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INTRODUCTION

The main purpose of Part One (a single chapter 1n this case) is to define “measure-
ment” in terms of two fairly simple concepts: Measurement consists of rules for
assigning symbols to objects so as to (1) represent quantities of attributes numerically
(scaling) or (2) define whether the objects fall in the same or different categories with
respect to a given attribute (classification). Most of the book is concerned with the first
of these meanings. The topics of levels of scaling and the general standards by which
measurement rules are evaluated are focal 1ssues.
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INTRODUCTION

CHAPTER OVERVIEW

This opening chapter begins with a definition of measurement which we break down
into two subtopics: scaling and classification. Some general properties of good mea-
surement are introduced, and the importance of standardization is discussed. The sepa-
rate roles of measurement and pure mathematics are contrasted. One major, and still
controversial, topic 1n measurement concerns what are known as levels of measure-
ment. Accordirg to some, the appropriate level of a measure must be established be-
fore employing mathematical and statistical procedures associated with that level.
Many look for ostensive (visualizable) properties of measures like the yardsticks and
clocks of physics. They view present scales as imperfect correlates of unknown “true”
scales. We attempt to show that these strategies easily lead to unreasonable outcomes.
One should demonstrate that a measure has the properties ascribed to it, establish
scales by convention, but be prepared to change these conventions as better measures
become available. The chapter concludes by noting some of the changes brought to the
study of measurement that result from the availability of computers.

MEASUREMENT IN SCIENCE

Although tomes have been written on the nature of measurement, in the end it boils
down to two fairly simple concepts: “measurement” consists of rules for assigning
symbols to objects so as to (1) represent quantities of attributes numerically (scaling)
or (2) define whether the objects fall in the same or different categories with respect to
a given attribute (classification). Most of what 1s historicaliy called measurement in-
volves scaling, and therefore properties of numbers, but classification can be equally
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important. The objects 1n psychology are usually people, 'but thf.:y may If)e lower ani-
mals as in some areas of psychology and biology or physical objects as In Some mar-
ket research. The term ‘“rules” indicates that the assignment of numbers must be ex-
plicitly stated. Some rules are sO obvious that detailed deﬁnition. 1S unnecessary, as in
measuring height with a tape measure. Unfortunately, these obvious Cases are excep-
tional in science. For instance, assaying a chemical compound usually requires ex-
tremely complex procedures. Certainly the rules for measuring most attributes such as

intelligence, shyness, or priming are not intuitively obvious. |
Rules. in turn, are an important aspect of <tandardization. A measure is standardized

to the extent that (1) its rules are clear, (2) it is practical to apply, (3) it does not demand

areat skill of administrators beyond that necessary for their initial training, and (4) 1ts
The basic point about standard-

similar results. The results must

2ation is that users of a given instrument should obtain
[ points in this book. Thus, mea-

therefore be reliable in a sense to be discussed at severa
suring the surface temperature of a planet is well standardized if different astronomers

obtain very similar estimates. Similarly, an intelligence test is well standardized if dif-
ferent examiners obtain similar scores from testing a particular child at a given time.
The term “attribute” in the definition indicates that measurement always concerns
some particular feature of objects. One cannot measure objects—one measures their
attributes. One does not measure a child per se, but rather his or her intelligence,
height, or socialization. The distinction between an object and its attributes may sound

like mere hairsplitting, but it 1s important. First, it demonstrates that measurement re-
\quires a process of abstraction. An attribute concerns relations among objects on a-par-

ticular dimension, e.g., weight or intelligence. A red rock and a white rock may weigh
the same. and two white rocks may have different weights. The attributes of weight
and color must not be confounded with each other nor with any other attributes. It 1s
quite easy to confuse a particular attribute of objects with other attributes. For exam-
ple, some people find it difficult to understand that a criminal and a law-abiding citizen
can both be equally smart. Failing to abstract a particular attribute from the whole
makes the concept of measurement difficult to grasp.

A second reason for emphasizing that one measures attributes and not objects 1S
that it makes us consider the nature of an attribute carefully before attempting mea-
surement. An attribute we believe in may not exist in the form proposed. For example,
the many negative results obtained in the efforts to measure an overall attribute of
rigidity make it debatable that such an attribute exists. Even highly popular terms used
to describe people may not correspond to measurable attributes, e.g., clairvoyance. It
is also common for an assumed unitary attribute to confound several more specific at-
tributes. For example, “adjustment” may include satisfaction with one’s life, positiVe
mood, skills in coping with stress, and other meanings of the term. Although such ol
glomerate measures may be partly justifiable on practical grounds, their use can under-
mine psychological science.'As this book will show in detail, a measure should gener’
ally concern some one thing—some distinct, unitary attribute. To the extent that
unitary attributes need be combined in an overall appraisal, e.g., of adjustment, they
should usu-all‘y be rationally combined from different measures rather than being ¢0
founded within one measure.
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The first part of the definition of measurement stresses the use of numbers to repre-
sent quantities in scaling Technically, quantification concerns how much of an at-
tribute is present in an object, and numbers communicate the amount. Quantification 1s
so intimately intertwined with measurement that the two terms are often used inter-
changeably. This is unfortunate, as the second part, classification, is at least as 1impor-
tant to science. |

Although the definition emphasizes that rules are at the heart of measurement, it
does not specify the nature of these rules or place any limit on the allowable kinds of
rules. This is because a clear distinction must be made between measurement as a
process and the standards for validating measures. The measurement process involves
such considerations as the levels-of-measurement issue that is discussed later in this
chapter. Validation involves issues that are discussed in Chapter 3. Numerous stan-
dards can be applied to obtain the usefulness of a measurement method, including the
extent to which data obtained from the method (1) fit a mathematical model, (2) mea-
sure a single attribute, (3) are repeatable over time if necessary, (4) are valid in various
senses, and (5) produce interesting relationships with other scientific measures. Such
standards will be discussed throughout this book. Thus, a psychologist might establish

rules to measure, say, dogmatism, in a manner that seems quite illogical to other psy-
chologists, but the measure’s usefulness cannot be dismissed beforehand.

The rules employed to define a particular measure must be unambiguous. They may
)( be developed from an elaborate deductive model, based on previous experience, flow

from common sense, or simply spring from hunches, but the crucial point is how con-
2 sistently users agree on the measure and ultimately how well the measurement method
explains important phenomena. Consequently any set of rules that unambiguously
quantifies properties of objects constitutes a legitimate measurement method and has a

right to compete with other measures for scientific usefulness. Keep in mind, however,
that clarity does not guarantee explanatory power.

What Is “Meaningful” and “Useful”?

There is both agreement and disagreement among scientists about what is a meaningful
and/or useful result. It 1s fair to say that there is a high degree of agreement on two
points. One 1s that any result should be repeatable under similar circumstances. It is
quite possible that a finding obtained on April 8, 1991, from a particular group of psy-
chology students at the University of Texas at Arlington was a real effect descriptive of
that group of people. However, unless that effect also applied to some other group, €.g.,
students at the University of Texas at Arlington tested on another day or at some other
university on the same day, there 1s no need for a scientist to be concerned with it.

The second point of agreement that all scientists have learned is that any set of re-
sults can be understood after the fact even if it is a chance occurrence or even systemat-

ically wrong. Perhaps every investigator has analyzed a set of results and formulated an
explanation only to discover that there was a “bug” in the analysis. That bug probably
did not hamper a “creative” explanation of the wrong results. In a like manner, some of
the more sadistic instructors we have known assign randomly generated results to stu-
dents for explanation. Students often find the exercise creative until they are let on.
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\\ The keys to meaningfulness are to proceed from some position that anticipates re-
sults. This is where scientists differ. Some are strongly biased toward testing hypothe-
ses derived from highly formalized theories; others are more informal and/or result-
oriented in their approach. For a debate on this issue, S€¢ Greenwald, Pratkanis,
Leippe, and Baumgardner (1986) and a series of commentaries that appeared 1in the
October 1988 issue of Psychological Review. As of this writing, the pendulum seems
to have swung in a more formal direction, at least in cognitive psychology, but it prob-
ably will swing back. Whatever the level of formality preferred, meaningfulness de-
pends upon context. One of the most common phrases one hears about results 1s “So

what?” The answer lies in placing findings in a relevant context.
This is not to rule out unanticipated findings, which are always an exciing part of

science. However, before one becomes too enraptured by an interpretation given a set
of findings, one should be prepared to replicate them, preferably in some way that

broadens their generality.

