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In covariance structure modeling, several estimation methods are available. The robust-
ness of an estimator against specific violations of assumptions can be determined
empirically by means of a Monte Carlo study. Many such studies in covariance structure
analysis have been published, but the conclusions frequently seem to contradict each
other. An overview of robustness studies in covariance structure analysis is given, and
an attempt is made to generalize findings. Robustness studies are described and distin-
guished from each other systematically by means of certain characteristics. These
characteristics serve as explanatory variables in a meta-analysis concerning the behav-
ior of parameter estimators, standard error estimators, and goodness-of-fit statistics
when the model is correctly specified.

Robustness Studies in
Covariance Structure Modeling
An Overview and a Meta-Analysis

JEFFREY J. HOOGLAND
ANNE BOOMSMA
University of Groningen

1. INTRODUCTION

Structural equation modeling (SEM) is focused on directed rela-
tionships between empirical phenomena, which are often represented
by unobserved, latent variables (hypothetical constructs). Observed,
measured variables can be used as indicators of these latent variables,
thus defining the measurement part of a structural equation model,
which can deal explicitly with measurement errors. Structural equa-
tion models represent the underlying structure among variables in
terms of population covariances, which can be expressed as functions
of unknown population parameters. The main purpose of covariance
structure analysis (CSA) is to estimate the population parameters in
these models using a sample of covariances based on N observations.
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Several assumptions are implicitly made in SEM, particularly with
respect to the estimation method (see Section 2) used to obtain
estimates of model parameters, standard errors, and goodness-of-fit
statistics. In practice, many of these assumptions turn out to be too
restrictive. The effect of violation of assumptions depends on the
robustness of an estimation method given a postulated covariance
structure model and the distributional properties of the sample data.
A statistical procedure is called robust if its performance is relatively
insensitive to departures from the underlying assumptions used to
derive that procedure (Box 1953:318).

Robustness properties of estimators can be obtained empirically by
means of a Monte Carlo study. In a specific Monte Carlo design,
several aspects, such as the postulated model and the distribution of
the observed variables, must be specified a priori. A drawback is that
the Monte Carlo results are conditional on that design, and generali-
zations are therefore only justified when there is a clear trend. The
number of robustness studies in SEM is quite impressive, but the
robustness issues investigated and the approach followed differ sub-
stantially (see Section 3). More important, the conclusions from these
studies are often contradictory and in general hard to summarize.

This article gives an overview of robustness studies concerning
covariance structure models. One of the main purposes of this over-
view is the generalization of robustness properties of estimators of
parameters, estimators of standard errors, and goodness-of-fit statis-
tics. Frequently, generalizations are possible by identifying causes for
contradicting conclusions across robustness studies.

A collection of robustness studies will be described and systemati-
cally distinguished from each other by means of characteristics re-
garding the model, the simulated data, the estimation methods, and
the obtained results. The robustness studies investigated and charac-
teristics that are used to describe them systematically are specified in
Section 4.

One of the things that can cause differences in conclusions across
robustness studies are the assessment criteria used. Ideally, these
criteria should have no influence on the conclusions of a Monte Carlo
study. Therefore, they are redefined in Section 6 and applied to the
reported results of any robustness study whenever possible. A meta-



Hoogland, Boomsma / ROBUSTNESS STUDIES 331

analysis on robustness results, as described in Section 6, serves to
indicate which estimation methods can be used, or should be preferred,
to obtain precise and reliable estimates of parameters, estimates of
standard errors, and goodness-of-fit statistics. The meta-analysis is
mainly verbal and judgmental because the robustness results are
influenced by many characteristics.
A systematic comparison of robustness studies may establish which

aspects of estimation in covariance structure modeling have had too
little, or too much, attention. This leads to guidelines for future
research in this area. In Section 7, the conclusions of the overview are
given and topics for future research are discussed.

2. ESTIMATION METHODS

The fundamental hypothesis in covariance structure modeling is

~=~(8), (1)

where :L(8) (k x k) is the population covariance matrix of k observed
variables written as a function of 8, and 8(t x 1) is a vector of the
model parameters. The sample estimator of E in a sample of size N is

S = Z'Z/(N -1), (2)

where Z is an (N x k) matrix of deviation (from the means) scores of
the observed variables. Given a specified model :L(8), the unknown
parameters of 8 are estimated in such a way that the discrepancy

1\ 1\
between the implied covariance matrix :L= :L(8) and the sample
covariance matrix S is as small as possible given some criteria, where
1\
fJis the vector of parameter estimates. A discrepancy function F(S,
:L(fJ» is needed to quantify the fit of a model to the sample data. Four
estimation methods and their discrepancy functions are described
now.



332 SOCIOLOGICAL METHODS& RESEARCH

• Maximum Likelihood (ML)

The most widely used fitting function is the ML function, which can
be derived by assuming that the observed variables z (k x 1) are
multinormally distributed. ML parameter estimates are obtained by
minimizing the discrepancy function

FML = log 11:(8) I+ tr[S1:-1(8)] -log IS I-k. (3)

• Generalized Least Squares (GLS)

GLS-estimates of model parameters are obtained by minimizing the
discrepancy function

FGls = tr[ {(S -1:(8» V-I }2]/2, (4)

where V-I is a positive definite weight matrix for the residual matrix
(S-~8».

A sufficient condition for the underlying distributional assumption
to hold is that the observed variables do not have excessive kurtosis;
that is, the kurtosis of each observed variable equals zero, I the kurtosis
of a normal distribution (Browne 1974; Bollen 1989: 114).

• Asymptotically Distribution Free (ADF)

The distributional assumptions of the ADF estimator are valid under
very general conditions (Browne 1984). Its discrepancy function can
be written as

FADF = [s - G (8)]'W-I[s - G (8)], (5)

where s is a vector of the k(k + 1)/2 nonduplicated elements of S, a (8)
is the corresponding vector of ~ 8), and W-1 is an optimal weight
matrix. The matrix W-1 must be optimal in the sense that W has to be
a consistent estimator of the matrix NU, where the elements of U are
the asymptotic covariances between sij and Sgh for each i, j, g, and h.
In general,
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(6)

where (1;jgh is the fourth-order multivariate moment of Zj, Zj' Zg, and Zh
around their mean, and (1;j is the population covariance of Zi and Zj
around their mean.
In practice, the elements ajjgh in (6) are estimated by

(7)

and the elements aij are estimated by

• 1 N _ _

sij =N It (Zpi - z;) (zpj - Zj)'
p=l

(8)

where Z; is the mean of Zpj'

• Elliptical (E)

A special case of FADF follows when the observed variables Z are
assumed to have a multivariate elliptical distribution (Browne
1984:74-5). Elliptical distributions have zero skewness but can have
a homogeneous kurtosis 1C that may deviate from the normal kurtosis.
In that case,

(9)

where 1C= 7(i = «1;iiil 3(1;f)-1, i = 1,2, ... , k, is the homogeneous
kurtosis.
Elliptical parameter estimates are obtained by minimizing an ellip-

tical discrepancy function
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where p = 1(/ [4(1(+ I? + 2kK(1(+ 1)]. There are several estimators
available for the kurtosis parameter K (Harlow 1985), and several

1\
possible choices for V in (10). When 1:(0) is used for V, the estimation
method is called an Elliptical Reweighted Least Squares (ERLS)
estimator (Bentler 1995).

When the parameters are estimated by some estimation method, an
important question is whether the model fits the data well. The most
commonly used test of overall model fit is the chi-square goodness-
of-fit test. Consider the discrepancy function FADF as defined by (5).
The chi-square test statistic is easily computed as TADF = (N - I)FADF

(Browne 1982:97). Asymptotically TADF has a X2 distribution if the
following assumptions hold:

1. the null hypothesis Ho: L = L(8) holds exactly,
2. 8 is identified,
3. a covariance matrix S is analyzed,
4. W is optimal.

When assumptions 1,2, and 3 hold and the distributional assumptions
regarding the observed variables are satisfied, any of the other dis-
crepancy functions multiplied by (N - 1) are also asymptotically
chi-square distributed.

