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The problem of assessing fit of structural equation models is reviewed, and two sampling studies are 
reported that examine the effects of sample size, estimation method, and model misspecification on 
fit indices. In the first study, the behavior of indices in a known-population confirmatory factor 
analysis model is considered. In the second study, the same problem in an empirical data set is 
examined by looking at antecedents and consequences of work motivation. The findings across the 
two studies suggest that, (a) as might be expected, sample size is an important determinant in assess- 
ing model fit; (b) estimator-specific, as opposed to estimator-general, fit indices provide more accu- 
rate indications of model fit; and (c) the studied fit indices are differentially sensitive to model mis- 
specification. Some recommendations for the use of structural equation model fit indices are given. 

Structural equation models have become increasingly impor- 
tant methodological tools for studying linear relations in psy- 
chological data. Recent introductions to the area of structural 
equation modeling are provided in, for example, Anderson and 
Gerbing(1988),  Bartholomew (1987), Connell and Tanaka 
(1987), Loehlin (1987), McDonald (1985), and Tanaka, Panter, 
Winborne, and Huba (in press). Specific applications have con- 
sidered a wide variety of  substantive psychological problems, 
including models of attitude-behavior relations (e.g., Bagozzi, 
1981), stability ofdysphoric affect (e.g., Tanaka & Huba, 1987), 
functional relations between job characteristics, satisfaction, 
and performance (Hogan & Martell, 1987) and the role of  job 
satisfaction and organizational commitment in job turnover 
models (Williams & Hazer, 1986). As increasing numbers of 
applications of structural equation models appear in the psy- 
chological literature, issues surrounding the substantive robust- 
ness of  obtained solutions to issues such as small sample size, 
data nonnormality, and model specification have been ad- 
dressed (e.g., Bentler, 1983; Bentler & Bonett, 1980; Browne, 
1982, 1984; Huba & Harlow, 1986, 1987; La Du, 1986; Mac- 
Callum, 1986; Mulaik, James, Van Alstine, Bennett, Lind, & 
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In particular, researchers interested in using these methods 
have become increasingly concerned with the issue of  how to 
best ascertain model fit. A number of  criteria have been sug- 
gested for evaluating the fit of  structural equation models. The 
most w~ell-known and well-accepted method of  assessing fit in 
structural equation models is the chi-square goodness-of-fit sta- 
tistic obtained under maximum likelihood (ML) and general- 
ized least squares (GLS) methods of  estimation (e.g., JiSreskog 
& S6rbom, 1985). In an accept~support strategy of  model test- 
ing such as the one used in these methods, the null hypothesis 
being evaluated is that "the model fits the data." Hence, an in- 
vestigator is looking to accept (or, more strictly speaking, to fail 
to reject) the null hypothesis or to look for models whose chi- 
square statistic values are small relative to their degrees of 
freedom. 

Many criticisms have been raised regarding the validity of 
using this chi-square test to evaluate model fit. An early one 
noted by Bentler and Bonett (1980) is the fact that the chi- 
square is dependent on sample size. Thus, the larger the sample, 
the more difficult it is to fail to reject the null hypothesis. It is 
also known that the chi-square test is sensitive to data nonnor- 
mality (e.g., Bentler, 1983; Browne, 1982, 1984; Huba & Har- 
low, 1986, 1987; Tanaka & Huba, 1987). Although some re- 
search has been conducted looking at the seriousness of  this 
problem (e.g., Mooijaart & Satorra, 1987; Satorra & Bentler, 
1987; Shapiro & Browne, 1987), available data suggest that in- 
vestigators should be appropriately skeptical about model fit 
when observed data do not follow "textbook" multivariate nor- 
mal distributions. 

Given these problems with the chi-square statistic, various 
alternative strategies for evaluating models have also been for- 
warded. Among the simplest of  these is the ratio of the chi- 
square statistic for an obtained model to its degrees of  freedom. 
Because the expected value for this ratio is 1.0, values close to 
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1 are indicative of well-fitting models. The problem with using 
such a criterion in applications is that deviations from 1.0 are 
not well defined. For example, Marsh and Hocevar (1985) sug- 
gested that values of  this ratio between 2.0 and 5.0 are indicative 
of acceptable models. Kaplan (1988) claimed that this ratio 
may be fairly insensitive to model misspecification. 

Other approaches to understanding model fit have used other 
fit indices for structural equation models. Bentler and Bonett 
(1980), adapting earlier work by Tucker and Lewis (1973), pro- 
posed normed (A, hereafter referred to as NFI) and nonnormed 
(p) fit indices for covariance structure models. Both fit indices 
indicated the degree of  fit associated with the tested model, with 
values close to 1.0 indicative ofweU-fitting models. Bentler and 
Bonett (1980) considered, in part, the issue of  sample size and 
statistical power, correctly claiming that a measure of model fit, 
free of  sample size considerations, was necessary to evaluate 
models appropriately, analogous to Cohen's (1977) notion of 
"effect sizes" in other linear statistical models. In addition, the 
Bentler-Bonett NFI was proposed as being nonestimator-spe- 
cific in that it could be applied to any covariance structure esti- 
mator (e.g., of  the estimators then well established: ML, GLS,: 
and unweighted least squares [ULS]). 