ADVANTAGES OF STANDARDIZED MEASURES

Although you may already have a healthy respect for the importance of measurement
in science, it is useful to look at some particular advantages that measurement pro-
vides. To note these advantages, consider what would be left if no measures were
available, e.g., if there were no thermometers or intelligence tests. Measures based
'upon well-developed rules, usually including some form of norms that describe the
scores obtained in populations of interest, are called “standardized.” Despite criticisms
of standardized psychological tests, the decisions that these are used for would still be
¢ made. What would be left would consist of subjective appraisals, personal judgments,
¢ etc. Some of the advantages of standardized measures over personal judgments are as

( follows:

Objectivity

The major advantage of measurement is in taking the guesswork out of scientific ob-
servation. A key principle of science is that any statement of fact made by one scien-
tist should be independently verifiable by other scientists. The principle is violated if
scientists can disagree about the measure. For example, since there is no standardized
measure of “libidinal energy,” two psychologists could disagree widely about a pa-
tient’s libidinal energy. It is obviously difficult to test theories of libidinal energy until
it can be measured.

One could well argue that measurement is the major problem in psychology. There
are many theories, but a theory can be tested only to the extent that its hypothesized at-
tributes can be adequately measured. This has historically been the problem with
Freudian theory: There are no agreed-on procedures for observing and quantifying
such attributes as libidinal energy, etc. Major advances in psychology, if not all sCl-
ences, are often based upon breakthroughs in measurement. Consider, for example, th¢
flood of research stimulated by the development of intelligence tests and of personality
tests like the Minnesota Multiphasic Personality Inventory (MMPI), or, 1n a very
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different area, the development of techniques to record from single neurons (Hartline,
1940; Kuffler, 1953). Scientific results mevitably involve functional relations among
measured variables, and the science of psychology can progress no faster than the
measurement of its key variables.

The numerical results provided by standardized measures have two advantages. First,
numerical indices can be reported in finer detail than personal judgments, allowing
more subtle effects to be noted. Thus the availability of thermometers makes it possi-
ble to report the exact increase in temperature when two chemicals are mixed, rather
than for the investigator to intuitively judge only that “the temperature increases.”
Similarly, teachers may be able to reliably assign children to broad categories of intel-
ligence such as bright, average, and below normal, but intelligence tests provide finer
differentiations.

Second, quantification permits the use of more powerful methods of mathematical
analysis that are often essential to the elaboration of theories and the analysis of exper-
iments. Although important psychological theories need not be highly quantitative, the
trend 1s and will continue to be clearly in that direction. Mathematically statable theo-
ries make precise deductions possible for empirical investigation. Also, other mathe-
matical models and tools, such as factor analysis and the analysis of variance
(ANOVA), may be used to analyze various results even when the study does not test
any formal theory.

Science 1s a highly public enterprise requiring efficient communication among scien-
tists. Scientists build on the past, and their findings must be compared with results of
other scientists working on the same problem. Communication is greatly facilitated
when standardized measures are available. Suppose, for example, it is reported that a
particular treatment made the subjects “appear anxious” in an experiment concerning
the effects of stress on anxiety reaction. This leaves many questions as to what the ex-
perimenter meant by “appear anxious,” and makes it difficult for other experimenters
to investigate the same effect. Much better communication could be achieved if the
anxiety measure were standardized, as the means and standard deviations of these
scores could be compared across treatment groups. Even very careful subjective evalu-
ations are much more difficult to communicate than statistical analyses of standardized

measurcs.

Although standardized measures frequently require a great deal of work to develop,
they generally are much more economical of time and money than are subjective eval-
uations after they have been developed. For example, even the best judges of intelli-
gence need to observe a child for some time. At least as good an appraisal can usually
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any of several inexpensively administered group
2 standardized activity measure such
ate the effect of a proposed stimulant

be obtained in less than an hour with
measures of intelligence. Similarly, one can use
as rate of bar pressing in a Skinner box (0 evalu

on animals. o
Besides saving time and money, standardized measures often free professionals for

more important work. Progress generally favors measures that either requlre_r(?]atw.e]y
little effort to employ or allow less highly trained technicians to do the administration
and scoring. The time saved allows practitioners and scientists more time for the more
scholarly and creative aspects of their work.

It is sometimes difficult to disentangle the measurer from the measurement process,
as in individually administered intelligence tests. Although individual intelligence
tests are highly standardized, they still require much time to administer and score.
Context determines whether there are sufficient advantages to compensate for these
disadvantages over even more highly standardized pencil-and-paper tests.

Scientific Generalization

Scientific generalization is at the very heart of scientific work. Most observations 1n-
volve particular events—a “falling” star, a baby crying, a feeling of pain from a pin
scratch, or a friend remarking about the weather. Science seeks to find underlying
order in these particular events by formulating and testing hypotheses of a more gener-
al nature. The most widely known examples are the principles of gravitation, heat, and
states of gases in physics. Theories, includirg those in the behavioral sciences, are 1in-
tended to be general and thereby explain a large number of phenomena with a small,
simple set of principles.

Many scientific generalizations, particularly in the behavioral sciences, must be
stated in statistical terms. They deal with the probability of an event occurring and
cannot be specified with more exactness. The development and use of standardized
measurement methods are just as essential to probabilistic relationships as they are for
deterministic ones. Figure 1-1 1llustrates a simple probabilistic relationship noted by
the first author_between the. complexity of randomly generated geometric forms and
the amount of time that subjech lf)qked at the forms. The data are group averages and
are much more regular than individual subject data. However, the principle seems

clear: People look longer at more complex figures than at siumpler figures; but this
would have been much less apparent in the data of individual subjects.

MEASUREMENT AND MATHEMATICS

A clear distinction needs be made between measurement, which is directly concerned
with the real world, and mathematics, which, as an abstract enterprise, needs have
nothing to do with the real world. Perhaps the two would not be so readil; confused if
both did not frequently involve numbers. Measurement always concerns numbers ¢
latable to the physical world, and the legitimacy of any measurement is determined bY
data (facts about the physical world). In particular, scaling, but not classification, al-
ways concerns some form of numerical statement of ho;v much of an attribute 13



CHAPTER 1: INTRODUCTION 9

o 2
- A
l I

=)
l

oo
|

Viewing time (seconds)
to
l

I
|

10 20 30 40 50

Number of sides

FIGURE 1-1 Viewing time as a function of stimulus complexity (number of sides on randomly generated
geometric forms).

present, as its purpose is to quantify the attributes of real objects. A measure may be
intended to fit a set of measurement axioms (a model), but its fit to the model can be
determined only by seeing how well the data fit the model’s predictions. Even if there
1s no formal model, the eventual and crucial test of any measure (scale or classifica-
tion) is how well it explains relations among variables. As will be discussed in Chapter

3, the various types of validity for psychological measures all require data rather than
purely mathematical deductions.

In contrast to measurement, pure mathematics is limited to deductive sets of rules
for the manipulation of symbols, of which those used to denote quantities and cate-
gories are only one type. Many deductive systems in modern mathematics do not in-
volve numbers, though they may involve classification. Any 1nternally consistent set
of rules for manipulating a set of symbols can be a legitimate branch of mathematics.
Thus the statement “iggle wug drang flous” could be a legitimate mathematical state-
ment 1n a set of rules stating that when any iggle is wugged it drang a flous. Mathe-
matical systems could be constructed in which both the objects and the operations are
symbolized by nonsense words. This system might not and need not be of practical
use, as its legitimacy depends entirely on the internal consistency of its rules.

