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a b s t r a c t

The problem of sample size estimation is important in medical applications, especially in
cases of expensive measurements of immune biomarkers. This paper describes the prob-
lem of logistic regression analysis with the sample size determination algorithms, namely
the methods of univariate statistics, logistics regression, cross-validation and Bayesian in-
ference. The authors, treating the regression model parameters as a multivariate variable,
propose to estimate the sample size using the distance between parameter distribution
functions on cross-validated data sets. Herewith, the authors give a new contribution to
data mining and statistical learning, supported by applied mathematics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to logistic regression analysis [1], applied to classification problems in biomedicine. A group of
patients is investigated as a sample set; each patient is described with a set of features, named biomarkers, and is classified
into two classes.

Since the patient measurement is expensive, the number of patients in the sample studied in this paper is rather small:
two classes contain 14 and 17 patients, respectively. In this case, the classification model overfitting is unavoidable. This
leads to the problem of the sample size determination. Due to the high cost of examination of each new patient, the estima-
tion of the sample size should be precise. The common practice [2,3] for the logistic regression is to use statistical methods
to estimate the sample size. The sample size is estimated with respect to each feature, one by one. However, these methods
appear to provide an overestimated sample size. The problem of sample size estimation calls for a new solution. Let us define
the instability of the model in relation to the sample size. We will call the model unstable, if the model parameters change
significantly when the sample is slightly varied. Fig. 2 shows how the position of the hyperplane has changed after two
objects were added to the sample. When the sample size is insufficient, the model parameters estimations are unstable. In-
creasing the sample size we expect to increase stability of the parameters. To measure stability, we propose to compute the
averaged Kullback–Leibler divergence between the probability density functions of the model parameters. The parameters
are estimated at different subsets of the same size. The divergence should decrease with the increment of the subsets’ size,
if these subsets belong to the same statistical population. When a threshold value of stability is assigned, one can compute
the sample size required to achieve this level of stability.

The paper is organized in the following way. A brief description of the logistic regression and the quality function used in
this paper is presented in Section 2. The target variable is assumed to follow a Bernoulli distribution. The parameters of the
regression model are estimated [4,5]. The studied sample consists of 31 patients with cardio-vascular system disorder. The
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experts name 20 features that describe the sample. With a given set of features, the model is excessively complex. That is
why, before estimating the sample size, we select a set of features of a smaller size that will classify patients effectively.
In logistic regression, features are selected using stepwise regression procedure [6,7]. In our computational experiment an
exhaustive search is implemented. This makes the experts sure that every possible combination of the features is consid-
ered. We use the area under the ROC curve [8–10] as the optimum criterion in the feature selection procedure. The feature
selection problem is discussed in Section 3. In Section 4 the following methods of minimum sample size determination are
discussed:

1. Method of confidence intervals: a method of univariate statistics [2]. This method does not consider the model or our
assumptions about a probability distribution of the variables. This method is designed for case of a single feature.

2. Method of sample size evaluation in logistic regression [3]. Unlike the previous one, this method considers the distribution
of the responsive variable according to the logistic regression model. Again, this approach is meant to be used when the
class variable is described by a single feature.

3. Cross-validation: a method which evaluates sample size by observing potential overfitting [11,12]. This method is not
associated with any certain model, but can be implemented in case of multiple features.

4. Comparing different subsets of the same sample using the Kullback–Leibler divergence [13] between probability density
functions of themodel parameters, evaluated at similar subsets. This approach allows us to estimated the sample size for
the multi-feature sample set and takes into account the probabilistic assumptions and the model. This is a new method
proposed by the authors.

These methods are tested on real and synthetical data. The results of the experiment are discussed in Section 5.