The interest sparked by the Bentler-Bonett article on ad- 
dressing issues of  fit in covariance structure models led to a 
number of  alternative fit indices. For example, J6reskog and 
S6rbom ( 198 l, 1985) presented their own goodness-of-fit index 
(GFI) for ML and ULS estimation. James, Mulaik, and Brett 
(1982) introduced the parsimonious fit index, making a de- 
grees-of-freedom correction to NFI. Cudeck and Browne 
(1983; Browne & Cudeck, in press) discussed Akaike and Schw- 
arz information criteria to evaluate the fit of  latent variable 
models under ML estimation for the purposes of  cross-valida- 
tion. Bentler (1983), in the context of  asymptotically distributi- 
on-free estimation of latent variable models (cf., Browne, 1982, 
1984), proposed a general fit index for such estimators. Tanaka 
and Huba (1985)showed that the index proposed in Bentler 
(1983) was the general case of the JSreskog-S/Srbom fit indices 
under ML and ULS estimation. The Tanaka-Huba result was 
subsequently extended to show that their fit index defined a gen- 
eral multivariate coefficient of  determination for covariance 
structure models under arbitrary GLS estimation, including the 
case of asymptotically distribution-free estimators (Tanaka & 
Huba, 1988). Marsh, Balla, and McDonald (1988) provided a 
recent review of  different fit indices available for covariance 
structure models. 

Given the number of  different options available to assess the 
fit of  any given structural equation model, it is unclear which 
(if any) of the alternatives might provide the best index of  model 
fit. In other words, how might researchers summarize results of  
different models such that sufficient information about their fit 
is communicated? Furthermore, in trying to examine the cross- 
validity of models across different samples, in studies con- 
ducted by different investigators, or using different estimators, 
it is unclear whether different fit indices are indicating the same 
degree of fit. For example, Tanaka (1987) presented an example 
in which an index of  model fit (NFI) applied to the same data 
and model was affected by choice of  estimator. 

To address issues about determinations of model fit based on 
these fit indices, some investigators have undertaken sampling 

studies to examine fit index behavior in different experimental 
conditions (e.g., sample size, number of observed variables in 
the models, etc.). These are reviewed next. 

Previous Simulation Work in Structural  
Equat ion Fit Indices 

Much of the simulation work done in the domain of struc- 
tural equation models has focused on issues such as (a) proper- 
ties of  estimators under standard and nonstandard conditions 
(e.g., Boomsma, 1982; Muth6n & Kaplan, 1985; Tanaka, 1984); 
(b) properties of the chi-square test statistic under conditions of 
small sample size or data nonnormality, or both (e.g., Bearden, 
Sharma, & Teel, 1982; Geweke & Singleton, 1980; Sharma, 
Durvasulva, & Dillon, 1989; Tanaka, 1984); or (c) model mis- 
specification (Kaplan, 1988; MacCallum, 1986). None of these 
studies are directly central to the examination of the nonpara- 
metric fit indices. 

A study explicitly comparing fit indices was conducted by 
Anderson and Gerbing (1984). They compared the following 
five fit indices: (1) the goodness-of-fit index (GFI) of J6reskog 
and S6rbom (1981; Tanaka & Huba, 1985); (2) the J6reskog- 
S6rbom (1981)~ adjusted goodness-of-fit index (AGFI); (3) the 
root-mean-squared residual (RMR); (4) the probability of the 
chi-square statistic given the null hypothesis; and (5) the 
Tucker-Lewis/Bentler-Bonett nonnormed coefficient. They 
concluded that GFI, AGFI, and RMR were all affected by sam- 
ple size, the number of  observed variable indicators per factor, 
and the number of  factors; and that the Tucker-Lewis/Bentler- 
Bonett coefficient was unrelated to all of  the other measures 
of  fit. 

By using simulated data and two types of  models (a two-fac- 
tor and a four-factor, both with three indicators each), Bearden 
et al. (1982) found that both the chi-square statistic and NFI 
were affected by sample size and model complexity. 

Luijben, Boomsma, and Molenaar (1987) reported results 
from a Monte Carlo study investigating the behavior of covari- 
ance structure fit using a step-up procedure, that is, an initial 
baseline model is obtained that estimates one fewer parameter 
than the known population model. In their 300 replications us- 
ing this step-up procedure, the modification process detected 
the correct model only 18% of the time. However, the focus of 
their study was not directly on the nonparametric fit indices we 
are concerned with here. 

Marsh et al. (1988) examined a number of fit indices and 
evaluated them on the criterion of stability over differing sam- 
ple sizes. Sampling from four data sets of both simulated and 
real data, they fitted a three-factor model with three indicators 
each and allowed the factors to be correlated in the four data 
sets. They found that sample size did affect the value of  most 
commonly used fit indices (e.g., chi-square, chi-square/df 
RMR, GFI, etc.). They then transformed these indices in two 
ways. The first (Type I) transformed indices relative to the fit 
generated from a null model (a reproduced matrix containing 
variances in the diagonal and zeros in the off-diagonal). The 
second (Type II) transformed indices relative to both a null 
model index and an expected fit index value that included sam- 
ple size considerations. They concluded that Type II indices 
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should be used in practice, because they did not exhibit sample 
size effects. 

