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(p.v) Preamble
Time, occasion, chance and change.

To these all things are subject.

—Percy Bysshe Shelley

Questions about change and event occurrence lie at the heart of 
much empirical research. In some studies, we ask how people 
mature and develop; in others, we ask whether and when events 
occur. In their two-week study of the effects of cocaine exposure on 
neurodevelopment, Espy, Francis, and Riese (2000) gathered daily 
data from 40 premature infants: 20 had been exposed to cocaine, 
20 had not. Not only did the cocaine-exposed infants have slower 
rates of growth, but the effect of exposure was greater the later the 
infant was delivered. In his 23-year study of the effects of wives’ 
employment on marital dissolution, South (2001) tracked 3523 
couples to examine whether and, if so, when they divorced. Not 
only did the effect of wives’ employment become larger over time 
(the risk differential was greater in the 1990s than in the 1970s), it 
increased the longer a couple stayed married.
In this book, we use concrete examples and careful 
explanation to demonstrate how research questions about 
change and event occurrence can be addressed with 
longitudinal data. In doing so, we reveal research 
opportunities unavailable in the world of cross-sectional data. 
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In fact, the work of Espy and colleagues was prompted, at 
least in part, by the desire to improve upon an earlier cross-
sectional study. Brown, Bakeman, Coles, Sexson, and Demi 
(1998) found that gestational age moderated the effects of 
cocaine exposure. But with only one wave of data, they could 
do little more than establish that babies born later had poorer 
functioning. They could not describe infants’ rates of 
development, nor establish whether change trajectories were 
linear or nonlinear, nor determine whether gestational age 
affected infants’ functioning at birth. With 14 waves of data, 
on the other hand, Espy and colleagues could do this and

(p.vi)  more. Even though their study was brief—covering just 
the two weeks immediately after birth—they found that 
growth trajectories were nonlinear and that the trajectories of 
later-born babies began lower, had shallower slopes, and had 
lower rates of acceleration.

South (2001), too, laments that many researchers fail to 
capitalize on the richness of longitudinal data. Even among 
those who do track individuals over time, “relatively few … 
have attempted to ascertain whether the critical 
socioeconomic and demographic determinants of divorce and 
separation vary across the marital life course” (p. 230). 
Researchers are too quick to assume that the effects of 
predictors like wives’ employment remain constant over time. 
Yet as South points out, why should they? The predictors of 
divorce among newlyweds likely differ from those among 
couples who have been married for years. And concerning 
secular trends, South offers two cogent, but conflicting, 
arguments about how the effects of wives’ employment might 
change over time. First, he argues that the effects might 
diminish, as more women enter the labor force and working 
becomes normative. Next, he argues that the effects might 
increase, as changing mores weaken the link between 
marriage and parenthood. With rich longitudinal data on 
thousands of couples in different generations who married in 
different years, South carefully evaluates the evidence for, and 
against, these competing theories in ways that cross-sectional 
data do not allow.

Not all longitudinal studies will use the same statistical 
methods—the method must be matched to the question. 
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Because these two studies pose different types of research 
questions, they demand different analytic approaches. The 
first focuses on a continuous outcome—neurological 
functioning—and asks how this attribute changes over time. 
The second focuses on a specific event—divorce—and asks 
about its occurrence and timing. Conceptually, we say that in 
the first study, time is a predictor and our analyses assess how 
a continuous outcome varies as a function of time and other 
predictors. In the second study, time is an object of study in its 
own right and we want to know whether, and when, events 
occur and how their occurrence varies as a function of 
predictors. Conceptually, then, time is an outcome.

Answering each type of research question requires a different 
statistical approach. We address questions about change using 
methods known variously as individual growth modeling
(Rogosa, Brandt, & Zimowski, 1982; Willett, 1988), multilevel 
modeling (Goldstein, 1995), hierarchical linear modeling
(Raudenbush & Bryk, 2002), random coefficient regression
(Hedeker, Gibbons, & Flay, 1994), and mixed modeling
(Pinheiro & Bates, 2000). We address questions about event 
occurrence using methods known variously as survival analysis
(Cox & Oakes, 1984), event history (p.vii)  analysis (Allison,

1984; Tuma & Hannan, 1984), failure time analysis (Kalbfleish 
& Prentice, 1980), and hazard modeling (Yamaguchi, 1991). 
Recent years have witnessed major advances in both types of 
methods. Descriptions of these advances appear throughout 
the technical literature and their strengths are well 
documented. Statistical software is abundant, in the form of 
dedicated packages and preprogrammed routines in the large 
multipurpose statistical packages.

But despite these advances, application lags behind. 
Inspection of substantive papers across many disciplines, from 
psychology and education to criminology and public health, 
suggests that—with exceptions, of course—these methods 
have yet to be widely and wisely used. In a review of over 50 
longitudinal studies published in American Psychological 
Association journals in 1999, for example, we found that only 
four used individual growth modeling (even though many 
wanted to study change in a continuous outcome) and only one 
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used survival analysis (even though many were interested in 
event occurrence; Singer & Willett, 2001). Certainly, one 
cause for this situation is that many popular applied statistics 
books fail to describe these methods, creating the 
misimpression that familiar techniques, such as regression 
analysis, will suffice in these longitudinal applications.

Failure to use new methods is one problem; failure to use 
them well is another. Without naming names, we find that 
even when individual growth modeling and survival analysis 
are used in appropriate contexts, they are too often 
implemented by rote. These methods are complex, their 
statistical models sophisticated, their assumptions subtle. The 
default options in most computer packages do not
automatically generate the statistical models you need. 
Thoughtful data analysis requires diligence. But make no 
mistake; hard work has a payoff. If you learn how to analyze 
longitudinal data well, your approach to empirical research 
will be altered fundamentally. Not only will you frame your 
research questions differently but you will also change the 
kinds of effects that you can detect.

We are not the first to write on these topics. For each method 
we describe, there are many excellent volumes well worth 
reading and we urge you to consult these resources. Current 
books on growth modeling tend to be somewhat technical, 
assuming advanced knowledge of mathematical statistics (a 
topic that itself depends on probability theory, calculus, and 
linear algebra). That said, Raudenbush and Bryk (2002) and 
Diggle, Liang, and Zeger (1994) are two classics we are proud 
to recommend. Goldstein (1995) and Longford (1993) are 
somewhat more technical but also extremely useful. Perhaps 
because of its longer history, there are several accessible 
books on survival analysis. Two that we (p.viii)  especially 
recommend are Hosmer and Lemeshow (1999) and Collett 
(1994). For more technically oriented readers, the classic 
Kalbfleisch and Prentice (1980) and the newer Therneau and 
Grambsch (2000) extend the basic methods in important ways.

Our book is different from other books in several ways. To our 
knowledge, no other book at this level presents growth 
modeling and survival analysis within a single, coherent 
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framework. More often, growth modeling is treated as a 
special case of multilevel modeling (which it is), with repeated 
measurements “grouped” within the individual. Our book 
stresses the primacy of the sequential nature of the empirical 
growth record, the repeated observations on an individual 
over time. As we will show, this structure has far-reaching 
ramifications for statistical models and their assumptions. 
Time is not just “another” predictor; it has unique properties 
that are key to our work. Many books on survival analysis, in 
contrast, treat the method itself as an object of study in its 
own right. Yet isolating one approach from all others conceals 
important similarities among popular methods for the analysis 
of longitudinal data, in everything from the use of a person-
period data set to ways of interpreting the effects of time-
varying predictors. If you understand both growth modeling 
and survival analysis, and their complementarities, you will be 
able to apply both methods synergistically to different 
research questions in the same study.

Our targeted readers are our professional colleagues (and 
their students) who are comfortable with traditional statistical 
methods but who have yet to fully exploit these longitudinal 
approaches. We have written this book as a tutorial—a 
structured conversation among colleagues. In its pages, we 
address the questions that our colleagues and students ask us 
when they come for data analytic advice. Because we have to 
start somewhere, we assume that you are comfortable with 
linear and logistic regression analysis, as well as with the 
basic ideas of decent data analysis. We expect that you know 
how to specify and compare statistical models, test 
hypotheses, distinguish between main effects and interactions, 
comprehend the notions of linear and nonlinear relationships, 
and can use residuals and other diagnostics to examine your 
assumptions. Many of you may also be comfortable with 
multilevel modeling or structural equation modeling, although 
we assume no familiarity with either. And although our 
methodological colleagues are not our prime audience, we 
hope they, too, will find much of interest.

Our orientation is data analytic, not theoretical. We explain 
how to use growth modeling and survival analysis via careful 
step-by-step analysis of real data. For each method, we 
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emphasize five linked phases: identifying research questions, 
postulating an appropriate model and understanding (p.ix)  its 
assumptions, choosing a sound method of estimation, 
interpreting results, and presenting your findings. We devote 
considerable space—over 150 tables and figures—to 
illustrating how to present your work not just in words but 
also in displays. But ours is not a cookbook filled with 
checklists and flowcharts. The craft of good data analysis 
cannot be prepackaged into a rote sequence of steps. It 
involves more than using statistical computer software to 
generate reams of output. Thoughtful analysis can be difficult 
and messy, raising delicate problems of model specification 
and parameter interpretation. We confront these thorny issues 
directly, offering concrete advice for sound decision making. 
Our goal is to provide the short-term guidance you need to 
quickly start using the methods in your own work, as well as 
sufficient long-term advice to support your work once begun.

Many of the topics we discuss are rooted in complex statistical 
arguments. When possible, we do not delve into technical 
details. But if we believe that understanding these details will 
improve the quality of your work, we offer straightforward 
conceptual explanations that do not sacrifice intellectual rigor. 
For example, we devote considerable space to issues of 
estimation because we believe that you should not fit a 
statistical model and interpret its results without 
understanding intuitively what the model stipulates about the 
underlying population and how sample data are used to 
estimate parameters. But instead of showing you how to 
maximize a likelihood function, we discuss heuristically what 
maximum likelihood methods of estimation are, why they make 
sense, and how the computer applies them. Similarly, we 
devote considerable attention to explicating the assumptions 
of our statistical models so that you can understand their 
foundations and limitations. When deciding whether to include 
(or exclude) a particular topic, we asked ourselves: Is this 
something that empirical researchers need to know to be able 
to conduct their analyses wisely? This led us to drop some 
topics that are discussed routinely in other books (for 
example, we do not spend time discussing what not to do with 
longitudinal data) while we spend considerable time 
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discussing some topics that other books downplay (such as 
how to include and interpret the effects of time-varying 
predictors in your analyses).

All the data sets analyzed in this book—and there are many—
are real data from real studies. To provide you with a library of 
resources that you might emulate, we also refer to many other 
published papers. Dozens of researchers have been 
extraordinarily generous with their time, providing us with 
data sets in psychology, education, sociology, political science, 
criminology, medicine, and public health. Our years of 
teaching convince us that it is easier to master technical 
material when it is embedded in real-world applications. But 
we hasten to add that the methods are (p.x)  unaware of the 
substance involved. Even if your discipline is not represented 
in the examples in these pages, we hope you will still find 
much of analytic value. For this reason, we have tried to 
choose examples that require little disciplinary knowledge so 
that readers from other fields can appreciate the subtlety of 
the substantive arguments involved.

Like all methodologists writing in the computer age, we faced 
a dilemma: how to balance the competing needs of illustrating 
the use of statistical software with the inevitability that 
specific advice about any particular computer package would 
soon be out of date. A related concern that we shared was a 
sense that the ability to program a statistical package does not 
substitute for understanding what a statistical model is, how it 
represents relationships among variables, how its parameters 
are estimated, and how to interpret its results. Because we 
have no vested interest in any particular statistical package, 
we decided to use a variety of them throughout the book. But 
instead of presenting unadulterated computer output for your 
perusal, we have reformatted the results obtained from each 
program to provide templates you can use when reporting 
findings. Recognizing that empirical researchers must be able 
to use software effectively, however, we have provided an 
associated website that lists the data sets used in the book, as 
well as a library of computer programs for analyzing them, 
and selected additional materials of interest to the data 
analyst.
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The book is divided into two major parts: individual growth 
modeling in the first half, survival analysis in the second. 
Throughout each half, we stress the important connections 
between the methods. Each half has its own introduction that: 
(1) discusses when the method might be used; (2) 
distinguishes among the different types of research questions 
in that domain; and (3) identifies the major statistical features 
of empirical studies that lend themselves to the specified 
analyses. Both types of analyses require a sensible metric for 
clocking time, but in growth modeling, you need multiple 
waves of data and an outcome that changes systematically, 
whereas in survival analysis, you must clearly identify the 
beginning of time and the criteria used to assess event 
occurrence. Subsequent chapters in each half of the book walk 
you through the details of analysis. Each begins with a chapter 
on data description and exploratory analysis, followed by a 
detailed discussion of model specification, model fitting, and 
parameter interpretation. Having introduced a basic model, 
we then consider extensions. Because it is easier to 
understand the path that winds through the book only after 
important issues relevant for each half have been introduced, 
we defer discussion of each half’s outline to its associated 
introductory chapter.
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(p.xi) Acknowledgments
We have spent the last eighteen years working closely 
together in the most productive, mutually supportive, and 
personally enjoyable collaboration of our professional lives. 
We offer this book as testament to that collaboration.

We first met in January 1985. The previous academic year, we 
had each applied for a single position as an Assistant Professor 
of Quantitative Methods at the Harvard Graduate School of 
Education (HGSE). When the chair of the search committee 
announced that he was leaving Harvard for the University of 
Chicago, the School discovered it had two vacancies to fill and 
decided to hire us both. We had never met, and everyone told 
us they expected us to compete. Instead, we began meeting 
regularly for lunch—first for mutual support, then to 
coordinate courses, and ultimately to link our scholarship. 
Despite the popular image of the competitive lone scholar, 
we’ve found that by working together, we’re more 
imaginative, productive, and effective than either of us is 
working apart. And perhaps more importantly, we have more 
fun.

