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ABSTRACT
The variance inflation factor (VIF) is used to detect the presence of
linear relationships between two or more independent variables (i.e.
collinearity) in the multiple linear regression model. However, the
traditionally used VIF definitions encounter some problems when
extended to the case of the ridge estimation (RE). This paper presents
an extension of the VIF in RE by providing two alternative VIF expres-
sions that overcome these problems in the general case. Some char-
acteristics of these expressions are also presented and compared
with the traditional expression. The results are illustratedwith aneco-
nomic example in the case of three independent variables and with
a Monte Carlo simulation for the general case.
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1. Introduction

The collinearity problem is the existence of linear relationships between two or more
independent variables in model

Y = Xβ + u, (1)

where E[u] = 0, E[uu′] = σ 2I. It is considered that the variables in Equation (1) are stan-
dardized, therefore X′X is the correlation matrix and X′Y is the vector of correlation
coefficients of the response variable with each of the explanatory variables. Collinearity will
be perfect or approximate depending on the kind of relation. In the first case, the model
does not satisfy the full range condition and has infinite solutions, while, in the second one,
although the condition is fulfilled, the estimation will be unstable and the variance of the
estimators may be large compared to the values of the estimated parameters that can be
insignificant or have the wrong sing. Obviously, the second case is troubling. Remember
that the collinearity is a data problem belonging to numerical analysis research area that
can be found in any field.

The variance inflation factor (VIF) [8,23,32] has been widely applied in scientific litera-
ture to diagnose the existence of collinearity, although it is possible to find other measures
such as the eigenvalues through the Condition Index [1,3], the condition number (CN)
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[2,3], the variance decomposition proportions to analyze the correlations between differ-
ent vectors and theirs angles [29,34], the red indicator [20], the corrected VIF [5], or the
use of biplot method in the visualization diagnostic of multicollinearity problems called
collinearity biplot [10].

Focusing on the VIF, the definition provided by Theil [32] allows tomeasure the impact
of collinearity of the variable Xi, i = 1, . . . , p, with the rest of the independent variables

VIF(i) = 1
1 − R2i

, i = 1, . . . , p, (2)

where R2i is the coefficient of determination of Xi on the rest of independent variables.
Marquardt [23] defined the VIF as the elements of the principal diagonal of the inverse
correlation matrix. Thus, the VIF will be the elements of the diagonal of the inverse ofX′X
since the correlation matrix of the independent variables is the matrix X′X when the data
are standardized. This measure has well-known weaknesses that should be noted. Firstly,
the controversy about the use of centered or not centered data that has been recently revised
byGarcía et al. [13]. Secondly, the fact that there is nomeasure to knowhow closelyR2

i must
be to 1 to imply collinearity [2]. Furthermore, the VIF is not resistant to the present of high
leverage points (outliers). Finally, it is generally accepted that values of VIF higher than 10
indicate severe collinearity [19] but this rule of thumb lacks a theoretical basis. Indeed,
taking into account the expression of the estimated variance of the estimated parameters

v̂ar(β̂i) = σ̂ 2
u

n var(Xi)
· VIF(i), i = 1, . . . , p, (3)

where n is the number of observations, high values of VIF could not imply high estimated
variance since it can be countered by the ratio of the variance of the error terms divided
by the variation in the respective independent variable. Thus, the variance of the error
is also an important factor to get high variance and, for this reason, practitioners should
apply statistical skills for model modification to minimize it and thereby the variance of
the estimated parameters.

Focusing on the diagnose, and not in the solution of the collinearity, the VIF is widely
applied as can be noted from the paper of O’Brien [27] withmore than 1700 references in a
great variety of fields. The concept of VIF was generalized in ordinary least squares (OLS)
by Fox andMonette [8], who defined the generalized variance inflator factor (GVIF) as the
measure of the impact of collinearity on the square of the length of the joint confidence
region (two or more coefficients)

GVIF = |R1||R2|
|R| , (4)

where | · | is the matrix determinant, R1 is the correlation matrix of a particular set of
regressors, X1, R2 is the correlation matrix of the rest of the regressors, X2, and R is the
correlation matrix of all the regressors. Note that when the number of variables in X1 is
equal to one, the initial expression is simplified and the GVIF coincides with the VIF (see,
for example, [4]).

On the other hand, the ridge estimation (RE) is a widespread method to overcome the
problem of collinearity defining a class of estimators depending on the non-negative scalar
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parameter λ

β̂(λ) = (X′X + λI)−1X′Y. (5)

Its covariance matrix is

var(β̂(λ)) = σ 2(X′X + λI)−1X′X(X′X + λI)−1. (6)

The estimator given in Equation (5) is a biased estimator when λ > 0 and when λ = 0
coincides with the OLS estimator. Despite earlier usage in numerical analysis [22,30], the
ridge estimator is an interesting topic usually labeled in statistic and econometric and
with applications in many different fields such as medicine, physics and chemistry. Indeed,
McDonald [24] conducted a detailed study of the scientific literature on the ridge estimator
since its presentation in the seminal papers of Hoerl and Kennard [16,17] and concluded
that more than 240 works have been published (see [24]) in prestigious journals.

