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Abstract: There are various two-tailed test versions of Fisher’s exact test for analyzing a 2~ 2 
table. In this paper, the optimal version is selected on the basis of the concept of mean power 
(arranging in order from the smallest to the largest hypergeometrical probability, and in the case 
of a tie, arranging in order from the largest to the smallest value of the odds-ratio), and this 
selection is as valid when considering it as a conditional test as it is when considering it as an 
unconditional test. The comparison of the power of the version selected (with one and two tails), 
with that of the more common unconditional tests (Barnard, 1947, and McDonald et al., 1977) 
shows that the loss of power produced by using Fisher’s test is very slight in the majority of 
situations, and this is acceptable in return for the greater ease of computation and a more generic 
validity (for all types of sample). 

Keywords: Fisher’s exact test; Power; 2 X 2 Tables; Unconditional tests. 

1. Introduction 

A 2 x 2 table is the distribution of sample results like those shown in Table 1, 
but which essentially may be produced by three types of sample (Barnard, 1947): 
no fixed marginal (multinomial distribution), one fixed marginal (two binomials 
distribution) or two fixed marginals (hypergeometric distribution). Whatever the 
case, by conditioning on the obtained marginals and in the verification of H, 
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Table 1 
Results presented in the form of a 2 X 2 table 

A Totals 

B 

B 
Totals 

Xl 

x2 

al 

Yl n1 

Y2 n2 

a2 n 

(independence, homogeneity of proportions or randomness, respectively), the 
probability of a table like that given is: 

P(X, =x1 I ni, ui, H,) =P(xl) = (1) 

where 

r = max(O; a, - n2) <x1 < min(a,; nl) = s. (2) 
If conditioning is done only in the previously fixed marginals, the form of 

probability in the table varies according to the type of sampling; so, in the third 
case equation (1) remains the same, but in the second case it will be: 

J’(X, =x1, X2 =x2 I nj, H, -pl =p2 =p) =P(xl, x2) 

n1 n2 = 

i I( Xl x2 I P”$ -P>“‘, (3) 

where pi(i = 1, 2) are the proportions of individuals which possess characteristic 
A in the populations from which the ni size samples are drawn. Henceforth, 
tii =xi/ni and 8 = al/n, and this case, because of its special importance (and 
because it is the most studied), will serve as a model in the rest of the paper. 

In order to test H, -pl =p2, statisticians are strongly divided between the 
proponents of the conditional principle (always to apply equation (1)) and those 
who prefer the unconditional principle (to apply the most suitable equation for 
each case). The former group (Yates, 1984; Barnard, 1989; Upton, 1992) holds 
the view that the only valid test is the well-known Fisher’s exact test (1935). The 
second group (Barnard, 1947; McDonald et al., 1977; Liddell, 1978; Upton, 
1982; Haber, 1987) feels that each model requires a different test (those of 
Barnard, 1947, in the first two models; that of Fisher in the third). The 
theoretical reasons for supporting one or the other methodology are many, and 
are not our objective in this paper (see Martin, 1991; Barnard, 1989 and Upton, 
1992; especially the last two, in which the writers justify their change of opinion 
in favour of conditioning). On a practical level, those who defend the uncondi- 
tional test have a strong argument when they point out that it has greater power 
than Fisher’s exact test, which they accuse of being too conservative. However, 
this criticism is based on very limited tables and partially deficient procedures, 
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where the gain in power is not quantified and the size of the same compared to 
the much greater time of computation is not evaluated. The principal objective 
of this paper is to effect a wide-ranging study of all these aspects. 

To this end, in Section 2, we give different classic versions of one- and 
two-tailed tests. In Section 4, we select the most powerful version of the Fisher’s 
exact test (something that has not been satisfactorily dealt with in the relevant 
literature). In Section 5 the powers of the optimal Fisher’s test are compared to 
those of the optimal unconditional test (Barnard) and the most common 
unconditional test (McDonald et al.), all with one and two tails, and over a wide 
range of situations. All the selections and/or comparisons are perfomed on the 
basis of the “long-term power” and “mean power” described in Section 3. 

