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 Retrospective or post hoc power analysis is recommended by reviewers and edi-
 tors of many journals. Little literature has been found that gave a serious study
 of the post hoc power. When the sample size is large, the observed effect size is a
 good estimator of the true effect size. One would hope that the post hoc power is
 also a good estimator of the true power. This article studies whether such a power
 estimator provides valuable information about the true power.

 Using analytical, numerical, and Monte Carlo approaches, our results show
 that the estimated power does not provide useful information when the true power

 is small. It is almost always a biased estimator of the true power. The bias can be
 negative or positive. Large sample size alone does not guarantee the post hoc
 power to be a good estimator of the true power. Actually, when the population
 variance is known, the cumulative distribution function of the post hoc power is
 solely a function of the population power. This distribution is uniform when the
 true power equals 0.5 and highly skewed when the true power is near 0 or 1. When

 the population variance is unknown, the post hoc power behaves essentially the
 same as when the variance is known.

 Keywords: bias, effect size, observed power

 1. Introduction

 Statistical power continues to receive increasing attention. For example, the
 fifth edition of the APA Publication Manual advises researchers to "Take seri-

 ously the statistical power considerations associated with your tests of hypothe-
 ses" (2001, p. 24). However, the manual does not distinguish between planned
 power analysis and post hoc power analysis. Cohen (1988) provided many power
 tables and suggested small, medium, and large effect sizes. When using these
 tables, it is ideal to know the true effect size underlying the experiment. In prac-
 tice, the exact true effect size is generally unknown even after the experiment.
 But one can estimate the effect size using the standardized mean difference.
 When the sample size is large, the estimated effect size is near the true effect size.

 This research was supported by NSF Grant DMS04-37167. We are thankful to the editor, an asso-
 ciate editor, and a referee for their constructive comments that have improved the article.
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 One can go one step further using the estimated effect size to construct a power
 estimate for the current study. This estimator is called the post hoc power
 (Gillett, 1994a) or the observed power (Hoenig & Heisey, 2001). The question
 is how much information the observed power provides us about the power under-
 lying the current study.

 Hoenig and Heisey (2001) cite 19 journals across a variety of disciplines
 where recommendations have been published advocating the use of post hoc
 power to interpret the results of studies with statistically nonsignificant results.
 The need for further attention to this topic in psychology is exemplified by Finch,
 Cumming, and Thomason (2001), who found that 37% of studies with statisti-
 cally nonsignificant results published in Journal of Applied Psychology in 1999
 interpreted their results as providing evidence that the null hypothesis is true.
 However, only a total of three articles actually provided power calculations (two
 a priori and one post hoc). Some journals and textbook writers have addressed
 this confusion. For example, the instructions to authors for Animal Behavior state
 that "Where a significance test based on a small sample size yields a nonsignif-
 icant outcome, the power of the test should normally be quoted in addition to the
 P value" (2001, vi). Similarly, Pallant (2001) states "Some of the SPSS programs
 also provide an indication of the power of the test that was conducted, taking into
 account effect size and sample size. If you obtain a non-significant result and are
 using quite a small sample size, you need to check these power values" (p. 173).
 Stevens (1999) provides another example in his statement that "If a post hoc
 power analysis is done on a study where significance is not found and the effect
 size is quite small (< .10), then one must decide whether such an effect has any
 practical significance. On the other hand, when significance is not found and a
 post hoc power analysis reveals a large or medium effect size, then it is essential
 to replicate the study with more adequate sample size" (p. 133). Thus, these three
 references serve as examples of recommendations to perform a power analysis
 after having obtained statistically nonsignificant results. However, these sources
 are often unclear about how to perform a power analysis, and in particular how
 a post hoc power analysis relates to an a priori power analysis. See Hoenig and
 Heisey (2001) for a recent review in this direction.

 Most sources describe post hoc power analyses in either of two ways. First, one
 commonly recommended method involves finding the power for: (a) a fixed alpha
 level (typically .05), (b) the sample size used in the study, and (c) a "meaningful"
 effect size, often expressed in terms of Cohen's conventions for small, medium,
 and large effect sizes. Ironically, these sources typically do not point out that this
 so-called post hoc power analysis is, in fact, identical to a prospective power
 analysis. There is absolutely nothing about the analysis that depends on the data
 obtained in the actual study. Second, the other frequently mentioned approach
 involves finding the power for (a) a fixed alpha level (typically .05), (b) the sam-
 ple size used in the study, and (c) the effect size observed in the study. This is what
 we refer to as "observed power" or "post hoc power" in this article. There is also
 a third possibility, which is mentioned much less often in the literature. This
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 approach involves finding the power for (a) a fixed alpha level (typically .05),
 (b) the sample size used in the study, and (c) a "meaningful" unstandardized effect
 size, such as a mean difference or an unstandardized regression coefficient, and
 (d) an estimate of error variance obtained from the data of the current study. This

 approach is sometimes used in areas of medical research where a meaningful
 unstandardized effect size can be specified but the magnitude of error variance is
 unknown before collecting data. However, this approach receives little attention
 in educational and behavioral research because of the difficulty in specifying
 meaningful values of unstandardized effect sizes, especially when the measure-
 ment scale precludes knowledge of the accompanying error variance. Thus,
 among the two popular methods, the only approach that is truly "post hoc" is the
 method we consider in this paper.

 There have been several criticisms of the observed power. Assuming the true
 effect size follows a known prior distribution, Gillett (1994a, 1994b) concluded
 that the observed power generally underestimates the true power. Of course, dif-
 ferent experiments may have different effect sizes even in the same area of study.