As a result, scientists develop measures by stating rules to quantify attributes of real
objects, but borrow mathematical systems to examine the structure of the data. Fortu-
nately scientifically useful measurement methods can usually be associated with ap-
propriate mathematical systems. )

Measurement and Statistics

Because the term “statistics” is used broadly, some distinctions among different uses

of the term are necessary in order to see their implications for psychometric theory.
There is a basic distinction between descriptive and inferential statistics. “Descrip-

tive statistics” concerns quantitative statements about an attribute of a particular group
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of observations and does not necessarily imply generalization. Th_us. onc mady compute
the arithmetic mean of the scores on a élns:&mom test, the corrclulnm between t}vo pre-
sumed measures of anxiety, or the scores of two job applicants 'Wl‘lhOUt- maqug any
broader statements about those not taking the tests. In conl;rusl, “’1nle'1'cnt1£ll Stﬂ[lSthF.,”
concerns generalizing from observed sample values (SlilliSUCS). t_0 their counterparts in
a population (parameters), nearly always in the form of probability Stflf?”‘]e“ts- A com-
mon example is to estimate the probability that the observed mean difference between
an experimental group and a control group 1s a chance departure from 0, the expected

result if the treatment had no effect. o |
We will say less in this book about inference than description, as most of the tradi-

tional quantitative methods to be presented are primarily designe_d flor.description
rather than inference. Thus correlational analysis, factor analysis, dI.SCl‘llTllnal]t analy-
sis, and other procedures can be discussed and employed with minimal use of infer-
ence. This is not to say that inferential statistics are unimportant or that they will be to-
tally neglected. We will consider some advances 1In inferential statistics that have
become prominent since the last revision, particularly maximum likelihood estimation.
There are three reasons to emphasize description. First, classical psychometric theory
and some newer models are large-sample theories that assume that many subjects are
studied. Second, even some investigators who have been very concerned with develop-
ing these newer inferential measurement models stress the importance of description

(Bentler & Bonnett, 1980). Finally, we have enough material to present without going
too far into a somewhat ancillary topic. There are excellent books on the relevant

inferential statistics for psychometric theory that will be referenced where appropriate.
A second 1mportant statistical distinction 1s that between the sampling of objects (in

this context, usually people) and the sampling of content (items). After a measure has
been developed, it is often important to make statements about objects as in develop-
ing test norms. Before measures are developed, however, measurement is much more
closely related to the sampling of content, as in deciding which test items to include.
We will later stress how it 1s useful to think of particular test items as a sample from a
hypothetical infinite population or universe of items measuring the same trait. Thus a
spelling test for fourth-grade students can be thought of as a sample of all possible ap-
propriate words. Part of measurement theory thus concerns statistical relations be-
tween the actual test scores and the hypothetical scores that would be made if all items
in the universe had been administered.

There is a two-way problem 1n all psychology concerned with the sampling of ob-
jects to be measured and the sampling of content. The former usually concerns the
generality of findings over objects, and the latter concerns the generality of findings
over test items. Some item response theory models (Chapters 2 and 10) simultaneously
take objects and items into account. However, most analyses take only one of these di-
mensions into account explicitly and keep the other in mind or. worse, simply 1gnore
it. Thus, a study comparing different approaches to teaching mathematics upon a par-
ticular achievement test may explicitly concern gender differences. However, it might
have to acknowledge that different results might have been obtained with different
achievement measures.

The frequent necessity of considering only one of these two dimensions is not
ideal, but it is not necessarily fatal. Subsequent studies can dea] with generalizing over
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the other dimension. The most desirable situation is when one samples so extensively
on one dimension that the only sampling error present is on the other dimension. This
normally requires an extremely large sample of subjects. At least hundreds, if not
thousands, of subjects should be used in the development process. Except as noted, we
will assume that all mathematical analyses are based on large numbers of subjects so
that 1ssues will be limited to the sampling of content. Studies conducted on relatively
small numbers of subjects are usually not sufficient. Thus, even though a few dozen
subjects may suffice to establish that the test reliability is greater than zero, a more
precise statement of the magnitude is nearly always required.
The 1dea that sampling content is more important than sampling objects in develop-
1)y ing a measure is not easy to grasp. Many students fall into the trap of assuming that a
| test’s reliability increases with the number of objects (subjects) used in the study of re-

l1ability, when in fact it is directly related to the number of items on the test and inde-
pendent of the number of objects.

MEASUREMENT SCALES

A series of articles by Stevens (1946, 1951, 1958, 1960) evoked considerable discussion
and soul searching about the different possible types of measurement scales. Stevens
proposed that measurements fall into four major classes (some extensions of these basic
types will be noted below): nominal, ordinal, interval, and ratio. The levels allow pro-
gressively more sophisticated quantitative procedures to be performed on the measures
but in turn demand progressively more of the measurement operations. In addition, the
levels restrict the transformations possible upon the data. Table 1-1 provides an illustra-
tion of this proposed classification which we will embellish on in the succeeding pages.
Stevens’ work evoked a great deal of controversy at the time, some of which
continues. One major effect was that it led to a healthy self-consciousness about

TABLE 1-1 STEVENS' LEVELS OF MEASUREMENT, BASIC DEFINING OPERATIONS, PERMISSIBLE
TRANSFORMATIONS, EXAMPLES OF PERMISSIBLE STATISTICS, AND EXAMPLES

Scale Basic Permissible Permissible Examples
operation transformations statistics
Nominal — VS # Any one-to-one Numbers of cases, mode Telephone numbers
(equality vs.
inequality)
Ordinal > VS, < Monotonically increasing Median, percentiles, Hardness of minerals,
. (greater than vs. order statistics - class rank
less than) |
Interval Equality of intervals General linear Arithmetic mean, variance, Temperature (Celsius),
or differences xX'=bx+a Pearson correlation conventional test
scores (?)
Ratio Equality of ratios Multiplicative (similarity) Geometric mean Temperature (Kelvin)
X' = bx

Source: Adapted from Stevens (1951) by permission of John Wiley, Inc.
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psychological measurement, but it also led to some unﬂ:n*lumte con(fltfsm'ns about the
legitimacy of employing particular classes of mathematical pl:OCBdl_“e_“’ with Measures
of psychological attributes. Of these. the issue of whether 01_ no! lt.ls. mear.llngful to
compute the mean of a series of test scores derived by summing fnquua]"temS had
the greatest implications. We will first present Stevens’ p051F10n in a Sll:I]pllﬁEd, Con-
ventional manner, after which we will discuss the nature of psychological measyre.

ment 1n more general terms.

Nominal scales

Nominal scales contain rules for deciding whether two objects are = .(equwalent) or #
(not equivalent), i.e., for categorizing. Equivalence means that two Ob_]-ECtS hf}ve a Criti-
cal property in common, e.g., two people are both females. It does not imply identity or
equality with respect to all relevant properties, and it will be discussed in a more forma]
sense below. The result of a nominal scale is a series of classes which may be given 3
numeric designation. The numbers are frequently used to keep track of things, without
implying that they can be subjected to any mathematical analysis. Telephone and social
security numbers are common examples of using numbers simply as labels that could
just as well be expressed without numbers. These labels have no mathematical proper-
ties, and so it makes no sense to average a work and a home telephone number. Howey-
er, 1t 1s important to distinguish between using the category “names’ numerically,
which 1s improper, and the category “frequencies,” which is quite proper, €.g., to ask
whether there are more Democrats, Independents, or Republicans in a political poll.

It 1s sometimes useful to distinguish between labels and categories even though
both can be nominal scales. Labels, numeric or otherwise, are used to 1dentify individ-
ual objects. These may be unique, as are the social security numbers given to U.S. citi-
zens and residents, or there may be many duplications, as with given names. In con-
trast, categories are groupings of objects, in which it is usually desirable to have
relatively few categories compared to the number of objects. Common categories are
race, ethnicity, and gender.

Although categories and labels need not reflect any specific quantitative relation-
ship, they may lead to the discovery of important correlates. For example, the finding
that people of a certain ethnicity are more prone to a particular disease than people ot
a different ethnicity 1s vital to geneticists. However, this is an i1ssue of classification,
discussed below and in Chapter 15, and not scaling. Labels and categories are nominal
scales, but nominal sc.?tles have thus far offered little to formal scaling models even
though such models exist.

Nominal scales can be transformed in any manner that does not assign the same
number to different categories. Thus, males and females could, respectiveiy, be coded
I and 0, 0 and 1 or even —257.3 and 534.8 without gain or loss of information. These
one-to-one transformations are permissible because the names do not have numeric
properties. The flexibility with which one can transform nominal scales reflects the
limited mathematical operations that can be performed with them. For example, as-
sume that a survey has coded potential voters as 1, 2, or 3 for Democrat, Republican,
and Independent and that the frequencies of individuals in thege three classes are 33,
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25, and 40. One could compute a “mean” as (35 - 1 + 25 - 2 + 40 - 3)/100 or 2.05.
However, this figure would change capriciously if permissible transformations were
made upon the categories. For example, it would change to 2.95 if Independents were
coded 0, Democrats were coded 2, and Republicans were coded 9, and there 1s no logi-
cal connection between changes in the scale values and changes in this mean. One 1m-
portant exception to this principle is when there are two categories. This exception un-
derlies much contemporary multiple regression theory, as we will see later in this
book. In this case, statistics such as means do change predictably as categories are
changed. We will show why this is the case when we consider interval scales.

