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We highlight critical conceptual and statistical issues and how to resolve them in conducting

Satorra–Bentler (SB) scaled difference chi-square tests. Concerning the original (Satorra & Bentler,

2001) and new (Satorra & Bentler, 2010) scaled difference tests, a fundamental difference exists

in how to compute properly a model’s scaling correction factor (c), depending on the particular

structural equation modeling software used. Because of how LISREL 8 defines the SB scaled chi-

square, LISREL users should compute c for each model by dividing the model’s normal theory

weighted least-squares (NTWLS) chi-square by its SB chi-square, to recover c accurately with

both tests. EQS and Mplus users, in contrast, should divide the model’s maximum likelihood

(ML) chi-square by its SB chi-square to recover c. Because ML estimation does not minimize the

NTWLS chi-square, however, it can produce a negative difference in nested NTWLS chi-square

values. Thus, we recommend the standard practice of testing the scaled difference in ML chi-

square values for models M1 and M0 (after properly recovering c for each model), to avoid an

inadmissible test numerator. We illustrate the difference in computations across software programs

for the original and new scaled tests and provide LISREL, EQS, and Mplus syntax in both single-

and multiple-group form for specifying the model M10 that is involved in the new test.

Keywords: chi-square difference test statistic, goodness-of-fit test, moment structures, nonnormal-

ity, scaled chi-square

Structural equation modeling (SEM) relies heavily on goodness-of-fit chi-square statistics

to assess the adequacy of hypothesized models as representations of observed relationships.

However, multivariate nonnormality is known to inflate overall goodness-of-fit test statistics

(Kaplan, 2000). Accordingly, Satorra and Bentler (1988, 1994) developed a set of corrected

normal-theory test statistics that adjust the goodness-of-fit chi-square for bias due to multivariate

nonnormality. Correcting the regular chi-square value for nonnormality requires the estimation

of a scaling correction factor (c), which reflects the amount of average multivariate kurtosis
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distorting the test statistic in the data being analyzed. One divides the goodness-of-fit chi-square

value for the model by the scaling correction factor to obtain the so-called Satorra–Bentler (SB)

scaled chi-square.

The SB scaled chi-square has performed well in Monte Carlo simulation studies (e.g., Chou,

Bentler, & Satorra, 1991; Curran, West, & Finch, 1996; Hu, Bentler, & Kant, 1992) and has

become well accepted in the SEM literature. The SB chi-square is currently available in three

of the four software packages most often used to conduct SEM: EQS (Bentler, 1995), LISREL

(Jöreskog & Sörbom, 1996a), and Mplus (Muthén & Muthén, 2007) report the SB chi-square,

whereas AMOS (Arbuckle, 2006, 2007) does not.

TESTING DIFFERENCES IN NESTED CHI-SQUARE VALUES

Among the most versatile and commonly used strategies for hypothesis testing in SEM is the

likelihood ratio test, also known as the difference chi-square test (Bollen, 1989), with which

researchers contrast the goodness-of-fit chi-square value of a less restrictive, baseline model

(M1) with the goodness-of-fit chi-square value of a more restrictive, nested comparison model

(M0). One typically obtains the more restrictive comparison model (M0) by placing constraints,

such as fixed values, invariance restrictions, or equality constraints, on particular parameters

in the baseline model (M1). Because the difference in goodness-of-fit chi-square values for

two nested models is itself distributed as chi-square (see Neyman & Pearson, 1928; Steiger,

Shapiro, & Browne, 1985), researchers can subtract the chi-square value of the baseline model

(M1) from the chi-square value of the nested comparison model (M0) and use the resulting

difference in chi-square values (with accompanying difference in degrees of freedom) to test the

hypothesis that the constraints imposed on the baseline model significantly worsen model fit.

If, on the one hand, this difference chi-square is statistically significant, then one rejects

the null hypothesis and concludes that the baseline model fits the data better than the nested

comparison model. If, on the other hand, the difference chi-square is nonsignificant, then one

fails to reject the null hypothesis and concludes that the nested comparison model fits the

data just as well as does the baseline model. As with the overall goodness-of-fit chi-square

value itself, however, the validity of statistical conclusions drawn from the difference in nested

chi-square values is suspect under conditions of multivariate nonnormality.

THE ORIGINAL SCALED DIFFERENCE CHI-SQUARE TEST

Whereas the traditional difference chi-square test allows researchers to compare directly the fit

of nested models when using standard goodness-of-fit chi-square values, this is not the case

when using SB scaled chi-square values. In particular, the difference in SB scaled chi-square

values for nested models does not correspond to a chi-square distribution (Satorra, 2000). For

this reason, simply subtracting the SB chi-square value for the less restrictive baseline model

(M1) from the SB chi-square value for the more restrictive comparison model (M0) yields an

invalid statistic for testing hypotheses about differences in model fit.

To overcome this limitation, Satorra (2000) derived a formula for testing the difference in

nested SB chi-square values, to permit scaled difference chi-square testing. However, because
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this formula uses statistical information not readily available in conventional SEM software,

it is an impractical approach for most applied researchers. Accordingly, Satorra and Bentler

(2001) developed a simpler, asymptotically equivalent procedure for scaled difference chi-

square testing that is easily implemented using the scaled and unscaled chi-square values and

the degrees of freedom for the two models contrasted.

This “original” scaled difference test (Satorra & Bentler, 2001) requires the user to estimate

the baseline model (M1) and comparison model (M0) to obtain the standard goodness-of-fit

chi-square value and SB chi-square value for each model. Because the SB chi-square is defined

as a standard goodness-of-fit chi-square value divided by a scaling correction factor (Satorra &

Bentler, 1988, 1994), dividing the standard goodness-of-fit chi-square by the SB chi-square for

a particular model allows the user to “recover” the scaling correction factor (c) for that model,

for use in scaled difference testing. With the original scaled difference test, the user computes

the scaling factors for models M1 and M0 by dividing the standard chi-square value by the SB

chi-square value for each model.

Nonequivalent Definitions of the SB Chi-Square Across Software Programs

It is a little known fact, however, that not all SEM software packages use the same goodness-

of-fit chi-square to define the SB scaled chi-square. For this reason, the particular “standard”

goodness-of-fit chi-square that one should use to recover each model’s scaling correction factor

depends on the specific software that one uses. In particular, EQS 6 (Bentler, 1995, p. 218) and

Mplus 6 (Muthén & Muthén, 2007, Appendix 4, pp. 357–358) base the SB chi-square value

on a rescaling of the maximum likelihood (ML) minimum-fit function chi-square. LISREL 8,

in contrast, bases the SB chi-square value on a rescaling of the normal-theory weighted least-

squares (NTWLS) chi-square (Jöreskog, Sörbom, du Toit, & du Toit, 1999, Appendix A, pp.

191–202). For this reason, EQS and Mplus users must use the ML chi-square to recover each

model’s scaling factor, whereas LISREL 8 users must use the NTWLS chi-square. Because it

does not estimate the Satorra–Bentler chi-square, AMOS does not permit users to implement

the scaled difference chi-square test (although this feature might be added in the future).