A number of  issues are left unresolved by these studies. In 
particular, studies have typically excluded consideration of  ei- 
ther the range of available fit indices or estimation method. For 
example, the Anderson and Gerbing and Luijben et al. studies 
omitted one of the most widely used of  the fit indices for latent 
variable models, Bentler and Bonett's NFI. When the Anderson 
and Gerbing and Bearden et al. studies were conducted, the 
range of  available estimation strategies was limited, with ML 
methods predominating. The more recent Marsh et al. (1988) 
study used only ML in their work. Given the possible effect of  
the choice of  estimation method on the fit indices (e.g., Tanaka, 
1984; Tanaka & Huba, 1985), it may be the case that estimator- 
specific, rather than estimator-general, fit indices are appropri- 
ate for ascertaining model fit. Our studies were conducted to 
investigate the following three questions in assessing fit in latent 
variable models: 

I. Does sample size interact with either estimation method 
or model misspecification in affecting the magnitude of  good- 
ness-of-fit (GOF) indices? The main effect of sample size on 
these indices is well known from previous research (Anderson 
& Gerbing, 1984; Bearden et al., 1982; Marsh et al., 1988). 

2. To what extent does the estimation method used in the 
solution of structural equation models affect the values of  GOF 
indices? Does sample size moderate the influence of  estimation 
method on the size of  GOF indices? This examines an implica- 
tion of  Tanaka and Huba's (1985) derivation of estimator-spe- 
cific fit indices. Given the asymptotic equivalence of ML and 
normal theory GLS, for example, we might expect differences 
between fit indices across estimation methods to disappear with 
increasing sample size. No previous study has explicitly looked 
at the impact of estimation method on fit index values. 

3. Does model specification affect the values of  G O F  indices? 
More specifically, what happens to a G O F  index value if a pa- 
rameter is estimated whose population value is zero, or if a pa- 
rameter is fixed to zero whose population value is nonzero? 
Does sample size moderate the influence of model misspecifi- 
cation on the G O F  index sizes? Here, we address the sorts of 
specification issues discussed by, for example, Farley and Reddy 
(1987), Luijben et al. (1987), and MacCallum (1986; Silvia & 
MacCallum, 1988). 

Gene ra l  S tudy  Des igns  

Two sampling studies were conducted to address these ques- 
tions. The first study consisted of  drawing samples from a 
known population model. The design is a 3 × 2 × 2 (sample 
size: Ns = 35, 100, 300; estimation method: ML, GLS; model 
specification: correct-population, incorrect-trivial misspecifi- 
cation) factorial design with the latter two factors being within- 
replicates. Note that although a sample size of 35 may be con- 
sidered as a priori "too small" for latent variable modeling (e.g., 
Anderson & Gerbing, 1984; Boomsma, 1982), support for an 
examination of  fit index behavior at this sample size is war- 
ranted both in theory and in practice. For example, Geweke 
and Singleton (1980) demonstrated that the chi-square statistic 
was not adversely affected in sample sizes of  30. Furthermore, 

models have been fit in samples close to this size in practice 
(e.g., Bornstein & Benasich, 1986). 

The second study entailed sampling from an actual data base 
whose variables were not multivariate normally distributed. 
The models tested contained only observed variables (i.e., only 
path models were examined), with the number of observed vari- 
ables being l0 rather than 6 (as in the first study). The impact 
of employee morale on self-reported performance, inclination 
to stay, and attendance behavior is the focus of the model, with 
interest in the antecedents of  worker morale being included in 
the system. These data are more fully described in Katzell 
(1982). The full data base consists of 3,328 survey responses. 
The design for Study 2 is a 3 × 2 × 3 (sample size: Ns = 70, 
200, 600; estimation method: ML, GLS; model specification: 
correct-baseline, that is, based on all 3,328 responses; incor- 
rect-trivial misspecification; incorrect-nontrivial misspecifi- 
cation) factorial design with repeated measurements on the lat- 
ter two factors. 

These two studies differ from the previous research in three 
aspects. First, sampling is from a known population model with 
a multivariate normal distribution as well as from a data base 
whose correct or true model is only approximately known and 
whose variables are not multivariate normal. Previous research 
efforts have generally used the former to the exclusion of  poten- 
tially unique effects in less structured data. Second, these stud- 
ies address the influence of estimation method on the behavior 
of G O F  indices. Previous studies have used the ML estimator 
almost exclusively and it is of interest to determine if the GOF 
indices for two asymptotically equivalent estimators, ML and 
GLS, are comparable in finite samples. Finally, our use of  the 
model specification factor allows us to examine the behavior of 
GOF indices in nested models. Although nested models have 
been described in applications of  the analysis of  covariance 
structures (e.g., Bentler & Bonett, 1980; James et al., 1982), the 
behavior of nested models' G O F  indices has not been pre- 
viously examined. Model nesting represents one strong method 
for comparing competing psychological theories in data. 

We believe these two studies are analogous to the laboratory 
(Study l) and field (Study 2) experimental inquiry of  a research 
question. In Study 1, we examine how experimental factors in 
a controlled design affect the variability of four GOF indices 
with samples drawn from a population distribution with known 
properties. In Study 2, with a slight variation on the model spec- 
ification factor, we examine the impact of  the same experimen- 
tal factors on GOF index behavior by using samples drawn from 
a nonnormal multivariate baseline data base whose population 
properties are only approximately known. We believe this 
makes these two studies somewhat unique in addressing the is- 
sues raised. 

