- TWO

STATISTICAL
FOUNDATIONS

Part Two contains four chapters that deal with statistical concepts basic to measure-
ment. First, we look at some models used to construct scales. One central concept is
that of the item trace line (item-characteristic curve) which relates the magnitude
along a dimension (trait) to the magnitude of response to a particular item. The next
chapter deals with the three basic meanings of test validity: content validity, construct
validity, and predictive validity. Many have debated whether these are ultimately the
same or not. Though they share important similarities, there are also important differ-
ences among them. The third chapter considers statistical description and estimation.
Much of this involves traditional issues in correlation and regression that you may
have been previously exposed to. However, two additional topics may be less familiar:
structural relations and alternative forms of statistical estimation. The latter 1S Impor-
tant because statistical inference plays a much larger role in psychometric theory than
it did 1n the previous edition. The method of maximum likelihood is especially impor-

tant. Finally, we discuss properties of linear combinations which are central to psycho-
metric theory.



CHAPTER

TRADITIONAL
APPROACHES
TO SCALING

CHAPTER OVERVIEW
Scaling was defined in Chapter 1 as the assignment of numbers to objects to represent

quantities of attributes. Although any relevant set of rules can be spoken of as mea-
surement, it helps to have some internally consistent plan when developing a new
measure. The plan is a “scaling model,” and the resulting measure 1s a “scale™ or a
“measurement method.” The simplest example is a ruler used as a scale of length. The
methods for constructing and applying rulers constitute the scaling models. Scaling
models are designed to generate one or more dimensions (continua) to locate people or
objects. In the following example, persons P,, P,, P53, and P, fall along one such di-
mension, which could be social anxiety, spelling ability, attitude toward abortion, etc.

P, P; P, P,
= > Higher

Lower ¢ -
Attribute

Because this is an interval scale, the distances between people are meaningful.
Thus P, is considerably higher in the attribute than P,, P, and P; are close together,
and P, is far below the others.

We begin this chapter with an introduction to the concept of a data matrix, which 1s
central to nearly all measurement data, and some differences between scaling stimuli
and scaling people. Next, we present a brief history of “psychophysics,” which 1s the
study of the relation between variation in physical dimensions of stimuli and their as-
sociated responses—as it forms the foundation for “psychometric™ theory. In contrast,
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tions among different types of stimuli and, especially, resp : en

consider some general principles underlying the developmen_t of .ordlinal, lﬂttt_’«l'val, and
ratio scales. Following this, we present what 1s probabl_y the hl_storlca )_/dmOS Important
scaling model for stimuli, Thurstone scaling. The ensuing s-,ectlon considers some mod-
els used to scale people. In particular, we introduce the llIleI::lI'. model (also Calleq the
summative or centroid model), which simply involves the falillll}af procjess of deﬁnlng 3
score as the ordinary sum, perhaps weighted, of responses to individual 1tems.

Most measurement problems begin with a data matrix or two-way array or table (we
will describe some other matrices from time to time). Rows typically represent N dif-
ferent objects (usually people), and columns represent K different stimuli (content),
€.g., questionnaire items (see Table 2-1). It is convention to denote the entire matrix by
an uppercase letter in boldface, e.g., X. The data are responses, e.g., 0 = incorrect ver-
sus 1 = correct, Likert scales, etc. Individual elements appear in lowercase italics. The
first subscript conventionally denotes the row (usually the object being measured, e.g.,
a person), and the second subscript denotes the column (stimulus, as a questionnaire
item number), so that x; denotes the response of subject 1 to stimulus j. However, the
stimuli and responses can represent anything that the experimenter does to the subjects
and anything the subjects do in return. Consequently, we need not limit the discussion
to people and test items in the ordinary sense. Subjects might estimate the weights of
various objects, for example. It is possible, though rare, that the matrix is a single per-
son’s response to a series of stimuli studied over occasions (e.g., Nunnally, 1955),
among other variants.

Most classical psychometric models treat scale items as replicates of one another in
the sense that differences among the items are ignored in scaling. Thus, a patient’s
anxiety 1s typically defined by- counting the number of anxiety-related symptoms that
are endorsed regardless of which specific items thege are. Alternative

G | | models, mainly
of recent origin, derive scale scores from the pattern of responses

These latter models

(ROWS) BY K STIMULI (COLUMNS)

Stimuli
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will be introduced here but are discussed 1n more detail in Chapter 10. Likewise,
methods of scaling objects, as in market research studies, often assume that people are€
replicates of one another. For example, the percentage of persons 1n a group that
prefer one brand of cereal to another is assumed €0 be the same as the pe.rcentage of
times a typical (modal) individual would have this preference OVer occasions. These
classical methods, by definition, treat individuai differences among items and people
as random error. In contrast, newet methods incorporate individual differences 1n a

more systematic manner.

Jv.‘ It is only meaningful to obtain a single measure by counting the number of positive

responses if the stimull measure a single attribute. This 1n turn implies that differel:lces
in response to the various stimuli are highly correlated; €.2., if people who admit to
one anxiety-related symptom also tend to admit to others, and vice Versa for people
who deny these symptoms. Various correlational methods are used to evaluate the ex-
tent to which people or stimuli can be viewed as replicates, If responses correlate
poorly with one another, two or more scales would have to be formed from the items.
These involve methods discussed throughout the book, especially in Chapters 11
through 14. This chapter will be limited to models that assume the stimuli measure a
single attribute (unidimensional scaling)—situations 1in which the data under consider-

ation can be summarized satisfactorily with only one “yardstick.”

More Complex Organizations

The two-way organizatio

measurement problem. LI there v 4
way to evaluate the structure of the stimuli. which is basic to psychometric theory. The

only results possible would be descriptive statistics on the single measure (e.g., the
mean and standard deviation) for the single group of subjects. These data are rarely of
interest to the psychometrician because nothing can be said about the structure. Like-
wise. data from a single row (subject) in isolation are unlikely to be informative. At a
minimum. we need to compare that person’s data to normative data.

More complex arrangements of the data are extremely common. First, the two-way
matrix may be repeated over occasions, as when a pre- and a posttest are administered.
This gives rise to a three-dimensional arrangement in which there are rows and
columns, as before, plus “slices” that represent the two or more occasions. Another
possibility is that subjects are sampled from two or more groups; €.g., one studies gen-
der differences in response to items measuring depression. A third possibility 1s that
two or more attributes are investigated simultaneously, as when one series of 1items
measures job satisfaction and another series of items reflects job pertormance. This de-
sign involves methods of multidimensional (multivaniate) analysis considered later In
the book.

Scaling objects often involves a three-dimensional array, as when a market re-
searcher conducts a taste test and has people judge multiple attributes of several
br.ands of cola, e.g., sweetness and intensity of flavor. (As an incidental point, the ap-
plication of measurement methods to quantify the perceived appearance, including
taste, of consumer product preferences is known as “sensory evaluation” to market re-

n of Table 2-1 contains the minimal elements of interest to a
ere b ingle column (stimu 1ere would be no.
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searchers.) These possibilities may be combined in still higher-order ways, €.g., by op.
taining pre- and posttest measures that compare two or more ,group:;. N

We have f]‘equen[]y used the phrase “peop]e or Ob_]f::'aCtS, but t l:.'f vas mEJOth of
studies examine people’s responses to different StilTlllll. In fact,.O JCC::]S (W I'Ch may
be abstract concepts) play the same role as peOple in some studies and as stimul; n
others.

"Holes” in the Matrix (Missing Data)

In an ideal situation, there is an outcome at each location in the matrix; e.g., each per-
son is administered each stimulus. Sometimes this is not possible or even meaningful.
For example, the number of stimuli may be too large to allow a given person to re-
spond to each one. Similarly, the effects of administering one stimulus may influence
subsequent behavior, known as “carryover” effects. Subjects are then often deliberate-
ly given a subset of the stimuli chosen according to a predesignated plan usually in-
volving random assignment of stimuli to a given subject. This is part of the experi-
mental design. Perhaps the most comprehensive text dealing with these problems is
Winer, Brown, and Michels (1991). Although some statistical power 1S lost when sub-
Jects do not respond to all stimuli, this loss of power can be offset by increasing the
sample size. The problem will not be considered further since it poses no additional
complications.

Far more serious problems emerge when the resulting holes in the data matrix are
nonrandom. For example, the second author once was given neuropsychological test
data. The data involved many scales (subtests) that were normally not all adminis-
tered to each patient. Thus, patients with frontal lobe damage were given one set of
subtests, patients with temporal lobe damage were given a different set of subtests.
etc. Such limitations on data gathering caused the missing data to be nonrandom.
Type of injury was confounded with the particular scales that were administered. The
results obta‘ined from.analyzing these data might well differ substantially from a
study in which all subj?cts r_espondec! to all measures or the pattern of administration
was random. Good design dictates minimizing the impact of missing data. If all mea-

sures are equally important, randomize the order of administration or administer ran-
dom subsets 1f all cannot be administered to each subject. Conversely if some are

relatively unimportant because they are being used for more €xploratory purposes,
administer these at the end. -

EVALUATION OF MODELS

Often different models can be applied to a given set

. of data to develop alternative
scales. These models and their associated scales some P

times lead to different substan-

ne know which model to choose? Chapter
ance. We suggest that the most crucial test ;

AE Scale provides meaninflll
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repeatable relations with other variables. Before time and effort are spent on such
investigations, however, some additional criteria can be applied.

C‘ 1 The intuitive appeal of a scaling model provides one criterion for “reasonable.”
Although the data of science must be public, a scientist’s intuition plays an indis-
putable role in the gathering and analysis of data. Looked at in one way, a measure-
ment model is nothing more than an explicitly defined hunch that particular operations
on data will be useful. In particular, we suggest that psychologists lean toward mea-
surement models that are most analogous to the measurement of simple physical at-
tributes, e.g., length.

2 Another aspect of “reasonable” is that one should exploit what is already known
about similar data. For example, power functions are well known to describe relations
between physical and perceived intensity (see below). On the negative side, some
models assume that individual test item responses are highly reliable; yet, a wealth of
evidence shows that such responses usually are highly unreliable.

3 Preliminary analyses often provide cues about the usefulness of a scale. If the
scale values for objects or persons are markedly affected by slight procedural differ-
ences, the scale will probably not work well in practice. There are, for example, nu-
merous ways in which subjects can judge weight. If two similar appearing approaches
yield very different intervals of judged weight, either or both methods are suspect.
Conversely, different models that yield similar results provide converging operations
(Garner, Hake, & Eriksen, 1956) that mutually strengthen the confidence one may
have about any given method. “Trniangulation” 1s another common term used to de-
scribe this.

4 Another important type of evidence 1s the magnitude of measurement error in
using a particular scale, which we will discuss in detail in Chapters 6 to 10. A scale
that yields a great deal of measurement error cannot possibly be useful.

Beyond the standards of good sense, however, the ultimate test of any model is the
\ extent to which 1t yields usetul empirical results.

Scaling Stimuli versus Scaling People

Although psychometric methods can be used to scale people, stimuli, or both, different
methods are often used when the focus is on scaling people than when the focus is on
scaling objects. As Cronbach (1957) pointed out in a classical article, clinical, counsel-
ing, and school psychologists are more inclined to think in terms of individual differ-
ences among people, €.g., iIn measuring such attributes as intelligence and level of ad-
justment. These individual differences are a nuisance to experimental psychologists
and market researchers who largely ignore individual differences, though both may be
interested in group differences. Their problems typically involve scaling stimuli, e.g.,
measuring which words or advertisements are most readily recalled. Regardless of the
focus of the research, the basic data are representable as a two-dimensional array, per-
haps extended 1nto other dimensions because of additional considerations.
Unidimensional scaling of people is probably the easiest situation to describe. For
example, a spelling test contains words as stimuli and students as subjects. The data
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are simply 1 = correct and 0 = incorrect. The simplest model for scaling _SUbjeCtS (see
the linear mode] below) collapses the stimulus dimension of words by adding the nyp,.
ber of Is for each person. Although additional analyses are usually (_:onducted to deter-
mine the interrelations among responses to different words, these 51mPIe sums of cor-
teClresponses scale students on their spelling ability. Consequently, Dllna hay obtain 3
score of 48 and Ralph may obtain a score of 45 out of 50 words. It s quite possible
that a simple ranking of the students will suffice so that an ordinal sicale may be all that
1s necessary for such purposes as grading. The major requirement ?n scaling people ig
that alternative scalings be monotonically related to one another, 1.e., that .they rank-
order people in the same way. Thus if two different methods for scaling anxiety have g
Strong monotonic relationship, research results will be much the same regardless of
which scale is employed.

The roles of people and stimuli are often reversed to scale objects. Speciﬁcally,
sums over students for each word describe differences in the difficulty of the words,
e.g., 1f 50 students spell “abacus” correctly but only 35 spell “mnemonic™ correctly,
“mnemonic” is considered more difficult than “abacus.” In fact, these data are usually
a standard part of a test analysis, even when interest is directed toward scaling people.
However, studies directed toward scaling stimuli are also more likely to be concerned
with establishing functional relationships to various attributes, in which case ordinal
scales are quite likely to be insufficient. Assume, for example, that the stimuli are
tones of different intensity which subjects rate for loudness. Everyone knows that
more intense tones will be rated louder; the key to the study is whether the relationship
1s logarithmic, linear, or of some other form. A unidimensional scale of stimuli should

also fit a typical (modal) individual. Such a scale should be typical of a group even if it
imperfectly represents the data from any one individual.