A Computational Error LISREL Users Commonly Make in Scaled

Difference Testing

Because researchers traditionally conduct chi-square difference testing by contrasting the ML

chi-square values for models M0 and M1, LISREL 8 users might naturally assume that the

scaling correction factors for the models are also based on ML chi-square values. As noted

earlier, however, the proper chi-square to use to recover the scaling correction factor for each

model depends on how the particular software program has defined the SB scaled chi-square.

For present purposes, we delineate the following terms:

T1 D ML chi-square test statistic (which Jöreskog et al., 1999, called C1).

T2 D NTWLS chi-square test statistic (which Jöreskog et al., 1999, called C2).

T3 D SB scaled chi-square test statistic (which Jöreskog et al., 1999, called C3).

m D (df for model M0) � (df for model M1).
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Then for LISREL 8 (see Jöreskog et al., 1999, Appendix A, pp. 191–202), the scaling cor-

rection factor for a given model is:

c D T2=T3

But for EQS (see Bentler, 1995, p. 218) and Mplus (Muthén & Muthén, 2007, Appendix 4,

pp. 357–358), the scaling correction factor for a given model is:

c D T1=T3

Mplus users have two options for obtaining c for a given model—they can compute the ratio

of T1=T3, or they can take c straight from the Mplus output—both of which provide the same

result. For all three software programs, the scaling correction factor (i.e., denominator) for the

original SB scaled difference test (cd ) is then:

..df for model M0/ � .c for M0/ � .df for model M1/ � .c for M1//=m

Finally, to compute the original scaled difference chi-square test statistic (with df D m), one

divides the difference in chi-square values for models M0 and M1 by this difference scaling

correction factor (cd ). Because of how each software program defines the scaled chi-square,

the original scaled difference test for LISREL users is:

..T2 for M0/ � .T2 for M1//=.cd /

whereas the original scaled difference test for users of EQS or Mplus is:

..T1 for M0/ � .T1 for M1//=.cd /

Because of the lack of formal documentation, however, LISREL 8 users are likely to make

the mistake of using the ML chi-square values for models M1 and M0 in both the numerator

and denominator of the formula for the original scaled difference test. For example, the Mplus

Web site provides instructions for “Chi-Square Difference Testing Using the Satorra–Bentler

Scaled Chi-Square” in which users are told to divide a model’s “regular chi-square value” by

its SB chi-square value to recover the scaling correction factor for the particular model (see

http://www.statmodel.com/chidiff.shtml). Here, as noted earlier, the exact meaning of regular

chi-square depends on the particular SEM software program that one uses.

Prior work in LISREL using Satorra and Bentler’s (2001) original scaled difference chi-

square testing procedure has been incorrect if it has used minimum-fit function (ML) chi-square

values, rather than NTWLS chi-square values, to recover the scaling correction factor for models

M1 and M0 in the test denominator. In addition, available macro programs that compute scaled

difference chi-square values using ML and SB chi-square values alone as input (e.g., Crawford

& Henry, 2004; see SBDIFF.EXE at http://www.abdn.ac.uk/�psy086/dept/psychom.htm, and

online calculator at http://www.uoguelph.ca/�scolwell/difftest.html) produce correct results for

EQS and Mplus users, but will produce incorrect scaling factors and test values when based

on the ML and SB chi-square values reported in the LISREL 8 output.



376 BRYANT AND SATORRA

Thus, researchers who have analyzed their data via LISREL and have used available macro

programs to conduct scaled difference testing based on LISREL results (e.g., McDonald,

Hartman, & Vrana, 2008; Schaffer, Vogel, & Wei, 2006; Warren et al., 2007) have reported

findings that are technically inaccurate, although scaled difference testing might well lead to

the same substantive conclusions if computed accurately. We can speculate that the improper

use of the ML chi-square to recover the scaling correction factors for the models contrasted

via LISREL explains some of the reported instances of negative difference chi-square values

when using the original scaled difference test.

A Simple Method for LISREL Users to Compute a Scaled

Maximum-Likelihood Goodness-of-Fit Test Statistic

After LISREL 8 users have recovered the scaling correction factor (c) for a given model by

dividing the model’s NTWLS chi-square value (T2) by its SB chi-square value (T3), they can

obtain a scaled ML chi-square test statistic for the particular model simply by dividing the

model’s ML chi-square value (T1) by c. This approach enables LISREL 8 users to compute a

scaled ML test statistic for a single model that is equivalent to the scaled values produced by

EQS and Mplus, thereby obtaining a comparable form of SB scaled chi-square statistic across

software packages. The LISREL scaled ML test statistic for a given model—defined as the

model’s ML chi-square value (T1) divided by a scaling factor (c) recovered from the model’s

NTWLS chi-square value (T2/T3)—thus enables a meaningful comparison of scaled chi-square

values across different SEM software programs. To facilitate an equivalent definition of the SB

chi-square across software programs, we recommend that LISREL 8 users routinely report SB

chi-square values based on ML test statistics, just as EQS and Mplus users do.

This scaled ML goodness-of-fit test statistic (T1/c) also enables LISREL 8 users to obtain

accurate results when using available macro programs to compute scaled difference chi-square

values. Specifically, if LISREL 8 users input T1 as the normal chi-square value and T1/c as

the SB chi-square value for models M1 and M0, then these macro program provide accurate

results for LISREL users.

A Potential Problem When Testing Scaled Differences in NTWLS

Chi-Square Values

Scaling the ML chi-square value also helps to avoid a potential problem that arises when one

scales the difference in NTWLS chi-square (T2) values for the models contrasted in difference

testing. Because ML estimation does not minimize the NTWLS chi-square (T2) the way it does

the ML chi-square value (T1), the value of T2 for the more restrictive model M0 can actually

be smaller than the value of T2 for the less restrictive model M1, such that (T2 for M0) �

(T2 for M1) < 0. As a consequence, it is possible that LISREL 8 users who correctly use T2

instead of T1 to recover the scaling correction factors for models M1 and M0 might still obtain

a negative scaling correction factor for the original scaled difference chi-square test, when they

contrast T2 for the two models in the numerator of the scaled difference test formula. We note

that using the NTWLS chi-square value is not a problem when evaluating the goodness of fit

of a single model. Rather, it is scaling the difference in NTWLS chi-square values for models

M1 and M0 that can be problematic.



SCALED DIFFERENCE CHI-SQUARE TESTING 377

A colleague (Mary Johnston, James Madison University) has shared with us an empirical

example that dramatically illustrates the potential pitfall of scaling differences in NTWLS

chi-square values (Johnston & Finney, 2010). This researcher used LISREL 8 to contrast all

pairs of factor intercorrelations in a three-factor confirmatory factor analysis (CFA) model by

conducting three scaled difference tests, each of which produced a negative test result when

using the original formula (Satorra & Bentler, 2001), even when correctly defining each model’s

scaling factor as T2/T3. These inadmissible results occurred because the NTWLS chi-square

value of model M0 was less than the NTWLS chi-square value of model M1 for all three tests.

For each of the three model contrasts, on the other hand, dividing the difference in ML chi-

square (T1) values for models M0 and M1 by cd produced a proper positive scaled difference

test result for LISREL. Clearly, the best practice in SEM is to test scaled differences in ML

chi-square (T1) values, rather than scaled differences in NTWLS chi-square (T2) values. (Note

that the ML chi-square value of the more restrictive model M0 can sometimes be smaller than

the ML chi-square of the less restrictive model M1 when the ML chi-square values for the

two models are equal but the convergence criterion is too large—a “harmless” problem of

numerical imprecision that can be solved by specifying a more stringent convergence criterion;

see http://www.statmodel.com/discussion/messages/9/156.html?1271351726).