When the distributional assumptions concerning the estimation
method are satisfied, the standard errors of the parameter estimates

1\
can be obtained from the asymptotic covariance matrix of 0

(11)

where Li = (aa(ova0 I )10= ~ is the matrix of partial derivatives of the
model with respect to the parameters, and U is the matrix that consists
of the elements defined by (6). By means of estimators of the matrices
in (11), which are consistent when the distributional assumptions for
the specific estimation method hold, standard error estimates are
obtained.
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3. ROBUSTNESS QUESTIONS

The seriousness of a departure from model assumptions depends
on the robustness of an estimation method against such departures,
conditional on the model under study. The issues that are considered
below are robustness against distributional violations, small sample
size, analysis of correlation rather than covariance matrices, model
misspecification, and nonlinear structural equations.

• Distributional Violations

When the observed variables have excessive kurtosis, the ML, GLS,
and ERLS estimates of the standard errors and the associated chi-
square statistic may be incorrect (Bentler and Dudgeon 1996). A
possible solution is to transform the observed variables (Meijerink
1995).
Another possibility is to adjust an estimator of standard errors or a

chi-square statistic for excessive kurtosis. The following adjustments
can be made after the model parameters have been estimated.

(a) Browne (1984:76) gives "corrections for kurtosis" for the ML and
GLS chi-square statistic and the asymptotic covariance matrix.

(b) A so-called robust sample covariance matrix, being robust against
distributional misspecification, is defined by Browne (1984:67).

(c) Satorra and Bentler (1988) proposed a correction to the standard errors
and a scaled test statistic.

• Small Sample Size

A small sample size may cause problems because the statistical
properties of estimators of parameters, asymptotic covariances, and
test statistics are asymptotic properties. For instance, the estimators
of the parameters discussed in Section 2 are asymptotically unbiased
under very general conditions when (1) holds, but the estimators can
be biased for fmite sample sizes. The ADF estimation method espe-
cially may give problems because fourth-order moments have to be
estimated. When the sample size is small, this results in unstable
estimates of the elements of W-1•
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Given that 1:(6) holds, the larger the sample, the better the perfor-
mance of the specific estimation method is expected to be because S
converges to 1: as N grows large. When the distributional assumptions
are satisfied, the estimates of the standard errors should be better for
large sample size because the matrices in (11) will be estimated more
accurately. The chi-square statistic concerning a specific estimation
procedure is merely asymptotically X2 distributed. For fmite sample
size, the X2 distribution is therefore an approximation of the true
distribution, which can be expected to be worse the smaller the sample
size.

• Analysis of Correlation Rather Than Covariance Matrices

In practice, the scales of the observed variables are often arbitrary.
Therefore, in many applications, there is a tendency to use a correla-
tion matrix R instead of a covariance matrix S. However, this is not
an adequate procedure for all models. The use of R may even alter the
model under study (Cudeck 1989).

When a correlation matrix R is analyzed, two concepts play an
important role: scale invariance of a model and scale freeness of a
parameter (Browne 1982). When a model is scale invariant, parameter
estimates and the chi-square statistic are unaffected when a correlation
matrix is analyzed.' Estimated standard errors will only be correct for
scale-invariant models when the associated model parameters are
scale free. Browne (1982:94) proposed corrections for the standard
errors when correlations are analyzed. These corrections are available
in RAMONA (Browne, Mels, and Coward 1994) and SEPATH
(Steiger 1995).

• Model Misspecification

Even if all available theoretical information is implemented in speci-
fying a model, the common experience is that the model is still
rnisspecified. Herting and Costner (1985) describe several types of
possible specification errors. Joreskog (1993) gives a general strategy
to fmd a suitable model (see Hayduk 1996, chap. 2, for a discussion).
If the model is poorly specified, nonconvergence or improper

solutions may occur. The estimates of the path coefficients will be
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biased when there is a misspecification in the structural part of a
model. Moreover, because the estimation methods of Section 2 are
full information methods, which means that all equations are esti-
mated simultaneously, all model parameter estimates may be biased
then, including parameters concerning the measurement part of a
model. A possible solution to this problem is the use of a limited
information method such as the two-stage least squares (2SLS)
method (Bollen 1996). When this estimation method is used, a mis-
specification in one part of the model does not necessarily affect other
parts of the model.

• Nonlinear Structural Equations

It is conceivable that there are nonlinear relationships between latent
variables. In that case, the general linear structural equation model, as
defmed by the LISREL model (Joreskog 1973) or the Bentler and
Weeks model (Bentler and Weeks 1980), does not hold. Examples of
nonlinear relationships are quadratic and interaction terms. It is not
possible to transform latent variables to make relationships approxi-
mately linear as can be done with observed variables. However, in
principle, methods are available that can handle quadratic and inter-
action terms for latent variables, for example, the product indicators
technique of Kenny and Judd (1984). Joreskog and Yang (1996) and
Yang (1997) present extensive studies of the Kenny and Judd model.
Bollen (1995), Ping (1995), and Klein et al. (1997) have suggested
alternative approaches.

4. COlleCTION OF ROBUSTNESS STUDIES

Table 1 gives an overview of a collection of robustness studies in
SEM that investigated robustness issues discussed in Section 3 by
means of Monte Carlo methods.' The effect of sample size is covered
when at least two different sample sizes are studied and the effect of
analysis of R when both the sample covariance matrix S and the sam-
ple correlation matrix R are used to estimate the model parameters.

Itcan be concluded from Table 1 that the effects of nonlinearity and
analysis of R have received relatively little attention.
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TABLE 1: Overview of Robustness Studies

Model Robustness Against

Author(s) Year Number 55 DV MM R NL

Anderson and Gerbing 1984 1 X
Babakus, Ferguson, and JOreskog 1987 2-3 X X
Baldwin 1986 X X
Bearden, Sharma, and Teel 1982 4-5 X
Benson and Fleislunan 1994 6-9 X X
Boomsma 1983 10-28 X X X
Brown 1990 29-30 X
Browne 1984 31-32 X
Chou, Bentler, and Satorra 1991 33-34 X X
Curran, West, and Finch 1996 35 X X X
Dolan 1994 36 X X
Ethington 1987 37 X
Gallini and Mandeville 1984 X X
Gerbing and Anderson 1985 38 X
Harlow 1985 39-40 X X
Harlow, Chou, and Bentler 1986 41-42 X X
Henly 1993 43 X X
Hu, Bentler, and Kano 1992 44-46 X X
Jaccard and Wan 1995 X X X

Kaplan 1989 X X
Klein et al. 1997 X X
Lance, Cornwell, and Mulaik 1988 X
Lee, Poon, and Bentler 1995 47 X X
Meijer and Mooijaart 1992 48 X X
Muthen and Kaplan 1985 49 X
Muthen and Kaplan 1992 50-53 X X
Ping 1995 X X X
Potthast 1993 54-57 X X
Reddy 1992 X X
Satorra and Bentler 1988 58 X
Sharma, Durvasula, and Dillon 1989 59 X X
Tanaka 1984 60 X X
Yang 1997 X X X
Yung and Bentler 1994 61-62 X X

NOTE: The numbers in the third column correspond to a model study. The last five columns
indicate whether the effect of sample size (SS), distributional violations (DV), model rnisspeci-
fication (MM), analysis of R (R), or nonlinearity (NL) are investigated.

5. CHARACTERISTICS OF ROBUSTNESS STUDIES

The robustness studies, and the models investigated within each
study, that can be used for the meta-analysis are described systemati-
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cally by means of certain characteristics. The characteristics can be
categorized as model, data, estimation, simulation, and research sum-
mary characteristics. Each aspect is discussed briefly now.