Once the parameter λ is selected and RE is applied, it is necessary to calculate again
the value of a diagnostic measure to check if collinearity has been mitigated enough. This
fact justifies the extension of the collinearity indicators to be applied after RE. García et al.
[12] extended the VIF for the case p=2 and the condition number was extended by García
et al. [14]. The purpose of this article is to show the deficiencies obtained when applying in
RE the definitions of VIF originally created to OLS estimation and propose an alternative
expression for p>2 that verifies some desirable properties.

The structure is as follows: Section 2 presents the problems when applying the tra-
ditional VIF definitions in RE by using an example. In Section 3 the VIF of surrogate
ridge model and the VIF expression from the vector that generate the matrix of the ridge
estimators for p=3 are calculated. Some properties of both VIFs are also shown and is
calculated as an explicit expression based on the correlation coefficients for the GVIF
when p=3 in RE. These expressions are used to analyze the presence of multicollinear-
ity in real economic data in Section 4. The results are compared with the extension of
the condition number in RE. Due to the difficulty of obtaining expressions for these VIFs
for p>3, Section 5 shows how to study the presence of multicollinearity in a model with
p>3 obtaining the above expressions computationally for any value of p. It also high-
lights some limitations of using generalized VIF in RE. Finally, Section 6 resumes the main
contributions of the work.

2. VIF extension to RE

The first extension of the VIF associated with the ridge estimator was given by Marquardt
[23] who proposed detecting the presence of collinearity by using the diagonal elements of
the matrix (X′X + λI)−1X′X(X′X + λI)−1 as the VIF. Note that Marquardt automatically
extended the definition of the VIF in OLS regression to RE. Kutner et al. [21] proposed
a definition of the VIF in RE that coincides with the extension of the Marquardt’s VIF
definition in RE (see Appendix 1). However, the expression obtained for the VIF(λ) (see
[23] for the case of two variables) does not satisfy the condition of being larger than one (see
[11,13,31]). This is the first problem presented by the expression proposed by Marquardt.
Furthermore, the expression given by Theil [32] cannot be calculated since initially we do
not know the matrix Z from which to obtain Z′Z = X′X + λI. The same occurs to the one
proposed by Fox andMonette [8] although in this case Friendly [9] provides the correlation
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Table 1. Values of VIFs of Marquardt (REMVIF(λ, i)), Fox and Monette (REGVIF(λ, i)) and Theil (VIF(i)) of
the ith variable for λ = 0 and λ = 0.1.

REMVIF(0,i) REGVIF(0,i) VIF(i) REMVIF(0.1,i) REGVIF(0.1,i)

i= 1 154.9487 154.9487 154.9487 0.6272 1.724408
i= 2 37.2681 37.2681 37.2681 1.0804 1.699081
i= 3 222.8143 222.8143 222.8143 0.3658 1.254078

matrix of the data by conveniently transforming the covariance matrix (6). By using the R
statistical environment, the genridge package (see [9]) allows us to calculate the GVIF in
RE by using the following expression:

GVIF(i) = |R−i|
|R| , i = 1, . . . , p, (7)

whereR denotes the correlationmatrix among all the columns ofX andR−i is the resulting
matrix by eliminating the ith row and ith column in matrix R. Remember that |R| = 1 for
orthogonal data and |R| = 0 for perfectly collinear data (see [28]).

To illustrate all these affirmations, we will use the model previously used byWissel [35]
relative to credit in American people with the following variables: the totalmortgage dept
outstanding, Y, personal consumption, X1, personal incomes, X2, and consumer credit
outstanding, X3. All variables are measured in billions of dollars. We have enlarged the
sample by using data from 1995 to 2011 obtained from Economic Reports of the President
[6]. The values shown in Table 1 are the extension to RE of the VIF definition given by
Marquardt [23], denoted as REMVIF, and the extension of the general VIF definition given
by Fox and Monette [8], denoted as REGVIF.

Note that all the definitions presented lead to the same result when theOLS estimation is
applied (λ = 0). However, when these definitions are extended and applied in RE (λ > 0)
they provide different results. The source of the problemmay be that when we use the OLS
estimator, the matrix of independent variables,X, and the correlation matrix of the regres-
sors, R, are known. This situation is very different when we work with the ridge estimator:
the data which generate the matrix X′X + λI are initially unknown and consequently we
do not have the information to obtain the determination coefficient to calculate the corre-
sponding VIFs (expression proposed by Theil [32]) or the correlation matrix of the data
(expression proposed by Fox and Monette [8]). These limitations may be the cause to that
numerous authors have followed the proposal by Marquardt [23] to extend the concept of
VIF to RE. This fact leads not only to values of VIF lesser than one but also they do not
have the desirable property of being monotonic. Furthermore, as shown in the example,
every measure to diagnostic collinearity leads to a different solution and, in some cases,
to a different conclusion. In the next section, we present an alternative expression for the
VIF in RE with p>2 and analyze its properties. We will use this same example to illustrate
empirically the application of the proposed methodology.

