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Abstract There seems to be confusion among researchers
regarding whether it is good practice to center variables at
their means prior to calculating a product term to estimate an
interaction in a multiple regression model. Many researchers
use mean centered variables because they believe it’s the thing
to do or because reviewers ask them to, without quite under-
standing why. Adding to the confusion is the fact that there is
also a perspective in the literature that mean centering does not
reduce multicollinearity. In this article, we clarify the issues
and reconcile the discrepancy. We distinguish between
“micro” and “macro” definitions of multicollinearity and
show how both sides of such a debate can be correct. To do
s0, we use proofs, an illustrative dataset, and a Monte Carlo
simulation to show the precise effects of mean centering on
both individual correlation coefficients as well as overall mod-
el indices. We hope to contribute to the literature by clarifying
the issues, reconciling the two perspectives, and quelling the
current confusion regarding whether and how mean centering
can be a useful practice.
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Mean centering is the act of subtracting a variable’s mean from
all observations on that variable in the dataset such that the
variable’s new mean is zero. Some researchers say that it is a
good idea to mean center variables prior to computing a product
term (to serve as a moderator term) because doing so will help
reduce multicollinearity in a regression model. Other researchers
say that mean centering has no effect on multicollinearity. The
debate has left many researchers perplexed: is it good practice to
mean center or not, and if it is, why?

In this paper, we wish to help researchers by clarifying the
issues. We distinguish between micro and macro forms of
multicollinearity, and show that whether multicollinearity is
lessened by mean centering depends upon this level of analy-
sis and interpretation.

Specifically, the conflict between the two viewpoints arises
due to the ambiguity as to what constitutes multicollinearity.
Multicollinearity is defined to be the presence of correlations
among predictor variables that are sufficiently high to cause
subsequent analytic difficulties, from inflated standard errors
(with their accompanying deflated power in significance
tests), to bias and indeterminancy among the parameter esti-
mates (with the accompanying confusion regarding the inter-
pretation and contributions of individual predictors).

Multicollinearity, or excessive correlations among predic-
tor variables, may be detected sometimes by examining a cor-
relation matrix, for example, the correlation between variable
X or X, with their product score X;X , is likely to be large.
Other times multicollinearity is more subtle, being a nonobvi-
ous linear combination of two or more of the independent
variables, detectable only by the examination of the determi-
nant of the covariance or cross-products matrix.

We define a “micro” focus on multicollinearity to be that
which is based on looking at the correlation or regression
coefficients. The “macro” focus on multicollinearity is based
on looking at the properties of the whole matrix such as its
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determinant, or the overall fit of a model as in an R?. We first
briefly review the literature and then we consider both perspec-
tives in greater detail to show how they may be reconciled.

Brief literature review

A number of scholars have considered issues related to mean
centering with regard to the inclusion of product terms in a
multiple regression model to test for moderators. Let us begin
with three points on which these scholars agree.

First, when multiple regression models are expanded from
a supposition of two main effects, Y=bo+bX1+b,X>+¢€, to a
model in which there exists a multiplicative term to capture
the interaction, Y=by+bX|+b,X>+b3X1X5+€, the main ef-
fect variables (both X and X>) are often highly correlated with
their composite product term (X;X;). Some researchers see
this as a problem and others do not, and we will show that
these different positions are largely a function of which results
are under consideration; however, researchers do not disagree
that, empirically, the high correlations are likely.

Second, researchers who believe that mean centering will
help clarify the regression results will obviously recommend
that the variables X7 and X, be mean centered before the prod-
uct term is computed. Researchers who do not believe the
mean centering helps have no argument against mean center-
ing per se; for example, if researchers are working with vari-
ables whose measurements include arbitrary zeros, then it may
be fruitful to mean center a variable such that results are inter-
pretable with respect to the variable’s mean rather than to an
arbitrary point of zero. Researchers of both camps mention the
variables’ measurement properties as a plausible and defensi-
ble reason for mean centering (Dalal & Zickar, 2012;
Echambadi & Hess, 2007; Irwin & McClelland, 2001;
Jaccard, Wan, & Turrisi, 1990; Kromrey & Foster-Johnson,
1998).