To reduce the likelihood of obtaining a negative value in scaled difference testing, we

recommend that LISREL 8 users test and report differences in T1 (rather than differences in

T2) for models M0 and M1, just as EQS and Mplus users routinely do. To implement this

modified ML version of the original scaled difference test, LISREL 8 users should employ the

following steps:

1. Recover the scaling correction factor (c) for each model by dividing its NTWLS chi-

square value by its SB chi-square value (T2/T3).

2. Multiply the scaling correction factor (c) for each model by the model’s df.

3. Subtract this product for model M1 from the same product for model M0.

4. Divide the result by m (i.e., the difference in df between models M0 and M1), to obtain

the scaling factor for the difference test (cd ).

5. Finally, divide the difference in the ML chi-square (T1) values of models M0 and M1 by

the scaling factor for the difference test (cd ), with df for the scaled difference test (m) D

(df for model M0 � df for model M1).

EQS and Mplus users should first recover c by dividing each model’s ML chi-square by its

SB chi-square (T1/T3), or Mplus users can take c directly from the model output, and should

then follow Steps 2 through 5 as just outlined.

ILLUSTRATING THE ORIGINAL SCALED DIFFERENCE
CHI-SQUARE TEST

To clarify these steps, we now present a worked example of the computations involved in

scaled difference chi-square testing using Satorra and Bentler’s (2001) original formula—first

for LISREL users, and then for EQS and Mplus users. Data for these analyses consist of a

sample of 803 American undergraduates (647 women, 156 men) who completed the 12-item
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Life Orientation Test (LOT; Scheier & Carver, 1985), a commonly used self-report measure

of dispositional optimism. The LOT consists of four positively worded items, four negatively

worded items, and four unscored “filler” items with which respondents indicate their extent of

agreement on a 5-point scale ranging from 0 (strongly disagree) to 4 (strongly agree).

Previous researchers (e.g., Bryant & Cvengros, 2004; Chang, D’Zurilla, & Maydeu-Olivares,

1994) have found that a congeneric two-factor model—consisting of correlated optimism (pos-

itively worded items) and pessimism (negatively worded items) factors—provides an excellent

fit to responses to the eight scored LOT items and fits significantly better than a one-factor

model, which provides a poor fit to the data. With the present data, initial single-group CFA

replicated these prior findings and indicated the oblique two-factor model provided a good fit in

terms of root mean square error of approximation (RMSEA), standardized root mean squared

residual (SRMR), comparative fit index (CFI), and nonnormed fit index (NNFI).

For purposes of this study, we tested the hypothesis that dispositional optimism has more

to do with positive future expectancies than with benefit-finding in the face of adversity.

Specifically, we employed single-group CFA to compare the loading of LOT item 5 (“I’m

always optimistic about my future”) on the optimism factor (unstandardized loading D .932)

and the loading of LOT item 11 (“I’m a believer in the idea that ‘every cloud has a silver

lining”’) on the optimism factor (unstandardized loading D .526); and we used Satorra and

Bentler’s (2001) original test to assess the statistical significance of the difference in the size

of these two factor loadings for the pooled sample.

We analyzed covariance matrices specifying robust ML estimation. Computation of the SB

chi-square also requires estimation of the asymptotic covariance matrix. For LISREL 8.80, we

first used PRELIS 2.0 (Jöreskog & Sörbom, 1996b, pp. 167–171) to compute and store the

asymptotic covariance matrices for the eight LOT items, for use as input files along with raw

data for CFA, specifying METHODDML on the OUTPUT line to obtain robust ML estimation.

For EQS 6.1, we analyzed raw data specifying METHODDML, ROBUST to obtain robust

ML estimation (Bentler, 1995, pp. 46–48). For Mplus 6.1, we set ESTIMATORDMLM on the

ANALYSIS line to obtain robust estimation (Muthén & Muthén, 2007, p. 533).

Following established SEM procedures for testing differences in estimated parameters,

comparing the magnitude of the factor loadings involves contrasting the goodness-of-fit chi-

square values of two models: (a) a baseline model (model M1) in which the two loadings

being compared are freely estimated; and (b) a nested comparison model (model M0) in which

the two loadings being compared are constrained to be equal. The difference in chi-square

values between these two models provides an inferential test regarding the difference in factor

loadings.

Specifying Models M1 and M0

For all three software programs, the single-group CFA syntax for model M1 specified (a) eight

measured variables and two latent variables; (b) a pattern of factor loadings in which the

loadings of the four positively worded LOT items were declared free on the first (optimism)

factor but were fixed at zero on the second (pessimism) factor, and the loadings of the four

negatively worded LOT items were declared free on the second (pessimism) factor but were

fixed at zero on the first (optimism) factor (and one loading was fixed at a value of 1.0 for each

factor to define the units of variance for the two latent variables); (c) a pattern of factor variances
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and covariance for the two latent variables in which all parameters were freely estimated; and

(d) independent unique error variances for each of the eight measured variables. For LISREL,

EQS, and Mplus the single-group CFA syntax for model M0 was identical to the syntax for

model M1, except that it included an equality constraint that forced the estimated value of the

two contrasted loadings (for LOT items 5 and 11) to be equal in magnitude.

Computing the Original Scaled Difference Test

Table 1 illustrates the computations involved in conducting the original scaled difference test

(Satorra & Bentler, 2001) for users of LISREL, EQS, and Mplus (see table entries 1–8). For

LISREL users, we include two sets of computations—one for testing scaled differences in the

NTWLS (T2) chi-square values of models M0 and M1 (see table entry 9); the other, for testing

scaled differences in the ML (T1) chi-square values of models M0 and M1 (see table entry 10).

We advocate using the latter ML-based approach to avoid obtaining an inadmissible negative

value for the numerator of the scaled difference test. For EQS and Mplus users, we include

only computations for scaled ML (T1) difference chi-square testing (table entry 10).

Inspecting the results displayed in Table 1 for the original scaled ML difference test, we see

that overall the general conclusions are the same across the three software programs, although

there is a noticeable difference between the results of the test when using Mplus (�¦2

SB
D

78:1766035) versus either EQS (�¦2

SB
D 65:3342186) or LISREL (�¦2

SB
D 65:2382987).

Indeed, two discrepancies across software programs are evident in Table 1, namely differences

in the value of the scaling correction factor (c) and differences in the value of the ML chi-square

(T1). We now comment and explain these two discrepancies in turn.

The discrepancy in the value of c is not an issue of the difference test itself, but rather

stems from how the three software programs compute the scaling correction factor for the

goodness-of-fit test as originally presented by Satorra and Bentler (1988, 1994). The formula

for c involves a normal-theory (NT) weight-matrix .W /, which in turn involves a consistent

estimate of the population covariance matrix .†/. For ML estimation, EQS and LISREL base

this estimate of † on the fitted †, whereas for generalized least-squares (GLS) estimation,

EQS uses the sample covariance matrix .S/. Using our own software, we determined that

Mplus uses S in computing W, regardless of estimation method. Supporting this conclusion,

when we changed estimation method from ML to GLS and specified robust estimation, the

scaling correction factors produced by EQS and Mplus agree to several decimal digits. So, in

summary, the discrepancy in c seen in Table 1 arises from the use of S (in Mplus) versus fitted

† (in EQS and LISREL) to compute the weight matrix involved in the formula for the scaling

correction factor.