3. RESVIF, REVIF and REGVIF in models with three exogenous variables

As mentioned above, the main problem in extending the definitions used in the OLS esti-
mation to calculate the VIF in RE is that the matrix Z that verifies Z′Z = X′X + λI is
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initially unknown. This question was initially solved by García et al. [12] for the case p=2.
In this work we present the extension to the general case beginning for the case p=3.

This problem can be solved from the matrix XS, verifying X′
SXS = X′X + λI, which

was provided by Jensen and Ramirez [18] in the presentation of the surrogate RE. Note
that the matrix XS keeps the dimension of the matrix X and it is orthonormalized. The
VIF obtained from XS will be named as RESVIF.

Within the ridge estimator methodology, we can use the augmented model proposal
of Marquardt [23] to obtain by OLS the ridge estimator and use the matrix XZ = ( X√

λI

)
instead of the matrix XS. We will call the VIF calculated from this matrix REVIF.

In Appendix 2 we obtain explicit expressions for the RESVIF and REVIF when p=3.
Both expressions are obtained from the coefficient of determination of an auxiliary regres-
sion. Some properties of both VIFs are also shown. To finish, we obtain an explicit
expression based on the correlation coefficients for REGVIF when p=3. Follow the orig-
inal expressions to calculate the RESVIF, REVIF and REGVIF are presented as a major
contribution of this paper:

• Ridge estimator surrogate VIF (RESVIF) for the ith variable is

RESVIF(λ, i) =
(1 + λ)[(1 + λ)2 − ρ2

jk]

(1 + λ)[(1 + λ)2 − ρ2
ij − ρ2

ik − ρ2
jk] + 2ρijρjkρik

. (8)

It is verified that RESVIF(λ, i) ≥ 1, limλ→∞ RESVIF(λ, i) = 1 and the RESVIF is
monotone decreasing with increasing λ.

• Ridge estimator VIF (REVIF) for the ith variable is

REVIF(λ, i)

= n + 3 + λ(n + 2)

(n + 3)
[

λ(2ρij+2ρik−(λ+ρjk−n))+(n+3)(ρjk+1)
B + 2ρijρikD−(ρ2

ij+ρ2
ik)C

A

]
+ λ(n + 2)

.

(9)

It is verified that REVIF(λ, i) ≥ 1, limλ→∞ REVIF(λ, i) = 1 and the REVIF is mono-
tone decreasing with increasing λ.

• Ridge estimator generalized VIF (REGVIF) for the ith variable is

REGVIF(i) =
1 − ρ2

jk

1 − ρ2
jk − ρ2

ij − ρ2
ik + 2ρjkρijρik

. (10)

Note that ρij represents the correlation between the variables X(i) and X(j) with i, j, k ∈
{1, 2, 3}, i �= j, i �= k and j �= k.

It can be easily demonstrated for λ = 0 that

RESVIF(0, i) = REVIF(0, i) = REGVIF(i) =
1 − ρ2

jk

1 − ρ2
jk − ρ2

ij − ρ2
ik + 2ρjkρijρik

= VIF(i).

(11)
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4. Obtaining the VIF in economic data

In Section 2, we showed the deficiencies obtained when applying in RE the definitions of
VIF originally created to OLS estimation by using the model relative to credit in American
people previously applied by Wissel [35] but enlarging the sample with data from 1995 to
2011 obtained from Economic Reports of the President [6]. Please find data in Appendix
4. Nowwe will use this same example to illustrate how to calculate the REVIF and compare
it with the RESVIF and the REMVIF.

From this data, themultiple linear estimation of model (1) leads to the following results:

Ŷ = −920.9 −1.396 · X1 +0.8886 · X2 +0.00667 · X3,
(8995) (2.399) (0.6057) (0.00639)

withR2 = 0.9583 and Fexp = 99.65. Note that none parameter is statistically significant but
they are not simultaneously zero (joint significance). We also observe that the coefficient
of determination is very high. These results are typical of models with collinearity. As was
noted in the introduction, a good specification of the model is a first relevant step to solve
these problems. However, the collinearity may persist.

In this case, the correlationmatrix shows very high correlations between all independent
variables

R =
⎛⎝ 1 0.9795893 0.9966152
0.9795893 1 0.9858508
0.9966152 0.9858508 1

⎞⎠ . (12)

This high correlation was expected since the independent variables (personal consump-
tion, X1, personal incomes, X2, and consumer credit outstanding, X3) seem to be very
related from an economic point of view. Indeed, Wissel [35] recognized that the data were
chosen to obtain multicollinearity. In addition, by calculating the R2

i , i=1,2,3, we obtain
the VIF of each variable which is always over 10 indicating the existence of collinearity (see
Table 2).

According to the interpretation given by Fox [7] about the VIF, we can state, for exam-
ple, that the confidence interval for β1 and β3 is

√
154.9487 = 12.4478 and

√
222.8143 =

14.9269 times greater, respectively, than if there were nomulticollinearity. All this suggests
the existence of collinearity in the proposedmodel which seems ideal to use the expression
obtained in Section 3.