MODEL CHARACTERISTICS

Covariance structure models can be subdivided in pure measure-
ment models and structural models (with directed relationships be-
tween indicators and/or between latent variables). In a robustness
study, the population model is often a Confirmatory Factor Analysis
(CFA) model. A CFAmodel can be described by the number offactors,
the number of indicators per factor, the correlations between the
factors, and the factor loadings.
Important model characteristics are (a) whether the postulated

model holds in the population; (b) the degrees of freedom of the model,
which has a direct influence on the distribution of a goodness-of-fit
statistic; (c) the number of parameters to be estimated, which is an
indicator of the model complexity; and (d) whether models are invari-
ant under a constant scaling factor (ICSF). A covariance structure
model is ICSF when for each exthere exists a e* such that ~ e *) =
az~e) (Browne 1982).
Table 2 contains characteristics of CFA models, from which it can

be observed that most models are ICSF, the number of factors in a
model is at most 4, the number of observed variables ranges from 4
to 16, the number of parameters to be estimated is at most 33, and the
degrees of freedom of a model is always less than 100.
Table 3 contains characteristics of structural models. It can be seen

that only a few structural models have been investigated, with at most
48 degrees of freedom.

DATA CHARACTERISTICS

In a robustness study, a distributional condition is mostly repre-
sented by the univariate skewness and/or kurtosis for each observed
variable. We consider two distributional conditions to be comparable
when they can be given the same qualitative description-for instance,
two distributional conditions of continuous variables both with zero
homogeneous skewness and positive heterogeneous kurtosis. A dis-
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TABLE 2: Characteristics of CFA Models

Model Exact Factor Correlations FactorLoadings
Number Fit ICSF f k Minimum Maximum Minimum Maximum t df
6 no yes 1 4 .38.5 8 2
7 no yes 1 4 .74.8 8 2
8 no yes 1 8 .38.s 16 20
9 no yes 1 8 .74.8 16 20

15,27 yes yes 2 8.3 .3 .6 .8 17 19
16 yes yes 1 6 .3.7 12 9
17 yes yes 2 6.0 .0 .4 .6 12 9
18 yes yes 2 6.0 .0 .6 .8 12 9
19 yes yes 2 6.0 .0 .8 .9 12 9
20 yes yes 2 6.3 .3 .4 .6 13 8
21 yes yes 2 6.3 .3 .6 .8 13 8
22 yes yes 2 6.3 .3 .8 .9 13 8
23 yes yes 2 8.0 .0 .4 .6 16 20
24 yes yes 2 8.0 .0 .6 .8 16 20
25 yes yes 2 8.0 .0 .8 .9 16 20
26,29 yes yes 2 8.3 .3 .4 .6 17 19
28,30 yes yes 2 8.3 .3 .8 .9 17 19
31 yes yes 1 8.5 .5 1.0 1.0 2 34
32 yes yes 1 8 .71 .71 16 20
33, 39 yes yes 2 6 .24 .24 .37 .9 13 8
34,40 yes no 2 6 .24 .24 .37* .9* 7 14
36 latent yes 1 8 .7.9 16 20
41 yes yes 4 12 .25 .25 .4 .9 30 48
42 yes no 4 12 .25 .25 .4* .9* 18 60
44,61 yes yes 3 15.3 .5 .7 .8 33 87
45 yes no 3 IS .3* .5* .7 .8 27 93
46, 62a yes yes 3 15.3 .5 .7 .8 33 87
48 yes yes 1 4 .6.8 8 2
49 yes yes 1 4 .7.7 8 2
SO latent yes 2 6 .7.7 13 8
51 latent yes 3 9 .7.7 21 24
52 latent yes 3 12 .7.7 27 51
53 latent yes 3 IS .7.7 33 87
54 latent yes 1 4.3 .3 .71 .71 4 2
55 latent yes 2 8.3 .3 .71 .71 9 19
56 latent yes 3 12.3 .3 .71 .71 15 51
57 latent yes 4 16.3 .3 .71 .71 22 98
58 yes no 1 4 7 3
59 yes yes 2 8.4 .4 .71 .71 5 31
60 no yes 2 6 .28 .28 13 8
NOTE:The secondcolumnindicateswhetherthemodelfits exactlyin thepopulation;the term
latentmeansthat the modelfitsthelatentvariablesinsteadoftheobservedvariables.Subsequent
columnsindicatewhethera model is ICSF(invariantundera constantscalingfactor), number
of factors (j), numberof observedvariables(k), range of factor correlations,range of factor
loadings,numberofparameterstobe estimated(r),anddegreesof freedom(dj) of themodel. A
blankmeansthat the specificentry is notapplicableor not available.Anasteriskmeans that the
specificnumberis fixed.
a. Wi th dependentlatentvariables.
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TABLE 3: Characteristics of Structural Models

Model
Number Exact Fit ICSF f k df

4 yes yes 2 6 13 8
5 yes yes 4 12 30 48

10,13 yes yes 3 6 17 4
11,14 yes no 2 10 17 17
37 yes yes 5 10 30 25

tributional condition is considered to be extreme when the observed
variables have the largest absolute values of skewness and kurtosis
among conditions with the same qualitative description. These ex-
treme distributional conditions play an important role in Section 6.
Furthermore, it is shown to be useful to distinguish the following

distributional characteristics for the description of distributional con-
ditions: normal, skewed, platykurtic, leptokurtic, both leptokurtic and
skewed, both platykurtic and skewed, categorical, and categorical in
combination with another aspect of nonnormality.'
A summary of the following data characteristics of robustness

studies was made: the number of categories of discrete variables, the
sample sizes, whether a correlation or a covariance matrix was ana-
lyzed, and the minimum, mean, and maximum skewness and kurtosis
of the observed variables for each distributional characteristic.' In
most robustness studies, a covariance matrix was analyzed with the
observed variables having a continuous distribution. The absolute
value ofthe mean skewness was at most 3.0; the mean kurtosis values
ranged from -1.3 to 21.0. It should be noted, however, that most
skewnesses and kurtoses being reported were the levels aimed at, not
the levels that were actually obtained in, the data generation process.

ESTIMATION CHARACTERISTICS

The estimation methods that are studied are an important charac-
teristic of a robustness study." The ML method is investigated most
often; GLS, ERLS, and ADF methods are also studied frequently. The
GLS, ERLS, and ADF estimators differ across studies depending on
the specific estimator used for V in (4), K and V in (10), and W in (5).
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SIMULATION CHARACTERISTICS

The number of replications, denoted as NR, is an important simu-
lation characteristic. The larger NR, the better the sampling distribu-
tions of the statistics of interest can be approximated by an empirical,
simulated sampling distribution. This is important because the behav-
ior of a statistic is assessed by means of characteristics of such
empirical sampling distributions.

For specific replications, an estimation method may not converge.
Exclusion of nonconvergent replications could imply that the results
are biased. When a replication leads to convergence, but certain
parameters have improper solutions, it must be decided whether that
replication is retained or not.' Regretfully, most robustness studies did
not report whether improper solutions occurred, let alone whether they
were either included or excluded.

Vale and Maurelli (1983) developed a method to generate multi-
variate nonnormal data given the population means, covariance ma-
trix, and the skewness and the kurtosis of the univariate distributions
of the observed variables. Their method is often used in robustness
studies when the first four moments of a distribution are the only
moments of interest. Because data generation methods may differ in
their performance, it is important to keep track of the method being
used and its performance-for example, whether the intended levels
of skewness and kurtosis correspond to the observed levels of
skewness and kurtosis.

RESEARCH SUMMARY CHARACTERISTICS

Research summary characteristics indicate which results are ob-
tained and how the quality of these results is assessed. In contrast to
the characteristics mentioned so far, they do not influence the results
directly, but their choice might affect the conclusions of a robustness
study. A research summary statistic, abbreviated as r.s.s., serves to
summarize the results, with the aim to assess the quality of specific
estimators.

The following research summary statistics are frequently encoun-
tered in robustness studies:



Hoogland, Boomsma I ROBUSTNESS STUDIES 343

• percentage of replications that lead to nonconvergence;
• percentage of convergent replications that give improper solutions;
• bias of parameter estimates;
• standard deviation of parameter estimates;
• bias of standard error estimates;
• rejection rate, mean, and standard deviation of a chi-square statistic;
• p-value of the Kolmogorov-Smirnoff test for a X? distribution.