Because of the thornier problems in stimulus scaling, most of the issues and more
complex scaling models have arisen from scaling stimuli. This difference has influ-
enced the language used to describe psychological research. “Scaling” and “scaling
methods™ usually denote the scaling of stimuli. Problems of scaling people are more
likely to evoke the terms “measurement” and “test construction.” Those who are inter-
ested in the details of stimulus scaling could well consult the classical works of Guil-
ford (1954), Torgerson (1958), and Woodworth and Schlossberg (1954). Despite their
age, all three of these books describe the major models in unique step-by-step detail;
more recent books have tended to concentrate on newer models.

Perhaps the main consideration in measurement is what kind of response is to be
obtained from the subject, because this has profound effects op what subsequent
analyses may be performed—one cannot analyze data that one has not obtained. There
are two broad approaches, and both derive from psychophysics. In one, which origi-
nated with Gustav Fechner, subjects make only ordinal Judgments as to whether a
stimulus was seen or not and whether a comparison stimulus is more or less intense
than a standard stimulus. The methods require very little of subjects. Indeed, animals
can be trained to make requisite responses by means of such devices as bar pressing.
In the other approach, most strongly associated with S. S. Stevens (see Chapter 1),
subjects are required to use properties of the real-number system to make interval Of
ratio judgments, as by saying how much more intense a comparison stimulus was than
a standard. Such methods normally require adults or older children.



CHAPTER 2: TRADITIONAL APPROACHES TO SCALING 39

A BRIEF INTRODUCTION TO PSYCHOPHYSICS

The overview defined psychophysics as the study of the relation between variation 1n
physical dimensions of stimuli, which we will symbolize as ® (for physical), and their
associated responses, historically called “sensations,” which we will symbolize as ¥
(for psychological). The physical dimension need not be intensity, but it will be for all
examples in this chapter, and the associated responses will describe apparent intensity.
We have already noted the obvious ordinal relation between the physical and apparent
intensities of weights, flashes of light, and tones. A 5-pound weight obviously feels
heavier than a 1-pound weight. In particular, the probability that a weak event will be
detected also increases as the intensity increases. Psychophysics is concerned with
making more detailed statements about the relations between @ and ¥ which, as was
also noted, are usually required by the problem under study. Three particular questions
are historically important yet relevant to many contemporary problems:

1 What is the minimal energy needed for a particular event to be perceived under
particular conditions, i.e., the absolute threshold or limen? For reasons to be noted
below, this normally involves determining the stimulus event that is perceptible 50

percent of the time.
2 How different must two stimuli be in order to detect a difference between them

or to determine which is of greater intensity? This involves what is variously called
the “difference threshold,” “difference limen,” or “just noticeable difference” (JND)
between a standard and a comparison stimulus.

3 How may the relation between physical intensity and its associated sensation be
described in the interval or ratio terms of Chapter 1? This 1s known as the problem of
psychophysical scaling.

The history of these questions 1s covered 1n several excellent books on the general
history of experimental psychology (Boring, 1950; Robinson, 1981) because early ex-
perimental psychology was psychophysics. Simple but useful discussions of current
applications may be found in any standard undergraduate textbook on perception such
as Coren and Ward (1989). For a more detailed treatment, see Engen (1972a, 1972b)
or Woodworth and Schlossberg (1954). Psychophysics is important for its own sake as
exemplified by its use in such areas as communications engineering and photography.
Audiologists pertorm psychophysical scaling on individuals in testing for hearing loss
when they compare absolute thresholds they obtain with norms. An abnormally high
threshold 1mplies hearing loss. Psychophysics 1s limited to the study ‘of relationships
that hold when stimuli vary along a specified physical dimension such as sound inten-
sity. Measuring intelligence, psychopathology, etc., is not psychophysical because no
physical dimension underlies these attributes. Nonetheless, concepts like the threshold
are applicable to psychometrics in general.

Psychophysical Methods

~ Methods used to gather psychophysical data were first developed by Fechner
(1860/1966) to study the relation between mind and body. Later, J. M. Cattell, Fuller-
ton (Fullerton & Cattell, 1892), Thurstone (1928), and others expanded upon their use.
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Several psychophysical methods .
called the method of constant stimull.

Absolute Thresholds

The original idea of an absolute threshold goes very far back in philosophy. It implied
a “cut” in @—the subject never sensed the stimulus below the cut (threshold) and al-
ways detected it above the cut. Imagine that the method of constant stimuli is used to
present a series of weights. This predicts a step function relating ® to W (in this case,
the probability of reporting that the stimulus was sensed or detected), as illustrated in
Figure. 2-1a. The general name given to any relation between ® and W is a “psycho-
metric” (mind/measuring) function. This particular function describes local psy-
chophysics, because ‘I’ 1s defined in terms of sensations in the location of the thresh-
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(a) A step function representing the initial concept of the threshold and (b) an ogive (S curve)
representing a more realistic outcome.

normally over trials because of the central limit theorem (see Chapter 5). The specific
form of the ogive (psychometric function) is the cumulative normal. An alternative
model (Luce, 1959a, 1963) leads to a logistic function, defined below. Cumulative
normals and logistic ogives are closely related mathematically and cannot be differen-
tiated by eye. A third, but thus far less fruitful, possibility is neural quantum theory
(Stevens, Morgan, & Volkmann, 1941). It leads to a linear function which will not
be considered further. The 0.5 point that describes the absolute threshold is therefore
arbitrary.

The location of the psychometric function is one of its two basic parameters. If
auditory stimuli are used, the function of a subject with more acute hearing and con-
sequently a lower threshold will fall to the left of the function of a subject with less
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acute hearing. Likewise, we hear tones at middle frequencies better than lower- or
higher-frequency tones, holding intensity constant, so that middle-frequency tones
produce psychometric functions to the left of higher- and lower-frequency tones. Lo-
cation thus defines task difficulty. The second parameter of importance is the slope of
the function or the extent to which it resembles a step function. The steeper the
slope, the more discriminating the responses are. Quantities related to these two pa-
rameters play a crucial role in psychometric theory, as we will show later in this
chapter.

Now consider a question like “Are you unhappy at life” on a depression inventory.
The probability that this question will be answered in the affirmative should be quite
low for people who are low in the attribute (not depressed) and increase with the level
of depression until it reaches 1.0. This implies that there should be a level of depres-
sion for which the probability of endorsing the item is .5, and so it is meaningful to
think of an absolute threshold associated with the item. Similar considerations hold for
items for which there is a correct answer and the underlying dimension is course
knowledge or general intelligence. We will exploit the generality of the threshold and
psychometric function concepts, especially in this chapter and in Chapter 10. The fact
that there are physical dimensions of weight, sound intensity, and light intensity, but
none of depression, course knowledge, or general intelligence, might appear to reflect
a major difference between psychophysical and other applications. However, as we
noted in Chapter 1, such ostensive characteristics are not needed to provide a scale.
The scaling models considered in this book allow dimensions that are not defined
physically to be inferred.

Simulating a Threshold

The data in Fig. 2-2 were actually derived from a very simple computer simulation to
llustrate the absolute threshold and sensory noise. We defined the absolute threshold
as 200 units. Sensory noise was produced by choosing a random number from a nor-
mal distribution with a mean of 0 and a standard deviation of 10 in accord with the
phi-gamma hypothesis. The mean of any given physical magnitude (®) was its physi-
cal value (185 to 215 in 5-unit steps), but it varied normally about this mean on any
given trial. The sensory effect for a stimulus on any given trial equaled @ plus the ran-
dom number. We ran 100 trials per stimulus.

For example, the two random numbers obtained for the first two trials using the 195-
gram stimulus were +20.6, and +2.8. These produce sensory effects of 215.6 and
197.8. If the effect equaled or exceeded the threshold value of 200, the subject said yes
(the stimulus was felt); otherwise the subject said no. Consequently, the subject said
yes in the first case and no in the second. Note that the sensory effect of any compari-
son stimulus can exceed 200, but the probability of this happening increases as its
physical magnitude increases. The resulting proportions of yes responses (V) for the
seven stimuli were 0.07, 0.17, 0.35, 0.53, 0.66, 0.87, and 0.94, as plotted. The impor-

tant point to remember is how sensory noise can cause physically unchanging stimuli
to vary over trials.
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Difference Thresholds

5 . . . L subject compares
Defining a difference threshold (JND) is a bit trickier when Filede % S eP; Ondt_WO
stimuli in order to determine which is of the great:er magnitu .arison Stimu[:;u ing
point at which the psychometric function is .5 describes the comp S pet-

cerved as equal to a standard half the time, not the threshpld. ThiS. 1S ;allidt;lw
subjective equality, Its value need not match the ph sical magnitude ol the standard

~ (the point of obijective e uality). For example, suppose the standard and comparison

stimuli in Fig. 2-2b were weights of different density, €.g., WEIC lead versus wood. A
200-gram lead standard stimulus would obviously be much sma]l‘er tha'n a 200-gram
wood comparison, and so there might be an illusory ditference 1in weight. The two
weights might have to differ in physical magnitude to appear equal. o

The ‘interval of uncertainty” is that range of stimulus differences for Wh.lCh judg-
ments can “go either way” and is usually taken from .25 to .75 on the function, as il-
lustrated in Fig. 2-2b. The concept also applies to absolute thresholds, even though
that 1s not depicted here. The difference threshold (not presented in the figure) is usy-
ally defined as half this interval of uncertainty, again by convention. The key to both

, types of threshold is the varied psychological effect of a fixed physical stimulus due to
Sensory noise.

It 1s possible to simulate a difference threshold in a manner similar to the absolute
threshold. However, sensory noise would affect both the standard and the comparison.
Although this might seem to decrease subjects’ ability to make judgments, this need
not be the case. The covariance (or correlation) between the two noise sources is also

-Himportant for reasons that will become clear when we consider the logic Thurstone
(1928) used to develop his discriminant model.

The Weber Fraction, Fechner’s Law, and Psychophysical Scaling

E. H. Weber noted an important property of the JND which was the main stimulus to
Fechner’s subsequent 1deas—its magnitude is proportional to the standard against
which it 1s derived. Subsequent research indicates that his findings are a good first ap-
proximation for a wide variety of sensory dimensions as long as the standard is not ex-
tremely weak or strong. Thus, suppose he found that 3 1.05-gram weight was just no-
ticeably different from a 1-gram standard weight so that the JND was 0.05(1.05 - 1)
grams. The Weber fraction 1s the JND divided by the magnmtude of the standard (P),
~or 0.05/1 or 0.05 in this particular case. Weber’s results were that a 10.5-gram compar-
ison stimulus was just noticeably heavier than a 10-gram standard, a 105-gram com-
parison was just noticeably heavier than a 100-gram Standard, etc. His results may be

generally stated as AD/® equals a constant where A® is the physical magnitude of the
JND associated with a given O.

Suppose that Weber’s law had held exactly, a 1.0-unit standard was also the ab-

new standard. A 1.10, 1.e., 1.05(1 + 0.05) unit com

. . parison will be just noticeably
more intense. Keep repeating the process of obtainin

g a stimulus that is 1 JND mor¢
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intense by multiplying by 1.05 and use it as the next standard. The resulting values
will be 1.16, 1.22, 1.28, 1.34, ..., to two decimal places. It does not matter what type
of stimulus 1s being judged.

Fechner made what in essence is a simple yet dramatic (and controversial) proposal:
Let each of these steps, separated by a JND, define equal units on an interval scale of
sensation. A corollary is that one can speak of two stimuli in terms of how many JNDs
separate them—2.3, 0.5, or whatever. Mathematically, this relationship can be ex-
pressed as Eq. (2-1), which 1s called Fechner’s law:

Y =blog(d) + a (2-1)

where ¥ = scale value of the sensation (apparent magnitude)
® = physical magnitude
b, a = scaling constants

Neither scaling constant is important to our discussion; a is commonly chosen to
make ¥ = 0 when @ is at threshold, but this is usually not viewed as a rational zero 1n
the ratio scale sense. Figure 2-3a depicts Fechner’s law. Unlike Figs. 2-1 and 2-2, val-
ues of ¥ need not fall near threshold. The relation applies to the entire physical dimen-
sion (®) and is known as global psychophysics.

Logarithmic functions have several important characteristics. The one particu-
larly important for our purpose is that equal physical ratios yield equal sensory
differences. Suppose stimuli @, b, ¢, and d are, respectively, 10, 20, 100, and 200
grams. Since a/b = c¢/d, a and b are just as many JNDs apart from each other as
are ¢ and d.

Fechner’s methods are called indirect methods because subjects do not define
sensory magnitudes directly, and discriminant methods because.they concern the
subject’s ability to discriminate. They are also called confusion methods because
scale values require that stimuli generally be confusable with one another in magni-
tude.