2. Classification problem statement

Consider the sample set D = {(xi, yi) : i = 1, . . . ,m} of m objects (patients). Each patient is described by n features
(biomarkers), xi ∈ Rn, and belongs to one of two classes: yi ∈ {0, 1}. The logistic regression problem assumes that the
vector of responsive variables y = [y1, . . . , ym]T is a vector of Bernoulli random variables, yi ∼ B(θi), with the probability
density function

p(y|β) =

m
i=1

θ
yi
i (1 − θi)

1−yi . (1)

The probability density function depends on the parameter vector β. Given β, the probability θi is defined as

θi = f (xTi β) =
1

1 + exp(−xTi β)
. (2)

We use themaximum likelihoodmethod, write the error function for Eq. (1) as

E(β) = − ln p(y|β) = −

m
i=1

(yi ln θi + (1 − yi) ln(1 − θi)) . (3)

To find the vector of parameters β̂ of regression function, one has to solve the following optimization problem:

β̂ = arg min
β∈Rn

E(β). (4)

Then, the classification algorithm is defined as:

a(x, c0) = sign (f (x, β) − c0) , (5)

where c0 is a cut-off value of regression function (2), defined by (6).

Classification quality function. Let us use an additional to (1) namely the quality function AUC, or the area under the ROC-curve.
We introduce TPR(ξ ), which stands for true positive rate

TPR(ξ) =
1
m

m
i=1

[a(xi, ξ) = 1][yi = 1],

and FPR(ξ ) means the false positive rate

FPR(ξ) =
1
m

m
i=1

[a(xi, ξ) = 1][yi = 0].
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Fig. 1. Sample sizem∗ , estimated by confidence interval method and method for logistic regression.

The parameter ξ covers the values from zero to one and is considered as the cut-off value to construct the ROC-curve. Here,
the following denotation for the indicator function is used:

[y = 1] =


1, if y = 1,
0, if y ≠ 1.

Thus, the bigger the AUC value the better the classifier.
Defining c0 value. Every point (FPR(c0), TPR(c0)) of the ROC-curve corresponds to some c0 ∈ [0, 1] value. As shown in Fig. 1,
the most distant from segment [(0, 0); (1, 1)] point of the ROC-curve corresponds to the value c0 used in Eq. (5):

ĉ0 = arg max
ξ∈[0,1]

∥(TPR(ξ), FPR(ξ)) − (ξ , ξ)∥ = arg max
ξ∈[0,1]


TPR(ξ) − ξ 2 − FPR(ξ) − ξ

2
. (6)

Defining ĉ0 includes computing the AUC value and, therefore, computation of (5) and iterative estimation of the parameters
in β according to Eq. (4).

3. Feature selection problem

Let A be a subset of the indexes of the features, A ⊆ J = {1, . . . , n}, and Â be the optimal subset of the indexes.
Denote by XA the matrix subsequently composed of the columns of the matrix X with indexes in A, and βA be the corre-
sponding vector of parameters. Thus, the feature selection problem is a maximization one:

Â = argmax
A⊆I

AUC(A), subject to |A| = const. (7)

The value of AUC (A) ≡ AUC(XA, β̂A, ĉ0, y) is computed for a set A of indexes and the parameters β̂A and c0 are defined
by Eqs. (4) and (6), respectively.

Themaximization problem (7) is solved in the computational experiment by exhaustive search. This approach is possible
due to a relatively small amount of features and it is required by experts.

As the cardinality of A is unknown, the set of indexes of objects I is divided into two disjoint subsets, I = L ⊔ T , the
learning set and the test set: the parameters β are estimated at DL = {(xi, yi) : i ∈ L}, while the classification quality is
computed at DT = {(xi, yi) : i ∈ T }. The maximum cardinality of A is limited by experts: |A| shall not exceed the number
four. We refer to the feature sets, obtained by solving problem (7), as optimal sets, and name the features included into
optimal sets as themost informative features.

4. Sample size determination

The investigated data describe patients of two classes: (i) those who have already experienced a heart attack, and
(ii) patients thatmight experience it in the future. Concentrations of proteins in blood cells are used as 20 features. There are
17 patients in the first class and 14 in the second. Having these few observations, we must estimate the minimum sample
size m∗ required to obtain adequate results of classification. In this section, four methods of sample size determination are
presented. The last one is a newmethod, introduced by the authors. The results of implementing this methods are described
and analyzed in Section 5.
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4.1. Method of confidence intervals

Consider the data set D = {(xi, yi) : i ∈ I = {1, . . . ,m}} in which every responsive variable yi depends on a single inde-
pendent variable xi ∼ N (µ, σ 2). Suppose 1 = x̄ − µ is the difference between the average

x̄ =
1
m

m
i=1

xi

and the known expected valueµ of the random variable xi. Given the variance σ 2, we obtain a standard normally distributed
variable

Z =
x̄ − µ

σ

√
m =

1

σ

√
m ∼ N (0, 1). (8)

Thenm∗ can be computed with significance level α as

m∗
=

 zα/2σ

1

2
, (9)

where zα/2 is defined by P

|Z | ≥ zα/2


= α.