Third, Aiken and West (1991) attribute to Marquardt
(1980) the terminology of distinguishing “essential” and
“nonessential” multicollinearity. The terms are not great, giv-
en that they are somewhat value-laden, but these terms are
used in this literature (cf., Bradley & Srivastava, 1979; Dalal
& Zickar, 2012; Shieh, 2010). “Essential” multicollinearity
describes correlations between variables for constructs that
are very likely to be correlated; Aiken and West (1991, p.36)
give the example of a likely correlation “between the age of a
child and his/her developmental stage.” In contrast,
“nonessential” multicollinearity describes correlations that
arise due to issues of measurement or in the moderated mul-
tiple regression context, the fact that X; and X, are likely
correlated with their product term XX, because, of course,
they are contained within it. No researchers believe that mean
centering affects essential multicollinearity, and they differ on

whether they believe that mean centering reduces nonessential
multicollinearity.

Beyond those basic points, there is less consistency among
researchers’ points of view. Usually there is agreement on
facts, but there exist disagreements regarding the assessments
of those facts.

For example, looking at the results of a moderated multiple
regression of the form Y=bo+b1X;+b,X>+b3X1 X5+ € from
the “micro” perspective, that is, examining the individual pre-
dictors and regression coefficients, researchers agree that
mean centering X; and X5 has no effect on the product term
X1X5, nor the power with which the moderator effect may be
detected (cf. Allison, 1977; Dalal & Zickar, 2012; Kromrey &
Foster-Johnson, 1998; Shieh, 2011, 2010, 2009; Smith &
Sasaki, 1979). Furthermore, most researchers concur that
mean centering X, and X, will reduce their correlations with
the product term X X;. Researchers in the “micro” camp will
point to this fact as evidence that the mean centering helps
reduce (micro) multicollinearity. Mean centering facilitates
the likelihood of finding significance for the main effect terms,
X, and X,. This multicollinearity is the sort labeled
“nonessential,” because it is a function of data processing
(i.e., taking a product), not of inherent relationships among
constructs (i.e., essential multicollinearity). Some researchers
of the “macro” camp take the value-laden word
“nonessential” a step further when they then state that re-
searchers “do not care about” this kind of multicollinearity
or that it is a “myth” that mean centering can alter substantive
conclusions (cf., Dalal & Zickar, 2012, pp. 342, 358) or that
whether researchers mean center or not, their results will be
“equivalent” (Kromrey & Foster-Johnson, 1998, p. 42). In
fact, results on X; and X, can vary, so we suspect that those
macro researchers’ characterizations are based on the frequent
orientation in such modeling that the moderator relationship is
the key term under investigation (a philosophy with which we
agree), with the main effects included to partial out their var-
iance but not for theoretical reasons (e.g., Stone &
Hollenbeck, 1984). However, it may certainly be the case that
some researchers are interested in both the main effect terms
as well as the interaction term (a philosophy with which we
also agree), hence, they may well care about reducing the
micro level of multicollinearity (e.g., Aiken & West, 1991;
Friedrich, 1982; Irwin & McClelland, 2001).

Similarly, results of a moderated multiple regressions con-
sidered at a “macro” level, from the determinant of the input
matrix to the overall model fit R%, are not affected by being
mean centered (Dalal & Zickar, 2012; Echambadi & Hess,
2007)—a fact on which both camps agree, yet the macro camp
uses these results to support their claim that mean centering
has no effect on multicollinearity. Researchers in the micro
camp might well agree that mean centering has no effect on
macro multicollinearity, but their interest is in micro
multicollinearity, which is affected.
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With that brief overview of the literature providing
an introduction to the issues, we now proceed to define
and demonstrate the relationships at the “micro” and
“macro” levels in moderated multiple regressions. We
note that the literature we just reviewed briefly also
considers other related issues, including multicollinearity
that arises due to power terms (e.g., X*), not just prod-
uct terms (Bradley & Srivastava, 1979), and the effects
of non-normality and analogous effects on three-way
interactions (Shieh, 2010). Some articles contain equa-
tions and proofs, and some offer demonstrations with
very small data sets or simulations (e.g., Allison,
1977; Shieh, 2011). In our investigations that follow,
we use all of these methods to offer a more comprehen-
sive view of the micro and macro issues.