F i t  Indices  

Four GOF indices are studied. The first two GOF indices con- 
sidered are the Jfreskog and S6rbom (198 l) GFIML and the Ta- 
naka and Huba (1985) GFIGLs, as follows: 

GFIML = 1 -- t r (~- lS  -- I)2/tr(~-lS)2 (1) 

and 

GFIcLs = 1 - tr(l - ~S-l)2/p, (2) 
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Factor Variance ," 1.0 

Figure 1. Correct two-factor model: Population covariance structure. 
(Dashed line indicates a trivial misspecified path.) 

where S is the sample covariance matrix, ~ is the reproduced 
covariance matrix based on the specified model, and p is the 
rank of  S (i.e., the total number  o f  observed variables). As 
shown in Tanaka and Huba (1985), these represent special cases 
o f  a weighted coefficient o f  determinat ion (Tanaka & Huba, 
1988), originally presented in Bentler (1983). The normed fit 
index for both ML (NFIML) and GLS (NFIGLs) are also included 
(Bentler & Bonett, 1980), as follows: 

NFI  = (Fk -- F,)/Fo, (3) 

where Fo is the m i n i m u m  of  the fit function for any estimation 
method corresponding to the worst case model. Historically 
(e.g., Bearden et al., 1982; Marsh et al., 1988), this has been 
taken to be the case when observed variables are mutually un- 
correlated (although, see Sobel & Bohrnstedt, 1985, for an ob- 
jection to this particular "null  model") .  Fk is the fit function 
min imum for any substantive model,  Mk, whereas F, is the 
min imum of  a substantive model, M1, but  one that is less re- 
strictive than Fk. Because Fo > Fk > FI ,  the index is additive 
and lies between 0 and 1. For the results reported here, the NFIs  
measure improvement  only over the null model, defined as one 
resulting in a ~ whose diagonals contain the variances o f  the 
measured variables while zeros occupy the off-diagonal posi- 
tions. As a result, the NFIs  are formulated as 

NFIko = (F0 - Fk)/Fo, (4) 

where F is the m i n i m u m  of  either ML or GLS minimizat ion 
functions for the particular models. 

S t u d y  O n e  

Method 

An orthogonal two-factor model with three indicators each in a sim- 
ple cluster structure was used with factor loadings of .75, .65, and .55 
(see Figure 1). Other population parameters (i.e., residual variances) 
were specified such that diagonal elements of the population covariance 
matrix, ~, were equal to ! .0. 

Three sample sizes of 35, 100, and 300 were used. The smallest, N = 
35, was slightly over the minimum necessary number of observations 
to compute a positive definite covariance matrix with six observed vari- 
ables, that is, p(p + 1)/2 = 21. The second sample size has been stated 
as a minimum for factor analytic models (Boomsma, 1982, p. 171). The 
third sample size chosen, N = 300, was above the previously published 
minimum of N = 200 recommended if the researcher wished to limit 
the risk ofdrawin$ improper conclusions (Boomsma, 1982, 1985). 

Two estimation methods, ML and GLS, were examined. The behav- 
ior of GOF indices when estimation method has been varied has not 
been previously reported in the literature. 

Model specification was the third experimental factor. As previously 
noted, in the population model, the two factors were orthogonal. The 
correctly specified population model (correct model) did not estimate 
the covariance between the two latent variables, whereas the model cor- 
responding to the incorrect-trivial misspecification model allowed this 
parameter to be estimated. 

Fifty replications were drawn for each sample size. Given the popula- 
tion factor loadings, the equations for each of six measured variables 
were derived and random normal deviates from the IMSL subroutine 
GGNML (International Mathematical and Statistical Libraries, IMSL, 
1980) were used for the factor and residual scores. An initial random 
start seed was provided, with subsequent seeds generated by the algo- 
rithm for each following sample. After 25 samples were produced, a new 
seed was introduced for the 26th sample, with the C_~NML algorithm 
generating the remaining 24 start seeds. Each sample size had its own 
unique set of start seeds. Values for the six measured variables were 
obtained for each sample size, with a total of 50 replications each. Fac- 
tor loadings were given at starting values of .3 for each run. Estimated 
parameters included factor and unique loadings in the correctly speci- 
fied model by using the modified specification of the J6reskog-S6rbom 
(1985) LISREL model discussed in Rindskopf (1983). Unique variances, 
as well as factor variances, were treated as fixed parameters and set 
to 1.0. 

In all, 600 solutions were required for this design. With the smallest 
sample size (N = 35), the LISREL program failed to converge in 250 
iterations for six samples, and replacement samples were generated. For 
the two larger sample sizes, no convergence problems occurred. Sum- 
mary statistics indicated that data were correctly generated as multivari- 
ate normal. 
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Table 1 
Marginal Means for Goodness-of-Fit Indices: Study 1 

GFIML GFIGLs NFIML NFIGLs 

Variable M SD M SD M SD M SD 

Sample fize 
N= 35 .880 .056 .882 .061 .729 .122 .915 .062 

.734-.973 .717-.974 .469-.941 .767-.982 

N = 100 .969 .012 .971 .011 .919 .035 .959 .019 
.932-.991 .935-.991 .802-.976 .902-.989 

N= 300 .989 .005 .989 .005 .967 .014 .980 .008 
.975-.998 .977-.998 .929-.993 .955-.995 

E~imationmethod 
ML .962 .034 .930 .089 .902 .081 .940 .056 

.864-.998 .546-.998 .673-.993 .645-.995 

GLS .930 .083 .964 .030 .842 .174 .964 .023 
.603-.998 .878-.998 .264-.993 .868-.996 

Modelspecification 
Correct .942 .062 .942 .067 .861 .143 .947 .047 

.717-.998 .659-.998 .307-.993 .649-.995 

Incorrect .950 .055 .952 .053 .883 .115 .956 .032 
.750-.998 .757-.998 .483-.994 .857-.996 

