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Sample Size Planning for
Confirmatory FactorModels: Power
and Accuracy for Effects of Interest

Ken Kelley and Keke Lai

Introduction

Confirmatory factor analysis (CFA) holds a special place in psychometrics because of the
model’s historical significance and widespread use when latent constructs are theorized
and empirically evaluated. A special case of a CFAmodel is simply a compositemeasure.1

Confirmatory factor models are themselves special cases of structural equation models.
Within a structural equationmodel (SEM), themeasurementmodel of a given construct
is a confirmatory factor model. In an SEM, constructs are used to test a hypothesized
structural relationship among latent variables. Thus, an SEM, the measurement model,
itself a confirmatory factor model, is used in a larger framework of modeled constructs
called the structural model. Although widely used in applied research, much of the writ-
ing on CFA is within an SEM framework treating CFA as a special case. In the intro-
duction to Brown’s book on CFA (2006), David Kenny says, “it is ironic that SEM
has received so much more attention than CFA, because the social and behavioral
sciences have learned much more from CFA than from SEM” (p. ix). With that strong
endorsement of the importance of CFA, our focus in this chapter is sample size planning
for CFA models. The ideas, however, are directly applicable to other related models,
such as multiple regression, path analysis, and SEM among others. In fact, the ideas
we discuss here are general and they are widely applicable to many contexts.

Consider the idea of sample size planning. First, in our experience, this is a topic that is
often ignored by many researchers. We say this because so often the idea of planning an
appropriate sample size is an afterthought to other aspects of a study. We believe one
reason why sample size is sometimes an afterthought is because there are often a priori
built-in limitations of a study, such as when there is only a short amount of time available
to collect data, the number of potential participants is necessarily restricted (e.g., from
a shared participant pool, from within an organization, from a special or limited

1 For example, the sum of a set of items, with unit weights or unequal weights, can be conceptualized as a
constrained CFA model.
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population), or financial resources to collect data dictate only a small number of parti-
cipants’ data can be collected. Any of these limitations may be a very practical reason
why, regardless of what a formal planning of sample size would suggest, researchers
use the sample size that is available to them, at least conveniently. In these sorts of situa-
tions, the idea of doing an analysis to choose an appropriate sample size does not seem to
be highly valued. However, as we explain momentarily, we believe that even in such
constrained situations it is still important to plan sample size and the reasonmany studies
fail to accomplish their original goals is often, but certainly not always, directly related to
sample size.
An alternative scenario to the one just considered is one in which sample size planning

is explicitly and carefully considered, such as in many proposals for funding (i.e., grant
applications). Many funding agencies and reviewers will carefully consider the sample
size justifications in proposals. The scrutiny of sample size considerations is widely
known by authors of successful proposals. There is no technical reason of course why
studies that are not being considered for funding should ignore sample size planning.
Although we realize that to some, perhaps many, researchers, planning sample size is

not as exciting as planning other aspects of a study (e.g., selecting measures to use, the-
oretical model to evaluate, population from which to sample, hypothesis generation) or
performing analyses on the collected data, sample size planning is itself a fundamentally
important task to a well-designed study. We believe, in fact, that an appropriate sample
size is a necessary, but certainly not a sufficient, requirement for a well-designed study.
One reason why sample size should be explicitly considered before starting a study is to
evaluate the potential success of a study with a specified sample size that the researcher
wants, or is able, to use. That is to say, how likely is it that a study will be successful at the
sample size that a researcher wants or is able to use? Alternatively, sample size should be
explicitly considered in order to plan for a sample size that would have a sufficiently high
likelihood of leading to a successful study.
A very practical reason why sample size should be considered is to avoid starting a

study in which the a priori success rate is unacceptably low given the sample size that
is available or that the researcher has the time or funds to collect. That is, if a researcher
knows that he or she will only be able to have, say, 100 participants in the study, yet the
sample size planning procedure suggests that 350 participants are needed, the
researcher may elect not to start the study due to the less-than-desired probability of
accomplishing the study’s goals. For example, it could be the case that the goals of
the study will only have a 10% chance of being successful. Is a 10% chance of success
really worth putting in the substantial amount of time, effort, and resources required?
Maybe it is still worth conducting a study that has a low chance of success, as there is
often more than a single goal of a study. Either way, however, considering sample size
before the start of the study allows the researcher to consider this information before
conducting the study, rather than only learning of the likely reason why the failure after
the study’s completion.
We have said much about the “goals of a study” without identifying exactly what

these “goals” are. First, consider an effect size, which we conceptualize along the lines
of Kelley and Preacher (2012) as “a quantitative reflection of the magnitude of some
phenomenon that is used for the purpose of addressing a question of interest”
(p. 140). In this context, mean differences, regression coefficients, path coefficients, fac-
tor loadings, correlations, proportion of variance accounted for type measures (e.g., the
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squared multiple correlation, eta-squared), and measures of fit, among others, are effect
sizes. When we say “the effect,” we mean the effect size of interest.

When considering a study’s goals, Maxwell, Kelley, and Rausch (2008) consider the
idea of showing (1) the existence of an effect (and possibly its direction), (2) accurately
estimating the magnitude of an effect, or (3) showing the existence of an effect and
estimating an effect accurately. By “showing the existence of an effect,” we mean that
the specified null value of the effect is rejected with a null hypothesis significance test. By
“accurately estimating the magnitude of the effect,” we mean that the confidence
interval for the parameter of interest is sufficiently narrow.

More formally, in the context of showing the existence of an effect, the study will
often be considered a “success” if the p-value < α, where the p-value is the probability of
obtaining results as or more extreme than observed under the null hypothesis and α is
the Type I error rate. That is to say, when the null hypothesis of the effect of interest can
be rejected, support is shown for the alternative hypothesis, which is usually the research
hypothesis of interest. When the goal of a study is to reject a false null hypothesis, a
power analysis should be performed so that the sample size that leads to sufficient
power, under the specified assumptions and study design, can be planned. This type
of sample size planning is the traditional approach and is what Jacob Cohen spent
considerable time positing should be done to improve research quality throughout
much of his career (e.g., as is exemplified in his power analysis book, 1988).

In the context of accurately estimating the magnitude of the effect, such a
conceptualization can be considered a success when the 1−α 100 confidence interval
for the corresponding population value is sufficiently narrow. That is to say, when
sampling error is reduced (precision is improved) and the estimator is not more biased
in the process of improving precision, the estimate is made more accurate. Accuracy of
an estimate is a function of two quantities: precision and bias. If bias is zero, and thus the
estimate is unbiased, improving precision improves accuracy: in the case of an unbiased
estimate precision and accuracy are the same (e.g., Kelley & Maxwell, 2003). Thus,
holding everything else constant, a narrower confidence interval equates to amore accu-
rate estimate. Sample size planning in this framework has been termed accuracy in
parameter estimation (AIPE; e.g., Kelley & Maxwell, 2003). Although, as noted,
Cohen spent considerable time discussing the importance of appropriately powered
studies, in the latter part of his career he shifted focus to the importance of effect sizes
and their corresponding confidence intervals. A useful way of understanding the goal of
AIPE is illustrated by solving the problem noted here with regards to why Cohen sus-
pected, at that time, so few researchers reported confidence intervals: “I suspect that the
main reason they [confidence intervals] are not reported is that they are so embarrass-
ingly large!” (1994, p. 1002). The AIPE approach to sample size planning seeks to plan
sample size so as to avoid “embarrassingly large” confidence intervals. All of these ideas
are general and in no way limited to the CFA context.

