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When fitting a multiple linear regression
model,1,2 we must safeguard against the
problem of multicollinearity. Multicollinear-

ity is a phenomenon that occurs when 2 or more inde-
pendent variables are highly (but not perfectly)
correlated.2 Multicollinearity can either inflate (or
deflate) the standard errors of the coefficients, and as
a result, the coefficients can, falsely, become nonsignif-
icant (or significant). Another effect of multicollinearity
is that of a sign change of the coefficient in which a
negative effect can become positive and vice versa.

We can imagine a scenario in which we would like to
predict the final after treatment overjet by fitting a
regression model using several independent variables
which can be highly correlated, such as initial overjet,
ANB angle, Wits appraisal, and so on. To make the
Fig. The P value of b1 as a function of the correlation
(B). The blue line signifies the P value equal to 0.05.
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example more tangible and for simplicity, suppose there
is 1 response variable (y) which is the final overjet, and 2
independent variables, x1 and x2, for which n measure-
ments are available. We can further assume that x1 is
the patient’s initial overjet and x2 is another variable
that is highly correlated with the initial overjet and
that both x1 and x2 are continuous variables. The final
overjet is related to the independent variables via a linear
regression model:

final overjet 5 a 1 b1* initial overjet 1 b2x2 1 e,
where e denotes the random error component.

In reality, the variable x2 is a constructed variable,
and we generated several versions of this variable with
increasing correlation with the variable x1. We fitted
the same linear regression model above using the
different x2 variables with the increasing correlations
r between x1 and x2 (A) and as a function of VIF

Am J Orthod Dentofacial Orthop 2021;159:695-6

0889-5406/$36.00
� 2021.
https://doi.org/10.1016/j.ajodo.2021.02.005

695

mailto:npandis@yahoo.com
https://doi.org/10.1016/j.ajodo.2021.02.005


696 Statistics and research design
with variable x1. We plotted the P values of the coeffi-
cient b1 from the different models vs the correlation be-
tween x1 and x2, and we can see an inversely
proportional relationship between the P value and the
correlation between x1 and x2. Figure, A visualizes this
relationship and shows that as the correlation between
x1 and x2 increases, so does the P value. Therefore, a sig-
nificant and expected effect of the initial overjet on the
final overjet disappears because of the presence of the
variable x2, which is highly correlated with x1 (initial
overjet). In this scenario, the variable x2 should not be
included in the model. In addition, it is interesting to
note that the relationship in Figure, A is clearly
nonlinear. This means that for every increase in the cor-
relation by 1 factor, the P value increases by an increas-
ingly larger factor. For small to moderate values, the
increase in the P value is small, but when the correlation
becomes larger than 0.84, the P value of b1 exceeds the
cutoff point of 0.05.

A second example is a regression model in which the
distance walked by cardiovascular patients is predicted
by the heart rate (HR) during the recuperation phase at
minute 1 and minute 2 after the exercise.

M1: distance 5 492.9012 1 0.4761HR recuperation
2
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M2: distance 5 469.171 � 32.687HR recuperation
2 1 32.617HR recuperation 1

The P value of HR recuperation 2 in M1 is equal to
0.156, indicating that this variable is nonsignificant at
the 0.05 significance level, whereas the P value of the
same variable in M2 is far smaller than 0.001 and hence
this variable is highly statistically significant. The expla-
nation of this phenomenon is the high correlation
observed between recuperation 2 and recuperation
1, which is equal to 0.996.

To check the effect of multicollinearity, the variance
inflation factor (VIF) must be computed for each vari-
able. The minimum value of VIF equals 1 in the case
of independent variables, whereas VIF increases with
increasing correlations among the independent variables
in Figure, B. A rule of thumb is that if the VIF for an in-
dependent variable is greater than 5 or 10, the multicol-
linearity of this variable is suspiciously high.
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