Direct Psychophysics and the Plateau/Stevens Tradition

Coren and Ward (1989) described a test of Fechner’s law made by Plateau in 1872. He
had artists mix black and white pigments to make a gray appear midway between the
two. Fechner’s law predicts that the gray’s intensity should be the average of the
black’s intensity and the white’s intensity. Plateau obtained a systematic departure in
that the grays fell near the cube roots of the two other intensities. Four important
things about Plateau’s research and Stevens’ (1951, 1956, 1975) subsequent exten-
sions are that (1) unlike Fechner’s approach, subjects respond directly through subjec-

tive estimates; (2) equal physical ratios provide equal sensory ratios and not differ-

ences with these subjective estimates; (3) equal numbers of JNDs between different
pairs of stimuli are not equal appearing, the emphasis is upon global and not local psy-
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(a)

v =blog(®) +a
(Fechner's law)

Apparent magnitude. sensation,

Physical magnitude, @
, (b)

v=bd? a=1
(Stevens's power law)

Apparent magnitude, sensation, W

Physical magnitude, ®

FIGURE 2-3 (a) Fechner’s logarithmic law for indirect psychophysics, (b) Stevens’ power law for direct
psychophysics with an exponent a = 1.

chophysics. Point 2 may be stated as Eq. 2-2, called Stevens’ law, since he examined it
so thoroughly, or the power law from its mathematical form:

Y = ho° (2-2)

where V¥ = scale value of the sensation (apparent magnitude)
® = physical magnitude
b = scaling constant

physical ratio of two stimuli that differ along the physical dimension in question, &
Let the two stimuli be x and y, their associated - . ]
SCNSory ratio be ¥, /'¥,, and their phys
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(c)

T

y=bd a<]l
(Stevens's power law)

Apparent magnitude, sensation, y

Physical magnitude, ¢

(d)

y=bd° a>1
(Stevens's power law)

Apparent magnitude, sensation, y

Physical magnitude, @
FIGURE 2-3 (c) Stevens’ law with an exponent a < 1, and (d) Stevens’ law with an exponent a > 1.

ical ratio be @, /®,. If the two are the same (¥,/'¥, = ®,/®,), the relation is linear:
a = 1. For example, doubling the duration of a noise also makes it appear to last twice
as long. However, the sensory ratio is smaller than the associated physical ratio for
most dimensions (¥',/%¥, @,/®,), and so a < 1. The brightness (apparent intensity) of
many light sources increases only as the cube root of the change in physical intensity.
This means the physical intensity of two lights must be in an 8:1 ratio for the more in-
tense light to appear twice as bright. Finally, a few sensory ratios are larger than their
associated physical ratios (‘¥,/'¥, > ®,/®,), and so a > 1. If one electric shock is physi-
cally twice as powerful as another, it will actually appear more than 10 times as intense.
Stevens and his associates devoted many years to a thorough study of different sensory
modalities. In particular, Stevens (1961) “cataloged” the exponents of various dimen-
sions. Figure 2-3b through 2-3d depict these three outcomes (a =1, a < 1, and a > 1).
—Note that even though the function for a < 1 resembles Fechner’s law in being concave
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law become linear whep

tting Fechner’s
. paper), and data fitting

downward, the two are quite different. Data _ . X
the abscissa, but not the ordinate, is logarithmic (seml-log et apl s eraph papen), n
a power law become linear when both axes are logarithmic ( og-! g , Te-

of the line in the latter case de-

gardless of the magnitude of the exponent. The slope ,
fines the magnitude of the exponent. Although Fechner and Stevens’ laws were once

. . . ' was ‘“‘right”), it i
regarded as competitors (investigators commonly asked WhI.Ch ?m_: ion nege g ) [bls
now generally recognized that the W of Fechner’s law for dlscnmllrl]a 10 oo not be
the same as the W of Stevens’ law for subjective estimates, and so there necd be no in-

compatibility. Indeed, the two would be completely compatible if Stevens’ ¥ were the

logarithm of Fechner’s (Luce, 1963). | |
Stevens also developed several methods for inferring the exponents and showing

that any giver estimate was not an artifact of a single method; 1.€., he used converging
operations as defined above. The most commonly use
lowing:

d of these methods are the fol-

1 Ratio production. A subject is shown a standard stimulus and 1s then asked to ad-
just a comparison so that it appears in a specified ratio to the standard. The simplest
and most common ratio is 2:1, so that the subject is asked to make the second stimulus
appear twice as intense. If, for example, the comparison has to be physically four
times as intense, the ratio (a) will be .5. However, the subject might also be asked to

make the second stimulus three times as intense.
2 Ratio estimation. The subject is shown standard and comparison stimuli and

asked to define the ratio of their apparent intensities. Thus, they might report that a
comparison tone is 1.5 times louder than a standard tone.

3 Magnitude estimation. The subject 1s shown a single stimulus and simply asked
to define its magnitude numerically. Usually, subjects are also shown a different stimu-
lus, called the modulus, which 1s given an assigned value to fix the units of the scale,
making it somewhat similar to ratio estimation.

4 Bisection. As in Plateau’s experiment, subjects are shown two stimuli and asked
to adjust a third so that it appears midway between the first two. Unlike other subjec-
tive estimates, bisection requires interval rather than ratio judgments.

5 Cross-modal matching. The subject is presented a stimulus in one modality and
asked to adjust a stimulus in another modality to apparent equality. For example, the
task might be to make a tone appear as loud as a light is bright. As bizarre as the task
may seem, the exponent relating the two modalities is predictable from the exponents
inferred from the other tasks. For example, the sweetness of a sucrose solution and the
apparent thickness of wood blocks both have exponents of about 1 3 Suppose a given
sucrose solution is matched with a given thickness. Then the concentration of thc;: Su-

crose is then doubled. According to Stevens’ power law. th : k
should seem twice as thick, which 1t does. » the matching wood bloc

In all methods, the procedure is repeated with dj '
. ifferent stimuli eter-
mine the consistency of the exponent. 1 in order to d
Although it is not associated as strongly with the Steveps tradition as the above, the

method of equal-appearing intervals (category scaling) also tends to fit Stevens’ power
law (Marks, 1974; Ward, 1974). Subjects simply sort stimuli into categories so that the
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intervals between category boundaries appear equal. In particular, the sensory differ-
ence between the upper and lower boundaries of each category should be the same.

\_ The Fullerton-Cattell Law
The Fullerton-Cattell (Fullerton & Cattell, 1892) law is a basic link between Fechner-

ian indirect psychophysics and psychometrics in general. It states, simply and eupho-

neously, that equally often noticed differences are egual.unless_alng& Or_never no;
ticed. Thsis i1s certainly true 1n the psychophysical case since the unit (the JND) is

defined by equally often noticed differences. The significance of the Fullerton-Cattell
law is that it does not depend upon how the StlmU]Ldlfo[_QLQILlhe_b_aSlS_Qf_Ihe_Jlldc
ment. In pdl'thlllal' the “>” relationship that meant brighter, heavier, or louder above
can also mean “is more preferred,” among other things. If you prefer bananas to apples
S 75 percent of the time and apples to pears 75 percent of the time, the distance between
]_apples and bananas and the distance between apples and pears may be assumed equal;
1.e., apples are at the midpoint of a scale defined by these three stimuli. The “always or
never’ part is simply a caveat that one cannot draw inferences when there is no confu-
sion over trials: If you always prefer bananas to apples and always prefer apples to
pears, their relative distances cannot be inferred from these data alone. However, i1f
you sometimes prefer plums over each and sometimes not, a scale can be constructed.

Signal Detection Theory and Modern Psychophysics

In early studies of the absolute threshold, a stmulus was always presented. Subjects,
who were often also the investigators, typically knew this but were trained at analytic
introspection to report their sensations and to i1gnore this knowledge. Sometimes, how-
ever, the equipment would malfunction and fail to produce a stimulus, but subjects
might say “Yes, | saw (heard, felt, etc.) 1t.” thus committing the stimulus error by re-
sponding on the basis of their conceptions of the stimulus rather than the sensation it-
self. Gradually, “catch™ trials were regularly used to “keep subjects on their toes,” but
no systematic use was made of the data obtained on these trials since the purpose of
the experiments was to measure sensations.

Measuring sensations was the exclusive goal of nineteenth-century psychophysical
research and is often a valid goal today, but it is not the only goal. Reflecting a variety
of factors such as the behavioristic rejection of mental states like sensations, much of
psychophysics eventually became concerned with subjects’ ability to discriminate the
presence of stimulation from its absence. A particular tradition emerged known as the
theory of signal detection (TSD) (Egan, 1975; Green & Swets, 1967; Macmillan &
Creelman, 1991; Swets, 1986a, 1986b; Swets, Tanner, & Birdsall, 1961: Tanner &
Swets, 1954). It bears a close kinship to Thurstone scaling, and we will consider it in
more detail in Chapter 15. For the present, it is most important in helping to illustrate
the difference between the classical psychophysics of judging sensations and the more
modern emphasis upon accuracy of discrimination.

TSD has proven particularly important because of its emphasis upon assessing re-
sponse bias or differential willingness to use the response alternatives independently
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ation. Threshold measures using psychophysicy;

of sensitivity o acy at discrimin e 11

procedures derived from Fechner are particularly 1 le Gf a response: bias invg
(0 report having sensed the stimulus. A practical exampie Ves

the diagnostic accuracy of two clinicians who see the .same set of Patl&?st;; gllmc(:jlan A
correctly diagnoses 90 percent of the patients determm.ed to have la g80 150rder op
the basis of some appropriate method, but clinician B diagnoses only ot Pergeﬁl(’f the
patients correctly. Does this mean that clinician A is the .beFter d-lag_nostlclan. € data
are insufficient since only their hit (true positive) rates 1n identifying th(.)s'e who have
the disease are known. We also need to know the false alarm (false positive) rates of
diagnosing normals as having the disease. Perhaps clinician A has a false alarm rate of
90 percent, in which case he or she is just blindly guessing the presence of the d}seage
in 90 percent of the population. If this is true and if clinician B’s false alarm rate is less

than 80 percent, clinician B could be the better.

TYPES OF STIMULI AND RESPONSES

Endless distinctions could be made about stimuli and responses that are important to
psychometrics, but we will consider only the most important. Most are derived from

psychophysics.

Judgments versus Sentiments

Although no two words perfectly symbolize the distinction. the distinctions between
what we call “judgments,” where there is a correct response, and “‘sentiments,” which
involve preferences, is very basic. There are correct (venidical) versus incorrect an-
swers to “How much is two plus two?” and “Which of the two weights is heavier?”
There may also be degrees of correctness. as in line-length judgments of visual illu-
sions. In contrast, sentiments cover personal reactions, preferences, Interests, attitudes,
values, and likes and dislikes. Some examples of sentiments include (1) rating how
much you like boiled cabbage on a seven-category Likert scale, (2) answering the
question, “Which would you rather do, organize a club or work on a stamp collec-
tion?” and (3) rank-ordering 10 celebrities in terms of preference. Veridicality does
not apply to sentiments—a subject is neither correct nor incorrect for preferring
chocolate ice cream to vanilla ice cream. This distinction is very close to the difter-
ence between making discriminations in TSD and reporting sensations in classical
psychophysics. Judgments also tend to be cognitive, Involving “knowing,” whereas
sentiments tend to be affective, involving “feeling.”

Ability tests nearly always employ judgments regardless of whether an essay, short-
answer, multiple-choice, or true-false format is used. Coversely, tests of interests in-
herently concern sentiments as the subject identifies liked and disliked activities. Aftl-
tudes and personality measures can use either form [tems like “Do you like going (0
parties?” involve sentiments, but items like “How often do YOu 2o to parties?” are €s-
sentially judgments. The distinction may be obscured because the perceived frequency
may reflect preference as well as actual frequency.

Social desirability may bias sentiments in the signal detection sense so that the pop-
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ularity of socially endorsed behaviors may be overestimated. This is less likely to be a
problem with judgments. However, the internal consistency or extent to which items
measure the same thing 1s important to both. Temporal stability or the extent to which
the measure tends to remain the same over time may or may not be important. Chap-
ters 6 through 9 consider how these statistics are obtained. In general, the logic of
using judgments is generally clearer than the logic of using sentiments because of ad-
- vantages 1nherent in having a correct response. Other terms are frequently employed to
describe these two categories. Goldiamond’s (1958) distinction between what he
called “objective” and “subjective” indicators of perception corresponds in essence to
the judgment-sentiment distinction. The word “choice” is frequently used in place of
the word “sentiment.”

Absolute versus Comparative Responses

" In general, an absolute response concerns a particular stimulus, whereas a comparative
response relates two or more stimuli. The distinction applies to both judgments and
sentiments. “How many concerts have you been to in the past year?” versus “Have
you been to more concerts than movies in the past year?" illustrates this distinction for
judgments. Likewise, “Do you like peas?” versus “Do you like peas more than you
like corn?” involves sentiments.

{1 Oneof psychology’s truisms is that people are almost invariably better (more con-
L sistent and/or accurate) at making comparative responses than absolute responses. This
1s because there is a frame-of-reference problem present to at least some extent in ab-
solute responses that is avoided in comparative responses. Asking a consumer “Is this
cola sweet?” raises the question of how sweet is sweet that is avoided when one is
asked to judge which of several colas is the sweetest since the criterion of sweetness
can be applied equally to all colas. One possible application of this principle is in abil-
ity testing. If there are no “none of the above” or “all of the above” alternatives,
multiple-choice tests are comparative judgments of the relative truth of the alterna-
tives. We suggest (and some disagree) that these alternatives be avoided because they
compromise the comparative nature of the test by asking whether none or all of the
other alternatives are true in an absolute sense. Similarly, true-false tests are absolute
judgments of the truth or falsity of a single item, and we suggest the use of multiple-
choice questions for this and other reasons to be considered.
| People rarely make absolute judgments in daily life, since most choices are inher-
k' ently comparative. There are thus few instances in which it makes sense to employ ab-
( solute judgments.” One important exception 1S when absolute level is important, as in
attitudes toward various ethnic groups. A subject could, for example, rank various
groups from most to least preferred. However, the subject may dislike all the national
groups or like them all, which would not be apparent from the comparative rankings.

t Absolute responses are especially important when some indicator of neutrality is need-

1 ed. For example, people who are more neutral with respect to candidates in an election
are probably more susceptible to influence and change than those who have a clear

preference. By requiring absolute responses from subjects, one is able to approximate
a neutral point.
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inherent ambiguity of absolute judgments is of mtereft. Fo1 exztllln[;::;éh;oll\:lbl\lff’; lcl?n‘
tains several items like ““I often have headaches” E%ﬂd l frilql'llfllhg actual fre quenE:: g
asleep.” A psychologist is probably not actually intereste ]t*ve tests could be d -
headaches or sleepless nights. If he or she were, more objec.1 e ev.e]_
oped through clinical observation. The issue is how the patient 1_Dt rp that -
“often” and frequently.” Absolute judgments are perfectly appropriate in q fa .
Absolute responses are aiso useful because they are much ;asmr an a§ter tcf 0b-
tain than comparative responses. For example, the method of palred.c]ompar;:i(){ls is an
extremely powerful way to gather data. A market re§earch example cou IHVO.lve
preferences among K brands of cola. The subject is given two k?rands INn Successiop
and asked to state a preference. This is repeated for all p0551b_16 pairs of t_)fﬁﬂdS. Unfolr-
tunately, this requires anywhere from K(K — 1)/2 pairs (if a given brand 1s present.ed In
only one of the two possible positions in the pair) to K? pairs (if all branf.;is appear In all
orders and a given brand is paired with itself). The number of comparisons increases
rapidly with K. For example, if there are 20 brands in the study, from 190 (20)(19/2) to
400 (20°) trials are required per subject. However, it 1s much quicker to have subjects
rate each brand individually. Any of several scaling models can be used to obtain
interval estimates of preference from each cola’s average rating over subjects. Con-

{versely, paired comparison methods generally give much more reliable results when
applicable.

| To the extent that a person answering an item phrased absolutely has a criterion to
']J define terms like “frequently,” “seldom,” or “hardly ever,” the judegment becomes part-
| ly comparative. Individuals generally have teelings about their absolute liking for an
object or activity, but such sentiments are influenced by the range of objects or activi-
ties available. An individual who rates how much they like boiled cabbage probably

berger, Gorsuch, Lushene, 1970).

