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 SUMMARY

 Too much current statistical work takes a superficial view of the client's research question,
 adopting techniques which have a solid history, a sound mathematical basis or readily
 available software, but without considering in depth whether the questions being answered
 are in fact those which should be asked. Examples, some familiar and others less so, are
 given to illustrate this assertion. It is clear that establishing the mapping from the client's
 domain to a statistical question is one of the most difficult parts of a statistical analysis.
 It is a part in which the responsibility is shared by both client and statistician. A plea is
 made for more research effort to go in this direction and some suggestions are made for
 ways to tackle the problem.

 Keywords: METASTATISTICS; THEORY

 1. INTRODUCTION

 This paper asserts, and attempts to illustrate by a series of examples, that much
 statistical analysis and design is misdirected. Instead of sorting out precisely what
 question researchers need to ask, and then finding ways to answer those questions,
 many statisticians are guilty of pursuing mathematically tractable alternatives which
 are potentially misleading to the researcher. This is not merely an issue of using
 simplifying models because the full reality is too complex to cope with-some of the
 examples given below can be correctly tackled by standard methods. It is a question
 of ambiguously or incorrectly stated research aims-of making 'errors of the third
 kind' (giving the right answer to the wrong question).

 The aim of this paper is to stimulate debate about the need to formulate research
 questions sufficiently precisely that they may be unambiguously and correctly matched
 with statistical techniques. I call this exercise 'deconstruction'. (I have deliberately
 avoided the word 'analysis' as this is used to describe a particular level of statistical
 operation-the application of statistical tools to identify structure and patterns in
 data. This paper addresses a higher level issue-the level which determines what the
 questions are in the first place and which tools should be used.)

 The paper may be regarded as being about metastatistics rather than statistics per
 se, in that it is not concerned with narrow aspects of statistical inference or the
 mathematics of techniques. Or it may be regarded as being concerned with theoretical
 aspects of statistics distinct from those typically considered in 'methodological'
 journals.
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 The term statistical strategy may also be introduced in this context. This has been
 used by various researchers in the past (for example, Cox (1977), Cox and Snell (1981),
 Chatfield (1988, 1991), Hand (1986, 1990a) and Oldford and Peters (1986)) to describe
 issues of when particular techniques should be applied, how to use them and how
 to interpret the results, as distinct from issues concerned with lower level aspects of
 implementing given methods. Chatfield (1991) has remarked that statistical texts tend
 to concentrate on technique at the expense of strategy, and yet understanding what
 experienced statisticians would look for in the data and how they would undertake
 their analyses is just as important. This paper may be regarded as being concerned
 with an early stage of a statistical strategy: clarifying the questions that the researcher
 wishes to consider.

 The structure of the paper is as follows. Section 2 describes some of the important
 issues to be considered when attempting to deconstruct a research question. When
 expressed in general terms some of these may seem obvious, even trivial. And yet,
 as the examples show, the fact that they may be obvious when articulated has not
 prevented mistakes from being made.

 Section 3 presents a series of examples. Some of these will be well known to
 experienced statisticians so that a problem seldom arises in practice. Others will also
 be well known-but nevertheless often give rise to misunderstandings and, presumably,
 incorrect conclusions. Yet other examples are less well known. The issues raised in
 the examples are widespread, and although particular papers have been cited the aim
 is not to criticize the authors but simply to demonstrate that the problems illustrated
 are genuine and not unrealistic artificial constructs.

 Section 4 examines the material from the reverse viewpoint: instead of focusing
 on the question with the aim being to clarify it and hence to see how statistical methods
 can be used to address it, statistical techniques are considered, with the aim being
 to see precisely what questions they answer.

 I remarked earlier that the primary aim of this paper is to encourage discussion
 about the issues involved in formulating research questions and deconstructing
 statistical questions, with the ultimate goal being to minimize ambiguity in question
 formulation. A significant step towards this goal would be the statement of a number
 of principles which researchers and statisticians could follow. It is clear that
 constructing such principles is no small task and requires careful thought. However,
 by way of stimulus, Section 5 presents some proposals.

 2. ASPECTS OF DECONSTRUCTION

 It has been suggested that, to become a competent statistician in any particular
 application domain, one needs at least three years working in that domain after taking
 a degree in statistics. The implication of this is that there is more to statistics than
 merely the mathematics of the techniques. It also suggests that many current statistics
 courses are not teaching some aspects of what is required to become an effective
 consultant, and that these aspects concern how to formulate and identify, in the first
 place, the question which is to be answered by using statistics.

 This point, that there is more to statistics than merely the choice and application
 of a set of techniques, has been discussed by others, including Cox (1977) and
 Kempthorne (1980). In the present paper I am concerned with identifying precisely (in
 so far as this is possible) what it is the researcher wants to know-an aspect of statistics

This content downloaded from 
�������������146.95.253.17 on Wed, 08 Jun 2022 15:12:20 UTC������������� 

All use subject to https://about.jstor.org/terms



 1994] DECONSTRUCTING STATISTICAL QUESTIONS 319

 which precedes the choice and application of techniques (though, inevitably, there
 will be some mixing of the two-see later).

 Statistical studies come in many types. A common distinction is between hypothesis
 generation and hypothesis testing studies. The former are much less formal than the
 latter, in that they are relatively unconstrained by limitations on what it is 'permissible'
 to do. In principle any technique can be used which may reveal some structure in the
 data, on the basis that such revealed structure is only suggestive, and will be the subject
 of a later hypothesis testing study. In practice, however, some approaches are much
 more likely to produce spurious structures than others and so some moderation is
 necessary. It is also typically necessary to decide beforehand what sort of structures
 might be of interest. Without some kind of definition, however informal, the exercise
 becomes pointless-any arbitrary distribution of data points is, after all, a 'structure'.
 Thus, in projection pursuit, for example, an 'interestingness' measure is defined. At
 the other extreme, different members of the class of exploratory techniques called
 cluster analysis use different definitions of 'cluster' and all too often too little attention
 is given before an analysis to what sort of structure would qualify in a particular
 context as a cluster. The point is that even for informal hypothesis generation studies
 it is necessary to consider in detail beforehand what it is we want to know.

 Hypothesis testing studies involve collecting data and studying how well those data
 match the theory to be tested. Naturally we wish to make the test as sensitive as possible.
 That requires collecting the data so that slight departures from the theory manifest
 themselves clearly in the analysis. In turn that means designing the data collection
 exercise from the perspective of the question to be answered. Again, then, to design
 a study effectively, it is necessary to have a clear idea of the research question.

 Often (typically?), of course, studies are mixed. They often include a hypothesis
 testing component for which a particular question is posed in advance, and then a
 hypothesis generating component in which the data are examined to see whether there
 are any other interesting patterns in them.

 The generation-testing distinction is important. Another is the mechanism-
 description distinction between model types. Much of statistics is concerned with fitting
 a model to data. In some situations this will be an explicit attempt to model the
 mechanism through which the data were generated but often the model is simply a
 summary or description of the data. An example of summarizing the data might be
 the use of regression in psychology where it is being used simply to show an
 approximately linear increasing relationship between two measured variables without
 there being any detailed underlying scientific theory. In general a mechanistic model
 will carry more contextual baggage which needs to be kept in mind when considering
 appropriate statistical tools. However, by definition, a mechanistic model tells us what
 sort of shapes and structures we are looking for. A descriptive model, in contrast,
 is much less constrained and so requires more care in deciding what sorts of things
 may be valuable.

 Model fitting involves optimizing some criterion. Some criteria have attractive
 theoretical properties, but all too often the criterion is adopted by default with no
 thought being given to its suitability to the problem at hand. Modern computer power,
 however, has opened up the feasibility of using any of a vast range of criteria. Different
 criteria have different properties and it is necessary to consider which one best matches
 the aims of the study. This comment applies to simple models, such as location
 measures, as well as to complex models.
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 What research questions it is possible to ask will depend on the data. This means
 that it is necessary to plan what data to collect on the basis of what it is we want
 to know. The term 'data' includes the numerical values recorded and also the meaning
 of the numbers and the variables-the context in which the data arose, or the
 'metadata' describing the numbers. It is probably impossible to create a general theory
 of context: the essence of the term is that it depends on the particular application.
 (Lunneborg (1992) gives the nice example of a confidence interval for the regression
 coefficient of income on education in a salary survey. An interval of [ - 10, 8] (dollars
 per year, say) tells us that the coefficient is effectively 0. An interval of [- 3000,
 4000] tells us that we have no idea what the slope is. These different interpretations
 can only be made given the context of the interval.) However, there are aspects of
 context which are general and about which theories can be constructed. One such
 is measurement scale, discussed below (see, also, Hand (1993a, b)). Measurement scale
 can constrain the sort of questions which it is sensible to ask of a particular set of
 data-and hence can limit the scientific questions which can be posed. Other simple
 general examples of how the context in which the numbers arose can influence the
 analysis are when there are bounds on the numbers, when zeros are structural, when
 they are not a random sample, when they are or are not matched, when they are
 hierarchical or when data are non-ignorably missing.

 Considerations arising from these and other contextual issues will influence the
 questions which it is meaningful to ask and, at the next level down, the choice of
 statistical tools.

 3. EXAMPLES OF INAPPROPRIATE METHODS

 3.1. Example 1: Explanatory versus Pragmatic Studies
 The first example will be familiar to medical statisticians, though it also applies

 widely outside the medical field. Schwartz et al. (1980) call it the explanatory versus
 pragmatic distinction. They illustrate with a comparison between two radiotherapy
 treatments (in a standard two groups randomized clinical trial):

 (a) treatment group 1-radiotherapy alone;
 (b) treatment group 2-radiotherapy preceded for 30 days by a sensitizing drug.

 Consider two designs, DI and D2. In DI radiotherapy is started immediately for
 the first group. This is what would happen in a clinical setting. In design D2, in
 contrast, the radiotherapy alone group first wait through a 30-day period in which
 no treatment is given. This permits a comparison of two groups for whom the only
 difference is the fact that one received the drug.

 DI here is pragmatic because it is what would happen in clinical practice. In contrast,
 D2 is explanatory because it is seeking to understand, or explain, the effect of the
 drug, all other things being equal. Both questions are legitimate-neither is 'right'
 or 'wrong'. Which is appropriate depends on what the investigator wishes to know.
 And it is easy to show that an answer to one question may not help in answering
 the other.

 In this example it was necessary to decide beforehand which question was to be
 answered so that an appropriate design could be adopted, and the distinction is, in
 fact, pervasive. A pragmatic trial must guard against identifying the poorer treatment
 as better. (Schwartz et al. (1980) term this a type III error. This is different from
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 TABLE 1

 Two treatments for ulcers: (a) explanatory analysis and (b)
 pragmatic analysis

 (a) (b)

 Drug I Drug 2 Drug I Drug 2

 Recovered 11 13 11 13
 Not recovered 7 2 18 13

 the errors of the third kind defined in Section 1.) Moreover, type I errors do not
 matter: if the two treatments are equally effective (this is what the null hypothesis
 says) then it does not matter whether we conclude that A is better or that B is better.
 This means that the oa-level (the probability of concluding that there is a difference
 when none exists) can be set at lOO1o. In contrast, in an explanatory trial we will
 wish to avoid type I errors and type II errors. This is a classical hypothesis testing
 situation. Since the two types of trial focus on different aspects of the error structure,
 it will be apparent that the number of subjects needed will also be influenced by the
 explanatory-pragmatic distinction. Pragmatic questions correspond roughly with
 intention-to-treat analyses, whereas explanatory questions correspond more to
 treatment-received analyses.

 Table 1 shows results from a clinical trial of antibiotics in controlling stomach ulcers,
 giving the numbers who have or have not recovered under each of two treatments
 after 4 weeks. In part (a) an explanatory analysis is presented. In part (b) a pragmatic
 analysis is presented, in which patients who dropped out because of side-effects are
 included and regarded as treatment failures. Although in this case 11 in each treatment
 group withdrew, the numbers could easily have been quite different and it is clear
 that in such situations the two approaches may give different results.

 Similar points apply to refusals. Carpenter and Emery (1977) described a study
 of sudden infant death syndrome in which the children in one of the groups were
 subjected to increased surveillance by health visitors. Among the 627 families who
 agreed to this there were two unexpected deaths (0.32%o) whereas among the 210 who
 refused there were three unexpected deaths (1.43Wo). Whether or not the refusals should
 be included in the analysis, which compared this group with a control group which
 had no extra surveillance (and 9/922 = 0.98W% unexpected deaths) depends on precisely
 what one is seeking to find out.

 Problems like these are particularly common with longitudinal data, where drop-
 outs frequently occur. Whether the analysis should be based solely on those remaining
 in the study or be part of a larger model which takes account of the probability of
 dropping out (see, for example, Diggle and Kenward (1994)) depends on what we
 want to know. In particular it depends on whether we wish to make inferences to
 the population of people who do not drop out or to the larger population from which
 the sample was drawn.

 Schwartz et al. (1980) pointed out that the explanatory-pragmatic distinction also
 influences more fundamental aspects of design. For example, in an explanatory study,
 homogeneous groups of patients will probably be chosen, whereas in a pragmatic
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 study we will choose patients who are representative of the potential treatment
 populations. This might lead us to suggest that randomization approaches are
 appropriate in explanatory trials and sampling theory approaches appropriate in
 pragmatic trials.

 In general, it is necessary to look very carefully at the scientific hypothesis that
 is to be studied to make certain that the correct statistical hypothesis has been
 formulated and tested.

 3.2. Example 2: Wilcoxon Test
 For our second example we stick to the issue of comparing two treatments. A crude

 statement of the objectives of such a study might be that we wished to see which
 of the treatments (A or B, say) was better. However, this statement is inadequate,
 as we see when we begin to deconstruct it. (Hand (1992) discusses this example in
 more detail.)

 The first thing to ask is what is meant by 'better'? Here we shall adopt the
 straightforward view that better means a 'larger' score on some measured scale, but
 even this is insufficient. Individuals have scores; groups do not. Thus we can compare
 the scores of two subjects in the study, but a more careful definition is required before
 we can compare two groups.

 Pursuing our policy of deconstruction, we might decide that our real interest is
 in the comparative likely effect of the two treatments on a future patient. This is
 a common aim for many such studies, i.e. the question that we really wish to answer
 is 'Will a future subject score higher under A or B?'. If the score of a subject receiving
 treatment i is denoted zi then the above question can be expressed as 'Will ZA -ZB
 be greater than 0?'. Since different subjects differ, the best that we can hope to achieve
 is an answer to the question 'Is P(ZA-ZB>O)> ?'.

 To shed light on this question, we have a sample of subjects, each of which we
 shall assume has been randomly allocated to receive either A or B and we shall further
 assume that all covariates which might refine the distribution of response errors have
 been taken into account.