Overall .946 .058 .947 .059 .872 .127 .952 .038 
.734-.998 .717-.998 .469-.993 .767-.995 

Note. Ranges are given below means and standard deviations. ML = maximum likelihood estimation; 
GLS = generalized least squares estimation; GFIML = goodness-of-fit index for ML estimation (J6reskog & 
S6rbom, 1981); GFIGLs = goodness-of-fit index for GLS estimation (Tanaka & Huba, 1985); NFIML = 
normed fit index using the ML fit function (Bentler & Bonett, 1980); NFIGLs = normed fit index using the 
GLS fit function (Bentler & Bonett, 1980). 
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Results 

By using SAS's PROC MATRIX routine (SAS, 1982), we com- 
puted the GOF indices using matrices produced by LISREL. 
These were cross-checked, when appropriate, against GOF val- 
ues output by the L1SREL program. To assess the overall effect 
of the experimental factors on goodness of fit, a multivariate 
analysis of variance (MANOVA) with one between-replicates 
variable (sample size) and three within-replicates variables (es- 
timation method, model specification, and GOF type) was con- 
ducted on the Fisher's z-transformed GOF indices. We ob- 
served that the raw GOF indices were skewed with ceiling effects 
due to the upper bound of 1.0. Although this might not be the 
optimal transformation for these data, the Fisher's z-trans- 
formed indices did not have the skewed distributions observed 
in the raw indices. For example, the kurtosis and skew of the 
raw GFIML indices were 6.29 and -2.38,  respectively, whereas 
the Fisher's z-transformed GFIML values were -0 .52 and -0.25,  
respectively. Hence, the transformed data better met the distri- 
butional assumptions for inferential tests, although as might be 
expected, substantive results did not appreciably change as a 
function of this transformation. 

As is the case in sampling studies, many effects are statisti- 
cally significant. In both studies, we focus on the presentation 
of descriptive aspects of study results, noting the statistical sig- 
nificance of results where necessary. Statistical tests were con- 

ducted on transformed indices, whereas tables present the data 
in their original metric. 

Table I confirms Anderson and Gerbing's finding that sample 
size affects the size of the fit index: as sample size increases, so 
does the value of the index. Table 1 findings also support the 
Tanaka and Huba (1985) proposal about fit index optimality 
being dependent on the estimation method. The average value 
of GFIML for a ML solution was .032 larger than for GLS solu- 
tions (.962 vs..930), whereas, for GFIGLs, a GLS solution is 
.034 larger than a ML solution (.964 vs..930). A Wilcoxon 
matched-pairs signed ranks test indicated that, for the 300 com- 
parisons of ML solutions versus GLS solutions on their respec- 
tive GFIML values, all values of ML solutions were greater than 
their GLS solution values, Z = 15.01, p < .001. The same was 
true for GFIGLs, where GLS solution values were always greater 
than ML solution values, Z = 15.01, p < .001. The NFI for 
each of the estimation methods was similarly affected: NFIML 
computed with ML solutions had a larger value than when it 
was computed with a GLS solution, with the reverse being true 
for NFIGLs. There were relatively large Sample Size × Estima- 
tion Method interactions for NFIML, NFIGLs, GFIML, and 
GFIGLs, as Table 2 indicates. For small sample sizes, the dis- 
crepancy between estimator-appropriate versus estimator-inap- 
propriate GOF index values was large, but as sample size in- 
creased, this difference decreased. For example, in looking at 
Table 2's GFIML column, the discrepancy when N = 35 was 
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Table 2 
Sample Size by Estimation Method Marginal Means." Study 1 

GFIML GHGts NHML NFIcLs 

Variable M SD M SD M SD "M SD 

N = 35 
ML .922 .028 .835 .099 .809 .070 .885 .063 

.864-.975 .546-.972 .673-.946 .645-.980 

GLS .837 .084 .928 .025 .649 .177 .946 .024 
.603-.971 .878-.976 .264-.935 .868-.984 

N= 100 
ML .974 .010 .968 .014 .928 .029 .955 .022 

.946-.991 .923-.991 .834-.977 .887-.988 

GLS .965 .015 .974 .009 .911 .041 .964 .017 
.919-.990 .947-.991 .770-.975 .917-.989 

N = 300 
ML .989 .004 .989 .005 .969 .013 .980 .009 

.979-.998 .974-.998 .932-.993 .953-.995 

GLS .988 .005 .990 .004 .966 .015 .981 .008 
.972-.998 .979-.998 .926-.993 .957-.996 

Note. Ranges are given below means and standard deviations. ML = maximum likelihood estimation; 
GLS = generalized least squares estimation; GFIML = goodness-of-fit index for ML estimation (J6reskog & 
Sfrbom, 1981); GFIGLs = goodness-of-fit index for GLS estimation (Tanaka & Huba, 1985); NFIML = 
normed fit index using the ML fit function (Bentler & Bonett, 1980); NFIcLs = normed fit index using the 
GLS fit function (Bentler & Bonett, 1980). 

.922 - .837 = .085, whereas for N = 300, this becomes .989 - 

.988 = .001. 
When the covariance between the two latent variables is esti- 

mated resulting in a misspecified model, a slight improvement 
in fit is indicated for all four GOF indices, supporting the effect 
of  model specification on these indices. Higher order interac- 
tions involving model specification, although occasionally 
reaching statistical significance at the .05 level, are substantively 
uninteresting given the small effect sizes associated with these 
effects. 