 In our opinion, it is more reasonable to regard the effect size behind the given study
 as fixed rather than random. With a fixed effect size, the relationship between the

 observed power and the true population power is not well understood. Hoenig and
 Heisey (2001) argued that the observed power is a function of the p value, so once
 the p value is known one should not recalculate the observed power. However, the
 fact that observed power is a function of the p value does not necessarily imply that
 they are literally redundant of one another. For example, when sampling from a
 normal distribution with a known variance, the sample mean is a sufficient statis-
 tic for the population mean. Every sensible statistic must be a function of the sam-

 ple mean. This does not imply that one should not use different estimators for
 different information. Actually, the sample mean and the z score offer different
 information about the population quantities in this case. Similarly, the observed
 power and the p value may both be useful. For example, Greenwald, Gonzalez,
 Harris, and Guthrie (1996) suggest that a monotonic transformation of the p value
 may be of interest, even though it is a function of the p value because it estimates
 the probability that an exact replication will yield a statistically significant result.
 In fact, Greenwald et al. use this property as partial justification for the continued
 relevance and importance of reporting p values in behavioral research. However,
 this probability of statistical significance upon replication is precisely what
 observed power is intended to estimate. In fact, Posavac (2002) suggests supple-
 menting such indices as confidence intervals with the probability of a statistically
 significant exact replication (see Macdonald, 2003; Posavac, 2003, for further dis-
 cussion of this suggestion). Thus, examining the accuracy of observed power is
 important not only because some journals and authors have recommended that
 observed power be calculated when results are not statistically significant, but also
 because other authors have argued that the probability of a statistically significant
 exact replication is of fundamental interest unto itself whether or not the results
 obtained in a specific study are themselves statistically significant. We would
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 maintain that the concept of observed power is not only meaningful from a theo-
 retical perspective but may also be of considerable practical interest. Even so, we
 agree with Hoenig and Heisey (2001) that many researchers have misunderstood
 the implications of calculating observed power. In particular, a low value of
 observed power does not necessarily suggest that the original study was under-
 powered. Instead, it may simply suggest that the underlying effect size is trivially
 small. We agree with Hoenig and Heisey that confidence intervals and equivalence
 tests are generally superior to observed power for interpreting the magnitude of
 effect sizes. Nevertheless, observed power could still be of interest in the sense that
 it has the potential to reveal the extent to which a replication study is likely to yield

 a statistically significant result.

 The purpose here is to understand what kind of information the observed power
 will provide. If any, how useful is it? Can one get a better estimator of the power
 using other statistics from the current study? In section 2 we will study the prop-
 erty of the observed power in detail. This includes the bias, variance, and distri-
 butional shape of the observed power as well as the confidence interval for the true
 population power. We first consider testing the population mean based on one sam-
 ple whose population variance is known. The main reason for considering such an
 oversimplified situation is because analytical results can be derived. When popu-
 lation variances are known and equal, the problem of comparing population means
 of two samples is just a special case of the one sample problem. We will also study
 the observed power with unknown population variances. Because there is no ana-
 lytical solution when the variances are unknown, evaluations will be based on
 numerical integration and simulation. As we shall see, the behavior of the observed
 power with an unknown variance is very similar to that with a known variance. We

 present our results in section 2. Examples based on real as well as simulated data
 are given in section 3. Conclusions are given in section 4. The technical details are
 provided in the appendix.

 2. What the Observed Power Estimates

 2.1. One Group With a Known Variance

 Consider a sample x1, ..., x, from a normal distribution N(po, lTo) with an
 2

 unknown io but a known (o. It is well known that the sample mean i follows the

 normal distribution N(0o, (oln). Consequently, z = nnx/?o follows N( 0n6o, 1),
 where 6o = p0/(0. For the purpose of clarity we mainly consider one-sided test for

 H0: po = 0 vs. H1 : Po > 0. (1)

 A two-sided test is discussed briefly at the end of this section. When referring the
 test statistic z to the standard normal distribution, the power or the probability of
 rejecting the Ho is

 4z(40) 1 - (I _ - 2n60),
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 where D(.) is the cumulative distribution function (CDF) of the standard normal
 distribution, and z(l - ) = D-1(1 - a) is the critical value corresponding to proba-
 bility 1 - a. When V0 is known, it is straightforward to evaluate the true power

 Yo = Yz(80). Unfortunately, o is always unknown in practice. It is known that T is
 an unbiased estimator of 0o, and it is a good estimator when sample size n is rela-

 tively large. Let 8 = /YAo. The estimator y,= yz(8) is then precisely the observed
 power as defined in the literature. The question is whether yz (6) provides a good
 estimate of Yo when n is large. From the appendix we have the result

 E[yz(8)] = 1 - (I[(z(l_,, - ,Ia0)/V_]. (2)
 Notice that E(y) = = 0.5 when z(1 ~) - S60 = 0. It follows from Equation 2 that

 yz(8) is: (a) unbiased when true power Yo = 0.5, (b) positively biased when
 Yo < 0.5, (c) negatively biased when Yo > 0.5. For a given a, the

 Bias = Q(z(_-a) - n60o) - I4[(z(,-1) - n60o)/ /2]
 depends on the population effect size and the sample size. When c = 0.05, and 80 =
 0.2, 0.5, 0.8, which are the small, medium, and large effect sizes suggested by Cohen
 (1988), the respective maximum positive biases are about 0.083, 0.083, 0.076, which
 happen at sample sizes n = 5, 1, 1, respectively. The respective maximum negative
 biases are about -0.083, -0.083, -0.083, which happens at n = 199, 32, 12.

 Set no = (z(1- o/80)2, which is the sample size that leads to approximately a zero
 bias. Equation 2 also tells us:

 I. The observed power z(68) is almost always a biased estimator of the true
 power Yo. When n > (Z(1- /60)2, the bias is negative. When n < (z(l - )/60)2, the bias
 is positive. Only when n = no is the observed power unbiased.