As junior academics, we had to weather the usual storms of 
promotion and review. For this, we owe our sincere thanks to 
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colleagues at Harvard and elsewhere who encouraged us to 
pursue our own interests and scholarship above all else. 
Initially, we were set on our path by our doctoral advisors: 
Fred Mosteller and Dick Light at Harvard (for Judy), David 
Rogosa and Ingram Olkin at Stanford (for John). Tony Bryk, 
the chair of the Harvard search committee that hired us, 
inadvertently laid the foundation for our collaboration by 
bringing us together and then leaving us alone. Over our years 
at Harvard, we benefited greatly from the active help and 
gentle advice of colleagues. Dick Light and Dick (p.xii)

Murnane nurtured and guided us by unselfish example and 
personal friendship. Catherine Snow and Susan Johnson led 
the way by exploring the promotional pathway at HGSE, just 
ahead of us. Two far-sighted HGSE Deans, Pat Graham and 
Jerry Murphy, found ways to help an institution steeped in 
tradition entertain the unusual—a pair of quantitative 
methodologists working together.

We trace our planful collaboration to a conversation one warm 
spring afternoon in April 1987, on a bench along the 
Mississippi River in New Orleans. With youthful hubris, we 
hatched the first of several “five-year” plans: together we 
would become the “great communicators of statistical 
methods,” bringing powerful new quantitative techniques to 
empirical researchers throughout education and the social 
sciences. A former B-movie actor had carried that banner into 
the Oval Office, so why couldn’t a nice Jewish girl from 
Brooklyn and an expatriate Yorkshire lad do the academic 
equivalent? We decided right there to give it a shot.

Part of our strategy was to make our collaboration seamless. 
We would never divulge who wrote what; if one of us was 
invited to give a talk or contribute a paper, s/he would insist 
that the other participate as well; we would never compete 
with each other for any opportunity; and all our papers would 
include the disclaimer: “The order of the authors has been 
determined by randomization.”

The majority of our joint scholarly activity has focused on the 
analytic issues and problems that arise when modeling change 
and event occurrence. Like any intellectual endeavor, our 
understanding of the field has grown more nuanced over time, 
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largely as a consequence of interactions not only with one and 
other but with others as well. This book draws together and 
organizes our own thoughts in light of the many 
understandings we have derived from the pioneering work of 
others. Too numerous to count, the list includes: Paul Allison, 
Mark Appelbaum, Carl Bereiter, Tony Bryk, Harris Cooper, 
Dennis Cox, Lee Cronbach, Art Dempster, Brad Efron, Jan de 
Leeuw, Harvey Goldstein, Larry Hedges, Dave Hoaglin, Fred 
Lord, Jack Kalbfleisch, Nan Laird, Bob Linn, Jack McArdle, Bill 
Meredith, Rupert Miller, Fred Mosteller, Bengt Muthen, John 
Nesselroade, Ross Prentice, Steve Raudenbush, Dave 
Rindskopf, David Rogosa, John Tisak, John Tukey, Nancy 
Tuma, Jim Ware, Russ Wolfinger, and Marvin Zelen. To all of 
these, and to the many others not listed here, we offer our 
sincere thanks.

We would also like to thank the many people who contributed 
directly to the genesis, production, and completion of the 
book. Our first thanks go to the Spencer Foundation, which 
under then-President Pat Graham, provided the major grant 
that permitted us to buy back time from our teaching 
schedules to begin assembling this manuscript. Anonymous

(p.xiii)  reviewers and board members at the Spencer 
Foundation provided early feedback on our original proposal 
and helped refine our notions of the book’s content, audience, 
and organization. Other friends, particularly Steve 
Raudenbush and Dave Rindskopf, read early drafts of the book 
and gave us detailed comments. Our colleague Suzanne 
Graham tested out earlier versions of the book in her class on 
longitudinal data analysis at HGSE. Suzanne, and the cohorts 
of students who took the class, provided helpful feedback on 
everything from typos to conceptual errors to writing style.

We could not have written a book so reflective of our 
pedagogic philosophy without access to many real longitudinal 
data sets. To provide the data for this book, we surveyed the 
research literature across a wide array of substantive domains 
and contacted the authors of papers that caught our collective 
eye. In this search, we were very ably assisted by our 
colleague, Librarian John Collins, and his team at HGSE’s 
Monroe C. Gutman Library.
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The empirical researchers that we contacted—often out of the 
blue—were unfailingly generous and helpful with our requests 
to use their data. Many of these scholars are themselves 
pioneers in applying innovative analytic methods. We are 
grateful for their time, their data, and their willingness to 
allow us to capitalize on their work in this book. Specifically, 
we would like to thank the following colleagues (in 
alphabetical order), who made a direct contribution of data to 
our work: Niall Bolger; Peg Burchinal; Russell Burton; 
Deborah Capaldi and Lynn Crosby; Ned Cooney; Patrick 
Curran and Laurie Chassin; Andreas Diekmann; Al Farrell; 
Michael Foster; Beth Gamse; Elizabeth Ginexi; Suzanne 
Graham; James Ha; Sharon Hall; Kris Henning; Margaret 
Keiley; Dick Murnane and Kathy Boudett; Steve Raudenbush; 
Susan Sorenson; Terry Tivnan; Andy Tomarken; Blair 
Wheaton; Christopher Zorn. In the text and bibliography, we 
provide citations to exemplary papers by these authors in 
which the data were originally reported. These citations list 
both the scholars who were responsible for providing us with 
the data and also the names of their collaborating colleagues, 
many of whom were also important in granting permission to 
use the data. And, while we cannot list everyone here in the 
brief space allowed for our acknowledgments, we recognize 
them all explicitly in the text and bibliography in our citation 
of their scholarship, and we thank them enormously for their 
support.

Of course, the data will always remain the intellectual 
property of the original authors, but any mistakes in the 
analyses reported here are ours alone. We must emphasize 
that we used these data examples strictly for the illustration of 
statistical methods. In many of our examples, we (p.xiv)

modified the original data to suit our pedagogic purposes. We 
may have selected specific variables from the original dataset 
for re-analysis, perhaps combining several into a single 
composite. We transformed variables as we saw fit. We 
selected subgroups of individuals, or particular cohorts, from 
the original sample for re-analysis. We also eliminated specific 
waves of data and individual cases from our analyses, as 
necessary. Consequently, any substantive results that we 
present may not necessarily match those of the original 
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published studies. The original researchers retain the rights to 
the substantive findings of the studies from which our data-
examples were drawn and their results naturally take 
precedence over ours. For this reason, if you are interested in 
those findings explicitly, you must consult the original 
empirical papers.

We decided early on that this book would describe the ideas 
behind analyses, not the programming of statistical software. 
Computer software for analyzing longitudinal data is now 
ubiquitous. The major statistical packages include routines for 
modeling change and event occurrence, and there are 
dedicated software packages available as well. Software 
packages differ not so much in their core purpose as in their 
implementation; they generally fit the same statistical models 
but offer different user interfaces, methods of estimation, 
ancillary statistics, graphics and diagnostics. We therefore 
decided not to feature any particular piece of software but to 
employ a sampling of what was readily available at the time. 
We thank the SAS Institute, Scientific Software International, 
SPSS, and the STATA Corporation for their support, and we 
appreciate the willingness of the authors and publishers of the 
HLM, MLwiN, and LISREL software for providing us with up-
to-the minute versions.

Needless to say, software continues to change rapidly. Since 
we began this book, all the packages we initially used have 
been improved and revamped, and new software has been 
written. This process of steady improvement is a great benefit 
to empirical researchers and we fully expect it to continue 
unabated. We suggest that researchers use whatever software 
is most convenient at any given moment rather than 
committing permanently to any single piece of software. While 
analytic processes may differ with different software, findings 
will probably not.

We would like to comment specifically on the help, feedback 
and support that we have received from the Statistical 
Training and Consulting Division (STCD) of the Academic 
Technology Services at UCLA, under the directorship of 
Michael Mitchell. The STCD has graciously written computer 
programs to execute all the analyses featured in this book, 
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using several major statistical packages (including HLM, 
MLwiN, SAS, SPSS, SPLUS, and STATA), and they have 
posted these programs along with selected output to a 
dedicated website (p.xv)  (http://www.ats.ucla.edu/stat/
examples/alda/). This website is a terrific practical companion 
to our book and we recommend it: access is free and open to 
all. We would like to thank Michael and his dedicated team of 
professionals for the foresight and productivity they have 
displayed in making this service available to us and to the rest 
of the scholarly community.

It goes without saying that we owe an immense debt to all 
members of the production team at Oxford University Press. 
We are particularly grateful to: Joan Bossert, Vice President 
and Acquiring Editor; Lisa Stallings, Managing Editor; Kim 
Robinson and Maura Roessner, Assistant Editors. There are 
also many others who touched the book during its long journey 
and we thank them as well for all the energy, care, and 
enthusiasm they devoted to this effort.

Finally, we want to recognize our love for those who gave us 
life and who provide us with a reason to live—our parents, our 
families, and our partners.

P. S.: The order of the authors was determined by 
randomization. (p.xvi)
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Abstract and Keywords

This chapter describes why longitudinal data are necessary for 
studying change. Section 1.1 introduces three longitudinal 
studies of change. Section 1.2 distinguishes between the two 
types of issues these examples address: within-individual 
change, how does each person change over time? 
Interindividual differences in change, what predicts 
differences among people in their changes? This distinction 
provides an appealing heuristic for framing research questions 
and underpins the statistical models we ultimately present. 
Section 1.3 identifies three requisite methodological features 
of any study of change: the availability of multiple waves of 
data; a substantively meaningful metric for time; and an 
outcome that changes systematically.
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Change is inevitable. Change is constant.

—Benjamin Disraeli

Change is pervasive in everyday life. Infants crawl and walk, 
children learn to read and write, the elderly become frail and 
forgetful. Beyond these natural changes, targeted 
interventions can also cause change: cholesterol levels may 
decline with new medication; test scores might rise after 
coaching. By measuring and charting changes like these—both 
naturalistic and experimentally induced—we uncover the 
temporal nature of development.

The investigation of change has fascinated empirical 
researchers for generations. Yet it is only since the 1980s, 
when methodologists developed a class of appropriate 
statistical models—known variously as individual growth 
models, random coefficient models, multilevel models, mixed 
models, and hierarchical linear models—that researchers have 
been able to study change well. Until then, the technical 
literature on the measurement of change was awash with 
broken promises, erroneous half-truths, and name-calling. The 
1960s and 1970s were especially rancorous, with most 
methodologists offering little hope, insisting that researchers 
should not even attempt to measure change because it could 
not be done well (Bereiter, 1963; Linn & Slinde, 1977). For 
instance, in their paper, “How should we measure change? Or 
should we?,” Cronbach and Furby (1970) tried to end the 
debate forever, advising researchers interested in the study of 
change to “frame their questions in other ways.”

Today we know that it is possible to measure change, and to 
do it well, if you have longitudinal data (Rogosa, Brandt, & 
Zimowski, 1982; Willett, 1989). Cross-sectional data—so easy 
to collect and so widely available—will not suffice. In this 
chapter, we describe why longitudinal data are necessary for 
studying change. We begin, in section 1.1, by introducing 
three (p.4)  longitudinal studies of change. In section 1.2, we 
distinguish between the two types of question these examples 
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address, questions about: (1) within-individual change—How 
does each person change over time?—and (2) interindividual 
differences in change—What predicts differences among 
people in their changes? This distinction provides an 
appealing heuristic for framing research questions and 
underpins the statistical models we ultimately present. We 
conclude, in section 1.3, by identifying three requisite
methodological features of any study of change: the 
availability of (1) multiple waves of data; (2) a substantively 
meaningful metric for time; and (3) an outcome that changes 
systematically.

1.1 When Might You Study Change over Time?

Many studies lend themselves to the measurement of change. 
The research design can be experimental or observational. 
Data can be collected prospectively or retrospectively. Time 
can be measured in a variety of units—months, years, 
semesters, sessions, and so on. The data collection schedule 
can be fixed (everyone has the same periodicity) or flexible 
(each person has a unique schedule). Because the phrases 
“growth models” and “growth curve analysis” have become 
synonymous with the measurement of change, many people 
assume that outcomes must “grow” or increase over time. Yet 
the statistical models that we will specify care little about the 
direction (or even the functional form) of change. They lend 
themselves equally well to outcomes that decrease over time 
(e.g., weight loss among dieters) or exhibit complex 
trajectories (including plateaus and reversals), as we illustrate 
in the following three examples.

1.1.1 Changes in Antisocial Behavior during Adolescence

Adolescence is a period of great experimentation when 
youngsters try out new identities and explore new behaviors. 
Although most teenagers remain psychologically healthy, some 
experience difficulty and manifest antisocial behaviors, 
including aggressive externalizing behaviors and depressive
internalizing behaviors. For decades, psychologists have 
postulated a variety of theories about why some adolescents 
develop problems and others do not, but lacking appropriate 
statistical methods, these suppositions went untested. Recent 
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advances in statistical methods have allowed empirical 
exploration of developmental trajectories and assessment of 
their predictability based upon early childhood signs and 
symptoms.

(p.5) Coie, Terry, Lenox, Lochman, and Hyman (1995) 
designed an ingenious study to investigate longitudinal 
patterns by capitalizing on data gathered routinely by the 
Durham, North Carolina, public schools. As part of a 
systemwide screening program, every third grader completes 
a battery of sociometric instruments designed to identify 
classmates who are overly aggressive (who start fights, hit 
children, or say mean things) or extremely rejected (who are 
liked by few peers and disliked by many). To investigate the 
link between these early assessments and later antisocial 
behavioral trajectories, the researchers tracked a random 
sample of 407 children, stratified by their third-grade peer 
ratings. When they were in sixth, eighth, and tenth grade, 
these children completed a battery of instruments, including 
the Child Assessment Schedule (CAS), a semi-structured 
interview that assesses levels of antisocial behavior. 
Combining data sets allowed the researchers to examine these 
children’s patterns of change between sixth and tenth grade 
and the predictability of these patterns on the basis of the 
earlier peer ratings.

Because of well-known gender differences in antisocial 
behavior, the researchers conducted separate but parallel 
analyses by gender. For simplicity here, we focus on boys. 
Nonaggressive boys—regardless of their peer rejection ratings
—consistently displayed few antisocial behaviors between 
sixth and tenth grades. For them, the researchers were unable 
to reject the null hypothesis of no systematic change over 
time. Aggressive nonrejected boys were indistinguishable from 
this group with respect to patterns of externalizing behavior, 
but their sixth-grade levels of internalizing behavior were 
temporarily elevated (declining linearly to the nonaggressive 
boys’ level by tenth grade). Boys who were both aggressive
and rejected in third grade followed a very different trajectory. 
Although they were indistinguishable from the nonaggressive 
boys in their sixth-grade levels of either outcome, over time 
they experienced significant linear increases in both. The 
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researchers concluded that adolescent boys who will 
ultimately manifest increasing levels of antisocial behavior can 
be identified as early as third grade on the basis of peer 
aggression and rejection ratings.