Mean centering helps alleviate “micro”
multicollinearity

The arguments in favor of mean centering and its role in reducing
multicollinearity are based on the “micro” focus, looking at the
effect of centering on single correlation or regression coefficients,
one at a time (cf., Irwin & McClelland, 2001; Jaccard, Wan, &
Turrisi, 1990; Smith & Sasaki, 1979). From this micro focus, it is
correct to state that transforming X; or X, to deviation scores,’
(X1—X) and (X,—X>), before computing a product term to
represent their interaction, (X;—X)(X,—X>), will typically
produce a correlation, 7( ((X1=X1) (X2=X)), Y), that is much
smaller than its corresponding correlation on the raw
(uncentered) variables, ((X1X5), Y). Similarly the correlation be-
tween the product score and either of its components will be
smaller for the mean centered variables, specifically r
(((X1=X1) (X2=X3)), (X1=X,)) will be smaller than
F((X]Xz),Xl) and r(((Xl_)_(l) (XQ_YZ)), (XQ_YZ)) will be
smaller than (X1 X5),X>). To understand these relationships, con-
sider the following simple proofs.

Let us begin with the familiar equation for a Pearson
product-moment correlation coefficient:

cov(X,Y)

rxy =—F/———. 1
‘ var(X)-var(Y) M)

Next, let us simply substitute the product score X;X5,
wherever there exists the single variable X in equation (1) to

! Deviation scores are often denoted more simply as a lower case variable
label, e.g., x; = (X1=X1) and x; = (X,—X>), and we agree with a re-
viewer that such notation would make this presentation more elegant.
However, we chose to retain the difference notation so that the deviation
was explicit, and the reader did not have to remember that X'; was the raw
variable and x; was its centered counterpart.

@ Springer

obtain the equation for the correlation between a product score
XX, and Y:

_ cov((X1X2),Y) .
Vvar(X1X>)var(Y)

(2)

F'(x\X,),Y

Similarly, let us consider the equation for the correlation
between the product score, X;X,, and one of its compo-
nents—we will take X; but these results will obviously also
hold for X,. Here we take Eq. (2) and substitute X, in every-
where there had been a Y:

_ COV((Xle),Xl)
\/var(Xle)var(Xl) '

(3)

F(X1X,),X1

Now, let us consider the “micro” claim that multicollinearity
is reduced when the predictor variables are mean centered. The
question is whether the correlation between X; (or X5) and
XX, is smaller when the variables have been mean centered.
The equation for that correlation is derived as follows, by sim-
ply taking Eq. (3) and replacing X, and X, with their respective
deviation score counterparts, (X1—X1) and (X,—X>):

(ox) o) o) !
onl((em) ) (1))
Joar(0 ) (1 5) par((10 10,

In the comparison we seek, it is sufficient to compare the
numerators of Egs. (3) and (4), as will become clear shortly.
Thus, let us begin by looking at the numerator in Eq. (3),
which is the covariance between the product score and one
of its components, X;, when X; and X, are in their original
(uncentered) form.

It has been shown that the covariance between a product
score and another variable may be written as follows (under
multivariate normality, Arnold & Evans, 1979; Bohrnstedt &
Goldberger, 1969; Goodman, 1960):

cov(AB, C) = ¢(A)cov(B, C) + ¢(B)cov(A, C). (5)

The notation ¢(A) stands for the expected value of all
A’s in the population distribution; alternatively, pa.
Thus, for our purposes, the numerator in Eq. (3) may
be written as:

cov((X1X2),X1) = e(X1)cov(X1,X2)
+ e(Xy)cov(X1,X1). (6)

Note that the last term in Eq. (6) is actually a variance,
hence:

cov((X1X2),X1) = e(X1)cov(X1,X2) + e(Xo)var(X,).(7)
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For comparison, let’s next consider the numerator of
Eq. (4), which is the covariance of the product score and one
of its components when the predictor variables have been
mean centered. According to Eq. (5), the covariance between
(X1=X1) (X2=X) and (X=X ) may be written as:

(0 (). (1)
(o) o) o
+e((p0:) ().

At this point, the easy observation is made that the covari-
ance in (the left side of) Eq. (8) is expected to be zero because
the expected values of deviations for X; is zero,
e((X1=X1)) = 0, as is that for X, € ((X,=X>)) = 0 for nor-
mally distributed variables, (see Appendix 1 for the proof). Of
course, the fact that the expected (or average) values of these
mean centered variables are zero does not imply that in any
given data set the covariance (and hence the correlation) will
be precisely zero. However, on average, the covariances (and
correlations) will be zero.