With respect to the bias of standard error estimates, one aspect
needs further attention. This bias can only be computed when the
population values of the standard errors have been estimated. How-
ever, there are different methods to estimate these population values:
(a) Compute the so-called theoretical standard errors, given that the
model holds exactly. This is done by estimating (11) by means of the
population values for the parameters, which is only correct when the
distributional assumptions for the specific estimation method are
satisfied. (b) Use the empirical standard errors. The empirical stan-
dard error of a specific parameter 8j is defined as

\.2
A 1
(JY/(NR-l) I '

J
(12)

1\
where 8j is the mean of the estimates for parameter i across NR
replications.
The choice for the method by which the population standard errors

are estimated is not irrelevant. Incorrect estimates of the theoretical
standard errors might be obtained when the underlying estimation
method is subject to distributional violations. Statistic (12) is not
derived under distributional assumptions, but the quality of these
empirical standard errors is highly dependent on the number of repli-
cations.

6. META-ANALYSIS ON ROBUSTNESS RESULTS

In this section, Monte Carlo results based on different levels of
skewness and kurtosis of the observed variables, different sample
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sizes, and different models are compared as objectively as possible.
The results concern the performance of ML, GLS, ERLS, and ADF
estimation methods when the model is correctly specified. In Section
6.1, the assessment criteria being used are defined. In Section 6.2,
robustness results are presented concisely. In Section 6.3, estimators
are ranked according to their relative performance. In Section 6.4, the
findings of the meta-analysis are discussed.

6.i. CRiTERiA FOR ASSESSiNG PERFORMANCE OF ESTIMATORS

Formal procedures are developed to compare results concerning
the performance of estimators across robustness studies systemati-
cally. These procedures are based on the following line of reasoning.

Imagine a robustness study that investigated the behavior of an
estimator for a number of [mite sample sizes, several distributional
conditions, and a specific model. We use the term model study to refer
to a robustness study for one specific model. The performance of an
estimator in a specific cell of the Monte Carlo design is quantified by
means of a research summary statistic (see Section 5). To simplify the
assessment of an estimator, we define criteria that dichotomize the
performance of an estimator as acceptable or unacceptable for each
cell of the Monte Carlo design. Given that the performance of an
estimator will in general be better with increasing sample size, what
is essential is the smallest sample size for which an estimator has
acceptable performance given a specific distributional condition. This
sample size will be called the sufficient sample size for that distribu-
tional condition. The necessary conditions for the performance of an
estimator to be called acceptable are given below.

Some robustness studies have investigated many distributional
conditions for a specific model, which gives as many sufficient sample
sizes. We therefore try to summarize the sufficient sample sizes for
specific distributional conditions. This summary is based on the
finding that the performance of an estimator generally decreases when
the skewness and kurtosis of the observed variables deviate more from
zero.

In Section 5, it was explained that distributional conditions can be
described by means of distributional characteristics (e.g., Ieptokurtic),



Hoogland,Boomsma I ROBUSTNESS STUDIES 345

Suppose that for a specific model, the larger the kurtoses of a leptokur-
tic condition, the worse the performance of the ML parameter estima-
tor. Suppose further that the sufficient sample size is the same for each
leptokurtic condition and the normal condition. In that case, it is not
very informative to present the sufficient sample size for each lep-
tokurtic condition. In principle, it is sufficient to tabulate this sample
size for the normal condition and the extreme leptokurtic conditions.
When some extreme conditions in a model study can be described

by the same distributional characteristic, it often turns out that the
results of an estimator are more or less comparable for these condi-
tions. We will therefore only tabulate sufficient sample sizes for each
distributional characteristic.

An important goal of the meta-analysis is to explain differences in
conclusions across robustness studies. One of the things that can cause
differences in conclusions are the assessment criteria used. Assess-
ment criteria determine whether the realizations of a research sum-
mary statistic are acceptable; they therefore determine whether the
performance of an estimator is acceptable. Because the assessment
criteria should not be a cause for differences in conclusions, they are
redefmed and applied to the reported results in a robustness study
whenever possible. The conclusions of the author(s) of a study are
therefore not taken for granted.
Below, we describe procedures used to assess the performance of

estimators for specific models and distributional characteristics.
When the data needed to apply these procedures are not available, the
conclusions of the author(s) will be followed.
We study three dependent variables explicitly in the meta-analysis.

The characteristics of the model studies are used as explanatory
variables. The dependent variables are the sufficient sample size
regarding

(a) the bias of parameter estimates,
(b) the bias of estimated standard errors, and
(c) the rejection rate of the chi-square statistic at the 0.05 level.

These three variables are examined for each model study with a
correctly specified model, each distributional characteristic (see Sec-
tion 5), and the ML, GLS, ERLS, and ADF estimation method.
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Parameter Estimates

The research summary statistic used to evaluate the behavior of an
estimator for parameter a; is its relative bias

A
A 6;-6j•

B(6) = , t = 1, 2, ... , t,
6;

(13)

A
where a; is the population value of the ith parameter (8j "# 0), aj is the
mean of the estimates for the ith parameter across the NR replications,
and t is the number of parameters to be estimated.

Criteria for acceptability. Now, consider the extreme distributional
conditions with a specific distributional characteristic. If for one of

1\
these distributional conditions, IB(a;)1 < 0.05 for i = 1,2, ... , t, then
all parameter estimates are considered to be acceptable for that
condition." Only if the parameter estimates are acceptable for each of
these distributional conditions, their estimator is by definition accept-
able for the specific distributional characteristic.

Standard Error Estimates

The research summary statistic used to determine the behavior of
a standard error estimator regarding parameter aj is its relative bias

A A
1\ se~ - selJ;

B(se3.)= A , ;=1,2, ... ,t,
I sea;

(14)

where sl\eo.is an estimate of the population value of the standard error
1-

of ~j' and f'e3. is the mean of the estimated standard errors of 9; across
I

the NR replications.

Criteria for acceptability. Consider the extreme distributional con-
ditions with a specific distributional characteristic. The estimates for
the standard errors are by definition acceptable for a distributional
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condition, if IB(s"ea.) 1<0.1 for i = 1,2, ... , t, and, in addition, the
I

mean absolute relative bias !~IB(s"ea.) I,abbreviatedasthem.a.r.b.,t L..J I

;=1

is smaller than 0.05.9 When the estimated standard errors are accept-
able for each considered distributional condition, their estimator isby
definition acceptable for the distributional characteristic.

The Direction of Bias

When the bias of parameter estimates, or standard error estimates,
is unacceptable for some N, it is interesting to know whether it is
systematically positive or negative. The following procedure is ap-
plied to determine whether the bias of parameter estimates or esti-
mated standard errors has a systematic direction. We evaluate the bias
for sample sizes smaller than the sufficient sample size. Let b represent
the acceptance boundary for individual parameters-that is, b = 0.05
for parameter estimates-and b = 0.1 for standard error estimates. For
each combination of N and a distributional characteristic, the follow-
ing rules are applied:

t 1

• bias is negative, if 2. BO < -bt'l2
i= 1

t I

• bias is positive, if 2. B(·) < bt'l2
i= I

• bias is varying in sign (across parameters), otherwise.

The bias for the specific model and distributional characteristic is
defined as positive (negative) if the bias for each combination is
positive (negative). Inall other cases, the bias is by definition varying
m SIgn.

Chi-Square Statistic

Rejection rate. The emphasis is on the rejection rate of the chi-
square statistic at the 0.05 level. 10The rejection rate equals the number
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of replications for which the model is rejected (the reject frequency,
denoted as RF) divided by the total number of replications included
in the analysis (denoted as NRI).

Criteria for acceptability. Consider the extreme distributional con-
ditions with a specific distributional characteristic. Whether the rejec-
tion rate is acceptable for a specific sample size and one of these
conditions depends on a statistical test. Given NRI and the signifi-
cance level a, the associated RF is binomially distributed with pa-
rameters NRI and a when the model is true. From the binomial
distribution, 99 percent confidence intervals for RF in the population
can be computed (Sachs 1974:258). Because the main interest is in
the sufficient sample size for each distributional characteristic, the
mean of the RFs across the extreme distributional conditions, abbre-
viated as MRF, is computed. 11

MRF is not directly viewed as acceptable when it falls inside the
99 percent confidence interval for its population value because the
power of this test is rather low for the number of replications in most
robustness studies. It is viewed as acceptable when it falls inside this
confidence interval for the sample size under consideration and for
each of the larger sample sizes.