(\ If an absolute format is appropriate, anchoring by specifying the meaning of the re-
sponse scale 1s generally important to reducing unwanted error due to differences in

implicit bases of comparison. For €Xample, instead of simply asking subjects to rate
how often they go to the movies on a five-point scale, indicate that ] means once a
month or less, 2 means at least once 3 month, etc. (the actual anchors should be devel-
oped by pretesting). Similarly, if a pretest reveals that subjects nearly always answer

/[ the question “I absolutely adore rutabagas to the point that I must eat them daily”
causes everyone to respond in the negative, .

dence of positive responses, such as woul
Not all situations demand anchors, as in the
intentional.

Preferences versus Similarity Responses
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amples of these responses (which are nearly always sentiments) include which stimu-
lus is most liked, tastes best, 1s least filling, would be most likely purchased, etc. Simi-
larity responses denote which stimuli are most like one another. Preferences are clearly
asymmetric; preferring A to B means not preferring B to A. In contrast, similarity re-
sponses are normally symmetric—saying A is similar to B implies that B is similar to
A (Chapter 15 will consider an interesting exception). Thurstone scaling, described
below, requires preferential data. However, the most common methods of analysis,
(e.g., factor analysis, and multiple and partial correlation) require similarity data be-
cause they are based upon the ordinary Pearson correlation coefficient (Chapter 4), a
"measure of similarity rather than preference.

Specified versus Unspecified Attributes

By definition, psychophysical responses are obtained with respect to an attribute de-
fined by the experimenter. This may also be the case when the attribute is not a single
physical dimension. For example, a marketing study may ask which of several pack-
ages differing in height, width, and depth looks largest even though all contain the
same volume. Conversely, subjects may be asked to evaluate similarities or prefer-
ences among stimuli without being told in what respect. If the stimuli clearly differ in
a single, dominant respect, instructions may be unnecessary. However, if the stimuli
are multidimensional, the goals of the experiment dictate whether or not some particu-
lar attribute should be specified. The study may concern how well subjects 1gnore a
given attribute, so that it is important to tell him or her which attribute 1s critical. On
the other hand, subjects should not be told, implicitly or explicitly, if the goal 1s to find
out which actual attributes subjects actually use.

METHODS FOR CONVERTING RESPONSES TO STIMULUS SCALES

'

Ordinal Methods

Fechnerian methods, which provide ordinal data, Stevens’ methods, which provide in-
terval or ratio data are applicable outside the confines of psychophysics. Keep in mind
that the level at which data are gathered may well differ from the level ot the resulting
scale, particularly for Fechnerian methods. Scaling models often take data obtained at
one level and transform it to a higher level, most specifically to produce an interval
scale from ordinal data. Of course, data gathered at a ratio level need not be trans-
formed. One part of successful scaling involves choosing an empirical procedure that
| is appropriate to the subjects’ ability to respond; another part is to use a scaling model
' appropriate to the resulting data.

In general, the simplest way to obtain ordinal data is the method of rank order
in which subjects rank stimuli from “most” to “least” with respect to the specified
attribute.

In the A-B-X method, subjects are presented with stimuli A and B followed by a
third stimulus (X) which is either A or B. The subject is asked to say whether X 1s A
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all pairs of stimuli. The probability of cop.
o of their similarity. This method is partig,

larly useful in scaling stimuli that are difﬁc.ult to desculloel-hI;(i’;f:rx;‘;nnl;’iihsa‘ipfpose
Alpha Cola and Beta Cola are fairly similar in taste‘, bu(; O-Cent orreot wher A]TOm
Gamma Cola. Subjects’ A-B-X judgments may pe on,.yé k= rrect when Alph Pha
and Beta are paired (50 percent 18 chance), but 80 percent €O Pha and

ymma are paired.
Gamma are paired and 85 percent correct when Beta and Qﬂ“llf"whichpma all be b
In contrast, the method of triads uses three different stimu 1 y € high-

ly discriminable from one another and asks which two arc most Sfmllar' b examp N
the subject might taste string beans, lima beans, and greer peas. I_t is probable that !lma
beans and green peas would be found to be the most similar PMI:ng- The dat.a obtained
from all possible triads in a larger set (the ~umber of combinations of K things taken
three at a time) provide similarity rankings. | o

In the method of successive categories, the subject sorts the stimull 1nto distinct
piles or categories that are ordered with respect 10 a specified attribute. For example,
subjects could sort the U.S. presidents into five piles ranging from “very etfective” to
“very ineffective.” This information can be obtained most easily by having the sub-
jects mark a printed rating scale. This method has many variants depending on the in-
formation sought by the experimenter. If the experimenter is seeking only ordinal in-
formation, the subject may be allowed free choice as to the number of stimuli per
category and number of categories. In contrast, the categories may be constrained to
appear equally spaced in the method of successive categories. Sometimes, subjects are
required to place an equal number of stimuli in each category. Perhaps the most 1mpor-
tant variant is the Q sort where subjects sort the stimuli so that the distribution of stim-
uli in successive piles forms a normal distribution. These methods necessarily provide
numerous tied ranks. Thus if stimuli are placed in a series of categories, those in the
first category can be thought of as tied for the top rank. Averaging over subjects elimi-

nates most of these ties.

or B. The process is repeated, comparing
fusing any two stimuli 1s an ordinal measul

The primary methods used to obtain interval data from subjects are variations upon the
method of successive categories and Stevens’ methods of bisection. This involves in-
structing the subject to use the scale as though the distances betwee:n successive cate-
gories were the same; e.g., the difference between a rating of 2 and 4 is equal to the

" difference between a rating of 6 and 8. Frequen@y anchors are also employed. For ex-

ample, pleasantness could be anchored with adjectives ranging from “extremely pleas-
ant” to “extremely unpleasant.” Rating anchors also may be expressed as erc);ntaoes
to further ensure the interval nature of the responses so that sub'gcts canb IZ1sked leat
percent of the general population they feel agrees with each of ; seri anf et tements.
The method of bisection may be applied outside psychophysics aesfoll S\js Subjects
may be given two statements differing in how favorab]e they are t S 0dUth 'President
and asked to select another statement from a list that fa]]s Close towﬁrlf 3 betweeT
them. Rather than bisecting the distance between the two gﬁmulsi ?thei r:;gs may be

used, as in psychophysics. For example, subjects may be asked to select a stimulus X
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such that the interval between one of two fixed stimuli and X appears twice as great as
the distance between the two standards. Another approach is to present subjects with
two stimuli that are at the extremes of the attribute and have them judge the ratio of 1n-
tervals formed when a third stimulus is inserted.

In all these methods, the subject evaluates intervals of judgment or sentiment. Even
though he or she may describe 1:1 ratios in the method of bisection, these ratios are
not formed with respect to the absolute magnitudes of the stimuli as in ratio scaling.
The experimenter might eventually use a scaling model to obtain these absolute mag-
nitudes, but it is important to maintain the distinction between what the subject 1s re-
quired to do and the experimenter’s use of the data in a scaling model.

Ratio Methods

Ratio methods require subjects to evaluate the absolute magnitudes of stimuli. For ex-
ample, subjects may be given the name of a food liked moderately well by most peo-
ple and asked to name a food liked twice as much, half as much, etc. Note that in ratio
production, the subject generates the actual stimulus, unlike in other ratio methods.
This may be somewhat difficult outside psychophysical applications.

If a zero point can be taken seriously, previously described percentage scales can be
employed for ratio estimation. For example, subjects might rate the complexity of 100
geometric forms. The stimulus rated as most complex in pilot research is used as a
standard, and the other stimuli are rated in relation to this standard on a percentage
scale. If the least complex form is rated at 20 percent, its scale value will be .20, where
the standard 1s 1.0. These ratio scales closely resemble scales obtained from more di-
rect ratio estimation methods (Stevens, 1951, 1958, 1960).

Interval and ratio estimation methods may appear superficially similar. For exam-
ple, choosing a stimulus that is halfway between two others (bisection) seems similar
to choosing a stimulus that 1s twice as great as another (ratio production). In both
cases, the subject forms two equal-appearing intervals. The important difference be-
tween these two methods is that the lower interval is bounded by a phenomenal zero in
ratio production. The subject 1s essentially required to form an interval between two
stimuli that 1s equal to the interval between the less intense stimulus and zero. More-
over, 1f subjects are sophisticated enough to provide interval judgments, they can also
usually provide ratio judgments, making interval methods somewhat unnecessary.

MODELS FOR SCALING STIMULI

The next step in scaling is to generate an ordinal, interval, or ratio scale as desired.
The models considered in this chapter are considered classical primarily because they
have been available for a long time. They may also be considered classical because
they provide relatively simple closed-form solutions and therefore do not require a

computer (in practice, computers would probably be used). In contrast, modem psy-
chometrics, considered in Chapter 10, usually requires open-form estimation.

Ordinal scales do not require complex models, and the various methods of gather-
Ing data and scaling usually produce the same rank ordering. In general, simply aver-
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age of these ranks. This fina] g

age individual subjects’ ranks and rank-order the aver t
of ranks is the desired ordinal scaling of a modal subject. he percentage of subiect
In paired comparison methods, the first step o qeter mine q: dimension than Jea E
that rate each stimulus as being higher on the particular resport ‘ Sk
¥ duce 9 percentages comparing that

of the St1 . g f 10 stimul1 pro _
the other stimuli. Thus, each o cts are summarized by g

stimulus to the rest. The full data from the group of Sl:lbje B
square matrix containing all possible percentages of paired compa p nees,

These percentages are summed for each stimulus (column of the matrix), and these
sums are then ranked from highest to lowest. |

Formal scaling models are more important in constructing mterva! (the more com-
mon situation) or ratio scales. The remainder of this section will con51d§r model§ qsed
for these purposes. They fall into two broad classes of models parallellng the distinc-
tion between Fechnerian indirect (discriminant) methods and Stevens’ direct (Subjec-
tive estimate) methods. Stevens’ approach will be discussed first because it 18 simpler.

I Direct (Subjective Estimate) Models
Direct models are usually close to the data because the experimenter takes the sub-

csponses, magnifude estimations,

. LY ¢ O DOIISE o D15C 1) ) dL]1C
ratio estimations, ratio productions) seriously. Often, the experimenter needs only to
average responses over repeated measurements of one individual to obtain an individ-
ual scale or, more commonly, over subjects in a group to obtain a group scale. The
Stevens tradition, like the Fechner tradition, recognizes variability from sensory noise

but simply as error rather than as an intrinsic part of scaling.
One example is to use the aforementioned method of equal-appearing intervals.

Subjects might sort 100 occupations into 10 successive categories ranging from least
to most prestigious. The subjects are instructed to treat the 10 numbered categories as
an interval scale. Error is minimized by averaging judgments over subjects or occa-
sions. Thus “psychology professor” may be rated 9, 9, 8. and 8 by four subjects. This
yields an average rating, and therefore a scale rating, of 8.5 on the interval scale. Mea-
surements are obtained in a like manner for the 99 remaining occupations. This scale
may then be used in any situation requiring an equal-appearing interval scale, e.g., t0
study the relation between job prestige and job satisfaction. A ratio scale can be
formed 1n a like manner using ratio production. For e€xample, one occupation (€.g.,
dentistry) can be anchored at 50 and subjects asked to rate others as ratios relative to
this norm. See Stevens (1958, 1960) and the Suggested Additional Readings for fur-
ther details. It is important to test the assumption that the Subjects are behaving consis-

tently. One important statistic is the internal consistency reliabil; '
the data. Chapters 6-8 will illustrate the process. ity (homogeneity)

Indirect (Discriminant) Models

Although the logic traces back to Fechner, Fullerton, Cat.tell and others. L. L. Thur-

"" ' stone’s law of comparative judgment (Thurstone, 1928) is the foundation of modem
discriminant models. This law takes on numerous forms depending upon more specific

assumptions. We will consider only the basic ideas and Stress the single most popular

| |
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model. A more complete discussion may be found in Bock and Jones (1968), Guilford |
(1954), and Torgerson (1958). The law of comparative judgment led to signal detec- |
‘tion theory and general recognition theory (Ashby & Townsend, 1986; Ashby & Per-
rin, 1988, see Chapter 15).
Although the same computational procedures can be applied to testing one individ-
ual repeatedly by pooling individual data, we will illustrate the logic here with the
classic example of how one individual’s subjective rank orderings can be “brought
into the open” as an interval scale. Any stimulus is assumed to yield a discriminal
process with respect to a specified attribute. The *“‘discriminal rocess’ 1s simply a
broadly defined reaction which correlates with the intensity of the stimulus on an inter-.
' . Because of what is equivalent to sensory noise, each stimulus
has a discriminal distribution (discriminal dispersion) which reflects the variation 1in
_response to that stimulus. The model assumes the phi-gamma hypothesis by assuming
reactions to a given stimulus are normally distributed, as shown in Fig. 2-4.
These distributions and the attribute continuum on which they fall, most simply
called a ‘“‘strength axis,” are entirely hypothetical. Unlike psychophysics, the experi-
menter cannot locate the stimuli directly on the attribute—any model would be
unnecessary if this could happen. Only after the experimenter makes a series of
assumpions about what 1s going on in the subject’s head and about the statistical rela-

tionship of such covert reactions to the hypothetical dimensions can a suitable model
be formulated.