Thus, if the expected value of the covariance between
(X1=X1)(X2=X>) and (X,=X)) is zero, then in all likeli-
hood, the correlation in Eq. (4) among centered predictors will
be reduced compared to the correlation in Eq. (3) among the
original (uncentered) predictors. Therefore we may conclude
that, yes, from this micro perspective, mean centering helps to
reduce the micro form of multicollinearity.

It is also important to note that mean centering variables
does not change the nature of the relationships between any
variable in the set that does not include the product term. That
is, any correlation among {X7,X>,Y} will be the same as the
correlation  between the  corresponding  variables
{(X1=X1), (X2=X3), Y} (see Appendix 2 for the proof). As
Dunlap and Kemery (1987, p. 420) say, “the intercorrelations
among [the] original variables are unchanged, whereas the corre-
lations involving cross-product terms are reduced dramatically.”
Specifically, ry, x, = r(Xl_yl)7(X2_)72), rx,y = r(Xl_)?l)vY’
and r'x,y = r(XrYz),Y'

At this point, these relationships have been proven, but it
might also help to see an illustration. Table 1 shows a random
sample of 30 observations for three variables drawn from a
multivariate normal population with correlation parameters
Px1,y = 06, Px2y = 06, and Px1,x2 = 0.3 (though the rela-
tionships and equalities we are about to illustrate are replicable
on any of the reader’s own available datasets). Table 2 shows
the correlations among these two predictors, X; and X,, their
product score, and the dependent variable. The correlation
matrices are presented in both their original form and after
the two main effect predictors had been mean centered (prior
to the computation of the product score). Note that the

Table 1  Illustration data

Y X1 X2 Y X1 X2
3 3 4 3 3 4
4 5 3 4 4 4
4 4 2 4 5 4
4 4 4 2 3 3
5 4 6 3 5 4
3 1 3 2 4 3
2 4 1 4 3 4
3 5 3 3 3 2
5 4 5 4 4 3
4 5 3 1 2 1
5 6 4 3 3 4
3 2 3 5 5 6
2 3 3 3 2 3
4 4 3 4 5 3
4 5 3 2 2 3

Raw data, N = 30

equalities stated previously hold: rx, x, = (0K ), (X0 Xn) =

0278, ry, vy = (XX y = 0.587, and ry, y = F(6R)y =
0.665.

In these results, we see that researchers are correct in
asserting that micro multicollinearity is lessened by mean cen-
tering (e.g., Irwin & McClelland, 2001; Jaccard, Wan, &
Turrisi, 1990; Smith & Sasaki, 1979). Specifically, correla-
tions involving a product score based on centered variables
like those in Eq. (4) in the right-hand side of Table 2 tend to be
smaller than their uncentered counterparts like the correlations
in Eq. (3) in the left-hand side of Table 2; we see that
r((XFYl)(Xryz))‘()(ryl) <7F(x,Xx,).X1> aS -0.167 < 0.759 (the
magnitude is lessened, regardless of the sign change, and the
correlation is not significantly different from zero). Similarly,
r((XﬁXl)(Xryz)),()(ryz) < T(X1X5),X2> as 0.082 < 0.818.

Mean centering does not help alleviate “macro”
multicollinearity

On the other side of the debate is the position that mean cen-
tering is not effective in reducing multicollinearity (cf., Dalal
& Zickar, 2012; Echambadi & Hess, 2007). These arguments
are based on the “macro” focus, looking at the determinant of
the predictor matrix or global indices such as R%. These re-
searchers are not against mean centering, per se. For example,
mean centering may provide a more parsimonious interpreta-
tion of data analysis, namely that the effects of one variable
would be interpreted as a function of being above or below the
mean on another variable (vs. above or below some arbitrary

@ Springer
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Table 2 Comparative correlations

Correlations among original, raw variables

Correlations among centered variables

X, X, XX, Y (X1=X7) (Xo—X>) X=X (X-X;) Y
X, 1.000 (X1—=X1) 1.000
X, 0.278 1.000 (X2—X>) 0.278 1.000
XX, 0.759 0.818 1.000 X1=X1)(X2=X2)  —0.167 0.082 1.000
Y 0.587 0.665 0.765 1.000 Y 0.587 0.665 ~0.091 1.000

intercept term). However, these researchers would argue that
the decision to mean center is an altogether different issue, and
one that does not alleviate multicollinearity (cf.,, Dunlap &
Kemery, 1987; Echambadi & Hess, 2007).