 If both A and B can be given to each subject, with no carry-over effects, then we
 can observe ZA-ZB directly for each patient in our sample and hence estimate the
 probability that ZA - ZB>O and test whether it is greater than 2 . However, in many
 situations it is not possible to administer both A and B (treatments influencing survival
 time until death or methods for teaching reading skills, for example). Matching subjects
 can side-step the problem, but in many treatment comparisons the subjects are not
 matched: the comparisons are based on two independent groups. Hand (1992) showed
 that the Wilcoxon test for two independent samples is equivalent to testing whether
 P(XA -YB >0) is greater than 2, where XA and YB are independent scores under the
 two treatments, i.e. the common design, using the Wilcoxon test for analysis, considers
 P(XA -YB >O) whereas we really want to consider P(ZA-ZB >0). Hand (1992) gave
 examples which showed that one of these probabilities can be greater than I while
 the other is less than I (and vice versa). That means that the Wilcoxon test can conclude
 that treatment A is more effective than treatment B (in the sense described above)
 when in fact the converse is the case.

 Although the Wilcoxon test, in a sense, comes closest to answering the question
 that we are interested in (is P(ZA - ZB> 0)> 2?), the t-test is often used to compare
 two groups. However, the t-test is not simply concerned with the sign of a difference
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 between two treatments but also takes into account the size of the difference.
 Sometimes, of course, this is the right thing to do. It depends on precisely what the
 researcher wants to know-i.e. on a careful deconstruction of the research objective.

 3.3. Example 3: Proxy Variables
 Measurement theory is the discipline concerned with establishing and studying the

 properties of mappings between objects being studied and the numerical (or otherwise)
 representation of them (see Section 4.1). Some areas of this discipline have been very
 well developed, and extremely powerful results have been established. However, just
 as with probability and statistics, different schools exist and not all issues have been
 resolved. Sometimes insufficiently clearly formulated research questions arise from
 such issues. This example illustrates such a case where precisely what is being studied has
 not been sufficiently clarified. The numbers have been deliberately chosen to keep the
 example straightforward, and more realistic but complicated numbers could be chosen.

 Consider two researchers, whom, to lend force to the illustration, we shall take
 as a Frenchman and an Englishman, who wish to compare the fuel efficiencies of
 two types of car. To do this they take samples of two cars of each type and measure
 the fuel efficiency.

 The results are shown in Table 2.
 The English researcher records the data in the first row of the table, finding that

 the two cars of type 1 ran for 1 mile per gallon and 4 miles per gallon respectively,
 producing an average of 2.5 miles per gallon. Similarly for type 2 cars this researcher
 found that the average efficiency was 2.0 miles per gallon. The English researcher
 thus concludes that type 1 cars are better-running for more miles per gallon than
 type 2 cars.

 The French, however, measure fuel efficiency in the metric equivalent of gallons
 per mile. The French researcher thus uses the reciprocals of the English researcher's
 raw scores. For car type 1 this means that the two cars consume 1 gallon per mile
 and 0.25 gallons per mile respectively, producing an average of 0.625 gallons per mile.
 And for car type 2 the average is 0.5 gallons per mile. The French researcher thus
 concludes that type 2 cars are better-consuming less petrol per mile than type 1 cars.

 We appear to have a contradiction. How can the two researchers reach opposite
 conclusions with the same data?

 The difference between the two conclusions clearly arises because of the non-linearity

 of the reciprocal transform. In general, if f is non-linear, then Elf(x)J ?ffE(x)J.
 This is all very well, but it does not answer the real question: which researcher is

 correct? (Or, operationally, which car should I buy?) Since there are two distinct
 answers, which are based on the same data, it seems that the question has not

 TABLE 2

 Fuel efficiencies of two types of car

 Researcher Efficiencies for type I Efficiencies for type 2

 Car 1 Car 2 Average Car I Car 2 Average

 English (miles per gallon) 1 4 2.5 2 2 2.0
 French (gallons per mile) 1 0.25 0.625 0.5 0.5 0.5
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 been sufficiently carefully phrased-the structure of the question needs to be
 elucidated.

 In this particular example we might argue that, in using a car, we are generally
 interested in how many gallons it will take to cover a given distance (to travel from
 A to B) rather than how far we can travel on x gallons, before we run out of petrol.
 That being the case, the gallons per mile calculation will be the more appropriate
 (with the implication that the English are wrong!). It is the context, as noted in
 Section 2, which here suggests that this is the appropriate formulation of the question,
 and different problems will have different contexts, yielding different questions and
 different solutions. Indeed, in problems involving ratios, such as this problem, the
 context may suggest yet a third alternative: not an average of ratios or an average
 of their reciprocals, but rather a ratio of their averages.

 Or, yet another alternative, for the car fuel example we might instead assert that
 we are really interested in 'efficiency', which lacks an adequate operational definition
 and that we therefore instead use either miles per gallon or gallons per mile as proxy
 variables which have ready operational meanings. We assume that they are
 monotonically related to efficiency (they are monotonically related to each other,
 which is reassuring). In this case, given the weak relationship between the variable
 of interest and its measurable proxies, if we wish to make a meaningful statement
 about efficiency we must use techniques which are invariant to monotonic
 transformations. The arithmetic mean is not, of course, and is therefore an
 inappropriate tool to use.

 In any case, the precise question that the researcher wants to answer must be made
 clear.

 3.4. Example 4: Lord's Paradox
 'Lord's paradox' (Lord, 1967) is a well-known but nevertheless effective

 demonstration of the importance of being precise about the research objectives. Lord
 described a (fictitious) study to explore the 'effects on the students of the diet provided
 in the university dining halls and any sex difference in these effects'. To investigate
 this, the weight of each student is measured in September and again the following
 June. Now, it is clear that, to study the diet effect over this period, we need to examine
 the final weights, allowing for the differences in initial weights. One approach is simply
 to study the change in weight over the period. In the situation that Lord describes,
 the mean change for boys is 0 and the mean change for girls is 0, so this approach
 leads to the conclusion that there is no sex difference.

 An alternative way of examining the final weights allowing for the differences in
 initial weights is to conduct an analysis of covariance. This leads to identical slopes
 of final on initial weight in the two sex groups, but different intercepts, with that
 for the boys being larger than that for the girls. The conclusion from this analysis
 is thus (Lord (1967), p. 305) 'boys showed significantly more gain in weight than girls
 when proper allowance is made for differences in initial weight between the two sexes'.

 Many researchers have discussed this apparent paradox, and agreed that the
 fundamental problem is the imprecise statement of the hypothesis being tested. The
 first analysis above is a test of an unconditional comparison between the gains of
 the two groups. The second, however, is a test of an average conditional comparison,
 conditioning on initial weight, i.e. if we select subgroups of boys and girls with identical
 initial weights, then the relative position of the regression lines shows that the boys
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 gain more weight than the girls. Given that the questions are different, it is hardly
 surprising that the answers differ.

 This is all very well, but, as in so many of the examples given here, this
 deconstruction does not completely resolve the issue. It is still necessary for the
 researcher to be clear about which problem should be solved.

 Wainer (1991), based on Holland and Rubin (1983), described an extension to Lord's
 paradox in which the aim was to compare the effects of a treatment on two groups,
 making due allowance for differing base-line values. Similar points as previously apply
 to whether we should subtract or covary out the base-line scores, but now an additional
 complication is that we really wish to compare the post-treatment scores with the
 scores that the subjects would have had, had there been no treatment intervention.
 This means that extra (intrinsically untestable) assumptions must be made relating
 base-line scores with the scores that the subjects would have had later.

 To summarize, it is necessary

 (a) to deconstruct the statistical question to identify precisely what it is answering,
 (b) to know what question the researcher wishes to answer and
 (c) to be aware of any latent assumptions so that they can be assessed for realism

 and, perhaps, so that evidence supporting them can be obtained.

 3.5. Example 5: Simpson's Paradox
 Simpson's (or Yule's) paradox (Simpson (1951) and several references in

 Haunsperger and Saari (1991)) also falls into the category of well-known but convincing
 illustrations of the need to construct the research questions very carefully in view
 of the objectives. Consider the data in Table 3 (Early and Nicholas, 1977) on how
 the proportion of males in a particular psychiatric hospital changes over time. In 1970
 the proportion was 0.464 and in 1975 it was 0.462: a small reduction. However, suppose
 that we examine the under 65 and 65 and over age groups separately. For the former

 TABLE 3

 Proportions of males in a psychiatric
 hospital

 Proportions in the following
 years:

 1970 1975

 All ages
 Male 343 238

 =0.464>0.462=

 Total 739 515

 < 65 age group
 Male 255 156

 = 0.594<0.605 =-
 Total 429 258

 > 65 age group
 Male 88 82

 = 0.284<0.319=
 Total 310 257
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 group we find the 1970 proportion to be 0.594 and the 1975 proportion to be 0.605:
 an increase. And for the latter group we find the 1970 proprtion to be 0.284 whereas
 the 1975 proportion was 0.319: also an increase.

 The two age groups separately each show an increase whereas the complete
 population, which is the combination of the two age groups, shows a decrease. How
 can this be? Surely it is a contradiction.

 It is not, of course, and a simple explanation is as follows. Let x_ male, y under
 65, and z 1970, with x', y' and z' being the complementary categories. Then
 elementary probability theory tells us that

 P(xlz)=P(xly, z)P(ylz)+P(xly z) P(Y 'Iz)

 and

 P(xlz')=P(xly, z')P(ylz')+P(xly', z')P(y'Iz')

 with P(ylz)=0.581 not equal to P(ylz')=0.501 and P(y'Iz)=0.419 not equal to
 P(y' Iz ') = 0.499.

 The consequence is that, although in the example P(xl y, z) <P(xly, z') and
 P(xly ', z) < P(xly ', z '), the different sets of weights mean that the weighted average
 of P(xly, z) and P(xly', z) is greater than the weighted average of P(xly, z') and
 P(xly', z').

 Intuitively, when we average the two age groups, we tend to use equal weights and
 since both age groups have proportions changing in the same direction their equally
 weighted average does also.

 This is a nice neat mathematical explanation of the apparent paradox, but again
 I think that it is an inadequate resolution. What is needed is a more careful examination
 of what the researcher really wants to know. Either method of averaging may be
 appropriate. The weighted average (overall calculation) is appropriate to answer the
 question 'Does the proportion who are male increase?' but the unweighted average
 (calculating the age groups separately and then averaging them) is appropriate to answer
 the question 'On average, for patients of a given age, does the proportion who are
 male increase?'. One question is concerned with the change of averages and the other
 with the average of changes. Which is appropriate depends on a sensitive deconstruction
 of the research objectives.

 In this example, as in example 4, the issue is whether or not the researcher needs
 to ask a conditional question and, in fact, the issue of whether or not to condition
 is ubiquitous. It occurs, for example, in simple versus multiple regression. Neither
 analysis is right and the other wrong-it depends on what we want to find out.

 3.6. Example 6: Interaction
 A nice example of the care needed in formulating research questions arose from

 a controversy in psychiatric research (Everitt and Smith, 1979). The data in
 Table 4 (from Brown and Harris (1978)) show, for a sample of women from south-
 east London, the numbers developing and not developing depression over a 1-year
 period (y) cross-classified by the presence or absence of intimacy with a husband or
 boyfriend (xl) and whether or not they experienced a severe life event in this period
 (X2).

This content downloaded from 
�������������146.95.253.17 on Wed, 08 Jun 2022 15:12:20 UTC������������� 

All use subject to https://about.jstor.org/terms



 1994] DECONSTRUCTING STATISTICAL QUESTIONS 327

 TABLE 4

 Depression and no depression frequencies classified by presence

 or absence of intimacy (xl) and experience or not of a severe life
 event (x2)

 y xi

 No intimacy Intimacy

 X2 X2

 Event No event Event No event

 Depression 24 2 10 2
 No depression 52 60 78 191

 Brown and Harris (1978) concluded from these data that the two predictor variables
 (xl and x2) interact in their effect on the response variable y. Tennant and
 Bebbington (1978), however, using the same data, concluded that xl and x2 are
 independent in their effect on y-i.e. that xl and x2 have no interaction. Again we
 are presented with the question: which team is correct? Again the difference does
 not arise because of a different choice of significance level, but is caused by a deeper
 structural difference in the approaches used by the two teams.

 Neither team has defined sufficiently precisely what it wants to know. Although
 both have used the term 'interaction' neither has looked closely at its definition and
 related it to what it wants to know: they have not deconstructed their questions.

 Brown and Harris (1978) used an additive model and defined interaction accordingly.
 Thus, as Table 5 shows (based on Table 4), the difference between columns in the
 upper row is 0.29 whereas that between columns in the lower row is 0.10, a substantial
 difference. This shows (they say) a clear interaction between the two cross-classifying
 variables.

 In contrast, Tennant and Bebbington (1978) used a multiplicative model, with
 interaction appropriately defined. Now Table 5 shows the ratio of the two cells in
 the upper row to be 10.7 whereas that in the lower row is 11.0. These are almost
 identical, showing, Tennant and Bebbington claimed, that the two cross-classifying
 variables do not interact in their effect on y.

 The point of this example is that the two approaches have led to different
 conclusions. Given that both analyses are conducted, this difference will alert us to
 the fact that more careful thought is required. But 'both analyses' will not normally

 TABLE 5

 Proportions with depression calculated from
 Table 4

 XI X2

 Event No event

 No intimacy 0.32 0.03
 Intimacy 0.11 0.01
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 be conducted. The danger is that inadequate prior consideration of exactly what
 question was being asked could have led to a mistaken conclusion. Presumably it
 did for one team in this example, given that they wanted to answer the same scientific
 question.

 3.7. Example 7: Trimmed Means
 Let Q(X) represent an arbitrary real functional on the distribution of the random

 variable X. For example, we shall be interested in the functionals E(X), the expectation,
 R(X) = P(X> 0), and T(X), the trimmed mean of X.

 Let (X, Y) be a pair of possibly dependent random variables and let U=X- Y.
 Let (X ', Y') be independent random variables with X' having the marginal distribution
 of Xand Y' that of Yand let V=X' - Y'. We can then ask which functionals Q satisfy

 (a) Q(U) = Q(X) - Q(Y),
 (b) Q(U)=Q(V)?

 And, in the spirit of this paper, having identified the functionals with these properties,
 we could then go on to ask what substantive research questions these functionals are
 concerned with. However, we shall here focus on some special cases.

