The relation between the minimum necessary

sample size and the number of variables, for a fixed number of factors, appears to

be compensatory, not proportional. In addition, the relation between the minimum

necessary sample size and the ratio of the number of variables to the number of fac-

tors also appears to be compensatory. This result is not inconsistent with Marsh,

Hau, Balla, and Grayson (1998), in which the same conclusion was drawn in re-

gard to confirmatory factor analysis.

Second, the difference in minimum necessary sample size between two different

levels of communality will decrease as the ratio of the number of variables to the

number of factors increases—that is, as the total number of variables increases.

Hence,withmorevariables, the influenceof the level ofcommunalitydiminishes. In

practice, however, this result may not be of much importance. It is relatively easy to

generate correlation matrices with varying levels of communality in a simulation

study.Butwithrealdata, it ismuchmoredifficult toascertain thecommunalitylevels

beforehand. Consequently, in practice, using a higher variables-to-factors ratio,

which diminishes the effect of the level of communality, appears to be a reasonable

recommendation, with this ratio being at least 7, if possible.

Third, attempts to provide absolute minimum necessary sample sizes are proba-

bly unrealistic. Gorsuch (1983) and Kline (1994) offered 100 as an absolute mini-

mum, and Comrey and Lee (1992) offered sample sizes of 100 as poor, 200 as fair,

300 as good, 500 as very good, and 1,000 or more as excellent. In this study, how-

ever, with a variables-to-factors ratio of at least 7, and even with low communality,

the minimum necessary sample size for excellent agreement is never greater than

180 and, in most cases, less than 150. On the other hand, with a variables-to-factors
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ratio of 3, the number of factors between 3 and 6, and low communalities, the mini-

mum necessary sample size is at least 1,200. It appears that the variety of condi-

tions investigated here are too diverse to provide absolute minimum sample sizes.

Fourth, although the results are quite varied, it appears to be possible to make

some general recommendations regarding minimum necessary sample sizes.

These recommendations are presented in Table 4 for both “excellent” and “good”

criteria, three levels of communalities, and selected variables-to-factors ratios.

Again, it is clear that the more variables that are measured per factor and the

greater the level of communality, the smaller the sample sizes need to be.

And finally, a word about the data used here. In this study, the data were simu-

lated correlation matrices based on continuous data. In practice, factor analyses are

frequently performed on ordinal and even binary data. Although correlation coeffi-

cients can be, and often are, calculated with noncontinuous data so that these re-

sults may apply in those situations as well, we did not address that situation. The

reader may wish to use caution in applying these recommendations with ordinal or

binary data.
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