A macro focus on multicollinearity considers all the inter-
relationships among the entire set of predictor variables, X,
X5, and X;X,. From this vantage, multicollinearity is not re-
duced because while mean centering reduces the off-diagonal
elements (such as the covariance of X; with X;X5), it also
reduces the elements on the main diagonal (such as X; X, with
itself, that is, its variance). That is, while the correlations might
be reduced among X, X5, and X;X,, the correlation between
XX, and Y is also reduced. To better understand these rela-
tionships, consider the following demonstrations.

Table 3 presents the regression results for the data previ-
ously analyzed in Table 2. Note that the “micro” level results
vary for X; and X, (but not for X;X,). These include the
parameter estimates, raw regression coefficients b or standard-
ized coefficients [3, their standard errors, and of course, by
implication, their t-statistics, p-values, and conclusions re-
garding which effects in the model are significant. (The b-
weight and standard error for the highest order interaction
term, X;X,, are not affected, although the corresponding 3
is modified.)

At the same time, note that the “macro” level results are
constant, that the total amount of variance explained in Y is the
same R? = 0.622, whether that variance is explained via {X},X;,
anXmXz} or { (Xl_)_(l)y (X2_72), and(Xl—)_(l) (Xz_)_(z) }
The total variance explained is the same, it is simply
redistributed.” Recall from Table 2 that the correlations between
the product scores and their components are lessened, but it is
also true that the correlation between the product score and the

dependent variable is lessened as well, T((x0-%0) (X>-X2)) ¥ <
F(x.x,),y» 38 —0.091 < 0.765. Thus we may conclude that indeed,
from a macro perspective, researchers are correct to assert that

mean centering does not reduce or affect the macro form of

2 As a reviewer kindly pointed out, the betas do not capture variance per
se; the squared part correlations, or effect-size indices like 7,7, which are a
function of the regression weights, capture variance more directly.

@ Springer

multicollinearity (cf., Dalal & Zickar, 2012; Echambadi and
Hess (2007).

It can be stated that mean centering has no effect on this
macro form of multicollinearity when one examines the deter-
minant of the matrix. To understand the concept of a determi-
nant better, consider Fig. 1. This figure plots the determinant
of'a 2 x 2 matrix in which a correlation between two variables
varies from 0.0 to 1.0. The figure shows that the determinant
of a correlation matrix ranges from 0 to 1. The determinant
will equal one only if the correlation is zero, otherwise the
determinant will be less than one. The determinant becomes
zero or near zero when variables are very highly correlated,
that is, in the presence of micro multicollinearity.

Multicollinearity is a problem because determinants that
are zero or close to zero can cause computational difficulties.
For example, the estimation of regression weights, b=(X"X)"
'X'Y requires the inverse of X'X. The calculation of the in-
verse, in turn, requires the term l/det(XX), and obviously the
computation will blow up if the denominator is zero. Hence,
the determinant of X" X must not be zero.

To understand X" X, first think of one’s data as a matrix X,
in which respondents form the rows, and the columns com-
prise X;, X5, and X X, to be used to predict the dependent
variable Y (Y is in a separate vector). The product of the
matrix transpose (X') and itself, X'X; is referred to as the un-
corrected sums of squares and cross products matrix, or the
uncorrected SSCP matrix. When the matrix X is corrected for
or centered around its means, we call the result a deviation
matrix, Xy, and X;'X} is the corrected SSCP matrix. The co-
variance matrix among the predictor variables, C, is equal to
the corrected SSCP divided by (n-1). The diagonal of the
covariance matrix contains the variables’ variances. Next, the-
se variances are extracted and put into a vector, the square root
taken to obtain the standard deviations, and their reciprocals
are taken, and the result is called S~/ 2. The familiar correlation
matrix, R, is equal to the covariance matrix rescaled by the
standard deviations, R=S" 2cs172,

Table 4 contains the raw uncorrected sums of squares and
cross products matrices for the original variables from Table 2,
X, X5, and X;X; at the left, and (Xl—)_(l), (Xz—)_(z), and

(X1=X1) (X2=X) at the right. The elements in the two
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Table 3 Comparative regressions
Regression results for the original variables (R* = 0.622) Regression results on the centered variables (R = 0.622)

b-weight Standard error t-statistic p-value [-weight b-weight Standard error t-statistic p-value [(-weight
intercept —0.440  1.500 -0.29 0.772 intercept 0.023 0.130 0.18 0.862
X 0.576 0.392 1.47 0.154  0.667 (X]—Y]) 0.364 0.111 3.29 0.003 0422
Xs 0.744 0.472 1.57 0.127  0.809 (Xz—)_(z) 0.509 0.116 437 0.0002 0.554
XXz -0.063  0.118 —0.53 0.600 —0.403 (X1 7/71) (Xr)?z) —0.063  0.118 -0.53 0.600  —0.066

matrices are quite different, yet the determinants of the full X"
X matrices (from an X matrix that includes a column of ones
for the intercept) are equal.