Ordinal scaling involves rules for deciding whether one object that is # to another 1s >
(greater than) or < (less than) with respect to a given attribute (there may also be ties
so < and 2 are also used). A ordinal scale for N persons (Ss) allows one to determine
that §; =2 §; =2 §, = S, with respect to an attribute (the = part of = allows for ties). This
implies that (1) a set of objects is ordered from “most™ to “least” with respect to an at-
tribute, (2) one does not know how much any of the objects possess of the attribute in
an absolute sense, and (3) one does not know how far apart the objects are with respect
to the attribute. An ordinal scale 1s obtained if a group of people are ranked from
tallest to shortest. This scale gives no indication of the average height. The mean rank
of the height of N jockeys and N professional basketball players will be (N + 1)/2. In
both cases, the mean of five ranked observations will thus be (5 + 1)/2 or 3. Likewise,
the variance of the ranks will equal (N~ — 1)/12 regardless of whether the measures are
very similar or very dissimilar. If there are five ranked observations, the result will be
(52 - 1)/12 or 2.

Dichotomous (pass-fail) scoring is a special and, indeed, the simplest case of order-
ing. It is commonly present in true-talse or multiple-choice ability tests. A pass 1s
commonly designated 1, and a tailure 1s designated 0. Items using an agree-disagree
format in personality or attitude measurement logically also yield pass-fail orderings,
since agreeing with the key 1s a form ot passing.

Ordered categories arise when a measure yields relatively precise information, but
the investigator lumps scores into a smaller number of successive categories. For ex-
ample, an economist may categorize family Income measures into a small number of
levels. This can sacrifice a great deal of information, but it may be needed for data pre-
sentation. In contrast, data may be gathered as ranks. Likert scale items are a common
example used in personality and attitude measurement in which subjects describe their
intensity of feeling toward the item. For example, subjects might be asked whether
" “agree,” “are indifferent,” “disagree,” or “strongly disagree”
with the statement “I feel uncomfortable asking professors questions in class.” The
subject is then assigned a score from 1 to 5, and the total scale score is the sum of indi-
vidual item scores. This format generates more information than dichotomous scoring,
as it may increase the range of scores substantially over dichotomous items scoring, a
benefit to the statistical analysis as it more faithfully reflects the individual differences

on the attribute.

‘t
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o Most of the informat;
Rank ordering is basic to higher forms ol '"e"]w“.'me]nt'r.lnk orderings (Coomt?n
contained in hicher level scales is contained simply In “e { f , S'

& g). Thus, if two sets oI measures .

1964; Parker. . Ziriax. & Silberberg, 198
. Parker. Casey, Ziriax, & Silber fg][ed | converted 10 canks, and the ranked
ation in Chapter 4), the correla-

between the ranks are usually
lost 1f both sets of

tained from higher level scales are correl
data also correlated (see Spearman’s rank order correl

tion between the original numbers and the correlation

quite similar in magnitude. In contrast, considerable information . -
) ata are dichotomized. Cop-

observations and correlations become much smaller when d - .

sequently, methods based upon rank ordering, such as rank order multidimensiona]
scaling considered in Chapter 14, often do justice |
level data, but the common practice of dichotomizing variable
data are of a stronger form should be avoided (Cohen, 1990).

The class of transformations permissible for ordinal scales |
for nominal scales. The transformation must preserve the rank-order properties of the

data. Thus, category names 1, 2, and 3 may be transformed to 4‘, 5, and 23 or -1.3,
2.05, and 5.33, but not 3, 1, and 2. These permissible transformations are called “mo-
notonic” and are illustrated in Fig. 1-2. A set of statistical operations has been de-

signed for use with ordinal data. The central tendency may be described in terms of
the median or the mode (which is also meaningful with nominal data) rather than the
arithmetic mean. The median and mode will change predictably with permissible
transformations, whereas the mean will not. For example, if the median and mode are
in the second of four ordinal categories coded from 1 to 4, they will remain so under
any permissible transformation, which is not true of the arithmetic mean. A consider-

ably different mean will obtain if the categories are recoded as 2, 4, 17, and 39, for ex-
ample, but the median and mode simply change to the second category, 4.

to the relations contained in higher-
s when the underlying

is more limited than it is

Interval scales reflect operations that define a unit of measurement as well as >, =, and
<. They are often referred to as “equal interval scales” for this reason. Consequently
(1) the rank ordering of objects on an attribute is known, (2) the distances among ob-
jects on the attribute are also known, but (3) the absolute magnitudes of the attribute
are unknown. Expressing the height of each of a series of children relative to their
mean height would yield an interval scale of their height. Thus a child 2 inches taller
than average would receive a score of +2, a child 3 inches shorter than average would
receive a score of =3, etc. Deviations from any mean can be calculated without actual-
ly knowing how far anyone is from a true zero point, e.g., zero height. The absolute
magnitudes of the attribute are potentially important but unknown since the tallest
child is probably short in a more general sense. However, psychological measures are
commonly described as deviations from the mean.

Interval scales do not require an equal number of objects (people) at each point, 1.€-»
a rectangular distribution of scores. The term “equal” describes the intervals on the
scale, not the number of people between equally spaced points on the scale. Thus, the
difference between intelligence measures of 100 and 105 are assumed equal to the dif-
ference between intelligence measures of 120 and 125 even though many more people
fall between 100 to 105 than 120 to 125.
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Transformation 1

X' on transformed scale
@)
l

Transformation 2

0 1 2 3 4 5 6 7 8 9 10
X on original scale

FIGURE 1-2 Two examples of monotonic transformations permissible on an ordinal scale. The general form of
these transformations is difficult to define algebraically.
Interval properties imply that if a, b, ¢, --- , k are equally spaced points on the scale,
the scale 1s defined by two statements:
~ 1 a>b>c>--->k
~— 2 a-b=b-c=c-d=--=j—k

An interval scale 1s defined by algebraic differences between points, and so addi-
tion and subtraction of the scale points are permissible operations. Since a — b = p — ¢
the sum of the two intervals equals (a —b)+ (b-c)=a —c.

The difference between the two intervals equals zero:

(a-b)—-(b-c)=a-2b+

The expression equals zero because a + ¢ = 2b:

a-b=b-c
a+c=2b 1

Since points are assumed to be equidistant on an interval scale,

a—>b
b-—c =1

Similarly, the distance from a to ¢ equals twice the distance from a to b.
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Whereas there is usually little dispute over whether nominal or ordlnallpl‘opemes
have been established, there is often great dispute over whether or'not 4 scale possess.
es a meaningful unit of measurement. Formal scaling methods designed to this end are
discussed in Chapters 2, 10, and 15. For now, it suffices to not'e that many measures
are sums of item responses, such as conventionally scored multlple_—-chmce, true-false,
and Likert scale items” Data from individual items are cleaﬂy ordinal. HOWE‘»V.GT, the
total score is usually treated as interval, as when the arithmetic mean score, which as-
sumes equality of intervals, is computed. Those who perform_ such oper.atlons Fhus im-
plicitly use a scaling model to convert data from a lower (ordinal) to a higher (interval)
level of measurement when they sum over items to obtain a tot-al SCOTE. .Some adher-
ents of Stevens’ position have argued that these statistical operations are 1mproper and
advocate, among other things, that medians, rather than arithmetic means should be
used to describe conventional test data. We strongly disagree with this point of view

-% for reasons we will note throughout this book, not the least of which 1s that the results
' of summing item responses are usually indistinguishable from using more formal
methods. However, some situations clearly do provide only ordinal data, and the re-
sults of using statistics that assume an interval can be misleading. One example would

be the responses to individual items scored on multi-category (Likert-type) scales.