 In example 2 earlier I pointed out that the Wilcoxon test and the t-test answer
 different questions. One just considers the signs of differences whereas the other also
 takes the sizes into account. In that example we wanted to ask a question about the
 distribution of the ZA-ZB differences, but we were bound by the nature of the
 experiment to ask about the distribution of differences XA -YB from two independent
 samples. The Wilcoxon test addresses the issue of whether or not R(XA -YB) > 2j. In
 contrast the t-test looks at E(XA -YB) and compares it with 0. A problem arose
 because the functlonal used in the Wilcoxon test does not satisfy (a) and (b) above,
 so that it is not true that R(zA-ZB)=R(xA-YB) or that R(zA-ZB)=R(zA)-R(ZB)-
 Expectation, however, does satisfy (a) and (b)-so, if we had been interested in a
 comparison taking effect sizes (and not just signs) into account, no problem would
 have arisen.

 Of course, there may be particular distributional forms-additional assumptions
 which can be made-for which (a) and (b) are satisfied for some Q, even though they
 are not generally true. We return to this sort of possibility in Section 4.2.

 Efron (1992) used jackknife-after-bootstrap approaches to explore the extent of
 trimming for a problem involving trimmed means. The situation is as follows. A
 subatomic particle called the tau particle decays soon after production into various
 collections of other particles. Some of the time the decay produces just one charged
 particle, and this can happen in four major and various minor ways. The proportion
 of time that a single charged particle is produced can be estimated and similarly the
 proportion of time that each of the four major paths is followed can be estimated.
 The primary interest in the study is to estimate and find a confidence interval for

 d = d0- d1- d2 - d3 - d4, where we have used do to denote the proportion of
 experiments producing a single charged particle (of whatever kind) and d1-d4 to
 denote the proportion of experiments producing particles of types 1-4.

 The purpose of Efron's investigation was to show how the jackknife-after-bootstrap
 method can be used to compare a series of trimmed means estimators, permitting
 one to choose that producing the most accurate estimate. This question seems to refer
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 to trimmed mean estimators of d. A problem arises, however (Efron (1992), pages
 95-96): 'because of certain physical constraints, any one experiment provides only
 one estimate . . ., either an estimate for the composite rate decay, or for one of the
 four modes'. Because of this, instead of using T(d) (with T denoting the trimmed
 mean), Efron used T(do) - T(d1) - T(d2) - T(d3) - T(d4). However, in general T does
 not satisfy (a). It follows that the two estimators may produce different results.

 The goal was to produce a confidence interval for the difference parameter d. To
 do this, we need to study the distribution of the differences. What has been done,
 however, is to study the difference of the distributions (and in particular the difference
 of the trimmed means of the distributions). The two need not give the same results
 they are answering different questions.

 3.8. Example 8: Sums of Squares with Unbalanced Data
 I imagine that, once the issues have been clarified, most statisticians would reach

 agreement on most of the previous examples. But this is not always the case. Take
 the example of a two-factor analysis of variance with unbalanced data. The SAS GLM
 routine gives a choice of four different types of sums of squares for such an analysis,
 denoted types I, II, III and IV. This inevitably raises the question of whether researchers
 appreciate the distinctions between the types and can match one of the four with their
 research question. But deeper issues are also involved in this example. Presumably
 SAS proponents believe that each of these four types of sums of squares is valuable.
 Nelder (1992), however, argued that the SAS literature is confused about the distinction
 between the hypothesis to be tested and the non-centrality parameter in the expectation
 of the numerator sum of squares of the F-statistic. As a consequence, he asserts (Nelder
 (1992), p. 403): 'Type III and Type IV sums of squares serve no useful inferential
 purpose and should be abandoned'. He goes on to point out that type III sums of
 squares break marginality requirements. Hypotheses ignoring marginality requirements
 are, he asserts (Nelder (1982), p. 142), 'without practical interest'-and yet users of
 SAS GLM are presumably testing such hypotheses.

 The situation is aggravated when one steps beyond SAS and also considers other
 packages. As Searle (1987) says:

 'As a result of having several methods of analysis, not all statistical computing packages
 necessarily do the same analysis on any given set of unbalanced data. Consequently, in
 the context of hypothesis testing, or of arraying sums of squares in an analysis of variance
 format, there is often, for the one data set, a variety of sums of squares available from
 computing packages. The problem is to identify those that are useful.'

 Or, as I would say, the problem is to identify those which address the hypothesis
 that one is interested in.

 In an elegant discussion of the historical background, Herr (1986) raised the role
 that computational aspects played in the derivation of, and attempts to choose between,
 the different sums of squares. Finney (1948) is cited as making the point that the
 definition of main effects should depend on what the analysis is all about and that
 'elegance of analysis alone must not be the criterion'. By way of conclusion, Herr
 wonders whether, had the early researchers stated their hypotheses clearly, might not
 their papers, instead of leading to decades of discussion of computational complexities,
 have
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 'sparked a series of papers arguing when to use each analysis? And based on more precise
 information about what the different methods tested might not these arguments have been
 more fruitful? The 21 years since 1965 might well have been better spent had this been
 the case'.

 In a sense, this entire paper is trying to make the same point more generally: not
 just relative to computational aspects, but to general issues of what questions statistical
 techniques are concerned with. And, rather than wondering about how past effort
 might have been better spent, it is an attempt to stimulate the more fruitful use of
 our future efforts.

 4. USE OF DIFFERENT METHODS AS ALTERNATIVES

 In Section 3 I approached things from the perspective of the presenting question,
 showing how important it was to formulate that question precisely. This, as I have
 been at pains to point out, is the correct way to think about research questions: scientists
 have particular issues that they want to resolve, so that the analysis must begin by
 focusing on those issues. Nevertheless, when addressing a statistical audience it is
 also useful to discuss things from the other perspective, that of the statistical technique
 which might be applied. This is the perspective that I adopt in this section, again
 showing that insufficient -care is often exercised when choosing techniques.

 At this point it is helpful to make precise some terminology which is normally used
 fairly loosely. For me, here, a model will be a family of mathematical descriptions
 rather than a particular member of a family. Thus a model requires the values
 of parameters to be provided to give a complete specification. This means, for example,
 that we can talk of a linear regression model, and that the parameters of this model
 can be determined by a variety of techniques according to the criterion of goodness-
 of-fit that we choose to optimize (least squares, least absolute deviations, etc.). A
 statistical test will assume model forms for the populations and then will
 impose additional restrictions through the null and alternative hypotheses. For
 example, the model for a Student t-test is that the data arise from normal populations
 with equal variances, and then the null hypothesis imposes the additional structure
 that the difference between the means is 0. A test thus has two components, a model
 and a hypothesis. Both of these play a fundamental role in the choice of the test,
 but all too often greater emphasis is placed on the model aspects. This can have
 disastrous consequences for the relevance of the test to the research question being
 investigated.

 To make progress I now need to consider the nature of hypotheses. Without wishing
 to delve too deeply into the philosophy of science, I shall suppose that the objective
 of a scientist conducting research is to make some statement about properties of the
 objects that he or she is investigating, i.e. the scientist starts with a scientific hypothesis
 that they wish to test (that one object is heavier than another or that a group of people
 are, on average, more intelligent than another group, for example). To apply statistical
 methods it is first necessary to translate this scientific hypothesis into a statistical
 hypothesis. This translation involves all the usual issues of experimental design,
 randomization etc., but a key component is deciding how and what to measure. This
 is the aspect that I focus on in Section 4.1.
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 4.1. Hypotheses and Measurement
 A traditional view is that measurement consists of a mapping from the objects being

 studied to numbers, in such a way that the relationships between the numbers
 correspond to relationships between the objects. In general, the numerical
 representation will not be unique-there will be a class of admissible transformations
 describing mappings between alternative legitimate numerical representations. For
 example, we can choose to measure the weight of an object in grams rather than ounces,
 with the numbers used to represent the weights in the different measurement systems
 being related through similarity transformations. The existence of these admissible
 transformations induces a classification of measurement structures. If the admissible
 transformations are all one-to-one transformations then the measurement structure
 is said to have a nominal scale. If the admissible transformations are all monotonic
 increasing transformations then the structure has an ordinal scale. Affine trans-
 formations lead to interval scales. Similarity transformations lead to ratio scales.

 On this basis, Stevens (1946) argued that, since the objective of science is to draw
 conclusions about the empirical objects under study, the only statistical operations
 that were legitimate were those that were invariant under the relevant class of admissible
 transformations. Other statistical operations would give results which would vary
 according to the numerical representation adopted and since each representation
 (obtained by an admissible transformation) was equally valid the conclusions would
 be valueless. In my terminology, this implies that only certain hypotheses can be
 meaningfully formulated: others are technically 'meaningless'. For example, the
 hardness of rocks is measured on the Moh scale, which preserves merely the ordinal
 relationship between the empirical objects (the rocks). A hypothesis stating that the
 arithmetic mean value of the hardnesses of one group of rocks was greater than that
 of another group could give results which differed according to which of the legitimate
 numerical representations was adopted. Such a hypothesis would be meaningless.

 This seems quite straightforward, and it implies that the measurement scale
 influences the choice of statistical method. But it does this via the research question
 that is being explored, and not directly.

 This view has been adopted by many people. Among these have been enthusiasts
 for nonparametric tests, arguing that the less restrictive distributional assumptions
 that these make mean that they may legitimately be applied with weaker (e.g. ordinal)
 measurement scales. Unfortunately, however, the presentations sometimes lose sight
 of the fact that the nonparametric tests often achieve their legitimacy only at the cost
 of changing the hypothesis being tested-from a comparison of means, for example,
 to one of medians. To put it in the terminology defined above, discussion has focused
 on the model instead of on the hypothesis. The latter must come first. To do otherwise
 can result in testing a hypothesis other than that in which the researcher is really
 interested.

 Before leaving this issue, we should note that, although Stevens's restrictions on
 permissible statistical techniques apply when there is a clear empirical system which
 is being modelled (as in most of physics, for example), not all science deals with such
 cases. In particular, test scores and rating scales in psychology do not have clearly
 defined empirical counterparts to serve as the domain of the mapping to the numbers.
 When this is the case, it has been argued, Stevens's restrictions do not apply, and
 the choice of statistical technique is unrestricted by questions of measurement scale.
 To pursue this would lead us away from our central concern and we shall merely
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 comment here that this issue has been the focus of debate which has rumbled on for
 most of this century. A detailed historical account of the debate is given in Hand

 (1993a).

 4.2. An Invariance Principle
 Earlier I defined a 'model' as a family of mathematical descriptions and a hypothesis

 as a restriction on that family. The model effectively summarizes the assumptions
 that we are prepared to make about the distributions of the variables under study,
 whereas the statistical hypothesis, derived from the scientific hypothesis, restricts the
 distributions yet further. A clear statement of both is important in formulating a
 statistical test. However, whereas ignoring the model means that the results may not
 be relied on, ignoring the hypothesis means that we may be testing something which
 the researchers are not interested in.

 Sometimes, however, researchers find it difficult to formulate their objectives
 precisely. Indeed, any practising statistician will be familiar with this fact. In trying
 to formulate optimal classification rules, for example, it can be extremely difficult
 for researchers to articulate the relative costs of different kinds of misclassification.
 Even in the canonical problem of comparing two groups it is often difficult for
 researchers to state what comparison is really of interest to them. The choice of wishing
 to compare two means is all too often made simply because that is what the statistician
 (or the text-book) suggested. As I have pointed out earlier, this is quite wrong: the
 choice should have emerged from the scientific aims.

 One is tempted to criticize ill-formulated research objectives, but it is perhaps not
 entirely reasonable to be too proscriptive. After all, every science has shaky foundations
 if we look sufficiently closely (even statistics, with its disagreements over how to
 interpret probability). So the research hypothesis itself might legitimately be regarded
 merely as an approximation to what we really want to know. The problem is that
 (as illustrated in Section 3) an insufficiently precise formulation may lead to researchers
 with superficially the same question obtaining different answers, even with the same
 data.

 One possible strategy for tackling this difficulty is to apply a principle of invariance.
 To illustrate, researchers may be unable to decide whether they wish to compare two
 groups by using means or by using medians. In general, tests of the two hypotheses
 (that the means are equal and that the medians are equal) will lead to different results.
 However, if we are prepared to assume symmetric distributions then the tests are
 (logically) equivalent. Thus the principle of invariance is: choose the model class such
 that the truth value of the research hypothesis is (logically) invariant over the different
 statistical hypotheses which may be used to describe it. At the very least, this makes
 explicit where the assumptions lie and ensures consistency of conclusions. Moreover
 it forces thought about just what the hypothesis is.

 The equivalence of two hypotheses under a particular model for the population
 distributions need not imply that the sample-based tests will have the same outcome.
 But now a choice can be made by applying (any) other criterion-both tests, after
 all, explore the same hypothesis. Choice could, for example, be based on questions
 of relative power.

 To generalize, suppose that a researcher is unwilling or unable to decide which of
 two hypotheses H1 and H2 she wishes to test. Suppose also that two possible models,
 M1 and M2, are being contemplated, with M1 more restrictive than M2 (denoted
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 M1 <M2). Then it may be that H1 # H2 I M2 but H1 = H2IM1 (where # signifies non-
 equivalence of the hypotheses, = signifies equivalence and I signifies conditioning).

 The models form a lattice with the least restrictive models towards the top and
 the most restrictive towards the bottom. Equality of two hypotheses at some node
 of the model lattice implies equality at lower nodes. This means that if the researcher
 can identify some model node such that all hypotheses of possible interest become
 logically equivalent at this node then there is no need to refine the hypothesis in greater
 detail.

 The invariance principle tells us that two hypotheses are equivalent under certain
 models M, and the principle is useful if we cannot decide which of the hypotheses
 we want to test. However, it can also be applied to situations when we know that
 we want to test H1 but circumstances mean that we cannot, though we can test H2,
 which is related to H1. What we do is to identify a model M such that H1 = H2IM.
 For example, in example 2 earlier let us model the ith subject's zB-score by

 ZB () = ZA () + s(i) and consider two models for s(i):

 (a) M1-s(i) follow arbitrary distributions, possibly different for each subject, but
 all having medians of the same sign;

 (b) M2-s(i) are arbitrary.

 The hypothesis of interest is H1: P(ZA > ZB) > 2I but, as explained in that example,
 we cannot test it by using the available data. We can, however, test H2: (XA >YB) > 2+
 Now, H1 #H21M2, which is what we would ideally like, but H1 =H21M1. Thus if we
 are prepared to adopt a more restrictive model-to make additional (untestable)
 assumptions-then we can use the Wilcoxon test (see Hand (1992)).

 We have already noted in example 3 of Section 3 that the two different fuel
 consumption variables yield the same result if we embed the investigation in a model
 in which they are simply indicator variables, ordinally related to an underlying latent
 variable which is the object of real interest. However, this embedding implied that
 we could not (for example) compare the two car types by using means-the model
 has restricted the hypotheses which it is meaningful to ask.