Similarly, Table 5 presents the covariance matrices. The
pattern of identity—the set of elements that are constant in
the left and right matrices—is the same as in the correlation
matrices in Table 2 (e.g., cov(X;,Y) = cov ((Xl—)_(l), Y) =
0.731). Note the variance of the product term is greatly re-
duced by mean centering, whereas the other variances remain
constant. It is also of note that these determinants are identical
to each other. Thus, the claim is also correct that the macro
form of multicollinearity is not reduced as a function of mean
centering.

Figure 1 illustrates how multicollinearity affects the deter-
minant in a problematic manner, yet mean centering does not
alter that functional form—the relationship holds whether the
variables are mean centered or not. To show the effect of mean
centering on other results of a regression, we ran a Monte
Carlo study. We set py; y=px2.y=0.5 to represent modest-
sized effects of two predictors on the dependent variable,
and varied the extent of multicollinearity, py; x, from 0.0 to
0.9. For each level of py; x>, we generated a random sample of
size N = 100, with three variables, X;, X,, and Y, with popu-
lation means, [y = 3 (to approximate a 5-point rating scale),
Ly = 4 (to approximate a 7-point rating scale), and py = 0
(given that its value is immaterial to the effects of mean cen-
tering of predictor variables). We computed a product score,
X;X,. We ran a regression using the main effects and

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 01 02 03 04 05 06 07 08 09 1
rX1,X2

Fig. 1 Determinant as a function of multicollinearity rx; x»

interaction, X;, X5, and X;X, to predict Y. We obtained the
3 estimates, their standard errors, and the p-values
representing their significance tests. We also took the same
generated variables and mean centered X; and X,. We com-
puted the new product score, ran another regression, obtained
the new (s, standard errors, and p-values. We repeated this
procedure for 1,000 replications.

Figure 2 shows the average over the 1,000 pairs of regres-
sions for the 3; (or (3,) estimates (given that the strength of the
relationship between X, and Y was the same as that between
X, and Y, both main effect s were equal, for simplicity). As
we mentioned previously, it is known that a linear transforma-
tion like mean centering will not affect the highest order term
in a model, in this case, the X;X, interaction term (Allison,
1977; Dalal & Zickar, 2012; Kromrey & Foster-Johnson,
1998; Shieh, 2011, 2010, 2009; Smith & Sasaki, 1979), thus
we focus on the results for the main effect predictors. Much
like the plot in Fig. 1 for the determinant, Fig. 2 shows that
greater multicollinearity dampens the estimate of 3. As was
also true of Fig. 1, the plot in Fig. 2 is identical whether the
predictor variable had been mean centered or not. That is,
mean centering does not change the dampening effect of
multicollinearity on estimates of regression coefficients.

By comparison, mean centering reduces standard errors
and thus benefits p-values and the likelihood of finding (3,
or 3, significant. Figure 3 shows that as multicollinearity in-
creases, the standard error of the (3 estimate increases slightly,
which in turn decreases the likelihood of finding predictor
variables to be significant. That effect is exacerbated when
taken together with the observation from Fig. 2 that
multicollinearity lessens the (3 estimate, thus multicollinearity
further decreases the likelihood that the 3 will be significant,
and this effect is shown in the rising p-values in Fig. 4.
Figures 3 and 4 depict the nature of how mean centering
enhances a regression analysis—the effects of the correlations
between predictors on the standard errors and p-values for 34
or 3, are greatly reduced. Thus, mean centering is beneficial
in reducing effects of micro multicollinearity.