The only transformation that preserves the properties of an interval scale is called

+ ‘(( the general linear transformation and is of the form X’ = bX + a, where X’ is the trans-
formed measure, X is the original measure, and a and b are, respectively, additive and
multiplicative constants involved in the transformation. Transforming temperatures
from Celsius (C) to Fahrenheit (F), both of which are interval scales, by the relation
F =7C + 32 is a common example. Figure 1-3 illustrates three general linear transfor-

(g mations. Ratios of individual values are not meaningful on an interval scale because

the zero of an interval scale may be legitimately changed through changes in the addi-
\ tive constant a. The ratios, in degrees Fahrenheit of 64 to 32 and of 100 to 50 are both

numerically computable 1n degrees as 2:1. However, these no longer remain equal, and
indeed the first of them becomes undefined, if these temperatures are expressed 1n de-

grees Celsius’ On the other hand, ratios of differences in interval scale values are

1| meaningful. For example, assume the summer mean temperature (in degrees Fahren-

heit), of a particular city i1s 90 during the day and 75 at night. These respectively

change to 50 and 40 in the winter. The ratio of the difference in summer and winter

temperatures is (90 — 75)/(50 — 40) or 1.5. The corresponding ratio in degrees Celsius

is (32.2 — 23.9)/(10 — 4.4) or (within rounding error) also 1.5. Thjs is because the ef-
fects of changes in b and a cancel in the process of forming ratios of differences.

When there are only two categories, there is only one Interval to consider, so that

one interval may be considered an “equal” interval. That is why binary (dichotomous)

variables may be considered to form interval scales. the point noted above as being sO
important to modern regression theory and elsewhere in statistics.

A ratio scale is an interval scale with a rational (true) zero rather than an arbitrary
zero. A rational zero for children’s height in the above example would be physical
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Transformation 3
12— X=X +2

10

Transformation 2
X' =05X+1

X' on transformed scale

Transformation 1
X' =0.3X

) | A N N
0 ] 2 3 4 S 6 7 8 9 10

X on original scale

FIGURE 1-3 Three examples of general linear transformations permissible on an interval scale: X' = X + 2,
X' =0.5X+1,and X' =0.3X. The general form of the transformation is X’ = bX + a.

zero rather than the mean height. The presence of a meaningful zero makes ratios of
any two measures meaningful.*Unlike the three lower types of scales, all four funda-
mental operations of algebra—addition, subtraction, division, and multiplication—
may be used with individual values defined on ratio scales.

A rational zero means absence of the attribute and not simply “reasonable.” e.g.,
zero height or weight. It 1s often reasonable to reference scores to the mean, but the
mean clearly does not denote absence of the attribute, and so it is not a rational zero in
the present sense. If there 1s no rational zero, 1t does not make sense to form ratios
since ratios change as the arbitrary zero changes, another way of saying that ratios of
individual values on an interval scale are not meaningful. For example, suppose the
class average on a test 1s 30 and two particular students obtain scores of 50 and 40.
Relative to a score of zero, the ratios of these two scores 1s 1.25:1. However, zero cor-
rect is not a rational zero because a student obtaining a score of zero might be able to
answer some simpler items correctly. Relative to the mean, the ratio becomes (50 —
30)/(40 — 30) or 2:1, but this ratio is just as arbitrary as the 1.25:1 ratio relative to zero.

There are many examples of rational zeros in physics—zero time and absolute zero
(Kelvin) temperature being two others. However, it has proven difficult to define

|
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. e intellicence. Zero reaction time ;
absolute zeros for most psychological attributes like intelligen me 15

based upon physical time, and so it is a rational zero. This means that 1t lslszns'lble to
form such ratios as the mean reaction time obtained from a more V;:rstuz i?:f ;es Intense
stimulus.’ The major example of ratio scales comes from the fact na dﬂces be-
tween observations on an interval scale form a ratio scale. Thus, if pre- and posttest
scores on a measure are obtained, the resulting change score can be ass_llllm;'d o form 4
ratio scale with O representing no change. However, Chapter 5 wi hlsc;uss Why
change scores may have other problems—it is difficult to compare two change scores
based upon different pretest scores.

Actually, ratio scales are rarely needed to address the most common 'needs of scal-
ing. Defining an interval is very important, but ordering is the m_ost crucial Concept. In
contrast, nominal measurement rules suffice for most classification _pro!alems. It is not
proper to employ the general linear transformation permissible w1_th interval Sc.ales,
only the more restricted form X’ = bX is allowable. This more specific form f)f linear
transformation, depicted in Fi g. 1-4, is also called a multiplicative transfonpatlon. Em-
ploying an additive constant (a) implies that the zero point is not fixed, which it is in a
ratio scale, by definition. Changing from feet (F) to inches () by the relation I = 12F is
a frequently used multiplicative transformation.

Ratios of height, weight, etc., as measured from their true zero points are meaning-
ful. These ratios do not change with permissible transformations since these permissi-
ble transformations do not allow a change in the zero point. This 1s why the term “ratio

scale” 1s used. Someone who weighs twice as much as another person 1n pounds will
also weigh twice as much in kilograms.

Those within the tradition exemplified by Stevens have proposed scale types other
than these basic four, and it is important not to think that all scales are divided into
four levels. Coombs (1964), Coombs, Dawes. and Tversky, (1970) and Stine (1989a)
have discussed these in some detail. One additional type 1s an ordered metric in which
(1) the rank order of objects is known, (2) the rank order of intervals between objects
1s known, but (3) the magnitudes of the intervals are unknown. Such a scale allows

| rresponding to successive points 4,
b, ¢, d are alb = blc = c/d, etc. Then log a — log b = log b — log ¢ = log ¢ — log d, etc.

The decibel scale that is familiar to physicists is 3 logarithmic interval scale (it 1s not
limited to the measurement of sound Intensity), since it Involves transforming stimulus
energies to their logs.

The absolute scale formed from counts is the strongest type of measurement be-

cause 1t has the interesting property of being its own Invariant scale of measurement:
When one says “There are three people in the room.”

ent 1n the real number system. In contrast, if you were
this might refer to yards, meters, or some other unit of Imeasurement. As interesting as
some of these other scales are, though, the four bas;

: . C ones listed above are far and
away the most important to psychometric theory and application
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12 — Transformation 2
X'=12X

11—

10 —

Transformation 1
X' =0.5X

X'on transformed scale

T I N I SR R N R
o 1 2 3 4 5 6 7 8 9 10

X on original scale

FIGURE 1-4 Two examples of multiplicative transformations permissible on a ratio scale: X =12Xand X' =
0.5X. The general form of the transformation is X’ = bX.

Invariance |
It is important to consider the circumstances under which a particular type of scale re-

mains invariant, i.e., maintains its properties when the unit of measurement is changed.

As we have seen, the more powerful the mathematical operations meaningful with a
given scale, the less free one is to change it. Thus, nominal scale labels may be

changed in an almost unlimited manner as long as no two categories are given the
same label, but at the other extreme absolute scales lose their absolute properties when

changed in any way.
. Invariance is basic to the generality of scientific statements derived from a scale
\ (Luce, 1959b, 1990). It is easy to imagine the chaos that would result if some physical
measures lacked the invariance of ratio scales. Without invariance, a stick that is twice
er measured in feet might be three times as long when measured in
inches. The range of invariance of a scale determines the extent to which principles re-
main unaffected by expressing the scale in different units, e.g., feet rather than inches.
This does not mean that the results of using the scale will not change. A mean temper-
ature in degrees Fahrenheit will be numerically different than a mean temperature 1in
degrees Celsius even though both are permissible operations. The point is that the
(ﬂmeans will change in an orderly fashion: Specifically, the same equation will relate the

as long as anoth
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- divi lues. Any permijse;
means as the one presented above that relate the individual ‘:ﬁat maintz)l{inps lt'lT]TllSmble
transformation of a scale produces an equivalent scale—one € Same

ations meani
general form of relationship. Similar statements apply about Oper ngful op

other scales.