Regarding the second discrepancy—that is, differences in the value of the ML chi-square

(T1)—our own computations lead us to conclude that whereas EQS and LISREL both report

the minimum of the ML fitting function (when requesting ML estimation) and the minimum

of the NT–GLS fitting function (when requesting GLS estimation), Mplus provides the value

of the fitting function using the multiplier n instead of the multiplier n � 1 that is used in EQS

and LISREL. This discrepancy thus should vanish when sample size is large enough.

We note that, although the general conclusions of the scaled difference test converge across

software programs, the discrepancy in the final scaled difference test chi-square is remarkable.

This unexpected result demonstrates that alternative expressions that are equivalent in abstract
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theoretical form can in actual practice produce surprising and puzzling discrepancies. However,

we anticipate that the formulae used by the alternative software programs will be equivalent

asymptotically. A classic example of this phenomenon is the choice between the unbiased

estimate of the population covariance matrix †, which is S divided by n � 1, versus the ML

estimate of †, which is S divided simply by n. Both estimates are valid and in fact converge for

large samples, but can yield striking discrepancies in small samples; those discrepancies will

grow larger as sample size decreases. (In fact, in this issue while Mplus computes S dividing

by n, EQS and LISREL compute S dividing by n � 1. With our own software we determined

that, for the data set considered, the difference of using n versus n� 1 in computing the matrix

S in the Mplus calculations of the scaling correction has no noticeable effects on the final

value of the test statistic. This finding contrasts with the noticeable divergence we found in the

value of T1 as a result of the different software programs using n versus n � 1.) The observed

discrepancy in the final scaled difference test chi-square convinces us of the need to explore

and better understand differences across the various SEM software programs that are available

to users in producing the same statistics.

THE NEW SCALED DIFFERENCE CHI-SQUARE TEST

Although Satorra and Bentler’s (2001) original scaled difference chi-square test has been

widely used, it sometimes produces a negative scaling correction factor that leads to a negative

difference in chi-square values, particularly in small samples or when the more restrictive model

(M0) is highly incorrect. For this reason, Satorra and Bentler (2010) recently proposed an

improved scaling correction procedure that precludes negative differences in chi-square values

and produces results identical to those obtained when using Satorra’s (2000) complex formula.

As with the original scaled difference test, the new scaled difference test (Satorra & Bentler,

2010) requires the user to estimate and obtain goodness-of-fit statistics for the baseline model

(M1) and comparison model (M0). With the new scaled difference test, however, the user must

also estimate the baseline model with the number of iterations fixed at zero, using the final

parameter estimates from M0 as starting values (termed model M10). As with the original scaled

difference test, the new test requires the user to compute the scaling correction factor (c) for

model M0 by dividing the proper chi-square value by the SB chi-square value for this model.

With the new scaled difference test, the user also computes c for model M10 by dividing the

proper chi-square value for model M10 by the SB chi-square value for model M10 (i.e., T2/T3

for LISREL 8 users; T1/T3 for EQS and Mplus users). One then uses c for model M10 in place

of c for model M1, to compute the correction factor for the new scaled difference test (cd ).

To conduct the new scaled difference test, one follows the same computational steps as with

the original scaled difference test, except that one replaces the scaling correction factor (c) for

model M1 in the denominator with the scaling correction factor for model M10. The scaling

factor for the new SB scaled difference test (cd ) is thus: ((df for model M0) � (c for M0) � (df

for model M1) � (c for M10))/m. As with the original scaled difference test, we recommend

that LISREL 8 users compute the new scaled difference test based on differences in ML (T1)

values in the numerator, to avoid situations in which (T2 for M0) � (T2 for M1) < 0. Using this

latter ML-based numerator in LISREL will also promote a single uniform scaled test statistic

that is comparable across SEM software programs.
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Recall the empirical example we noted earlier in connection with the original scaled dif-

ference test in which a colleague used LISREL 8 to contrast pairs of factor intercorrelations

by conducting three scaled difference tests, each of which produced a negative difference in

NTWLS chi-square values for models M0 and M1. When applying the new scaled difference

test, the same inadmissible results occurred, as the numerator of the scaled difference test is

identical for both the original and new formulas. Although the new scaled difference test is

designed to avoid an inadmissible negative test statistic, it can only do so if the chi-square

value for model M1 is less than or equal to the chi-square value for model M0. Thus, we

suggest that all SEM users, regardless of software, test the scaled difference in ML chi-square

(T1) values for models M1 and M0 when using either the original or new scaled difference test.

Specifying Model M10

To clarify how to set up model M10 for the new scaled difference test, we now explain how

to specify this model in LISREL, EQS, and Mplus. Because the new scaled difference test

has not yet been widely disseminated, we also provide readers with examples of the LISREL,

EQS, and Mplus syntax required to set up model M10 in both single-group CFA (see Appendix

A) as well as multigroup CFA (see Appendix B). Applied users can find other descriptions of

the single-group syntax for specifying model M10 via (a) EQS in the Appendix of the preprint

version of Satorra and Bentler (2010), which can be downloaded at http://preprints.stat.ucla.

edu/539/Satorra-Bentler%20Manuscript.pdf; and (b) Mplus in Appendix A of Asparouhov and

Muthén (2010), which can be downloaded at http://www.statmodel.com/examples/webnotes/

webnote12.pdf.

For LISREL, EQS, and Mplus, the single-group CFA syntax for model M10 is identical to

the syntax for model M1, except for two modifications: (a) it includes a matrix of starting values

consisting of factor loadings, factor variances and covariances, and unique error variances taken

directly from the final parameter estimates in the output for model M0; and (b) the number of

iterations is frozen at zero. Although model M10 has the same pattern of fixed and free elements

as model M1, note that model M10 fixes the parameter values in model M1 to the final estimates

for model M0, and model M10 should exclude the equality constraints added to model M0.

LISREL users can export the final estimates in model M0 directly to separate external ASCII

files for each parameter matrix using the Output command (Jöreskog & Sörbom, 1996a, p. 95),

and they can then specify each external file as the source of starting values for each parameter

matrix in model M10 (Jöreskog & Sörbom, 1996a, p. 84). However, LISREL always exports

the matrix of final estimates for unique error variances (Theta Delta; TD) in a symmetric form,

even when the TD matrix for model M1 is specified as diagonal (e.g., TDDDI,FR). As a result,

if model M1 specifies TD as diagonal, then LISREL users who import starting values for model

M10 from external files exported from model M1 must change the syntax for model M10 to

specify TD as a symmetric matrix with free diagonal elements and fixed subdiagonal elements.