Effect Size

When considering estimates in CFA, it is useful to frame them in the context of an effect
size. In the context of CFA, factor loadings, correlations, and measures of fit are each
effect sizes. There is an important distinction between two general types of effect sizes,
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namely omnibus and targeted. An omnibus effect size relates to the overall model,
whereas a targeted effect size relates to a specific well-defined part of the model. In
the context of CFA, a targeted effect size could be a factor loading or correlation
coefficient among two constructs, whereas an omnibus effect size could be a fit index,
such as the root mean square error of approximation (RMSEA), comparative fit index
(CFI), or Tucker–Lewis index (TLI), for example.
In addition to the distinction between targeted and omnibus effect sizes, one can

consider whether effect sizes are standardized or unstandardized. In general, unstandar-
dized path coefficients in CFA (and SEM) models are preferred from a methodological
perspective, as the sampling distribution of standardized coefficients has some technical
issues associated with their standard errors (see Cudeck, 1989, for a discussion of issues
associated with standardized coefficients in CFA and SEM models).3 Fit indices are a
different type of effect size that are standardized because they are not wedded to the
particular measurement scales themselves. Unstandardized path coefficients, on the
other hand, are wedded to the measurement scales of the variables used. Correspond-
ingly, their interpretation is necessarily in the context of the variances and covariances of
the manifest variables. This is no different than the interpretation of a regression coef-
ficient. Consider the case of simple regression, where the regression coefficient of Y on

X is estimated as
Covariance X ,Y

Variance X
= sxy sx , which clearly shows that the scaling

depends on both the regressor (X) and the outcome variable (Y).
As we have illustrated, effect size can be considered in a two-by-two conceptualiza-

tion comprised of scaling (standardized or unstandardized) and scope (targeted or
omnibus). Coupling the type of effect size(s) with the goal of showing the existence
of an effect or its magnitude is needed in order to plan an appropriate sample size. Kelley
and Maxwell (2008) provide a two-by-two conceptualization for sample size planning.
That conceptualization consists of one dimension in which the interest concerns
whether the approach to planning sample size is statistical power or AIPE and another
dimension in which interest concerns whether the effect of interest is omnibus or
targeted. A modified version of that table was given in Kelley and Maxwell (2012)
and is provided here in Table 5.1.
Table 5.1 shows that sample size can be considered in a two-by-two framework.

Although the table does not make the distinction between standardized and unstandar-
dized values, implicit is that the effect size of interest is either standardized or not.4 Use
of Table 5.1 is only a guide, as the table supposes that only a single effect size is of inter-
est. Simultaneously considering multiple effect sizes (e.g., path coefficients and fit indi-
ces) or multiple goals (e.g., power and accuracy) is beyond the discussion of this chapter
(but seeMaxwell et al., 2008). However, a simple way to consider an appropriate sample
size is to plan for effects of interest for the particular goal(s) and use as the necessary
sample size the largest of the multiple sample sizes.

3 The issue has to do with there being extra randomness in the model not explicitly accounted for due to the
standardization process. Consider standardization in multiple regression in which an unstandardized regression
coefficient is multiplied by a random variable that is the quotient of two estimated standard deviations, one for
the dependent variable and one for the regressor of interest. In repeated samplings from the same population, the
ratio of standard deviations (that is multiplied by the unstandardized regression coefficient) will vary. This extra
variability is unaccounted for in the estimated standard errors of standard regression coefficients.
4 It is also possible to consider partially standardized effect sizes. Consider, for example, a multiple regression
model in which a regressor is standardized but the outcome variable is kept in its raw score form.
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In the remainder of this chapter, we discuss how to plan sample size for the case of a
single factor model and also for a bifactor model. We use R (R Core Team, 2014) and
our R software package, MBESS (Kelley & Lai, 2014), both of which are open source
and freely available. Many good introductions to R and their use in different fields are
available, both online and in book form (and some online books, such as Venables,
Smith,& the RCore Team, 2014). Some of the sample size planningmethods discussed
in this chapter are also available in other statistical packages. We use R because it is freely
available, it is easy to use, andwe have provided functions that can be used for each of the
scenarios we discuss. We hope that our chapter is able to stimulate researchers to con-
sider themultiple ways in which sample size planning can be conceptualized when inter-
est concerns parameters from CFA or related models.

Empirical Demonstration 1

We provide two worked examples to illustrate the sample size planning theories dis-
cussed previously. The examples are in the context of studies in social and personality
psychology, but they can be easily generalized to other psychometric problems. In par-
ticular, the first example is based on a one-factor CFAmodel, and the second example is
a scenario in which a bifactor and a second-order CFA model are compared.

Suppose a researcher is interested in the cognition of a certain group of adults and
selects five manifest variables to measure cognition. The proposed model is a one-
factor CFA model and is depicted in Figure 5.1. Appropriate manifest variables in
the present example can be (1) scores from questions such as “Have difficulty reason-
ing and solving problems?” or “Forget where you put things or appointments?”; (2)
the summary scores of a group of items; or (3) scores from a standardized test. After
selecting the five indicators for the model, the researcher plans the necessary sample
size for the study. Recall that we previously explained four different methods to plan

Table 5.1 Goals of statistical inference for a two-by-two conceptualization of possible
scenarios when the approach (statistical power or AIPE) is crossed with the type of effect size
(omnibus or targeted).

Type of Effect Size

Omnibus Targeted

Approach Statistical
Power

Establish existence of an
omnibus effect by rejecting
the null hypothesis that the
population value of the
omnibus effect is consistent
with the specified null
hypothesis

Establish existence of a targeted
effect by rejecting the null
hypothesis that the population
value of the targeted effect is
consistent with the specified
null hypothesis

Accuracy in
Parameter
Estimation

Establish the magnitude of the
omnibus effect by obtaining a
narrow confidence interval
for the population omnibus
effect

Establish the magnitude of the
targeted effect by obtaining a
narrow confidence interval
for the population targeted
effect

Table taken from Kelley & Maxwell (2012).
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the sample size in a factor analysis study, and in the present example sample size pla-
nning will be illustrated using all four of those methods. However, note that in practice
the researcher may not be interested in all four questions, but only one or two of them
and, accordingly, the sample size only needs to be large enough to address the one or
two questions of interest.

Approach 1: Power analysis for the model’s population RMSEA At least two types of null
hypotheses can be stated with respect to the model’s population RMSEA, denoted as ε:
(1) the traditional null hypothesis in which H0 ε = 0 (often called the nil hypothesis
because the hypothesized value is 0); (2) a more realistic null hypothesis that tests
the minimum effect of interest, such as H0 ε ≥ 08. Rejecting the first type of null
hypothesis will lead to the conclusion that the model’s fit is not perfect, but this con-
clusion is not informative because, even without carrying out the study, the researcher
already knows that the proposedmodel is unlikely to have perfect fit. The second type of
null hypothesis states that the proposed model’s fit is worse than some value of interest
and rejecting the null hypothesis will lead to the conclusion that the model’s fit is better
than the cutoff value. In the present example, we use .08 as the cutoff value of interest,
and demonstrate how to test the null hypothesis H0 ε ≥ 08. Depending on the
researcher’s interest and prior knowledge of the model’s statistical adequacy, the second
type of null hypothesis can use many other cutoff values to describe ε (e.g.,H0 ε ≥ 05,
H0 ε ≥ 06, H0 ε ≥ 10, etc.). Regardless of which null hypothesis the researcher
chooses to test, calculating the sample size in order to have adequate power to test either
type of hypothesis with respect to the RMSEA requires the following input information:
(1) the model’s degrees of freedom (df), (2) the Type I error rate (α), (3) the desired
power (1−β, with β being the Type II error rate), (4) the population RMSEA under the
null hypothesis (ε0), and (5) the true population RMSEA (ε). Based on the path dia-
gram, df = 5. For this example, we use α = 05 and 1−β = 80. The value for ε0 is the
valueH0 states, and thus ε0 is 0 or .08, depending on which null hypothesis is of interest.
Then the last and most difficult piece of input information is the true population

1

X1 X2 X3 X4 X5

E1 E2 E3 E4 E5

λ1 λ2 λ3 λ4 λ5

F1
cognition

Figure 5.1 Confirmatory factor model for Cognition with five manifest variables.
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RMSEA, which can be estimated by the researcher based on the literature, previously
collected data, or even a pilot study.