However, MRF is not always viewed as unacceptable when this
criterion is not met. When one solely relies on the statistical test, it
could happen by chance that an MRF falls outside the 99 percent
confidence interval for its population value. However, it can be
inferred largely from other research summary statistics, such as the
mean and standard deviation of the chi-square statistic and the corre-
sponding MRF for other sample sizes, whether this occurs. In the
meta-analysis, such a subjective correction of the objective criterion
of acceptability was applied twice.

The rejection rate is (un)acceptable for a distributional charac-
teristic when the associated MRF is (un)acceptable. When the rejec-
tion rate of a goodness-of-fit statistic is unacceptable, we speak of a
positive bias of the rejection rate if a model is rejected more often than
expected and of a negative bias of the rejection rate if a model is
rejected less often than expected.
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Mean of the chi-square statistic. Because assessing the perform-
ance of a chi-square statistic solely on its rejection rate at the 0.05 level
is somewhat unreliable, an alternative dependent variable was also
studied. This dependent variable is the sufficient sample size for an
acceptable mean of the chi-square statistic across the NR replications.
When the mean (M) and standard deviation (SD) of the chi-square
statistic across the replications are available, it is tested whether M
differs significantly from its expected value (the number of degrees
of freedom of the model). This is done by means of the test statistic

T M_-....:df:.--.,:-
si>: SDI(NR-lilz'

(15)

which has a Student t-distribution with NR - 1 degrees of freedom
under the null hypothesis Ho: ~ = df, where ~ is the mean of the
chi-square statistic in the population.

Criteria for acceptability. The mean of the chi-square statistic is
defmed as unacceptable if the null hypothesis is rejected at the 0.01
level when a two-sided hypothesis test is performed; HI: ~ #:- df When
Ts, is too large (small), the bias of the chi-square statistic is positive
(negative).

6.2. SUFFICIENT SAMPLE SIZES FOR ESTIMATORS

In Table 4, for each model and distributional characteristic, the
sufficient sample size for acceptable bias of parameter estimates,
acceptable bias of standard error estimates, and an acceptable rejection
rate of the chi-square statistic at the 0.05 level are given for the ML
estimation method. For sample sizes smaller than the sufficient sample
size, Table 4 also indicates whether an ML estimator has a bias that is
positive, negative, or varying in sign.
Results for the ML estimation method are discussed in Section 6.3.

For the GLS, ERLS, and ADF estimation method, corresponding
results are also discussed in Section 6.3.12 Results for the ERLS
estimation method are only studied when the Mardia-based estimator
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TABLE 4: Sufficient Sample Sizes for the ML Estimation Method

Model Distributional Parameter Standard Chi-Square
Number Characteristic Estimate Error Statistic

10 normal soo e lOOt+ 25
11 normal 4oo± lOOt + 100+
13 categorical' 400 400t 400

skewed" >400± 400t 400
14 categorical' 400 400t 400

skewedd 400 400t >400+
15 categorical' 400 40d 400

skewedd 400 400t >400+
16 categorical' 400 40d 400

skewedd 400 400t 400
17 normal >4oo± >4oot+ 100+
18 normal 200- 2oot+ 25
19 normal 100- sot + 25
20 normal 4oo± >4OOt+ 25
21 nonna! 400- 2oot+ 25
22 normal 100- 50t± 25
23 normal ioo e 2oot+ 50+
24 normal 100- 50t+ 50+
25 normal 50± 251 50+
26 normal 200- 2001+ 25
27 nonna! 50- 50t± 50+
27 nonna! 50- sot + 50+
28 normal 25 25t 50+

Model Distributional Parameter Standard Chi-Square Statistic

Number Characteristic Estimate Error Ordinary Corrected Scaled

31 normal 500 5001 500 500
leptokurtic" 500 >5oot_ >500+ 500

32 normal 500 500t 500 500
leptokurtic b 500 >5001_ >500+ 500

33 skewed >4oo± 200 200
platykurtic >400+ 200 200
leptokurtic >400- 200 200

34 skewed >400± 200 200
platykurtic >400+ 200 200
leptokurtic >400- >400+ 400+

36 2 cat. >400 >400 >400+
3 cat. >400 >400 400+
5 cat. >400 >400 200
7 cat. 200 >400 200
2 to 5 cat.b >400 >400 >400+
7 cat.b 200 >400 200

37 normal >500- 500
categorical >500- 500
skewed" >5OO± 500
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TABLE 4 Continued

Model Distributional Parameter Standard Chi-Square Statistic
Number Characteristic Estimate Error Ordinary Corrected Scaled

39 normal 200 >400± 200 200
skewed 200 >400- 200 200
platykurtic 200 >400+ 200 200
leptokurtic 400- >400- 200 >400-
leptokurtic? 400- >400- 200 >400-

40 normal 200 >400± 200 200
skewed 200 400± 200 200
platykurtic 200 >400+ 200 200
leptokurtic 200 >400- >400+ 200
Ieptokurtic" 400± >400- >400+ 200

41 normal 200
leptokurtic'' 400+

42 normal 200
leptokurtic'' >1200+

43 normal 600± 300 75 75
leptokurtic 2400± >9600- >9600+ 300+
Ieptokurtic'' 600± >9600- 2400+ >9600-

44 normal 500+ 500+
nonnormal 500+ 500+

45 nonnormal 500+ 250+
46 leptokurtic >5000+ 150
49 categorical 1000 1000 1000

platykurtic" 1000 1000 1000
leptokurtic c 1000 >1000- 1000
leptokurtic" 1000 >1000- >1000+

58 leptokurtic 300 >300- 300

NOTE: When the sufficient sample size happens to be the minimum sample size investigated,
it is printed in italics. When there is still relevant bias for the largest sample size investigated,
the sample size is preceded by the > symbol.
a. Also platykurtic.
b. Also skewed.
c. Also categorical.
d. Also categorical and leptokurtic.
e. Also categorical and skewed.
t. With theoretical standard errors as population values.

of 1C (Browne 1984) has been used because this estimator has the best
performance among the available estimators of 1C (Harlow 1985).
The sufficient sample size for an acceptable mean of the chi-square

statistic and the direction of bias are not presented because the results
are often comparable with those concerning the rejection rate of the
chi-square statistic at the 0.05 level. They will be discussed, however,
in Section 6.3.
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TABLES: Perfonnance of Estimators of Parameters and Standard Errors

Model Characteristics Data Characteristics

Number of Mean Mean
Indicators! Factor Absolute Mean Estimation Parameter Standard
Factors Loading Skewness Kurtosis Method Estimate Error

2 .8 0.0 0.0 ML 500±
3 .5 0.0 0.0 ML 600±
3 .7 0.0 0.0 ML,ERLS 200± 600±
3 .7 51.5 55.0 ML,ERLS 400±
3 .7 0.0 50.0 ADF 400-
3 .7 ~.O ~O.O ADF >400-
3 .85 0.0 0.0 ML 100-
4 .5 0.0 0.0 ML 150± 600
4 .7 0.0 0.0 ML 75-
4 .85 0.0 0.0 ML 50± 600

Tables 5 and 6 summarize the sufficient sample sizes for ML, GLS,
ERLS, and ADF estimators under several conditions regarding the
data and the model investigated. The direction of bias when the sample
size is too small is also given. The lower bound for the mean kurtosis
of the observed variables is always equal to -1.0. Again, the results of
these tables are discussed in Section 6.3.

6.3. RANKINGS OF ML, GU, ERLS, AND ADF ESTIMATORS

For each model study in which at least two estimation methods are
studied, a ranking is made concerning the performance of the estima-
tors of parameters and standard errors and the chi-square statistic. The
ranking is made separately for each distributional characteristic.