A second option for LISREL users in setting up model M10 for single-group CFA is to

manually copy and paste the final estimates from the output file for model M0 into the syntax

file for model M10, and then specify these final estimates as starting values using MA commands

for the Lambda-x, Phi, and TD matrices in the CFA model. If one uses this option, then one

should replace the dashed lines (i.e., “- -”) that LISREL reports for fixed values of zero in

the parameter matrices of the output file for model M0 with values of 0.0 in the matrix of
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starting values in the syntax file for model M10. We chose this second option as our means

of estimating model M10 in LISREL. We fixed iterations at zero by specifying ITD0 in the

Output command.

For single-group EQS, we obtained the starting values for model M10 by specifying a “retest”

file (i.e., RETESTDnewfile) in the PRINT section of the syntax file for model M0, thereby

storing the final parameter estimates of model M0 in a separate outfile (Bentler, 1995, p. 257).

We then manually copied and pasted these final estimates for model M0 into the syntax file

for model M10. We fixed iterations at zero by specifying ITERD0 in the Technical section of

the syntax file for model M10.

To conduct the new scaled difference test, Mplus 6 includes the option OUTPUT: SVALUES

that facilitates the creation of the syntax file for model M10 by generating syntax in the output

file for model M0 that sets starting values equal to the fitted values for model M0. Mplus users

can copy and use this syntax as the syntax file for model M10. However, note that because

model M10 should exclude the invariance constraints added to model M0, Mplus users must

delete the numbers in parentheses included in the SVALUES output for model M0, which

indicate the equality-constrained parameters added to model M0. Although Mplus does not

allow users to specify ITERATIONSD0, Mplus users can freeze iterations to estimate model

M10 by specifying a very large convergence criterion (e.g., CONVERGENCED100000000).

Specifying the TECH5 option on the OUTPUT command prints the iteration history, thereby

enabling users to inspect the Mplus output for model M10 to verify whether they have set the

convergence criterion large enough to prevent iterations, or whether they must increase it to

halt iterations. Using a large convergence criterion successfully freezes iterations at zero for

LISREL (when omitting ITD0), but does not stop iterations for EQS (for which only ITERD0

freezes iterations). To help SEM users conduct the new scaled difference test, Appendix A

provides the single-group LISREL, EQS, and Mplus syntax we used to estimate model M10.

A Technical Anomaly in LISREL 8

In applying the new scaled difference chi-square test, we have discovered a technical problem

that occurs when using LISREL 8.80 (Jöreskog & Sörbom, 1996a) to estimate model M10.

Specifically, when contrasting two divergent parameter estimates, LISREL produces values for

the SB chi-square (T3) that are too small and values for the scaling correction factor (c) that

are too large, when freezing iterations at zero to estimate model M10; but when contrasting

two parameter estimates that are highly similar in magnitude, LISREL produces values for T3

and c that are accurate. Thus, we have found that LISREL 8 can produce a negative scaling

correction factor for the new difference test when contrasting two parameters that are very

different in value. (We have informed the distributors of LISREL about this anomaly, which

they have acknowledged and will undoubtedly resolve in a future software release.)

Computing the New Scaled Difference Test

Table 1 also illustrates the computations involved in the new scaled difference test (Satorra &

Bentler, 2010) for users of LISREL, EQS, and Mplus (see table entries 11–13). Because we do

not advocate NTWLS (T3) difference chi-square testing, we have included only computations
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for scaled ML (T1) difference chi-square testing (table entry 13) using the new scaled test. In

computing the new scaled difference test, we have omitted the results for LISREL 8.80 because

of the program’s technical anomaly just mentioned in the case of model M10. We have also

omitted the value of T2 for model M10 because the NTWLS chi-square value is only relevant

for scaled difference testing via LISREL 8 in recovering the value of c for model M10.

Inspecting the results displayed in Table 1 for the new scaled ML difference test, we see that

the overall conclusions are the same across software programs, although there is a noticeable

discrepancy between the results of the new test (see table entry 14) when using Mplus (�¦2

SB
D

60:1363734) versus EQS (�¦2

SB
D 53:7247488). As with the original scaled difference test,

this discrepancy across software programs arises from differences in the value of the scaling

correction factor (c) and differences in the value of the ML chi-square (T1). As noted earlier,

in computing the weight matrix involved in the formulae for the scaling correction factor

and the fitting function, Mplus uses S (the sample covariance matrix), whereas EQS uses †

(the fitted estimate of the population covariance matrix)—a computational difference that is

asymptotically equivalent, but produces a somewhat smaller c and larger T1 for the same model

using Mplus versus EQS, when the null hypothesis is false and sample size decreases.

CONCLUSION

This article makes several contributions that we feel are of importance for the practice of SEM.

We have clarified how the specific methods of scaled difference testing differ fundamentally in

LISREL 8, versus EQS or Mplus, and we have illustrated the correct procedures for recovering

the scaling correction factors and implementing the original (Satorra & Bentler, 2001) and

new (Satorra & Bentler, 2010) tests for all three groups of software users. We have identified

a mistake LISREL 8 users are prone to make in computing the scaling correction factor for

a particular model. We have highlighted specific situations in which LISREL 8 can produce

inadmissible results for either the original or new scaled difference test. We have also presented

evidence supporting a uniform ML approach to scaled difference chi-square testing.

The primary purpose of this article is to help SEM analysts implement scaled difference

chi-square testing properly. Toward this goal, we have highlighted three potential pitfalls and

how to avoid them, in using LISREL to implement scaled difference chi-square testing. First,

because LISREL 8 obtains the SB chi-square by scaling the NTWLS chi-square (whereas EQS

and Mplus scale the ML chi-square), LISREL users who base a model’s scaling correction

factor on its ML chi-square value will obtain inaccurate results for both the original and new

scaled difference tests. When computing the original or new scaled difference test, LISREL

users can avoid this problem by using the NTWLS chi-square value rather than the ML chi-

square to recover each model’s scaling correction factor (i.e., c D T2=T3, not T1=T3). For users

of EQS and Mplus, on the other hand, c D T1=T3, not T2=T3.

Contrasting NTWLS chi-squares in scaled difference testing creates another potential prob-

lem. Because ML estimation minimizes the ML chi-square but not necessarily the NTWLS

chi-square, it is possible for the NTWLS chi-square value of the less restrictive model (M1)

to be smaller than the NTWLS chi-square value of the more restrictive model (M0), especially

when the contrasted parameter values are highly similar and sample size is small. This circum-

stance will produce an inadmissible negative difference in model chi-square values (i.e., test
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numerator) when computing the original or new scaled difference test. This potential problem

exists whenever contrasting the values of nested NTWLS chi-squares.

To reduce the likelihood of obtaining inadmissible negative values in scaled difference

testing, we recommend that LISREL 8 users test differences in ML chi-square values (instead

of differences in NTWLS chi-square values), by dividing the difference in ML chi-square (T1)

values for models M0 and M1 by the correction factor for the scaled difference test (cd ), after

first recovering each model’s scaling correction factor, c, by T2=T3. Given that EQS and Mplus

users routinely test scaled differences in ML chi-square (T1) values, using this standard ML

approach in LISREL also offers the advantage of making the type of scaled chi-square statistic

that researchers report comparable across SEM software packages.