1.1.2 Individual Differences in Reading Trajectories

Some children learn to read more rapidly than others. Yet 
despite decades of research, specialists still do not fully 
understand why. Educators and pediatricians offer two major 
competing theories for these interindividual differences: (1) 
the lag hypothesis, which assumes that every child can become 
a proficient reader—children differ only in the rate at which 
they acquire skills; and (2) the deficit hypothesis, which (p.6)

assumes that some children will never read well because they 
lack a crucial skill. If the lag hypothesis were true, all children 
would eventually become proficient; we need only follow them 
for sufficient time to see their mastery. If the deficit 
hypothesis were true, some children would never become 
proficient no matter how long they were followed—they simply 
lack the skills to do so.

Francis, Shaywitz, Stuebing, Shaywitz, and Fletcher (1996) 
evaluated the evidence for and against these competing 
hypotheses by following 363 six-year-olds until age 16. Each 
year, children completed the Woodcock-Johnson Psycho-
educational Test Battery, a well-established measure of 
reading ability; every other year, they also completed the 
Wechsler Intelligence Scale for Children (WISC). By 
comparing third-grade reading scores to expectations based 
upon concomitant WISC scores, the researchers identified 
three distinct groups of children: 301 “normal readers”; 28 
“discrepant readers,” whose reading scores were much 
different than their WISC scores would suggest; and 34 “low 
achievers,” whose reading scores, while not discrepant from 
their WISC scores, were far below normal.

Drawing from a rich theoretical tradition that anticipates 
complex trajectories of development, the researchers 
examined the tenability of several alternative nonlinear 
growth models. Based upon a combination of graphical 
exploration and statistical testing, they selected a model in 
which reading ability increases nonlinearly over time, 
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eventually reaching an asymptote—the maximum reading level 
the child could be expected to attain (if testing continued 
indefinitely). Examining the fitted trajectories, the researchers 
found that the two groups of disabled readers were 
indistinguishable statistically, but that both differed 
significantly from the normal readers in their eventual 
plateau. They estimated that the average child in the normal 
group would attain a reading level 30 points higher than that 
of the average child in either the discrepant or low-achieving 
group (a large difference given the standard deviation of 12). 
The researchers concluded that their data were more 
consistent with the deficit hypothesis—that some children will
never attain mastery—than with the lag hypothesis.

1.1.3 Efficacy of Short-Term Anxiety-Provoking Psychotherapy

Many psychiatrists find that short-term anxiety-provoking 
psychotherapy (STAPP) can ameliorate psychological distress. 
A methodological strength of the associated literature is its 
consistent use of a well-developed instrument: the Symptom 
Check List (SCL-90), developed by (p.7)  Derogatis (1994). A 
methodological weakness is its reliance on two-wave designs: 
one wave of data pretreatment and a second wave 
posttreatment. Researchers conclude that the treatment is 
effective when the decrease in SCL-90 scores among STAPP 
patients is lower than the decrease among individuals in a 
comparison group.

Svartberg, Seltzer, Stiles, and Khoo (1995) adopted a different 
approach to studying STAPP’s efficacy. Instead of collecting 
just two waves of data, the researchers examined “the course, 
rate and correlates of symptom improvement as measured 
with the SCL-90 during and after STAPP” (p. 242). A sample of 
15 patients received approximately 20 weekly STAPP sessions. 
During the study, each patient completed the SCL-90 up to 
seven times: once or twice at referral (before therapy began), 
once at mid-therapy, once at termination, and three times 
after therapy ended (after 6, 12, and 24 months). Suspecting 
that STAPP’s effectiveness would vary with the patients’ 
abilities to control their emotional and motivational impulses 
(known as ego rigidity), two independent psychiatrists 
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reviewed the patients’ intake files and assigned ego rigidity 
ratings.

Plotting each patient’s SCL-90 data over time, the researchers 
identified two distinct temporal patterns, one during 
treatment and another after treatment. Between intake and 
treatment termination (an average of 8.5 months later), most 
patients experienced relatively steep linear declines in SCL-90 
scores—an average decrease of 0.060 symptoms per month 
(from an initial mean of 0.93). During the two years after 
treatment, the rate of linear decline in symptoms was far 
lower—only 0.005 per month—although still distinguishable 
from 0. In addition to significant differences among individuals 
in their rates of decline before and after treatment 
termination, ego rigidity was associated with rates of symptom 
decline during therapy (but not after). The researchers 
concluded that: (1) STAPP can decrease symptoms of distress
during therapy; (2) gains achieved during STAPP therapy can
be maintained; but (3) major gains after STAPP therapy ends 
are rare.

1.2 Distinguishing Between Two Types of 
Questions about Change

From a substantive point of view, each of these studies poses a 
unique set of research questions about its own specific 
outcomes (antisocial behavior, reading levels, and SCL-90 
scores) and its own specific predictors (peer ratings, disability 
group, and ego rigidity ratings). From a statistical point of 
view, however, each poses an identical pair of questions: (1)

(p.8)  How does the outcome change over time? and (2) Can 
we predict differences in these changes? From this 
perspective, Coie and colleagues (1995) are asking: (1) How 
does each adolescent’s level of antisocial behavior change 
from sixth through tenth grade?; and (2) Can we predict 
differences in these changes according to third grade peer 
ratings? Similarly, Francis and colleagues (1996) are asking: 
(1) How does reading ability change between ages 6 and 16?; 
and (2) Can we predict differences in these changes according 
to the presence or absence of a reading disability?
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These two kinds of question form the core of every study about 
change. The first question is descriptive and asks us to 
characterize each person’s pattern of change over time. Is 
individual change linear? Nonlinear? Is it consistent over time 
or does it fluctuate? The second question is relational and asks 
us to examine the association between predictors and the 
patterns of change. Do different types of people experience 
different patterns of change? Which predictors are associated 
with which patterns? In subsequent chapters, we use these 
two questions to provide the conceptual foundation for our 
analysis of change, leading naturally to the specification of a 
pair of statistical models—one per question. To develop your 
intuition about the questions and how they map onto 
subsequent studies of change, here we simply emphasize their 
sequential and hierarchical nature.

In the first stage of an analysis of change, known as level-1, we 
ask about within-individual change over time. Here, we 
characterize the individual pattern of change so that we can 
describe each person’s individual growth trajectory—the way 
his or her outcome values rise and fall over time. Does this 
child’s reading skill grow rapidly, so that she begins to 
understand complex text by fourth or fifth grade? Does 
another child’s reading skill start out lower and grow more 
slowly? The goal of a level-1 analysis is to describe the shape
of each person’s individual growth trajectory.

In the second stage of an analysis of change, known as level-2, 
we ask about interindividual differences in change. Here, we 
assess whether different people manifest different patterns of 
within-individual change and ask what predicts these 
differences. We ask whether it is possible to predict, on the 
basis of third-grade peer ratings, which boys will remain 
psychologically healthy during adolescence and which will 
become increasingly antisocial? Can ego rigidity ratings 
predict which patients will respond most rapidly to 
psychotherapy? The goal of a level-2 analysis is to detect 
heterogeneity in change across individuals and to determine 
the relationship between predictors and the shape of each 
person’s individual growth trajectory.
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In subsequent chapters, we map these two research questions 
onto a (p.9)  pair of statistical models: (1) a level-1 model, 
describing within-individual change over time; and (2) a 
level-2 model, relating predictors to any interindividual 
differences in change. Ultimately, we consider these two 
models to be a “linked pair” and refer to them jointly as the
multilevel model for change. But for now, we ask only that you 
learn to distinguish the two types of questions. Doing so helps 
clarify why research studies of change must possess certain 
methodological features, a topic to which we now turn.

1.3 Three Important Features of a Study of 
Change

Not every longitudinal study is amenable to the analysis of 
change. The studies introduced in section 1.1 share three 
methodological features that make them particularly well 
suited to this task. They each have:

• Three or more waves of data

• An outcome whose values change systematically over time

• A sensible metric for clocking time

We comment on each of these features of research design below.

1.3.1 Multiple Waves of Data

To model change, you need longitudinal data that describe 
how each person in the sample changes over time. We begin 
with this apparent tautology because too many empirical 
researchers seem willing to leap from cross-sectional data that 
describe differences among individuals of different ages to 
making generalizations about change over time. Many 
developmental psychologists, for example, analyze cross-
sectional data sets composed of children of differing ages, 
concluding that outcome differences between age groups—in 
measures such as antisocial behavior—reflect real change over 
time. Although change is a compelling explanation of this 
situation—it might even be the true explanation—cross-
sectional data can never confirm this possibility because 
equally valid competing explanations abound. Even in a 
sample drawn from a single school, a random sample of older 
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children may differ from a random sample of younger children 
in important ways: the groups began school in different years, 
they experienced different curricula and life events, and if 
data collection continues for a sufficient period of time, the 
older sample omits age-mates who dropped out of school. Any 
observed differences in outcomes between grade-separated 
cohorts may be due to these explanations and not to 
systematic individual change. In (p.10)  statistical terms, 
cross-sectional studies confound age and cohort effects (and 
age and history effects) and are prone to selection bias.

Studies that collect two waves of data are only marginally 
better. For decades, researchers erroneously believed that 
two-wave studies were sufficient for studying change because 
they narrowly conceptualized change as an increment: the 
simple difference between scores assessed on two 
measurement occasions (see Willett, 1989). This limited 
perspective views change as the acquisition (or loss) of the 
focal increment: a “chunk” of achievement, attitude, 
symptoms, skill, or whatever. But there are two reasons an 
increment’s size cannot describe the process of change. First, 
it cannot tell us about the shape of each person’s individual 
growth trajectory, the focus of our level-1 question. Did all the 
change occur immediately after the first assessment? Was 
progress steady or delayed? Second, it cannot distinguish true 
change from measurement error. If measurement error 
renders pretest scores too low and posttest scores too high, 
you might conclude erroneously that scores increase over time 
when a longer temporal view would suggest the opposite. In 
statistical terms, two-waves studies cannot describe individual 
trajectories of change and they confound true change with 
measurement error (see Rogosa, Brandt, & Zimowski, 1982).

Once you recognize the need for multiple waves of data, the 
obvious question is, How many waves are enough? Are three 
sufficient? Four? Should you gather more? Notice that Coie’s 
study of antisocial behavior included just three waves, while 
Svartberg’s STAPP study included at least six and Francis’s 
reading study included up to ten. In general, more waves are 
always better, within cost and logistical constraints. Detailed 
discussion of this design issue requires clear understanding of 
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the statistical models presented in this book. So for now, we 
simply note that more waves allow you to posit more elaborate 
statistical models. If your data set has only three waves, you 
must fit simpler models with stricter assumptions—usually 
assuming that individual growth is linear over time (as Coie 
and colleagues did in their study of antisocial behavior). 
Additional waves allow you to posit more flexible models with 
less restrictive assumptions; you can assume that individual 
growth is nonlinear (as in the reading study) or linear in 
chunks (as in the STAPP study). In chapters 2–5, we assume 
that individual growth is linear over time. In chapter 6, we 
extend these basic ideas to situations in which level-1 growth 
is discontinuous or nonlinear.

1.3.2 A Sensible Metric for Time

Time is the fundamental predictor in every study of change; it 
must be measured reliably and validly in a sensible metric. In 
our examples, (p.11)  reading scores are associated with 

particular ages, antisocial behavior is associated with 
particular grades, and SCL-90 scores are associated with 
particular months since intake. Choice of a time metric affects 
several interrelated decisions about the number and spacing 
of data collection waves. Each of these, in turn, involves 
consideration of costs, substantive needs, and statistical 
benefits. Once again, because discussion of these issues 
requires the statistical models that we have yet to develop, we 
do not delve into specifics here. Instead we discuss general 
principles.

Our overarching point is that there is no single answer to the 
seemingly simple question about the most sensible metric for 
time. You should adopt whatever scale makes most sense for 
your outcomes and your research question. Coie and 
colleagues used grade because they expected antisocial 
behavior to depend more on this “social” measure of time than 
on chronological age. In contrast, Francis and colleagues used 
age because each reading score was based on the child’s age 
at testing. Of course, these researchers also had the option of 
analyzing their data using grade as the time metric; indeed, 
they present tables in this metric. Yet when it came to data 
analysis, they used the child’s age at testing so as to increase 



A Framework for Investigating Change over Time

Page 12 of 17

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

the precision with which they measured each child’s growth 
trajectory.

Many studies possess several plausible metrics for time. 
Suppose, for example, your interest focuses on the longevity of 
automobiles. Most of us would initially assess time using the 
vehicle’s age—the number of weeks (or months) since 
purchase (or manufacture). And for many automotive 
outcomes—particularly those that assess appearance qualities 
like rust and seat wear—this choice seems appropriate. But for 
other outcomes, other metrics may be better. When modeling 
the depth of tire treads, you might measure time in miles, 
reasoning that tire wear depends more on actual use, not 
years on the road. The tires of a one-year-old car that has been 
driven 50,000 miles will likely be more worn than those of a 
two-year-old car that has been driven only 20,000 miles. 
Similarly, when modeling the health of the starter/igniter, you 
might measure time in trips, reasoning that the starter is used 
only once each drive. The condition of the starters in two cars 
of identical age and mileage may differ if one car is driven 
infrequently for long distances and the other is driven several 
times daily for short hops. So, too, when modeling the life of 
the engine, you might measure time in oil changes, reasoning 
that lubrication is most important in determining engine wear.

Our point is simple: choose a metric for time that reflects the 
cadence you expect to be most useful for your outcome. 
Psychotherapy studies can clock time in weeks or number of 
sessions. Classroom studies can clock time in grade or age. 
Studies of parenting behavior can clock time using parental 
age or child age. The only constraint is that, like time itself, 
the (p.12)  temporal variable can change only monotonically—
in other words, it cannot reverse direction. This means, for 
example, that when studying child outcomes, you could use 
height, but not weight, as a gauge of time.