 Example 8 of Section 3 presented four different types of sums of squares which
 might be considered when conducting an analysis of variance. Using I, II, III and
 IV to indicate hypotheses on each of the types, the invariance notation tells us that
 II = III = IVI(model does not include interactions).

 Different hypotheses may also be equivalent when certain data structures hold.
 Sometimes studies can be deliberately designed with this aim in mind. The SAS analysis
 of variance sums of squares illustrates this. We have I = II = III = IVI(data are balanced)
 and III = IV|(no empty cells). We might be inclined to use the former of these to avoid
 the need to think carefully about hypothesis formulation by using a balanced design
 (and this would avoid the point raised by Nelder, discussed earlier).

 Invariance notions are related to robustness. Let Ti|Mj mean that some technique
 Ti will produce reliable results under model Mj and let- Ti|Mj mean that technique
 Ti will not produce reliable results under Mj. ('Reliable' here may mean various
 things. The arithmetic mean will be an 'unreliable' estimate of the mean of a normal
 distribution when there are asymmetric contaminating outliers. A trimmed mean will

 be more reliable.) Then, if T1 IM1 but - T1 IM2 while T2IM2 and M1 <M2 then T2 is
 said to be more robust than T1. We might, alternatively, say that the behaviour of
 T2 is invariant to a broader class of models than is the behaviour of T1.
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 In summary, often a scientific hypothesis can be translated into a statistical
 hypothesis in several ways and it may not be possible to identify which is really
 intended. When this is the case, it may be possible to adopt a model form under which
 the competing hypotheses become equivalent. Similarly, we may be unable to test
 the hypothesis of real interest, but this may be equivalent to a testable hypothesis
 under certain models.

 Of course, it hardly needs saying that the models have to be realistic. A desire to
 evade thinking about the precise objectives of the research should not seduce us into
 accepting unreasonable models.

 However, in many situations it is known that all effects in some saturated model
 exist in reality, but some of them are very small. The objective of statistical model
 building is to identify the larger, more important effects (perhaps so that other effects
 can be estimated with greater accuracy-Altham (1984)). This means that we are not
 choosing the model simply on the basis of theory (if we were doing that there would
 be no need for the statistical analysis) but to achieve descriptive simplicity. This being
 the case, the adoption of a (realistic) model form which simplifies subsequent analysis
 seems only sensible.

 5. SOME GENERAL PRINCIPLES

 The examples in Section 3 were intended to provide evidence that extreme care is
 needed in formulating research questions and establishing accurate mappings from
 the scientific to the statistical hypotheses. They were also intended to show that
 sufficient care is not always taken. It would be of more value, however, if we could
 go further than simply saying 'one must take care' and explicitly state some general
 guiding principles of question formulation. Ideally such guidelines need to be
 sufficiently general to have reasonably broad applicability, and yet sufficiently specific
 to provide concrete help. They need to be stated in such a way that researchers can
 see how their problems match the situations described and they need to include tactical
 advice on what to do in each case. Developing such guiding principles is clearly a
 major task and one of the objectives of this paper is to stimulate discussion in this
 area. To set the ball rolling, therefore, some tentative initial suggestions are now
 presented.

 5.1. Individual versus Populations
 Do we wish to make a statement distinguishing some aspect of the distributions

 of populations (e.g. comparing the average brain weights of men and women) or do
 we really wish to make a statement about individuals? This distinction arose in examples
 2 and 7 and is related to questions of conditioning on other factors (see Section 5.2).
 It is the distinction between cross-sectional studies (comparing groups at a particular
 time) and longitudinal studies. One way in which we might identify which of the two
 cases we are concerned with is to ask whether interest lies with a 'difference between
 distributions' or with a 'distribution of differences'.

 5.2. Conditioning
 Simple regression tells us the effect of some variable x on a dependent variable

 y. Multiple regression tells us the effect of x on y over that which may be attributed
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 to z. The regression coefficients of x can be very different in the two cases and can
 even differ in sign. However, both analyses are legitimate-it is simply that they are
 concerned with different questions.

 This sort of situation arises in other contexts as well. For example, we may choose
 to analyse either a cross-classification of three categorical variables or a two-
 dimensional marginal. Collapsing the third factor loses information about how the
 other two behave at different levels of this third factor but may be legitimate: it depends
 what we want to know.

 Examples 4 and 5 illustrate problems of this kind. It also arose in example 2 in
 that the nature of the question really required matching subjects (given that subjects
 could not receive both treatments).

 The issue is conditioning on other variables, controlling for other variables or holding
 other variables constant.

 5.3. Ambiguous Definitions
 One general area which causes problems is that of ambiguous definition. This leaves

 open the possibility of alternative operationalizations, so that different researchers
 may draw different conclusions, and is illustrated in examples 3 and 6. The problem
 may be eased by a more cautious approach, involving both researcher and statistician,
 to the translation from scientific to statistical hypotheses, but this will certainly not
 remove all difficulties. More thought about the nature of the link between what is
 being studied and the numbers used to represent it can also help.

 5.4. Pragmatic versus Explanatory Questions
 The pragmatic versus explanatory distinction is pervasive, and yet seems to defy

 simple encapsulation. In its simplest form it is the difference between two definitions
 of the population being studied (e.g. all humans (explanatory) versus those who stick
 to the protocol (pragmatic)). It can also be described as the difference between an
 exploration of the underlying mechanism (explanatory) and an exploration of the
 behaviour within a population (pragmatic). This last description shows that the
 distinction is much more widely applicable than merely to clinical trials.

 5.5. Multiple Univariate versus Intrinsically Multivariate Questions
 Some disciplines, notably psychology, make extensive use of multivariate techniques

 involving multiple dependent variables-such as multivariate analysis of variance.
 A natural question then arises about whether the multivariate approach is answering
 a research question of interest. A useful distinction is between multiple univariate
 problems and intrinsically multivariate problems. In the former, interest lies in each
 variable separately. So, for example, we might be interested in the effect of a treatment
 on bacterial population, on inflammation and on temperature, with each question
 being of interest in its own right. This would be a multiple univariate study and the
 appropriate analysis would be three separate univariate analyses of variance. (See,
 for example, Hand (1990b).) Conversely, we might be interested in the overall health
 of two groups, with health measured by a number of items. Here, given that we are
 interested in an overall result, it would be inappropriate to analyse the items separately.
 The individual items are of no intrinsic interest-they are merely indicator variables
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 for the question of interest. The situation is intrinsically multivariate and a multivariate
 analysis of variance using all the items is appropriate.

 An explanatory study is likely to be multiple univariate whereas a pragmatic study
 is more likely to be intrinsically multivariate.

 6. CONCLUSION

 The aim of this paper is to stimulate discussion about the relationship between
 scientific and statistical questions. Establishing the mapping from the substantive world
 of the statistician's client to the mathematical world of the statistical technique is
 where difficulty lies. In a sense it is more difficult than the mere mathematics of
 statistical techniques because it is less well formalized. And we might also argue that
 establishing a valid such mapping is more important than applying rigorous
 mathematics to the problem formulation which results: it is better to have an
 approximation (if we know that it is an approximation) to the question that we want
 to ask, than to have a mathematically correct solution to an irrelevant question.

 The paper suggests that perhaps in the past statisticians have not been as careful
 as they might have been in sticking to the essence of the researcher's problem. To
 some extent this distortion was justified because of computational difficulties. To
 do statistics properly, we need to know what the research question is, to have an
 effective strategy for answering that question, and to have the requisite mathematical
 or algorithmic facility. Without the last of these, or with inadequate algorithms, no
 progress can be made, so this last is essential for effective statistical analysis. In
 contrast, with a defective strategy or a poorly formulated question we can, at least,
 produce a conclusion, if not the correct one. The implication is that, in the past,
 understanding the mathematical and algorithmic detail was vital, if statisticians were
 to have any credibility, and had to take precedence over other issues. But, of course,
 this is no longer true. Nowadays, the necessity for understanding the details of the
 mathematics and algorithms has faded, at least for most users of statistics. Computers
 are taking over increasingly more of this role. This frees us to focus on more challenging
 and important strategic issues, such as question formulation. The importance of the
 role of mathematics in statistics in the past presumably explains why some people
 are unwilling to acknowledge that statistics is more than merely a branch of
 mathematics.

 This has implications for the way that statistics is taught. Most teaching of practical
 statistics still starts at the level of having already decided what the question is. It then
 goes on to consider how to answer that question, focusing to a large extent on the
 mathematical manipulations-manipulations which will, in fact, be carried out by
 a computer. But this has skipped the most difficult and important stage, that of
 question formulation. Several institutions I know set exercises requiring the students
 to comment on particular published papers (from medical journals, for example).
 This is clearly a step in the right direction, though it is more akin to the apprenticeship
 notion (in which the statistician has to work in a particular environment to become
 expert in that area) than to formal teaching. More courses in statistical consultancy
 are needed. And these should begin at the beginning-before the statistical question
 has been formulated.

 Finally, given the difficulty and importance of the problems of formulating statistical
 questions from the scientific questions presented, I would like to see more research
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 effort spent on these issues: on the deconstruction of presenting questions so that

 the question being answered is that which was asked.
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 DISCUSSION OF THE PAPER BY HAND

 J. A. Nelder (Imperial College of Science, Technology and Medicine, London): The topic of this
 paper is very important, because it is at the heart of the interaction between the statistician and the
 experimenter. The statistician must understand what the experimenter wants, and be prepared to find
 it misspecified in one of several ways. The opposite danger is that the experimenter will be presented
 with an analysis locked into a statistical framework that the statistician can cope with, rather than one
 relevant to the problem.

 I hope that the speaker will bear with me if I do not use his terminology of deconstruction in my
 discussion. Deconstructionism is a barmy French literary theory of total relativism, whereas here relativism
 is decidedly not the name of the game. Also, deconstructing suggests to me only part of the activity
 required, namely pulling down a wrongly constructed edifice, without the second-and more important
 part-of constructing a better alternative. I prefer the term reformulation to describe both parts.

 Among the interesting collection of examples there are three that raise general points of great interest
 to me. The first is example 6 (data in Table 4), a 2 x 2 x 2 contingency table with one response factor
 and two explanatory factors. Of the two analyses quoted I think that the one using an additive model
 is simply wrong; additive models can give rise to negative fitted values, and hence do not satisfy the
 condition that models should not give impossible fitted values. The additive model also requires an
 interaction term, which the multiplicative model does not, and thus it fails the parsimony test. Here
 I assert that one model is wrong and one is right. What we are talking about here is the analysis phase,
 where the statistician's skills are most valuable. However, beyond that lies what I call the prediction
 phase, where we use the fitted values from a good model, together with their information matrix, to
 form quantities of interest and measures of their uncertainty. It is in formulating the quantities of interest
 that the aims of the experimenter become paramount, though the statistician may still have a part to
 play in clarifying the questions involved. The processes of analysis and prediction are to a large extent
 independent, save only that analysis comes first and prediction second. The literature is full of instances
 where the quantity of interest is formed first and then analysed (the use of signal-to-noise measures
 in quality improvement experiments is a good example: see Nair (1992)); this nearly always leads to
 trouble.

 Example 5 (Simpson's paradox) illustrates the same point. The paradoxical inequalities are not severe
 here, but when they are this is always a sign that an interaction term is required in the model at the
 analysis stage, i.e. that the margins are not an adequate summary of the interior of the table. The question
 of weighting belongs to the prediction phase, and to the quantities of interest. We may want to give
 equal weights, or weights based on census data etc. The choice has nothing to do with finding a
 parsimonious model for the data at the analysis stage, but everything to do with answering the
 experimenter's questions (see Lane and Nelder (1982)).

 Example 8 is rather different from the rest, for here it is statisticians who have built the edifice that
 needs to be torn down and rebuilt. Every day hundreds, maybe thousands, of experimenters are faced
 with the sort of output in Table 6, which is alleged to help them to make inferences from linear models.

 For severely non-orthogonal data I assert that this output is almost useless. Type III and type IV
 sums of squares are based on confusions which I have described elsewhere (Nelder, 1977, 1982, 1993);
 type II sums of squares, A eliminating B and B eliminating A, can both be small when both A and
 B have effects, and a single type I analysis is quite inadequate to discover what is going on. Reformulation
 is urgently required, because I believe that the existence of this sort of output constitutes a statistical
 scandal. We should put our own house in order.

 Finally I should like to give a brief reminiscence (relevant I hope). My introduction to medical statistics
 came via a doctor who posed the question 'how do I fit a skew distribution to my data, truncated at
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 TABLE 6

 AMONG SUBJECTS (WHOLE PLOT) IS UNBALANCED

 GENERAL LINEAR MODELS PROCEDURE

 DEPENDENT VARIABLE: RESPONSE

 MEAN

 SOURCE DF SUM OF SQUARES SQUARE F VALUE PR>F R-SQUARE C.V.

 MODEL 22 1107.68560606 50.3493473 22.01 0.0001 0.958432 15.4769
 ERROR 21 48.04166667 2.28769841 ROOT MSE RESPONSE
 CORRECTED 43 1155.72727273 1.51251394 MEAN
 TOTAL 9.77272727

 SOURCE DF TYPE 1 SS F VALUE PR>F DF TYPE 11 SS F VALUE PR>F

 A 1 24.81893939 10.85 0.0035 1 30.00000000 13.11 0.0016

 B 1 27.07500000 11.84 0.0025 1 27.07500000 11.84 0.0025
 A*B 1 45.37500000 19.83 0.0002 1 45.37500000 19.83 0.0002

 SUBJ(A*B) 7 56.45833333 3.53 0.0116 7 56.45833333 3.53 0.0116
 C 3 921.54545455 134.28 0.0001 3 921.54545455 134.28 0.0001
 A*C 3 6.66287879 0.97 0.4251 3 8.09629630 1.18 0.3413

 B*C 3 15.92129630 2.32 0.1046 3 15.92129630 2.32 0.1046
 A*B*C 3 9.82870370 1.43 0.2616 3 9.82870370 1.43 0.2616

 SOURCE DF TYPE 111 SS F VALUE PR>F DF TYPE IV SS F VALUE PR>F

 A 1 23.81332599 10.41 0.0041 1 35.68870656 15.60 0.0007
 B 1 21.22477974 9.28 0.0062 2 34.18935006 14.94 0.0009
 A*B 1 45.37500000 19.83 0.0002 1 45.37500000 19.83 0.0002
 SUBJ(A*B) 7 56.45833333 3.53 0.0116 7 56.45833333 3.53 0.0116
 C 3 907.12500000 132.17 0.0001 3 907.12500000 132.17 0.0001
 A*C 3 6.34722222 0.92 0.4460 3 6.34722222 0.92 0.4460
 B*C 3 13.27314815 1.93 0.1550 3 13.27314815 1.93 0.1550
 A*B*C 3 9.82870370 1.43 0.2616 3 9.82870370 1.43 0.2616

 TESTS OF HYPOTHESES USING THE TYPE 1 MS FOR SUBJ(A*B) AS AN ERROR TERM
 SOURCE DF TYPE 1 SS F VALUE PR>F

 A 1 24.81893939 3.08 0.1228
 B 1 27.07500000 3.36 0.1096

 A*B 1 45.37500000 5.63 0.0495

 both ends?'. Me: why is it truncated? Doctor: because those people are abnormal. Me (distrusting the
 idea of abnormality): put them back and try taking logarithms. The distribution then looked symmetrical,
 so we tried a normal plot. It was straight right out to both ends (so much for abnormality). Summary:
 logy is normally distributed with mean m and variance s2. However, beware! Not all experimenters
 like simplicity, believing, I suppose, that complexity is more respectable. What this says about their
 scientific training I am not sure.