Suppose a previous study using N = 420 reported a covariance matrix of X1 through
X5 as Table 5.2 indicates. Fitting the proposed model to that sample covariance matrix
will yield ε = 035. Suppose, based on this previous study result and substantive theories,
the researcher believes that the population RMSEA is likely to be around .045 and uses
ε = 045 as the input information. To calculate the necessary sample size so as to reject
H0 ε= 0, the researcher specifies the input information for the R function from the
MBESS package ss.power.sem() as follows:

> ss.power.sem(RMSEA.null=0, RMSEA.true=.045, df=5,
alpha=.05, power=.80),

where RMSEA.null, RMSEA.true, df, alpha, and power refer to the RMSEA
under the null hypothesis, the true population RMSEA, the model’s degrees of free-
dom, the Type I error rate, and the desired power, respectively. The necessary sample
size estimated based on this input information is 1,269.

Alternatively, if the researcher is interested in rejecting a more realistic null hypoth-
esis, say H0 ε ≥ 08, then the sample size can be calculated as follows:

> ss.power.sem(RMSEA.null=.08, RMSEA.true=.045, df=5,
alpha=.05, power=.80).

Note that in the present case RMSEA.null is .08 as it is the RMSEA value under H0,
and RMSEA.true remains 0.045 as the true population RMSEA does not change
regardless of what the null hypothesis states. The necessary sample size estimate based
on this input information is 1,113. Note also that in this case testingH0 ε ≥ 08 requires
a smaller sample size than does testingH0 ε = 0, but one should not over-generalize this
result. Depending on the input information and how the null hypothesis is stated (e.g.,
H0 ε ≥ 05 instead ofH0 ε ≥ 08), the minimum-effect hypothesis may require a larger
or smaller sample size than does the nil hypothesis.

Approach 2: AIPE for the model’s population RMSEA Consider again the covariance
matrix in Table 5.2. Fitting the proposed model to this covariance matrix of N = 420
yields ε= 035, as well as a 90% confidence interval for ε, namely [0, .082]. That is, if
this CI indeed includes ε, then the population RMSEAmay be very close to 0, meaning

Table 5.2 Covariance matrix (upper triangle) and correlation matrix
(lower triangle) of a hypothetical previous study in Empirical Demonstration 1.

X1 X2 X3 X4 X5

X1 (1.1)2 .548 .320 .828 .343
X2 .415 (1.2)2 .430 1.024 .445
X3 .364 .448 (.80)2 .610 .326
X4 .502 .569 .509 (1.5)2 .619
X5 .346 .412 .453 .459 (.90)2

The principal diagonal is the standard deviation in parentheses squared (i.e., the variance)
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the model has nearly perfect fit, or may be as large as .082, meaning the model fit is just
about “fair” according to common standards. Therefore, there is much uncertainty
about the population RMSEA, although the sample data indicates that the fit is relatively
“good.” If the researcher is interested in estimating ε with a higher degree of accuracy,
they can plan the sample size with the goal to achieve a sufficiently narrow CI. Planning
the sample size for the RMSEA from the AIPE perspective requires the following input
information: (1) model’s degrees of freedom df, (2) confidence level 1−α, (3) the true
population RMSEA ε, and (4) desired CI width ω. The first three pieces of input infor-
mation are the same as before, so let us focus on the desired CI width ω. The width of
the CI based onN = 420 is .082, and suppose for the future study the researcher desires
a CI whose width is no larger than .060; that is, ω = 060. Then the sample size can be
calculated using the function ss.aipe.rmsea() as follows:

> ss.aipe.rmsea(RMSEA=.045, df=5, width=.060, conf.
level=0.90)

where RMSEA, df, width, and conf.level refer to the population RMSEA, model’s
degrees of freedom, desired CI width, and confidence level, respectively. The necessary
sample size estimated based on this input information is 802.
Note there is no such thing as “the correct desired CI width” or “correct power,” as

the researcher sets either (or both) based on the goals he or she has for the study. In the
present example, we selected ω = 060 because we want to achieve a narrower width
compared to the one observed in a previous study (i.e., .082). This estimated sample
size, N = 802, means that, if the input information is correct and all the statistical
assumptions are satisfied, the researcher can expect to obtain a CI whose width is no
larger than .060. An implication of the expectation is that about half of the time the
interval will be narrower than desired and about half of the time the interval will be wider
than desired. The researcher could well use other values for ω, in a sensitivity analysis, so
as to better understand the tradeoff between the increase in sample size and the reduc-
tion in CI width. That is, given ε, df, and α, a decrease in ω (i.e., narrower CI) will result
in an increase in N, but the relationship between ω and N is usually nonlinear, and a
small decrease in ωmay require a small or large increase inN, depending on all factors.
To illustrate, consider using ω = 050 instead of ω = 060 as input:

> ss.aipe.rmsea(RMSEA=.045, df=5, width=.050, conf.
level=0.90)

the estimated sample size would be 1,059. Therefore, in order to reduce the expected
CI width from 0.060 to 0.050, it requires 257 additional participants. If one further
reduces the desired expected CI width to ω = 040, the necessary sample size would
be 1,544. A 0.010 decrease from ω = 060 to ω= 050 requires an increase of 257 in
N, whereas a 0.010 decrease from ω = 050 to ω = 040 requires an increase of 485 in
N. By comparing the sample size estimates at various ω values, the researcher can better
understand the interplay between resources (in the present context,N) and the estima-
tion certainty (in the present context, expected CI width), and consider whether the
gain in estimation certainty is worth the extra participants. Because there is no “correct”
CI width, reasonable values for ω can be those that help achieve a balance between the
sample size invested and the knowledge obtained about the population parameters. Lin
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and Weng (2014) provide a graphical approach to sample size planning for AIPE in the
context of the RMSEA, where one can assess the effect sizes of desired width and the
population RMSEA on the necessary sample size.

Approach 3: Power analysis for the population model parameter of interest In addition to
the model’s overall fit, some specific model parameters are frequently of interest.
Suppose X1. represents the scores on the item “Have difficulty reasoning and solving
problems” and X2 represents the scores on the item “React slowly to questions,”
and it is of interest to infer whether these two items have the same reliability in measur-
ing the latent construct cognition. Put another way, it is of interest to know whetherX1

andX2 have the same population factor loadings. The null hypothesis is H0 λ1 = λ2, and
rejecting this null hypothesis will lead to the conclusion thatHa λ1 λ2. To test this null
hypothesis, one can carry out a chi-square likelihood ratio test that compares models
with and without the constraint λ1 = λ2. To calculate the necessary sample size in order
to have enough power to perform such a test, the input information is (1) the model,
(2) Type I error rate, (3) desired power, and (4) the population covariance matrix of the
manifest variables, Σ. Note this approach requires the complete specification of the sta-
tistical model, not just the model’s degrees of freedom, and thus input item (1) in the
present context is different from the input item (1) in the context of power analysis for
the RMSEA.