The VIFs of each variable, using the different expressions REMVIF, RESVIF, REVIF,
REGVIF (from standardized variables) and REGVIF (from typified1 variables) are repre-
sented in Figure 1 for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

Note that for λ varying between 0.1 and 1, the REMVIF of the variables X1 and X3
are always less than 1 while for variable X2 only takes values higher than one when λ =
0.1. These results contradict the consequences obtained from expression (2). On the other

Table 2. Values of VIF.

i= 1 i= 2 i= 3

R2i 0.9935 0.9731 0.9955

VIF(i) = 1

1 − R2i
154.9487 37.2681 222.8143
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Figure 1. REMVIF (red-solid); RESVIF (blue-dashed); REVIF (green-dotted); REGVIF from standardized
variables (brown-dotdash) and REGVIF from typified variables (orange-dotdash) join the line y= 1
[Colour online].

Figure 2. Representing the difference between RESVIF and REVIF for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1 for each variables [Colour online].

hand, the values of REGVIF are different from the one obtained for the RESVIF andREVIF.
This difference is very significative when variables are standardized.

In Section A.2, expression (A18) shows that the RESVIF and the REVIF coincide when
n → +∞. However, in Figure 1 we can see that both VIFs graphs overlap and in this case
the value of n is only 17. Furthermore, Figure 2 shows the difference between RESVIF and
REVIF for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Note that the differences are of the
order of 10−2. So a large sample size is not necessary to allow the property to be verified.

In Table 3 we study in more detail the results obtained when λ varies between 0 and 0.1.
Note that from λ = 0.02, all values of REMVIF are less than 10 while this does not occur
in RESVIF and REVIF until λ = 0.07 (see Tables 4 and 5). Following REMVIF this fact
would imply that, for λ = 0.02, 0.03, 0.04, 0.05, 0.06, the problem of collinearity has been
mitigated when in fact it has not. Note that when the parameter λ is equal to zero the values
of VIFs are equal since in this situation the original model has been estimated by OLS.
Table 6 presents the condition number (CN) extended from OLS to RE without further
considerations and the CN(λ) extended to RE taking into considerations the problems of
this issue as shown by García et al. [12].
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Table 3. Values of REMVIF for λ = 0, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1.

λ X1 X2 X3

0 154.9487572 37.268158 222.8143143
0.01 12.5436403 14.231998 11.5699764
0.02 5.6365410 8.271826 4.1167910
0.03 3.3836467 5.440672 2.1973748
0.04 2.3043321 3.865205 1.4041879
0.05 1.6909349 2.897617 0.9950503
0.06 1.3055132 2.260648 0.7546938
0.07 1.0463587 1.818998 0.6007831
0.08 0.8632570 1.500161 0.4959592
0.09 0.7288631 1.262416 0.4211669
0.1 0.6271743 1.080372 0.3658185

Table 4. Values of RESVIF for λ = 0, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1.

λ X1 X2 X3

0 154.948757 37.268158 222.814314
0.01 39.418727 21.965852 49.483674
0.02 24.137728 16.617822 28.474403
0.03 17.743912 13.489267 20.197535
0.04 14.162010 11.407017 15.750795
0.05 11.852657 9.915907 12.969567
0.06 10.233564 8.793964 11.063770
0.07 9.032913 7.918666 9.675491
0.08 8.105895 7.216529 8.618786
0.09 7.367971 6.640709 7.787377
0.1 6.766345 6.159898 7.116079

Table 5. Values of REVIF for λ =0, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1.

λ X1 X2 X3

0 154.948757 37.268158 222.814314
0.01 39.399287 21.955079 49.459193
0.02 24.114188 16.601705 28.446546
0.03 17.718249 13.469864 20.168229
0.04 14.135007 11.385386 15.720666
0.05 11.824723 9.892666 12.938903
0.06 10.204944 8.769506 11.032729
0.07 9.003767 7.893256 9.644171
0.08 8.076331 7.190354 8.587250
0.09 7.338069 6.613907 7.755671
0.1 6.736164 6.132574 7.084235

From these results we can highlight the following comments:

• The concept of VIF in OLS is based on expression (2) and it has to be kept when
extending to RE.

• The REMVIF presents values lesser than one unrespecting the concept of VIF. Further-
more, the REMVIF goes rapidly down the rules of thumb of VIF and it can lead to think
that the multicollinearity is mitigated when it is not.
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Table 6. Values of REVIF and CN for λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

λ REVIF(1) REVIF(2) REVIF(3) CN CN(λ)

0 154.9488 37.2682 222.8143 75.1695 33.1943
0.1 6.7362 6.1326 7.0842 64.5731 18.6334
0.2 3.8902 3.713 3.9924 57.48 14.3649
0.3 2.8876 2.802 2.937 52.3065 12.1218
0.4 2.3768 2.3257 2.4063 48.3183 10.6853
0.5 2.0684 2.034 2.0882 45.1227 9.6652
0.6 1.8626 1.8377 1.8769 42.4876 8.8929
0.7 1.716 1.6971 1.7269 40.2664 8.2823
0.8 1.6067 1.5918 1.6153 38.3609 7.7838
0.9 1.5223 1.5101 1.5293 36.7028 7.3669
1 1.4553 1.4452 1.4611 35.2428 7.0117

• The REVIF coincides asymptotically with the RESVIF, and for values of n equal to 17,
as in the numerical example, the difference is depreciable.