 I am most grateful to the speaker for delving into reformulation in so many areas, and for his analysis
 of the processes involved. I have great pleasure in proposing the vote of thanks.

 Tony Greenfield (Little Hucklow): David Hand has identified the important problem of translating
 the research question into the statistical question. The first part of this problem is to discover what
 the researcher really wants to know. He described this as the tough part of the problem. Extreme care,
 he tells us, is needed in formulating research questions.

 Extreme care is not enough. There are differences in language, in knowledge, and in perception of
 a subject being studied, between the scientific researcher who is the client and the consultant statistician.
 Even more important, but often not appreciated, there are differences in understanding of each other's
 interests and abilities.

 My own consulting experience has presented difficulties of several types.
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 No research hypothesis
 The researcher proceeds to collect as much data as possible and asks 'Let's see whether it tells us

 anything'. His perception of the statistician is that he can make sense of any data provided that there
 is plenty of it. An example was provided by a hospital registrar who, over several years, collected about
 100 items of information on each of about 10000 kidney patients just with the hope that it might prove
 useful.

 Many hypotheses implied
 A group of researchers aim to answer all possible questions in one great all-embracing trial. An example

 was a multicentre study of cot deaths in which about 1800 variables were recorded on each of about
 1000 deaths and about 1000 controls. The study was not designed according to published research
 hypotheses. Hypotheses were not stated except implicitly by the questions on the data collection forms
 which were designed by groups of people sitting round a table and plucking ideas out of the air. The
 researchers assumed that each question could be analysed separately by cross-tabulation and associations
 tested by 'standard statistical methods'. This study was a great waste of public funds.

 Statistician is client's servant
 In some cases the researcher believes that he knows enough about statistics to be able to prescribe

 the appropriate analysis. He tells you that he wants a t- (or x2-) test, or a straight line fitting. He may
 even think about the statistics before he starts his trial and ask for a power calculation. 'But I'm asking
 for only a few minutes of your time', he will plead. Then, when you question his approach and start
 probing deeply, he will wonder whether he has asked the right person. 'You are a statistician?', he might
 ask.

 All these situations support the oft-repeated entreaty: 'Consult a statistician before you design your
 study'. If you can persuade your client to do this you are on track but you will lose track by launching
 straight into the question 'What is the problem?' because the way that he answers this will depend on
 his perception of your subject. He may feel that he cannot describe some aspects of his research because
 they would be beyond your understanding.

 The solution is to be honestly ignorant, openly naive and eager to learn from your client, to be able
 to see the situation from his viewpoint. You need to ask him what it is about and encourage him to
 explain the underlying chemistry, engineering or physiology. You should ask what knowledge exists
 and what research hypotheses have already been formulated and tested by experiment.

 A suggestion that I have fruitfully made on several occasions is for the client to draft his final report
 before he even drafts the protocol of the research to be done, encouraging him to include tables and
 graphs of data that he expects the study to generate. Only then might he appreciate the importance
 of writing a protocol, including a statistical protocol, for his research.

 Douglas Altman, in a recent personal letter, wrote:

 'In my experience, protocols are rarely produced in medical research except when designing clinical
 trials or when applying for a grant. In other words, most medical research is done without protocols.
 This has clearly been the case when one has had to spend half an hour or more trying to extract from
 a researcher what he thought his study was all about.'

 The same may be said for any other field of study. But if, through education, example, and discussion,
 using the methods I propose, the clients can be persuaded to write detailed protocols, then we shall
 have begun to tackle the problem posed by David Hand.

 Another suggestion which I sometimes offer to clients is to simulate a study before it is done. This
 is easy with an experimental design program, such as DEX, which can be used to record a researcher's
 expectations and to demonstrate the range of models that might be fitted to his data.

 Another problem relates to the researcher's perception of the statistician. This is his fear that the
 statistician will make difficulties by being too complicated. He will ask you: 'Please keep it simple.
 I just want to test one variable at a time'. This attitude is difficult to overcome but it must be faced
 when a multivariate analysis is clearly needed. A few simple examples ready to hand will help. The
 following usually impresses.

 In the blood there is a clotting factor VIII-C and Fig. 1 shows the values for two sets of people.
 The lower line shows values for some women who are known to be carriers of haemophilia and the
 upper shows values for some women who are known to be normal. Although the averages of the two
 sets of values may be different, there is much overlap.
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 Fig. 1. Dot diagrams for clotting factor VIII-C values for two sets of people: haemophilia carriers and normals
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 Fig. 2. Dot diagrams for clotting factor VIII-RA values for two sets of people: haemophilia carriers and normals
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 Fig. 3. Bivariate plot of the values shown in Figs 1 and 2, with a discriminant line almost completely separating
 the two sets of values: A , carriers; 0, non-carriers

 The fact that a statistical test may show that the averages are different is no consolation whatever
 to the poor woman who wants to know whether or not she is a carrier and her value of factor VIII-C
 is somewhere in the middle of the total spread.

 Fig. 2 shows the values of factor VIII-RA for the same two sets of people. There is even more overlap
 than with factor VIII-C: so much that the clinician might argue that there is no value whatever in
 considering this extra measurement. However, if we plot the two values together on a single graph,
 factor VIII-RA against factor VIII-C, a new picture emerges as in Fig. 3. The overlap has almost
 disappeared and a good diagnostic rule can be found by using two variables that tested individually
 might have been discarded as useless.

 David Hand's paper has opened an important debate and I have pleasure in seconding the vote of
 thanks.

 The vote of thanks was passed by acclamation.

 Hans J. Lenz (Free University of Berlin). Presenting a few examples and theorems we vote for sound
 models, clear hypotheses and carefully checked data. This view was originated by Morgenstern (1963).
 Its revival is due to David Hand.

 Firstly, consider the theory of linear aggregated consumption (see Prais and Houthakker (1955)).

 Let y, be the consumption, x5 the personal income of household s= 1, 2, . . ., N and the consumption
 model be given by y, = a + b log x,. Aitchinson and Brown (1957) assumed log x5 - N(ut, a2) for all
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 s=1, 2, . . ., N. Let y-=EN y, Then Y=Na+bNlogu* where it*=NVNI x, However, the
 geometric mean * = exp2 log t - log(2+2)/21 is linked in an unpleasant way to the parameters of
 N(ut, (2) because model specification and aggregation are not compatible.

 It is interesting to ask when a linear aggregation is perfect, i.e. when a homomorphism exists given
 a model (A; y, x), a transformation T: H -J and a statistic S: WF -+; see Fisher (1962),
 Schneeweiss (1965) and Sondermann (1973). Dropping any latent errors in the equations we have y = Ax
 as a micro model, X = Tx as a linear aggregation, Y = BX as a macro model and 9 = SY as the predictor.
 Then 9=y X 9=SBT or B=S+AT+ where S+ and T+ are Moore-Penrose inverses of S and T.

 Secondly, marginalization in multiway tables must be carefully used. Let f represent the frequency

 of professors in the individual faculties of a given university. Assume f = (fJ , f2) = (20, 20). Note that
 the total number is 39. A theorem exists that says that f cannot be summarized if the underlying
 relationship faculty professor is m:n. I believe that there are many artificial intelligence specialists
 who propagate a fuzzy set approach to the data (20, 20, 39)!

 Thirdly, counter-intuitive effects can be generated by temporal aggregation. Consider a microtime

 T= {O, ? 1, ? 2, ... JE Z with granularity 1 and a macrotime T* = to , ? bt, ? 26t, . .. I with granularity
 btE_A( Let bt -X 00. Then H-* oo where H is an upper bound of the maximum lag HE Z in a distributed
 lag model (Schonfeld, 1979; Werner, 1982).

 Tiao (1972) has proven that the first differences of the monthly averages follow an MA(1) process
 independently of the number m of subperiods used for temporal aggregation if the generating process
 is a simple random walk. Kirchgassner and Wolters (1992) confirmed this empirically for m = 2. Christiano
 and Eichenbaum (1987) have shown that, when averaging a continuous ARMA(p, q) process with q <p,
 the macrotime generation process is ARMA(p, p).

 Finally, Lutkepohl (1987) proved further theorems on the reproduction of vector autoregressive
 processes if specific vector stochastic processes are linearly aggregated.

 Chris Chatfield (University of Bath): I welcome this paper which tackles a topic of special interest
 to me. Most of the statistical literature is directed towards techniques rather than strategy but it is the
 latter which is much more difficult to learn and to give general guidance on. For example, it is easy
 to do regression, but much more difficult to know when regression is appropriate and which model to use.

 But although I liked the paper, I have to say that I do not like the title. Deconstruct is not a word
 which appears in my dictionary (although I suppose that, like Humpty Dumpty, we can define a word
 to mean anything we want it to, and it does see controversial use in the study of English language).
 The trouble is that the word sounds rather negative. I agree that we sometimes need to strip a problem
 down to its component parts, but we then need to put it back together, and I think that problem
 formulation should primarily be a positive, constructive exercise. Thus I would prefer to talk about
 'formulating statistical questions' as the author himself does in Sections 5 and 6.

 The paper gives some thought-provoking examples (Section 4) and a useful start at establishing general
 principles (Section 5). However, the process can never be made fully objective and will continue to depend
 largely on experience.

 The main points that I would add are as follows.

 (a) Be prepared to ask many probing questions to ensure that sufficient background knowledge is
 available and to make sure that the correct objectives have been specified (see Chatfield (1988),
 chapters 3 and 10).

 (b) Always ask to see any data that have been collected. This is especially important in dealing with
 the 'scientist who knows what he wants' (see example 1 in Chatfield (1991)).

 (c) Avoid answering questions over the telephone, as I have found this a recipe for disaster. In particular
 you cannot see the data when talking on the telephone.

 What are the implications of this paper for teaching? Students are usually required to answer
 prespecified, unambiguous clear questions, which, as noted by the author, skips the most difficult stage
 of real life problems. I have sometimes tried setting questions to more advanced students which are
 deliberately incomplete or even partially wrong. Although this is rather unkind in some ways, the students
 learn fast that they must ask questions and should not take things for granted!

 Donald A. Preece (University of Kent, Canterbury): Professor Hand speaks of the questions that
 the researcher wishes to consider. These are often three in number:
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 (a) how do I obtain a statistically significant result?;
 (b) how do I get my paper published?;
 (c) when will I be promoted?

 So Professor Hand's suggestions must be supplemented by a recognition of the corruptibility and
 corruption of the scientific research process. Nor can we overlook the constraints imposed by inevitable
 limitation of resources. Needing further financial support, many researchers ask merely 'How do I get
 results?', meaning by 'results', not answers to questions, but things that are publishable in glossy reports.

 Where do statisticians come into this?: perhaps nowhere. Quite recently, a research council decided
 that its statisticians were 'service staff'-which indeed they were, as servants of colleagues and of
 science-but 'service' as opposed to 'scientific'. Anybody who knew which way up to hold a test-tube
 was a scientist; but a statistician-that incomprehensible mathematician and computer wallah-was not,
 and so could offer nothing to research planning. Alas, Professor Hand lends credence to this with his
 false dichotomies between 'researchers and statisticians' (Section 1, eighth paragraph) and between
 'scientific and statistical questions' (Section 8, first paragraph). This tends to confirm the statistician
 as a mere outside consultant whom people perhaps cannot afford until they are in a mess, by which
 time a statistician is needed to paint respectability over defective work. No, as Box (1993) stated, 'the
 statistician must strive to earn the title of first class scientist'. Nowadays, a statistician who did this
 might be considered by other scientists to be too uppity to be tolerable as a colleague, but we must
 work on it....

 In practice, who is 'the client'? Usually, the client is not an individual, but a team, committee or
 board, whose different members have different aims and questions. Any statistician involved should
 be expert in the meaning and achieving of compromise, and in recognizing which aims will not be met,
 which questions not answered, by any particular compromise.

 Professor Hand sometimes implies that a client has just one question, notwithstanding R. A. Fisher's
 famous suggestion that 'Nature ... will best respond to a logical and carefully thought out questionnaire'
 (Fisher (1926), discussed by Preece (1990)). Questions range from the general ('What is going on here?')
 to the specific. I would have been happier had the paper included linguistic and philosophical scrutiny
 of the concept of a 'question'.

 Clifford E. Lunneborg (The Open University, Milton Keynes): Professor Hand is to be commended
 for directing our attention to the relative ease with which statisticians' answers may fail to engage
 researchers' questions-or, the questions researchers ought to ask. I offer the following example to
 suggest that we also can be led astray when the researcher has done something so intelligent that we
 forget to ask 'Why did you do that?'.

 Pursuing my interest in bootstrap inference I found in Sprent's revised nonparametric text (Sprent,
 1993) an excellent introduction to the bootstrap, supported by this example. A researcher confronted
 with the data 0 6 7 8 9 11 13 15 19 40 computes a 10Wo trimmed mean as a location estimator, removing
 the 0 and 40 before averaging. Sprent illustrates drawing bootstrap resamples from these data and studies
 the distribution of 1007o trimmed means computed from 100 such resamples. He reports considerable
 skewness in that distribution and a variance not much reduced from the bootstrap variance for the
 untrimmed mean and concludes that, for the example, 'bootstrap estimation undoes some of the
 robustness that one attempts to build in by trimming'.

 What went wrong? Sprent notes that the asymmetry and high variance of the bootstrap distribution
 is due to the fact that in a certain proportion of the resamples two or more 40s will be present, only
 one of which will be trimmed before computing a mean. Better bootstrap estimates (of bias and standard
 error) would result, he notes, if 20Wo trimmed means had been computed. The researcher, though,
 apparently chose to compute a 10Wo trimmed mean.