For a specific distributional characteristic, an estimator gets a better
ranking than another estimator when the values of the accompanying
r.s.s. are better according to some rules that are given below. The
relative performance of estimators is evaluated across sample sizes,
as follows. It is evaluated first for the largest sample size smaller than
or equal to 500.13 When all sample sizes are larger than 500, the
smallest sample size is chosen. The choice for the value of 500 seems
to have a minor influence on the obtained rankings.

Each pair of estimators is evaluated on their relative performance,
according to the following procedure. When one estimator performs
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TABLE 6: Perfonnance of Chi-Square Statistics

Model Characteristics Mean Mean Estimation Chi-Square
Size ICSF Categorical Absolute Skewness Kurtosis Methad Statistic

df:S. 10 yes no :S.1.5 :S.5.0 ML,ADF 200+
df:S. 20 no no :S.1.0 :S.O.O ADF 400+
df:S. 20 no :S..75 :S.1.5 ERLS 200-
df:S. 24 no 0.0 0.0 ML 100+

20 < df:S. 60 no :S..75 :S.1.5 ML 200+
20 < df:S. 60 no :S..75 :S.1.5 ERLS 400-
20<df:S. 60 yes no :S.1.5 :S.5.0 ADF 1000+
20<df yes yes ADF >1000+
60 <df< 100 no 0.0 0.0 ML >250+
60<df<l00 no 0.0 :S.2.0 ML 500+
60 < df< 100 no 0.0 0.0 ERLS 250+
6O<df<l00 no ADF >1000+

df< 100 no 0.0 :S.2.0 GLS 150+
df< 100 yes 0.0 0.0 GLS 500+

NOTE: A blank. means that the value of the specific entry does not matter.

worse than the other for a specific sample size, the relative perform-
ance of the former estimator is worse, and the procedure stops.
However, when two estimators have comparable performance for that
sample size, the following is done.

• When the two estimators both have acceptable performance, the rela-
tive performance on the next smaller sample size is investigated.

• When the two estimators both have unacceptable performance, the
relative performance on the next larger sample size is investigated.

This procedure is repeated until the two estimators show a difference
in performance, or until the performance has to be evaluated for a
sample size already considered. In the latter case, the estimators are
said to have comparable performance. When one estimator has a better
performance than the other, the former gets a better ranking. When
two estimators have a comparable performance, these estimators do
not automatically get the same ranking. For example, when estimator
A has a better performance than estimator B, and estimator C has a
comparable performance with both estimators A and B, estimator C
gets a better ranking than estimator B.
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The problem now is to formulate rules on how to assess the relative
performance of estimators adequately and unambiguously by means
of an r.s.S.14

Parameter estimators and standard error estimators. Consider a
specific model, sample size, and the extreme distributional conditions
with a specific distributional characteristic. The rules for bias of
parameter estimators and bias of standard error estimators are

• When for each condition the values of B(Bt) or B(s"e'9;), i = 1,2, ... , t,
as defined by (13) and (14), respectively, are acceptable for estimator
A, whereas those values are unacceptable for estimator B for at least
one condition, estimator A performs better.

• When for each condition the values of B(Bi) or B(te?J;) are acceptable
for two estimators, these estimators have comparable performance.

• When for at least one condition the values of B(s"e?J;)are unacceptable
for estimator A and the same holds for estimator B, estimator A
performs worse than B when the mean of its m.a.r.b.s across the
distributional conditions is at least 0.05 larger compared with that of
B. Otherwise, the two estimators have comparable performance.

Example. Table 7 gives the relative bias of the estimated standard
error for each of the t = 13 parameters for conditions B and D under
model 39, which is an ICSF CFA model studied by Harlow (1985),
and N = 400. The estimation methods considered are ML, ERLS, and
ADF. For them, the values of the r.s.s. as defined by (14) are unaccept-
able, both because some values fall outside the range [-0.1, 0.1] and
because the m.a.r.b. is larger than 0.05.

For N = 400, the ADF and ML standard error estimator, and
conditions B and D, the sum of the r.s.s. is smaller than -O.lt1f2 = -.36.
Because this also holds for N = 200, the bias for both estimators is
negative under leptokurtic conditions. The sum of this r.s.s. is between
-O.lt1/2 and 0.lt1/2 for ERLS and conditions Band D. Irrespective of
the value of that sum for N = 200, the bias of the ERLS estimator
therefore varies in sign.

For model 39 and the leptokurtic distributional characteristic, the
mean of the m.a.r.b. across the two conditions B and D is more than
0.05 smaller for ADF than for ERLS and ML. The ADF estimator of
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TABLE 7: Relative Bias of Estimated Standard Errors for Model 39 and N = 400 for the
ML, ERLS, and ADFEstimator

ML ERLS ADF

Parameter B D B D B D

Al --{).I5 --{).06 0.14 0.26 --{).05 -0.05
x, --{).23 --{).20 0.04 0.09 --{).15 -0.16

~ --{).09 --{).12 0.21 0.19 --{).06 -0.06

"'4 --{).39 --{).39 --{).14 --{).IS -o.io -0.09
As --{).40 --{).41 --{).15 -o.n --{).10 -0.08
x, --{).44 --{).49 --{).21 --{).28 --{).08 -0.08
t1> --{).02 --{).02 0.32 0.32 --{).08 -0.06
9, --{).IS --{).02 0.14 0.32 --{).02 -0.02
62 --{).09 --{).03 0.24 0.32 0.07 0.09
93 --{).48 --{).54 --{).24 -0.33 --{).06 -0.08
64 --{).33 --{).33 --{).06 -0.06 --{).08 -0.06
6s --{).46 --{).49 --{).22 -0.27 --{).04 -0.03
66 --{).30 --{).36 --{).06 -o.n --{).OS -0.04

sum -3.52 -3.47 1.69 0.86 --{).80 -0.72
m.a.r.b 0.27 0.27 0.17 0.22 0.07 0.07

mean m.a.r.b. 0.27 0.20 0.07

standard errors has therefore the best ranking, as can be seen from
Table 8.

Chi-square statistics. Consider the extreme distributional condi-
tions with a distributional characteristic for a specific model and
sample size. First, MRF across these distributional conditions is
computed for each estimation method. The following rules are then
used for the rejection rate of the chi-square statistics at the 0.05 level.

• When MRF falls inside the 99 percent confidence interval for its
population value for estimation method A, while MRF falls outside the
corresponding confidence interval for estimation method B, estimation
method A performs better.

• When two estimation methods both result in an MRF that falls outside
the 99 percent confidence interval, method A performs worse than
method B when MRF for method A is more than two times further away
from the expected value (in the same direction) compared with MRF
for method B.
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TABLE 8: Rankings of Estimators for Several Models and Distributional Characteristics

ML GLS ERLS ADF CML SML
Model Distributional
Number Characteristic p s g p s g p s g p s g g g

31 normal 1 1 1 1 1
leptokurtic' 2 3 2 1 1

32 normal 1 1 1 1 1
leptokurtic' 2 3 1 1 1

33 skewed 1 1 1 1 1
platykurtic 2 1 1 1 1
leptokurtic 2 1 1 1 1

34 skewed 1 1 1 3 1
platykurtic 2 1 1 1 1
leptokurtic 2 2 1 2 1

39 normal 1 1 1 1 1 1 3 1 1 1
skewed 1 2 1 1 1 1 3 3 4 1
platykurtic 1 1 1 1 1 1 3 1 1 1
leptokurtic 1 3 1 1 2 3 3 1 1 3
leptokurtic' I 3 1 1 2 3 3 1 1 3

40 normal 1 I 1 1 1 1 3 1 4 1
skewed 1 1 1 1 1 1 3 3 1 1
platykurtic 1 3 1 1 1 1 3 1 1 1
leptokurtic 1 3 3 1 2 1 3 1 3 1
leptokurtic' 1 3 3 1 2 2 3 1 3 1

43 normal 1 1 1 1 1 I 1 4 1
leptokurtic 1 2 3 2 3 1 1 1 2
leptokurtic' 1 2 3 2 2 1 1 1 4

44 normal 3 1 1 5 3
nonnonna! 2 1 5 4 2

45 nonnonna! 3 1 5 4 2
46 leptokurtic 4 4 3 2 1

NOTE: An estimator that is ranked as best is given the number 1. A higher number indicates a
lower ranking position. The three entries in the third to eighth column correspond subsequently
to the rankings in the performance of the estimators of parameters (P). estimators of standard
errors (s), and goodness-of-fit statistic (g). The last two columns refer to the rankings of the
corrected (CML) and scaled (SML) ML chi-square statistic.
a. Also skewed.