DECISIONS ABOUT MEASUREMENT SCALES
A strong view of measurement is called the representational position (or the “funda-
mentalist” position in the previous edition of this book) a_bout measurereent scales be-
cause it states that scale values represent empirical relations among objects (Michel],
1986, also see Stine, 1989b). Its main assertions are that (1) measurem_ent scales have
empirical reality in addition to being theoretical constructs, (2) a possible measure of
an attribute can be classified into one of a small number of distinct levels, and (3) in-
vestigators must document the scale properties of particular measures before analyzing

data obtained from the scale because the scale’s level limits the permissible mathemat-
ical operations. Besides Stevens, the tradition includes Krantz, Luce, Suppes, and

Tversky (1971), Luce (1959b), Suppes and Zinnes (1963). and Townsend and Ashby

(1984; also see Ashby & Perrin, 1988; Davison & Sharma, 1988, 1990).
Representational theory had great impact in the 1950s. Investigators tended to avoid

parametric tests (1, the F ratio of the ANOVA, etc.) that required an interval scale (at
least according to representational theory) and used nonparametric tests (Siegel &
Castellan, 1988) that required only ordinal or nominal assumptions instead. Representa-
tional proponents of nonparametric tests argued that these tests were only slightly weak-
er (less able to detect differences) than their parametric counterparts, a difference that
could generally be overcome by gathering sligchtly more data. However. they largely
ignored the greater flexibility of parametric methods in evaluating interactions (com-
bined effects of two or more variables that are not predictable from the individual vari-
ables). Starting 1n the 1960s, investigators returned to the use of parametric tests.
As a simple example of the representational approach. consider this approach to
defining the equivalence (“=") of two objects (the presence of a property in common,
/ e.g., being enrolled in the same college course)” Equivalence requires transitivity, sym-
metry, and reflexivity. “Transitivity” means that the relation passes across objects—if
John and Richard are enrolled in the course and if Richard and Mary are enrolled in
the course, then John and Mary must be enrolled in the course. “Symmetry” means
that the relationship extends the same way in both directions—if John is enrolled in
the same course as Mary, then Mary must be enrolled in the same course as John. “Re-
flexivity” states that the relation extends to the object itself—every object is equivalent
to itself (if John 1s enrolled 1n the course, then John is enrolled in the course but not all
examples are that obvious, as we will see in Chapter 15). Parallel considerations yield
definitions of the “>” and “<” I'elatiOHShjpS used to define ordinal scales, the unit used
to define interval scales, and the zero point used to define ratio scales. These latter re-
lations are not symmetrical, among other things. If Mary is “>”, e.g., taller than,
Susan, then Susan cannot be “>” Mary. Representationalists have been most coD-
cerned with whether a particular measurement achieves interva] status so that comput-
ing the mean 1s permissible. We have already stressed the issue of whether scores o1 4
conventionally scored test form an interval scale, and they have often argued that they
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' do not. We strongly suggest that this position can easily become too narrow and coun-
terproductive. Michell (1986) describes two other traditions that he terms operational
theory (Gaito, 1980; Bridgman, 1928) and classical theory (Rozeboom, 1966). Neither
| accepts Stevens’ view that one must have achieved a particular level of measurement

to perform a particular statistical operation.*Operational theory views a concept as syn-
( onymous with the operations that define it. In other words, a score on a test does not
represent (stand for something beyond) a measure. It is the measure, but 1t may con-
tain an error so that it merely estimates the trait; operationalism does not require the
measure to be the trait itself.‘Finally, classical theory views measurement as the deter-
mination of quantity or how much of an attribute is present in an object (as noted
above, we assume that measurement also includes classification).

Gaito (1980; also see Baker, Hardyck, & Petrinovich, 1966) termed his position
“statistical theory” and was highly critical of representational theory (which he called
“measurement theory”). His tone was very clearly pejorative, but his view nonetheless
strikes a sympathetic chord with many investigators who have had to defend what they
considered to be obvious aspects of their statistical analyses. Perhaps his major point
1s that using presumably impermissible transformations usually makes little, if any,

difference to the results of the most common analyses. For a counterexample, see
Townsend and Ashby (1984).

o~

Ostensive Characteristics

The physical characteristics of the measurement operations provide one way to judge
the scale characteristics of a particular measure, e.g., length with some form of yard-
stick. To prove that the attribute in question is measured on a ratio scale requires proof
of both (1) equal intervals and (2) an axiomatically unquestionable zero point. Anyone
can see the zero point where the yardstick starts. The beginning of the measuring in-
strument 1s the front of the yardstick, and open space is behind that point. Who could
argue for a more meaningful zero point? The equality of intervals is also easy to de-
monstrate, €.g., saw the yardstick inch by inch and compare the inch long pieces to en-
sure equality.

To a lesser or greater extent, all other measures employ correlates of the attribute
rather than the attribute itself and are therefore indirect. We can establish equality of
time intervals but, strictly speaking, we observe the effects of time and not time it-
self—ticks, pendulum swings, and the earth’s rotation are only consequences of time.
Nearly all measures of interest to behavioral scientists are indirect. We cannot observe
intelligence per se but only its by-products. Likewise, a subject’s perception can only
be inferred from subjects’ ability to discnminate and/or report what they experience
(Eriksen, 1960).

Many investigators, who may not even consider themselves representationalists in a
formal sense, tend to evaluate scale properties in terms of ostensive characteristics and
think of actual measures as imperfect correlates of “real” ones even though the scales
may have been developed from a formal scaling model. We suggest that if the data ob-
tained from applying a measurement scale fit the axioms of the particular model under
consideration and the axioms (assumptions) of the model are appropriate, then the
measure has scale properties specified by the model. For example, Chapter 2 contains




h

22 PART 1: INTRODUCTION

: dinal scales. It ig p
. : construction of or dseq
* model proposed by Louis Guttman for tie to test items. Relevant data can be ana.
upon assumptions about patterns of responses relate to the patterns preicy
lyzed to determine how well the actual score p-attemsale o ed
by the model. A good fit implies that an appropriate sc to guarantee the equality of
Since, for example, there are no ostensive properties tglli ence tests, for exam lln-
tervals measuring intelligence, some have argued tf‘{at inte gl . ,t tat e ple.
provide ordinal scales at best. We hope the above dlSCu'SSI(i)n cales by these standmfia:
sures 1n all sciences would be considered more than ordma. (Sj ualiardes ar' S:
the following sections will show that proper stanq:%lrds for ju S t'g of an atf'bpemes
of a measure do not require observing the ostensive charactenstics ribute. [y

particular:

.. /—\(:_ 1 Standards can be based on data rather than ostensive_ character.lstlcs. One studies
the results of applying a measure to real objects when using a scahng n;odel, Or One
studies the measurement tool directly when using ostensive characteristics. Thus, ip-
stead of relying upon the ostensive properties of yardsticks, one could test a mode]
concerning properties of ratio scales and then see if it fits data obtained from yardstick
measurements. One could therefore derive the scale properties of the yardstick from
the model before seeing a yardstick. People have done this, and the data fit a variety of
scaling models beautifully, €.g., produce transitivity. This is what psychological scal-
Ing is about: It is an attempt to work backward from data to test the fit to a model. In
- this way, ratio, interval, ordinal, or perhaps nominal scales for psychological attributes
which cannot be seen directly may be constructed.

2 Using scaling models is a healthy trend in the development of measurement
methods. Many models are intuitively quite appealing. Because they specify the char-
acteristics that should be found in data. they are subject to refutation (can be falsified,

Popper, 1959). Some models have produced scales that have led to Interesting scientif-
ic findings.

room for disagreement, and there is plenty of it, about the fruitfulness of different
models. For example, we have argued that measures like multiple-choice test scores

should be viewed as having interval properties. However, if psychologists disagree
about the correctness of different scaling models ot

determined? If, for example, several Interval scaling models are

ticular type of data, a failure of the data to fit ope mode] doeg
vent the measure from being considered as an interval scgle

tuting an interval scale. A more final decision should be ma
dards to be discussed in the following sections

Consequences of Assumptions

Even if one believes that there is a rea] scale
present in a particular measure or mirrored ;
tant question is What difference does i make ;
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"
—

CHAPTER 1: INTRODUCTION 23

zero point or proportionally equal intervals as the real scale? If the scientist assumes,
for example, that the scale is an interval scale when it really is not, something will go
wrong in the daily work of the scientist. What could go wrong? How could the diffi-
culty be detected? The scientist could misstate the specific form of the relationship be-
tween the attribute and other variables. For example, a power function might be found
between two measures using an imperfect interval scale, whereas the right scale may
produce a linear relationship.