 An important insight to the choice of estimator and, I believe, to how inference might better be pursued
 is given by Sprent's comment: 'inspection of the original sample suggests that the prime reason for
 using the trimmed mean is to downweigh the observation 40'. If this is true-and asking 'Why?' would
 be desirable here-it would mean that the researcher was not committed to computing a 10% trimmed
 mean. That estimator was chosen precisely because there was a single 40. Had there been no 40 (or
 similarly 'large' value) an untrimmed mean would have been computed and had there been two such
 large values a 20% trimmed mean might have been used. Were the researcher known to be following
 such an adaptive strategy in computing an estimate, then any inference drawn about the accuracy of
 the estimate should take that strategy into account. If the inference is resampling based then the strategy
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 TABLE 7

 Fuel efficiencies of two types of car

 Researcher Efficiencies for type 1 Efficiencies for type 2

 Car I Car 2 Geometric Car I Car 2 Geometric
 mean mean

 English (miles per gallon) 1 4 2 2 2 2
 French (gallons per mile) 1 0.25 0.5 0.5 0.5 0.5

 should be applied to the resamples and not simply the calculation of the particular statistic derived from
 the original sample, no matter how appropriate that statistic for the original sample.

 M. C. Jones (The Open University, Milton Keynes): On example 3, first, the example about miles
 per gallon and gallons per mile, what is needed is an 'average' that commutes with the reciprocal
 transform. The geometric mean will do the trick (or equivalently averaging the logarithms). Table 7
 is a new version of Table 2 based on the geometric mean. Here the English and French 'averages' are
 the reciprocals of one another as desired. And so, in the interests of European unity, both French and
 English come to the same conclusion. (And that conclusion happens to be that the two car types are
 the same.)

 Here is a closely related point. There is a passage in Section 4.1 of the paper which talks about
 measurement scale influencing choice of method. In relation to ordinal scales, it says that nonparametric
 test people switch from means to medians. Certain words, 'unfortunately' and 'at the cost', perhaps
 inadvertently, make this sound like a cheat when, as David said, it is surely the right thing to do, since
 medians are invariant to monotone transformation, means are not. I say, good for the nonparametric
 testers: do not worry about changing from the badly formulated hypothesis that is the one concerning
 means. The problem in all this contribution so far, of course, is that people jump to arithmetic means
 which are tied up with linearity, additivity, normality, etc. -when they really mean 'location' or 'typicality'
 in some general sense.

 On example 6, next, the example to do with comparing probabilities, Professor Nelder has already
 explained why looking at differences is just not right. Ratios are better, but I am worried about multiplying
 probabilities too. Take 1 minus all the probabilities in the table and the ratios become 0.71 and 0.90
 (which may or may not give different indications). The problem is tied up with looking at, say, the
 bottom row of Table 5 (thus conditioning on 'intimacy' people only), and claiming that depression is
 11 times more likely for 'event' people than for 'no event'. Take 1 minus things. Then depression with
 'no event' is only '1.11 times as unlikely' as with 'event'. As my colleague Fergus Daly made me aware
 some time ago, odds are fine in this regard. The two odds ratios turn out to be 13.8 and 12.2, and,
 if we considered proportions without depression instead, we would have their reciprocals.

 Finally, I thank David for a very interesting and enlightening paper, and I say that not just because
 his office is next-door-but-one to mine!

 John Gower (Wheathampstead): It is high time that the Society discussed some of the issues underlying
 statistical consultation and I therefore welcome this paper. The precise meaning of deconstruction in
 the statistical context is elusive; it seems to mean that one should look closely at the assumptions of
 model, design and hypotheses that underlie statistical analyses and view these in the light of what questions,
 if such are discernible, the researcher is asking. These are, of course, fundamental issues but the only
 deconstruction process that I see is for the consultant to ask some questions of his own. One of a
 consultant's most useful contributions is to know what questions to ask and Professor Hand's paper
 helps here, though I do not discern any really general principles in Section 6; more, useful pointers.

 An area I would highlight is the choice of model. Only the scientist himself can specify, perhaps with
 some encouragement, substantive models; most competent scientists can specify several plausible models.
 On statistical grounds alone it is very difficult to distinguish between models with the amount of data
 collected or which can be afforded. Although fascinating to statisticians, random variables which merely
 model noise or deficiencies of measurement are tiresome to researchers, who often misunderstand the
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 role of statistical descriptive models and may dismiss those that obviously do not model any familiar
 scientific process.

 The crucial problem is the interaction between scientist and statistician. Each has much to learn from
 the other. A statistician cannot advise properly unless he knows something (the more the better) of
 the substantive science and, for this reason, fruitful statistical collaboration should be a continuing process
 over many years (Gower and Payne (1987) report an example of the benefits of long-standing
 collaboration). Whether or not this implies that statisticians should be educated within a specified
 application area, as happens in the USA, for example with medical statisticians and psychometricians,
 is an interesting question. It produces statisticians with a good understanding of their application areas
 but it tends to be divisive in producing parallel terminologies and duplication of methodological
 developments which can be a source of confusion to others. If statistics is to be regarded as a discipline,
 one of its strengths is its set of common principles, a thorough understanding of which is required to
 sort out the examples listed in Section 3 of Professor Hand's paper and which inform the asking of
 appropriate questions.

 Richard A. Stone (City University, London): I commend this investigation of how the formulation
 of a research question relates to the application of statistical techniques.

 There are implications for the nature of the interaction between statisticians and scientists. Let us
 view the most common situation, the scientist as a client committing valuable resources to consult an
 expert statistician, from the scientist's perspective. If the statistician is good he will question the basis
 of the research objectives and risk being seen as a pompous 'keeper of the true scientific method'. How
 many scientists are game to come back for more of this?

 The solution is for statisticians to be colleagues of scientists, performing defined roles in research
 teams. After all, much of scientific or engineering research is already interdisciplinary. The other team
 members should know enough statistics to understand the methods that are being applied, but need
 not be statistically creative. This is an ideal which would be shared by many, but there is another
 requirement that is rarely considered.

 This is for the managers of research, the people to whom teams report, to have sufficient statistical
 training to enable them to understand and be critical of the application of statistical methods and to
 give them an appreciation of the metastatistics in asking the right research questions. Without this
 statistical pull from managers, there is usually little incentive for a research team leader to include a
 statistician.

 In summary, if it is important for practising scientists and engineers to have a good training in statistics,
 it is that much more important for managers to be statistically literate and able to question deeply in
 the spirit of this paper.

 The author's deconstruction of the comparison of two treatments A and B sits within a broader
 framework. A measure of the difference between the two potential responses for a subject (such as
 ZA-ZB) may be viewed as the most fundamental sort of causal effect. Statisticians are generally
 comfortable with the notion that randomized experiments allow causation to be tested or estimated,
 but their analyses almost always concern the expectation of unit-level causal effects (such as
 - (ZA-ZB)) without recognizing the loss of generality.

 The most general sort of causal effect which can be tested or estimated is some measure of the difference
 between the distribution of ZA and the distribution of ZB, which may be termed a distribution causal
 effect (Stone, 1993). Hand notes that the distribution causal effect Pr(XA> YB) which underlies the
 Wilcoxon test is not the same as the 'desired' quantity Pr(ZA> ZB), but there is an analogous limitation
 with expected differences-the measure _i69(ZA - ZB) can be 0 even though unit-level causal effects exist.

 M. C. Fessey (Newport): I do not know what sampling fraction justifies Professor Hand's opening
 assertions that much statistical analysis is misdirected and that many statisticians pursue mathematically
 misleading solutions to problems. But I have an intuitive sympathy with his view that developing strategies
 for asking the right questions should have precedence over inventing mathematical tools to solve them.

 Do Professor Hand's strictures apply also to what macroeconomic statisticians do? Do many of them
 often ask the wrong question or formulate the right question wrongly or apply inappropriate tools to
 answer it?

 Even more than the scientific examples Professor Hand adduces, economists' questions are a reflection
 of fashion rather than derivatives of the application of the kind of strategies that he outlines: Keynes
 in the seventies; Friedmann in the eighties.
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 In economics, errors in questions or the absence of strategies or the choice of inappropriate tools
 may have less effect than factors which play no part in Professor Hand's exposition. For example
 economists do not design experiments badly; their questions are about the world as it exists.

 And what contributes to the poor reputation that economic scribblers enjoy is that the information
 the world provides is rarely the information that strategies require. Value added is the true measure
 of national activity. But in most cases we have yet to discover how to measure value added. So, instead,
 measure production. But often we cannot measure production. Instead, deliveries?: but these are often
 not available. We make do with sales.

 Then too a guess at value added must pay regard to stocks; I am not sure that we have ever considered
 from first principles how to measure the value-added component of stocks. But that aside, we have
 to make what sense we can of what we know of the conventions of first in-first out and last in-first
 out and so on. And after all that we have estimates of value added in producing goods and services
 at current prices-terms which trip off the tongue but whose meaning varies. No wonder that after
 Moser's rule that any interesting figure is probably a mistake comes a second precept: no two sets of
 figures ever agree.

 But, to return to deconstructing economic questions, the last time thought was given to what questions
 are relevant to the broad field of economic analysis was 30 or so years ago when financial statistics
 burgeoned at the turn of the 1960s in response in this country to the Radcliffe report on the working
 of the monetary system. Perhaps the time is ripe for a search for a strategy for linking macroeconomic
 questions as well as scientific questions to the statistical questions designed to answer them.

 S. J. W. Evans (London Hospital Medical College): I want to thank Professor Hand for a paper
 which is as excellent as its title is terrible! I have been teaching a very short course in statistical consulting
 for the Master of Science in medical statistics at the London School of Hygiene and Tropical Medicine
 for a few years, following my experience of running a statistical 'clinic' for doctors and medical researchers
 at the Royal London Hospital for 15 years.

 A non-statistical aspect of such consulting is the skill of listening to the 'patients' (i.e. the doctors-
 we reverse roles in my clinics!) and asking the right questions. At the design stage these concentrate
 on what they really want to find out: at the analysis stage on exactly what they have done. I have found
 the set of questions by Mainland (1964) to be a useful framework.

 A major problem is that the types of personality for whom mathematical statistics has appeal are
 frequently those for whom communication skills have little appeal.

 Rather than requiring that all statisticians are capable of exercising all skills it seems that what happens,
 both in practice and what should happen, is that there must be a spectrum of statisticians from the
 very mathematical to those for whom answering scientific questions is of the greatest importance. They
 will need training in science and in communication skills. As noted elsewhere (Evans, 1991) medical
 statisticians in our department are encouraged to visit laboratories, to look down microscopes, to visit
 out-patient clinics and to attend ward rounds in hospital.

 In addition they will have to be taught some of the skills of a counsellor in being able to put a client
 at ease. These questions are not always welcomed especially when the investigator is fearful or wishes
 to impose a merely technical role on a statistician.

 There are a variety of issues in deciding what is the best method of analysis to answer a particular
 question, and frequently the vital component is to decide on what scale it is that the question has greatest
 clinical or practical relevance. Some of Professor Hand's problems will be solved by Martin Bland's
 adage, 'take logarithms and do a t-test', which is said to be what all statistical consultancy is about!

 Toby Lewis (University of East Anglia, Norwich): Professor Hand's important paper raises
 fundamental issues which have resonances outside the various contexts treated in the paper. I suggest
 that his thesis applies directly to a vitally important field, that of assessment-examining, testing and
 performance evaluation in its many manifestations. This is essentially a statistical activity, because it
 is estimating something-skill, knowledge, understanding, performance.

 Professor Hand raises the central issues 'What question do people really want to ask?' and 'what
 question should they want to ask?'. He says in his paper (Section 1; my italics):

 'The aim of this paper is to stimulate debate about the need to formulate research questions sufficiently
 precisely that they may be unambiguously and correctly matched with statistical techniques'.

 If we substitute for the italicized words 'research' and 'statistical', Hand's remarks apply directly to
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 the need to formulate performance evaluation questions with precision and to match them unambiguously
 and correctly with assessment techniques.

 In Section 2, he writes (my italics):

 '. . . I am concerned with identifying ... what it is the researcher wants to know-an aspect of statistics
 which precedes the choice and application of techniques . . .'.

 Again, substituting for the general words 'researcher' and 'statistics' we have a statement of the importance
 of identifying what the performance evaluator wants to know, an aspect of assessment which precedes,
 or rather ought to precede, the choice of techniques.

 All over the world, all the time, millions of people are being examined and assessed and are taking
 tests, while others are preparing and administering those tests. The cost and effort are vast-but is all
 of this assessment essential? Has it been thought out? Where needed, is it being done in the most effective
 way? To what extent has the activity become just a habit?

 Hand's far reaching thesis is of direct application to these issues. May one hope that he will give
 us his thoughts on this, perhaps in the form of another discussion paper before long?

 The following contributions were received in writing after the meeting.

 A. S. C. Ehrenberg (South Bank Business School, London): David Hand rightly asks us to think
 about our statistical problems. But if this is 'deconstruction', then I have been talking prose most of
 my life.

 More seriously, I cannot agree with Professor Hand's view that the choice of what question to answer
 'depends on what the investigator wishes to know'. Investigators cannot decide to ignore potentially
 major factors because 'they do not wish to know'.

 To illustrate with his first example in Section 3.1, this was about a two-group clinical trial of

 (a) a radiotherapy treatment versus
 (b) the radiotherapy preceded for 30 days by a sensitizing drug.

 Hand notes two possible experimental designs. In the pragmatic design the radiotherapy-only treatment
 starts when the 30-day sensitizing drug starts in the second group: this could not tell us how far any
 apparent effect is due to the drug as such or to the 30-day delay. In the explanatory design the
 radiotherapy-only treatment starts 30 days later, i.e. as for the group who also have the sensitizing drug:
 this would evaluate the sensitizing drug but we would learn nothing about the 30-day delay.

 But is it merely up to the analyst or researcher to decide subjectively which design to use and hence
 what conclusions to draw? An alternative is to use both designs and to cover all the main factors in
 the situation. Or can we not deconstruct the problem a little more and run a three-group trial? Average
 subsample sizes need only be reduced by 3 (and, since Student's t-test, classical statistics has let us deal
 with very small samples!).

 A further worry is the apparent absence of prior knowledge. What sort of investigator is it who does
 not already know beforehand roughly what effect (if any) a 30-day delay in such a radiotherapy treatment
 would (or would not) tend to have? And surely no potentially successful treatment is evaluated and/or
 approved on the basis of just one clinical trial?