 II. The bias with a larger sample size may not necessarily be smaller than that
 with a smaller sample size.

 III. For a fixed 8o > 0, the bias becomes trivial when n becomes much greater
 or much less than (z(l _ c/60)2.

 Observation III is due to the fact that Q(-) is insensitive at the tails. For exam-

 ple, let c = 0.05 and 6o = 0.5, the bias is about -0.083 when n = 30, while it is about
 -0.0084 when n = 100.

 For Cohen's small, medium, and large effect sizes, we have no = 68, 11, and 5,
 respectively. If the commonly encountered sample sizes range from 15 to 50,
 then yz(8) will always contain a positive bias for the small effect size and negative
 biases for the medium and large effect sizes. Of course, with a similar amount of bias,
 the small effect size will suffer more than the medium or large effect sizes. For the

 three effect sizes 80 = 0.2, 0.5, 0.8, Figure 1 contains the plots of the true power

 Y0, the relative bias

 BiasR = {I(Z(l) - %-60)- I(Z(l_-) - (1n0)/2]}/1- I(Z(l) - --n0)]
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 FIGURE 1. True power, relative bias, and standard devi-
 ation of the observed power Y,(8) (effect size 80 = 0.2, 0.5,
 0.8; sample size n = 15-50). A, relative bias; B, effect size

 8o = 0.2. (continued)

 and the standard deviation (SD) ofy,(8) when n changes from 15 to 50. When the true

 effect size is small, the bias can be 40% of Yo, which makes the observed power a
 very poor estimate of the true power, especially for smaller sample sizes. For
 example, when using the observed effect size to estimate true power, the actual
 power will be less than suggested by observed power, leading to an underpowered
 study. When the effect size is medium to large, the relative bias is much smaller.
 Actually, because the power is under estimated, the predicted sample size leads to
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 FIGURE 1. (continued). C, effect size 6 = 0.5; D, effect
 size 8o = 0.8.

 higher than expected power on average. When large samples do not pose a serious
 problem or a great cost, negative bias may not pose a big problem.

 With the small effect size, the SD of 7z can be as big as the power Yo itself, which

 makes z of little value. Similar to the bias, as sample size gets larger, the SD of z does not necessarily get smaller. Actually, the SD for the small effect size monot-
 onically increases as Yo or n increases. We will explain this further using the CDF

 of yz(8) in the later part of this section.
 Whether the observed power overestimates the true power depends on whether

 Z(1-a) - Io0 > 0. One cannot use the observed counterpart z(,,) - ;in8
 147
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 to decide whether it is an over- or underestimation. For example, when

 zI-a> - n60 = a > 0, the observed power will overestimate the true power

 on average. However, the probability of observing Z(l-a) - -nnH8 < 0 is 1 - ((a),which can be near 0.5 unless a is fairly large.
 Bias is not desired in estimating any parameter. We have the unbiased estimator

 6 for 80. It is interesting to see whether an unbiased estimator of Yo can be con-

 structed, based on the unbiased effect size 8. Because of the form of yz(80), it seems
 unlikely to have a transformation g(-) such that g[y,(8)] is unbiased. Notice that y,(8)

 is actually a function of z(-o) - n6. We would like to explore the possibility of

 using a linear transformation on Z(l-) - nnS. Specifically, we will seek an unbiased
 estimator among the form Yab(6) = 1 - I[a(z(l_,) - 8n) + b]. It turns out that

 E[ 8( 1 1-a(z(l-a)- n0o) + b [Yab()] 1 - La (1 + a2)1/2

 Let E[Yab ()] =z(0) we obtain (I - a/ + a2 )(z(,l_, - x n60) = b. Because 80
 is unknown, the solution to this equation is a = 0c and b = 0. For a finite a, the bias

 in Ya(8) = Yao(8) is

 Biasa = (z,0-(, - Vn60) - cI[a(z(,_a) - n0o)/1 + a2].
 When a is large enough, the bias in Ya(8) is much smaller than that in yz(8). For
 example, using a = 10, for sample sizes n = 1 to 400, the maximum bias among the
 three different effect sizes is only about 0.0012.

 It is nice to have a less biased estimator for Yo. It is also important for the estima-
 tor to have a small SD. It turns out that the SD of Ya(8) depends on the a used in its
 definition. When a increases, the SD of Ya(8) also tends to increase for a wide range

 of 80 and sample sizes. At the medium effect size 80 = 0.5, Figure 2 compares the
 means and SDs of z(8) and ya(8) for n = 5 to 100, where a = 20 is used. The true
 power Yo is also included for reference, but it overlaps with the mean of Ya(8) in the
 plot. We can see that the SDs of both the power estimators are relatively small when

 Yo is large. However, the SD of Ya(8) is much greater than that of yz(8) when yo is small
 to medium. Especially, for a smaller Yo, the SD of ya(8) is more than the size of the

 power itself, which may render Ya(8) of little value. Although the estimator yz(8) is
 biased, when power is small to medium, it might be more near Yo on average than the

 less biased estimator ya(8). Less biased estimators for Yo may also be obtained by
 computer intensive methods such as bootstrap and jackknife. The bias-corrected esti-
 mators by these methods may suffer the same problem of increased variances. See
 Efron and Tibshirani (1993, p. 138) for further discussion on bias correction.

 In addition to the bias and SD, it is of interest to know the distribution of yz(8).