How seriously would such a misstatement affect the progress of the behavioral sci-
ences? At present, the usual answer is “very little.” Most results are reported as either
correlations or mean differences. We have stressed and will stress that correlations are
little affected by monotonic transformations on variables. These correlations are the
basis of still more powerful methods like factor analysis. However, we also stress that 5
justifying the rank order is vital. Even if one accepted the representational point of
view about measurement scales, what sense does it make to sacrifice powerful meth-
ods of correlational analysis just because there is no way of proving the claimed scale
properties of the measures?

sources of variation in analyzing mean differences among groups, e.g., F, the variance
among means relative to the variance within groups. This ratio and related statistics
are also little affected by monotonic transformations of the dependent measure. If it 1s |
granted that the measure used in the experiment 1s at least monotonically related to the |
real scale, it usually makes little difference which 1s used 1n the analysis. There are
some exceptions of import. Two of these are (1) in examining details of functional re-
lationships, such as whether a particular monotonic relation is linear, logarithmic, a
power function, or some other form, and (2) for some goodness-of-fit tests used in

1 structural modeling (see Chapters 5, 10, and 15).

| A simple rule of thumb is that transformations become more important as the level
of sophistication of the research hypotheses increases. Thus, tests simply concerned
with looking for group differences and rank orderings of groups typically involve sta-
tistical procedures that are little affected by transformations. Numerically, these per-
haps account for the vast majority of research. Interval assumptions are therefore not
crucial when interest centers on ordinal relations among group means, etc. However,
more refined tests of highly quantitative models are very sensitive to the interval prop-
erties of the scale, virtually by definition.

After analyzing the results of investigations, as 1n correlations and/or ratios of vari-

ance components, it often is important to make probability statements about the results
after applying inferential statistics. Thus, 1t may be important to set confidence zones
for a correlation coefficient or to test the significance of a particular ratio among com-
ponents of variance. Such statistical methods are completely indifferent to the zero
point on a scale and consequently do not require ratio scales. However, they do as-
sume interval properties, but since they are based on ratios of variation and covaria-
tion, they are also little affected by monotonic deviations from any true interval scale.
Moreover, statistical methods are completely blind to any meaning in the real world of
the numbers involved. These methods require only a definable population of numbers
that meets the assumptions in the particular statistical method, such as normality of the
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pPopulation error distribution. We suggest that i.t is perfectly p;;’;ﬂszlziz '}:303 flzrslp(:;)? the
ANOVA to test hypotheses about the average size of the HUI’;I e osult is, g 00t-
ball players on different teams. What use you may mgke O tile umbers "'be OO;I:SEa a
different story, since there is no meaning to a theory of footba hn lav it )(/s Nd 1den.
tfying the position individuals play, rather than how well they play €e Lorg,
1953).

Chapters 14 and 15 will consider some éxtremely usa?ful consequences of the rep?e_
sentational point of view, We merely note that it 1S easily misused when the usua] i
tent is to compute correlations or infer the ordering among groups means. Moreover,
even when the intent is to study specifics of functional relations, one may discover thy
two perfectly good definitions of attributes are not linearly related_ to one another sg
that the “true” relation to other measures depends upon how the attribute is defined.

We have thus far considered the representational point of view that scientists normally
think in terms of “real” scales and obtain measures as approximations to such “rea]”
scales. Our opinion is that (1) this point of view frequently leads to unanswerable
questions and (2) violations of even relatively important assumptions are not harmfy]
In most settings. The authors oppose the concept of “real” scales in most settings and
deplore the confusion that this conception has wrought to the average investigator. It is
much more appropriate to think of measurement scales as conventions or agreements
among scientists about a “good” scaling.

In saying that scales are established by convention and not God-given, we do not
mean that such conventions should be arbitrary. Before measuring an attribute, all
manner of wisdom should be sought as to the nature of the attribute—one cannot mea-
sure something unless one has some general conception about what is to be measured.
The nature of a “good” scaling of certain measures can be so readily agreed that a con-
vention 1s easily established, e.g., length, weight, and time. Exasperation about theo-
ries of measurement has tempted some to wish that there were no yardsticks and no
balances for the measurement of weight so that a]] scientists could see that measure-
ment always involves convention rather than discovery of the “real” measure.

Sometimes, one person establishes a measurement convention and other scientists

often neglect to participate in establishing the particular convention Consequently, the

taken as the scale of temperature. Later, the discovery of absolute zero led to a new
and more useful scaling. In psychology, intelligence was once defined as the ratio of

1s now measured relative to performance within a given age distribution. Both these
instances 1llustrate why it is wrong to think that “reg]” scales had been discovered. It i
better to say that conventions changed because better conventions were developed.

N The key is continued validation of measures.

After applying all available wisdom to the problem, it is good to apply some type
of formal scaling model when actually constructing Measurement scales. Although any

set of rules for the assignment of numbers constitutes measurement silly and/or ad
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hoc rules probably will not result in a useful measure. It is useful to think of a scaling
model as an internally consistent plan for scaling an attribute. When the plan 1s put to
use, the measure may eventually prove unsatisfactory to the scientific community, but
having a plan increases the probability that it will be acceptable. Sometimes, useful
measures are simply stumbled upon. However, explicit plans based on common sense
and past experience improve the probabilities of a useful measurement scale.

A convention establishes the scale properties of a measure. If it is established as a
ratio scale, then the zero point can be taken seriously and the intervals may be treated
as equal in any form of analysis. If it is established as an interval scale, the intervals
may be treated as equal in all forms of analysis. This is not meant to imply that such
conventions are, or should be, established quickly or until much evidence is in, but 1n
the end they are conventions, not discoveries of “real” scales.

Certain conventions are not employed because they make no sense or do not lead to
useful results. For example, the Celsius scale’s use of the freezing point of water to de-
fine temperature’s zero point has limited scientific utility. Water is an important sub-
stance, but it not the only important substance. On the other hand, the absolute zero of
the Kelvin scale based upon the absence of molecular activity is useful to a wide range
of physical laws. It similarly makes little sense to establish zero points on scales of
many, but not all, psychological attributes. Zero intelligence might be defined as the
problem-solving ability of a dead person, but the utility of this convention in establish-
ing a ratio scale of intelligence remains to be determined. Psychologists seek to devel-
op interval scales for many attributes because 1t 1s reasonable to ask how far apart peo-
ple are on the scale and not simply their ordering. For example, we frequently need to
determine if a 1s closer to b than to c. |

Scaling procedures that make sense may still not produce scales that work well in
practice. These last four words are the key to establishing a measurement conven-
tion—a good measure is one that mathematically fits well 1in a system of lawful rela-
tionships. Chapter 3 will emphasize that the usefulness (validity) of a measure is the
. extent to which it relates to other variables in a domain of interest. The “best” scaling

of any particular attribute is that producing the simplest forms of relationship with
other variables. An increasing hierarchy of simplicity is (1) a random relationship,
(2) a nonrandom pattern fitting no particular line of relationship, (3) an unevenly as-
cending or descending monotonic relationship, (4) a smooth monotonic relationship,
(5) a straight line, and (6) a straight line passing through the origin. The only way to
describe a random relationship completely 1s to describe every point. However, a
straight line passing through the origin 1s completely described by Y = bX, and the b
(slope) parameter is usually arbitrary. Since the scientist’s task is to translate and sim-
plify the complexity of events in the universe through lawful relationships, the simpler
these relationships, the better.

One way to make relationships simpler 1s to change the scaling of one or more of
the variables. Thus, an irregular monotonic relationship can be smoothed by stretching
some of the intervals, a procedure widely used by Anderson (1981, 1982) under the
name ‘“functional measurement.” Any monotonic curve can be transformed to a
straight line by this device. A straight line can be made to pass through the origin by
changing the origin (zero point) on one of the scales. Of course, conventions about
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known to science could not be rescaled to simplify all relatlonsglps-” Sh y €a
wise move if it could be done—a big “if.” The new scales are as real”’ as the old ones,
and there might be every reason to take the zero points and

scales seriously. | -
There are two major problems with considering scaling merely as a ma con-

vention. First, it is disquieting to those who think of real scales and futilely wish _f0r
infallible tests of the relationships among real scales. Looking at measurt?ment scal{ng
as convention also seems to make the problem “messy.” How well a particular scaling
of an attribute fits in with other variables is vague. Which variables? How good 1s a
particular fit? To avoid such questions, however, is to blind oneself to the realities of
scientific enterprise. To seek shelter in the apparent neatness of conceptions regarding
real scales is not to provide answers about the properties of measurement scales but to

ask logically unanswerable questions.
A second, and more serious, problem with considering scaling as a matter of con-

vention 1s that two or more conventions often compete with one another. For example,
there has been much dispute about whether Thurstone’s law of comparative judgment
or Stevens’ magnitude-estimation methods better describe the results of measuring
sensations (see Chapter 2). As it turns out, Thurstone’s procedures are more useful in
describing lawful relations involving confusion among stimuli, and Stevens’ methods
are more useful in predicting how stimuli will appear (the two are also simply related
through a loganthmic transformation). More appropriate than asking which is correct
would be to ask whether confusion among stimuli or their appearance is at issue in the
particular situation. -
H;virflg ctompeting con;.entioirtlﬁst;egarding the scaling of attributes is not as bad as it
sounds for two reasons. First, 1 ing -
other, as 1s usually the case, and if oil:;(;sszarlrig:f)tglei rm)ln{)'mmc"ally .related'to eac}l
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rule, and, as was said previously, such correlations are large
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Classification as Measurement

We have devoted nearly all of this chapter to the first part of the definition of measure-
ment, measurement as scaling. This is because measurement as scaling has led to more
issues of dispute than has measurement as classification, and because until recently
there were few sophisticated techniques to use with categorical (nominal) data, the
usual fruits of classification. This has changed, especially since the last edition of this
book, and Chapter 15 will focus on some of these new developments.