2. Arrangement criteria and versions of tests 

2.1. In Fisher’s exact test 

If Table 1 is the observed table, its P-value is: 

&(x1, x2, Yl, Y2) = c WG (4) 
T(X,b T(q) 

where T( * ) is a given rule of arrangement which makes the points enter the 
critical region (CR) one by one (or more than one in the case of ties). When the 
test is one-tailed (Hi -pi >p2 for example), there is only one possible arrange- 
ment (Davis, 1986): T(x,) =x1. When the test has two tails (Hi -pl #p,), there 
are various possible arrangements (it is assumed that fil > b2 and that G1 = I - 
fii); the most frequent are: 

H = T,(x,) = -P(x,) = from smallest to largest probability. 
D = T2( x1) =sl -fi2 = from largest to smallest difference in proportions. 
R = T,( x1) =$1 +c2 = from largest to smallest relative risk. 
0 = 7$X1) ‘file2 +e2G1 = from largest to smallest odds-ratio. 
I = T,(x,) = - Cf_P(i> = from smallest to largest sum of the probabilities of 

the tail. 

(The traditional criterion of arranging in order from the largest to the smallest 
value of the chi-squared statistic is equivalent to T2.) Any of the 5 rules divides 
the sample space in 2 parts (which form the CR): from r to x; and from xi to s, 
where xi is such that q<x;> > T(xi), but K(x; + 11 < Ti;:(xl). Occasionally, 
when 7’i(x1> = TV, there is a tie, for which reason, by complementing any of 
the above rules by one of the others, the tie between points x1 and xi may be 
broken, and point x1 would then be included, so coming nearer the target error 
CL As there are 5 rules (each complemented by the four others in the case of 
tie-breaks), this gives a total of 20 different arrangement criteria (in fact they are 
less, as a tie in the principal criterion may produce a tie in the secondary one). 
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In symbolic form, the criterion H (when it is the principal criterion) comple- 
mented by D, for a tie-break, gives us the criterion HD. 

Whatever the T( * > arrangement rule is, a CR to target error cy will be built by 
entering points in it - in order of T - until P,(x,, x2, y,, yJ is the nearest 
possible to the error (Y without exceeding it. 

2.2. In Barnard’s test 

If Table 1 is the observed table, its P-value is: 

&(x1, xq) = max c 
o<p<l T(X,, X,)>T(x*, x2) 

JVL xz>7 (5) 

where T(*, - > is a given arrangement rule which makes the points enter the CR 
one by one (or by more than one in the case of ties). Here, also, there may be 
various versions of criterion T. The most powerful is that of Barnard, but, 
because of the complexity of computing it, it is rarely used. Of the remaning 
versions, the most common and one of the most powerful (Martin and Silva, 
1994) is that of McDonald et al. (19771, and we shall examine this (arranging in 
order from the smallest to the largest value of the P-value of Fisher’s exact test 
with one tail). Here, the arrangement order will affect both the one-tailed and 
the two-tailed tests. 

Whatever the T(., * ) rule of arrangement is selected, a CR to target error a! 
will by built by entering points in it, in the order of T, until P&x,; x2) is the 
nearest possible to the error (Y without exceeding it. 

3. Criteria for comparing different versions of tests 

3.1. Power 

A common criterion in statistics for comparing tests is that of their power, 
although with discrete variables (as in this case) the difficulty arises that the 
target error cy is almost never reached (and so the sizes of the tests are 
different). This difficulty may be avoided substantially if the study is performed 
with a wide range of values for (Y (as will be seen below). Moreover, as the CRs 
yielded by each version of the test are not contained one within the other 
(Upton, 19821, th ere is no version which is uniformly better than another, and so 
the powers will have to be compared point by point (in pairs of values of p1 and 
~~1. Thus, given the target error a, the CR(a) which it produces, and the values 
p1 and pz, the power for Fisher’s exact test is: 

c~)(::)(~~) eAxl 
qp,, Pz, Qy) = s a 

XJ n,i( ay:i) ehi 

(6) 
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(where A = ln{p,q, +p2ql} and qi = 1 -pi> while that for the unconditional test 
is: 