 The appendix provides the CDF of yz(8) as
 F?(t) = [(Z - /Ho0)+ z,+ ,
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 FIGURE 2. Means and standard deviations of power esti-

 mators y,(6) andy,,a() at the medium effect size 80 = 0.5. (The mean of Ya(6) overlaps with the true power 60 in the
 solid line.)

 where z, = (-'(t) is the percentile of the standard normal distribution. It is easy to

 see that, when z(l _ - - no = 0 or Yo = 0.5, Fy,(t) = t so that yz(6) has a uniform

 distribution on [0, 1]. Because z(l-a) - nn6o - =-1(1 - yo), we can write

 Fz, (t) = D(z(l-o0) + zs). (3)
 So, in general, the CDF Fy,(t) depends on the yo as well. We may regard Equation
 3 as a class of distributions indexed by Yo. The density of Fz(t) is given by

 fZ W(t) = exp - z(l~0o)(z(1_yo) + 2zt).

 To get a better picture of the distribution shape of yz(8), the plots of fyz(t)
 against t for Yo = 0.1, 0.2, 0.3, 0.4 are provided in Figure 3. Because
 z(1-70) = -z~o and z, = -z(t_,), the plots corresponding to yo = 0.6, 0.7, 0.8, and
 0.9 are just flips of those corresponding to Yo = 0.4, 0.3, 0.2, and 0.1, respectively.

 It is clear that the distribution of yz(8) is highly skewed unless Yo = 0.5. For 0 < 0yo
 < 0.5, the peak of the density function is at the lower end t = 0. As can be judged
 fromfyz(t), this peak is +o. All the plots in Figure 3 start at t = 1/1001. It follows

 from Equation 3 that yo is actually the median of Fz(t),that is P([z > Yo) =P([z < Yo)
 = 0.5. This implies that, when the median of yz(6) is available, in the context of meta
 analysis for example, then it is an unbiased estimate of yo. Although yz(8) tends to
 overestimate Yo when Yo < 0.5, there is also a 50% chance for yz(6) to be below
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 FIGURE 3. Probability density of yz() when true power
 yo = 0.1, 0.2, 0.3, 0.4. A, True power Yo = 0.1; B, true
 power yo = 0.2. (continued)

 Yo. Similarly, when 0.5 < Yo < 1.0, yz(8) tends to underestimate Yo on average but
 there is 50% chance for yz(8) to be above Yo as well. The bias is due to the fact

 that the magnitude by which jz > yo is different from the magnitude by which
 ~z < Yo unless yo = 0.5.
 The density function together with Figure 3 also show that the mean and vari-

 ance of y~(6) is only a function of Yo. Once To is given, all the population character-
 istics of yz(6) do not depend on n or 6o. Because of the shape of the distribution,

 Var[y (8)1 Yo] = Var[y (6) (1 - Yo)] is the smallest when yo is near 0 or 1. It has

 the maximum variance when Yo = 0.5, which is 1/12 0.289.
 As for the estimator Ya(6), its CDF is given by

 FY7(t) = +(_Z(-70) + z,/a). (4) 150
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 FIGURE 3. (continued). C, true power Yo = 0.3; D, true
 power Yo = 0.4.

 From the form of Fra(t) it is easy to see that, for a large a, most of the probability
 is near 0 and 1, there is little probability in between. This explains why ya(8) has a
 greater SD than y,(8).
 Using the CDFs in Equations 3 or 4, one can construct a confidence interval for

 Yo. Note that, for a general statistic T, its CDF is defined by

 F(t Iy) = P(T < t ly),

 where y is the unknown parameter that determines the distribution. When T is a
 reasonable estimator of y, the greater the y the greater the T tends to be. For a given
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 t, a greater y corresponds to a smaller probability F(t y) and vice versa. Let T = to
 be the observed value of T. When y = Yo, it is unlikely to have F(to IYo) > 0.95 or
 F(to IYo) < 0.05. When F(to Iyo) > 0.95, we may doubt that yis smaller than Yo. Sim-

 ilarly, when F(to I0Yo) < 0.05, we will doubt that y is greater than Yo. Consequently,
 the 90% confidence limits in [y, yu] are numbers satisfying

 F(to L) = 0.95 and F(to ,u) = 0.05. (5)

 Equation 5 has been used by several authors to obtain a confidence interval (e.g.,
 Browne & Cudeck, 1993; MacCallum, Browne, & Sugawara, 1996; Steiger &

 Fouladi, 1997), which is valid as long as F(t y) is monotonically decreasing in y.
 Applying Equation 5 with F = Fy, the appendix provides details leading to

 YL = 1- -(Zi-a + Zo.95 - 8-) and y, = 1- D(z_- - z0.95 - -). (6)
 It is easy to see that the YL and Yu are just the result when applying the power func-

 tion yz(8) to the confidence limits of 80 [ - z0.95 /[-/n, + z095 /-J ]. Such a pro- cedure has been used by Dudewicz (1972) and Taylor and Muller (1995). When
 solving Equation 5 with F = F7,, we get the same confidence limits as given in
 Equation 6, which are different from those of applying ya() to the confidence lim-
 its of 60. Actually, the confidence interval of applying Ya(8) to the confidence lim-

 its of o80 does not provide the correct coverage. So the procedure to confidence
 intervals by solving Equation 5 is more general.

 Because the alternative hypothesis is H1 : g0 > 0, one should change
 8 - z0.95 / n to zero when it is less than zero. Similarly, one should change YL to
 a when it is less than a. The latter is based on the unbiasedness of a reasonable test

 statistic, that is, under H1 one should be able to reject Ho at least with probability
 a. The expectations of the confidence limits are

 E(YL) = 1- (D(Z+lo/ -+ 0.95/2- - n280)
 and

 E(y,) = 1 - (z(I-a/V2 - 20.95/_F2 - ?n/20).