Having chosen a metric for time, you have great flexibility 
concerning the spacing of the waves of data collection. The 
goal is to collect sufficient data to provide a reasonable view 
of each individual’s growth trajectory. Equally spaced waves
have a certain appeal, in that they offer balance and 
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symmetry. But there is nothing sacrosanct about equal 
spacing. If you expect rapid nonlinear change during some 
time periods, you should collect more data at those times. If 
you expect little change during other periods, space those 
measurements further apart. So in their STAPP study, 
Svartberg and colleagues (1995) spaced their early waves 
more closely together—at approximately 0, 4, 8, and 12 
months—because they expected greater change during 
therapy. Their later waves were further apart—at 18 and 30 
months—because they expected fewer changes.

A related issue is whether everyone should share the same 
data collection schedule—in other words, whether everyone 
needs an identical distribution of waves. If everyone is 
assessed on an identical schedule—whether the waves are 
equally or unequally spaced—we say that the data set is time-
structured. If data collection schedules vary across 
individuals, we say the data set is time-unstructured. 
Individual growth modeling is flexible enough to handle both 
possibilities. For simplicity, we begin with time-structured 
data sets (in chapters 2, 3, and 4). In chapter 5, we show how 
the same multilevel model for change can be used to analyze 
time-unstructured data sets.

Finally, the resultant data set need not be balanced; in other 
words, each person need not have the same number of waves. 
Most longitudinal studies experience some attrition. In Coie 
and colleagues’ (1995) study of antisocial behavior, 219 
children had three waves, 118 had two, and 70 had one. In 
Francis and colleagues’ (1996) reading study, the total 
number of assessments per child varied between six and nine. 
While non-random attrition can be problematic for drawing 
inferences, individual growth modeling does not require 
balanced data. Each individual’s empirical growth record can 
contain a unique number of waves collected at unique 
occasions of measurement—indeed, as we will see in chapter
5, some individuals can even contribute fewer than three 
waves!
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1.3.3 A Continuous Outcome That Changes Systematically Over 
Time

Statistical models care little about the substantive meaning of 
the individual outcomes. The same models can chart changes 
in standardized test (p.13)  scores, self-assessments, 
physiological measurements, or observer ratings. This 
flexibility allows individual growth models to be used across 
diverse disciplines, from the social and behavioral sciences to 
the physical and natural sciences. The content of measurement 
is a substantive, not statistical, decision.

How to measure a given construct, however, is a statistical 
decision, and not all variables are equally suitable. Individual 
growth models are designed for continuous outcomes whose 
values change systematically over time.1 This focus allows us 
to represent individual growth trajectories using meaningful 
parametric forms (an idea we introduce in chapter 2). Of 
course, it must make conceptual and theoretical sense for the 
outcome to follow such a trajectory. Francis and colleagues 
(1996) invoke developmental theory to argue that reading 
ability will follow a logistic trajectory as more complex skills 
are layered upon basic building blocks and children head 
toward an upper asymptote. Svartberg and colleagues (1995) 
invoke psychiatric theory to argue that patients’ trajectories of 
symptomatology will differ when they are in therapy and after 
therapy ends.

Continuous outcomes support all the usual manipulations of 
arithmetic: addition, subtraction, multiplication, and division. 
Differences between pairs of scores, equidistantly spaced 
along the scale, have identical meanings. Scores derived from 
standardized instruments developed by testing companies—
including the Woodcock Johnson Psycho-educational Test 
Battery—usually display these properties. So, too, do 
arithmetic scores derived from most public-domain 
instruments, like Hodges’s Child Assessment Schedule and 
Derogatis’s SCL-90. Even homegrown instruments can 
produce scores with the requisite measurement properties as 
long as they include a large enough number of items, each 
scored using a large enough number of response categories.
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Of course, your outcomes must also possess decent 
psychometric properties. Using well-known or carefully piloted 
instruments can ensure acceptable standards of validity and 
precision. But longitudinal research imposes three additional 
requirements because the metric, validity, and precision of the 
outcome must also be preserved across time.

When we say that the metric in which the outcome is 
measured must be preserved across time, we mean that the 
outcome scores must be equatable over time—a given value of 
the outcome on any occasion must represent the same 
“amount” of the outcome on every occasion. Outcome 
equatability is easiest to ensure when you use the identical 
instrument for measurement repeatedly over time, as did Coie 
and colleagues (1995) in their study of antisocial behavior and 
Svartverg and colleagues (1995) in their study of STAPP. 
Establishing outcome equatability when (p.14)  the measures 
differ over time—like the Woodcock Johnson test battery used 
by Francis and colleagues (1996)—requires more effort. If the 
instrument has been developed by a testing organization, you 
can usually find support for equatability over time in the 
testing manuals. Francis and colleagues (1996) note that:

The Rasch-scaled score reported for the reading-cluster 
score is a transformation of the number correct for each 
subtest that yields a score with interval scale properties 
and a constant metric. The transformation is such that a 
score of 500 corresponds to the average performance 
level of fifth graders. Its interval scale and constant 
metric properties make the Rasch-scaled score ideal for 
longitudinal studies of individual growth. (p. 6)

If outcome measures are not equatable over time, the longitudinal 
equivalence of the score meanings cannot be assumed, rendering 
the scores useless for measuring change.
Note that measures cannot be made equatable simply by 
standardizing their scores on each occasion to a common 
standard deviation. Although occasion-by-occasion 
standardization appears persuasive—it seems to let you talk 
about children who are “1 (standard deviation) unit” above the 
mean at age 10 and “1.2 units” above the mean at age 11, say
—the “units” from which these scores are derived (i.e., the 
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underlying age-specific standard deviations used in the 
standardization process) are themselves unlikely to have had 
either the same size or the same meaning.

Second, your outcomes must be equally valid across all 
measurement occasions. If you suspect that cross-wave 
validity might be compromised, you should replace the 
measure before data collection begins. Sometimes, as in the 
psychotherapy study, it is easy to argue that validity is 
maintained over time because the respondents have good 
reason to answer honestly on successive occasions. But in 
other studies, such as Coie and colleagues’ (1996) antisocial 
behavior study, instrument validity over time may be more 
difficult to assert because young children may not understand 
all the questions about antisocial behavior included in the 
measure and older children may be less likely to answer 
honestly. Take the time to be cautious even when using 
instruments that appear valid on the surface. In his landmark 
paper on dilemmas in the measurement of change, Lord 
(1963) argued that, just because a measurement was valid on 
one occasion, it would not necessarily remain so on all 
subsequent occasions even when administered to the same 
individuals under the same conditions. He argued that a 
multiplication test may be a valid measure of mathematical 
skill among young children, but becomes a measure of 
memory among teenagers.

Third, you should try to preserve your outcome’s precision 
over time, (p.15)  although precision need not be identical on 
every occasion. Within the logistical constraints imposed by 
data collection, the goal is to minimize errors introduced by 
instrument administration. An instrument that is “reliable 
enough” in a cross-sectional study—perhaps with a reliability 
of .8 or .9—will no doubt be sufficient for a study of change. 
So, too, the measurement error variance can vary across 
occasions because the methods we introduce can easily 
accommodate heteroscedastic error variation. Although the 
reliability of change measurement depends directly on 
outcome reliability, the precision with which you estimate 
individual change depends more on the number and spacing of 
the waves of data collection. In fact, by carefully choosing and 
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placing the occasions of measurement, you can usually offset 
the deleterious effects of measurement error in the outcome.
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Abstract and Keywords

This chapter describes exploratory analyses that can help 
researchers learn how different individuals in their sample 
change over time. These analyses serve two purposes: to 
identify important features of data and to prepare researchers 
for subsequent model-based analyses. Section 2.2 addresses 
the within-person question: How does each person change 
over time? It does this by exploring and summarizing 
empirical growth records, which list each individual's outcome 
values over time. Section 2.3 addresses the between-person 
question: How does individual change differ across people? 
This is done by exploring whether different people change in 
similar or different ways. Section 2.4 shows how to ascertain 
descriptively whether observed differences in change across 
people (interindividual differences in change) are associated 
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with individual characteristics. These between-person 
explorations can help identify variables that may ultimately 
prove to be important predictors of change. Section 2.5 
concludes by examining the reliability and precision of 
exploratory estimates of change and comments on their 
implications for the design of longitudinal studies.

Keywords:   longitudinal data, individual change, exploratory analyses,
longitudinal studies, outcome values

Change is the nursery of music, joy, life, and Eternity.

—John Donne

Wise researchers conduct descriptive exploratory analyses of 
their data before fitting statistical models. As when working 
with cross-sectional data, exploratory analyses of longitudinal 
data can reveal general patterns, provide insight into 
functional form, and identify individuals whose data do not 
conform to the general pattern. The exploratory analyses 
presented in this chapter are based on numerical and 
graphical strategies already familiar from cross-sectional 
work. Owing to the nature of longitudinal data, however, they 
are inevitably more complex in this new setting. For example, 
before you conduct even a single analysis of longitudinal data, 
you must confront a seemingly innocuous decision that has 
serious ramifications: how to store your longitudinal data 
efficiently. In section 2.1, we introduce two different data 
organizations for longitudinal data—the “person-level” format 
and the “person-period” format—and argue in favor of the 
latter.

We devote the rest of this chapter to describing exploratory 
analyses that can help you learn how different individuals in 
your sample change over time. These analyses serve two 
purposes: to identify important features of your data and to 
prepare you for subsequent model-based analyses. In section 
2.2, we address the within-person question—How does each 
person change over time?—by exploring and summarizing
empirical growth records, which list each individual’s outcome 
values over time. In section 2.3, we address the between-
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person question—How does individual change differ across 
people?—by exploring whether different people change in 
similar or different ways. In section 2.4, we show how to 
ascertain descriptively whether observed differences in 
change across people (interindividual differences in change) 
are associated with individual (p.17)  characteristics. These 
between-person explorations can help identify variables that 
may ultimately prove to be important predictors of change. We 
conclude, in section 2.5, by examining the reliability and 
precision of exploratory estimates of change and commenting 
on their implications for the design of longitudinal studies.

2.1 Creating a Longitudinal Data Set

Your first step is to organize your longitudinal data in a format 
suitable for analysis. In cross-sectional work, data-set 
organization is so straightforward as to not warrant explicit 
attention—all you need is a “standard” data set in which each 
individual has his or her own record. In longitudinal work, 
data-set organization is less straightforward because you can 
use two very different arrangements:

• A person-level data set, in which each person has one 
record and multiple variables contain the data from each 
measurement occasion

• A person-period data set, in which each person has 
multiple records—one for each measurement occasion

A person-level data set has as many records as there are people in 
the sample. As you collect additional waves, the file gains new 
variables, not new cases. A person-period data set has many more 
records—one for each person-period combination. As you collect 
additional waves of data, the file gains new records, but no new 
variables.
All statistical software packages can easily convert a 
longitudinal data set from one format to the other. The 
website associated with our book presents illustrative code for 
implementing the conversion in a variety of statistical 
packages. If you are using SAS, for example, Singer (1998, 
2001) provides simple code for the conversion. In STATA, the 
“reshape” command can be used. The ability to move from one 
format to the other means that you can enter, and clean, your 
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Figure 2.1.  Conversion of a person-level 
data set into a person-period data set for 
selected participants in the tolerance 
study.

data using whichever format is most convenient. But as we 
show below, when it comes to data analysis—either 
exploratory or inferential—you need to have your data in a 
person-period format because this most naturally supports 
meaningful analyses of change over time.

We illustrate the difference between the two formats in figure
2.1, which presents five waves of data from the National Youth 
Survey (NYS; Raudenbush & Chan, 1992). Each year, when 
participants were ages 11, 12, 13, 14, and 15, they filled out a 
nine-item instrument designed to assess their tolerance of 
deviant behavior. Using a four-point scale (p.18)

(p.19)  (1 = 
very wrong, 2 
= wrong, 3 = a 
little bit wrong, 
4 = not wrong 
at all), they 
indicated 
whether it was 
wrong for 
someone their 
age to: (a) 
cheat on tests, 
(b) purposely 
destroy 
property of 
others, (c) use 
marijuana, (d) 
steal 
something 
worth less than 
five dollars, (e) 
hit or threaten 
someone 
without 
reason, (f) use 
alcohol, (g) 
break into a 
building or 
vehicle to 
steal, (h) sell 
hard drugs, or 
(i) steal something worth more than fifty dollars. At each occasion, 

Figure 2.1.  Conversion of a person-level 
data set into a person-period data set for 
selected participants in the tolerance 
study.
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the outcome, TOL, is computed as the respondent’s average across 
the nine responses. Figure 2.1 also includes two potential 
predictors of change in tolerance: MALE, representing respondent 
gender, and EXPOSURE, assessing the respondent’s self-reported 
exposure to deviant behavior at age 11. To obtain values of this 
latter predictor, participants estimated the proportion of their close 
friends who were involved in each of the same nine activities on a 
five-point scale (ranging from 0 = none, to 4 = all). Like TOL, each 
respondent’s value of EXPOSURE is the average of his or her nine 
responses. Figure 2.1 presents data for a random sample of 16 
participants from the larger NYS data set. Although the exploratory 
methods of this chapter apply in data sets of all sizes, we have kept 
this example purposefully small to enhance manageability and 
clarity. In later chapters, we apply the same methods to larger data 
sets.

2.1.1 The Person-Level Data Set

Many people initially store longitudinal data as a person-level
data set (also known as the multivariate format), probably 
because it most resembles the familiar cross-sectional data-set 
format. The top panel of figure 2.1 displays the NYS data using 
this arrangement. The hallmark feature of a person-level data 
set is that each person has only one row (or “record”) of data, 
regardless of the number of waves of data collection. A 16-
person data set has 16 records; a 20,000-person data set has 
20,000. Repeated measurements of each outcome appear as 
additional variables (hence the alternate “multivariate” label 
for the format). In the person-level data set of figure 2.1, the 
five values of tolerance appear in columns 2 through 6 
(TOL11, TOL12, … TOL15). Suffixes attached to column 
headings identify the measurement occasion (here, 
respondent’s age) and additional variables—here, MALE and
EXPOSURE—appear in additional columns.