Discussion 

The results of  this study replicate the sample size findings of  
Anderson and Gerbing (1984), Bearden et al. (1982), and Marsh 
et al. (1988). Estimation method effects are present, as sug- 
gested by Tanaka and Huba (1985) for GFIML and GFIGLs, as 
well as the two versions of  the NFI. To repeat an earlier observa- 
tion, it is noteworthy that, for the same model and data, the 
average GOF index values for solutions using different estima- 
tion methods might lead to different conclusions, for example, 
for N = 100, the correct model, and ML estimation method: 
NFIML = .922; for the same sample size and model, but GLS 
estimation method: NFIcLs --- .961. This would seem to suggest 
that the normed fit index does not differentiate well over some 
threshold of fit. 

A comment should also be made about investigator sensitiv- 
ity in model selection. As can be seen from Table 1, in all cases, 
fitting an extra parameter that is extraneous to the true model 
leads to increments in fit of  between 1% and 2%. Depending on 
an investigator's sensitivity threshold regarding model evalua- 

tion, this additional increment may be interpreted as being sub- 
stantively important. If the heuristics of  statistical significance 
were to be used in making decisions about model fit, this incre- 
ment  should be more important to interpret at larger sample 
sizes, all other things being equal. 

Study 2 was conducted to investigate the robustness of these 
findings in a naturalistic context by using an empirical data 
base with nonnormally distributed data. 

S tudy  2 

The questionnaire responses serving as the data base for 
Study 2 were collected as part of  a larger project examining 
antecedents and consequences of  work motivation. Integrating 
need theory, attitude theory, expectancy theory, goal theory, ex- 
trinsic-intrinsic theory, equity theory, reward/reinforcement 
theory, and role theory, as well as more comprehensive theories 
discussed in Katzell and Thompson (1987), Katzell (1982) de- 
fined constructs pertinent to employee motivation and produc- 
tivity. Furthermore, he outlined a research program for collect- 
ing self-reports on these constructs, supervisory ratings of work 
groups, objective performance data, and an inventory of the 
personnel policies with respect to linkages to the work motiva- 
tion constructs. The self-report data served as the baseline data 
base for Study 2. 

Table 3 gives the variable labels, number of  scale items, and 
the internal consistencies for each scale. Figure 2 graphically 
depicts the correct-baseline model. The model has two exoge- 
nous observed variables and eight endogenous observed vari- 
ables. A line with a single arrowhead indicates a hypothesized, 
unidirectional relationship between two variables, and a bidi- 



FIT INDICES IN STRUCTURAL EQUATION MODELS 631 

Goal 
Selling 
(X2) 

Operations 
and 

Resources 
(x,) 

r 

: J 
% Intrinsic ~1Rew.  ards ' ~ 1  

R.ards I ~-"~Perflro~lanc.~ / 
/ (*.) ,I / 

• ,w,rds ~ x * /  
~ , , /  (*,) J " - - ~ d - -  - -  

d 
I ('5, 

Job 
Performance 

(Y3) 

Attendonce 
(Y2) 

Inclination 1o 
v I Stay (Y,) 

Morale 
('(4) 

Figure 2. Path model of Study 2. (Solid lines are correct model; dashed line indicates a trivial misspecified 
path; starred solid line indicates a nontrivial misspecified path deletion.) 

rectional arrow indicates a correlation. Sample multivariate 
kurtosis values indicate that these data are not multivariate 
normal. 

Besides the correct-baseline model, two additional model 
specifications were used in this study. In Figure 2, the dotted 
line from rewards for performance to self-reported level of per- 
formance is a path that, in the baseline, resulted in a trivial 
improvement in fit. The RMR difference between these models 
for a ML solution on the total data base (N = 3,328) was zero. 
For GLS solutions, this difference was .003. The model includ- 
ing this path will be referred to as the incorrect-trivial model 
reflecting a trivial model misspecification. The asterisked path 
from rewards for performance to equity is fixed to zero in the 
third model specification, the incorrect-nontrivial misspecifi- 
cation model. Note that this corresponds to the Luijben et al. 
(1987) suggestion of conducting sampling studies when a model 
has one less parameter than the true (i.e., baseline) model. The 
RMR difference for a ML solution for this model is .147, 
whereas the GLS RMR difference is .310, demonstrating the 
empirical effects of misspecification for these data. Theoreti- 
cally, this path is crucial because perceptions of equity in the 
work situation are based in part on whether rewards are tied to 
performance (Mowday, 1983). Thus, this incorrect-nontrivial 
model represents both an empirical and a theoretical model 
misspecification. Our study investigates the behavior of the 
GOF indices under these trivial and nontrivial misspecifica- 
lions. 

Method 

The research design is similar to that of Study 1, with one slight modi- 
fication in the model specification factor. The design is a 3 × 2 × 3 
(sample size: 70, 200, 600; estimation method: ML, GLS; model speci- 

fication: correct, incorrect-trivial, incorrect-nontrivial), with repeated 
measures on the latter two. 

The 3,328 questionnaire responses were collected from nine different 
organizations participating in the full research project outlined by Kat- 
zell (1982). All variables had less than 5% missing data. When missing 
data occurred, the variable's mean calculated across all responses was 
substituted. Table 3 contains the baseline covariance matrix, means, 
and standard deviations. To randomly sample with replacement from 
the data base, a Fortran program utilizing IMSUs GGSRS routine was 
written (IMSL, 1980). One hundred fifty samples were drawn, 50 for 
each of the three sample sizes, with a new seed introduced after the first 
25 samples were drawn. In all, 900 solutions were required. Using the 
baseline ML estimates for start values, all solutions converged in less 
than 250 iterations for all sample sizes. 