We have also highlighted a third, temporary pitfall—only relevant until the distributors

correct the software in a future release—that LISREL users face in implementing the new

scaled difference test (Satorra & Bentler, 2010). Our results reveal that for certain setups,

LISREL 8.80 produces an inflated scaling correction factor for the analysis of M10, which in

turn can lead to an improper negative scaling correction factor for the new scaled difference

test. We suggest that LISREL distributors also consider changing the program’s definition of

the SB chi-square from T2=c to T1=c (as both EQS and Mplus define it), to facilitate a single,

standard ML-based scaled chi-square statistic and a uniform ML approach to scaled difference

chi-square testing in SEM.

The question naturally arises as to when users should employ the new versus original scaled

difference test. Asparouhov and Muthén (2010) suggested that users adopt the new test when

the original test produces a negative statistic or when the original correction factor is very small.

Given that the new test requires evaluating only one more model than the original test, our

recommendation is that users routinely employ the new difference test, to be sure of avoiding

a negative scaling correction factor.

A final point concerns situations in which it might be difficult or impossible to specify model

M10. Specifying model M10 should be relatively simple for the standard forms of difference test-

ing we have described, where model M0 represents baseline model M1 with some restrictions

added to the parameters of M1. A technical assumption implicit in difference testing (although

rarely recognized, and even difficult to assess in applications) is that the rank of the Jacobian

matrix associated with model M1 is regular (constant rank) at any point of model M0. This

assumption, which Satorra and Bentler (2010) made explicit, is required for difference testing

in general, even with normally distributed data where scaling corrections are unnecessary.

This assumption might fail, however, when M0 sets parameters of M1 at the boundary of

their permissible values (e.g., if M1 is a two-factor CFA model, and M0 fixes the variance of a

factor to zero), thereby producing difficulties in computing the new scaling correction via M10.

Indeed, practitioners using either the original or new correction formula—or not using scaling

corrections at all—might fail to note a rank deficiency problem in the particular difference

testing considered, and might thus compute a difference test statistic that looks proper but is

incorrect because it is not actually a chi-square statistic. (See Hayashi, Bentler, & Yuan, 2007,

for an example of a nonstandard setup that does in fact distort difference testing.) In most typical

applications, such as setting regression coefficients to zero, equating loading coefficients across

groups, or constraining factor covariances to be equal, this constant rank assumption holds true,

and in fact it is implicitly assumed. Although comparing scaled statistics in nonstandard settings

is beyond the scope of this article, we intend to pursue this issue in further research.
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APPENDIX A

SINGLE-GROUP LISREL, EQS, AND MPLUS SYNTAX
FOR ESTIMATING MODEL M10

LISREL Syntax

!Two-factor CFA model for 8 scored LOT items: Model M10 for POOLED SAMPLE

!Testing the difference in the size of two factor loadings [for LOT items 5

!and 11 on Optimism Factor 1] using the new scaled difference test].

!Using final estimates from Model M0 as starting values with IT=0.

!Note that this model includes no equality constraint (EQ command).

DA NG=1 NI=8 NO=803 MA=CM

RA=LOT8.POOLED.PSF

ACM FI=LOT8.POOLED.ACM

SE

LOT1 LOT4 LOT5 LOT11

LOT3 LOT8 LOT9 LOT12 /

MO NX=8 NK=2 LX=FU,FR PH=SY,FR TD=DI,FR

PA LX

1 0

0 0

1 0

1 0

0 1
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0 0

0 1

0 1

!The following parameter values for the LX, PH, and TD matrices have been

!manually copied and pasted from the final estimates for model M0, after

!replacing "- -" in the output for LX estimates with a value of "0.0" below.

MA LX

0.640 0.0

1.000 0.0

0.724 0.0

0.724 0.0

0.0 0.847

0.0 1.000

0.0 0.952

0.0 0.932

MA PH

0.740

-0.338 0.690

MA TD

0.889 0.242 0.541 0.622 0.540 0.299 0.303 0.399

LK

OPTIMSM PESSIMSM

OU SC ME=ML ND=3 IT=0

EQS Syntax

/TITLE

Two-factor CFA model for 8 scored LOT items: Model M10 for POOLED SAMPLE

!Testing the difference in the size of two factor loadings [for LOT items 5

!and 11 on Optimism Factor 1] using the new scaled difference test].

!Using the final estimates from Model M0 as starting values with ITER=0.

!Note that this model includes no equality constraint.

/SPECIFICATIONS

DATA=LOT8.POOLED.ESS;

VARIABLES=8; CASES=803; GROUPS=1;

METHOD=ML,ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW;

/LABELS

V1=LOT1; V2=LOT4; V3=LOT5; V4=LOT11; V5=LOT3;

V6=LOT8; V7=LOT9; V8=LOT12;

!

! FOLLOWING LISTS ARE GENERATED FROM RETEST

!

/EQUATIONS

V1 = .641*F1 + 1.000 E1 ;

V2 = 1.000 F1 + 1.000 E2 ;

V3 = .723*F1 + 1.000 E3 ;

V4 = .723*F1 + 1.000 E4 ;

V5 = .848*F2 + 1.000 E5 ;

V6 = 1.000 F2 + 1.000 E6 ;

V7 = .952*F2 + 1.000 E7 ;

V8 = .933*F2 + 1.000 E8 ;

/VARIANCES

F1= .740* ;
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F2= .690* ;

E1= .888* ;

E2= .242* ;

E3= .542* ;

E4= .621* ;

E5= .540* ;

E6= .299* ;

E7= .303* ;

E8= .399* ;

/COVARIANCES

F2,F1 = -.338* ;

/PRINT

FIT=ALL;

TABLE=EQUATION;

/TECHNICAL

ITER=0;

/END

Mplus Syntax

TITLE: Two-factor CFA model for 8 scored LOT items: Model M10 for POOLED

SAMPLE, testing the difference in the size of two factor loadings

[for LOT items 5 & 11 on Optimism Factor 1] using the new scaled

difference test -- using the final estimates from Model M0 as

starting values with convergence=100000000. Note that this model

includes no equality constraint.

DATA: FILE=LOT8.POOLED.DAT;

VARIABLE: NAMES=LOT1 LOT4 LOT5 LOT11 LOT3 LOT8 LOT9 LOT12;

ANALYSIS: ESTIMATOR=MLM;

convergence=100000000;

MODEL: Optimism BY LOT4 LOT1;

Pessimsm BY LOT8 LOT3 LOT9 LOT12;

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, fix the starting values of factor loadings.

!However, note that because model M10 should exclude the equality constraints

!added to model M0, we have deleted the equality constraint [i.e., the number

in parentheses (1) that was originally in the output for model M0], which

!indicated the loadings for LOT items 5 & 11 had been constrained to be equal

!in model M0.

Optimism BY lot4@1;

Optimism BY lot1*0.640;

Optimism BY lot5*0.724;

Optimism BY lot11*0.724;

Pessimsm BY lot8@1;

Pessimsm BY lot3*0.847;

Pessimsm BY lot9*0.951;

Pessimsm BY lot12*0.932;

!The following line, taken directly from the output for model M0 when

!specifying the SVALUES option, fixes the factor covariance:

Optimism WITH Pessimsm*-0.338;
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!The following lines, delimited by brackets and taken directly from the

!output for model M0 when specifying the SVALUES option, fix item

!intercepts:

[ lot1*2.157 ];

[ lot4*2.534 ];

[ lot5*2.684 ];

[ lot11*2.523 ];

[ lot3*1.900 ];

[ lot8*1.685 ];

[ lot9*1.471 ];

[ lot12*1.352 ];

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, fix item unique-error variances:

lot1*0.888;

lot4*0.241;

lot5*0.540;

lot11*0.621;

lot3*0.539;

lot8*0.299;

lot9*0.303;

lot12*0.399;

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, fix factor variances:

Optimism*0.739;

Pessimsm*0.689;

!Note that specifying the TECH5 option in the following OUTPUT command prints

!the iteration history, thereby allowing users to check to make sure they

!have set the convergence criterion high enough to halt iterations at zero.