The primary advantage of a person-level data set is the ease 
with which you can examine visually each person’s empirical 
growth record, his or her temporally sequenced outcome 
values. Each person’s empirical growth record appears 
compactly in a single row making it is easy to assess quickly 
the way he or she is changing over time. In examining the top 
panel of figure 2.1, for example, notice that change differs 
considerably across (p.20)
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Table 2.1: Estimated bivariate correlations 
among tolerance scores assessed on five 
measurement occasions (n = 16)

TOL11 TOL12 TOL13 TOL14 TOL15

TOL11 1.00

TOL12 0.66 1.00

TOL13 0.06 0.25 1.00

TOL14 0.14 0.21 0.59 1.00

TOL15 0.26 0.39 0.57 0.83 1.00

adolescents. Although most become more tolerant of deviant 
behavior over time (e.g., subjects 514 and 1653), many remain 
relatively stable (e.g., subjects 569 and 624), none of the 16 
becomes much less tolerant (although subject 949 declines for a 
while before increasing).
Despite the ease with which you can examine each person’s 
empirical growth record visually, the person-level data set has 
four disadvantages that render it a poor choice for most 
longitudinal analyses: (1) it leads naturally to noninformative 
summaries; (2) it omits an explicit “time” variable; (3) it is 
inefficient, or useless, when the number and spacing of waves 
varies across individuals; and (4) it cannot easily handle the 
presence of time-varying predictors. Below, we explain these 
difficulties; in section 2.1.2, we demonstrate how each is 
addressed by a conversion to a person-period data set.

First, let us begin by examining the five separate tolerance 
variables in the person-level data set of figure 2.1 and asking 
how you might analyze these longitudinal data. For most 
researchers, the instinctive response is to examine wave-to-
wave relationships among TOL11 through TOL15 using 
bivariate correlation analyses (as shown in table 2.1) or 
companion bivariate plots. Unfortunately, summarizing the 
bivariate relationships between waves tells us little about 
change over time, for either individuals or groups. What, for 
example, does the weak but generally positive correlation 
between successive assessments of TOLERANCE tell us? For 
any pair of measures, say TOL11 and TOL12, we know that 
adolescents who were more tolerant of deviant behavior at one 
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wave tend to be more tolerant at the next. This indicates that 
the rank order of adolescents remains relatively stable across 
occasions. But it does not tell us how each person changes 
over time; it does not even tell us about the direction of 
change. If everyone’s score declined by one point between age 
11 and age 12, but the rank ordering was preserved, the 
correlation between waves would be positive (at +1)! 
Tempting though it is to infer a direct link between the wave-
to-wave correlations and change, it is a (p.21)  futile exercise. 
Even with a small data set—here just five waves of data for 16 
people—wave-to-wave correlations and plots tell us nothing 
about change over time.

Second, the person-level data set has no explicit numeric 
variable identifying the occasions of measurement. 
Information about “time” appears in the variable names, not in 
the data, and is therefore unavailable for statistical analysis. 
Within the actual person-level data set of figure 2.1, for 
example, information on when these TOLERANCE measures 
were assessed—the numeric values 11, 12, 13, 14, and 15—
appears nowhere. Without including these values in the 
dataset, we cannot address within-person questions about the 
relationship between the outcome and “time.”

Third, the person-level format is inefficient if either the 
number, or spacing, of waves varies across individuals. The 
person-level format is best suited to research designs with
fixed occasions of measurement—each person has the same 
number of waves collected on the same exact schedule. The 
person-level data set of figure 2.1 is compact because the NYS 
used such a design—each adolescent was assessed on the 
same five annual measurement occasions (at ages 11, 12, 13, 
14, and 15). Many longitudinal data sets do not share this 
structure. For example, if we reconceptualized “time” as the 
adolescent’s specific age (say, in months) at each 
measurement occasion, we would need to expand the person-
level data set in some way. We would need either five 
additional columns to record the respondent’s precise age on 
each measurement occasion (e.g., variables with names like
AGE11, AGE12, AGE13, AGE14, and AGE15) or even more 
additional columns to record the respondent’s tolerance of 
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deviant behavior on each of the many unique
measurement occasions (e.g., variables with names like
TOL11.1, TOL11.2, … TOL15.11). This latter approach is 
particularly impractical. Not only would we add 55 variables 
to the data set, we would have missing values in the cells 
corresponding to each month not used by a particular 
individual. In the extreme, if each person in the data set has 
his or her own unique data collection schedule—as would be 
the case were AGE recorded in days—the person-level format 
becomes completely unworkable. Hundreds of columns would 
be needed and most of the data entries would be missing!

Finally, person-level data sets become unwieldy when the 
values of predictors can vary over time. The two predictors in 
this data set are time-invariant—the values of MALE and
EXPOSURE remain the same on every occasion. This allows us 
to use a single variable to record the values of each. If the 
data set contained time-varying predictors—predictors whose 
values vary over time—we would need an additional set of 
columns for each—one per measurement occasion. If, for 
example, exposure to (p.22)  deviant behavior were measured 
each year, we would need four additional columns. While the 
data could certainly be recorded in this way, this leads to the 
same disadvantages for time-varying predictors as we have 
just described for time-varying outcomes.

Taken together, these disadvantages render the person-level 
format, so familiar in cross-sectional research, ill suited to 
longitudinal work. Although we will return to the multivariate 
format in chapter 8, when we introduce a covariance structure 
analysis approach to modeling change (known as latent 
growth modeling), for now we suggest that longitudinal data 
analysis is facilitated—and made more meaningful—if you use 
the “person-period” format for your data.

2.1.2 The Person-Period Data Set

In a person-period data set, also known as univariate format, 
each individual has multiple records, one for each period in 
which he or she was observed. The bottom panel of figure 2.1
presents illustrative entries for the NYS data. Both panels 
present identical information; they differ only in structure. The 
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person-period data set arrays each person’s empirical growth 
record vertically, not horizontally. Person-period data sets 
therefore have fewer columns than person-level data sets 
(here, five instead of eight), but many more rows (here, 80 
instead of 16). Even for this small example, the person-period 
data set has so many rows that figure 2.1 displays only a small 
subset.

All person-period data sets contain four types of variables: (1) 
a subject identifier; (2) a time indicator; (3) outcome 
variable(s); and (4) predictor variable(s). The ID number, 
which identifies the participant that each record describes, 
typically appears in the first column. Time-invariant by 
definition, IDs are identical across each person’s multiple 
records. Including an ID number is more than good record 
keeping; it is an integral part of the analysis. Without an ID, 
you cannot sort the data set into person-specific subsets (a 
first step in examining individual change trajectories in 
section 2.2).

The second column in the person-period data set typically 
displays a time indicator—usually labeled AGE, WAVE, or
TIME—which identifies the specific occasion of measurement 
that the record describes. For the NYS data, the second 
column of the person-period data set identifies the 
respondent’s AGE (in years) on each measurement occasion. A 
dedicated time variable is a fundamental feature of every 
person-period data set; it is what renders the format amenable 
to recording longitudinal data from a wide range of research 
designs. You can easily construct a person-period data set 
even if each participant has a unique data collection schedule

(p.23)  (as would be the case if we clocked time using each 

adolescent’s precise age on the date of interview). The new
AGE variable would simply record each adolescent’s age on 
that particular date (e.g., 11.24, 12.32, 13.73, 14.11, 15.40 for 
one case; 11.10, 12.32, 13.59, 14.21, 15.69 for the next, etc.). 
A dedicated TIME variable also allows person-period data sets 
to accommodate research designs in which the number of 
measurement occasions differs across people. Each person 
simply has as many records as he or she has waves of data in 
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the design. Someone with three waves will have three records; 
someone with 20 will have 20.

Each outcome in a person-period data set—here, just TOL—is 
represented by a single variable (hence the alternate 
“univariate” label for the format) whose values represent that 
person’s score on each occasion. In figure 2.1, every 
adolescent has five records, one per occasion, each containing 
his or her tolerance of deviant behavior at the age indicated.

Every predictor—whether time-varying or time-invariant—is 
also represented by a single variable. A person-period data set 
can include as many predictors of either type as you would 
like. The person-period data set in figure 2.1 includes two 
time-invariant predictors, MALE and EXPOSURE. The former 
is time-invariant; the latter is time-invariant only because of 
the way it was constructed (as exposure to deviant behavior at 
one point in time, age 11). Time-invariant predictors have 
identical values across each person’s multiple records; time-
varying predictors have potentially differing values. We defer 
discussion of time-varying predictors to section 5.3. For now, 
we simply note how easy it is to include them in a person-
period data set.

We hope that this discussion convinces you of the utility of 
storing longitudinal data in a person-period format. Although 
person-period data sets are typically longer than their person-
level cousins, the ease with which they can accommodate any 
data collection schedule, any number of outcomes, and any 
combination of time-invariant and time-varying predictors 
outweigh the cost of increased size.

2.2 Descriptive Analysis of Individual Change 
over Time

Having created a person-period data set, you are now poised 
to conduct exploratory analyses that describe how individuals 
in the data set change over time. Descriptive analyses can 
reveal the nature and idiosyncrasies of each person’s temporal 
pattern of growth, addressing the question: How does each 
person change over time? In section 2.2.1, we present a 
simple graphical strategy; in section 2.2.2, we summarize the 
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observed trends by superimposing rudimentary fitted 
trajectories.

(p.24) 2.2.1 Empirical Growth Plots

The simplest way of visualizing how a person changes over 
time is to examine an empirical growth plot, a temporally 
sequenced graph of his or her empirical growth record. You 
can easily obtain empirical growth plots from any major 
statistical package: sort the person-period data set by subject 
identifier (ID) and separately plot each person’s outcome vs. 
time (e.g., TOL vs. AGE). Because it is difficult to discern 
similarities and differences among individuals if each page 
contains only a single plot, we recommend that you cluster 
sets of plots in smaller numbers of panels.

Figure 2.2 presents empirical growth plots for the 16 
adolescents in the NYS study. To facilitate comparison and 
interpretation, we use identical axes across panels. We 
emphasize this seemingly minor point because many statistical 
packages have the annoying habit of automatically expanding 
(or contracting) scales to fill out a page or plot area. When this 
happens, individuals who change only modestly acquire 
seemingly steep trajectories because the vertical axis expands 
to cover their limited outcome range; individuals who change 
dramatically acquire seemingly shallow trajectories because 
the vertical axis shrinks to accommodate their wide outcome 
range. If your axes vary inadvertently, you may draw 
erroneous conclusions about any similarities and differences 
in individual change.

Empirical growth plots can reveal a great deal about how each 
person changes over time. You can evaluate change in both 
absolute terms (against the outcome’s overall scale) and in 
relative terms (in comparison to other sample members). Who 
is increasing? Who is decreasing? Who is increasing the most? 
The least? Does anyone increase and then decrease (or vice 
versa)? Inspection of figure 2.2 suggests that tolerance of 
deviant behavior generally increases with age (only subjects 
314, 624, 723, and 949 do not fit this trend). But we also see 
that most adolescents remain in the lower portion of the 
outcome scale—here shown in its full extension from 1 to 4—
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Figure 2.2.  Exploring how individuals 
change over time. Empirical growth plots 
for 16 participants in the tolerance study.

suggesting that tolerance for deviant behavior never reaches 
alarming proportions (except, perhaps, for subject 978).

Should you examine every possible empirical growth plot if 
your data set is large, including perhaps thousands of cases? 
We do not suggest that you sacrifice a ream of paper in the 
name of data analysis. Instead, you can randomly select a 
subsample of individuals (perhaps stratified into groups 
defined by the values of important predictors) to conduct 
these exploratory analyses. All statistical packages can 
generate the random numbers necessary for such subsample 
selection; in fact, this is how we selected these 16 individuals 
from the NYS sample.

(p.25)

2.2.2 Using a 
Trajectory to 
Summarize 
Each Person’s 
Empirical 
Growth Record

It is easy to 
imagine 
summarizing 
the plot of 
each person’s 
empirical 
growth record 
using some 
type of 
smooth 
trajectory. 
Although we 
often (p.26)

begin by 
drawing 
freehand 
trajectories, 
we strongly 
recommend 
that you also 
apply two 

Figure 2.2.  Exploring how individuals 
change over time. Empirical growth plots 
for 16 participants in the tolerance study.
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standardized approaches. With the nonparametric
approach, you let the “data speak for themselves” by 
smoothing across temporal idiosyncrasies without imposing a 
specific functional form. With the parametric approach, you 
select a common functional form for the trajectories—a 
straight line, a quadratic or some other curve—and then fit a 
separate regression model to each person’s data, yielding a 
fitted trajectory.

The fundamental advantage of the nonparametric approach is 
that it requires no assumptions. The parametric approach 
requires assumptions but, in return, provides numeric 
summaries of the trajectories (e.g., estimated intercepts and 
slopes) suitable for further exploration. We find it helpful to 
begin nonparametrically—as these summaries often inform the 
parametric analysis.

Smoothing the Empirical Growth Trajectory Nonparametrically

Nonparametric trajectories summarize each person’s pattern 
of change over time graphically without committing to a 
specific functional form. All major statistical packages provide 
several options for assumption-free smoothing, including the 
use of splines, loess smoothers, kernel smoothers, and moving 
averages. Choice of a particular smoothing algorithm is 
primarily a matter of convenience; all are adequate for the 
exploratory purposes we intend here.

Figure 2.3 plots the NYS empirical growth records and 
superimposes a smooth nonparametric trajectory (obtained 
using the “curve” option in Harvard Graphics). When 
examining smoothed trajectories like these, focus on their 
elevation, shape, and tilt. Where do the scores hover—at the 
low, medium, or high end of the scale? Does everyone change 
over time or do some people remain the same? What is the 
overall pattern of change? Is it linear or curvilinear; smooth or 
steplike? Do the trajectories have an inflection point or 
plateau? Is the rate of change steep or shallow? Is this rate of 
change similar or different across people? The trajectories in 
figure 2.3 reinforce our preliminary conclusions about the 
nature of individual change in the tolerance of deviant 
behavior. Most adolescents experience a gentle increase 
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Figure 2.3.  Smooth nonparametric 
summaries of how individuals change 
over time. Smooth nonparametric 
trajectories superimposed on empirical 
growth plots for participants in the 
tolerance study.

between ages 11 and 15, except for subject 978, who registers 
a dramatic leap after age 13.

After examining the nonparametric trajectories individually, 
stare at the entire set together as a group. Group-level 
analysis can help inform decisions that you will soon need to 
make about a functional form for the trajectory. In our 
example, several adolescents appear to have linear 
trajectories (subjects 514, 569, 624, and 723) while others 
have (p.27)

(p.28)

curvilinear 
ones that 
either 
accelerate (9, 
45, 978, and 
1653) or rise 
and fall around 
a central peak 
or trough (268, 
314, 918, 949, 
1552).