• The values obtained to the REGVIF (with original, typified or standardized data) do not
coincide with the values obtained for the RESVIF or the REVIF.

• FromTable 6we see that theCNandCN(λ) are decreasing.While CNpresents all values
higher than 30, the CN(λ) takes values lesser than 10 from λ > 0.4. Thus, the CN(λ)

and the REVIF lead to similar conclusions in the diagnostic of collinearity. However,
the CN extended without further considerations indicates that the collinearity has not
been mitigated even for λ = 1.

Finally, we would like to emphasize that in the case of the ridge estimator, the calcula-
tion of the VIFs proposed by Theil [32] (see expression (2)), Marquardt [23] (elements
of the principal diagonal of the inverse correlation matrix) and Fox and Monette [8]
(see expression (7)) leads us to obtain the same results obtained in the calculation of
REVIF. The REVIF is monotonically decreasing in λ, is higher than 1 and it verifies that
limλ→∞ REVIF(λ, i) = 1 and REVIF(0, i) = VIF(i).

Then, we propose to use the REVIF instead of traditionally used REMVIF and REGVIF.
The RESVIF, associated to surrogate ridge model, can be also recommended due to
its simple calculation and its asymptotic equivalence with the REVIF but taking into
consideration that it is associated to OLS surrogate ridge model.

5. AMonte Carlo simulation

In the last section we have presented an economic example with three exogenous variables
and standardized data obtaining the REMVIF, RESVIF, REVIF and REGVIF with stan-
dardized data finding certain anomalies in the results obtained by the REGVIF since it
increases when λ increases (see Figure 1), which does not make sense. Due to this fact, we
calculate the REGVIF from the original data obtaining different results even for λ = 0.We
also calculate the REGVIF from typified data and we have included this case in the work
since the obtained results coincide with the results provided by the package genridge in R
software. In this last case we obtain values of REGVIF different from the one obtained for
RESVIF and REVIF. In this section, we will study in more detail this case and use a Monte
Carlo simulation to present algorithms to obtain computationally the different VIFs for
models with multiple independent variables.
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Figure 3. VIFs for all variables (first, second and third column corresponds to n= 100,500,1000, respec-
tively) [Colour online].
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Table 7. Difference between RESVIF and REVIF depending
on sample size.

Sample size Minimum difference Maximum difference

100 0.0064 0.0074
500 0.0013 0.0015
1000 0.00068 0.00078

Following [15,26,33], we generate five independent variables using

X(i) =
√
1 − γ 2Z(i) + γZ(5), i = 1, 2, 3, 4, 5, (13)

where Z(i) are independent pseudo-random numbers distributed as N(0, 100) and γ is
specified so that the correlation between two any independent variable is given by γ 2. The
dependent variable is generated as

Y = X(1) + X(2) + X(3) + X(4) + X(5) + u, (14)

where u are independent pseudo-random numbers distributed asN(0, 1). Finally, we used
three sample sizes: 100, 500 and 1000.

Since there are five independent variables it is necessary to use the algorithms proposed
in Appendix 3. The results are shown in Figure 3 for λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1. It is observed that:

• The REGVIF from standardized variables, as already mentioned, increases when λ

increases.
• The REGVIF from typified variables increases when n increases.
• The REGVIF from typified variables is never lesser than the established limit 10. This

means that the collinearity has not been mitigated.
• The other VIFs show the same behavior: (a) RESVIF and REVIF graphs overlap and (b)

REMVIF takes values less than 1.
• The difference between RESVIF and REVIF decreases when n increases (see Table 7).

The first three points lead us to believe that the application of REGVIF (from typified
or standardized data) is not appropriate in RE. This is not a minor issue since the package
genridge in R software calculated the VIF in RE following this definition.

6. Conclusions

If all definitions of VIF [8,21,23,32] lead to the same results under OLS estimation, its
extension to RE should also lead to the same result. However, we have obtained different
results and conclusions up to the point of considering that the collinearity problem is solved
when it still persists.

The problem is that both Marquardt [23] and Fox and Monette [8] use the covariance
matrix of RE by extending its initial definition (in the case of Marquardt) or obtaining the
correlationmatrix (in the case of Fox andMonette). All extensions lead to the same results if
instead of selecting thismatrix as a starting pointwe choose the ridge regressorsmatrix (see
expressions in [23]), which establishes the equivalence between RE and an alternative OLS



1842 R. SALMERÓN GÓMEZ ET AL.

estimation. Thus, we can conclude that the expression proposed in this paper to calculate
the VIF in RE is the right one. That is, the VIF associated with the ridge estimator should
be calculated by the REVIF expression.