Note also in Figs. 3 and 4 that even the improvement of-
fered by mean centering has its limits. When correlations
among predictors approach or exceed 0.7, results begin to be
affected even if the variables have been mean centered.
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Table 4 Comparative SSCP (sums of squares and cross products) and determinants

XX matrix, original variables (det = 1386656)

X’X matrix, mean centered predictors (det = 1386656)

X X X, X - — - -
‘ ’ o @=x)  (eeX) (X)) ()

X, 460 (X1—X1) 41.867

X, 388 377 (X2X>) 10.933 36.967

XX 5 1624 1484 6296 (X1=X)) (X—X3) —-6.302 2916 37.908

Parameter estimates will be lower, standard errors higher, p-
values higher, and significant findings fewer. When one or
more bivariate correlations exceed 0.7, indicating 50 % or
more redundancy between the variables, the researcher would
be well served by creating a composite variable, based on
factor analysis, so as to minimize any possible subsequent
detrimental effects of multicollinearity.

Discussion

Multicollinearity arises in numerous contexts. In this paper, we
considered whether mean centering variables help alleviate
multicollinearity in multiple regression models. There are two
perspectives regarding whether mean centering variables prior to
the construction of their product term to serve as an interaction
term helps to alleviate multicollinearity. In this paper, we recon-
ciled the perspectives by distinguishing a micro analysis of cor-
relations from a macro analysis of the determinants of matrices.

As we have shown, the debate and confusion about wheth-
er mean centering helps to alleviate multicollinearity is a func-
tion of discussing multicollinearity in slightly different con-
texts. In particular, there is a micro and macro view of
multicollinearity and both camps are somewhat correct: mean
centering reduces multicollinearity if that is meant to charac-
terize individual correlation or regression coefficients—the
micro form of multicollinearity, and yet mean centering does
not reduce multicollinearity if that is meant to characterize the
fit of the regression model as a whole, i.e., RZ, or the determi-
nant of the covariance matrix—the macro form of

Table 5 Comparative covariances

multicollinearity. The micro focus reacts to high correlations,
and the macro focus reacts to any linear combination of cor-
relations that indicate that the predictors show some linear
redundancies.

It is quite likely that researchers naturally gravitate toward a
micro or macro perspective on multicollinearity as a function
of their paradigmatic contexts and needs. For example, for
many research questions in the social sciences, research ques-
tions revolve around testing the significance and contributions
of particular independent variables, and their individual influ-
ences on dependent variables. From this perspective,
multicollinearity puts the likelihood that any given predictor
will be found significant at risk. Mean centering helps these
researchers and is good practice when testing and reporting on
effects of individual predictors.

For other research questions, a macro view might domi-
nate, such as when a modeler wishes to improve a model’s
overall fit or predictions. These researchers may not care as
much about the particular contributions of separate indepen-
dent variables, instead caring about adding predictors so as to
maximize macro results including the model’s overall R%. For
example, increasingly, practitioners are analyzing real world,
“big data” and are facing the macro issues that plague com-
puter scientists and artificial intelligence researchers regarding
identifying conditions under which estimation will be prob-
lematic, as estimates approach machine error boundaries. For
these researchers, mean centering will not affect (harm or
help) their analyses.

Finally, along the continuum between micro and macro
may be placed the indices that many social scientists find

Covariances among raw variables (det = 0.771)

X X, XX Y
X 1.444 (X1-X,
X, 0377 1275 (XX
X, X, 6.051 6.129 44.064 X,-X
Y 0.731 0.779 5.269 1.076 Y

Covariances among centered variables (det = 0.771)

(X)) (X)X ()
) 1.444
) 0377 1275
) (XX,) 0217 0.101 1.170
0.731 0.779 -0.102 1.076
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*Note: the plot is the same for ; or B, computed on mean centered or raw variables.

Fig. 2 (3, or 3, as a function of multicollinearity rx; x»*

useful, namely variance inflation factors (VIFs). The VIF for a
predictor variable X; is VIF;=1/(1 —R?), where R? is obtained
from the multiple regression in which X; is predicted from all
the other independent variables. The square root of the VIF for
X; indicates how much larger the standard error of the regres-
sion coefficient for X; is compared to what the standard error
for X; would have been if it were uncorrelated with the other
independent variables. If there is no multicollinearity involv-
ing variable X;, its VIF will be 1.0, that is to say the standard
error of the regression coefficient has not been inflated, there
is no biasing problem, and the likelihood that the predictor
variable will be found significant is as good as it can be. In
contrast, if X; has a VIF of, say, 9, then the standard error for
the regression coefficient representing variable X; will have
been inflated by a factor of V9 = 3, and multicollinearity
might therefore be causing problems in the data analyses. It
has been suggested that a VIF for any given predictor variable
should not exceed 10.0 (Marquardt 1970). Consider, for ex-
ample, the uncentered data VIFs for X, X,, and X X, are
14.175, 18.164, and 39.483, compared to the VIF indices for
their centered counterparts, 1.128, 1.104, and 1.048,
confirming from another perspective that mean centering