Smoothing the 
Empirical 
Growth 
Trajectory 
Using OLS 
Regression

We can also 
summarize 
each person’s 
growth 
trajectory by 
fitting a 
separate 
parametric 
model to each 
person’s data. 
Although 
many 
methods of model fitting are possible, we find that ordinary 
least squares (OLS) regression is usually adequate for 

Figure 2.3.  Smooth nonparametric 
summaries of how individuals change 
over time. Smooth nonparametric 
trajectories superimposed on empirical 
growth plots for participants in the 
tolerance study.
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exploratory purposes. Of course, fitting person-specific 
regression models, one individual at a time, is hardly the most 
efficient use of longitudinal data; that’s why we need the 
multilevel model for change that we will soon introduce. But 
because the “fitting of little OLS regression models” approach 
is intuitive and easy to implement in a person-period data set, 
we find that it connects empirical researchers with their data 
in a direct and intimate way.

To fit an exploratory OLS regression model to each person’s 
data, you must first select a specific functional form for that 
model. Not only is this decision crucial during exploratory 
analysis, it becomes even more important during formal model 
fitting. Ideally, substantive theory and past research will guide 
your choice. But when you observe only a restricted portion of 
the life span—as we do here—or when you have only three or 
four waves of data, model selection can be difficult.

Two factors further complicate the choice of a functional form. 
First, exploratory analyses often suggest that different people 
require different functions—change might appear linear for 
some, curvilinear for others. We observe this pattern, to some 
extent, in figure 2.3. Yet the simplification that comes from 
adopting a common functional form across everyone in the 
data set is so compelling that its advantages totally outweigh 
its disadvantages. Adopting a common functional form across 
everyone in the sample allows you to distinguish people easily 
using the same set of numerical summaries derived from their 
fitted trajectories. This process is especially simple if you 
adopt a linear change model, as we do here; you can then 
compare individuals using just the estimated intercepts and 
slopes of their fitted trajectories. Second, measurement error 
makes it difficult to discern whether compelling patterns in 
the empirical growth record really reflect true change or are 
simply due to random fluctuation. Remember, each observed 
score is just a fallible operationalization of an underlying true 
score—depending upon the sign of the error, the observed 
score can be inappropriately high or low. The empirical 
growth records do not present a person’s true pattern of 
change over time; they present the fallible observed reflection 
of that change. Some of what we see in the empirical growth 
records and plots is nothing more than measurement error.
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(p.29) These complications argue for parsimony when 
selecting a functional form for exploratory analysis, driving 
you to adopt the simplest trajectory that can do the job. Often 
the best choice is simply a straight line. In this example, we 
adopted a linear individual change trend because it provides a 
decent description of the trajectories for these 16 adolescents. 
In making this decision, of course, we assume implicitly that 
any deviations from linearity in figure 2.3 result from either 
the presence of outliers or measurement error. Use of an 
individual linear change model simplifies our discussion 
enormously and has pedagogic advantages as well. We devote 
chapter 6 to a discussion of models for discontinuous and 
nonlinear change.

Having selected an appropriate parametric form for 
summarizing the empirical growth records, you obtain fitted 
trajectories using a three-step process:

1. Estimate a within-person regression model for each 
person in the data set. With a linear change model, 
simply regress the outcome (here TOL) on some 
representation of time (here, AGE) in the person-period 
data set. Be sure to conduct a separate analysis for 
each person (i.e., conduct the regression analyses “by
ID”).
2. Collect summary statistics from all the within-person 
regression models into a separate data set. For a linear-
change model, each person’s estimated intercept and 
slope summarize their growth trajectory; the R 2 and 
residual variance statistics summarize their goodness 
of fit.
3. Superimpose each person’s fitted regression line on 
a plot of his or her empirical growth record. For each 
person, plot selected predicted values and join them 
together smoothly.

We now apply this three-step process to the NYS data.
We begin by fitting a separate linear change model to each 
person’s empirical growth record. Although we can regress
TOL on AGE directly, we instead regress TOL on (AGE – 11) 
years, providing a centered version of AGE. Centering the 
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temporal predictor is optional, but doing so improves the 
interpretability of the intercept. Had we not centered AGE, the 
fitted intercept would estimate the adolescent’s tolerance of 
deviant behavior at age 0—an age beyond the range of these 
data and hardly one at which a child can report an attitude. 
Subtracting 11 years from each value of AGE moves the origin 
of the plot so that each intercept now estimates the 
adolescent’s tolerance of deviant behavior at the more 
reasonable age of 11 years.

Centering AGE has no effect on the interpretation of each 
person’s slope: it still estimates his or her annual rate of 
change. Adolescents with positive slopes grow more tolerant 
of deviant behavior as they age; those with the largest slopes 
become more tolerant the most rapidly. Adolescents (p.30)
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Table 2.2: Results of fitting separate within-person exploratory OLS regression models for TOLERANCE as a 
function of linear time

Initial status Rate of change

ID Estimate se Estimate se Residual variance R2 MALE EXPOSURE

0009 1.90 0.25 0.12 0.10 0.11 0.31 0 1.54

0045 1.14 0.13 0.17 0.05 0.03 0.77 1 1.16

0268 1.54 0.26 0.02 0.11 0.11 0.02 1 0.90

0314 1.31 0.15 −0.03 0.06 0.04 0.07 0 0.81

0442 1.58 0.21 0.06 0.09 0.07 0.14 0 1.13

0514 1.43 0.14 0.27 0.06 0.03 0.88 1 0.90

0569 1.82 0.03 0.05 0.01 0.00 0.88 0 1.99

0624 1.12 0.04 0.02 0.02 0.00 0.33 1 0.98

0723 1.27 0.08 −0.05 0.04 0.01 0.45 0 0.81

0918 1.00 0.30 0.14 0.13 0.15 0.31 0 1.21

0949 1.73 0.24 −0.10 0.10 0.10 0.25 1 0.93

0978 1.03 0.32 0.63 0.13 0.17 0.89 1 1.59

1105 1.54 0.15 0.16 0.06 0.04 0.68 1 1.38

1542 1.19 0.18 0.24 0.07 0.05 0.78 0 1.44
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Initial status Rate of change

ID Estimate se Estimate se Residual variance R2 MALE EXPOSURE

1552 1.18 0.37 0.15 0.15 0.23 0.25 0 1.04

1653 0.95 0.14 0.25 0.06 0.03 0.86 0 1.25
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with negative slopes grow less tolerant of deviant behavior over 
time; those with the most negative slopes become less tolerant the 
most rapidly. Because the fitted slopes estimate the annual rate of 
change in the outcome, they are the parameter of central interest 
in an exploratory analysis of change.
Table 2.2 presents the results of fitting 16 linear-change OLS 
regression models to the NYS data. The table displays OLS-
estimated intercepts and slopes for each person along with 
associated standard errors, residual variance, and R 2

statistics. Figure 2.4 presents a stem-and-leaf display of each 
summary statistic. Notice that both the fitted intercepts and 
slopes vary considerably, reflecting the heterogeneity in 
trajectories observed in figure 2.3. Although most adolescents 
have little tolerance for deviant behavior at age 11, some—like 
subjects 9 and 569—are more tolerant. Notice, too, that many 
adolescents register little change over time. Comparing the 
estimated slopes to their associated standard errors, we find 
that the slopes for nine people (subjects 9, 268, 314, 442, 624, 
723, 918, 949, and 1552) are indistinguishable from 0. Three 
have moderate increases (514, 1542, and 1653) and one 
extreme case (978) increases three times faster than his 
closest peer.

Figure 2.5 superimposes each adolescent’s fitted OLS 
trajectory on his or her empirical growth plot. All major 
statistical packages can generate (p.31)
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Figure 2.4.  Observed variation in fitted 
OLS trajectories. Stem and leaf displays 
for fitted initial status, fitted rate of 
change, residual variance, and R2

statistic resulting from fitting separate 
OLS regression models to the tolerance 
data.

such plots. For 
example, 
because the 
estimated 
intercept and 
slope for 
subject 514 are 
1.43 and 0.27, 
the fitted 
values at ages 
11 and 15 are: 
1.43 
(computed as 
1.43 + 0.27(11 
– 11)) and 2.51 
(computed as 
1.43 + 0.27(15 
– 11)). To 
prevent 
extrapolation 
beyond the 
temporal limits 
of the data, we 
plot this 
trajectory only 
between ages 
11 and 15.
Comparing 
the 
exploratory 
OLS-fitted 
trajectories 
with the observed data points allows us to evaluate how well 
the chosen linear change model fits each person’s growth 
record. For some adolescents (such as 569 and 624), the linear 
change model fits well—their observed and fitted values nearly 
coincide. A linear change trajectory may also be reasonable 
for many other sample members (including subjects 45, 314, 
442, 514, 723, 949, 1105, and 1542) if we are correct in 
regarding the observed deviations from the fitted trajectory as 
random error. For five adolescents (subjects 9, 268, 918, 978, 
and 1552), observed and fitted values are more disparate. 
Inspection of their empirical growth records suggests that 
their change may warrant a curvilinear model.

Figure 2.4.  Observed variation in fitted 
OLS trajectories. Stem and leaf displays 
for fitted initial status, fitted rate of 
change, residual variance, and R2

statistic resulting from fitting separate 
OLS regression models to the tolerance 
data.
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Figure 2.5.  OLS summaries of how 
individuals change over time. Fitted OLS 
trajectories superimposed on empirical 
growth plots for participants in the 
tolerance study.

Table 2.2 presents two simple ways of quantifying the quality 
of fit for each person: an individual R 2 statistic and an 
individual estimated residual variance. Even in this small 
sample, notice the striking variability in (p.32)

the individual
R 2 statistics. 
They range 
from a low of 
2% for subject 
268 (whose 
trajectory is 
essentially flat 
and whose 
data are widely 
scattered) to 
highs of 88% 
for subjects 
514 and 569 
(whose 
empirical 
growth records 
show 
remarkable 
linearity in 
change) and 
89% for 
subject 978 
(who has

(p.33)  the 
most rapid rate 
of growth). The 
individual 
estimated 
residual 
variances 
mirror this variability (as you might expect, given that they are an 
element in the computation of the R 2 statistic). Skewed by 
definition (as apparent in figure 2.4), they range from a low near 0 
for subjects 569 and 624 (whose data are predicted nearly 
perfectly) to highs of 0.17 and 0.23 for subjects 978 and 1552 (who 
each have an extreme observation). We conclude that the quality of 
exploratory model fit varies substantially from person to person; 
the linear change trajectory works well for some sample members 
and poorly for others.

Figure 2.5.  OLS summaries of how 
individuals change over time. Fitted OLS 
trajectories superimposed on empirical 
growth plots for participants in the 
tolerance study.
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By now you may be questioning the wisdom of using OLS 
regression methods to conduct even exploratory analyses of 
these data. OLS regression methods assume independence 
and homoscedasticity of residuals. Yet these assumptions are 
unlikely to hold in longitudinal data where residuals tend to be 
autocorrelated and heteroscedastic over time within person. 
Despite this concern, OLS estimates can be very useful for 
exploratory purposes. Although they are less efficient when 
the assumption of residual independence is violated (i.e., their 
sampling variance is too high), they still provide unbiased 
estimates of the intercept and slope of the individual change 
(Willett, 1989). In other words, these exploratory estimates of 
the key features of the individual change trajectory—each 
person’s intercept and slope—will be on target, if a little noisy.

2.3 Exploring Differences in Change across 
People

Having summarized how each individual changes over time, 
we now examine similarities and differences in these changes 
across people. Does everyone change in the same way? Or do 
the trajectories of change differ substantially across people? 
Questions like these focus on the assessment of interindividual 
differences in change.

2.3.1 Examining the Entire Set of Smooth Trajectories

The simplest way of exploring interindividual differences in 
change is to plot, on a single graph, the entire set of smoothed 
individual trajectories. The left panel of figure 2.6 presents 
such a display for the NYS data using the nonparametric 
smoother; the right panel presents a similar display using OLS 
regression methods. In both, we omit the observed data to 
decrease clutter.

(p.34)
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Figure 2.6.  Examining the collection of 
smooth nonparametric and OLS 
trajectories across participants in the 
tolerance study. Panel A presents the 
collection of smooth nonparametric 
trajectories; Panel B presents the 
collection of fitted OLS trajectories. Both 
panels also present an average change 
trajectory for the entire group.

Each panel in 
figure 2.6 also 
includes a 
new 
summary: an
average 
change 
trajectory for 
the entire 
group. 
Depicted in 
bold, this 
summary 
helps us 
compare 
individual 
change with 
group change. 
Computing an 
average 
change 
trajectory is a 
simple two-
step process. First, sort the person-period data set by time 
(here, AGE), and separately estimate the mean outcome (here,
TOLERANCE) for each occasion of measurement. Second, plot 
these time-specific means and apply the same smoothing 
algorithm, nonparametric or parametric, used to obtain the 
individual trajectories.

Both panels in figure 2.6 suggest that, on average, the change 
in tolerance of deviant behavior between ages 11 and 15 is 
positive but modest, rising by one to two-tenths of a point per 
year (on this 1 to 4 scale). This suggests that as adolescents 
mature, they gradually tolerate more deviant behavior. Note 
that even the nonparametrically smoothed average trajectory 
seems approximately linear. (The slight curvature or 
discontinuity between ages 12 and 13 disappears if we set 
aside the extreme case, subject 978.) Both panels also suggest 
substantial interindividual heterogeneity in change. For some 
adolescents, tolerance increases moderately with age; for 

Figure 2.6.  Examining the collection of 
smooth nonparametric and OLS 
trajectories across participants in the 
tolerance study. Panel A presents the 
collection of smooth nonparametric 
trajectories; Panel B presents the 
collection of fitted OLS trajectories. Both 
panels also present an average change 
trajectory for the entire group.
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others, it remains stable; for some, it declines. This 
heterogeneity creates a “fanning out” of trajectories as 
increasing age engenders greater diversity in tolerance. 
Notice that the OLS regression panel is somewhat easier to 
interpret because of its greater structure.