 For the low limits to be useful on average, we need to have E(yL) > a. This implies

 n > 2 [z1-J(1/V2 - 1) + Z0.95/2]2/0 .
 When a = 0.05 and 80 = 0.2, one needs to have at least n 2 24 for the confidence
 interval to offer even minimally useful information on average.

 The expected length of the interval given by Equation 6 is

 E(yu - yL ) = QF(Z1- //2 + z0.95/J - 2n60)

 - *(zl/' - z0.95/0  0n2 )" 152
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 It is easy to see that E(yu,- YL) will approach zero when n gets larger. It is also inter-

 esting to note that, because of the bias in yZ(8), the expectation of the upper limit
 will be smaller than the true power when

 n > n, = [( )- 1)z, Z ]2 + z0.952/[62 _ 1)]2
 Because at the sample size n1, the power is essentially 1.0, this will not cause a
 problem.

 2.2. Two Groups With Equal and Known Variances

 Consider the two sample problem xl, .... , xn N(tio, o2) and y, ..y. Y,2 - N(20, o0), where 0o is known. The interesting hypothesis here is

 Ho : 920 = io vs. H1 : P20 > [o10* (7)
 It is well-known that the test statistic for this hypothesis is

 / 1 1 1/2
 z= (-) + (-

 n, n2

 Let 80 = (p20 - tlo)/0o. For a given level a, the power for z to reject the Ho in Equa-
 tion 7 is

 z(8o) = 1 - (D(zl - 8o[nln2/(nl + n2)]1/2).

 Using 6 = (y - x)/co, the observed power is given by

 Sz(8) = 1- ((Zl-a - 8[nn2/(n, + n2)]1/2). (8)

 Similarly, yz(8) is generally a biased estimator of Yo with

 E[yz (8)] = 1 - ,{(zi- - o0[n,n2l(n, + n
 Compared to the one sample problem, the i~ = nln2(n, + n2) plays the role of sam-

 ple size. All conclusions in section 2.1 hold for the yz() in Equation 8 when n is
 replaced by hi. For example, with the small effect size 8o = 0.2, yz(8) will under-
 estimate yo when n, = n2 are below 135.

 2.3. One Group With an Unknown Variance
 2 2

 Consider the random sample x, . x... x, from N(po, ao), where both V0 and (o are unknown. The statistic for testing the hypothesis in Equation 1 is now

 which follows the well-known noncentral t-distribution with degrees of freedom

 n - 1 and noncentrality parameter Jr-n0. Denote the CDF of the noncentral t as
 153

This content downloaded from 163.238.8.158 on Mon, 20 Apr 2020 00:17:00 UTC
All use subject to https://about.jstor.org/terms



 Yuan and Maxwell

 Tnl(tI V-n80) and let t n-1 = T, [(1 - (x) 10] be the critical value corresponding
 to probability 1 - a of the central t-distribution. Then the power of this test is
 given by

 Yt(0O) = 1 - T tnI n60 (9))
 When replacing the 80 by its estimator we get an observed power. In this case, it is
 easy to show that x/s is not an unbiased estimator for 80. Let

 Cn = F[(n - 1)/2]/{(n - 1)/2F[(n - 2)/2]}.

 Then an unbiased estimator of 80 is given by 8 = c,,/s. Replace the 80 in Equa-
 tion 9 by its unbiased estimator we have the observed power y,(8). Based on the

 results in section 2.1 we would expect a bias in y,(8), that is E[y,()], 7t (80).

 Note that -n/c, follows T,_ (t I n60), the expectation of yt(6) can be expressed as

 E[y,()= 18 - f T, -,(tnl- lcu)dTn-l (ulnSo). (10)
 Because the form of T,_l (u I Vn) is not so simple, a clean formula like the one in Equation 2 is not available. We need to use a numerical procedure to evaluate
 Equation 10. Details of this are provided in the appendix.

 For 80 = 0.2, 0.5 and 0.8, the plots of the true power Yo = y,(80), the relative bias in
 y,(8) and its SD against the sample size n are in Figure 4, where we choose n = 15 to

 50 to contrast with Figure 1. Similar to the findings when Go is known, the bias is pos-
 itive for the small effect size and negative for the medium and large effect sizes. For
 the small effect size, the bias can be substantial, which renders the observed power of

 little value. For the small effect size, the SD of y,(8) does not necessarily become
 smaller as y,(80) or n increases. Actually, Figure 4 and Figure 1 contain essentially the
 same picture. For the same sample size, the powers in Figure 4 are a little smaller, and

 the variances are slightly larger than those in Figure 1. Most of the biases in Figure 4

 are slightly larger, but when ~0 = 0.2 some of these in Figure 1 are slightly larger.
 It is also interesting to get the overall picture of the distribution of 7,(8).

 Because the random variable 6 is in the noncentrality parameter of the noncentral
 t-distribution, we could not figure out a way to evaluate the CDF

 F,,(u) = Pfy,(8) <? u)

 exactly or even numerically. We have to use simulations instead. In studying the
 distribution of ,t(8), we want to know whether the density for F,, can be approxi-
 mately described by these in Figure 3. Unlike F,,, the analytical form of F,, is not
 available, and it generally depends on both n and 80. It is not clear whether F,,(u)
 for Yo = 0.6 is a flip of that when 70 = 0.4 or whether FA, is uniformly distributed
 when yo = 0.5. For the purpose of comparing F,, with F,,, we approximate the pop-
 ulation power Yo = T,(60) = 0.1, 0.2 ... 0.9 in the simulation condition by adjust-
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 ing 60 and n. Specifically, for Yo = 0.1 to 0.5, we fixed 80 = 0.2 and found the n so
 that the resulting y,(80) in Equation 9 is closest to the given Yo. Fixing the n at the

 obtained value, we then adjust the 8o for y,(80) to approximately equal the Yo. For

 Yo = 0.6 to 0.9, we performed the same procedure by starting with 80 = 0.5. The
 combination of n, 8o and the corresponding yo used in the simulation are reported
 in Figure 5, where 20,000 replications are used to evaluate Y,(6) with the unbiased
 8. Each of the nine histograms is based on 50 equally divided spaces.