mean-center

04 original vars

0.3
) /
0.1

0 01 02 03 04 05 06 07 08 09
rX1,X2

Fig.3 Standard error of (3; or 3, as a function of multicollinearity ry; x»

helps reduce potentially bad effects of interrelated variables.
While VIF indices take into account the effects of all the
predictor variables and thus may be considered to be some-
what macro, their emphasis is on one predictor variable at a
time, and they were also improved by the mean centering, so
they might be considered somewhat more micro in character
than macro.

Given the distinction between micro and macro perspec-
tives, different researchers will use this information as they
deem most appropriate for their scholarly interests.
Researchers who focus on the macro level of analyses, seek-
ing to use several predictor variables to enhance model fits can
mean center their variables if they prefer to interpret their
results relative to means rather than arbitrary intercepts, and
they can proceed confidently knowing that doing so will not
affect or improve multicollinearity at a macro level, including
determinants and model fits such as R%s. Alternatively, re-
searchers who focus on the micro level of analyses, seeking
to test hypotheses about the significance of the contributions
of individual predictors should mean center their variables
because micro multicollinearity will be reduced, and the pat-
terns of significant predictors will be clarified.

= Mean-center

original vars

0.4
0.3
0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rX1,X2

Fig. 4 P-value of 3, or 3, as a function of multicollinearity ry; x»
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When all is said and done, should a researcher mean center
the X; and X, variables before computing a product term
XX, to include in a moderated multiple regression? It de-
pends. Mean centering is advisable when: (1) the predictor
variables are measured on scales with arbitrary zeros and the
researcher seeks to enhance the interpretation of the regression
results vis-a-vis the variables’ means rather than the arbitrary
zero points, or (2) the research questions involve testing the
main effect terms in addition to the interaction term and the
researcher seeks to obtain these statistical tests without the
interference of the so-called nonessential multicollinearity.
On the other hand, mean centering may be bypassed when:
(1) the research question involves primarily the test of the
interaction term, with no regard for the lower order main effect
terms, or (2) the research question involves primarily the as-
sessment of the overall fit of the model, the R? , with no inter-
est in apportioning the explained variability across the predic-
tors, main effects or interaction alike.

Appendix 1

Recall, as claimed in the paper after Eq. (8), the expected
value, written €(X;) (or population mean, j;) of a deviation
score such as (X i—X 1) is zero. Essentially,

8(/\/1771) = €X1i*€<71) =y~ =0.

The relationship can be seen in the sample values as well:

n

1 _
- (XI,«—XI)
U

1 1 _
= nlele Pl X

1 1
= n]TlZX”_ HZXU
:ﬁ<ZX1,‘*ZXU> :0

Appendix 2

To prove the equality of the correlations with or without
mean centering for terms that do not include the product
term (as referenced after Eq. (8)), let us begin with the
simple equation for the correlation between X; and X,:

1 X=X\ [ X2 X2
erxz_nlz< Sx1 )( Sx2 )

@ Springer

(B1)

To show that the correlation between these two predictors
is not affected by centering, we replace X; and X, with
(Xli_yl) and (Xz,’)?z)i

(xi X)) -0 [ (xa¥2)-0
) )\ )

The zeros in the numerators of Eq. (B2) are a result of the
proof in Appendix 1. We can also show that the standard
deviations are unaffected by centering, that is,
SX1 = S(x,-X,)" The equation for the standard deviation of

X is:

(B2)

(om) () ST

The equation for the standard deviation of the centered
version of the variable, (X ;~X 1) is:

NEEID)

Thus, the correlations in Egs. (B1) and (B2) are equal,
rx, X, = r<X1_)—(])A(X2_)—(2). The same equality holds for
X,y = r(XFYl),Y’ and X,y = r(Xz*z?z) Y

In contrast to these relationships remaining unchanged with
or without mean centering, the correlation between the prod-
uct score and any of these non-product variables will be dif-
ferent depending on whether the product score was calculated
on the original variables, XX, or their centered counterparts,
(X1=X1) (X=X>).
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