Classification demands a nominal scale (rules to define “=" and “#”) at a minimum
and, conversely, illustrates that a nominal scale, which was considered “lowly” in
terms of scaling, can be extremely important. Consider two common statéments:
(1) “Everyone is unique; no two people are the same” and (2) “People are pretty much
alike.” Although these two statement appear totally contradictory, both share the char-
acteristic that they lead one away from some useful, if not obvious, results. For example,
people who describe themselves as Republicans are quite likely to answer a variety of
politically related questions differently from people who describe themselves as Dem-
ocrats, e.g., “Should prayer be allowed in public schools?” Similarly, the relation
between political affiliation and response to the political issue may jointly vary with ad-
ditional variables such as whether the person lives in a rural, suburban, or urban area.
Note that this analysis does not necessarily ignore individuality. Two people who fall
within the same “cell” of the analysis (e.g., who are both Democrats, live in a suburban
area, and oppose school prayer) may differ in countless ways (e.g., gender, religion,
height, or weight).'As with scaling, classification assumes equivalence and not identity.

Although classification is relatively simple conceptually, it can be quite difficult
empirically. Useful classification along one dimension implies that the dimension in
question will relate to another dimension (which 1n turn could be at any of the previ-
ously mentioned levels). There is no reason to classify people as type alpha versus
type beta unless these categories have a useful external correlate. Even such obvious
categories as Catholic, Protestant, Jewish, and Muslim may not be widely useful
(though religiously orthodox versus religiously nonorthodox, disregarding the specific
religion, may be). Moreover, apparent relations between a categorical variable (or any
other) and a given criterion may be an artifact of a third variable; religious differences
may, for example, be an artifact of differences in education and/or income. Thus, one
may obtain apparent differences between Catholics and Protestants on an issue that in-
volves liberal versus conservative attitudes because more affluent individuals also tend
to be more conservative and the two groups differ in affluence. Likewise, empirical
disputes often arise between “lumpers” (people who favor a small and therefore more

parsimonious number of broad categories) and “splitters” (people who favor a larger
number of more finely defined categories).

A

RECENT TRENDS IN MEASUREMENT

The Impact of Computers

It is very easy to think that the main role of a computer is to expedite analyses that one
would have performed anyway. This is certainly important. Anyone who has used
computers for a long time appreciates the increasing flexibility and user-friendliness of
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} Y P allow fundamentally different

one additional point must be stressed—computers nowW | |
L , ctively impos-
kinds of analyses to be performed, 1.e., Open form analyses that are effe y 1mpos

sible to do by hand.

Closed versus Open-Form Solutions

Many of the techniques, concepts, and measurement theories that ha-ve re'cently !)e-
come popular actually have long histories. However, they were essentlal%y .1nte.restmg
statistical curiosities before computers became generally available. The distinction be-
tween closed- and open-form solutions helps make this point more understandable.
Consider your first statistics class where you were taught to compute the artthmetic
mean of a sample by adding up the scores and dividing by the number of scores and
given the associated equation X = 2X/N. This is a closed form solution because all you

need do is plug the numbers into the formula to obtain the result. You might wish to

use a computer if N were very large, but the principle would be the same.
On the other hand, suppose you did not know the formula but for some bizarre rea-

son you remembered that the mean minimizes the sum of squared deviations. This too
can be expressed by a kind of formula: 2(X — C)* = a minimum when C = X, but the
formula does not tell you how to obtain X. You might use this information to compute
X by plugging in different values of C, computing the sum of squared deviations for
each value, and accepting the one producing the smallest sum. If you performed
enough calculations, you could in fact obtain an open-form estimate of X

Many statistical quantities of interest, particularly those of recent prominence, re-
quire an open form of estimation because they lack a closed-form solution. This is
often true of maximum likelihood estimates discussed at several points in this book.
For all intents and purposes, such estimates require a computer and, even then, can be
very time-consuming. The process involves repeated calculations or iterations. Numer-
ical analysts often specialize in developing better algorithms to obtain the necessary
successive approximations. Iterative proportional fitting and Newton-Raphson algo-
rithms are two such common computational processes. You will not need to know how
to use either one yourself, but they are widely employed in programs you may use.

Computer Simulation

Computers are also invaluable in simulating processes. A particular fo f simulation
that is widely performed on computers is the Monte Carlq method i;m (;n'ch an estl-
mate of a parameter 1s obtained by random sampling. If you were ask dwt e
the probability of obtaining heads on a coin flip is .5, you might acty eﬂ % v - cyoin )
large number of times and count the actual number of heads i
This would illustrate the Monte Carlo method byt would not,
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conduct a series of trials. On each trial, the program generates a random number from
0 to 1 and adds one to the count of heads if the random number is greater than 0.5.
When finished, it prints the proportion of times heads occurred. Computer simulations
are often performed when it is difficult to obtain a solution analytically (algebraically)
or 1f no solution 1s known to exist.

Measurement consists of rules for assigning symbols to objects to (1) represent quanti-
ties of attributes numerically (scaling) or (2) define whether the objects fall in the
same or different categories with respect to a given attribute (classification). Both scal-
ing and classification involve the formulation and evaluation of rules. These rules are
used to measure attributes of objects, usually, but not exclusively, people. It 1s impor-
tant to remember that we can measure only attributes of objects, not the objects them-
selves. Among the characteristics of good rules are repeatability (reliability) and, more
importantly, validity in senses to be described. Standardization is an important goal of
measurement because it facilitates objectivity, quantification, communication, €Cono-
my, and scientific generalization.

Measurement uses mathematics, but the two serve separate roles. Measurement
needs to relate to the physical world, but pure mathematics 1s solely concerned with
logical consistency. One traditionally important, but controversial, aspect of scaling
that involves mathematics 1s the concept of levels of measurement: Scales generally
fall at one of four levels (others have been suggested): nominal, ordinal, interval, and
ratio. These four levels represent progressively better articulated rules. For example,
nominal scales simply define whether or not two objects are equivalent to one another
with respect to a critical attribute, but ordinal scales determine whether one object
that is not equivalent to another is greater than or less than the other. Stronger results
are possible from higher levels of measurement. Basic to these levels of measure-
ment is the concept of invariance, which concerns what remains the same as permis-
sible changes are made in the scale (e.g., in its unit of measurement); hjgher,—level‘
scales are more restricted as to how they may be transformed and still preserve key
Invariances.

Focal to the debate about levels of measurement is what statistical operations é{e
permissible on a given set of measures. The representational position asserts that scale
properties must be established before performing relevant operations; e.g., a scale
must demonstrably have interval properties before it is proper to compute an arith-
metic mean. Alternative positions, classical and operational, do not share this view.
Many, who need not be formally aligned with a specific position, look for scales to
have ostensive (visualizable) properties like yardsticks or clocks have before accepting
a scale as real; they view existing measures as highly imperfect correlates of true
scales. We suggest that very few measures in science are ostensive. A much better cri-
terion is the extent to which the results of using the scale fit a scaling model. All mea-
surement use 1s essentially based upon convention, and progress is made when better
conventions are agreed upon. In general, the more well elaborated a hypothesis is stat-
ed quantitatively, the more important formal scaling issues are.
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The most important single factor in the recent progress 1 measurement has been

the computer. Although computers obviously allow analyses that coulf:i be done by
hand to be done more easily and accurately, they allow fundamentally different analy-

ses to be performed. Many of these use open-form solutions, SO _named beca'u.se the re-
sults cannot be defined directly by a formula (closed-form solution). In addition, com-

puters allow simulation of processes that are difficult to study d1
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