In this paper, a multi-feature problem is considered and every responsive variable yi is described by the vector of inde-
pendent variables xi. Nevertheless, formula (9) can be used for each feature separately as the components of xi are assumed
to be independent.

This method only helps to obtain a rough estimation ofm∗. The reason is that neitherµ nor σ 2 are known. Also, it is more
likely that xi is distributed as a mixture of distributions:

xi ∼


N (µ1, σ

2
1 ), with probability θi,

N (µ2, σ
2
2 ), with probability 1 − θi,

(10)

where θi is defined by Eq. (2).

4.2. Method of sample size evaluation in logistic regression

Let us fixate some index set A. For every feature in the set, defined by A, we can compute the sample size m∗, required
to include this feature into the model feature set. We consider the hypothesis

H0 : βj = 0, j ∉ A,

with βj being the jth element of the vector β of logistic regression parameters. In this way, we assume that the jth feature
is not included in the model. Having estimated the vector of parameters under H0, we obtain the vector βA, and under
alternativeH1 : βj ≠ 0we getβA∗ , where the index setA∗ is composed ofA and index j. ThenH0 andH1 can be reformulated
in terms of parameters θi of Bernoulli distribution B(θ) and rewritten as

H0 : θ = θA, H1 : θ = θA∗ .

We note that the exact values of θi in each case are not important, we are only interested in the cut-off value c0. Finally,
we have:

H0 : 1 − c0 = p0, H1 : 1 − c0 = p1.

To test the hypothesis H0, we calculate statistic

Z =
p̂ − p0

√
p0c0/m

, p̂ =
1
m

m
i=1

yi,

where p̂ is the maximum likelihood estimator for θ . Under H0,

Z ∼ N


p1 − p0,


p1c1
p0c0


.

Then

Z


p0c0
p1c1

+
p0 − p1

√
p1c1/m

=


p0c0
p1c1


Z +

p0 − p1
√
p0c0

√
m


∼ N (0, 1).

With significance level α the power of the criterion can be computed:

1 − β = P{|Z | > Zα/2|H1} = Φ


p0c0
p1c1


Zα/2 +

p0 − p1
√
p0c0/m


.
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Thus we obtain the following formula form∗:

m∗
=

p0c0

Z1−α/2 + Z1−β


p1c1
p0c0

2

(p1 − p0)2
. (11)

We note thatm∗, given by Eq. (11), depends on index j of a feature appearing in H0.

4.3. Cross-validation

This method provides a minimum sample size estimation, based on observing overfitting. When using this approach, the
data sample is divided into learning DL = {(xi, yi) : i ∈ L} and test set DT = {(xi, yi) : i ∈ T }, where I = L


T . We

fixate a set A of indexes of model features, and by AUC(A, D) we denote the quality function value computed based on the
data set D . A decrease of the quality function AUC(A,DT ) value computed on the basis of the training set and compared to
AUC(A,DL) might indicate overfitting. We define overfitting as the following ratio:

RS(m) =
AUC(A,DT (m))

AUC(A,DL(m))
. (12)

In this case, themodel f approximates the learning set, but it cannot be used to describe the test set. Overfittingmight occur
when the sample sizem is too small. To reasonably assessm∗, we consequentially increase the sample sizemwhile splitting
the data set into learning and test sets under a given ratio:

|T (m)|/|L(m)| = const ≤ 0.5.

With the increase of m, the value of RS(m) approaches one. We find the sample size m∗ adequate, if for every m ≥ m∗ the
RS(m) ratio is more than a given value 1 − ε1.