The mean discriminal process (reaction) to each stimulus is the best estimate of the
scale vaiue of that stimulus in several senses, such as most likely and least squares
(see Chapter 4). If all stimulus means were known, an interval scale would complete
the scaling problem, which is unfortunately not directly possible. They must be in-
ferred from the subject’s responses. Each of several variants upon the basic model
make somewhat different assumptions about the nature of these discriminal processes.
The standard deviations depicted in Fig. 2-4 are unequal, and so some stimuli are more

i variable than others?! Because this 1s a discriminant model, the discriminal processes of
at least some stimuli must overlap measurably. If the discriminal distribtion of any
stimulus does not overlap with any of the others, its interval location cannot be deter-
mined. The major assumptions and deductions of the general model are as follows:

1 Denote the covert discriminal responses to stimulus j as r; and the covert dis-
criminal responses to stimulus k as r;.

FIGURE 2-4 Discriminal distributions of three stimuli which fall at progressively higher points along the
strength axis and are also progressively more variable.

Low §) Ay §3 High
Strength of attribute
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2 The means of these discriminal responses. 7; and ry, ar ¢ the best estimates of their
respective scale positions. That is, if each stimulus’ discriminal procqsses could be _de-
termined directly, its mean (arithmetic average) would be the best estlmate: of a typical
reaction and therefore its location on the interval scale of judgment 0; sentiment.

3 The overlap in discriminal distributions causes the difference 1n response to the
two stimuli, ry = r; — ry, to be positive on some trials and negative _on others, producing
the varied responlse to fixed stimuli that 1S necessary in discriminant m(?dels.. In the
present case, there is variation in the perception of difference. und_zm_andmg_dlsmbu_

ons of difference OIE 1H SO - 1] tQ_1NdaAc -lll
_used in comparisons. By analogy, two weight lifters each vary in their skill because of

a variety of random factors. The varied amounts of weight they lift at a competition
produce distributions analogous to those in Fig. 2-2. Heavier weights quite literally
mean greater strength. One lifter may be better than the other on average. However, if
their abilities are sufficiently similar, their distributions will overlap; the weaker ath-
lete may sometimes lift a heavier weight than the better athlete. One could subtract the
weight of the poorer lifter from the weight of the better lifter in any competition to ob-
tain a difference score. Most of these differences will reflect the fact that the poorer
lifter cannot lift as heavy a weight as the better lifter. It is perfectly proper to place
these difference scores into a frequency distribution which summarize the overlap of

the two separate distributions. In this case, the weights can actually be scaled directly,
but this is the exception.

4 Because the individual discriminal processes r; and r, are assumed to be normal-
ly distributed, the distribution of their difference, ry = r; = r, will also be normally dis-
tributed. This distribution of differences is illustrated in Fig. 2-5. The shaded area 1s

proportional to the percentage of times stimulus j is judged greater than stimulus k,
and vice versa for the unshaded area. Note that the mean (7,) is positive. This is be-

cause the mean discriminal response to stimulus 7; (?j) is greater than the mean dis-

criminal response to ry (ry); consequently, the majority of the differences (the shaded
portion) are positive rather than negative.

5 The mean of the differences between responses to the two stimuli on numerous
occasions. 74 = 7. — I, is the best estimate of the interval separating the two. Although
this mean cannot be estimated directly because it is entirely hypotetical Thurstone s

—

FIGURE 2-5 Distribution of discriminal differences for two stimuli, j and k, where j is ordinarily preferred to k.

fk)' rj

rk< rj

Distribution of difference
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; law of comparative judgment allows it to be estimated from paired comparisons as fol-
\ lows.

~' 6 Ask a subject to state whether stimulus j is greater or less than stimulus k with
respect to an attribute. Denote the proportion of times j is judged greater as pj.

7 Next, assume that discriminal differences are normally distributed with a mean
of 74 and a standard deviation of 1.0. The zero point will fall to the left or to the right
of the mean depending on which stimulus is more frequently judged greater with re-
spect to the attribute. Convert p;, into a corresponding number of standard deviation
units from a table of the normal distribution. If, for example, j is judged greater than k
92 percent of the time ( pi>k = .92), the corresponding normal deviate (z;x) 18 approxi-
mately 1.4. This implies that the zero point is 1.4 standard deviations below the mean.
More importantly, ry = r; — 1y is 1.4 standard deviations above 0, which moves us

J
close to a solution.

8 With 74 = r; — r expressed in standard deviations units, all that needs to be done
is to express r4 in terms of the actual standard deviation of the dispersion of discrimi-
(nal differences. This is necessary because the standard deviations of discriminal differ-
* ences might differ for different pairs of stimuli. In the above analogy to weight lifters,
this would happen if some lifters are more consistent than others. If that occurs, two
pairs of stimuli separated by the same mean distance could be separated by different
scale distances. Thus even if z; and z;, are the same, the standard deviations of the

discriminal differences might require different intervals.
9 The standard deviation of the dispersion of discriminal differences can be ex-

|| pressed 1n the same way as the standard deviation of any set of difference scores. The

| e e
! ; formula 1s i fs. b
Ir'3.,i;1; e, f‘F &
. I1. P y"‘." N Zame
o) .) |/ Oy = \/G] + Gi — 2?];;0}0}; 5-/? (2-3)

'—"P-VI;' ! :_!' .  I NA q&-,«**"‘*d
Vi J{ i l where 4 = the standard deviation of discriminal differences ’
. | ojand oy = the respective standard deviations of discriminal distributions for stimuli j
Ik'-._':/l‘i !’ Emd k
|

rix = the correlation between the discriminal distributions of the two stimuli

The standard deviation of the distribution of discriminal differences thus involves
frH( the standard deviations of the two discriminal distributions and the correlation

between them. A correlatlon that differs from zero implies that the SENSOry noijse

0INPONe of the two discriminal processes are correlated over tris Note that pos-
\ itive correlations reduce the magnitudes of discriminal dispersions. This is in fact the

norm. For example, people vary in how highly they rate all the stimuli on the covert
continuum. Thus, 1f people made absolute responses to the stimuli, one person might
(| like all of the stimuli and rate them highly, and a second person might feel the con-
\ |\ verse. However, the process of comparison eliminates this difference» This is one
J reason why comparatlve Judgments are more consistent (reliable) than absolute judg-

ments.

10 The interval separating two stimuli is obtained from the standard deviation of
the distribution of discriminal differences using Eqs. 2-4:

.i’

f
#

r
.l‘
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7 = (2-4a
_:d — } — 'k — ijGd )

_ 2 . 62— 2r.,.0;0 (2-4b
F'j—f'kZij\/cj-j+Gk JK=) k )

Equations (2-4) multiply the normal deviate by the St‘anda*rd dev1at1t<l)1n of the Q1stn-
bution of discriminal differences between the twO stimuli. This allows ne PYZPEI‘ Inter-
val to be found on the underlying measurement scale. Tlllese equaltltc)lns ﬁ:f ne the
r‘complete law of comparative judgments.” Their use requires kn_OW edge of (1) the
proportion of times each stimulus 18 judged greater than ?.EI.HOtheI' with respec.t to .an at-
tribute, (2) the standard deviation of discriminal dispersions for the two stimuli, and

(3) the correlation between the two discriminal distributions.’ |

Information is rarely obtained about al] three of these statistiCs; f:onsequently, some
simplifying assumptions are usually made. These are discussed in Bock and Jc'mes
(1968), Guilford (1954), and Torgerson (1958). The two most c_ommon assumpthns
are (1) the correlations between discriminal dispersions are Z€ro (i.e., responses are in-
dependent) and (2) the standard deviations of discriminal dispersions are all equal.

Equation 2-4 then reduces to

r— F'k — Ejk 0] 2 (2'5b)

Since all dispersions (standard deviations) of discriminal processes are assumed to
be the same, the term under the radical reduces to V2 times any of the standard devia-
tions. Since that term is constant for all pairs of simuli and since the intervals on an
interval scale are unaffected when all scale values are multiplied by a constant, the for-
mula reduces to

ik (2-6)

: nese assumptions allow the normal deviate representing the proportion of time
ON£ T referred over anofther to _define the intervs eparatine two stimull
Equation 2-6 is by far the most frequently used form of the law of comarative judg-
ment. Further simplifying assumptions are made when the law of comparative judg-
ment is actually applied. The most general form of the model is based on response dis-
tributions of one subject on numerous occasions. This is seldom done for three
reasons. First, it is difficult to find subjects who will devote the time to the task. Sec-
ond, most responses are not independent—subjects tend to remember their previous
responses. Third, the usual goal of scaling stimuli is to obtain a scale that applies t0 @
definable group of people. A scale that applies to only one person is usually of limited
generality.

The law of comparative judgment can be applied to any form of ordinal data, such
as the method of successive categories, but the method of paired comparisons ,is the
most obvious approach. Consequently, each subject is presented with allp ossible pairs
of stimuli in a set, which usually ranges from 10 to 20. The subjects ilfdicate which

member of each pair is preferred (greater) with respect to the attribute in question. The




CHAPTER 21 TRADITIONAL APPROACHES TO SCALING 61

TABLE 2-2 PROPORTIONS OF SUBJECTS PREFERRING EACH VEGETABLE (COLUMNS)
COMPARED TO EACH OF THE OTHER VEGETABLES (ROWS)
Vegetable

Vegetable 1 2 3 4 5 6 7 8 9
1. Turnips 500 .818 770 811 .878 .892 .899 .892 926
2. Cabbage 182 500 601 723 743 736 811 .845 .858
3. Beets 230 399 500 561 736 676 .845 797 .818
4. Asparagus 189 277 439 500 561 .588 676 .601 .730
5. Carrots 122 257 264 439 500 493 574 .709 .764
6. Spinach .108 264 324 412 507 500 .628 .682 .628
7. String beans 101 189 155 324 426 372 500 527 .642
8. Peas .108 155 203 .399 291 318 473 500 .628
9. Corn 074 142 .182 270 236 372 358 372 500

Source: Adapted from Guilford (1954) by permission of the author and publisher.

result is a table containing the proportion of persons who prefer one stimulus to anoth-
er (p;>x)- Table 2-2 lists typical results from a study of food preferences. Values of .5

are placed in each diagonal position in the table as each stimulus i1s assumed to be
judged greater than itself half of the time. Each value of p;., is then converted into a

normal deviate z;, presented in Table 2-3.
If 1t 1s proper to assume Eq. 2-6, each normal deviate in Table 2-3 is an interval be-

~

tween the two stimuli. However, these normal deviates are likely to be affected by
sampling error, which can be reduced as follows. The sum of the normal deviates for
each column (stimulus) 1s obtained and then averaged. However, pairs that are widely

TABLE 2-3 TRANSFORMATIONS OF THE PROPORTIONS IN TABLE 2-1 TO NORMAL DEVIATES

(z SCORES)
Vegetable
Vegetable 1 2 3 4 S _ 6 7 8 9
1. Turnips .000 .908 739 882 1.165 1.237 1276 1.237 1.447
2. Cabbage -.908 .000 .256 592 .653 .631 882 1.015 1.071
3. Beets -.739 .256 .000 .154 631 456 1.015 .831 .908
4. Asparagus -.882 -.592 —-.154 .000 154 222 456 .256 613
5. Carrots -1.165 -.653 —.631 .154 000 -.018 187 950 719
6. Spinach -1.237 -.631 -456 -.222 018 .000 327 473 327
7.Stringbeans -1276 -882 -1.015 -456 -.187 327 000 .068 .364
8. Peas -1.237 -1.015 -.831 -256 -550 -473 -.068 .000 327
9. Corn -1.447 -1.071 -908 -613 -719 -327 -364 -.327 .000
Sum -8.891 4192 -3.000 -073 1.165 1.401 3711 4.103 5.776
Average -988 -465 -333 -008 +.129 +.156 +.412 +456 +.642
-~ - Final scale .000 023 .655 980 1117 1144 1400 1.444 1.630.
ol riee ) —— — — — a—— —
pet (f--:.,lf'{ iy Source: Adapted from Guilford (1954) by permission of the author and publisher.
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separated (e.g., z;, > 2.0), are eliminated from this averiglﬂg process befflllse the as.
sumption that these stimuli overlap is not tenable (the always Or Never  part of the
Fullerton-Cattell law). The results are normal deviates expressed as dewa-tlons from
the average stimulus in the set. Finally, the value of the lowest (most.negatwe) Stimy-
lus 1s sub?racted from each of the values to eliminate negative values in the ﬁn‘ai Scale,
This produces the final interval scale, e.g., of food preferencefs for the data In Table
2-3. Corn is the most liked vegetable, and turnips are the least liked. The latter is arbj-

trarily designated as zero on the scale. This zero is arbitrary, by definition, since this is
an interval scale. |

Simulating Thurstone Scaling

One can work backward from the scale values presented at the bottom of Table 2-3 to
estimate the proportions found in Table 2-2 directly by applying Eqs. 2-3 through 2-6
in reverse order. Consequently, a Monte Carlo approach is unnecessary. However, it is
instructive to perform one and compare it to our previous simulation. The first step is
to multiply the scale values in the bottom line of Table 2-3 by V2 to conform to
Eq. 2-5b. This provides values of .000, .740, .926, ..., which are the mean discriminal
reSpONses—r;, ry, ....