 David J. Finney (Edinburgh): This paper should encourage all who teach statistics, or who are ever
 consulted on statistical matters, to think critically about the fundamentals of being a statistician. We
 have been taught, and have taught others, much about the mechanics of analytical techniques; rarely
 has there been sufficient emphasis on the strategy of choosing a technique appropriate to a particular
 problem. Computer software sometimes aggravates the evils to which Professor Hand draws attention
 by implying that its user need do no more than to feed data into his personal computer to receive answers
 to possibly inexactly specified questions and even to be provided with output in good shape for publication.

 Even the present paper could seem to support the belief that the most important task for a statistician
 is to report results of tests of significance: this idea is welcome to editors as enabling authors to state
 conclusions in very few words, often without statement of mean values or parameter estimates! Medical
 journals today often convey the impression that in clinical research the only relevant question is 'Did
 the treatment have a significant effect?'. My own special interest in biological assay can illustrate the
 need for strategic balance. Typically, for two materials S and T, there is reason to adopt a model stating
 that an experimental dose z of T will behave exactly as does a dose pz of S, irrespective of the magnitude
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 of z or of the details of the experiment. The object of an experiment is to estimate p as precisely as
 possible; a significance test on the adequacy of the underlying model may be vitally important. Much
 is known about experimental designs and the choice of responses to be measured for achieving test power
 and precise estimation: pharmacologist and statistician must collaborate in balancing the two.

 Professor Hand makes a valuable distinction between 'multiple univariate' and 'intrinsically
 multivariate'. This deserves further comment: many sets of data, whether from experiments or from
 surveys, are essentially multivariate in the information recorded yet an analysis that produces a principal
 component or other composite index may fail to illuminate important questions concerning one or more
 variates separately. If all users of statistics followed the practice of chemists in their care for terminology,
 ambiguities might be reduced; I observe an increasingly sloppy practice of regarding 'slope' as a synonym
 for 'linear regression coefficient', and even 'odds' for 'probability'.

 A. M. Herzberg (Queen's University, Kingston): Professor Hand must be congratulated for his
 contribution to a discussion of an important topic. He gives. it a name, i.e. deconstructing statistical
 questions. Will this word 'deconstructing' soon be in every statistician's vocabulary? Will statisticians
 become known to the general public as 'deconstructistics'? Will this make us better off at parties than
 Sir Claus Moser's unpopular statistician (Moser, 1980)?

 More seriously, perhaps, Professor Hand's paper is related to the issue of statisticians learning about
 other disciplines. Do we not need more people like Sir Ronald Fisher and Sir Harold Jeffreys who made
 use of statistical inference in their work in the natural sciences and found the link a two-way street.
 Perhaps we also need to educate and train 'scientific generalists', a term coined by Bode et al. (1949).
 A summary of their paper might be considered to be

 'Recapture the universalist spirit of the early natural
 philosophers.

 Learn science and not sciences.
 Know in capsule form the dozen central concepts of each

 of the major sciences.
 Learn in the habits of mind of the chemist, psychologist

 and geologist.
 Use in each science some of the intellectual equipment of

 the other sciences.
 Be exceptional in breadth of appreciation.
 Be able in biological and medical science to suggest

 physical explanations of mathematical models for
 known or conjectured facts.

 Be familiar with forging and milling, the functions of a
 turret lathe . . .'

 (summary quoted from MacLay (1991)).

 P. Lovie (University of Keele) and A. D. Lovie (University of Liverpool): Professor Hand's paper
 must make uncomfortable reading for almost everyone who has been called on to give statistical advice.
 He is right to remind us that research questions are paramount and it is these that must dictate the
 statistical strategy, and not vice versa. A deconstruction approach, such as is suggested, will go a long
 way towards remedying current wrongs in formulating scientific hypotheses, but unambiguous
 identification of the researcher's aims and intentions is likely to be a far trickier, if not impossible,
 task-for neither client, nor even statistician, ever comes 'naked and with nothing' into the negotiations
 which inevitably characterize relations between the two. Researchers invariably bring both implicit, or
 tacit, presuppositions and explicit expectations about the outcome of any investigation, or about what
 statistical analyses might be appropriate. The statistician may have certain preconceptions about the
 sort of problems likely to be encountered in the client's domain or preferences for particular statistical
 approaches. Each will have their own interests to satisfy, which do not necessarily wholly overlap.

 Having argued this far, it is possible to suggest moving in an even more radical direction, although
 without interpreting deconstruction quite so nihilistically as Derrida (see, for example, Hoy (1985)).
 Ethnomethodologists, most notably Garfinkel (1967) (see also Gephart (1988)), have advocated the use
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 of 'breaching' strategies which challenge the unreflected-on realities. The parallel here is that the statistician
 would insist that the client should explicitly justify the choice of variables, measurements, designs,
 outcomes and also give a proper accounting of the background theory including alternative and competing
 points of view. The trick is to develop challenging strategies which involve both sides in a creative and
 constructive negotiation.

 A strongly related issue is the contribution that the statistician might make to the rhetoric of the client's
 case. In other words deconstruction leads to reconstruction where the statistician can assist in reassembling
 the outcomes of the negotiation into the most persuasive form achievable.

 In this bold paper Professor Hand challenges us to rethink the statistician's role in scientific change;
 this debate must surely continue.

 R. J. Mackay and R. W. Oldford (University of Waterloo): We agree that more effort needs to be
 spent on problem formulation and that this is an important part of statistics.

 The impact this has on teaching is significant. Our first course now presents statistics as the methodology
 of empirical problem solving consisting of five broad steps-problem, plan, data, analysis and
 conclusion-each one of which is dependent on the previous steps. Each step has its own focus and
 can be broken down into a number of substeps which must be taken in any application.

 The 'problem' step attempts to deal with many of the issues raised in the present paper. Some useful
 concepts and terms are the units and target population (or process), response and explanatory variates,
 and population attributes of interest. Many of the problems raised in the examples can be discussed
 entirely in these terms. Note that population attributes are defined, often conceptually, by considering
 the behaviour of the response over the target population. These can include means, percentiles and similar
 quantities conditioned on the values of explanatory variates. The fundamental questions of the researcher
 must be translated into questions about these attributes.

 For example, Lord's paradox as presented in Section 3.4 can be described in these terms. The units
 in the target population are undergraduates, the response variate is a person's weight and two of the
 explanatory variates are the person's sex and the time at which they are weighed. If the attribute of
 interest is the average difference in change of weight between males and females, then the first analysis
 proposed is fine and will lead to the conclusion of no difference. If the attribute of interest is the average
 difference in change of weight between males and females of the same initial weight, then a better study
 would be to include only those males and females whose initial weights can be matched with that of
 a member of the opposite sex. Then the noticeable difference would be picked up by either analysis
 method because the initial weight means would be identical for both sexes.

 In some cases, it may be found that the population attributes are fundamentally inestimable. An

 example is the population proportion of times zl - Z2 >0 as discussed in Section 3.2. Conflicts between
 what is desired by the investigator and what is statistically possible must be resolved before proceeding
 to the collection of data.

 There are several ramifications for teaching that follow from this approach. We need to provide students
 with a new vocabulary to discuss issues in each of the steps. A detailed description of context is required
 in all examples so that enough information is available to work through the process. Far less time is
 spent on the 'analysis' step than in a traditional course.

 I. W. Molenaar (University of Groningen): It is a great pleasure to reply to Professor Hand's paper.
 I dislike his destructive neologism 'deconstructing', but I welcome his initiative to focus attention on
 the careful formulation of the right statistical question. Its importance is grossly underestimated, both
 by statisticians and by clients.

 In the Netherlands the generation-testing distinction goes back to Hemelrijk's (1958) paper about
 'statistical detection' and 'statistical proof'. I have expressed my concern in public about pure exploration
 (for data, though it have no tongue, will speak through most miraculous organ) and emphasized
 considering both the research goal and the available prior knowledge before deciding what data to collect
 and how to analyse them (Molenaar, 1988).

 The first example of Section 3.1 has left me confused. I would say that there are three treatments:
 immediate radiotherapy, radiotherapy after waiting 30 days and radiotherapy after 30 days' drug use.
 It may be unethical to apply the second treatment, because a patient in need of radiotherapy will probably
 deteriorate during the waiting period. Measuring the patients' condition at day 0 and 30 would be helpful,
 and when a differential effect for different pretreatment scores is plausible one would consider random
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 assignment to pairs or triples matched on this score. Moreover Hand's D2 design only helps to
 'understand, or explain' if we have reason to believe that there will be a differential effect depending
 on some patient variables and/or some theory about the effects of the drug, and the relevant covariates
 are included in the study. If restriction to homogeneous patient groups is helpful, this may imply that
 future use of the best therapy for more heterogeneous patient groups is not supported by the conclusions
 of the study.

 Example 2 relates to work by Holland (1986) and Rubin (1991) treating the score of the subject on
 the treatment that (s)he did not receive as a missing observation. Many researchers present both the
 t-test and the two-sample Wilcoxon test only for the pure location case (seldom found in practice) of
 a uniform shift. In a medical setting the conclusion 'with A more people improve than with B' could
 be enough to choose A, although fairly often the amount of improvement would also matter. Moreover,
 the study would be more valuable if statistical detection was added to look for subgroups who might
 be better off with B. In an agricultural or industrial setting the 'population' view of Section 5.1 would
 nearly always prevail, because the total gain is what matters.

 At the end of Section 5.5 I was surprised to find only a multivariate analysis of variance, and not
 a combination of all indicators into a univariate scale.

 Peter C. O'Brien (Mayo Clinic, Rochester): The need to tailor study design and data analysis to answer
 the scientific question is, I believe, profoundly important. I provide some further examples which occur
 frequently in medical research.

 One-sided versus two-sided tests
 A common view is that 'the test should be two sided if the investigator would be interested in a difference

 in either direction'. Since investigators are interested in anything that might turn up in their study, this
 principle leads to two-sided tests in most cases. The question which motivated the study should be
 paramount. A one-sided question should translate into a one-sided hypothesis and corresponding test.

 Comparing means
 Professor Hand notes that one treatment giving larger values than another does not necessarily translate

 into a comparison of group means. Another reason why it might not is that the effect of therapy may
 vary among patients. Under these circumstances, the usual two-sample tests may be very insensitive.
 Generalizations which deal with these problems are readily available (O'Brien, 1988).

 Multiple-comparison procedures
 Another example where multiple univariate analyses are appropriate is when a study is conducted

 to test separate hypotheses regarding the pairwise comparison of multiple therapies. Physicians are
 understandably bewildered when told that they are not permitted to ask whether treatments A and B
 differ unless a global analysis-of-variance p-value is less than 0.05. Similarly, the statement that the
 comparison between A and B would have been statistically significant if only the investigator had not
 collected data on any additional treatments violates common sense.

 Definition of end points in clinical trials
 It is generally acknowledged that end points in a well-designed clinical trial should be accurate,

 reproducible, objective and quantitative. However, the overriding concern should be clinical relevance.

 Multiple end points
 How should the data be analysed in a clinical trial when efficacy is measured by multiple patient

 characteristics? As alluded to by Professor Hand, some overall measure is needed. Various methods
 have been proposed (O'Brien, 1984). Comparisons among procedures often focus on power. However,
 in transforming a multivariate observation to a univariate test statistic, the issue of clinical relevance
 is paramount. Should the end points be weighted equally (rank sum approach), according to the precision
 with which they are measured (generalized least squares) or according to which one showed the greatest
 difference between treatment arms (Bonferroni correction)? The answer to these questions will depend
 on the nature of the question which motivated the study.

 Henry Rouanet (Universite Rene Descartes, Paris): I am very pleased to applaud Professor Hand's
 brilliant demolition, since for many years I have been engaged in a similar undertaking. His achievement
 encourages me to throw my own ninth stone after the eight that he has already thrown for us.
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 Example 9: negligibility paradox
 Let us return to comparing two treatments, this time assuming an interval scale, and consider the

 research hypothesis of a negligible effect, stating that the difference 6 of population means, even though
 not exactly null, is sufficiently small to be ignored (in the jargon of pharmacologists, the two drugs
 are 'bioequivalent'). Now suppose that two experiments I and II have been performed, both leading
 to the same observed effect d of very small magnitude, in that not only d but also 2d are deemed to
 be small; suppose further that in experiment I the t-test comes out to be non-significant, with p = 0.50
 (two sided), whereas in experiment II it is just significant at p = 0.05 (two sided). Which of the two
 experiments is more in favour of a negligible effect 6? This situation is paradoxical, because, since the
 null hypothesis 6 = 0 is consistent with I and not with II, we are tempted to say that experiment I is
 more in favour of a negligible effect.

 Let us now recast the research question in Bayesian terms. If E denotes some value deemed to be

 small (such that 2|di < c), for which experiment is the probability P(I6I <ce) greater? A Bayesian analysis,
 assuming a non-informative prior, shows that P(I61 < E) is greater for experiment II; for instance, for
 E=2ld1, we find that P(I61 <E) is about 0.73 for experiment I, and 0.975 for experiment II.

 My point with this negligibility paradox is that, to improve communication between statisticians and
 researchers, 'increasing the precision' of questions may not suffice, and that changing the statistical
 framework, namely, here, shifting from hypothesis testing to Bayesian inference, may constitute a big
 step forwards.

 If researchers find it so difficult to formulate their objectives better, it is also perhaps because they
 are hindered by the 'basic' statistical techniques they have been taught. Specifying a significance level
 in advance, choosing a one-tailed versus a two-tailed test, etc., all such options, far from providing
 the first steps of a genuine statistical strategy, too often behave as traps or dead ends. I look forward
 to learning soon that the deconstruction enterprise is being extended to the teaching of statistics.

 T. M. F. Smith (University of Southampton): I have much sympathy with the position taken by
 Professor Hand. In particular I agree with him that the questions addressed by the formal theory of
 statistics as currently taught are rarely those of direct interest to applied scientists. The p-values that
 we add to data analyses provide only pseudo-respectability; they rarely contribute to scientific discovery.
 However, his suggestion that to address the right questions we should teach within a substantive context
 has only limited appeal. In the past this approach has led to the fragmentation of statistics into
 econometrics, psychometrics, chemometrics, etc. with few obvious benefits. Also we must recognize
 that the main source of trained statisticians has been, and is likely to remain, the mathematical sciences.
 Which substantive context should we adopt when teaching mathematicians? The reality is that most
 mathematics students have only a limited background in any form of science and they lack the motivation
 and time needed to study a different discipline in sufficient depth to be able to ask relevant questions.
 It does take a long time to become a useful statistician!

 What should we teach to mathematical scientists so that they can make a distinctive contribution
 to applied science? The basic concepts are probability, variability, populations and samples. The
 theoretical framework is that of probability and this must be taught thoroughly. Probabilistic thinking
 is part of our scientific heritage and together with applied probability modelling gives a key role for
 the statistician. Variation and sampling follow naturally and lead to issues of design. Professor Hand
 rightly accents the impact of the computer on the teaching of inference. We need no longer be constrained
 by analytical convenience. Sampling distributions can be simulated from complex and realistic processes,
 from sequences rather than cross-sections. We should follow Deming and adopt a systems approach.