 A
 0.4

 8o = 0.2

 0.3-... = 0.5
 8o.. o=0.8

 0.2

 0.1

 0.0

 -0 .1 .. .. ....................

 15 25 35 45

 Sample size n

 B
 0.40

 03True power
 0.35 -SD

 0.30

 0.25

 0.20

 0.15

 15 25 35 45

 Sample size n

 FIGURE 4. True power, relative bias, and standard devia-

 tion of the observed power Y(6) (effect size 80 = 0.2, 0.5, 0.8; sample size n = 15-50). A, relative bias; B, effect size
 80 = 0.2. (continued)
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 1.0

 0.8

 0.6. True power

 0.4

 0.2

 15 25 35 45

 Sample size n

 D
 1.0

 0.8

 0.6 True power

 0.4

 0.2

 0.0

 15 25 35 45

 Sample size n

 FIGURE 4. (continued). C, effect size 8o = 0.5; D, effect
 size 80 = 0.8.

 When Yo = 0.1, the distribution of yt(8) has a big mass at the low end with peak
 occurring at 0. As Yo increases from 0.1 to 0.4, the peak is still at 0, but the distri-

 bution spreads to the other part of the range. Comparing the first four histograms

 to the density plots in Figure 3, we notice that the shapes of the histograms are very

 much like those of the density plots. When Yo = 0.5, the histogram tells us that y,(8)
 approximately follows a uniform distribution. The histograms corresponding to
 Yo = 0.6 to 0.9 are approximately flips of those corresponding to Yo = 0.4 to 0.1,
 respectively. This is expected because the behavior of a t-statistic can be approxi-
 mately described by a normal distribution.
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 3000

 2000-

 1000

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (80 = 0.193, n = 5)

 B
 2000

 1500

 1000

 500

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (6o = 0.200, n = 18)

 C
 1200

 1000

 800

 600

 400

 200

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (6n = 0.200, n = 33)

 FIGURE 5. Histogram (density) of y,(6) when true
 power yo = 0.1-0.9. A, true power yo = 0.100; B,
 true power yo = 0.203; C, true power Yo = 0.301.
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 D

 600

 400

 200

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (80 = 0.202, n = 49)

 E

 400

 300

 200

 100

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (60 = 0.200, n = 69)

 F
 1000

 800

 600

 400

 200

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (6o = 0.479, n= 16)

 FIGURE 5. D, true power yo = 0.401; E, true power
 Yo = 0.500; F, true power Yo = 0.600. (continued)
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 1500

 1000-

 500 -

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (80 = 0.504, n = 20)

 H
 2500

 2000

 1500

 1000

 500

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (60 = 0.502, n = 26)

 4000

 3000

 2000

 1000

 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

 (80 = 0.497, n = 36)

 FIGURE 5. (continued). G, true power yo = 0. 701;
 H, true power Yo = 0.801; I, true power Yo =0.900.
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 In summary, the distribution of y,(8) is highly skewed unless yo = 0.5. We also
 predict that the median of y,(6) is yo. Further study in this direction is needed. It is

 also interesting to know, after yo being given, whether the distribution of y,(8) is

 mathematically independent of n and 80o.

 2.4. Two Groups With Equal but Unknown Variance
 2 2

 Consider x1, . . . , x,- N(poi1, go) and yi, ..... yn - N(2120, 0), where plo, -120 and (To are all unknown. The statistic for testing the hypothesis in Equation 7 becomes

 t = (Y-X)/S, (11)
 where s is the pooled sample standard deviation and h = nln2/(nY + n2). It is well-
 known that the t in Equation 11 follows a noncentral t-distribution with degrees of

 freedom nl + n2 - 2 and noncentrality parameter -rok. Let n3 = n + n2 - 2 and

 12 = - 2)/2]/(n + n - 2)/2]/{(n, + n2 - 2)/2F[(nl + n2 - 3)/2]},

 the unbiased estimator of 8o is given by 8 = c,12 (y - )/s . The observed power is

 y,()= 1 - iT3 (t- i). (12)
 The properties of the y,(8) in Equation 12 will be much the same as the one of the
 one sample problem considered in section 2.3. That is, it overestimates the true
 power when ii is below 50 for the small effect size, and underestimates the true
 power when ii > 15 for the medium and large effect sizes. Its distribution is also

 highly skewed when Yo is away from 0.5, and approximately uniformly distributed
 when yo = 0.5.

 We have only studied the observed powers for one-sided tests. The discussion also
 implies the difficulty with estimating the true power for a two-sided test. Consider-

 ing the two-sided test for Ho : p0 = 0 vs. H1 : po 0 and ~0 > 0. When the variance 020
 is known, the power function is

 Yz (o) = 1 - -(Z(1-a/2) - n8O) + F(-Z(1_/2) - /2) O)
 and

 E[yz,()] = 1 - I-[(z(1-a/2) - no)/-2] + ([(-Zul-,/2) - -no)/JV].

 It is obvious that E[y z(a)] yz(86). Actually, the difference between

 ((-z(~-a,/2)-- l-o) and O[(-z(_1-/2) - 1n0)/\2] is tiny because F(') is not
 sensitive at its tails. The bias in yz(8) is mainly due to the difference between

 #[(z(1-a/2)- n0o)/-5] and F(z(1-a/2)- 6) which has been discussed in detail.
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 3. Examples

 In this section, we present three examples to illustrate empirically the analyti-
 cal property of the post hoc power obtained in the previous section. The first two
 are based on real data, the third one is based on simulated data.