(p.35) Although the average change trajectory is a valuable 
summary, we inject a note of caution: the shape of the average 
change trajectory may not mimic the shape of the individual 
trajectories from which it derives. We see this disconcerting 
behavior in figure 2.6, where the nonparametrically smoothed 
trajectories manifest various curvilinear shapes but the 
average trajectory is nearly linear. This means that you should 
never infer the shape of the individual change trajectories 
from the shape of their average. As we explain in section 6.4, 
the only kind of trajectory for which the “average of the 
curves” is identical to the “curve of the averages” is one 
whose mathematical representation is linear in the parameters
(Keats, 1983). All polynomials—including linear, quadratic, 
and cubic trajectories —are linear in the parameters; their 
average trajectory will always be a polynomial of the same 
order as the individual trajectories. The average of a set of 
straight lines will be a straight line; the average of a set of 
quadratics will be a quadratic. But many other common curves 
do not share this property. The average of a set of logistic 
curves, for example, is usually a smoothed-out step function. 
This means that you must exercise extreme caution when 
examining an average growth trajectory. We display the 
average simply for comparison, not to learn anything about 
underlying shapes of the individual trajectories.

2.3.2 Using the Results of Model Fitting to Frame Questions about 
Change

Adopting a parametric model for individual change allows us 
to reexpress generic questions about interindividual 
differences in “change” as specific questions about the 
behavior of parameters in the individual models. If we have 
selected our parametric model wisely, little information is lost 
and great simplification is achieved. If you adopt a linear 
individual change model, for instance, you are implicitly 
agreeing to summarize each person’s growth using just two 
parameter estimates: (1) the fitted intercept; and (2) the fitted 
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slope. For the NYS data, variation in fitted intercepts across 
adolescents summarizes observed interindividual differences 
in tolerance at age 11. If these intercepts describe fitted 
values at the first wave of data collection, as they do here, we 
say that they estimate someone’s “initial status.” Variation in 
the fitted slopes describes observed interindividual differences 
in the rates at which tolerance for deviant behavior changes 
over time.

Greater specificity and simplification accrues if we reframe 
general questions about interindividual heterogeneity in 
change in terms of key parameters of the individual change 
trajectory. Rather than asking “Do individuals differ in their 
changes, and if so, how?” we can now ask “Do (p.36)

individuals differ in their intercepts? In their slopes?” To learn 
about the observed average pattern of change, we examine the 
sample averages of the fitted intercepts and slopes; these tell 
us about the average initial status and the average annual rate 
of change in the sample as a whole. To learn about the 
observed individual differences in change, we examine the 
sample variances and standard deviations of the intercepts and 
slopes; these tell us about the observed variability in initial 
status and rates of change in the sample. And to learn about 
the observed relationship between initial status and the rate of 
change, we can examine the sample covariance or correlation
between intercepts and slopes.

Formal answers to these questions require the multilevel 
model for change of chapter 3. But we can presage this work 
by conducting simple descriptive analyses of the estimated 
intercepts and slopes. In addition to plotting their distribution 
(as in figure 2.4), we can examine standard descriptive 
statistics (means and standard deviations) and bivariate 
summaries (correlation coefficients) obtained using the data 
set that describes the separate fitted regression results in 
table 2.2.

We find it helpful to examine three specific quantities, the:

• Sample means of the estimated intercepts and slopes. The 
level-1 OLS-estimated intercepts and slopes are unbiased 
estimates of initial status and rate of change for each 
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person. Their sample means are therefore unbiased 
estimates of the key features of the average observed 
change trajectory.

• Sample variances (or standard deviations) of the 
estimated intercepts and slopes. These measures quantify 
the amount of observed interindividual heterogeneity in 
change.

• Sample correlation between the estimated intercepts and 
slopes. This correlation summarizes the association 
between fitted initial status and fitted rate of change and 
answers the question: Are observed initial status and rate 
of change related?

Results of these analyses for the NYS data appear in table 2.3.
Across this sample, we find an average estimated intercept of 
1.36 and an average estimated slope of 0.13. We therefore 
conclude that the average adolescent in this sample has an 
observed tolerance level of 1.36 at age 11 and that this 
increases by an estimated 0.13 points per year. The magnitude 
of the sample standard deviations (in comparison to their 
means) suggests that adolescents are scattered widely around 
both these averages. This tells us that the adolescents differ 
considerably in their fitted initial status and fitted rates of 
change. Finally, the correlation coefficient of –0.45 indicates a 
negative relationship between fitted initial status and fitted 
rate of change, suggesting that adolescents with greater

(p.37)

Table 2.3: Descriptive statistics for the individual 
growth parameters obtained by fitting separate 
within-person OLS regression models for
TOLERANCE as a function of linear time (n = 16)

Initial status 
(intercept)

Rate of change 
(slope)

Mean 1.36 0.13

Standard 
deviation

0.30 0.17

Bivariate 
correlation

−0.45
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initial tolerance tend to become more tolerant less rapidly over 
time (although we must be cautious in our interpretation because 
of negative bias introduced by the presence of measurement error).

2.3.3 Exploring the Relationship between Change and Time-
Invariant Predictors

Evaluating the impact of predictors helps you uncover 
systematic patterns in the individual change trajectories 
corresponding to interindividual variation in personal 
characteristics. For the NYS data, we consider two time-
invariant predictors: MALE and EXPOSURE. Asking whether 
the observed tolerance trajectories differ by gender allows us 
to explore whether boys (or girls) are initially more tolerant of 
deviant behavior and whether they tend to have different 
annual rates of change. Asking whether the observed 
tolerance trajectories differ by early exposure to deviant 
behavior (at age 11) allows us to explore whether a child’s 
fitted initial level of tolerance is associated with early 
exposure and whether the fitted rate of change in tolerance is 
related as well. All of these questions focus on systematic 
interindividual differences in change.

Graphically Examining Groups of Smoothed Individual Growth 
Trajectories

Plots of smoothed individual growth trajectories, displayed 
separately for groups distinguished by important predictor 
values, are valuable exploratory tools. If a predictor is 
categorical, display construction is straightforward. If a 
predictor is continuous, you can temporarily categorize its 
values. For example, we split EXPOSURE at its median (1.145) 
for the purposes of display. For numeric analysis, of course, 
we continue to use its continuous representation.

Figure 2.7 presents smoothed OLS individual growth 
trajectories separately by gender (upper pair of panels) and 
exposure (lower pair of (p.38)
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Figure 2.7.  Identifying potential 
predictors of change by examining OLS 
fitted trajectories separately by levels of 
selected predictors. Fitted OLS 
trajectories for the tolerance data 
displayed separately by gender (upper 
panel) and exposure (lower panel).

(p.39)

panels). The 
bold trajectory 
in each panel 
depicts the 
average 
trajectory for 
the subgroup. 
When you 
examine plots 
like these, look 
for systematic 
patterns: Do 
the observed 
trajectories 
differ across 
groups? Do 
observed 
differences 
appear more in 
the intercepts 
or in the 
slopes? Are 
some groups’ 
observed 
trajectories 
more 
heterogeneous 
than others’? 
Setting aside 
subject 978, 
who had 
extremely 
rapid growth, 
we find little difference in the distribution of fitted trajectories by 
gender. Each group’s average observed trajectory is similar in 
intercept, slope, and scatter. We also find little difference in fitted 
initial status by exposure, but we do discern a difference in the 
fitted rate of change. Even discounting subject 978, those with 
greater initial exposure to deviant behavior seem to become 
tolerant more rapidly as they age.

The Relationship between OLS-Estimated Trajectories and 
Substantive Predictors

Just as we described the distribution of fitted intercepts and 
slopes in section 2.3, we can also use them as objects of 

Figure 2.7.  Identifying potential 
predictors of change by examining OLS 
fitted trajectories separately by levels of 
selected predictors. Fitted OLS 
trajectories for the tolerance data 
displayed separately by gender (upper 
panel) and exposure (lower panel).
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further exploratory analysis. To investigate whether fitted 
trajectories vary systematically with predictors, we can treat 
the estimated intercepts and slopes as outcomes and explore 
the relationship between them and predictors. For the NYS 
data, these analyses explore whether the initial tolerance of 
deviant behavior or the annual rate of change in tolerance is 
observed to differ by: (1) gender or (2) early exposure to 
deviant behavior.

Because these analyses are exploratory—soon to be replaced 
in chapter 3 by the fitting of a multilevel model for change—we 
restrict ourselves to the simplest of approaches: the use of 
bivariate plots and sample correlations. Figure 2.8 plots the 
fitted intercepts and slopes versus the two predictors: MALE
and EXPOSURE. Accompanying each plot is a sample 
correlation coefficient. All signs point to little or no gender 
differential in either fitted initial status or rate of change. But 
with respect to EXPOSURE, it does appear that adolescents 
with greater early exposure to deviant behavior become more 
tolerant at a faster rate than peers who were less exposed.

Despite their utility for descriptive and exploratory analyses, 
OLS estimated intercepts and slopes are hardly the final word 
in the analysis of change. Estimates are not true values—they 
are imperfect measures of each person’s true initial status and 
true rate of change. They have biases that operate in known 
directions; for example, their sample variances are inflated by 
the presence of measurement error in the outcome. This 
means that the variance in the true rate of change will 
necessarily be smaller than the variance of the fitted slope 
because part of the latter’s (p.40)
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Figure 2.8.  Examining the relationship 
between OLS parameter estimates (for 
initial status and rates of change) and 
potential predictors. Fitted OLS 
intercepts and slopes for the tolerance 
data plotted vs. two predictors: MALE
and EXPOSURE.

variability is 
error variation. 
So, too, the 
sample 
correlation 
between the 
fitted intercept 
and slope is 
negatively 
biased (it 
underestimates 
the population 
correlation) 
because the 
measurement 
error in fitted 
initial status is 
embedded, 
with opposite 
sign, in the 
fitted rate of 
change.
These biases 
suggest that 
you should 
use the 
descriptive 
analyses of 
this chapter 
for 
exploratory 
purposes only. They can help you get your feet wet and in 
touch with your data. Although it is technically possible to 
improve these estimates—for example, we can deflate the 
sample variances of OLS estimates and we can correct the 
correlation coefficient for measurement error (Willett, 1989)—
we do not recommend expending this extra effort. The need 
for ad hoc corrections has been effectively (p.41)  replaced by 
the widespread availability of computer software for fitting the 
multilevel model for change directly.

Figure 2.8.  Examining the relationship 
between OLS parameter estimates (for 
initial status and rates of change) and 
potential predictors. Fitted OLS 
intercepts and slopes for the tolerance 
data plotted vs. two predictors: MALE
and EXPOSURE.
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2.4 Improving the Precision and Reliability of 
OLS-Estimated Rates of Change: Lessons for 
Research Design

Before introducing the multilevel model for change, let us 
examine another feature of the within-person exploratory OLS 
trajectories introduced in this chapter: the precision and 
reliability of the estimated rates of change. We do so not 
because we will be using these estimates for further analysis, 
but because it allows us to comment on—in a particularly 
simple arena—some fundamental principles of longitudinal 
design. As you would hope, these same basic principles also 
apply directly to the more complex models we will soon 
introduce.

Statisticians assess the precision of a parameter estimate in 
terms of its sampling variation, a measure of the variability 
that would be found across infinite resamplings from the same 
population. The most common measure of sampling variability 
is an estimate’s standard error, the square root of its 
estimated sampling variance. Precision and standard error 
have an inverse relationship; the smaller the standard error, 
the more precise the estimate. Table 2.2 reveals great 
variability in the standard errors of the individual slope 
estimates for the NYS data. For some, the estimated rate of 
change is very precise (e.g., subjects 569 and 624); for others, 
it is not (e.g., subject 1552).

Understanding why the individual slope estimates vary in 
precision provides important insights into how you can 
improve longitudinal studies of change. Standard results from 
mathematical statistics tell us that the precision of an OLS-
estimated rate of change depends upon an individual’s: (1) 
residual variance, the vertical deviations of observed values 
around the fitted line; and (2) number and spacing of the 
waves of longitudinal data. If individual i has T waves of data, 
gathered at times t i1, t i2, …, t iT, the sampling variance of the 
OLS-estimated rate of change is1:
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(2.1) 
where represents the residual variance for the ith individual and
CSST i represents his or her corrected sum of squares for TIME, the 
sum of squared deviations of the time values around the average 
time, .

(p.42) Equation 2.1 suggests two ways of increasing the 
precision of OLS estimated rates of change: (1) decrease the 
residual variance (because it appears in the numerator); or (2) 
increase variability in measurement times (because the 
corrected sums of squares for time appears in the 
denominator). Of course, the magnitude of the residual 
variance is largely outside your control; strictly speaking, you 
cannot directly modify its value. But because at least some of 
the residual variance is nothing more than measurement 
error, you can improve precision by using outcome measures 
with better psychometric properties.

Greater improvements in precision accrue if you work to 
increase the corrected sum of squares for time by modifying 
your research design. Inspection of equation 2.1 indicates that 
the greater the variability in the timing of measurement, the 
more precise the assessment of change. There are two simple 
ways of achieving increased variability in the timing of 
measurement: (1) redistribute the timing of the planned 
measurement occasions to be further away from their average; 
and (2) increase the number of waves. Both strategies yield 
substantial payoffs because it is the squared deviations of the 
measurement times about their average in the denominator of 
equation 2.1. A change as simple as adding another wave of 
data to your research design, far afield from the central set of 
observations, can reap dramatic improvements in the 
precision with which change can be measured.

We can reach similar conclusions by examining the reliability 
of the OLS estimated rates of change. Even though we believe 
that precision is a better criterion for judging measurement 
quality, we have three reasons for also examining reliability. 
First, the issue of reliability so dominates the literature on the 
measurement of change that it may be unwise to avoid all 
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discussion. Second, it is useful to define reliability explicitly so 
as to distinguish it mathematically from precision. Third, even 
though reliability and precision are different criteria for 
evaluating measurement quality, they do, in this case, lead to 
similar recommendations about research design.

Unlike precision, which describes how well an individual slope 
estimate measures that person’s true rate of change, 
reliability describes how much the rate of change varies 
across people. Precision has meaning for the individual; 
reliability has meaning for the group. Reliability is defined in 
terms of interindividual variation: it is the proportion of a 
measure’s observed variance that is true variance. When test 
developers claim that a test has a reliability of .90 in a 
population, they mean that 90% of the person-to-person 
variation in observed scores across the population is 
variability in true scores.