 My final comment is about errors of the third kind. In the life and social sciences most theories are
 descriptive. Prediction limits based on empirical models have limited value, and the disaggregation effects
 highlighted by the paradoxes of Simpson and Lord make interpretation hazardous. Perhaps we should
 follow the engineers and multiply our model-based results by misspecification factors so that our statistical
 edifices remain in place for a longer time. Studies to evaluate these factors would be a useful contribution
 of statistics to applied science.

 John Tukey (Princeton University): My reaction to Professor Hand's very interesting paper is very
 strong, yet to some it will be paradoxical. I agree most heartily with the direction and emphasis of Hand's
 main thrust-we do need to go back into the client's motivation and into the formulation of his
 questions-yet I disagree, almost equally heartily, with many of the ways in which he proposes to
 supplement this important process.
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 I would not, for example, try to dragoon a climatologist into giving up a comparison of the mean
 temperatures of London and Paris from 1500 to 1550 because the temperatures concerned were not
 measured on precisely an interval scale (as they could not be at those dates). The scale involved was
 sufficiently well determined to make the use of the arithmetic mean quite palatable, with deviations
 from one kind of mercury-in-glass thermometer to another almost certainly smaller in magnitude than
 the other ills that plague long-term weather records. The data analyst's role should be to help the client,
 not to coerce either client or data unnecessarily.

 In the last paragraph of the third page, Hand says

 'Model fitting involves optimizing some criterion. Some criteria have attractive theoretical properties,
 but all too often the criterion is adopted by default with no thought being given to its suitability to
 the problem at hand. Modern computer power, however, has opened up the feasibility of using any
 of a vast range of criteria. Different criteria have different properties and it is necessary to consider
 which one best matches the aims of the study.'

 Our profession cannot, in the long run, afford the hubris of asserting either

 (a) that there is a single answer or
 (b) that we are prepared to find it.

 The proper conclusion from the first half of the quotation is therefore we should expect

 (a) to make more than one fit, perhaps several, and
 (b) that we should then try to understand the causes of any meaningful differences in the results.

 Section 3.2 begins by assuming that the scale on which zi is expressed is not numerically useful. The
 last few sentences of the section indicate the opposite, something which seems to be much more frequent.

 Near Table 5, it is stated that both analyses will not normally be conducted. This should be a cause
 for deep regret, not something to be accepted unconcernedly.

 I doubt the statement just before the conclusion that 'a pragmatic study is more likely to be intrinsically
 multivariate'. With the usual size of sample, a univariate analysis of a composite is likely to be more
 precise and more understandable.

 Mervyn Wise (Leiden University): An example like example 4 was an analysis by Wishart (1939) on
 20 pigs fed with (extra?) protein: did they put on weight? Unfortunately I do not remember any details,
 such as whether there were controls.

 There are many similar problems. Two chapters in a recent book are particularly interesting (so are
 many others in the book, for Professor Hand's whole stimulating approach), namely 'Regression towards
 the mean' and 'Before-after comparisons'. (Andersen, 1990).

 We can start by analysing changes in weight or other variable as a function of its mean (Oldham,
 1962, 1968). Many questions are still unanswered. A puzzling one arises because the slope (rate of change)
 is often assumed to be constant and is then regressed linearly on this mean value, or on the initial value.
 Yet nobody seems to have considered the fact that the resulting lines in the set are concurrent!

 In example 3 the numbers chosen in Table 2 'to keep the example straightforward' seem impossibly
 unreal. For any one journey by car made on different occasions along the same route in the same car,
 the instant rate of fuel consumption, whether expressed per unit time or distance, must vary considerably
 within and between journeys. The distribution and nature of the variations would have to be explored,
 perhaps with the help of inverse Gaussian distributions (Folks and Chhikara, 1978) involving passage
 times of particles undergoing random walks with drift and reaching a threshold.

 There are again many analogous problems. In medicine 'fuel' could be replaced by a therapeutic dose,
 or by something harmful. The dose needed to attain a threshold could be regarded as the independent
 variable or, conversely, this could be the response. In any case the dose rate as a function of time can
 take many different forms. The response, especially if continuous (not all or nothing) also needs to
 be defined.

 I am not happy with 'the scientific question' or with 'the statistical hypothesis' (my italics) in such
 situations when there are so many possibilities.

 One general comment: 'explanatory versus pragmatic studies' receive apt attention, but how about
 exploratory studies (Chatfield, 1985), especially in relation to a model as 'a family of mathematical
 descriptions', with which I heartily agree, and looking for patterns in the parameters (-or in part contrast
 with-Ehrenberg and Bound (1993))?
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 Jacques Zighera (Universite Paris X, Nanterre): Professor Hand raises many interesting issues. I fully
 understand that his examples are wholly illustrative, but I would like to build more extensively on
 example 5; briefly, if age is relevant, finding a different result separately for under and over 65 years
 and for the whole population does not prove anything: we must 'deconstruct' further. What follows
 may also be read in the light of Section 5.1.

 In example 5, the underlying hypotheses are that sex and age are both relevant variables for psychiatric
 patients; if they were not, the population would be homogeneous and we do not need to know more;
 if only sex was relevant, it would be enough to know that the proportion of males is slowly decreasing.

 But the author reminds us that 'model fitting involves optimizing some criterion' and it should be
 emphasized that this applies to supposedly simple operations such as creating groups of age inside which
 numbers are summed or averaged.

 If age is relevant, then the real question is 'if we control for age, is it significantly true that for people
 of a given age (or maybe better for a given cohort of people born in the same year) the proportion
 of males is increasing?'. This result may hold for any age and the limit of 65 years is not important,
 or it may hold over a certain age and it is improbable that this age will be 65 years. By choosing,
 independently of any optimization procedure, the 65-years limit as relevant, we are arbitrarily-meaning
 without optimization criterion-projecting a 100- (possible years of age) dimensional space into a two-
 (over and under 65 years) dimensional space. Further, for the same reasons presented in example 5,
 it is possible that the proportion of males may decrease for each year of age (as for the population
 as a whole), whereas at the same time it increases for the two age groups.

 In the same vein, I have always been worried by the discussion on whether there should be systematic
 mammography for women over 40 or over 50 years of age. It cannot possibly be as simple as that,
 and with sufficiently large samples we could build an efficiency curve of mammography according to
 years of age, and the age where to start (probably not 40 or 50 years) should be the question asked
 of the statistician (and the economist).

 The author replied later, in writing, as follows.

 I would like to express my appreciation to everyone who contributed to the discussion.
 Professor Nelder distinguishes between analysis and predictive phases. Presumably, in example 6,

 the analysis phase is the estimation of the probabilities of depression in each cell of Table 5. This may
 be done by an additive model or a multiplicative model, but Nelder's argument that the former is
 inappropriate is compelling. And then the predictive phase is using these estimated probabilities to answer
 the question of whether the relationship between the two estimated probabilities in the top row of Table 5
 is the same as the relationship in the bottom row. How one does this depends on what we mean by
 'relationship'. We could look at differences between the estimated probabilities, as do Brown and Harris,
 or we could look at the ratio of the probabilities, as do Tennant and Bebbington, or we could look
 at odds ratios, as does Dr Jones. The three predictive approaches answer different questions-none
 is more 'right' or 'wrong' than any other.

 Dr Greenfield and Professor Evans describe some approaches which can assist in teaching statisticians
 how to deconstruct research questions. I endorse these suggestions but have reservations about the time
 they will require. In this vein, Dr Chatfield's proposal to set incomplete or even partially wrong questions
 to students sounds interesting. I hope that he can be persuaded to tell us how effective it was.

 I am grateful to Professor O'Brien, Professor Wise and Professor Lenz for drawing my attention
 to further examples supporting my thesis. In Hand (1992) I pointed out some of the dangers of
 aggregation, but Professor Lenz goes further and identifies some interesting economic examples.
 Particularly important in this regard is his notion of a 'perfect' aggregation. His conclusions are for
 linear relationships, but it would be interesting to see more general results. At a fundamental level,
 Lenz's examples illustrate some of the points about economic statistics made by Professor Fessey. Also
 on the subject of aggregation, Professor Zighera rightly points out that the interaction lying at the heart
 of example 5 arises from data which have already been aggregated, by the collapsing of the continuum
 of age into just two categories. The researchers would need a good reason for having done so. (I had
 assumed that this would be based on pre- and post-retirement age groups, so that it might be of economic
 relevance for planning.)

 I accept Professor Finney's criticism that the paper placed too much emphasis on tests of significance.
 The work described by Professor Mackay and Professor Oldford, presenting statistics as empirical

 problem solving, sounds exciting-and just the right thing to do. And I think that they put their joint
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 finger on a key issue when they point out that a detailed description of context is required in all examples.
 Without that, statistics is reduced to an arid discipline of mere calculation-a point argued in the
 introduction to Hand et al. (1994).

 Professor Smith identifies probability as providing the key role for the statistician. Some would argue
 that statistics is more than this-so that methods which have no probabilistic basis are also the proper
 domain of statistics. Smith's final point-that we should include misspecification factors in our models-is
 one which I entirel-y endorse.

 I would also have permitted Professor Tukey's climatologist to use the mean of his temperatures-
 provided that the different measuring instruments were calibrated to the same scales, up to linear
 transformations and allowing for some error. Had different, non-linearly related, scales been in use
 then I would not have accepted this. As to which model fitting criterion should be adopted, exploring
 the differences arising from different criteria is surely one way to help to deconstruct the question.

 I intended my point that 'both analyses will not normally be conducted' to include the implication
 that this was so because there were, in principle, an infinite number of analyses which could be undertaken
 (Chris Jones provides a third). Hence my argument is that we need to decide which of the possible analyses
 is the appropriate one.

 If I thought that my paper was about a metastatistical level, Professor Preece has moved up to a
 meta-meta-level with his three questions! To discuss something we have to distinguish it from other
 objects in the universe. That was really my aim in distinguishing between 'researchers and statisticians'
 and between 'scientific and statistical questions'. At a higher level, of course statisticians are researchers,
 and of course statistical questions are scientific questions.

 I agree with him that it is a very rare client who has but a single research question. In any case, as
 we are so often reminded nowadays, there are almost always earlier studies on similar issues (a point
 also made by Professor Ehrenberg). And, like Preece, I would be very interested in a study of what
 statistical questions are, and of the kind of questions that can arise. Indeed, one of the motivations
 for my work on statistical knowledge enhancement systems (Hand, 1987, 1990) was a concern that the
 conventional expert systems architecture was inadequate for handling the range of question types that
 statistical consultants may have to answer (see Hand (1989) for a description of some such questions).

 If, in Professor Lunneborg's illustration, the researcher's strategy was to choose the extent of trimming
 to remove the extreme point, then varying the amount of trimming to ensure this for each bootstrap
 sample is presumably the right thing to do. But this begs the question of whether that is an appropriate
 strategy.

 I take issue with Chris Jones's statement that 'what is needed' is an average that commutes with the
 reciprocal transform. Such an average will certainly mean that the two researchers will draw the same
 conclusions. But this average (the geometric mean in this example) merely corresponds to yet another
 question that the researchers might really want to answer. It is not clear to me that this particular question
 is the one that 'is needed'.

 On his second point, perhaps I could have phrased things differently. My point was that, if the
 researchers knew that they wanted to compare means (I am taking this as given) then switching to a
 comparison of medians because one was uneasy about the distributional assumptions is invalid. Of course,
 if they merely wanted to study 'location' or 'typicality' in some general sense, then studying medians
 may well be fine.

 Professor Gower makes the point that effective statistical work requires that the statistician knows
 something about the substantive domain in question-and that the most effective work is the result
 of a continuing collaboration. I agree with him and also with his implicit concern that this can result
 in a division of statistics according to application area, a concern also expressed by Professor Smith.
 Perhaps this is one reason that statistics does not have the recognition and perceived importance that
 it should.

 Dr Stone has hit the nail on the head with his suggestion that it is important that managers should
 be statistically literate. Indeed, I find myself slightly puzzled by the poor social reputation of statistics,
 given the need for managers to have at least a rudimentary understanding of basic ideas.

 Toby Lewis identifies the parallel between my discussion of matching research questions with statistical
 questions and the problem of performance evaluation. The questions that he raises are particularly
 apposite at the present time, when universities seem beset by assessments, audits and evaluations. I have,
 within my own university, attempted to stimulate discussion of the costs of these exercises, relative to
 the potential return that they might bring and to the loss that undertaking them has meant in terms
 of the activities that they have displaced.
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 In reply to Professor Ehrenberg, I was not suggesting that investigators should ignore any potentially
 relevant factors, but simply that, if the researcher wanted to answer a particular question, then the
 statistical analysis should lead to that question being answered. As to his suggestion of a three-group
 trial in example 1, this would certainly permit both pragmatic and explanatory questions to be answered.
 But my point was that, if the researcher was interested in only one of these questions, then it would
 be wrong to adopt a design which did not permit that question to be answered. Professor Molenaar
 has also pointed out that there are three potential treatments here. But design D2 still seems to me to
 be the only way of ensuring that the sensitizing effect of the drug is not confounded with a delay in
 receiving the radiotherapy.

 I agree with Professor Molenaar about the strong link between example 2 and the important work
 by Holland and Rubin. I consider the latter to be a prime example of careful deconstruction of statistical
 questions. As to Molenaar's last point (and also Professor Tukey's last point), to me multivariate analysis
 of variance involves finding a 'combination of all indicators into a univariate scale'-that which best
 separates the groups in some sense.

 Professor Rouanet draws attention to one of the fundamental problems of a particular school of
 statistical inference. No such school is without its critics, and it may be that different kinds of research
 questions are answered best in the frameworks of different schools.

 I do not see the fact that neither client nor statistician comes unencumbered into the negotiations
 as a stumbling block in the path of attempting to formulate unambiguous research questions, but I
 agree with the Drs Lovie that preconceptions need to be examined. I like their suggestion that explicit
 justification for the variables and so on is required from the client. Equally, of course, the client should
 require that the statisticians justify their choice of methods. Professor Herzberg's quoted summary of
 the paper by Bode et al. (1949) seems to me to be a beautiful encapsulation of what every consultant
 statistician should strive to be.

 Several of the contributors disliked my term 'deconstruction', principally because of its negative
 connotations and its association with a particular school of literary criticism. I take their points but
 suggest that having a clear name by which we can refer to the exercise will help us to think about it
 and to discuss it. Since most of the discussants agreed with me about the importance of the exercise,
 this is surely to be desired.
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