(7) 

Martin and Silva (1994) point out the problem that when one compares the 
powers of the two versions of the test (say A and B), one will be larger than the 
other in some values of (pi, p2) but not in others. With the aim of globalizing 
the results, Haber (1987) compares 

min e( pr, p2, Q I I p1 -p2 I = A) 
Pl 

in A and B for various values of A, while Eberhardt and Fligner (1977) compare 
the area of the parametric space (p,, p2> in which 0, > 8,, with the area where 
the opposite takes place (0, < 0,). Martin and Silva (1994) argue that such 
comparisons are deficient because everything depends on the relative abun- 
dance of each pair (pl, p2), that is, on the “a priori” distribution assigned to it. 
Thus, Eberhardt and Fligner’s criterion implies presuming that p1 and p2 are 
independent uniform random variables and that each point (pl, p2) of the 
parametric space is assigned a complementary weight of 1 or 0 depending on 
whether 0, is larger or smaller (respectively) than 0, in it. It seems more 
reasonable to assign to each point the weight which it has: B(p,, p2, a). 

All these criteria are conventional, as are those that follow, but the ones 
defended in this paper seem to us to be more acceptable for the reasons we 
have alleged. 

3.2. Long term power 

The authors mentioned above indicate that, assuming that pi follows a uniform 
distribution during that length of the experimenter’s life (with independent pl 
and p2), the long-term power 0(a) is given by the double integration of 
equations (6) and (7), which in each case yields: 

(to be determined by numerical integration), and: 

e(a) = 
no. of points in the CR(a) 

no. of points in the sample space ’ (9) 

both of which are for two-tailed tests. For one-tailed tests, the only equation 
which we shall specify is that parallel to (9), and so for H, =pl >p2, we shall 
have: 

2 
e(a) = c PFc% 

@I + lb2 + ‘1 CR(a) 
x2 + 1, Y, + 1, Y2)7 (10) 
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where PF( * ) is given by (4) for the alternative H, -pl <pz; see Martin and Silva 
(1994). 

3.3. Mean power 

For comparing two tests, what has been written above still has the disadvantage 
that the conclusions attained depend on the error (;L! used. On the other hand, 
what the researcher wants is the optimal test for the data obtained, and the first 
significance in it is reached in an error (Y (its P-value) that is not one of the 
traditional ones. All this means, as authors remind us repeatedly, that one 
should establish the conclusions on the basis of the mean power attained in 
reasonable intervals of CL Thus, assuming that any value of Type I error 
between (Y and (Y’ is equally important, the authors themselves define the 
concept of mean power for the test for the interval (a, (Y’): 

iqa, a’) = 
a’A( cd) - aA( cl) 

cd - CY 
7 

where: 

A(a) = -$!I(‘) dt = 8(0, a). 

(11) 

(12) 

The value for A(a) varies according to whether @a) is given by (81, (9) or (10). 
To obtain it, let CR, = Id, CR,, CR,, . . . , CR, = CR(a) the successive CRs, 
which consist of Ni points, obtained on incorporating one by one (sometimes 
more, in the case of ties) the points of the sample space under the T-arrange- 
ment criterion chosen. Each of them is differentiated from the previous one in 
the set of points Di (CR, - CRi_1 =Di), whose number is Ai (Ni -Ni_, = Ai), 
and has been obtained from a working error of CQ = 0, (Ye < (Ye < * * * < at < a, 
yielding a power of 13(cz,) = 0, 0(a,> < e(a,) < - - * < O(a,> = O(a). Thus, e(*> is 
a function in steps with jumps in the values of (Yi, the area below it is aA 
and finally, 

(13) 

In the case of (81, the conditional method with two-tailed test, one only has to 
substitute in (13) the values obtained. In the case of (91, unconditional method 
with two-tailed test, the same authors obtain an explicit equation: 

Na - c Aiai 
A(a) = i=l 

a(nl + l)(n, + 1) ’ 
(14) 
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where N= N, is the total number of points in CR(a). In the case of (lo), 
unconditional method with one-tailed test, they obtain: 

A(a) = 

where PF( - ) 

x c M%9 x2 f 1, Yl+ 1, Y2), (15) 
Cx,, X*)EDi 

is as in (10). 
Although the symbols in all the expressions remain the same, one must not 

forget that f3(cr) refers to e(cr lai, ni> in equation (81, and to @a I ni> in (9) and 
(10). 