Let us now consider input item (4), the population covariance matrix. Broadly speak-
ing, there are two ways to specify Σ. The first way is to specify all the variances and cov-
ariances in Σ, and the second way is to specify the model parameter values first and then
use the model-implied covariance matrix as Σ. Methods to facilitate specifying Σ are, for
example, discussed in Lai and Kelley (2011). In the present example, we demonstrate
how to specify Σ based on a previous study. Consider the sample covariance matrix in
Table 5.2. Fitting the model to this covariance matrix will return the model parameter
estimates shown in Table 5.3. Because the estimation is based on a covariance matrix,
the resulting model parameter estimates are in the unstandardized metric and not
straightforward to interpret. In Table 5.3 we have also provided model parameter esti-
mates in the standardized metric, so let us focus on the standardized estimates for the
moment. The researcher must then specify the input information Σ using the following

Table 5.3 Model parameter estimates based on the sample covariance matrix in Table 5.1.

Unstandardized
estimate

Standard
error

Standardized
estimates

Standardized
input information

λ1 .659 .054 .600 .550
λ2 .839 .056 .700 .730
λ3 .519 .038 .650 .680
λ4 1.199 .068 .800 .750
λ5 .539 .044 .600 .600
e1 .773 .061 .640 .6636
e2 .773 .065 .510 .4816
e3 .369 .031 .577 .5376
e4 .808 .093 .360 .4375
e5 .517 .041 .640 .640
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three steps. First, based on these standardized model parameter estimates, the
researcher must make educated guesses as to the population model parameters in the
standardized context. Second, using the population standardized model parameters,
the model-implied correlation matrix P(θ) is calculated. Third, the researcher specifies
the standard deviations of the manifest variables, and using these transforms P(θ)
into the covariance matrix.
Suppose that, based on substantive theories, the researcher believes that X1 should

have lower reliability in measuring the latent factor and thus uses λ1 = 550 as input.
Similarly, substantive theory also suggests that the reliability of X2 and X3 should be
higher than has been reported in the previous study, and accordingly the researcher uses
λ2 = 730 and λ3 = 680 as input. To be conservative, the researcher uses a lower factor
loading for X4: λ4 = 750. The input for λ5 remains the same as reported in the previous
study: λ5 = 600. Because the model parameters are in the standardized metric, the error
variance in the present model can be easily calculated as unity minus the square of the
factor loading (i.e., 1−λ2). Appendix Code 1 demonstrates how to obtain the model-
implied correlation matrix using theMBESS package, and the resulting P(θ) is included
in Table 5.4. Based on the previous study, suppose the standard deviations of X1

through X5 are believed to be 1.20, 1.20, .70, 1.30, and 1.10, respectively. Now the
input covariance matrix can be obtained and this is provided in Table 5.4. We use Σ1

to denote this input covariance matrix.
Now that all of the input information is complete, the researcher can calculate the

necessary sample size using the method Satorra and Saris (1985) developed. In essence,
Approach 3 is based on the sampling distributions of the model chi-square statistic
under H0 and Ha, and the Satorra–Saris (1985) method helps to obtain a key distribu-
tion parameter (namely the noncentrality parameter) for the sampling distribution
under Ha using the population covariance matrix of manifest variables. We will explain
the underlying statistical theories inmore detail in a later section, and for themoment let
us continue to demonstrate how to use Approach 3 to plan the sample size. Recall the
present task is after specifying the model, Type I error rate, desired power, and Σ1 as
input information, how to calculate the sample size so as to reject H0 λ1 = λ2 with a suf-
ficiently high probability (i.e., desired power). Let the proposed model for the present
study be referred to as the full model and the model that constrains λ1 = λ2 be referred to
as the restricted model. The full model will fit the input covariance matrix Σ1 perfectly,
but the restricted model will have some misfit to Σ1. In particular, fitting the restricted
model to Σ1 will yield a maximum likelihood (ML) discrepancy value FRes = 02346 and
εRes = 0625, where FRes is a shorthand for the FML value in the restricted model. The
FML value in the full model is 0 (FFull = 0). The difference in degrees of freedom between
the full model and the restricted model is 1. Given this information the sample size can
then be planned using the function ss.power.sem() as follows:

Table 5.4 Covariance matrix (upper triangle) and correlation matrix (lower triangle)
of input information for sample size planning.

X1 X2 X3 X4 X5

X1 (1.20)2 .418 .394 .435 .348
X2 .601 (1.20)2 .490 .540 .432
X3 .331 .411 (.70)2 .510 .408
X4 .679 .842 .464 (1.30)2 .450
X5 .459 .570 .314 .644 (1.10)2

122 Ken Kelley and Keke Lai

 10.1002/9781118489772.ch5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781118489772.ch5 by H

unter C
ollege, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



> ss.power.sem(F.full=0, F.res=.02346, df.full=5, df.res=6,
alpha=.05, power=.80)

where F.full, F.res, df.full, and df.res refer to the full model’s FML, the
restricted model’s FML, the full model’s degrees of freedom, and the restricted model’s
degrees of freedom, respectively. The necessary sample size is 336. Therefore, in order
to have .80 power to demonstrate thatX1 andX2 have different factor loadings, sample
size needs to be N = 336.

Note the function ss.power.sem() asks for FML values as input only instead of the
population covariance matrix of the manifest variables, and the Satorra–Saris method is
sometimes difficult to employ because it usually requires a large amount of information
to specify the population covariancematrix. Alternatively, MacCallum, Browne, andCai
(2006) proposed amethod that utilizes the relationship between RMSEA and FML, so as
to specify the FML values in terms of the RMSEA. TheMacCallum et al. method has the
same goal as does the Satorra–Saris method, namely to obtain a key distribution param-
eter for the sampling distribution under Ha, but it requires only the population RMSEA
values under H0 and Ha, and thus circumvents the task of specifying the population
covariance matrix. We will explain this method’s underlying theories in a later section,
and for the moment continue to demonstrate the MacCallum et al. method. Recall we
obtained the population RMSEA values earlier when fitting Σ1 to the full and restricted
models; that is, εRes = 0625 and εFull = 0. Accordingly, we can employ MacCallum et al.
method and use the following call to the ss.power.sem():

> ss.power.sem(RMSEA.full=0, RMSEA.res=.0625, df.full=5,
df.res=6, alpha=.05, power=.80),

which also returnsN = 336, equivalent to theN obtained with the Satorra–Saris method
using Σ1 as input. In practice the MacCallum et al. method is easier to implement as
compared to the Satorra–Saris method, because it is easier to obtain knowledge about
the model’s general adequacy (operationalized as the population RMSEA) as compared
to the variances and covariances of all the manifest variables in the model.

The above example demonstrated that, if the input RMSEA equals the population
RMSEA, the sample size estimate will equal the idealized sample size based on the pop-
ulation RMSEA. But if the input information is not exactly accurate, the sample size
returned will be different from the idealized sample size. To illustrate, suppose the
researcher does not have enough knowledge about the phenomenon under study to
accurately specify Σ1, but can only judge that the restricted model should have a “fair”
to “good” statistical fit. Accordingly, the researcher chooses .07 as a proxy for εRes and
plans the sample size as follows:

> ss.power.sem(RMSEA.full=0, RMSEA.res=.07, df.full=5,
df.res=6, alpha=.05, power=.80).

The resulting sample size estimate is N = 268, falling short of the theoretically optimal
necessary sample size based on the correct population RMSEA (had it been known to
the researcher). However, if the researcher uses .06 as the input RMSEA value, the
resulting N will be 364, which is close to the idealized N. How much the sample size
estimate differs from the idealized sample size hinges upon how close the input param-
eter is to the population parameters (e.g., population covariance matrix of manifest
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variables, population RMSEA of the restricted model), and therefore effort is required
to ensure the quality of the input information.