 Example 1

 Table 2.1 of Efron and Tibshirani (1993, p. 11) contains the survival times of 16
 mice randomly assigned to two conditions. Seven received medical treatment, nine
 are under control. The interest is whether the mean survival time pi- of the experi-

 mental group is greater than that of the control group [t2. Assuming a common vari-

 ance, the problem falls into the context of section 2.4. With a t score of 1.121, there

 is not enough evidence against the null hypothesis Ho : 1 = [-92. With an unbiased
 estimate of 8 = 0.534, the post hoc power for this study is $Y= 0.262. However, we
 cannot conclude that the power for this study is approximately 0.262 because of the

 bias and variance of ,7t. Similarly, we cannot use 8 = 0.534 in determining the
 required sample size for a future study to achieve a power of, say, y = 0.90.

 Example 2

 To compare different methods of teaching arithmetic, 45 students were ran-
 domly divided into five groups, each with nine students. Table 3.1 of Everitt
 (1996, p. 50) contains test scores of these students after being taught by each of
 the five methods. The interest here is in the difference between different teaching

 methods. We only use the data for the first two methods to illustrate the problem
 with the post hoc power. The t-score for the first two methods is 0.724, which is

 not significant. The unbiased estimator for 6 = (pl- - i-2)/G is 8 = 0.325, which is
 between small and medium. If the test is two-sided Ho: it- = iL2 VS. H1: ,1 # ?12, then

 the post hoc power is only ' = 0.099. If the test is one-sided Ho : i-t = it2 vs. H1 :
 9i1 > P2, the post hoc power is Y = 0.163. According to the results in the previ-
 ous section, these power estimates do not provide valuable information about
 the power underlying the current study. The estimated effect size cannot be used
 to guide the data collection in a future study for comparing the two teaching
 methods.

 There is a common limitation in the previous two examples because we do not
 know the true effect size and thus cannot compare the post hoc power with the true
 power. The next example is based on simulated data for which the true power is
 known.

 Example 3

 To contrast the post hoc power with the true power, three samples are gener-
 ated. The first one x - N(po, 1) is to illustrate the post hoc power with one group.
 The second sample x - N(0, 1) and the third one y - N(po, 1) are to illustrate the
 post hoc power with two groups. For simplicity, all the three samples have size
 15. Because the population variances of the samples are known, we can set o at

 161

This content downloaded from 163.238.8.158 on Mon, 20 Apr 2020 00:17:00 UTC
All use subject to https://about.jstor.org/terms



 Yuan and Maxwell

 TABLE 1

 Post Hoc Power vs. Population Power

 (a) 80 = 0.5

 One-group z test One-group t test Two-group z test Two-group t test

 Yo 0.61 0.58 0.39 0.38

 0.93 0.92 0.10 0.09

 0.88 0.72 0.74 0.69

 0.19 0.18 0.21 0.20

 0.31 0.25 0.12 0.11

 0.46 0.49 0.64 0.52

 (b) o = 0.8

 One-group z test One-group t test Two-group z test Two-group t test

 Yo 0.93 0.90 0.71 0.69

 1.00 0.99 0.32 0.24

 0.99 0.93 0.93 0.90

 0.61 0.59 0.50 0.48

 0.75 0.63 0.36 0.34

 0.85 0.89 0.88 0.77

 their population value 1.0 so that a z test can be used in testing the mean. We can
 also treat a as unknown so that a t test is needed. Because the population effect
 size 680 = g is known, we can obtain the population powers for the one-group
 z test, one-group t test, two-group z test, and two-group t test. Setting po = 0.5, the
 population powers (Yo) are in the first row of Table 1(a). The next five rows of
 numbers (ji) in Table 1(a) are the post hoc power based on estimated effect sizes
 with five replications. It is clear that none of the post hoc powers is near the cor-
 responding true power. For example, with the one group z test, the true popula-
 tion power is 0.61, the post hoc power ranges from 0.19 to 0.93. Using any of
 the five post hoc powers in the role of the true power can be misleading. Table
 1(b) contains the parallel result when 80 = Po = 0.8. Results in the previous section
 suggest that the post hoc power is more stable when the population power Yo is
 bigger. This is empirically verified by the results in Table 1(b), especially for the
 one group case when Yo is above 0.9.

 4. Conclusion

 Retrospective power analysis has sometimes been required by reviewers or jour-
 nal editors. We give a systematic study of the commonly used power estimator in a
 retrospective analysis. We found that the observed power is almost always a biased
 estimator of the true power. Its distribution is highly skewed when Yo is not near 0.5.
 When Yo = 0.5, the variance of the observed power reaches its maximum. As a point
 estimator, the observed power cannot offer useful information when Yo is small. This
 is because of not only its variance but also its substantial relative bias. When Yo > 0.37,
 the relative bias is roughly around or below 10%, which may be acceptable. When
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 Yo > 0.78, the SD of the observed power is less than 1/3 of Yo so that the observed power

 may provide some useful information. For a small Yo, the observed power may not pro-

 vide any useful information regardless of the sample size!
 Power tables in Cohen (1988) are based on fixed-effect size. In practice, few peo-

 ple know their true effect size. The observed effect size and effect size obtained from

 a previous study are actually random quantities. Effect size obtained from a meta-
 analysis also contains sampling errors. Actually, we may think of such an effect size
 as estimated from a study with a large sample size. Our results indicate that the com-
 monly used power estimator does not provide useful information when power is
 small. However, if the goal is to determine the sample size needed to detect an effect
 that is considered practically significant, then one can refer to tables in Cohen (1988)
 for valuable information. In such a context, we can decide the practically significant
 effect size without consulting the post hoc effect size. Using post hoc power to
 determine sample size for next step data collection is not recommended.