Furthermore, it has been shown that RESVIF (associated to ridge surrogate estimator)
is easier to calculate than the REVIF and it can be its substitute since the differences are
small, at least they are quoted to one hundredth.

When extending the VIF(i) to ridge regression, the VIF(λ, i) should be monotonically
decreasing in λ, higher than one and it has to verify that limλ→∞ REVIF(λ, i) = 1 and
VIF(0, i) = VIF(i). These conditions are only verified by the REVIF (associated to ridge
estimator) and the RESVIF (associated to surrogate ridge estimator). Although the RESVIF
verifies these conditions and also presents desirable monotone properties, it is possible to
get these same conditions within RE if the concept of VIF is appropriately extended. Thus,
within RE the suitable extension should be the REVIF.

It was shown that the use of REGVIF in RE should be reviewed ( a) from standardized
variablesmajor anomalies are obtained and ( b) from typified variables (methodology used
in R software) are obtained different values to those obtained by RESVIF and REVIF, and
as shown in the simulation section can lead to erroneous conclusions.

To sum up, the main contribution of this paper is to present the expressions and
algorithms necessary to diagnose correctly the collinearity through the VIF after the appli-
cation of the RE for p independent variables tending to make life simpler for those who
come across collinearity issues in their regression model.

Note

1. Note that a standardized variable is the value of the variable minus its mean, divided by the
square root of the number of observations multiplied by its variance while a typified variable is
the value of the variable minus its mean, divided by its standard deviation.
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Appendix 1. Relationship between the definition of the VIF by Kutner et al.
[21] and the extension of theMarquardt’s VIF definition in RE

Kutner et al. [21] considered that in RE the VIF is the ith element of the principal diagonal of the
following matrix:

V

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ1

(γ1 + λ)2
0 . . . 0

0
γ2

(γ2 + λ)2
. . . 0

...
...

. . .
...

0 0 . . .
γp

(γp + λ)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
V′, (A1)

where V is an orthogonal matrix of order p whose columns are the normalized eigenvectors of the
correlation matrix of the independent variables, R, and γi is the ith eigenvalue of the same matrix,
i = 1, . . . , p. That is to say, R = V · � · V′ with V′ · V = V · V′ = I and � being a diagonal matrix
whose elements are the eigenvalues of R. Since the data are standardized, R = X′X, and then this
proposal coincides with the one provided by Marquardt since

(X′X + λI)−1X′X(X′X + λI)−1 = V(� + λI)−1�(� + λI)−1V′, (A2)

where

(� + λI)−1�(� + λI)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ1

(γ1 + λ)2
0 . . . 0

0
γ2

(γ2 + λ)2
. . . 0

...
...

. . .
...

0 0 . . .
γp

(γp + λ)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A3)

Appendix 2. VIFs in RE

In this section we obtain explicit expression for RESVIF, REVIF and REGVIF for p= 3.

A.1 Ridge estimator surrogate VIF (RESVIF)

From surrogate ridge estimator presented by Jensen and Ramirez [18], we can affirm that there exists
a matrix XS which verifies X′

SXS = X′X + kI. In the case of three variables (p = 3)

X′
SXS = X′X + λI =

⎛⎝1 + λ ρ12 ρ13
ρ12 1 + λ ρ23
ρ13 ρ23 1 + λ

⎞⎠ , (A4)
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i.e.
∑n

i=1 x
2
ij = 1 + λ for j= 1,2,3, and

∑n
i=1 xijxik = ρjk for j, k = 1, 2, 3, j �= k.

Through the regression of the standardized variable XS(i) on the standardized variables XS(j)
and XS(k)

XS(i) = βjXS(j) + βkXS(k) + v, (A5)
with i, j, k ∈ {1, 2, 3}, i �= j, i �= k and j �= k, the estimator of the parameters by OLS is

β̂S(i) =
(
1 + λ ρjk
ρjk 1 + λ

)−1 (
ρij
ρik

)
= 1

(1 + λ)2 − ρ2
jk

(
(1 + λ)ρij − ρjkρik
(1 + λ)ρik − ρjkρij

)
. (A6)

In this case the explained sum of squares (ESS) and the total sum of squared (TSS) are

ESSS(i) = 1
(1 + λ)2 − ρ2

jk
[(1 + λ)(ρ2

ij + ρ2
ik) − 2ρijρjkρik], (A7)

TSSS(i) = 1 + λ (by XS definition). (A8)

Using the expressions (A7) and (A8), the determination coefficient of the model (A5) is

R2S(i) = ESSS(i)
TSSS(i)

=
(1 + λ)(ρ2

ij + ρ2
ik) − 2ρijρjkρik

(1 + λ)[(1 + λ)2 − ρ2
jk]

. (A9)

As a result, the ith variable RESVIF is

RESVIF(λ, i) = 1
1 − R2S(i)

=
(1 + λ)[(1 + λ)2 − ρ2

jk]

(1 + λ)[(1 + λ)2 − ρ2
ij − ρ2

ik − ρ2
jk] + 2ρijρjkρik

. (A10)

Because of ESSS(i) ≥ 0 and (1 + λ)2 − ρ2
jk ≥ 0 then 2ρijρjkρik − (1 + λ)(ρ2

ij + ρ2
ik) ≤ 0. By adding

(1 + λ)[(1 + λ)2 − ρ2
jk] on both sides we obtain

(1 + λ)[(1 + λ)2 − ρ2
ij − ρ2

ik − ρ2
jk] + 2ρijρjkρik ≤ (1 + λ)[(1 + λ)2 − ρ2

jk].