Statistical theories for SEM power analysis In this subsection, we briefly explain the
underlying statistical theories for the Satorra–Saris method and the MacCallum et al.
method. Detailed explanations are available in Satorra and Saris (1985) andMacCallum
et al. (2006). The present task is to assess the difference in statistical fit between a full
model and a restricted model. Statistical fit in the current context is derived from the
model estimation results using the following ML discrepancy function:

FML = ln Σ θ − ln S + tr S Σ−1 θ −p (5.1)

where ln is the natural logarithm, S is the sample covariance matrix, Σ θ is the
model-implied covariance matrix given S, and p is the number of manifest variables.
We use F and F ∗ to denote the sample and population discrepancy function value, respec-
tively. If the data follow a multivariate normal distribution and the models are not
badly misspecified, we have the following three approximate chi-square distributions:

nFFull ≈χ2 dfFull ,δFull ; (5.2)

nFRes ≈χ2 dfRes ,δRes ; (5.3)

n FRes −FFull ≈χ2 dfRes −dfFull ,δRes −δFull ; (5.4)

where dfFull and dfRes refer to the degrees of freedom of the full and restricted models,
respectively, δFull and δRes refer to the noncentrality parameter of their respective distri-
butions, n =N −1, and “≈” signifies that the (random) quantity on the left approxi-
mately follows the distribution on the right. The noncentrality parameter is based on
the population discrepancy function value:

δFull =nF ∗
Full ; (5.5)

δRes =nF ∗
Res (5.6)

Accordingly, the noncentrality parameter for the distribution in Equation 5.4 is simply
δRes −δFull =n F ∗

Res −F
∗
Full . Recall of interest is whether the full and restricted models

have equal statistical fit, and we use the test statistic n FRes −FFull and its sampling
distribution (i.e., Equation 5.4) to perform a hypothesis test and examine the question
of interest. To simplify the exposition, let TDiff denote this test statistic; accordingly, the
sampling distribution can be expressed as TDiff ≈χ2 dfRes −dfFull ,δRes −δFull .
Now let us take these statistical theories back to Approach 3’s example, where the

interest is to infer whether the two factor loadings, λ1 and λ2, are equal in the population.
If the null hypothesis H0 λ1 = λ2 is true, the full and restricted models fit equally well
and are both correctly specified. Thus, under the null hypothesis, F ∗

Res = F
∗
Full = 0 and

TDiff approximately follows a chi-square distribution with degrees of freedom
dfRes −dfFull and a noncentrality parameter of 0. That is,

TDiff ≈χ2 dfRes −dfFull , 0 (5.7)

124 Ken Kelley and Keke Lai

 10.1002/9781118489772.ch5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781118489772.ch5 by H

unter C
ollege, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



under H0. Under the alternative hypothesis Ha λ1 λ2, the full model is correctly
specified but the restricted model is misspecified, and therefore F ∗

Full = 0 and F ∗
Res > 0,

implying δFull =0 and δRes > 0. The noncentrality parameter δRes −δFull reduces to δRes,
which is equivalent to nF ∗

Res . That is,

TDiff ≈χ2 dfRes −dfFull , nF ∗
Res (5.8)

under Ha. Given the distributions under H0 and Ha, one can plan the sample size by
finding the smallest value of n in Equation 5.8, such that there is 1−β 100 probability
of rejectingH0. But note F ∗

Res in Equation 5.8 is a population parameter unknown to the
researcher, and thus the specific form of the distribution is not determined and
Equation 5.8 cannot be readily used for sample size planning. How to provide a value
for F ∗

Res (or equivalently speaking, the noncentrality parameter δRes) is where the
Satorra–Saris method and the MacCallum–Browne–Cai method come into play.

In particular, Satorra and Saris proposed using the model-implied covariance matrix
of the full model to obtain F ∗

Res . That is, because the full model is specified correctly,
Σ =ΣFull θ . If one supplies all the model parameter values to the full model, the
model-implied covariance matrix ΣFull(θ) will be equivalent to Σ. Next one fits the
restricted model to Σ, and the resulting discrepancy function value will be F ∗

Res . Alter-
natively, MacCallum et al. utilized the relationship between the discrepancy function
value and RMSEA. Commonly, RMSEA is defined as

ε=
FML

df
(5.9)

in the population, and thus FML = df ε2. If the population RMSEA of the restricted
model is known, one can obtain F ∗

Res using the identity F ∗
Res = dfRes ε2Res . Therefore,

the Satorra–Saris method and the MacCallum et al. method try to solve the same
problem: namely how to obtain F ∗

Res -- from two different perspectives, and they are
independent approaches. After F ∗

Res is obtained with either method, it is supplied to
the sample size planning process along with other input information, such as the full
and restricted models’ degrees of freedom, Type I error rate, and desired power.

Approach 4: AIPE for the population model parameters of interest The fourth perspec-
tive on sample size planning concerns the case when it is desired to estimate a model
parameter of interest with sufficient accuracy, as expressed by the width of the confi-
dence interval. Consider again the model parameter estimates reported from the previ-
ous study as shown inTable 5.3. Suppose the researcher is interested in knowing the true
value of λ1 in the population. Based on the previous studyN = 420, se λ1 = 054 and the
95% CI for λ1 is [.553, .765]. The width of this CI is .212. If the researcher desires a
narrower CI in the study being designed, the necessary sample size can be calculated
with the following input information: (1) the model, (2) confidence level, (3) desired
value of the CI width, and (4) the population covariance matrix of the manifest
variables, Σ. Except for item (3), the required input information is the same as for
Approach 3. The only difference in the input information between Approaches 3 and
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4 is that the desired power is replaced with a desired CI width. In the present scenario,
we continue to use all the input information we specified for Approach 3 except for
item (3).
Recall that the 95% CI width for λ1 reported in the previous study is .212 and that the

researcher desires a narrower CI in the future study. If we used ω = 15, the necessary
sample size can be calculated using the function ss.aipe.sem.path() as follows:

> ss.aipe.sem.path(model=model.full, Sigma=Sigma.1, desired.
width=.15, which.path="l1", conf.level=0.95),

where model, Sigma, and which.path refer, respectively, to the model, the input
population covariance matrix Σ1 (i.e., the covariance matrix in Table 5.4), and the name
of the model parameter of interest. Due to space limitations, this call to ss.aipe.
sem.path() omits the intermediate steps that specify objects model.full and
Sigma.1. These intermediate steps are included in Appendix Code 1. Given this input
information, the function will return a necessary sample size estimate N = 1007.
Planning N using ω = 15 only guarantees that the expectation of the (random) CI

widths in the long run is no larger than .15, but in the particular study to be carried
out, the CI width will be less than .15 with a probability of about 50%. That is, in prac-
tice one forms a confidence interval based on a sample covariance matrix, and because
values in the sample covariance matrix vary over repeated sampling, the confidence
interval obtained is necessarily random, varying over repeated sampling. Accordingly,
the width of a CI varies from sample to sample as well and is a random variable. Let
w, a random variable, denote the width of a CI. Using N = 1007 will only ensure
E w ≤ 15, implying w ≤ 15 about half of the time and w ≥ 15 about the other half
of the time. Therefore, in the particular study the researcher is going to conduct, there
is only about 50% probability that the CI width to be observed will be less than .15. If
the researcher desires a higher probability for the event w ≤ 15 to appear in a particular
study, the sample size can be planned with an extended procedure that ensures
Pr w ≤ 15 = γ, where γ is referred to as the assurance parameter. For example, in order
to achieve Pr w ≤ 15 = 90, we can calculate the sample size by specifying ss.aipe.
sem.path() as follows:

> ss.aipe.sem.path(model=model.full, Sigma=Sigma.1, desired.
width=.15, which.path="l1", conf.level=0.95, assurance=.90),

where assurance is the assurance parameter. This call to the function will returnN =
1,064. Thus, if the researcher increases the sample size from 1,007 to 1,064, there will
be at least a 90% probability that w ≤ 15 in the particular study to be carried out.