 The confidence interval may provide a better picture of the power than the point
 estimator. For a small effect size, the sample size has to be relatively large so that
 the interval will be at least above 0.05.

 We have also explored a less biased method of estimating retrospective
 power. Unfortunately, it is unlikely to be a better estimator than the commonly
 used formula.

 Appendix

 This appendix provides the expectation of y,(6) analytically, and outlines how

 Var[yz(6)], E[y,(8)] and Var[y,(8)] were numerically obtained.

 Note that yz(8) is a special case of Yab(8), we will just obtain the expectation of Yab(8). It is obvious

 E[Yab(8)] = 1 - E{ (D[a(z(l -) - n+)+ b] }.

 So we only need to obtain E{ 1[a(z(1 - -  80) + b] }. When (0 is known,

 -n = /,/n/o follows the normal distribution N( 6So, 1). So we have Jn8^ = no + z, where z - N(0, 1).
 Consequently,

 E{d[a(z(l-,) - ViS) + b]} = E{P[a(z(la) - -no)+ b + az]}

 = ~[ f [a(z( - Vio) + b + at]e-t2/2dt.

 (Al)

 Let h = a(z(l _)- -'-680) + b. Then

 Q[a(z,,) - o) + b + at] = 1 h+at u2/2du. (A2)
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 Putting Equation A2 into Equation Al,

 EB{(h + az)} =1 I e-/2 +at eu2/2du]dt. (A3)

 We should realize that the double integrals in Equation A3 are with respect to the
 density functions of two independent standard normal variables T and U, which are

 actually the probability

 P{aU + T 5 h} = P{(aU + T)/ha2+1 < h/a2 +) (A4)

 Note that (aU + T)/a2 +1 - N(0, 1), the probability in Equation A4 is just

 O(h/Va2 + 1). This gives the expectations of yz() and Ya(8) in section 2.1.
 Now we turn to the variance of y,(8). It is easy to see

 var[ya(8)] = Var{D[a(z(__,) - -n) + b]} = VarQ{(h + az)}.
 Because Var[D(h + az)] = E[1(h + az)]2 - {E[4(h + az)]}2 and E[D(h + az)] is
 known, we only need to outline the procedure for obtaining E[4(h + az)]2. Because
 z - N(0, 1), we have

 E[4(h + az)]2 = f [e(h + at)]2e-t2/2dt.

 Note that 0 < ((h + at) < 1.0, we have

 0< 1-IJ_ [(h + at)]2e-t2/2dt- I-c [((h + at)]2e-t2/2dt 2(-c).

 When choosing c = 6.0, E[D(h + az)]2 can be approximated by

 S- c [F(h + at)]2e-t2/2dt (A5)
 with an error of less than 10-8. The integral in Equation A5 can be evaluated by the
 well-known Simpson rule of numerical integration (see Etter, 1992). We used m =
 50,000 points in the Simpson rule when calculating the numbers for plots in Fig-
 ures 1 and 2. Double the number of points gave the same value of the integral
 to the 8th decimal place. Note that we have used the SAS internal function
 probnorm(h + at) when evaluating (F(h + at).

 The CDF F-z in section 2.1 was obtained using the following steps:

 F, (t) = PYz (?) < t)

 = P(1- I(z(l1o - "n) ? t)
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 - P{*(z(__)- n ) ? 1 -t}

 = P{z(l-_)- n6 ? >D'(1 - t)}

 = P {Jn(8 - 60) -< Z(,l - no - IA-1(1 - t)}

 =- ([(Z(Iu-o - --n60) - (-'1(1 - t)].
 The density function fz follows by taking the derivative of F.-

 Because the YL and y7 in Equation 6 can be obtained in essentially the same

 way, we only give the steps to obtaining YL. Notice that Fyz(t) = D(z(l y0) + z,),
 and the observed value of t is to = /z. Setting Fz(yz) = 0.95 and using zx = O-*(x),
 we have

 -'(1 - YL) + (I-m() = z0.95. (A6)
 Moving *D-I'(y) in Equation A6 to the right side and applying the transformation
 D(-) give

 1 -yL = [z0.95 --(z)]. (A7)

 Because ,z = 1 - (I(Z(_-, - n) and *-'(1 - x) = --1 (x),

 0-l(7'z) 0-11*- [1*(z(?,_, - V/nn)] = -- (D-1[(I(Z( - ---'i)]

 = An8- z(1-,,. (A8)
 Combining Equations A7 and A8 gives

 Y L = 1- ((Z0.95 + Z(1-a) - -n).

 The integral in Equation 10 of section 2.3 was evaluated similarly as in evalu-
 ating Equation A5. First, finite numbers cl and c, were found to replace the infin-

 ity limits of the integral. The proper cl and c, depend on the noncentrality
 parameters and the degrees of freedom. Large enough numbers are chosen so that

 the integral outside [cl, c,] is less than 10-8 in calculating all the numbers used for
 plots in Figure 4. For the finite ct and c,, the integral in Equation 10 was evaluated
 by the well-known trapezoidal rule for numerical integration (see Etter, 1992). We
 used m = 50,000 trapezoids so that the first eight digits of the integral value are the

 same even when double the number of trapezoids. Specifically, the SAS internal
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 function probt(t, df ,) provides the value of Tdf(t IX). The integral on the interval
 [a, b] is given by

 lab = [probt(b, n - 1, 6-n5) - probt(a, n - 1, -nJ60)]

 x [probt(t,_1 , n - 1, ca) + probt(t,_'l), n - 1, cb)]/2.

 The variance of y,(8) was evaluated similarly.
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