4.4. Using Kullback–Leibler divergence to estimate sample size

The presented approach is based on comparing probability density functions of the model parameters. Consider two
‘‘similar’’ sets of indexes of objects B1 ∈ J and B2 ∈ J. The index sets B1 and B2 are ‘‘similar’’ if

|(B1 \ B2) ∪ (B2 \ B1)| = 1.

In this way, B2 can be obtained from B1 by deleting, replacing or adding one element. Parameters, evaluated at different
samples B1 ≠ B2, do also differ. Fig. 2 shows how the separating hyperplane given by

xTβ = ln


c0
1 − c0


changes when two elements are added to the sample. If the sample DB1 is large enough, the parameter vector β1 evalu-
ated based on DB1 should not be significantly different from β2 obtained with a ‘‘similar’’ sample DB2 . The simplest way to
compare them is to compute the Euclidean distance between β1 and β2:

∥β1 − β2∥ =

 |A|
i=1


β1
i − β2

i

2
.

In this paper, probability density functions of parameters at DB1 and DB2 are compared by computing the Kullback–Leibler
divergence values between them. Consider model function (2) and the assumption about the random variable yi distribu-
tion (1). Having fixated the data set D and the model fA = f (XT

Aβ), we rewrite Eq. (1) as

p(y|X, β, fA) ≡ p(D|β, fA) =

m
i=1

θ
yi
i (1 − θi)

1−yi . (13)

We suppose as well, that the vector of regression parameters β follows a normal distribution β ∼ N (β0, σ
2I|A|) with the

density function

p(β|fA, α) =

 α

2π

 |A|

2
exp


−

α

2
∥β − β0∥

2


, (14)

in which α−1
= σ 2, I|A| being the unit matrix of format |A| × |A|.

To find the probability density function p(β|D, α, fA) of the regression parameters, we use Bayes’ Theorem:

p(β|D, α, fA) =
p(D|β, fA)p(β|α, fA)

p(D|α, fA)
, (15)
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Fig. 2. Two classes are separated by a hyperplane. A dotted line represents the hyperplane position after the two random objects (in circles) were added.

where p(D|β, fA) is the data likelihood, p(β|α, fA) given a priori probability density function. In (15), the normalization
factor p(D|α, fA) is defined by

p(D|α, fA) =


p(D|β, fA)p(β|α, fA)dβ.

Substituting Eqs. (13) and (14) into Eq. (15) and denoting Z(α) = p(D|α, fA), we obtain

p(β|D, fA) =
p(y|x, β, fA)p(β|fA, α)

Z(α)

=
α

|A|

2

(2π)
|A|

2 Z(α)
exp


−

α

2
∥β − β0∥

2
 m

i=1

θ
yi
i (1 − θi)

1−yi , (16)

where Z(α) = p(D|α, fA) is a normalization factor.
Consider two ‘‘similar’’ samples DB1 and DB2 . We denote the posterior distributions p1(β) ≡ p(β|DB1 , α, fA) and p2(β)

≡ p(β|DB2 , α, fA), respectively. ‘‘Similarity’’ of these distribution can be computed as

DKL(p1, p2) =


β∈W

p1(β) ln
p1(β)

p2(β)
dβ. (17)

To estimate the minimum sample sizem∗, we randomly delete objects from our data set one by one, consequently reducing
the sample sizem, and computing the posterior distribution of the vectorβ by Eq. (14). Then, theKullback–Leibler divergence
(17) between the probability density functions of parameters evaluated at ‘‘similar’’ data sets is estimated. This process is
repeated N times and then the results are averaged. The sample size m∗ is considered adequate if the Kullback–Leibler
divergence (17) changes less than by some given ε2 form ≥ m∗.

We approximate the integral (17) with a sum. Here, we take the logistic regression parameters vector β̂, obtained by
solving problem (4), as a mean vector, denoted β0 in Eq. (16). Then a sample of 500 vectors β is generated according to
normal distribution N (β̂, IA). For each of them, we compute p1(β), p2(β) and from now on will treat a sum

β

p1(β) ln
p1(β)

p2(β)

as the Kullback–Leibler divergence between p1 and p2. The paper [13] describes a method of estimating Kullback–Leibler
divergence between continuous densities that does not require estimation of probability density functions.