Thus, we conclude that RESVIF(λ, i) ≥ 1, limλ→∞ RESVIF(λ, i) = 1 and the RESVIF is monotone
decreasing with increasing λ (see [18, Theorem 5, p. 2077]).

A.2 Ridge estimator VIF (REVIF)
Ridge estimator VIF (REVIF) is the extension of Theil [32] definition (see expression (2)) to RE. In
this case, it is necessary to know the matrix of regressors Z so that Z′Z = X′X + λI. Even though
this matrix is unknown Marquardt [23] showed that

XZ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1p
x21 · · · x2p
...

. . .
...

xn1 · · · xnp
√

λ · · · 0
...

. . .
...

0 · · · √
λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(

X
√

λI

)
, YZ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
...
yn

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(
Y

0

)
,

where the bottom p × 1 submatrix of YZ is not to be viewed as a random responses, the top n × p
submatrix of the XZ matrix has to be standardized (see [13]) and RE in the model (1) is similar to
the OLS regression in the following model:

YZ = XZβ + v. (A11)

It is verifying that β̂(λ) = (X′
ZXZ)−1X′

ZYZ = (X′X + λI)X′Y since X′
ZXZ = X′X + λI and

X′
ZYZ = X′Y. Then the matrix XZ can be used instead of the matrix Z. The case p= 2 is given in
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García et al. [12]. For p= 3, the regression of the variableXZ(i) on the variablesXZ(j) andXZ(k) are
given by

XZ(i) = β0 + βjXZ(j) + βkXZ(k) + w, (A12)
with i, j, k ∈ {1, 2, 3}, i �= j, i �= k and j �= k. In that case

ESSZ(i) = λ[(λ + ρjk + 1) − 2ρij − 2ρik]
B

−
2ρijρikD − (ρ2

ij + ρ2
ik)C

A
, (A13)

TSSZ(i) = n + 3 + λ(n + 2)
n + 3

, (A14)

where

A = λ2(n + 1) + λ(4 + 2n + 2ρjk) + (n + 3)(1 − ρ2
jk),

B = (n + 3)(1 + ρjk) + λ(n + 1),

C = n + 3 + λ(n + 2),

D = ρjk(n + 3) − λ.

With this information, we conclude that the coefficient of determination is

R2Z(i) = ESSZ(i)
TSSZ(i)

= n + 3
n + 3 + λ(n + 2)

ESSZ(i), (A15)

and then the ith variable REVIF is

REVIF(λ, i) = n + 3 + λ(n + 2)

(n + 3)
[

λ(2ρij+2ρik−(λ+ρjk−n))+(n+3)(ρjk+1)
B + 2ρijρikD−(ρ2

ij+ρ2
ik)C

A

]
+ λ(n + 2)

.

(A16)
It can be easily demonstrated for λ = 0 that

RESVIF(0, i) = REVIF(0, i) =
1 − ρ2

jk

1 − ρ2
jk − ρ2

ij − ρ2
ik + 2ρjkρijρik

= VIF(i). (A17)

Thus, we conclude that REVIF(λ, i) ≥ 1, limλ→∞ REVIF(λ, i) = 1 and the REVIF is monotone
decreasing with increasing λ since R2Z(i) is decreasing in λ (see [25, p. 696]).

On the other hand, with the help of symbolic computation software we can affirm that

lim
n→∞(REVIF(λ, i) − RESVIF(λ, i)) = 0. (A18)

A.3 Generalized VIF for p=3 (REGVIF)
When p= 3 the correlation matrix among all variables from Equation (6) is

R =
⎛⎝ 1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1

⎞⎠ . (A19)

In this case the expression (7) would be written as

REGVIF(i) =
1 − ρ2

jk

1 − ρ2
jk − ρ2

ij − ρ2
ik + 2ρjkρijρik

, (A20)

with i,j,k= 1,2,3, i �= j, i �= k, j �= k, since |R| = 1 − ρ2
jk − ρ2

ij − ρ2
ik + 2ρjkρijρik, R−i =

( 1 ρjk
ρjk 1

)
and |R−i| = 1 − ρ2

jk.
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Therefore, the expression (34) clearly verifies that RESVIF(0, i) = REVIF(0, i) = REGVIF(i)
(see expression (31)). Also REGVIF(i) ≥ 1, ∀i, since REGVIF(i) = RESVIF(0, i) ≥ 1. Contrarily to
RESVIF and REVIF, the REGVIF will not be decreasing in λ.

Forλ = 0 it is clearwhatR(0) = R is, but the question is how to calculateR(λ) forλ > 0. Friendly
[9] solves this problem by transforming the covariance matrix (6) of RE into a correlation matrix
considering this last one as R(λ).