• When one of these two conditions is not met, the two estimation
methodshave comparable performance.



Hoogland, Boomsma I ROBUSTNESS STUDIES 357

TABLE 9: Leptokurtic Conditions of Model 40

Condition Kurtoses

A
B
C
D

1
6
-1
2

1
6
o
5

1
6
I
8

1
6
1
6

1
6
2
7

1
6
3
8

SOURCE: Harlow (1985). Reprinted by permission,

TABLE 10: Reject Frequency (RF), Mean Reject Frequency (MRF), Number of Replica-
tions Included in the Analysis (NRI), and Expected Reject Frequency (E) of
Four Chi-Square Statistics for Model 40, Conditions B and D, and Two Sample
SizesN

N=400 N=200

B D B D

i RF NRI RF NRI MRF E RF NRI RF NRI MRF E

ML 32 100 32 100 32.0 5.0 38 100 43 100 40.5 5.0
CML 6 100 4 100 5.0 5.0 4 100 4 100 4.0 5.0
ERLS 3 82 3 80 3.0 4.1 3 69 4 71 3.5 3.5
ADF 20 100 19 100 19.5 5.0 42 97 40 96 41.0 4.8

Example. Consider model 40, a non- ICSF CFA model with six
observed variables studied by Harlow (1985), for the leptokurtic
distributional characteristic. Harlow investigated four leptokurtic
conditions with zero univariate skewness. The kurtosis of the six
variables in these four conditions is given in Table 9. In this set of
conditions, B and D are the two extreme conditions; therefore, no
further attention is paid to Aand C. The goodness-of-fit reject frequen-
cies for ML, corrected ML (CML), ERLS and ADF, for the two
extreme leptokurtic conditions Band D, are given in Table 10.
The total number of replications was fixed at 100. The nonconver-

gent replications and replications with improper solutions were ex-
cluded from the analysis. The number of replications that is used can
therefore differ across conditions and across estimation methods. With
NR = 100, the 99 percent confidence interval for RF in the population
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is approximately [1.1, 13.5]. The 99 percent confidence interval for
MRF in the population is approximately [1.9, 10.4].

For both sample sizes, the performance of the ML and ADF
chi-square statistic is unacceptable because the corresponding MRFs
are too large. Neither for N = 400 nor for N = 200 is the difference
between the mean reject frequency for ML and its expected value two
times larger than the difference between the mean reject frequency for
ADF and its expected value. The ML and ADF chi-square statistics
are therefore considered to have comparable performance; CML and
ERLS perform well for both sample sizes. The ranking of the chi-
square statistics for model 40 and the leptokurtic distributional char-
acteristic can be found in Table 8.

6.4. FINDINGS FOR ML, GLS, ERLS, AND ADF METHODS

In this section, the performance of ML, GLS, ERLS, and ADF
estimation methods is assessed and summarized with regard to bias
of parameter estimates, bias of standard error estimates, and mean and
rejection rate of the chi-square statistic. For each of these aspects, the
behavior of estimators is discussed first under normality, then under
nonnormality, and finally the performance of adjusted estimators is
treated. When no reference is given, the results follow from the
meta-analysis.

Due to space limitations, the rankings of the parameter estimators,
the standard error estimators, and the chi-square statistics are given in
Table 8 for a subset of the model studies only." From the complete set
of rankings, it can be observed that the ML, GLS, and ERLS parameter
estimators generally have comparable performance. The ADF pa-
rameter estimator performs worse when the investigated sample size
is small. The ADF standard error estimator is superior when the
observed variables have an average kurtosis larger than three and the
sample size is at least 400. The rankings of the chi-square statistics
show a varying pattern because they depend on many characteristics.
For instance, the performance of the ML chi-square statistic is worse
than ADF when the model is ICSF with less than 35 degrees of
freedom, the sample size is at least 400, and the observed variables
are both skewed and leptokurtic.
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Parameter Estimates

For multinormally distributed variables, there is empirical evidence
that the quality ofML parameter estimates depends on the model under
study. For the 12-factor models studied by Boomsma (1983), the bias
of ML parameter estimates is smaller for models with more indicators
per factor and higher factor loadings. This trend is also visible for other
models with multinormally distributed variables.
The bias of ML parameter estimates increases when the levels of

univariate skewness and kurtosis deviate increasingly from normal
theory values. A larger sample size is a remedy to obtain unbiased
parameter estimates. The effect of categorization of variables on the
bias of ML estimates is still obscure. The bias seems to be somewhat
worse for categorical variables when the univariate skewness of the
variables varies in sign (Ethington 1987).16
Harlow (1985) concludes that ML and ERLS parameter estimates

were comparable. Henly (1993) notes a striking resemblance between
ML and GLS estimates. Muthen and Kaplan (1985) also did not find
discernible differences between ML and GLS. In general, however,
these parameter estimators were not compared very often. The bias of
ML, GLS, and ERLS estimates is negative, or varying in sign, as can
be observed from Tables 4 and 5.
ADF needs a larger sample size to estimate the parameters properly.

Except for a multiplicative model (Henly 1993), unacceptable bias of
ADF parameter estimates is negative. This bias was most substantial
for distributional conditions with large positive kurtoses. The ADF
parameter estimator is therefore not distribution free.

Standard Error Estimates

For normally distributed variables, Boomsma (1983) gave empiri-
cal evidence that the bias of ML standard error estimates depends on
model characteristics. This bias becomes smaller when the value of
factor loadings and the number of indicators per factor increase.
Important differences in the sufficient sample size for acceptable

bias of ML standard error estimates can also be explained by taking
into consideration the way in which the population values for the



360 SOCIOLOGICAL METHODS& RESEARCH

standard errors are obtained (see Table 4). The theoretical standard
errors are unrealistically near to the mean of the estimated standard
errors. When the theoretical standard errors are used as population
values, the sufficient sample size for acceptable bias of ML esti-
mates is often much smaller than 500 for multinormally distributed
variables.

On the other hand, when the empirical standard errors represent the
population values, it can be concluded from Table 4 that sample sizes
as large as 400 give unacceptable ML standard error estimates. Under
multinormality, a sample size of 600 seems large enough to give
acceptable bias of ML estimates (see Table 5). For smaller sample
sizes, the bias is either negative or varying in sign.

The degree of skewness has a minor influence on the bias of ML
standard error estimates for continuous distributions. For discrete
distributions, the bias seems larger when variables are skewed. The
bias increases when the absolute value of the kurtosis increases. There
is a remarkable effect of the sign of the kurtosis: The bias of ML
estimates is positive for platykurtic distributions and negative for
leptokurtic distributions. This bias is often worst when the underlying
distribution is highly leptokurtic.

When the GLS, ERLS, or ADF estimation method is used, the bias
of standard error estimates is also worst for leptokurtic distributions.
The bias of GLS estimates is negative for these distributions. The
effect of kurtosis on the ADF estimates is less extreme than with ML,
GLS, and ERLS. The bias of ADF estimates is mostly negative,
irrespective of the distribution of the observed variables.

When a population model is non-ICSF, (i.e., not invariant under a
constant scaling factor), ML, ERLS, and ADF standard error estimates
are considerably worse when the distribution of the observed variables
is leptokurtic. For the ML method, this is also true for platykurtic
distributions. The effect of anon-ICSF population model has not been
investigated for the GLS estimation method.