To compare turnips with cabbage, two numbers were chosen from a normal distrib-
ution having a mean of zero and a standard deviation of 1.0. The first number was
added to the value associated with turnips (.000), and the second number was added to
the value associated with cabbage (.740). These independent, normall'y distributed ran-
dom numbers provided discriminal dispersions. When added to the scale values, they
yielded the covert discriminal responses, rj and ry, of assumption 1. They were as-
sumed normally distributed because of assumption 4. The subject preferred turnips
over cabbage if r; — . was > 0 but preferred cabbage over turnips if r; — i, was <0,

This was repeated 1000 times for each stimulus pair. The resulting probabilities appear
in Table 2-4.

TABLE 2-4 ESTIMATED PROPORTIONS OF SUBJECTS PREFERRIN

G EAC
UPON COMPUTER SIMULATION H VEGETABLE BASED

) Vegetable
Vegetable - 1 2 38 4 5 6 2 8 9
1. Turnips 500 .710 745 .845 .844 | 9;;
2. Cabbage 290 .500 .550 .684 370 o Py |
735 761 813  gosa 88
3. Beets 255 450 500 614 ' ' 1
676 697 748 784 .82
4. Asparagus .155 316 .386 500 ' ' 45
925 567 49 668 -/
5. Carsots 156 265 324 475 5o pg an3 700
6. Spinach 130 239 303 433 471 ‘500 peh '633 :675
7. String beans 073 187 252 351 .399 .425 po '613 585
8. Peas 077 196 216 332 .367 -337 45132 2(2)0 549
9. Comn 044 136 179 255 .300 '325 '415 452 500
W = . . . -

Source: Adapted from Guilford (1954) by permission of the author an;j DUb"S:h
er.
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These probabilities are only a first approximation to those in Table 2-2. For exam-

ple, turnips are preferred to cabbage .810 of the time, but the simulation only predicted

a difference of .710. On the other hand, the observed preference for corn over cabbage

(.858) 1s fairly close to the predicted preference (.864). Consider why the fit was not

\better. One major factor was that the simulation assumed the equal discriminal disper-

sions of Egs. 2-5 and 2-6 instead of the more general Egs. 2-3 and 2-4. Another possi-

1bi]ity 1s that the stimuli vary along more than one axis, i.e., are multidimensional.

/ Should one try a more general model with more parameters to estimate? Perhaps yes;

- perhaps no. This is a question of the tradeoff of completeness and goodness of fit
against parsimony.

A Comparison of the Two Simulations

Two simulations have been presented in this chapter. The first involved absolute judg-
ments along a single physical dimension, i.e., was psychophysical. The second
involved a comparison of two sentiments with stimuli that did not vary along one
physical dimension, i.e., was not psychophysical.

The law of comparative judgment has had both historical and continuing 1mMpor-
tance. The first author had the privilege of sitting in Thurstone’s classroom when he
indicated that the law of comparative judgment was his proudest achievement. This
came from a man for whom the word “genius™ is appropriate. Hundreds of journal
articles and numerous books have been stimulated by the law of comparative judg-
ment. Although the derivation of the law is not simple, the law itself is held in rever-
ence by some psychometricians, and for good reason.

In the end, the law is very simple. It consists of transforming percentages of
“greater than” responses for pairs of stimuli into = scores reflecting their difference.
The process uses the inverse of the cumulative normal curve introduced in basic statis-
tics. This inverse function is depicted in Fig. 2-6. The interval between any two stimuli
1s the z score that corresponds to the percentage of “greater than” responses. Intervals
are computed for all pairs of stimuli. Although these z scores themselves can define in-
tervals, they are usually averaged to increase the rehiability of the estimates, and the
lowest one 1s set to zero to simplify description.

The point basic to both simulations is that variability due to noise unified the two
types of response. The additional factor of a correlation between the separate process-

es In a comparison 1s also important in reducing the magnitude of error. The simula-
tions reasonably document what the subjects do.

The Logistic Distribution and Luce’s Choice Theory

Although much statistical theory used in scaling employs the familiar normal distribu-
tion, more recent work tends to stress the logistic distribution. The ogival shape of the
logistic distribution is visually indistinguishable from the cumulative normal distribu-
tion, but it is much more convenient mathematically. This will be especially important
in Chapters 10 and 15. Equation 2-7 defines the logistic function:
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Interval scale values based upon the law of comparative judgment (z;) as a funtion of the
percentage of “greater than” responses (p;>«)-

N/
,el X

Y = (2-7)

_ 1+el.7x

where ¢ = 2.718281828+. The constant 1.7 causes Y to differ from the standard cumu-
lative normal distribution by no more than 0.01 for any value of X. Had this distribu-
tion been used instead of the cumulative normal, the final scale values would have
been indistinguishable.

Just as it is reasonable to use the cumulative normal distribution because the com-
bined effects of independent sources of error tend to form a normal distribution, the lo-
gistic distribution may also be justified mathematically through Luce’s choice theory
(Luce, 1959a, 1963, 1977). Choice theory deals with preferences just as the law of
comparative judgment does. Consider choosing one vegetable from menus on which
(1) asparagus and beets are the only two choices and (2) there are other options. The
probabilities of choosing asparagus and beets are obviously smaller when there are
other options since one may prefer corn, cabbage, etc.. over either.

The essence of choice theory is the constant ratio rule which predicts that the rati0
of choosing asparagus over beets will be the same in both situations. Thus. Table 2-2
indicates that 56.1 percent of subjects chose asparagus over beets when tl;ey are the
only options. This ratio is 56.1/(100 - 56.1) = 56.1/43.9 or 1.28. Now suppose that 10
percent of subjects choose beets from a larger meny. According to the model, aspard”
gus should be chosen 12.8 percent of the time. These constant ratios in turn are ais
the ratios of their scale values. The logistic transformatiop relates scale values (X) 0

probabilities (Y). In contrast, Eqs. 2-3 through 2-6 show that Thurstone’s law of com
parative judgment is a constant-difference rule.

F
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Averages as Scale Values

Both Thurstone’s law of comparative judgment and choice theory are representational
models of interval scaling in the sense of Chapter 1. The reason for choosing either the
normal curve transformation that gave rise to Table 2-2 or the logistic transformation
follows from the constant-difference and constant-ratio rules (assumptions). Consider
what would happen if the scale were simply formed from the preference probabilities
in Table 2-2 themselves. One first computes the column sums, which are 1.634, 3.001,
3.438, 4.439, 4.878, 4.947, 5.764, 5.925, and 6.414. Dividing each in turn by 9 to form
averages gives 0.181, 0.333, 0.382, 0.493, 0.542, 0.554, 0.640, 0.658, and 0.712. Next,
subtracting 0.181 from each average gives values of 0.000, 0.152, 0.201, 0.312, 0.361,
0.373, 0.459, 0.477, and 0.531.

In order to visualize the similarities between these values, based upon simple sums,
and either Thurstone’s or Luce’s formal assumptions, multiply each value by the ratio
of the highest scale value in Table 2-3 (1.630) to the highest scale value here (0.531)
or 3.07. This makes the first and last values of the two scales the same. Both this and
the subtraction of the smallest scale value (0.181) are permissible transformations of
an interval scale. The resulting scale values are 0.000, 0.466, 0.615, 0.957, 1.108,
1.145, 1.409, 1.464, and 1.630. The similarities to the proper Thurstone values are ap-
parent and important.

This similarity 1s one justification for the operationalist position (Gaito, 1980) dis-
cussed 1n Chapter 1. Were the table comprised of outcomes for nine baseball teams,
the result would be familiar won-loss percentages. However, the operation and there-
fore the scale values are meaningless in a representational sense since, unlike the ratio-
nale provided by Thurstone and his predecessors, there is none for summing probabili-
ties as opposed to z scores. The operationalist position is that it is difficult to see why
one operation 1s meaningless when 1t gives results nearly identical to those of another
that 1s meaningful.

Checks and Balances

So far in this chapter numerous assumptions have been discussed regarding the use

of various models for scaling stimuli. How does one know if the assumptions are
correct?

1 We have already noted the importance of internal consistency in developing sub-
jective estimate scales. Similar considerations hold for discriminant models. Basically,
an ordinal scale 1s developed by averaging individual subjects’ rankings, and the data
are internally consistent to the extent that different subjects give similar rankings. As
previously noted, suitable methods for obtaining internal consistency measures are dis-
cussed later in Chapters 6 through 8.

2 As indicated in the simulations, one can work backward from Thurstone scale

values to paired comparison probabilities. These estimated probabilities should be
similar to the observed probabilities.

| 3 One should examine the transitivity of the response probabilities. If stimulus i
18 preferred to j and j is preferred to k, then i should be preferred to k. Violations of
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1r " idi onal. Of course, slight vio.-
transitivity are an indication that the «cale is not unidimens! » SIENT vio
ment error.

lations of transitivity may simply reflect measure o L
4 A stronger (interva}) criterion for unidimensionality 15 the adt_ill‘tlfflt)’ of the scale
" Chap. 14. Tests of additivity depend upon

values, an issue we will consider in detail In a e Suopose th
which form of the model is being used, but the basic 1dea. 1s sumple€. Supp af Eq.
ariances, is used. NOW suppose stimu-

- - h N ' - C C ual .
2-6, which assumes that the stimuli have €q _ 65). A table of the normal

lus i is preferred to stimulus j 65 percent of the time (Pi>; S
curve indicates that stimuli i and ) are separated by .39 units. urther, suppose that

stimulus j is preferred to stimulus k 70 percent of the time (Pj>k = 0). This 1mplies that
stimuli j and k are separated by .52 z-score units. Additivity holds to the extent that the
distance between i and k is close to .91 (.39 + .52) z-score units. ansequently, Pisk
should be .82, the value of p associated with a z SCOT€ of .91, within measurement
error. A failure of additivity could imply that the data are multidimensional, bat it
could also imply correlated error or unequal variance. Guilford (1954) describes a for-
mal chi-square test of significance.

5 As in any scientific endeavor, relative scale values should be replicable within
the linear transformations permitted by an interval scale. As with any other criterion,
the degree of replicability is a function of the sample size: The larger the sample, the
more stable the expected results. However, other factors, particularly the care with
which the data are gathered, are also important. Thus, the relative sizes of the intervals
among the stimuli should remain much the same. If the relative sizes of these intervals
change markedly across situations, scalings would be highly context-dependent. These
findings would therefore ordinarily not be useful unless the changes occurred in a the-

oretically interesting way.

Multi-item Measures

AR

This book stresses the need for multi-item measures, where “item” is broadly used to
stand for any stimuli used in measurement. Thus items may be words on a spelling
test, comparisons between weights, statements concerning attitudes toward the U.S.
Congress, response latencies, etc. There are a number of important reasons for com-
bining several items when measuring a psychological attribute.

1 Individual items usually correlate poorly with the particular attribute in question.

2 Each item tem}s t}? 1I:i':lzalte to attributes other than the one to be measured. For €X-
ample, the ability of children to spell “umpire” | '
intel:;‘est in basebzﬂl. ’ P correctly may partly depend on thet

3 Each item has a degree of specificity in the sense of not correlating with any g&I-
eral attribute or factor. The concept of specificity for individya] test 1t ; will becom®
clearer when factor analysis 1s discussed in Chapters 11 through 13 ems

4 Individual items have considerable random measurement er;' : are unreli-
able. This can be seen when people rerate stimuli. A person who i 0:1 ;ie.,rates g
lus A as 3 on one occasion may rerate it as 5. Some of this mav 1 1;11 E: 3111 it
attribute over time, but 1t may occur even when one hag eve " reason | bf]jeve the
trait itself is stable. To the extent that some stimuli are rategyhzegalf’:rn;[?d others &It
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rated lower, measurement error averages out when individual scores are summed to
obtain a total score. |

S An item can categorize people into only a relatively small number of groups.
Specifically, a dichotomously scored item (one scored pass versus fail) can distinguish
between only two levels of the attribute. Most measurement problems require much
finer differentiations.

All of these difficulties are diminished by the use of multi-item measures. The ten-
dency of items to relate to incidental factors usually averages out when they are com-
bined because these different incidental factors apply to the various items. Combining
items allows one to make finer distinctions among people. For reasons which will be
discussed in Chapters 6 and 7, reliability increases (measurement error decreases) as
the number of items increases. Thus, nearly all measures of psychological attributes
are multi-item measures. This is true both for measures used to study individual differ-
ences and for measures used in experiments. The problem of scaling people with re-
spect to attributes is then one of combining item responses to obtain one score (mea-
surement) for each person.

Iltem Trace Lines (Item Characteristics Curves)

Nearly all models for scaling people can be described by different types of curves re-

lating the attribute they measure to the probability of responding one way versus an-

other. Functions of this form are called “item trace lines” or “item characteristic
curves” (ICCs). For example, a trace line might denote the probability of recognizing
Thurstone as the author of the law of comparative judgment as a function of overall
knowledge of psychology. We will define response alpha as passing rather than failing
an ability 1item scored as correct versus incorrect, answering an personality test item in
the keyed direction, agreeing rather than disagreeing with an opinion statement, or re-
membering versus not remembering an item on a list. Response beta is the alternative
outcome. More complex models can handle multicategory responses such as Likert
scales and the nominal categories of a multiple-choice item. Figure 2-7 depicts four of
the possible forms a trace line based upon dichotomously scored items may take: (a) a
step function, (b) an ogive, (c¢) an irregular but monotonic function, and (d) a nonmo-
notonic function.