Results 

By using SAS's PROC MATRIX program (SAS, 1982), we com- 
puted the GOF indices from the matrix materials produced by 
LISREL and again cross-checked against LISREL output when ap- 
propriate. In assessing the overall effect of the experimental fac- 
tors on goodness of fit, a MANOVA with a single between-repli- 
cates variable (sample size) and three within-replicates vari- 
ables (model specification, estimation method, and GOF index 
type) was conducted on the Fisher's z-transformed GOF indi- 
ces. All reported inferential statistics used results from trans- 
formed indices, whereas all tables providing descriptive statis- 
tics, such as means, present the raw, untransformed GOF indi- 
ces. Again, the interpretative focus is on descriptive results, 
supplemented with statistical findings when necessary. 

All GOF indices were affected by sample size such that as 
sample size increased, so did the value of the GOF index. Calcu- 
lated effect sizes showed that the GFI indices and NFIML were 
about equally affected with eta squares ranging from .709 to 
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.740• The surprise was that NFI~Ls was only slightly influenced 
by sample size in comparison with the other G O F  indices. It is 
apparent from Table 4 that, with the average level of  this index 
across sample sizes (.944-.961) and the relatively small stan- 
dard deviations, sample size had little effect on the value of 
NFIGLs. 

AS is evident from the within-replicate variables of Table 4, 
the contrast of  the correct model with the incorrect-trivial 
model resulted in no improvement in fit as expected. The 
model specification contrast of  the incorrect-nontrivial model 
versus the average of the correct and incorrect-trivial models 
showed the expected effect. As to method effects, both the GFI 
and NFI indices were strongly affected by the estimation 
method used. 

By averaging GFIML and GFIGLs values across model specifi- 
cations, we conducted a Wilcoxon matched-pairs signed ranks 
test• For the 150 comparisons of  a GLS solution, GFIcLs was 
greater than GFIML in every case, Z = 10.64, p < .0001. The 
reverse was true for ML solutions, where GFIML was greater 
than GFIGLs in each case. The same results were obtained for 
NFIML and NFIGL s. 

The interaction effects were as follows: For the sample size by 
estimation method effect, only GFIcLs (e2 = .07), NFIGLs (e2 = 
.059), and NFIML (n 2 = .059) were of substantive interest• Table 
5 presents marginal means for this interaction• In each instance, 
as sample size increased, the difference between the ML and 
GLS estimated models decreased. Remaining higher order in- 
teractions were not substantively interesting• 

The results of  this study replicate findings that sample size 
strongly influences the size of G O F  indices' values (e.g., Ander- 
son & Gerbing, 1984, Bearden et al., 1982, Marsh et al., 1988, 
and Study 1). Method effects predicted by Tanaka and Huba 
(1985) and found in Study 1 were also obtained in this study• 

Overal l  Discuss ion  

Our initial motivation in conducting these studies was to ex- 
amine the impact of  sample size, estimation method, and 
model misspecification on some commonly used goodness-of- 
fit indices in structural equation models. We predicted that 
sample size would have an impact on these fit indices as had 
been previously shown by Anderson and Gerbing (1984), 
Bearden et al. (1982), and Marsh et al. (1988). Previous work 
had not investigated the effects of  estimation method or model 
misspecification. With regard to the former, results presented 
in J/Sreskog and S/Srbom (1981) and Tanaka and Huba (1985, 
1988) suggested that estimator-specific fit indices might be 
more appropriate in finite samples than were the estimator-gen- 
eral fit indices of  Bentler and Bonett (1980). The question of 
model misspecification was open: Would clear substantive 
changes in model specification cause corresponding increments 
or decrements in GOF indices? The two studies presented here 
(a) affirm our initial hypothesis about sample size, (b) confirm 
our speculation that estimator-specific rather than estimator- 
general fit indices are more appropriate in finite samples, and 
(c) demonstrate that substantive model changes are detected 
and trivial model changes are ignored when investigating issues 
of model specification. 

Another motivation for conducting these studies was to ex- 
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Table 4 
Marginal Means for Goodness-of-Fit Indices." Study 2 

633 

GFIML GFIcLs NFIML NFIcLs 

Variable M SD M SD M SD M SD 

Samplesize 
N =  70 .782 .053 .776 .067 .711 .083 .944 .019 

.608-.868 .557-.881 .475-.849 .883-.977 

N =  200 .877 .036 .878 .030 .844 .048 .954 .013 
.750-.933 .795-.930 .648-.911 .917-.978 

N =  600 .917 .013 .913 .015 .893 .019 .961 .008 
.871-.942 .859-.938 .814-.930 .929-.957 

E~imationmethod 
ML .914 .030 .800 .120 .884 .041 .936 .025 

.820-.957 .279-.926 .761-.943 .823-.972 

GLS .803 .108 .912 .026 .748 .154 .970 .008 
.350-.928 .832-.950 .096-.916 .938-.987 

Modelspecification 
Correct .878 .062 .873 .067 .845 .083 .958 .015 

.645-.956 .566-.950 .574-.946 .890-.984 

Incorrect- .878 .063 .876 .065 .847 .084 .959 .015 
trivial .622-.956 .574-.949 .544-.946 .891-.984 

Incorrect- .820 .086 .818 .095 .756 .132 .941 .019 
nontrwial .557-.915 .320-.915 .397-.898 .860-.968 

Overall .859 .068 .856 .072 .816 .096 .953 .016 
.608-.942 .557-.938 .475-.930 .883-.978 

Note. Ranges are given below means and standard deviations. ML = maximum likelihood estimation; 
GLS = generalized least squares estimation; GFIML = goodness-of-fit index for ML estimation (J6reskog & 
SSrbom, 1981); GFIGLs = goodness-of-fit index for GLS estimation (Tanaka & Huba, 1985); NFIML = 
normed fit index using the ML fit function (Bentler & Bonett, 1980); NFIGLs = normed fit index using the 
GLS fit function (Bentler & Bonett, 1980). 