4. Choosing the most powerful Fisher’s test 

4.1. General remarks 

As already pointed out above, Fisher’s exact test only admits one version as a 
one-tailed test, and so, in this case, no choice is required. When the test has two 
tails, the most frequent possible versions are the twenty cited above, and a 
choice must be made between them. There is abundant literature on partial 
selections (see Martin y Luna, 19871, but there has never been such a wide 
selection as the present one. In all the cases, the choice will be made on the 
basis of the mean power in the intervals of (Y from 0% to l%, from 1% to 5% 
and from 5% to lo%, the first for those using Bonferroni’s method, the second 
for the usual significances, the third for the indications of significance. In all the 
cases too, the choice will be effected in two stages: (i) Selecting the optimal 
tie-break rule for each arrangement criterion; (ii) Selecting the optimal criterion 
between the 5 of the previous stage. It is a good idea 
among the simple criteria (H, D, R, 0 and I) so us to 
when the tie-break rule is introduced. 

4.2. As a conditional test 

to choose the optimal from 
evaluate the gain produced 

The mean power, given by (81, (11) and (13), apart from depending on the 
interval of values of cy chosen, now also depends on the values of ai and ni. So 
as not to repeat the tables, let us agree that a, = min(ai, ni> and IZ~ = 
min(n,, n,); with this, the mean power will depend on n, a, and nl, and these 
parameters will have to be given a wide range of values so as to obtain the 
optimal method in a wide range of situations. Equation (8) has been obtained by 
numerical intergation (by Simpson’s method in MapleV software). 

The results of all the selection may be obtained from the authors. The results 
of the last selection, for the interval 1% to 5%, are presented in Table 2, in 
which only the methods without tie-break rules are referred to, because the 
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Table 2 
Mean powers for the two-tailed Fisher’s exact test (as a conditional test) for the arrangement 
criteria indicated (first row) in the tables shown (first three columns) and for the interval of values 
of (Y from 1% to 5% 

n al 121 I H D R 0 

10 3 3 18.2 18.2 18.2 0.0 0.0 
10 5 5 35.3 35.3 35.3 35.3 35.3 
30 3 3 20.5 20.5 20.5 0.0 0.0 
30 3 7 19.1 19.1 19.1 0.0 0.0 
30 3 11 24.1 24.1 24.1 0.0 0.0 
30 3 14 5.8 5.8 5.8 0.0 0.0 
30 8 8 37.8 37.8 37.8 42.7 42.7 
30 8 12 46.7 46.7 46.7 44.4 47.5 
30 8 15 50.2 50.2 50.2 50.2 50.2 
30 15 15 44.7 44.7 44.7 44.7 44.7 
50 4 6 24.4 24.4 24.4 0.0 0.0 
50 4 12 25.7 25.7 25.7 0.0 0.0 
50 4 18 21.2 21.2 21.2 0.0 0.0 
50 4 24 72.2 72.2 72.2 0.0 0.0 
50 10 10 22.5 23.0 22.5 16.0 16.0 
50 10 20 53.7 53.7 51.0 53.7 53.7 
50 15 15 49.1 49.1 49.8 46.7 47.7 
50 15 22 55.4 55.4 55.4 55.4 55.5 
50 25 25 47.7 47.7 47.7 47.7 47.7 

inclusion of a tie-break rule has been found to affect the power to an insignifi- 
cant extent (see the following subsection). The conclusions (for the whole body 
of the data) are that the best method is H, but that I and D (in that order) are 
practically equivalent to it, while the worst methods are 0 and R (in that order), 
which differ slighty between themselves. 