Empirical Demonstration 2

The second empirical demonstration is for a bifactor model and a second-order
model, both of which are important special cases of CFA models. Suppose, in addi-
tion to the latent construct cognition, there are two other latent constructs in the
study, coping and social support, and they are measured by three and four indicators,
respectively. Further suppose that the researcher hypothesizes that there is a more
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general factor than cognition, coping, and social support and terms this factor quality
of life. Let cognition, coping, and social support be referred to as the specific factors,
and let quality of life be referred to as the general factor. The dynamics among the
general factor and specific factors can be conceptualized in terms of a bifactor model
or a second-order CFA model. More specifically, the bifactor model hypothesizes
that the general factor influences all of the 12 manifest variables directly, and the four
latent factors are mutually independent. The second-order factor model hypothesizes
that the general factor directly influences all the three specific factors, and thus the
three specific factors are not independent of each other. The path diagrams for the
bifactor model and the second-order factor model are included in Figures 5.2 and
5.3, respectively.

As we have discussed, and shown in Empirical Demonstration 1, the sample size for a
bifactor model or second-order model can be planned from four different perspectives,
and all the functions and methods we discussed previously are readily applicable in the
present context. Therefore, in the present example we do not demonstrate sample size
planning from all four perspectives, but rather focus on two interesting questions com-
monly raised in applications of bifactor and second-order models. First, the researcher
often wants to understand whether the bifactor model or the second-order factor model
can better explain the data. To address this question, we consider sample size calcula-
tions in the context of model comparisons. Second, after the researcher adopts one from
these two competing models, some factor loadings within the model will likely be of
interest. To address this question, we plan the sample size from the AIPE for model
parameter perspective.

X1 X2 X3 X4 X5 X6 X7 X8 X9
X10 X11 X12

1κ1 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10 κ11 κ12

General factor
life quality

F1
cognition

F2
coping F3

social support

1 11λ1 λ3 λ4 λ5 λ7 λ8 λ10 λ11 λ12

Figure 5.2 Bifactor model representation of items, where each item is measured from a specific
factor (Cognition, Coping, or Social Support) and a general factor (Life Quality).
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Approach 1: Power analysis comparing a bifactor model and a second-order factor model
Yung, Thissen, and McLeod (1999) proved that the second-order factor model is
nested within the bifactor model, and thus will almost always fit less well compared
to the bifactor model. Accordingly, one can test the null hypothesis that the second-
order factor model fits equally as well as does the bifactor model. Rejecting this null
hypothesis leads to the conclusion that the bifactor model has better fit. If one considers
the bifactor model as the full model and the second-order factor model as the restricted
model, sample size in the current study can be planned with Approach 3 in Empirical
Demonstration 1. More specifically, it requires as input information the (1) full and
restricted models, (2) Type I error rate, (3) desired power, and (4) population covar-
iance matrix of the manifest variables, Σ. Again, all the input information except (d)
can be specified easily. We obtain (4) by first specifying the model parameters in the full
model (i.e., the bifactor model).
Following the scheme used in Approach 3 in Empirical Demonstration 1, we specify

Σ by first specifying all the standardized model parameter values in the bifactor model
(i.e., the full model). Compared to the previous one-factor CFA model with only five
indicators, the present bifactor model has a large number of parameters to be specified.
To simplify this task, we utilize an exchangeable pattern of factor loadings within the
same measurement cluster; that is, indicators that measure the same latent factor have
the same standardized factor loadings. The rationale for using the exchangeable pattern
in the SEM context to simplify the input information specification is explained in greater
detail in Lai and Kelley (2011). In essence, an exchangeable pattern is reasonable
because the necessary sample size estimate usually does not differ from the idealized
sample size by much. We maintain the input factor loadings for measuring cognition

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

General factor
life quality

γ1 γ2 γ3

111λ1 λ3 λ4 λ5 λ7 λ8 λ10 λ11 λ12

F1
cognition

F2
coping

F3
social support

Figure 5.3 Second-order factor model representation of items, where the items are measured
from specific factors (Cognition, Coping, or Social Support), and the specific factors are in turn
measured from a second-order, higher level factor (Life Quality).
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in the previous example, and specify all the new factor loadings in an exchangeable man-
ner. The resulting input information for the standardized model parameters are
included in Table 5.5. Based on the input information in Table 5.5, the bifactor model
will reproduce a correlationmatrix ofX1 throughX12. Then the researcher shouldmake
educated guesses or informed from other studies about the standard deviation of the
12 manifest variables and thereby will obtain an input covariance matrix for sample size
planning. We use Σ2 to denote this input information. All of the syntax that leads to this
input covariance matrix is included in Appendix Code 2.

Now that the input information is complete, one can plan the sample size. Note the
bifactor model will fit Σ2 perfectly, but the second-order factor model will have some
misfit to Σ2. More specifically, fitting the second-order factor model to Σ2 will yield
Fsec−order = 01891 and εsec−order = 01926. To calculate the necessary sample size so as
to have .80 power to reject the null hypothesis that the second-order factor model
has the same population fit as does bifactor model, one can use the function ss.
power.sem() as follows:

> ss.power.sem(F.full=0, F.res=.01891, df.full=42, df.res=51,
alpha=.05, power=.80).

The resulting necessary sample size estimate isN = 829. Note this is an application of the
Satorra–Saris method to power analysis. Now suppose one does not have enough infor-
mation to specify Σ2 and chooses to plan the sample size in terms of RMSEA (an appli-
cation of the MacCallum et al. method). If the researcher could correctly specify
εsec−order = 01926 as the input information, the sample size returned will be equivalent
to the method that uses Σ2 as input information:

> ss.power.sem(RMSEA.full=0, RMSEA.res=.01926, df.full=42,
df.res=51, alpha=.05, power=.80),

which also returns a sample size estimate N = 829. Therefore, to demonstrate that the
bifactor model subsumes the second-order factor model and has better fit, it requires a
sample of size 829, provided that the present input information is correct and all the
assumptions are satisfied. Due to the complexity of bifactor and second-order factor

Table 5.5 Specifying standardized model parameters for the bifactor model in
Empirical Demonstration 2.

General factor Cognition Coping Social support Error variance

X1 .500 .550 .4475
X2 .500 .730 .2171
X3 .500 .680 .2876
X4 .500 .750 .1875
X5 .500 .600 .390
X6 .600 .600 .280
X7 .600 .600 .280
X8 .600 .600 .280
X9 .700 .450 .3075
X10 .700 .450 .3075
X11 .700 .450 .3075
X12 .700 .450 .3075
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models, it is usually not possible for the input RMSEA to exactly equal the population
RMSEA. Suppose the researcher believes the difference in fit between the bifactor and
second-order factor models is relatively small and uses .02 as the input value
for RMSEA:

> ss.power.sem(RMSEA.full=0, RMSEA.res=.02, df.full=42,
df.res=51, alpha=.05, power=.80).

In this case, the function returns N = 769, slightly different from the idealized sample
size 829.