Table 5 
Sample Size by Estimation Method Marginal Means: Study 2 

GHML GFIGLs NFIML NFIGLS 

Variable M SD M SD M SD M SD 

N = 70 
ML 

GLS 

N =  200 
ML 

GLS 

N =  600 
ML 

GLS 

.878 .021 .669 .116 .838 .034 .918 .030 
.820-.924 .279-.838 .761-.900 .823-.967 

.686 .092 .883 .021 .584 .143 .970 .010 
.350-.834 .832-.923 .096-.804 .938-.987 

.922 .013 .838 .047 .894 .018 .939 .019 
.894-.952 .703-.914 .849-.931 .884-.972 

.832 .062 .918 .013 .794 .081 .968 .007 
.606-.913 .887-.946 .448-.892 .947-.983 

.942 .006 .891 .021 .919 .010 .951 .011 
.929-.957 .812-.926 .886-.943 .901-.968 

.892 .020 .935 .009 .867 .027 .970 .005 
.812-.928 .906-.950 .743-.916 .950-.978 

Note. Ranges are given below means and standard deviations. ML = maximum likelihood estimation; 
GLS = generalized least squares estimation; GFIML = goodness-of-fit index for ML estimation (J6reskog & 
S/Srbom, 1981); GFIGLs = goodness-of-fit index for GLS estimation (Tanaka & Huba, 1985); NFIML = 
normed fit index using the ML fit function (Bentler & Bonett, 1980); NFIGLs = normed fit index using the 
GLS fit function (Bentler & Bonett, 1980). 
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amine the behavior of the Bentler-Bonett normed fit index, 
NFI, across different estimation methods. Although this index 
is perhaps the most popular to use in applications of structural 
equation models in psychology, previous comprehensive studies 
of fit indices by Anderson and Gerbing (1984) and Marsh et al. 
(1988) did not study NFI across different estimation methods. 
The findings of these two studies suggest that NFI is not a good 
summary of model fit, particularly when different methods of 
estimation are being compared. This supports in a systematic 
way the claim made in Tanaka (1987) and tested in La Du 
(1986). It appears that comparing NFIs across different meth- 
ods of estimating the same model in the same data could lead 
to different substantive conclusions. This is explicit when one 
looks at Table 5, in which, for N = 200, the average of NFIML for 
ML estimation is .894 and NFIcLs for GLS is .968 (an average 
difference of .074), whereas, for the same sample size but with 
the GFIs, GFIML is .922 and GFIGLs is .918 (a difference of 
.003). Note, however, that these comments are strictly true only 
for the version of NFI computed for a null model in which mea- 
sured variables are hypothesized to be mutually uncorrelated. 

As is the case in any sampling investigation, the findings pre- 
sented here may lack generalizability beyond the conditions ex- 
amined in our two studies. However, the external validity of the 
conclusions in these studies were enhanced by the sampling ex- 
periments of Study 2, which used real data in a model of sub- 
stantive interest. Study 2 thus can be thought to simulate condi- 
tions observed in actual observed data to a greater extent than 
do the studies of Anderson and Gerbing (1984), Bearden et al. 
(1982), or our Study 1, because they are based on real data. 
Furthermore, in Study 2 we investigated the behavior of GOF 
indices under conditions of data nonnormality; we suggest that 
model fit can be adequately described even when nonoptimal 
estimation strategies are used, as might be expected given the 
results of Tanaka and Huba (1988). 

Although there would appear to be no best index of fit in 
examining latent variable models, the findings obtained in these 
studies allow some conclusions to be drawn. First, it is clear 
that the NFI of Bentler and Bonett should be used with caution, 
particularly when making comparisons across different meth- 
ods of estimation or different-sized samples. Second, when try- 
ing to compare findings across different studies, sample size and 
estimation method must be considered. This focus on sample 
size can be obscured by using the chi-square goodness-of-fit sta- 
tistics in these models, because degrees-of-freedom calculations 
are not explicitly based on sample size as in an ANOVA or multi- 
ple regression. Finally, for these estimation methods, it does ap- 
pear that the estimator-specific fit indices studied are more sen- 
sitive in picking up important model misspecifications when 
they occur and in ignoring trivial model misspecifications, al- 
though in some sense this is dependent on differential investiga- 
tor sensitivity to the detection of small changes in these fit indi- 
ces. However, the NFI under GLS estimation appears to be par- 
ticularly insensitive to important model misspecification. The 
fit indices examined here and, in particular, those given in the 
LISREL program and in Tanaka and Huba (1985) provide im- 
portant adjunctive information in ascertaining the fit of latent 
variable models. These empirical findings, along with the Ta- 
naka and Huba (1988) theoretical results, support the use of 

JSreskog-S6rbom/Tanaka-Huba GFI indices in evaluating 
structural equation models. 
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