Chou, Bentler, and Satorra (1991) studied the performance of the
robust ML estimator of standard errors. When the observed variables
had excessive kurtosis, these robust estimates were superior to the
usual ML estimates, using empirical standard errors as a criterion.
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Chi-Square Statistic

The performance of the chi-square statistic is only evaluated for
correctly specified models, that is, when Ho is true. The performance
of the chi-square statistic under HI is not evaluated because robustness
studies investigating the effect of model rnisspecification were not
included in the meta-analysis (see Table 1).
The behavior of a chi-square statistic T depends on the size of the

model (i.e., the number of degrees of freedom), as can be seen inTable 6.
Especially the ADF chi-square statistic (TADF) is sensitive to the model
size. TADF needs a sample size larger than 1,000 for models with more
than 60 degrees of freedom. TOLS and TERLS seem to be somewhat less
sensitive to model size than TML•

For a specific model, the rejection rate and mean of TML, TOLS' and
TERLS are often worst when the underlying distribution has a large
kurtosis. This is not the case for TADF when a model is ICSF because
the performance seems to be independent of the distribution of the
variables then. When a model is non- ICSF, the performance of TML and
TADF becomes worse for the same leptokurtic conditions.
Hu, Bentler, and Kano (1992) showed that the scaled TML is prefer-

able compared with TML for a large model, although the performance
of the scaled TML can be somewhat worse for small sample size. They
showed that TML and TOLS completely break down when the latent
variables and measurement errors are not independently distributed.
This is not the case for the scaled TML• Yung and Bentler (1994) show
that a bootstrap correction of additive bias on TADF yields the desired
tail behavior for a sample size of 500, even if the latent variables and
measurement errors are dependent.

7. CONCLUSIONS AND
TOPICS FOR FUTURE RESEARCH

By means of a robustness study, in principle, guidelines can be
given for the estimation method to be used under specific circum-
stances. For instance, when an estimator performs poorly in a robust-
ness study for a specific model, distribution of the observed variables,
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and sample size, this estimator will probably perform worse in a
real-life situation when a comparable model, distribution, and sample
size are investigated. The reason is that many other factors, such as
independency of observations, are often worse compared with a
simulation study. In practice, the sample size required for an accept-
able performance of an estimator in a robustness study should there-
fore be recommended as a lower bound.

To generalize findings concerning the performance of estimators
across robustness studies, several causes for observed differences in
conclusions across robustness studies were detected. For instance, in
several robustness studies, the conclusions concerning the perform-
ance of standard error estimators were too optimistic because the
estimates of standard errors were compared with the wrong type of
population values.

In general, the ML, GLS, and ERLS parameter estimators seem to
be comparable. Bias of these estimators increases when the levels of
univariate skewness and kurtosis deviate more from normal theory
values. When these levels increase, a larger sample size is a remedy
to obtain acceptable parameter estimates. The ADF parameter estima-
tor may need a larger sample size compared with the ML, GLS, and
ERLS parameter estimators, especially when the model has more than
12 observed variables.
The standard error estimates are unreliable if the sample size is

smaller than 500, regardless of the estimation method used. When the
ML or GLS estimation method is used, the standard errors are under-
estimated when the variables have positive kurtosis and overestimated
when the variables have negative kurtosis, regardless of the sample
size. The ADF standard error estimates are superior when the observed
variables have an average kurtosis larger than 3.0 and the sample size
is at least 400.

The ML chi-square statistic rejects the true model too often when
the sample size is smaller than five times the size of the model (i.e.,
the number of degrees of freedom of the model). When the observed
variables have an average positive kurtosis as large as 5.0, the sample
size may have to be increased up to 10 times the size of the model.
Given that the model is correct, the GLS chi-square statistic may have
an acceptable performance for a sample size that is two times smaller
than the sample size needed for an acceptable performance of the ML
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chi-square statistic. The ADF estimation method is relatively insensi-
tive for the distribution of the observed variables, but a disadvantage
of this method is that a relatively large sample size is needed. When
the sample size is smaller than 20 times the size of the model, the ADF
chi-square statistic rejects the true model too often. Another disadvan-
tage of the ADF estimation method is that the necessary computations
are hardly feasible when there are more than about 30 observed
variables.
In robustness studies, the size of the models is often small compared

with the models applied in practice. Larger models should therefore
be investigated in future studies, which will probably result in findings
that are more disappointing regarding the chi-square statistic. Because
of many obscurities, the effect of model characteristics on the per-
formance of all estimators considered in this article is an important
topic for future research.
There are several analytical adjustments available for estimators of

standard errors and the chi-square statistic that can be applied after the
model parameters have been estimated (Satorra and Bentler 1988).
Because of the promising performance of adjusted ML estimators,
they should be studied intensively in future simulations. Applying
those adjustments to the GLS and ERLS estimators of standard errors
and the associated chi-square statistics may also lead to substantial
improvements in the estimation of structural equation models.

NOTES

1. We implicitly refer to the relative kurtosis, that is, the kurtosis minus 3.
2. The conditions for scale invariance are violated when, for example, factor loadings have

more than one fixed nonzero value per latent variable, error variances have fixed nonzero values,
or parameters are constrained to be equal to other parameters (Cudeck 1989:326).

3. A necessary condition to include a robustness study in the overview is that it reports
results concerning the bias of parameter estimates, the bias of estimated standard errors, or
distributional properties of the chi-square statistic. When some of those results are available for
each model in a subset of all the models investigated, that subset will be included in the
meta-analysis of Section 6. A further condition for including a study in the overview is that the
behavior of estimators mentioned in Section 2, or analytical corrections of those estimators, was
examined. Other conditions are that at least 20 replications have been conducted and that co-
variance matrices or correlation matrices based on product moment correlations were analyzed.

4. A distributional characteristic is platykurtic (Ieptokurtic) when the univariate skewnesses
are zero, and the univariate kurtoses are mainly negative (positive). A leptokurtic distribution is
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peaked with relatively long tails, whereas a platykurtic distribution is flat with relatively short
tails, both relative to a normal distribution.

5. Tables that give these characteristics for each model study can be obtained from the first
author.

6. Throughout this article, we assume that the choice of software available for estimation
of parameters, standard errors, and chi-square test statistics (i.e., a specific version of EQS,
LISCOMP, or LISREL) has no substantial influence on the research results. This assumption is
relevant because these programs do not always use the same algorithm. We also assume that the
choice of starting values, maximum number of iterations, convergence criteria, and the approach
regarding improper solutions does not influence the research results.

7. A disadvantage of exclusion of replications with improper solutions, rather than inclu-
sion, is that the sampling distribution of S differs more from the population distribution. A
disadvantage of inclusion is that it gives problems of interpretation.

8. A boundary for acceptance of 0.05 is often used in robustness studies.
9. The chosen boundary value of 0.1 for an acceptable B(s"e3) for individual parameters is

two times larger than for parameter estimates because the population values of the standard errors
have to be estimated. A boundary of 0.1 is also frequently used in robustness studies. On the
other hand, the additional acceptance boundary for the m.a.r.b. is imposed to compensate
somewhat for the less stringent criteria of acceptability of estimated standard errors as opposed
to parameter estimates. The boundary of 0.05 for the acceptance of the m.a.r.b. is chosen because
even when the absolute values of the relative biases are smaller than 0.1, they are viewed as
unacceptable when they are in general more often in the range [0.05, 0.1 0] than in the range [0.0,
0.05].

10. The main reason for considering the 0.05 level is that the rejection rate is mostly available
for that level; moreover, the use of a. = 0.05 is very common in applications.

11. The mean reject frequency (MRF) in the population has a 99 percent confidence interval
that is more narrow than the 99 percent confidence interval for a reject frequency (RF) in the
population.

12. Tables with sufficient sample sizes for those estimation methods for each model and
distributional characteristic can be obtained from the first author.

13. The number 500 has been chosen because an estimator A that performs well for moderate
to large sample sizes is considered to be superior compared with an estimator B that performs
badly, irrespective of the sample size, even if estimator B performs relatively well for a small
sample size.

14. These rules are initially applied, but we shall rely on the conclusions of the author(s) of
a robustness study when there is not enough information available to apply them.

15. The model studies that were selected contained relatively much information regarding
the rankings of estimators.

16. Using a population methodology, Olsson (1979) already observed that the bias of
estimated factor loadings is larger when categorical variables have fewer categories, and larger
skewness, or when they are skewed in opposite direction.
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