5. Computation experiment

5.1. Experiment on real data

The data set contains observations of concentrations of 20 proteins in blood cells for patients of two classes, containing
31 and 14 objects, respectively. All features, or biomarkers, are listed in the first and third rows of Table 1.

Table 2 presents optimal sets of features, corresponding to maximum AUC values and the exact AUC values. Here, K = 5
optimal sets were selected for investigation.

Due to high costs of medical investigation of one patient, it is essential to reduce the number of measured biomarkers.
It is suggested to measure only the most informative features. Having united indexes of all the features from Table 2, we
obtain a set of indices of the most informative features S =

K
i=1 {Ai}. For every feature the number of times that it was

involved in S is computed. Table 1 shows this number for every feature.



A. Motrenko et al. / Journal of Computational and Applied Mathematics 255 (2014) 743–752 749

Table 1
Number of entries into K optimal sets for each feature.

K L K/M L/M K/N K/O L/O K/P L/P K/Q
5 4 3 1 0 0 0 0 2 1

K/R L/R L/R/SA L/T/SA L/T/SO U/V U/W U/X U/Y U/Z
0 1 0 0 1 0 0 0 0 0

Table 2
The results of feature selection.

A S(A)

K , L, L/P 0.9750
K , L, K/M, K/Q 0.9671
K , L, L/M, L/T/SO 0.9933
K , L, K/M, L/R 0.9867
K , K/M, L/P , 0.9742

Fig. 3. Sample size estimations computed by method of confidence intervals and method for logistic regression for the most informative features.

Minimum sample size determination. In the histogram of Fig. 3, sample size values m∗, computed for separate features by
Eqs. (9) and (11), are represented. The sample sizem∗ was only computed for those features included in the model, the rest
of them are not informative and should not be considered.

We note that the sample size estimations, obtained by Eqs. (9) and (11), have a similar dependence on a feature’s index.
The reason is that in both methods, the sample size estimation of the jth feature depends on how informative the feature is.
In logistic regression, informative features have a significant value of the corresponding element βj of parameters vector. In
Eq. (11), (p0 − p1)2 is placed in the denominator. The nearer the parameter βj tends to zero, the less the value (p0 − p1)2 is,
and, therefore, the larger m∗ is. In this way, minimum values of m∗ correspond to the most informative features, whereas
abnormally large values (∼104 or more) answer to those features, that are not included in model—they have the smallest βj
values.

The dependence of the value of RS(m), defined by Eq. (12), on the sample sizem is plotted in Fig. 4. Provided with a data
set described in Section 5.1, the RS(m) ratio is unable to reach an asymptote, and the form of the dependence of RS(m)when
m > 30 cannot be analyzed, so the estimation given by this method ism∗

≥ 30.
Fig. 5b depicts the dependence of Kullback–Leibler divergence (17), averaged by N = 100 trials, on the sample sizem. It

is seen, that having more than 25 elements in the data set leads to changing of the Kullback–Leibler divergence relatively
slowly: when the sample size m > 25 is reduced by one element, the graph shows almost no change of Kullback–Leibler
divergence, compared to the area of smallerm. Thus, we obtain a minimum sample size estimationm∗

≃ 25.
To compare the results obtained by different methods, we represent them in Table 3. The amount of observations in in-

vestigated data is quite small, so the cross-validation method and the method involving Kullback–Leibler divergence com-
putation only provides us with a lower bound of m∗. These methods are more suited for large data sets. The confidence
interval method and method of logistic regression show numerically different results, as the confidence interval method is
quite rough. However, the dependence of m∗ on the feature index is practically the same for these methods, both of them
give estimations which depend on how informative the feature is.
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Fig. 4. RS(m) ratio.

Fig. 5. a. Averaged Euclidean divergence ∥βm − βm+1∥. b. Kullback–Leibler divergence between probability density functions of model parameters.

Fig. 6. a. Data set represented by two informative features. b. Dependence of RS ratio onm, obtained with cross-validation 3:1.

Table 3
Sample size estimations.