OUTPUT: sampstat standardized tech1 tech5;

APPENDIX B

APPLYING THE NEW SCALED DIFFERENCE TEST

(SATORRA & BENTLER, 2010) IN MULTIGROUP CFA

Does optimism have the same meaning for men and women? As a multigroup example, we

illustrate how to estimate model M10 in using the new scaled difference test to evaluate between-

group factorial invariance. We use the same LOT–R data from the single-group example, first

dividing respondents into separate groups of women .n D 647/ and men .n D 156/ for

analysis via LISREL, EQS, and Mplus. Model M1 freely estimates the loadings of the two-

factor model of optimism for each gender, whereas model M0 forces the factor loadings to be

invariant with respect to gender. The difference in chi-square values between baseline model

M1 and nested model M0 provides a test of the null hypothesis of gender invariance in factor

loadings.

In conducting the new scaled difference test in a multigroup context, one sets up models M1

and M0 just as with the original scaled difference test. Model M1 freely estimates the loadings
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of the baseline model for each group, whereas comparison model M0 forces the factor loadings

to be invariant with respect to gender. The difference in chi-square values between baseline

model M1 and nested model M0 provides a test of the null hypothesis of gender invariance in

factor loadings.

For LISREL, EQS, and Mplus, the multigroup CFA syntax for model M10 is identical to

the multigroup syntax for model M1, except for two modifications: (a) It includes a matrix of

starting values for each group consisting of factor loadings, factor variances and covariance,

and unique error variances taken directly from the final parameter estimates in the output for

model M0 for each group; and (b) the number of iterations is frozen at zero.

Although the final estimates for each LISREL parameter matrix in model M0 can be output

to external files using the Output command in multigroup LISREL, the program stacks matrix

estimates for each group together, requiring users to split the parameter estimates from each

group into separate external files. Also, as with single-group CFA, multigroup LISREL always

exports the matrix of final estimates for unique error variances (TD) in a symmetric form,

requiring users who specify the matrix of unique error variances as diagonal in model M1

to respecify TD as a symmetric matrix with free diagonal elements and fixed subdiagonal

elements for model M10.

For these reasons, we recommend copying and pasting the final estimates from the output file

for model M0 for each group into the syntax file for model M10, and then specifying these final

estimates as starting values using MA commands for the Lambda-x, Phi, and TD matrices in

the multigroup CFA model. In addition, one must replace the dashed lines (i.e., “- -”) reported

for fixed values of zero in the Lambda-x matrix of the LISREL output for model M0 with

values of 0.0 in the matrix of starting values for Lambda-x in the syntax file for model M10.

As with single-group CFA, LISREL users can fix iterations at zero for multigroup model M10

by specifying ITD0 on the Output command line for each group. Later we present multigroup

LISREL syntax for model M10.

For multigroup EQS, users can obtain the starting values for model M10 by specifying a

“retest” file (i.e., RETESTDnewfile) in the PRINT section of the syntax file for model M0,

thereby storing for both groups the final parameter estimates of model M0 in a separate outfile.

EQS users can then copy and paste these final estimates for model M0 directly from the retest

file into the syntax for model M10 for each group. EQS users can fix iterations at zero for

multigroup model M10 by specifying ITERD0 in the Technical section of the syntax file for

each group. We also present multigroup EQS syntax for model M10.

Mplus users can set up multigroup model M10 by using the option OUTPUT: SVALUES in

the syntax file for model M0 to generate syntax in the output file for model M0 that copies each

group’s final parameter estimates as starting values for M10. However, note that because model

M10 should exclude the invariance constraints added to model M0, Mplus users must delete the

numbers in parentheses included in the SVALUES output for model M0, which indicate the

equality-constrained parameters added to model M0. Mplus users can freeze iterations at zero

by specifying a sufficiently large convergence criterion (e.g., CONVERGENCED100000000).

Specifying the TECH5 option on the OUTPUT command prints the iteration history, thereby

enabling users to inspect the Mplus output for model M10 to verify whether they have set the

convergence criterion large enough to prevent iterations, or whether they must increase it to

halt iterations.
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Multigroup LISREL and EQS Syntax for Estimating Model M10

LISREL syntax

!Two-factor CFA model for 8 scored LOT items: Model M10 for FEMALES (GROUP 1)

!Testing the gender-invariance of factor loadings using the new scaled

!difference test. Using final estimates from Model M0 as starting values with

!IT=0. Note that this model includes no invariance constraints.

DA NG=2 NI=8 NO=647 MA=CM

CM FI=LOT8.FEMALE.cm

ACM FI=LOT8.FEMALE.acm

SE

LOT1 LOT4 LOT5 LOT11

LOT3 LOT8 LOT9 LOT12 /

MO NX=8 NK=2 LX=FU,FR PH=SY,FR TD=DI,FR

PA LX

1 0

0 0

1 0

1 0

0 1

0 0

0 1

0 1

!In each group, the following parameter values for the LX, PH, and TD

!matrices have been manually copied and pasted from the final estimates for

!model M0, after replacing "- -" in the output for LX estimates with a value

!of "0.0" below.

MA LX

0.640 0.0

1.000 0.0

0.932 0.0

0.537 0.0

0.0 0.849

0.0 1.000

0.0 0.944

0.0 0.935

MA PH

0.726

-0.317 0.662

MA TD

0.895 0.251 0.444 0.605 0.513 0.294 0.286 0.373

LK

OPT PESS

OU SC ME=ML ND=3 IT=0

!Two-factor CFA model for 8 scored LOT items: Model M10 for MALES (GROUP 2).

!Using final estimates from Model M0 as starting values with IT=0.

!Note that this model includes no invariance constraints.

DA NI=8 NO=156 MA=CM

CM FI=LOT8.MALE.cm RE

ACM FI=LOT8.MALE.acm RE

SE

LOT1 LOT4 LOT5 LOT11
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LOT3 LOT8 LOT9 LOT12 /

MO NX=8 NK=2 LX=FU,FR PH=SY,FR TD=DI,FR

PA LX

1 0

0 0

1 0

1 0

0 1

0 0

0 1

0 1

MA LX

0.640 0.0

1.000 0.0

0.932 0.0

0.537 0.0

0.0 0.849

0.0 1.000

0.0 0.944

0.0 0.935

MA PH

0.718

-0.419 0.815

MA TD

0.854 0.285 0.484 0.702 0.653 0.320 0.389 0.477

LK

OPTIMSM PESSIMSM

OU SC ME=ML ND=3 IT=0

EQS syntax

/TITLE

Two-factor CFA model for 8 scored LOT items: Model M10 for FEMALES (GROUP 1)

!Testing the gender-invariance of factor loadings using the new scaled

!difference test. Using the final estimates from Model M0 as starting values

!with ITER=0. Note that this model includes no invariance constraints.