The point to note about all trace lines is their similarity to local psychometric func-
tions like Figs. 2-1 and 2-2. The difference 1s that the abscissa of a psychometric func-
tion is a physical dimension (®) that can usually be described in ostensive terms. The
abscissa of a trace line denotes an abstract attribute defined in terms of its strength as
in Thurstone scaling and is commonly denoted “®”. Different models make different
assumptions about trace lines. Some are very specific as to form and require trace lines
like those in Fig. 2-7a and 2-7b; others describe only a general form like that in Fig.
2-7c. Figure 2-7d generally represents what 1s normally an undesirable outcome. It is
most likely to arise when a distractor on a multiple-choice test tends to be chosen by
high-ability subjects, perhaps because it is correct in a way that the test constructor d1d
not think of. However, there are some models that use nonmonntone items. |
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(a)
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l

Probability of response alpha

Strength of attribute, 0

(b)

o
I

Probability of response alpha

Strength of attribute, 6
Trace lines (item-characteristic curves). (a) A step function, (b) an ogive.

In general, it is important to distinguish among (1) a single observation (test item),
(2) a more general attribute measured by a finite number of 1tems that may be spurl-
ously influenced, an obtained or fallible score, and (3) a hypothetical, perfectly mea-
sured attribute or true score perhaps as measured on an infinite nun;ber of trials. A
critical difference between the classical approach of Chapters 6 and 7 and the modern
approaches of Chapter 10 (item response theories) is that classical approaches usually
define © in terms of obtained measures (fallible scores), but item response theories al-
ways define © 1n terms of true scores. The ordinate in both cases is the probability of
proportion of response alpha, and thus refers to a test item.

Attributes are also commonly called “constructs” or, in the narrower sense of PEr-
sonality theory, “traits.” When an attribute is Inherently categorical (e.g. pO]j'?i"al
party or religious membership), the attribute is called 4 “class.” Classes may Vary
complexly, but attributes are otherwise generally assumed to va-_ry in only one W2y
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1.0

Probability of response alpha

Strength of attribute, 6

(d)
1.0 -

Probability of response alpha

0 - — —_— —
Strength of attribute, 6

FIGURE 2-7 (c) A monotonic function with no well-defined form, and (d) a nonmonotonic function.

.., be unidimensional. The measurement of constructs is discussed in Chapter 3, and
the principles involved in estimating fallible and true scores are considered in éhap-
ters 6 through 10. The response of a subject in recalling a particular word from a list
of words presumably relates to a more general attribute of memory. The principles
apply to measuring any response, not just pencil-and-paper items.

An attribute is defined somewhat circularly in terms of whatever the items tend to
measure in common. Chapter 3 considers the process of validation that is used to
“break the circle.” Appropriate methods also exist to infer how much the items have in
common. Thus a list of spelling words are assumed to measure spelling ability, and thé
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measure of memory for the particy-

number of words correctly recalled are a (fallible) bute 1S Perfectly mirrored 1n any fi.

( e wsilal. Ths woed e S et atttndf.:mf:mds that children be adminis-
| i : ' suremen , .
nite set of items. Perfectly reliable mea olling test of subjects in a memory

| tered all words in the English language on & P
study be given an infinitely long list to recall.

Difficulty and Discrimination _

5

2

l,

(

. . ST : ' tion. “Difficulty”
Two basic properties of a trace line are 1tS difficulty_an _ _ ty
- to achieve a given prob-

refers to how much of the attribute an individual must pqssess_ _ /<1 prop-
ability of response alpha. Increasing the difficulty of an 1tem 15 equwglent. to Shdlﬂg_
its trace line to the right, as has been done with the item denoted a 1n F1%: 2-8. ;F}'us
might occur when a group of primary school children are asked to spell “cattle n-
stead of “cat.” Making the item easier slides the trace line to the left. The classical
psychometric index of difficulty is simply the probability of response alpha. Howev-
er, modern theories use the amount of an attribute (©®) necessary [O achieve a .5
probability of response alpha, i.e., the “threshold.” This reflects the analogy to psy-
chophysics.

The “discrimination” of an item describes the extent to which the probability of re-
sponse alpha correlates with the attribute. An item with a perfectly flat trace line does
not discriminate and should be eliminated from the test. Most models are called “mon-

\otone” models in that the probability of response alpha is expected to increase with the

attribute in the general form of Fig. 2-7¢. In that case, making an item more discrimi-
nating increases its slope, as depicted by the item designated b in Fig. 2-8, which com-
pletes the analogy with the psychometric function of psychophysics. The most com-
mon classical index of discrimination 1s the correlation over people between response
alpha and total test score, the “item-total” correlation. The concepts of difficulty and
discrimination are logically independent, as an item may be difficult or easy regard-
less of whether it is discriminating or nondiscriminating. However, modemn test theo-
rists stress that the probability of response alpha and the item-total correlation are not
independent  because, as will be noted in Chapter 4, the proportion
of all?ha responses places limits on the item-total correlation. In }act, item response
theories use the slope of the trace line to describe discrimination, just as in

i psychophysics.

There must be a large number of persons at each point on the trace line. Save for
classes, attributes are continuous, so that it is theoretically possible t e alllf. infinitely
fine discriminations. The trace line thus shows the €xpected res o be :)nh for
people at that level of the attribute or class. This €Xpectation e'tlf)Onse D e pr ba-
bility of response alpha for dichotomous items or the mean f 1 Lejl' defines the prolti-
category items. Such expectations inherently contajn error CI;I;)I lt]::arltn(;eml:g; rznils .

probability of response alpha at each point for dicho -
: : t - .
tainty as to who will respond alpha and who wiJl re(;pr::)(;lf 1tems, but there 1S n(_) cer

likewise have a band of error (standard error) surroupg;
the expected score on a 5-point Likert scale for a give ik
3.1, scores at that point probably range from 1 to §
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FIGURE 2-8 Effects of making an item more difficult (item a) or more discriminating (item b) relative to a
reference item.

DETERMINISTIC MODELS FOR SCALING PEOPLE

f\{ Deterministic models are so called because they assume that there is no error and so

- f‘the trace line 1s a step function as in Fig. 2-7a (or Fig. 2-1a). The most common form
assumes that the probability of response alpha to a dichotomous item at each level of
the attribute 1s 0 up to a point (probability of response beta is 1.0), i.e.. the threshold.
Beyond this point the probability of response alpha is 1.0. Its discrimination is there-
fore infinite at the threshold. Figure 2-9 contains a family of such items. Each item has
a perfect biserial correlation (an estimated correlation between a dichotomous measure
and a continuous measure, assuming that both underlying measures are continuous and
normally distributed, see Chapter 4) with the attribute. Consequently each item per-
fectly discriminates at a particular point of the attribute. This is perhaps a very appeal-
ing model because it is exactly what one expects to obtain from measurements of
length. Thus, one expects to obtain a trace lines like those in Fig. 2-9 for the following
1tems:

Yes No

(a) Are you above 6 feet 6 inches in height?
(b) Are you above 6 feet 3 inches in height?
(c) Are you above 6 feet in height?

(d) Are you above 5 feet 9 inches in height?
() Are you above 5 feet 6 inches in height? _
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1.0

Itemd—»{ Itemc —» Itém b—»

Probability of response alpha

Strength of attribute, 6

FIGURE 2-9 A family of trace lines that discriminate perfectly at different poi_nts and thereby form a monotonic
deterministic modei (Guttman) scale. Items a to d are progressively easier.

Assume “yes” is response alpha. Any person who answered yes to question (a)
would answer yes to the others. Any person who answered no to (a) but answered yes
to (b) would also answer yes to questions (c) through (e). Five people with different
patterns of responses would produce a triangular pattern of data like that in Table 2-5.
An X symbolizes a yes answer (response alpha).

The Guttman Scale

Although a trace line usually requires at least some statistical estimation, one can look
at data to see 1f they provide a triangular pattern like that in Table 2-5 (making, how-

ever, a subtle logical assumption as discussed below). Some items do produce a pal-
tern of data like that in Table 2-5, perhaps the following:

Yes No
(a) The U.S. Congress is the savior of all Americans. |
(b) The U.S. Congress is America’s best hope for peace. ) T
(c) The U.S. Congress is a constructive force in the o —
American political system.
(d) We should continue our present system of government, - T
including Congress.

e e

Anyone who answers yes to (a) will probably answer yes to the other 1tems; anyor”
who answers no to (a) but answers yes to (b) will probably answer yes to the othe!

items; etc. Items that produce a pattern of respor .

NOSE i ANIC L

Z
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TRIANGULAR PATTERN OF RESPONSES
FITTING A GUTTMAN SCALE

Person

N
W
£
O,

Item 1

©T Q O T D
X X X X X
X X X X
X X X

X X

x

6

man scale,” Guttman scales are developed by administering items to a group anc
then attemp 1ng to arrange the responses so that the orm_the required triangular pat-
tern (see Torgerson, 1958). The data will form a “solid staircase” of alpha responses,
and the height of each step will be proportional to the number of people at each level
of the attribute.*The term “scalogram analysis” describes methods of developing
Guttman scales.

Unfortunately, 1t is very unlikely that the initial set of items will produce a triangu-
lar pattern. It 1s therefore necessary to (1) discard some items and (2) find the best pos-
sible ordering among the remaining items. The reproducibility of score patterns is of
primary concern regarding the latter issue. If a triangular pattern is obtained, knowing
the number of alpha responses allows one to reproduce all of an individual’s respons-
es. The percentage of people whose patterns are thus reproduced is a basic statistic in
scalogram analysis.

Guttman scales could conceivably be developed for any type of dichotomous item
such as a spelling test. A triangular pattern of data will be obtained (X denoting a cor-
rect spelling) 1f the items have trace lines like those in Fig. 2-10. If person A has a
score of 35 and person B has a score of 34, person A would have to get the same 34
items correct as person B plus the next most difficult item. Knowing how many items
an individual passes defines which items are passed.

Figure 2-10 describes a variant upon the Guttman scale which uses nonmonotone
items instead of monotone items, i.e., the trace lines go up and then comes down. Our
discussion of Guttman scaling in the next paragraph applies to this variant. Subjects
falling between two levels of the attribute respond with alpha, and subjects who either
fall below the first level or above the second level respond with beta. Each person re-

sponds with alpha to only one item. The following four items should fit this model:

Yes No

(a) Are you between 6 feet 3 inches tall and 6 feet 6 inches?
(b) Are you between 6 feet tall and 6 feet 3 inches?
(c) Are you between 5 feet 9 inches tall and 6 feet?
(d) Are you between 5 feet 6 inches tall and 5 feet 9 inches?
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4

1.0

Jtem a

[tem C Item b

Probability of response alpha

0

Strength of attribute, 0
nts of a nonmonotonic, deterministic scaling model.

FIGURE 2-10 A family of trace lines that meet the requireme
ltems a to c are progressively easier.

Evaluation of the Guttman Scale

The Guttman scale concept has great intuitive appe
rare as step functions are in psychophysics, where there is great control over the stimulj,

anything approaching a step function outside that context is even rarer. No 1tem corre-
lates perfectly with any attribute. Although there is no way to obtain the trace line
directly, some good approximations are available. Trace lines obtained with virtually
all items have a much flatter slope than is consistent with the Guttman model, regardless
of whether classical or modern methods are used to estimate them. Individual items
rarely correlate higher than .60 with total scores. That is why it is unreasonable to
assume a model that assumes perfect biserial correlations between items and an attribute.
,  Second, having a triangular pattern of data does not guarantee that items have step-
/ function trace lines like those in Fig. 2-11. Items whose thresholds are far enough
- apart in difficulty will provide a triangular pattern even if their trace lines are fairly
' flat. This may be illustrated with the following four items:

al. but it is highly unrealistic. First, as

a Solve for x: x>+ 2x + 9 = 16.

b What does the word “severe” mean?

¢ How muchis 10 x 38?

d When do you use an umbrella? (given orally).

ing in age from 4 to 16. Anyone who got the first item correct probably could get the
others correct. Anyone who failed the first item but got the sec I)d e 1d prob-
ably get the other two correct, etc. This would produce the r on eczlorr?ct Wclau P o
of data even though they probably measure different atu-ibutee:ll(l‘l‘lt-' mangu a;ul: sens
of Chapters 11 through 13). They apparently fit the unjqim 3‘?tor:l, 1na]e ot
because they are administered to an extremely diverse populafilcl):m(lj onizq sently, it
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does not follow that having a triangular pattern of data is sufficient to establish a unidi-
mensional scale. Because triangular data patterns can be obtained any time items vary
greatly in difficulty, Guttman scales seldom have more than eight items. To take an ex-
treme case, three items that are, respectively, passed by 10, 50, and 90 percent of the
subjects will probably produce a triangular pattern regardless of their content. Scales
which have eight or fewer items can make only gross discriminations among people.

A third criticism of the original Guttman scale was that it provided only an ordinal
scale. However, recent methods of statistical estimation considered in Chapter 10
allow 0 to be estimated on an interval scale.

A fourth criticism of the Guttman scale is that it is usually more appropriate to
think of items as rubber yardsticks applied by investigators with limited vision rather
than as well-defined and well-understood procedures. To complete the analogy, one
should think of items as rubber yardsticks that are poor copies of a real yardstick so
that some yardsticks may have a zero point at 4 inches. Any single yardstick (item)
discriminates poorly. However, the methods discussed in subsequent sections, such as
simply adding items evoking response alpha, allow one to combine these various rub-
ber measurements to obtain an approximate linear relationship with “better” yardsticks
and thus obtair an interval scale.