Approach 2: AIPE for model parameters in the bifactor model In Approach 4 of Empir-
ical Demonstration 1, the researcher was interested in the value of X1’s factor loading
when measuring the latent factor cognition. Suppose in the present bifactor model, this
factor loading is still of interest, but there is an extra parameter of interest, namely the
loading ofX1 on the general factor, a loading denoted as κ1. To plan sample size so as to
achieve sufficient certainty (i.e., narrow enough CI) in estimating both λ1 and κ1, the
process is exactly the same as was shown in Approach 4 of Empirical Demonstration
1, except that the researcher needs to perform the process twice, once for λ1 and once
for κ1. The necessary sample size for the study is simply the larger of the two.
Recall that the input information for AIPE for model parameters is as follows: the (1)

themodel, (2) model parameter of interest, (3) confidence level, (4) desired expectation
value of the CI width, and (5) population covariance matrix of the manifest variables.
We continue to use Σ2 as the input covariance matrix, and all of the other input infor-
mation can be readily specified by this point. We plan the sample size with respect to λ1
first. Suppose the desired CI width is still .15. Then the function ss.aipe.sem.path
() can be specified as follows:

> ss.aipe.sem.path(model=AIPE.bifactor, Sigma=Sigma.2,
desired.width=.15, which.path="l1", conf.level=0.95),

where model refers to the model’s specification, Sigma refers to the input population
covariance matrix Σ2, and which.path refers to the model parameter of interest. Due
to space limit, we did not present the values of Σ2 in the text, but have included the
syntax that leads to Σ2 in Appendix Code 2. All of the intermediate syntax that is used
to specify the bifactor model AIPE.bifactor is included in Appendix Code 2 as well.
Note that, although the factor loading of interest and the desired CI width remain the
same as the example in Approach 4 of Empirical Demonstration 1, the model and input
covariance matrix are different, and the resulting sample size estimate will likely be dif-
ferent as well. Executing this function ss.aipe.sem.path yieldsN = 1011. Next, we
plan sample size with respect to κ1 as follows and set the desired CI width to be .20:

> ss.aipe.sem.path(model=AIPE.bifactor, Sigma=Sigma.2,
desired.width=.20, which.path="k1", conf.level=0.95).

The necessary sample size estimate isN = 1491. Therefore, in order to obtain estimates
of both λ1 and for κ1 with confidence intervals of desired width, the study needs a sample
of size 1,491.
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In addition to planning the sample size with respect to the expectedCI width, one can
include the assurance parameter in the process, so as to ensure a higher probability of
observing a sufficiently narrow CI in a particular study. For example, we can use γ = 90
and plan the sample size again for for λ1 and for κ1:

> ss.aipe.sem.path(model=model.bifactor, Sigma=Sigma.2,
desired.width=.15, which.path="l1", conf.level=0.95,
assurance=.90)
> ss.aipe.sem.path(model=model.bifactor, Sigma=Sigma.2,
desired.width=.20, which.path="k1", conf.level=0.95,
assurance=.90).

The resulting sample size estimates are 1,068 and 1,560, respectively, and thus the
study’s planned sample size is 1,560.

Conclusion

In this chapter, we have discussed sample size planning in the context of CFA for omni-
bus and targeted effects from both the power analytic as well as the AIPE approaches.
These ideas are general, but we illustrated our ideas specifically in the context of the CFA
model, a model that is extremely important in psychometrics and in related fields that
use psychometric principles.

We hope that our chapter will be useful for researchers considering a CFA (or even an
SEM) study, because the chapter lays out a general framework for considering effect
sizes and research goals. Our chapter shows that there is no simple answer to planning
sample size for a CFA (or SEM) analysis, as the appropriate sample size necessarily
depends on the effect size of interest (e.g., fit index or path coefficient), the goals of
the study (to show the existence of an effect or its magnitude), the characteristics of
the population under study (e.g., estimated/hypothesized values of covariance), and
the desired likelihood of satisfying the goals (e.g., the degree of power or the level of
assurance in AIPE). Taken together, we hope that the general framework to sample size
planning we have discussed, and the software provided, will facilitate an understanding
of the variety of issues involved in sample size planning for CFA.
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Code Appendix

Code 1 R Code for Approaches 3 and 4 in Empirical
Demonstration 1.

Step 1: Create the input covariance matrix.

We first load the packages MBESS and sem.

> library(MBESS)
> library(sem)

We start specifying the full model using the function specifyModel() in the
sem package as follows. Each line of the model specification refers to one model
parameter and consists of three parts, separated by comma: (1) to identify the
model parameter, (2) parameter name, and (3) start value. For example, the argu-
ment “F1 -> X1, l1, .580” belowmeans “the model parameter from F1 toX1;
parameter name l1; start value .580.” The argument “F1 <−> F1, NA, 1” below
means “covariance between F1 and F1; not a free parameter; value fixed at 1.”The
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argument “X1 <−> X1, e1, .6636” below means “covariance between error of
X1 and error of X1 (i.e., error variance); parameter name e1; start value .6636.”

> model.full <- specifyModel()
F1 -> X1, l1, .580
F1 -> X2, l2, 0.720
F1 -> X3, l3, 0.680
F1 -> X4, l4, 0.750
F1 -> X5, l5, .600
F1 <-> F1, NA, 1
X1 <-> X1, e1, .6636
X2 <-> X2, e2, .4816
X3 <-> X3, e3, .5376
X4 <-> X4, e4, .4375
X5 <-> X5, e5, .640

We then specify the vector of standardized model parameters θ as follows.

> theta <- c( .580, .720, .680, .750, .600,
.6636, .4816, .5376, .4375, .640)

> names(theta) <- c("l1","l2", "l3","l4","l5",
"e1", "e2","e3","e4", "e5")

We then obtain the model-implied correlation matrix P(θ) given θ and the full
model as follows, using the theta.2.Sigma.theta() function in theMBESS
package. The argument latent.vars indicates which variables in the model
specification model.full are latent variables.

> res <- theta.2.Sigma.theta(model=model.full, theta=theta,
latent.vars=c("F1"))
> P.theta <- res$Sigma.theta

Given P(θ) and the standard deviations of manifest variables, we calculate the
model-implied covariancematrixΣ(θ). The result Sigma.1 below isΣ1 we referred
to in the text.

> Sigma.1 <- cor2cov(P.theta, sd=c(1.2, 1.3, 0.7, 1.2, 1.1))

Step 2: Fit the input covariance matrix to the restricted model and obtain the
ML discrepancy function value.

Note in the model specification below the factor loadings for X1 and X2 have the
same name. This places the equality constraint on the two parameters, as the
restricted model proposed.

> model.res <- specifyModel()
F1 -> X1, l1, .580
F1 -> X2, l1, 0.580
F1 -> X3, l3, 0.680
F1 -> X4, l4, 0.750
F1 -> X5, l5, .600
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F1 <-> F1, NA, 1
X1 <-> X1, e1, .6636
X2 <-> X2, e2, .4816
X3 <-> X3, e3, .5376
X4 <-> X4, e4, .4375
X5 <-> X5, e5, .640

Next we fit the restricted model toΣ(θ) and obtain F ∗
Res (see Equation 8). Because

the model estimating function sem() within the sem package requires a sample
size but we are interested in the population, we can simply assign an arbitrarily
large value to the argument N as follows. The object F.res contains the value
of F ∗

Res .

> res2 <- sem(model=model.res, S=Sigma.1, N=1000001)
> F.res <- res2$criterion

Step 3a: Plan the sample size for sufficient statistical power.