4.3. As an unconditional test 

The proponents of the unconditional method have the difficulty of the large 
amount of time needed to carry out calculations for this method, which makes it 
well-nigh impracticable for ordinary use. Fisher’s method, which Pearson (1947) 
shows is also valid as an unconditional method, is known to have less power, but 
being relatively easy to compute, it is advisable to give the optimal version of the 
same, as an unconditional test, and this implies that the power will be given by 
(11) and (14). 

As Fisher’s exact test acts on the diagonals of the sample space (x1, x2), that 
is, on constant values of a, =x1 +x2, and the CRs of the previous section were 
built for fixed values of a,, the present CRs will now be the union of all the 
CR(a,) built to an equal error (Y. The choice of the optimal criterion will be 
made by a similar procedure to that described above, but now the parameters to 
be fixed are only n and ~zr. The values chosen for 12 are those of the intervals 

6-14; 16-24; 27-33; 37-43; 48-52, 
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Table 3 
Mean powers of Fisher’s exact test (as an unconditional test) for the arrangement criteria 
indicated (first row), in the values for n shown (first column) and for each interval of values of cr 

n/Methods 

(Y: 0%-l% 
6-14 

16-24 
27-33 
37-43 
48-52 
(Y: l%-5% 

6-14 
16-24 
27-33 
37-43 
48-52 
ff: 5%-10% 

6-14 
16-24 
27-33 
37-43 
48-52 

H HO DH RH OH IH 

2.3 2.3 2.3 2.1 2.3 2.3 
10.8 10.8 10.8 7.0 9.9 10.8 
18.5 18.6 18.5 10.5 15.6 18.6 
24.7 24.7 24.6 13.8 20.0 24.7 
29.5 29.5 29.5 16.9 23.8 29.6 

9.3 9.3 9.3 7.5 9.2 9.3 
22.1 22.1 22.1 14.3 19.9 22.1 
30.8 30.8 30.7 19.3 26.4 30.8 
36.9 36.9 36.9 23.9 31.4 36.9 
41.6 41.6 41.6 27.9 35.4 41.6 

17.3 17.3 17.3 13.3 16.9 17.3 
31.2 31.2 31.2 21.1 28.1 31.2 
39.9 39.9 39.9 27.4 35.0 39.9 
45.7 45.7 45.7 32.5 39.9 45.7 
50.1 50.1 50.1 36.7 43.7 50.0 

and for each of them all the possible pairs of values of (n,, n2), where n1 G n2, 
have been contemplated. This gives values for FZ of approximately 10, 20, 30, 40 
and 50, and for each of them the average of the mean powers is taken, because 
it has been found that the variability of the mean powers within each range of 
values of it is not great. In total 459 tables (n,, I~J and 117, 934 points (xi, x,) 
have been studied. 

All the selection results may be obtained from the authors. The results of the 
optimal selections are given in Table 3, where method H (without a tie-break) is 
included as a basis for comparison. The conclusions for all the data are: 

(1) 

(2) 

(3) 

(4) 

If we do not take into account the tie-break rule (following what is usual in 
the other published papers) the worst criteria are R and 0 (in that order), 
while criteria I and H are equal and D is almost imperceptively worse than 
them. 
In all the partial selections of the optimal, criterion H (the most commonly 
found in publications) is always present. This is also true of criterion D, 
although, in the case of equivalence, in Table 3 we have chosen to load the 
choice in favour of H. 
The best criterion is HO, which is closely equivalent to H (which is equiva- 
lent to I> and DH (in that order). 
In the methods which work well (I, H and D) the tie-break rule barely affects 
power. 
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5. Fisher’s exact test versus the optimal unconditional test 

5.1. General remarks 

Fisher’s exact test has been repeatedly accused of being conservative from the 
point of view of unconditional tests, but that accusation (generally obtained 
from small values of 12 and not very high values of K = n1 + n2 > 1) has not been 
sufficiently detailed nor evaluated with sufficient accuracy in terms of power. 
Schouten et al. (1980) and Martin and Silva (1994) point out the strong 
dependence on the unconditional tests of the factor K (which measures the 
imbalance in values of ni), though it is advisable to introduce it into planned 
comparisons for power. In the following, the mean power &a, a! I n, K) will be 
determined for each of the values of n indicated above, and for each of the 
following intervals of K: K= 1.00; 1.00 <KG 1.25; 1.25 <KG 1.50; 1.50 <KG 
1.75; 1.75 <K < 2.25; 2.25 <K < 3.00; 3.00 <K < 4.25; 4.25 <K < 6.00. 