/SPECIFICATIONS

DATA=LOT8.FEMALE.ESS;

VARIABLES=8; CASES=647; GROUPS=2;

METHOD=ML,ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW;

/LABELS

V1=LOT1; V2=LOT4; V3=LOT5; V4=LOT11; V5=LOT3;

V6=LOT8; V7=LOT9; V8=LOT12;

/EQUATIONS

!

! FOLLOWING LISTS ARE GENERATED FROM RETEST

!

/EQUATIONS ! SECTION FOR GROUP 1

V1 = .640*F1 + 1.000 E1 ;

V2 = 1.000 F1 + 1.000 E2 ;

V3 = .932*F1 + 1.000 E3 ;

V4 = .537*F1 + 1.000 E4 ;

V5 = .849*F2 + 1.000 E5 ;

V6 = 1.000 F2 + 1.000 E6 ;
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V7 = .944*F2 + 1.000 E7 ;

V8 = .935*F2 + 1.000 E8 ;

/VARIANCES ! SECTION FOR GROUP 1

F1= .725* ;

F2= .662* ;

E1= .895* ;

E2= .251* ;

E3= .444* ;

E4= .605* ;

E5= .513* ;

E6= .294* ;

E7= .286* ;

E8= .373* ;

/COVARIANCES ! SECTION FOR GROUP 1

F2,F1 = -.317* ;

/END

/TITLE

Two-Factor CFA model for 8 scored LOT items: Model M0 MALES (GROUP 2)

!Using final estimates from Model M0 as starting values with ITER=0.

!Note that this model includes no invariance constraints.

/SPECIFICATIONS

DATA=LOT8.MALE.ess;

VARIABLES=8; CASES=156;

METHOD=ML,ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW;

/LABELS

V1=LOT1; V2=LOT4; V3=LOT5; V4=LOT11; V5=LOT3;

V6=LOT8; V7=LOT9; V8=LOT12;

!

! FOLLOWING LISTS ARE GENERATED FROM RETEST

!

/EQUATIONS ! SECTION FOR GROUP 2

V1 = .640*F1 + 1.000 E1 ;

V2 = 1.000 F1 + 1.000 E2 ;

V3 = .932*F1 + 1.000 E3 ;

V4 = .537*F1 + 1.000 E4 ;

V5 = .849*F2 + 1.000 E5 ;

V6 = 1.000 F2 + 1.000 E6 ;

V7 = .944*F2 + 1.000 E7 ;

V8 = .935*F2 + 1.000 E8 ;

/VARIANCES ! SECTION FOR GROUP 2

F1= .717* ;

F2= .815* ;

E1= .854* ;

E2= .285* ;

E3= .484* ;

E4= .702* ;

E5= .653* ;

E6= .320* ;

E7= .389* ;

E8= .477* ;

/COVARIANCES ! SECTION FOR GROUP 2

F2,F1 = -.419* ;

/TECHNICAL
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ITER=0;

/PRINT

FIT=ALL;

TABLE=EQUATION;

/END

Mplus syntax

TITLE: Two-factor CFA model for 8 scored LOT items: Model M0 for

FEMALES & MALES. Testing the gender-invariance of factor

loadings using the new scaled difference test.

DATA: FILE=LOT8.POOLEDwithGENDER.dat;

VARIABLE: NAMES=LOT1 LOT4 LOT5 LOT11 LOT3 LOT8 LOT9 LOT12 GENDER;

GROUPING=GENDER (0=FEMALE 1=MALE);

ANALYSIS: ESTIMATOR=MLM;

convergence=100000000;

MODEL: optimism BY lot4;

optimism BY lot1;

optimism BY lot5;

optimism BY lot11;

pessimsm BY lot8;

pessimsm BY lot3;

pessimsm BY lot9;

pessimsm BY lot12;

MODEL FEMALE:

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, specify the starting values of factor

!loadings for females. However, note that because model M10 should exclude

!the invariance constraints added to model M0, we have deleted the equality

!constraints [i.e., the numbers in parentheses that were originally in the

!output for model M0], which indicated that the nonfixed loadings for males

!and females had been constrained to be invariant in model M0.

optimism BY lot4@1;

optimism BY lot1*0.640;

optimism BY lot5*0.932;

optimism BY lot11*0.537;

pessimsm BY lot8@1;

pessimsm BY lot3*0.849;

pessimsm BY lot9*0.945;

pessimsm BY lot12*0.935;

!The following line, taken directly from the output for model M0 when

!specifying the SVALUES option, specifies the factor covariance for females:

optimism WITH pessimsm*-0.316;

!The following lines, delimited by brackets and taken directly from the

!output for model M0 when specifying the SVALUES option, specify item

!intercepts for females:

[ lot1*2.107 ];

[ lot4*2.515 ];

[ lot5*2.649 ];

[ lot11*2.549 ];
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[ lot3*1.917 ];

[ lot8*1.685 ];

[ lot9*1.479 ];

[ lot12*1.325 ];

[ optimism@0 ];

[ pessimsm@0 ];

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, specify item unique-error variances for

!females:

lot1*0.894;

lot4*0.250;

lot5*0.443;

lot11*0.604;

lot3*0.513;

lot8*0.294;

lot9*0.285;

lot12*0.372;

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, specify factor variances for females:

optimism*0.725;

pessimsm*0.661;

MODEL MALE:

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, specify the starting values of factor

!loadings for males. However, note that because model M10 should exclude the

!invariance constraint, we have deleted the equality constraints [i.e., the

!numbers in parentheses that were originally in the output for model M0],

!which indicated that the nonfixed loadings for males and females had been

!constrained to be invariant in model M0.

optimism BY lot4@1;

optimism BY lot1*0.640;

optimism BY lot5*0.932;

optimism BY lot11*0.537;

pessimsm BY lot8@1;

pessimsm BY lot3*0.849;

pessimsm BY lot9*0.945;

pessimsm BY lot12*0.935;

!The following line, taken directly from the output for model M0 when

!specifying the SVALUES option, specifies the factor covariance for males:

optimism WITH pessimsm*-0.417;

!The following lines, delimited by brackets and taken directly from the

!output for model M0 when specifying the SVALUES option, specify item

!intercepts for males:

[ lot1*2.365 ];

[ lot4*2.609 ];

[ lot5*2.827 ];

[ lot11*2.417 ];
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[ lot3*1.833 ];

[ lot8*1.686 ];

[ lot9*1.436 ];

[ lot12*1.468 ];

[ optimism@0 ];

[ pessimsm@0 ];

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, specify item unique-error variances for

!males:

lot1*0.848;

lot4*0.283;

lot5*0.481;

lot11*0.697;

lot3*0.648;

lot8*0.318;

lot9*0.387;

lot12*0.474;

!The following lines, taken directly from the output for model M0 when

!specifying the SVALUES option, specify factor variances for males:

optimism*0.713;

pessimsm*0.809;

!Note that specifying the TECH5 option in the following OUTPUT command prints

!the iteration history, thereby allowing users to check to make sure they

!have set the convergence criterion high enough to halt iterations at zero.

OUTPUT: sampstat standardized tech1 tech5;