Now that we have F ∗
Res , we can plan the sample size from the power

analytic perspective, using Approach 3 explained in Empirical Demonstration
1. We employ the ss.power.sem() function in the MBESS package as
follows.

> ss.power.sem(F.full=0, F.res=F.res, df.full=5,
df.res=6, alpha=.05, power=.80)

Step 3b: Plan the sample size for narrow confidence interval.

If the interest is in finding a necessary sample that ensures a sufficiently narrow
confidence interval (i.e., Approach 4 in Empirical Demonstration 1), the
function ss.aipe.sem.path in the MBESS package can be used. The
model parameter of interest is λ1 in the path diagram in Figure 1, or equiva-
lently l1 in the previous specification of the full model in Step 1. The input
covariance matrix Σ1 (i.e., Sigma.1) was obtained previously in Step 1
as well.

> ss.aipe.sem.path(model=model.full, Sigma=Sigma.1,
desired.width=.15, which.path="l1", conf.level=0.95)
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Code 2 R Code for Approaches 1 and 2 in Empirical
Demonstration 2.

This appendix code uses the same functions as does Code 1. Explanations for all
the arguments and objects are available in Code 1, except for the ones newly intro-
duced in the present code.
Step 1: Create the input covariance matrix.

> library(MBESS)
> library(sem)

> bifactor.std.coef <- specifyModel()
G -> X1, k1, 0.5
G -> X2, k2, 0.5
G -> X3, k3, 0.5
G -> X4, k4, 0.5
G -> X5, k5, 0.5
G -> X6, k6, 0.6
G -> X7, k7, 0.6
G -> X8, k8, 0.6
G -> X9, k9, 0.7
G -> X10, k10, 0.7
G -> X11, k11, 0.7
G -> X12, k12, 0.7
F1 -> X1, l1, .550
F1 -> X2, l2, 0.73
F1 -> X3, l3, 0.68
F1 -> X4, l4, 0.75
F1 -> X5, l5, .6
F2 -> X6, l6, 0.6
F2 -> X7, l7, 0.6
F2 -> X8, l8, 0.6
F3 -> X9, l9, .45
F3 -> X10, l10, 0.45
F3 -> X11, l11, 0.45
F3 -> X12, l12, 0.45
G <-> G, NA, 1
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1
X1 <-> X1, e1, .4475
X2 <-> X2, e2, .2171
X3 <-> X3, e3, .2876
X4 <-> X4, e4, .1875
X5 <-> X5, e5, .39
X6 <-> X6, e6, .28
X7 <-> X7, e7, .28
X8 <-> X8, e8, .28
X9 <-> X9, e9, .3075
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X10 <-> X10, e10, .3075
X11 <-> X11, e11, .3075
X12 <-> X12, e12, .3075

> theta <- c(rep(0.5, 5), rep(.6, 3), rep(.7, 4),
.55, .73, .68, .75, .6, rep(.6,3), rep(.45,4),
.4475, .2171, .2876, .1875, .39, rep(.28,3), rep(.3075, 4))

> names(theta) <- c("k1", "k2", "k3", "k4", "k5", "k6", "k7",
"k8", "k9", "k10", "k11", "k12", "l1", "l2", "l3", "l4", "l5",
"l6", "l7", "l8", "l9", "l10", "l11", "l12", "e1", "e2", "e3",
"e4", "e5", "e6", "e7", "e8", "e9", "e10", "e11", "e12")

> res <- theta.2.Sigma.theta(model=bifactor.std.coef,
theta=theta, latent.vars=c("G", "F1","F2","F3"))

> P.theta.2 <- res$Sigma.theta

> Sigma.2 <- cor2cov(P.theta.2, sd=c(1.2, 1.2, 0.7, 1.3,
1.1, 1.5,1.6,1.7, 2.2,2.3,2.1,2.4))

Step 2: Fit the input covariance matrix to the second-order factor model and
obtain the ML discrepancy function value.

> CFA.2order <- specifyModel()
G -> F1, NA, 1
G -> F2, g2, .4
G -> F3, g3, .4
F1 -> X1, NA, 1
F1 -> X2, l2, 0.6
F1 -> X3, l3, 0.6
F1 -> X4, l4, 0.6
F1 -> X5, l5, .6
F2 -> X6, NA, 1
F2 -> X7, l7, 0.6
F2 -> X8, l8, 0.6
F3 -> X9, NA, 1
F3 -> X10, l10, 0.6
F3 -> X11, l11, 0.6
F3 -> X12, l12, 0.6
G <-> G, r, 1
F1 <-> F1, p1, .5
F2 <-> F2, p2, .5
F3 <-> F3, p3, .5
X1 <-> X1, e1, .7
X2 <-> X2, e2, .7
X3 <-> X3, e3, .7
X4 <-> X4, e4, .7
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X5 <-> X5, e5, .7
X6 <-> X6, e6, .7
X7 <-> X7, e7, .7
X8 <-> X8, e8, .7
X9 <-> X9, e9, .7
X10 <-> X10, e10, .7
X11 <-> X11, e11, .7
X12 <-> X12, e12, .7

> res2 <- sem(model=CFA.2order, S=Sigma.2, N=1000001)

> F.2order <- res2$criterion

Step 3a: Plan the sample size so as to obtain statistical power to demonstrate the
bifactor model has better fit than the second-order model.

> ss.power.sem(F.full=0, F.res=F.2order, df.full=42,
df.res=51, alpha=.05, power=.80)

Step 3b: Plan the sample size so as to obtain narrow confidence intervals for
bifactor model parameters.

The model specification AIPE.bifactor below implies the samemodel as does
bifactor.std.coef in Step 1 previously, but uses a more common way to
identify the model. The identification bifactor.std.coef makes it more
convenient to specify model parameters in the standardizedmetric but is less com-
mon for analyzing covariance matrices.

> AIPE.bifactor <- specifyModel()
G -> X1, k1, 1
G -> X2, NA, 1
G -> X3, k3, 0.5
G -> X4, k4, 0.5
G -> X5, k5, 0.5
G -> X6, k6, 0.6
G -> X7, k7, 0.6
G -> X8, k8, 0.6
G -> X9, k9, 0.7
G -> X10, k10, 0.7
G -> X11, k11, 0.7
G -> X12, k12, 0.7
F1 -> X1, l1, 1
F1 -> X2, NA, 1
F1 -> X3, l3, 0.68
F1 -> X4, l4, 0.75
F1 -> X5, l5, .6
F2 -> X6, NA, 1
F2 -> X7, l7, 0.6
F2 -> X8, l8, 0.6
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F3 -> X9, NA, 1
F3 -> X10, l10, 0.45
F3 -> X11, l11, 0.45
F3 -> X12, l12, 0.45
G <-> G, r, 1
F1 <-> F1, p1, 1
F2 <-> F2, p2, 1
F3 <-> F3, p3, 1
X1 <-> X1, e1, .4475
X2 <-> X2, e2, .2171
X3 <-> X3, e3, .2876
X4 <-> X4, e4, .1875
X5 <-> X5, e5, .39
X6 <-> X6, e6, .28
X7 <-> X7, e7, .28
X8 <-> X8, e8, .28
X9 <-> X9, e9, .3075
X10 <-> X10, e10, .3075
X11 <-> X11, e11, .3075
X12 <-> X12, e12, .3075

> ss.aipe.sem.path(model=AIPE.bifactor, Sigma=Sigma.2,
desired.width=.15, which.path="l1", conf.level=0.95)

> ss.aipe.sem.path(model=AIPE.bifactor, Sigma=Sigma.2,
desired.width=.20, which.path="k1", conf.level=0.95)
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