Note that if we consider the following matrix:

R(λ) =
⎛⎝1 + λ ρ12 ρ13

ρ12 1 + λ ρ23
ρ13 ρ23 1 + λ

⎞⎠ , (A21)

and applying the definition (4) we obtain that

REGVIF(λ, i) =
(1 + λ)[(1 + λ)2 − ρ2

jk]

(1 + λ)[(1 + λ)2 − ρ2
ij − ρ2

ik − ρ2
jk] + 2ρijρjkρik

.

It is to say, REGVIF(λ, i) = RESVIF(λ, i) for all λ and i. However, in this case the election of R(λ)

will not correspond to a true correlationmatrix since its mean diagonal is not constantly 1 for λ > 0.

Appendix 3. Algorithms to obtain the VIFs inRE in the general case

Consider that we have p standardized exogenous variables and an endogenous variable, if we con-
sider the multiple linear regression model (1), the surrogate and ridge estimator VIFs for any value
of p may be computed as shown in the Algorithms 1 and 2. In both cases, the matrices XS and XZ
are calculated to obtain the regressions (19) and (27), respectively.

Finally, the coefficients of determination of these regressions are used to obtain the VIFs. Note
that these algorithms simply reproduce the steps followed in Sections 6 and 6. The generalized VIF
is obtained from expression (7) as shown in Algorithm 3. We have also implemented an iterative
procedure to calculate the VIF given by Marquardt [23], although it is not the aim of the work. In
Algorithm 4 the main diagonal elements of matrix (X′X + λI)−1X′X(X′X + λI)−1 are obtained.
Upon request, generate codes are available from the authors.

Algorithm 1 Obtaining surrogate VIF (RESVIF)
Require: Calculate X′X, I and D(δ) (discretization of the interval [0, 1] with δ points)
1: for λ ∈ D(δ) do
2: consider the surrogate matrix XS so that X′

SXS = X′X + λI
3: for i ∈ {1, 2, . . . , p} do
4: the regression of column i of XS on the other variables
5: obtain the coefficient of determination, R2

S(i), of the regression
6: calculate surrogate VIF of ith variable as RESVIF(λ, i) = 1

1−R2S(i)
7: end for
8: end for
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Algorithm 2 Obtaining ridge estimator VIF (REVIF)
Require: Calculate X′X, I and D(δ) (discretization of the interval [0, 1] with δ points)
1: for λ ∈ D(δ) do
2: calculate the matrix XZ that generates the matrix of the ridge estimators X′

ZXZ =
X′X + λI

3: for i ∈ {1, 2, . . . , p} do
4: the regression of column i of XZ on the other variables
5: obtain the coefficient of determination, R2

Z(i), of the regression
6: calculate surrogate VIF of ith variable as REVIF(λ, i) = 1

1−R2Z(i)
7: end for
8: end for

Algorithm 3 Obtaining generalized VIF (REGVIF)
Require: Calculate X′X, I,D(δ) (discretization of the interval [0, 1] with δ points) and σ̂ 2

(the estimation of the variance of regression)
1: for λ ∈ D(δ) do
2: calculate var

(
β̂(λ)

)
= σ̂ 2 (X′X + λI

)−1 X′X
(
X′X + λI

)−1

3: transform var
(
β̂(λ)

)
into a correlation matrix R

4: for i ∈ {1, 2, . . . , p} do
5: calculate generalized VIF of ith variable as REGVIF(i) = |R−i|

|R |
6: end for
7: end for

Algorithm 4 Obtaining Marquardt VIF (REMVIF)
Require: Calculate X′X, I and D(δ) (discretization of the interval [0, 1] with δ points)
1: for λ ∈ D(δ) do
2: calculateM(λ) = (

X′X + λI
)−1 X′X

(
X′X + λI

)−1

3: end for
4: consider the diagonal elements ofM(λ) as REMVIF
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Appendix 4. Data empirical application

Table A1. Data for empirical application.

Year Y X1 X2 X3

1995 4524.80 6076.20 6200.90 1140.74
1996 4792.40 6288.30 6591.60 1253.43
1997 5104.80 6520.40 7000.70 1324.76
1998 5589.50 6862.30 7525.40 1420.99
1999 6195.10 7237.60 7910.80 1531.10
2000 6752.60 7604.60 8559.40 1716.96
2001 7460.40 7810.30 8883.30 1867.85
2002 8361.20 8018.30 9060.10 1972.11
2003 9376.20 8244.50 9378.10 2077.36
2004 10650.70 8515.80 9937.20 2192.24
2005 12097.70 8803.50 10485.90 2290.93
2006 13481.90 9054.50 11268.10 2384.96
2007 14566.00 9262.90 11912.30 2528.77
2008 14661.30 9211.70 12460.20 2548.86
2009 14370.00 9032.60 11867.00 2438.73
2010 13712.30 9196.20 12321.90 2545.28
2011 13383.80 9428.80 12947.30 2631.51

Source: Economic Reports of the President [6].
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