In summary, we suggest the deterministic model underlying the Guttman scale 1s not
very applicable to psychological measurement because (1) almost no items fit the
model, (2) a triangular pattern 1s a necessary but not sufficient condition for the fit of the
model, (3) the triangular pattern can be (and usually 1s) an artifact of using a small num-
ber of items that vary greatly in difficulty, (4) the model originally provided only an or-
dinal scale (a problem since overcome), and (5) there are better ways to develop mea-
surement models [Cliff (1983a) presents a well-reasoned defense of Guttman scaling; it
1s also important to distinguish between Cliff’s work in which the Guttman model is ap-
plied to a dichotomized composite score and the present discussion, in which individual
items are presumed to fit a Guttman scale]. However, impractical models are often Very
important to the development of more useful models. This is certainly the case with the
Guttman scale—the item response theories of Chapter 10 replaced the assumption of a
step function with a more realistic ogive of the form presented in Fig. 2-7b. The
Guttman scale, while unreasonable in itself, is a basic link to modern test theory.

PROBABILISTIC MODELS FOR SCALING PEOPLE

Trace lines that are not step functions like Fig. 2-7a describe some probabilistic mod-
els. There are numerous types of probabilistic models, depending on what form the
trace line is assumed to have.

Nonmonotone Models

Nonmonotone probabilistic models are analogous to nonmonotone deterministic mod-
els as discussed above. Trace lines that change slope from positive to negative, or vice
versa, at some point are nonmonotone. The only nonmonotone model that has been

used assumes trace lines that are in the shape of normal distributions, as depicted in
Fig. 2-11 for three items.
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Nonmonotone, normal trace lines for three items that might be used on a Thurstone scale of
attitudes.

The trace lines need not be exactly normal, and their standard deviations need not
be equal. This model has been used only to develop a few attitude scales.®Since Thur-
stone developed the scaling procedure, it is referred to as a “Thurstone scale of atti-
tudes.” However, this model has little to do with and should not be confused with

Thurstone’s previously discussed law of comparative judgment. Items at three points
on a Thurstone scale of attitudes are as follows:

Agree  Disagree

(a) | believe that the church is the greatest institution
in America today.

(b) I enjoy a fine ritual service with good music when
| go to church.

(c) The paternal and benevolent attitude of the
church is quite distasteful to me.

A Thurstone scale of attitudes begins with a large pool of attitudinal statements
rated by 100 or more raters. Each statement is rated on an scale consisting of about 1
Likert-type steps, perhaps ranging from “strongly favorable” with respect to the at
tribute to “strongly unfavorable.” Note that the raters do not state how they feel abou!
the item; they evaluate the item itself, so that both a conservative and a liberal rater
might rate a given item as “moderately favorable” with respect to a liberal position
Two standards are used to select a set of 10 to 20 items from the initial pool: (1) Th¢
ratings of items should have small standard deviations over rat (-E tile raters
should agree among themselves where the items fall on the scalEl *‘-e o dlkij means fof
different items should vary considerably (i.e., itemns should g ;o de range Of
the attribute). A subject’s score is the average score of the it;;Seﬁz i r“;he endorses:
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For example, if a subject agrees with items that have scale scores of 3.0, 3.1, and 3.2
and disagrees with all of the remaining items, that subject is assigned a score of 3.1.
Another approach is to assign the scale score of the highest item on the scale with
which the person agrees. The consistency of judgments can be inferred from the stan-
dard deviation of the endorsed items scale scores.

The Thurstone scale of attitudes model states that each item should evoke response
alpha (agreement in this case) in only one limited region of the attribute (©). Assum-
ing that the trace line has an approximately normal distribution recognizes that items
may be endorsed by people with a range of attitudes and, conversely, that people with
a given attitude endorse items near and not necessarily at their preferred position. If
only people who fall at 3.1 on the scale were to endorse an item judged to be 3.1, the
scale would have to have an infinite number of items to capture the one that epito-
mizes the subject’s attitude.

The major fault of the Thurstone scale of attitudes and, for that matter, any other
nonmonotone model, is that good nonmonotone items are very difficult to construct.
This is especially true for abilities items and, more generally, judgments. The problem
1s somewhat less severe with sentiments—a person who likes chocolate ice cream may
not want it at every possible occasion. However, the model also has logical difficulties
with attitudinal statements and sentiments in general. Items fitting this model tend to
be “double-barreled” in saying one good thing and one bad thing. This can be seen in
the three attitude statements given earlier. Item (b) asks subjects to agree simultane-
ously with two hidden statements:

(blj I sometimes go to church.

(b,) I probably would not go to church if it were not for the fine ritual services
and good music.

Likewise, item (c¢) 1s “triple-barreled” because a subject must agree that the church
is paternal, benevolent, and distasteful to agree with it. The three modifiers collective-
ly imply a moderately negative attitude toward the church. One constructs such items
only by building two or more statements into what is ostensibly one statement. People
who are not skilled at constructing questionnaires often unintentionally construct such
ambiguous statements. Some subjects respond to one of the hidden statements, some
subjects to another. This is ordinarily not useful in defining a relevant trait. One might
as well construct statements like the following: The church is a wonderful, horrible in-
stitution.

Another important criticism of nonmonotone probability models is that it is very
difficult to think of suitable items to define the ends of the scale. This is illustrated
with item (a) in the previous example. Who could have a very positive attitude toward
the church yet disagree with the statement, “I believe the church is the greatest institu-
tion in America today”? Such items will be monotone, continuing to increase in proba-
bility of endorsement as the level of the attribute increases.

In summary, nonmonotone probability models at best have limited applicability
to the measurement of attitudes. One is probably better off restating the items in a

monotone form and using an appropriate model for such items. We now turn to such
models.

ll|
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Monotone Models with Specified Distribution Forms . :
lines fit a particular statistica]

}

i

: - race
Some monotone trace line models assume that th_e t f orn psychometrics o
function. In particular, those that form the basis O mo

ogives like Fig. 2-7b. Another distinguishing characteristiC l:J’f Il;i);lt (l):: iﬁzssuﬂ;(;iils is
that the pattern of responses defines the scale scorjc rather thail baspic o these mOdarll_
swered in the alpha direction, €.g., correctly. The ideas that arc';a e e els
have been available for a long time, but computers and recent develop umer-

ical estimation have spurred their recent growth. | di ,
ting in their steeply ascending middle

Ogival trace lines are always more discrimina _ | ‘
> ) ace line, the higher the item-

part than at the extremes. The steeper that section of th'e tr M
total correlation and other discrimination statistiCs. If it were a step Iunc ion, the item

would correlate perfectly with the attribute and form part of a Guttman Sf:alfe. A_S 1tems
correlate less and less with the attribute and therefore become less discriminating, the

ogival S shape flatiens toward the horizontal. o
. - - First, they make good 1ntuitive sense.

One can easily think of a critical ‘nterval of uncertainty as 1n psychophysics (see Fig.
2-2b) where subjects respond in both directions. This interval of uncertainty 1S more
realistic than the perfect discrimination in a Guttman scale. Moving further away from
that zone in either direction markedly reduces the uncertainty. Persons below that zone
will choose response beta almost exclusively, and persons above 1t will choose re-
sponse alpha almost exclusively. Thus, people of low ability will find a particular item

too difficult, and people of high ability will find the same 1tem too €asy.
. Another reason for the appeal of this model 1s that it has useful mathematical prop-

erties. For example, the sum of a series of ogives 1s also an ogive of predictable loca-
tion and slope. The scale score is usually obtained from the probabilities of individual
responses. This may require a complex algorithm, but it is a linear function of the at-
tribute under certain assumptions. In contrast, scores derived from item sums typically
are not linearly related to the attribute (Lord, 1980, also see Chapter 10), even though
this nonlinearity is rarely a major problem. Another useful deduction is that the most
discriminating items at any point on the attribute are those whose sum is as steep as
possible at that point. This permits some interesting deductions about discriminating at
a point, item difficulties, and correlations of items with total scores. It is also possible
to deduce the amount of measurement error (unreliability) at different points on the at-
tribute. |
me models make additional ions i : . .

Sos > models n ‘assumptions 1nvolving correlations among the 1tem>
or the distribution of the underlying attribute. These as ' - ety of
. . . sumptions provide a vanety ©
interesting deductions that are useful when the assumpt; :
ded e ptions hold. In particular, one ¢dl

educe the score that individuals would make on a test th
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Monotone Models with Unspecified Distribution Forms

K

FIGURE 2-12

We finally arrive at the model that underlies most scaling—the linear, summative or
centroid model. The model makes three major assumptions:

1 Each item has a monotonic trace line as in Fig. 2-7¢; the form of this monotonic

trace line can even vary over 1tems.
2 The sum of the trace lines for a particular set of items (the trace line for total

test scores) is approximately linear. That is, even 1f 1tems do not all have the same
type of monotonic trace line, departures from linearity average out when items are
combined.

3 The items as a whole measure only the attribute in question. This is the same as
saying that the items have only one factor in common, a point to be discussed in detail
in later chapters. It implies that the total score summarizes all the important informa-

tion about the attribute being measured.

Figure 2-12 contains a family of such trace lines, and Fig. 2-13 presents the sum of

these trace lines, the trace line of expected scores on a four-item test.
The model is called “linear” because the score is derived from a linear combination

which is a sum of item responses. Even though the underlying mathematics of the lin-
ear model is not as elegant as that of modern psychometric models, 1t 1s not devoid of
such properties given its use of the algebra of linear combinations. This sum does not
require each item to have equal weight. The term “centroid™ means average—the total
score divided by the number of items gives the centroid or average. This is equivalent
to weighting each of the K items used to generate the score by 1/K. Thus, a person’s
score on a classroom examination would probably be presented as the equally weight-
ed sum, but performance on a series of reaction time trials might presented as a

mean—the choice is a matter of convenience.

A family of four items with monotone trace lines that can be used in a linear model.

1.0 Item a
Item b

Item ¢

Item d

Probability of response alpha

=7

Strength of attribute, 6



80 PART 2: STATISTICAL FOUNDATIONS

4.0

Expected test score

0.0
Strength of attribute, 6

FIGURE 2-13  Expected scores on a four-item test—the sum of trace lines in Fig. 2-12.

We will normally assume that each item is given equal weight, called an equally
weighted or unweighted model, but occasionally, weighting items differentially is ap-
propniate. The effects of weighting are often trivial, especially when there are many
items, and we will later argue against differentially weighting in most scale applica-
tions. The major features of the linear model apply to both weighted and unweighted
versions. They also apply to multicategory or continuous items as well as to dichoto-
mously scored items. Two slight drawbacks are that there is no formal rationale, in the
representational sense, for a unit of measurement, and that the relation between total
score and © may be nonlinear. However, as we have stressed, strong relations exist be-
tween linear scales and those developed from more complex models, and item sums
ordinarily are monotonically related to © despite the nonlinearity.
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item scores. The essence and beautiful point of the model is that it does not take indi-

i vidual items very seriously. It recognizes that any individual item has considerable

B specificity and measurement error. It does not make stringent assumptions about the
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Constructing a scale begins with a plan, usually leading to a matrix represeptatlop of
the data with subjects as rows and stimuli as columns. Two important cons.lderatlons
are whether stimuli or subjects (objects) are to be scaled and the types of ]u_dgme:nts
to be made by the subjects. Scaling models are typically more critical 1n scalmg stim-
uli. The different kinds of judgments in turn can be traced back to ps;_/chOphy'sws, the
study of the relation between physically defined dimensions and their associated re-
sponses. There are three main questions in psychophysics: (a) How does one obtain
the absolute threshold or point at which a stimulus is perceived 50 percent of the
time? (b) How does one obtain the difference threshold (difference limen) or J}Jst—
noticeable difference (JND)? (c) What is the overall relation between variation 1n a
physical dimension and associated responses (psychophysical scaling). In particular,
although the absolute threshold was thought of as an all-or-nothing effect (an event
was either below threshold and not perceived or above threshold and perceived),
nearly all data suggest that the function is continuous, usually in the form of an ogive
(S curve).

There are two broad traditions in psychophysics. Fechner’s indirect (discriminant)
approach stresses ordinal judgments, particularly paired-comparison nethods, and re-
quires stimuli be confusable; 1t leads to a logarithmic relationship between physical
magnitudes and associated sensations and can be used with a wide variety of subjects.
Stevens’ direct approach requires subjects to report intervals or ratios of perceived
magnitudes as required. Its major methods are ratio production, ratio estimation, mag-
nitude estimation, bisection, and cross-modal matching. It leads to a power function
relating physical magnitude and sensation, although there is no necessary incompati-
bility between the two laws. Both lead to methods generally important in psychomet-
rics. The Fullerton-Cattell law states that equally often noted differences are equal un-
less always or never noted 1s a basic link between Fechnerian psychophysics and
psychometric theory. It led to Thurstone’s law of comparative judgment. In turn, Thur-
stone scaling 1s closely related to signal detection theory which stresses the separation
of bias in responding from accuracy of discrimination.

The concept of an item trace line (item characteristic curve) which relates the prob-

ability of a given response (response alpha) to the magnitude of an underlying attribute
is extremely important. The Guttman scale was an early formal model for scaling peo-
ple. It assumes that the item trace line is a step function. However, the similarity of the
trace line to the psychometric function was noted, which suggests that the Guttman

scale may be unrealistic. There are newer models, considered in Chapter 10, which
make more realistic assumptions.

The simplest model for scaling people simply counts the number of responses in
the alpha direction, perhaps weighting certain items over others. The only thing it re-

quires of the item trace line is that it be monotonic. The chapter concluded by noting
the utility of this linear (summative, centroid) model.
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