Confidence intervals Logistic Cross-validation Kullback–Leibler

102–104
∼100 ≥30 ≃25

5.2. Experiment on synthetical data

The experiment was also carried out on synthetical data. Each class contains one noisy feature and two informative
features (distributed normally and uniformly), and it contains 100 objects. It is seen in Fig. 6a, that classes are easily distin-
guished.

Furthermore, it is seen in Fig. 6b, that for sample sizem ≥ m∗
= 100 the change of RS(m) ratio is not more than 0.01, so

we conclude thatm∗
≤ 100.

The results of sample size estimationm∗, obtained by Eqs. (9) and (11), are illustrated by Fig. 7a.
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Fig. 7. Sample size m∗ , estimated for each model feature by confidence interval method and method of logistic regression. a. Sample size estimation for
each of three features describing the data set. b. The data set is described by a single feature x. The variable x follows amixture of normal distributions with
the difference |µ1 − µ2| between mean values of the components.

(a) α = 0.1. (b) α = 0.3. (c) α = 0.7.

(d) α = 1. (e) α = 1.2. (f) α = 2.

Fig. 8. The dependence of the Kullback–Leibler divergence on the sample size. The data sample is synthetical, with the samemeans, but different variance
matrices.

In this case, the estimations of m∗ given by the confidence interval method are more precise (closer to those obtained
by cross-validation). This might happen because the example is too simple. The real data, investigated in Section 5.1, is
assumed to follow a mixture of normal distributions (10). To approximate real data, we consider a data set with just one
independent variable, distributed according to relation (10). Dependence of sample size estimations on the |µ1 − µ2|

difference is observed. In Fig. 7b, it is seen that in this case Eq. (9) gives overrated results, while estimations ofm∗, obtained
by Eq. (11) are more adequate.

Let us consider another example. The data consists of two classes, each one is described by two features. The features are
distributed normally with diagonal covariance matrix, Σ = α−1I . We fixate the mean vectors and vary α, computing the
dependence of the Kullback–Leibler divergence on the sample size m for different values of α. Fig. 8 presents such depen-
dences forα = 0.1, 0.3, 0.7, 1, 1.2, 2. It is seen thatwhen the variance is large (α = 0.1, 0.3) theDKL(p1, p2) dependence on
sample sizem does not have a ‘‘footboard’’, which can be seen on Fig. 5b atm ≈ 25. Note that the values of Kullback–Leibler
divergence are smaller for α = 0.1, 0.3 than those in the other experiments. In the case of a high variance, it is hard to clas-
sify objects and the AUC value is small, no matter howmany samples we have. Fig. 9 shows that the classifier for α = 0.1 is
close to a random guess, regardless of the sample size, that is why the regression parameters and their probability density
function do not change significantly with the sample size m. When the variance is smaller (α = 0.7, 1), the values of the
Kullback–Leibler divergence get higher, but we are able to estimate theminimum sample sizem ≈ 80. If we keep increasing
α, we see that the Kullback–Leibler divergence does also increase with the sample size for m ≤ 125. This happens because
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Fig. 9. a. The dependence of the AUC on the sample size, α = 0.1. b. Examples of hyperplanes that can separate the data size without misclassified objects,
α = 2.

when with α = 1.2, 2 the classes are so distant from each other and can be distinguished by different hyperplanes. So
the position of the hyperplane is rather random for small values of m. Later, when the m value gets higher, the Kullback–
Leibler divergence starts to decrease with the sample size m. These examples show that the sample size estimation should
be based on the shape of the dependence, rather than on the exact values of the Kullback–Leibler divergence.

6. Conclusion

This paper presents an algorithm that classifies patients with cardio-vascular decease. To select the regression model,
an exhaustive search algorithm is used. The authors proposes a new method of sample size determination. It is based on
the cross-validation technique and uses the Kullback–Leibler divergence between two distributions of model parameters,
evaluated on similar data subsets. Four different algorithms of sample size determination are compared.

By this paper the authors further introduced analytic and probabilistic methods into data mining and statistic learning.
In the future, we shall go on with this insertion of modern applied mathematics towards improved prediction in all fields of
science, engineering and real life.
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