The mean power s, for the test of McDonald et al. (1977) (which is the most 
common unconditional test) was computed by Martin and Silva (1994). The 
mean power 8, for Fisher’s test was calculated by the authors. The relevant 
point of the comparison between them is the power gain, both absolute (8, - 8,) 
and relative ((8, - 8,) + 6)r), which are of interest since each gives complemen- 
tary information. The results for values of (Y between 1% and 5% (the most 
common) are given in Table 4. The rest of the results, including those which 
have Barnard’s test for reference (which is the most powerful unconditional 
one), may be requested from the authors. The calculations for 8, are made 
taking as a base equations (11) and (14) or (15), depending on whether the test 
has one or two tails, that is, taking unconditional formulae as a basis. The 
reason for this is that in order to compare Fisher’s test with that of McDonald et 
al., the former must submit to the same conditions as the latter: the uncondi- 
tional principle; otherwise the results obtained cannot be compared. 

5.2. In one-tailed tests 

For one-tailed test we have already said that there is only one version of Fisher’s 
exact test, and the results in the first part of Table 4 refer to it. The conclusions 
are: 

(i) The absolute increases in power go from 3% to 6%, from 4% to 9% or from 
4% to 14% for each of the three intervals of (Y except if K < 1.25 in which 
case the gains are quite considerable. 

(ii) The relative increases in power are lower than 10% when it is large 
(n 2 50) and K is moderate (from 1.5 to 3). 

(iii) Both increments tend toward zero as IZ increases, except when K < 1.25, in 
which case this tendency will not make itself felt until n is much larger than 
the values dealt with in this study. 
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Table 4 
Mean powers of Fisher’s exact test (first entry) and absolute increases (second entry) and relative 
increases (third entry) respecting it of the unconditional test of McDonald et al., for errors (Y 
between 1% and 5%, various values of n (first column) and various values of K = n, /nz > 1 (first 
row) in tests of one tail (first table) or two tails (second table, where the test used is the HO 
version of Fisher’s test) 

n\K = 1.00 < 1.25 < 1.50 Q 1.75 d 2.25 < 3.00 Q 4.25 Q 6.00 

One tail 
6-14 

16-24 

27-33 

37-43 

48-52 

11.5 13.7 13.2 12.5 11.1 8.0 8.4 6.3 
8.9 9.6 8.2 8.0 8.8 9.2 8.1 7.2 

77.5 70.4 62.2 64.3 79.7 114.5 96.4 114.6 
16.9 20.7 30.0 29.5 27.5 25.4 21.6 16.4 
21.0 18.1 7.8 7.6 7.9 8.6 8.7 8.8 

124.1 87.2 26.0 25.9 28.8 33.9 40.3 53.4 
10.4 22.8 41.1 40.3 38.7 36.0 32.2 26.8 
37.3 24.7 6.1 6.4 6.5 7.1 7.8 8.3 

358.5 108.3 14.8 15.9 16.8 19.8 24.3 30.9 
10.5 27.3 48.3 47.5 46.2 43.6 39.8 34.4 
43.3 26.4 5.1 5.3 5.4 6.0 6.6 7.4 

412.7 96.6 10.6 11.3 11.7 13.8 16.7 21.5 
8.5 24.9 53.6 52.7 51.5 49.0 45.4 40.1 

49.7 33.2 4.3 4.6 4.7 5.1 5.7 6.6 
584.2 133.4 8.0 8.7 9.1 10.5 12.6 16.4 

Two tails 
6-14 7.4 

6.5 
87.8 

16-24 24.6 
6.7 

27.2 
27-33 35.8 

5.8 
16.2 

37-43 43.3 
5.0 

11.5 
48-52 48.9 

4.0 
8.2 

12.8 11.9 12.0 10.5 7.8 8.4 6.3 
5.2 4.2 3.8 5.2 6.9 7.0 7.1 

40.6 35.3 31.7 49.5 88.5 83.3 112.7 
29.0 27.8 27.5 25.8 24.0 21.0 16.4 

3.8 4.0 4.1 4.2 4.6 5.2 6.4 
13.1 14.4 14.9 16.3 19.2 24.8 39.0 
39.0 38.5 37.9 36.5 34.2 30.9 25.9 

3.0 3.2 3.1 3.4 3.3 3.7 4.4 
7.7 8.3 8.2 9.3 9.6 12.0 17.0 

46.0 45.7 45.0 43.7 41.5 37.9 33.3 
2.5 2.4 2.5 2.6 2.7 3.1 3.3 
5.4 5.3 5.6 5.9 6.5 8.2 9.9 

51.2 50.9 50.1 49.0 46.6 43.3 38.4 
2.1 2.1 2.1 2.2 2.4 2.5 3.0 
4.1 4.1 4.2 4.5 5.2 5.8 7.8 

(iv) The above conclusions are valid for the case of the test of McDonald et al.; 
in the case of Barnard’s test the same conclusions hold, but the differences 
with Fisher’s exact test are logically somewhat more marked. 

5.3. In two-tailed tests 

For two-tailed tests, the most powerful version of Fisher’s test (version HO) has 
been chosen, although the conclusions do not change if any of the other 
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traditional versions is chosen. The second part of Table 4 refers to them. The 
conclusions are: 
(a) The absolute increases of power always go from 2% to 5%, 7% or 10% for 

each of the three intervals of a. 
(b) The relative increases of power are always lower than 10% when IZ is large 

(n > 40 or 50), and are quite frequently lower than 5%. 
(c) Both increments tend toward zero as n increases. 
(d) The increases are even less when K takes moderate (1 < K G 3) values. 
(e> The above conclusions, valid for the test of McDonald et al., hold for 

Barnard’s test, but logically with somewhat more marked differences. 

6. Conclusions 

Fisher’s exact test is the most widely known and accepted method for analysing 
a 2 x 2 table, but as a two-tailed test it has various versions. In this paper it has 
been shown, from both the conditional and unconditional points of view, that 
the traditional criteria of an ordered arrangement from the smallest to the 
largest probability of the hypergeometric (H), from the smallest to the largest 
probability of tail (I), and from the largest to the smallest difference of 
proportions (D), are practically equivalent (with a very slight advantage for the 
first two), and that the introduction of a subsidiary tie-breaking criterion does 
not improve the test to any practical purpose. 

Moreover, Fisher’s exact test has the advantage of being valid in the three 
classic cases of sampling in which a 2 X 2 table may arise, it is relatively simple 
to compute (it can often be done on a pocket calculator), it is easy to explain to 
students, it comes in almost all the statistical packages, and finally, it is valid 
from the unconditioning point of view. Its unconditional competitors (the tests 
of Barnard and McDonald et al., for example), on the contrary, require a 
specific version for each type of sampling, are difficult to compute and do not 
appear in any of the common statistics packages, although it is alleged that they 
are much more powerful than Fisher’s exact test. In this paper, the authors have 
shown that even though Fisher’s exact test is always somewhat less powerful 
than the unconditional tests mentioned, the difference is not great in the 
following cases: 
(A) For one-tailed tests, if IZ 2 50 and 1.5 < K < 3, 
(B) For two-tailed tests, if II > 30 and 1 < KG 3, or if II 2 50 and K is any 

other value, 
(although for very low values of a! the demands are somewhat greater), so that 
in these cases, and for routine experiments, the use of Fisher’s exact test is 
justifiable (especially in the most common situation of two tails), as the saving in 
calculation time compensates for the slight loss of power it produces. The result 
is especially pleasing if we remember that the great majority of experiments 
verify condition (B), and that it is precisely when n > 30 or IZ 2 50 when there 
are such great difficulties in computing in the usual unconditional tests. These 
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results are in accord with those obtained by Mehta and Hilton (1993) for wider 
tables than the 2 X 2 ones. 
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