Reliability of change is defined similarly. The population 
reliability of (p.43)  the OLS slope is the proportion of 
population variance in observed rate of change that is 
variance in true rate of change (see Rogosa et al., 1982; 
Willett, 1988, 1989). If reliability is high, a large portion of the 
interindividual differences in observed rate of change will be 
differences in true rate of change. Were we to rank everyone 
in the population on their observed changes, we would then be 
pretty confident that the rankings reflect the rank order of the 
true changes. If reliability is low, the rankings on observed 
change might not reflect the true underlying rankings at all.

Improvements in precision generally lead to improvements in 
reliability—when you measure individual change more 
accurately, you can better distinguish individuals on the basis 
of these changes. But as a group-level parameter, reliability’s 
magnitude is also affected by the amount of variability in true 
change in the population. If everyone has an identical value of 
true rate of change, you will be unable to effectively 
distinguish among people even if their observed rates of 
change are precise, so reliability will be zero. This means that 
you can simultaneously enjoy excellent individual precision for 
the rate of change and poor reliability for detecting 
interindividual differences in change; you can measure 
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everyone’s change well, but be unable to distinguish people 
because everyone’s changes are identical. For a constant level 
of measurement precision, as population heterogeneity in true 
change increases, so does reliability.

The disadvantage of reliability as a gauge of measurement 
quality is that it confounds the effect of within-person 
precision with the effect of between-person heterogeneity in 
true change. When individual precision is poor or when 
interindividual heterogeneity in true change is small, 
reliability tends to 0. When precision is high or when 
heterogeneity in true change is large, reliability tends to 1. 
This means that reliability does not tell you uniquely about 
either precision or heterogeneity in true change; instead, it 
tells you about both simultaneously, impairing its value as an 
indicator of measurement quality.

We can confirm these inadequacies algebraically, albeit under 
a pair of limiting assumptions: (1) that the longitudinal data 
are fully balanced—everyone in the population is observed on 
the same set of occasions, t 1, t 2, …, t T; and (2) that each 
person’s residuals are drawn identically and independently 
from a common distribution with variance . The population 
reliability of the OLS estimate of individual rate of change is 
then:

(2.2)

(p.44)  where is the population variance of the true rate of change 

and CSST is the corrected sum-of-squares-time, now common 
across individuals (Willett, 1988). Because appears in both the 
numerator and denominator, it plays a central role in determining 
reliability. If everyone is growing at the same true rate, all true 
growth trajectories will be parallel and there will be no variability 
in the true rate of change across people. When this happens, both 
and the reliability of change will be 0, no matter how precisely the 
individual change is measured. Ironically, this means that the OLS 
slope can be a very precise yet completely unreliable measure of 
change. If there are large differences in the true rate of change 
across people, the true growth trajectories will crisscross 
considerably. When this happens, will be large, dominating both 
numerator and denominator, and the reliability of the OLS slope 
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will tend to 1, regardless of its precision. This means that the OLS 
slope can be an imprecise yet reliable measure of change. The 
conclusion: you can be fooled about the quality of your change 
measurement if you use reliability as your sole criterion.
We can also use equation 2.2 to reinforce our earlier 
conclusions about longitudinal research design. First, for a 
given level of interindividual difference in true change in the 
population, the reliability of the OLS slope depends solely on 
the residual variance. Once again, the better the quality of 
your outcome measurement, the better the reliability with 
which change can be measured because at least part of the 
residual variance is simply measurement error. Second, 
reliability can be improved through design, by manipulating 
the number and spacing of the measurement occasions. 
Anything that you can do to increase corrected sumof-squares 
time, CSST, will help. As you add waves of data or move the 
existing waves further away from the center of the data 
collection period, the reliability with which change can be 
measured will improve.
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When you’re finished changing, you’re finished

—Benjamin Franklin

In this chapter, we introduce the multilevel model for change, 
demonstrating how it allows us to address within-person and 
between-person questions about change simultaneously. 
Although there are several ways of writing the statistical 
model, here we adopt a simple and common approach that has 
much substantive appeal. We specify the multilevel model for 
change by simultaneously postulating a pair of subsidiary 
models—a level-1 submodel that describes how each person 
changes over time, and a level-2 model that describes how 
these changes differ across people (Bryk & Raudenbush, 1987; 
Rogosa & Willett, 1985).

We begin, in section 3.1, by briefly reviewing the rationale and 
purpose of statistical models in general and the multilevel 
model for change in particular. We then introduce the level-1 
model for individual change (section 3.2) and the level-2 model 
for interindividual heterogeneity in change (section 3.3). In 
section 3.4, we provide an initial foray into the world of 
estimation, introducing the method of maximum likelihood. 
(We discuss other methods of estimation in subsequent 
chapters.) We close, in sections 3.5 and 3.6, by illustrating 
how the resultant parameter estimates can be interpreted and 
how key hypotheses can be tested.

We do not intend this chapter to present a complete and 
general account of the multilevel model for change. Our goal 
is to provide a single “worked” example—from beginning to 
end—that illustrates all the steps you must go through when 
specifying the model, fitting it to data, and interpreting its 
results. We proceed in this way because we believe it is easier 
to learn about the model by first walking through a simple, but 
complete, analysis in a constrained, yet realistic, context. This 
minimizes notational and analytic complexity and lets us focus 
on interpretation and (p.46)  understanding. As a result, this 
chapter is limited to: (1) a linear change model for individual 
growth; (2) a time-structured data set in which everyone 
shares an identical data collection schedule; (3) an evaluation 
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of the impact of a single dichotomous time-invariant predictor; 
and (4) the use of one piece of dedicated statistical software, 
HLM. In subsequent chapters, we extend this basic model in 
many ways, generalizing it to situations in which growth is 
curvilinear or discontinuous; the timing, spacing, and number 
of waves of data differ across individuals; interest centers on 
the effects of many predictors, both discrete and continuous, 
time-invariant and time-varying; distributional assumptions 
differ; and other methods of estimation and statistical 
software are used.

3.1 What Is the Purpose of the Multilevel Model 
for Change?

Even though you have surely fit many types of statistical 
models in your data analytic career, experience tells us that 
when researchers get caught up in a novel and complex 
analysis, they often need to be reminded just what a statistical 
model is and what it is not. So before presenting the multilevel 
model for change itself, we briefly review the purpose of 
statistical models.

Statistical models are mathematical representations of 
population behavior; they describe salient features of the 
hypothesized process of interest among individuals in the 
target population. When you use a particular statistical model 
to analyze a particular set of data, you implicitly declare that
this population model gave rise to these sample data. 
Statistical models are not statements about sample behavior; 
they are statements about the population process that 
generated the data.

To provide explicit statements about population processes, 
statistical models are expressed using parameters—intercepts, 
slopes, variances, and so on—that represent specific 
population quantities of interest. Were you to use the 
following simple linear regression model to represent the 
relationship between infant birth weight (in pounds) and 
neurological functioning on a single occasion in a cross-
sectional data set (with the usual notation) NEURO i = β0 + β1

(BWGT i − 3) + εi, you would be declaring implicitly that, in 
the population from which your sample was drawn: (1) β0 is an 
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unknown intercept parameter that represents the expected 
level of neurological functioning for a three-pound newborn; 
and (2) β1 is an unknown slope parameter that represents the 
expected difference in functioning between newborns whose 
birth weights differ by one pound. Even an analysis as simple 
as a one-sample t-test invokes a statistical (p.47)  model 
expressed in terms of an unknown population parameter: the 
population mean, μ. In conducting this test, you use sample 
data to evaluate the evidence concerning μ’s value: Is μ equal 
to zero (or some other prespecified value)? Analyses may 
differ in form and function, but a statistical model underpins 
every inference.

In whatever context, having postulated a statistical model, you 
then fit the model to sample data and estimate the population 
parameters’ unknown values. Most methods of estimation 
provide a measure of “goodness-of-fit”—such as an R 2 statistic 
or a residual variance—that quantifies the correspondence 
between the fitted model and sample data. If the model fits 
well, you can use the estimated parameter values to draw 
conclusions about the direction and magnitude of 
hypothesized effects in the population. Were you to fit the 
simple linear regression model just specified above, and find 

that  = 80 + 5(BWGTi − 3), you would be able to 
predict that an average three-pound newborn has a functional 
level of 80 and that functional levels are five points higher for 
each extra pound at birth. Hypothesis tests and confidence 
intervals could then be used to make inferences from the 
sample back to the population.

The simple regression model above is designed for cross-
sectional data. What kind of statistical model is needed to 
represent change processes in longitudinal data? Clearly, we 
seek a model that embodies two types of research questions: 
level-1 questions about within-person change and level-2 
questions about between-person differences in change. If the 
hypothetical study of neurological functioning just described 
were longitudinal, we might ask: (1) How does each child’s 
neurological functioning change over time? and (2) Do 
children’s trajectories of change vary by birth weight? The 
distinction between the within-person and the between-person 



Introducing the Multilevel Model for Change

Page 5 of 41

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

questions is more than cosmetic—it provides the core 
rationale for specifying a statistical model for change. It 
suggests that a model for change must include components at 
two levels: (1) a level-1 submodel that describes how 
individuals change over time; and (2) a level-2 submodel that 
describes how these changes vary across individuals. Taken 
together, these two components form what is known as a 
multilevel statistical model (Bryk & Raudenbush, 1987; Rogosa 
& Willett, 1985).

In this chapter, we develop and explain the multilevel model 
for change using an example of three waves of data collected 
by Burchinal and colleagues (1997). As part of a larger study 
of the effects of early intervention on child development, these 
researchers tracked the cognitive performance of 103 African-
American infants born into low-income families. When the 
children were 6 months old, approximately half (n = 58) were 
randomly assigned to participate in an intensive early 
intervention program designed to enhance their cognitive 
functioning; the other (p.48)

Table 3.1: Excerpts from the person-period data 
set for the early intervention study

ID AGE COG PROGRAM

68 1.0 103 1

68 1.5 119 1

68 2.0 96 1

70 1.0 106 1

70 1.5 107 1

70 2.0 96 1

71 1.0 112 1

71 1.5 86 1

71 2.0 73 1

72 1.0 100 1

72 1.5 93 1
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ID AGE COG PROGRAM

72 2.0 87 1

… … … …

902 1.0 119 0

902 1.5 93 0

902 2.0 99 0

904 1.0 112 0

904 1.5 98 0

904 2.0 79 0

906 1.0 89 0

906 1.5 66 0

906 2.0 81 0

908 1.0 117 0

908 1.5 90 0

908 2.0 76 0

… … … …

half (n = 45) received no intervention and constituted a control 
group. Each child was assessed 12 times between ages 6 and 96 
months. Here, we examine the effects of program participation on 
changes in cognitive performance as measured by a nationally 
normed test administered three times, at ages 12, 18, and 24 
months.
Table 3.1 presents illustrative entries from the person-period 
data set for this example. Each child has three records, one 
per wave of data collection. Each record contains four 
variables: (1) ID; (2) AGE, the child’s age (in years) at each 
assessment (1.0, 1.5, or 2.0); (3) COG, the child’s cognitive 
performance score at that age; and (4) PROGRAM, a 
dichotomy that describes whether the child participated in the 
early intervention program. Because children remained in 
their group for the duration of data collection, this predictor is 
time-invariant. Notice that all eight empirical growth records 
in table 3.1 suggest a decline in cognitive performance (p.49)

over time. As a result, although we might wish that we would 
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be determining whether program participants experience a 
faster rate of growth, it appears that we will actually be 
determining whether they experience a slower rate of decline.

3.2 The Level-1 Submodel for Individual Change

The level-1 component of the multilevel model, also known as 
the individual growth model, represents the change we expect 
each member of the population to experience during the time 
period under study. In the current example, the level-1 
submodel represents the individual change in cognitive 
performance that we hypothesize will occur during each 
child’s second year of life.

Whatever level-1 submodel we specify, we must believe that 
the observed data could reasonably have come from a 
population in which the model is functioning. To align 
expectations with reality, we usually precede level-1 submodel 
specification with visual inspection of the empirical growth 
plots (although purists might question the wisdom of 
“peeking”). Figure 3.1 presents empirical growth plots of COG 
vs AGE for the 8 children whose data appear in table 3.1. We 
also examined plots for the 95 other children in the sample but 
we do not present them here, to conserve space. The plots 
reinforce our perception of declining cognitive performance 
over time. For some, the decline appears smooth and 
systematic (subjects 71, 72, 904, 908); for others, it appears 
scattered and irregular (subjects 68, 70, 902, 906).

When examining empirical growth plots like these, with an eye 
toward ultimate model specification, we ask global questions 
such as: What type of population individual growth model 
might have generated these sample data? Should it be linear 
or curvilinear with age? Smooth or jagged? Continuous or 
disjoint? As discussed in chapter 2, try and look beyond 
inevitable sample zigs and zags because plots of observed data 
confound information on true change with the effects of 
random error. In these plots, for example, the slight 
nonlinearity with age for subjects 68, 70, 902, 906, and 908 
might be due to the imprecision of the cognitive assessment. 
Often, and especially when you have few waves of data, it is 
difficult to argue for anything except a linear-change 
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Figure 3.1.  Identifying a suitable 
functional form for the level-1 submodel. 
Empirical growth plots with 
superimposed OLS trajectories for 8 
participants in the early intervention 
study.

individual-growth model. So when we determine which 
trajectory to select for modeling change, we often err on the 
side of parsimony and postulate a simple linear model.1

Adopting an individual growth model in which change is a 
linear function of AGE, we write the level-1 submodel as:

(p.50)

(3.1)

In postulating this submodel, we assert that, in the population from 
which this sample was drawn, Y ij, the value of COG for child i at 
time j, is a linear function of his or her age on that occasion (AGE
ij). This model assumes that a straight line adequately represents 
each person’s true change over time and that any deviations from 
linearity observed in sample data result from random measurement 
error (εij).

Equation 3.1 uses two subscripts, i and j, to identify individuals 
and occasions, respectively. For these data, i runs from 1 
through 103 (for the 103 children) and j runs from 1 through 3 
(for the three waves of data). Although everyone in this data 
set was assessed on the same three occasions (ages 1.0, 1.5, 
and 2.0), the level-1 submodel in equation 3.1 is not limited in 

Figure 3.1.  Identifying a suitable 
functional form for the level-1 submodel. 
Empirical growth plots with 
superimposed OLS trajectories for 8 
participants in the early intervention 
study.
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Figure 3.2.  Understanding the structural 
and stochastic features of the level-1 
individual growth model. Mapping the 
model in equation 3.1 onto imaginary 
data for child i, an arbitrarily selected 
member of the population.

application to time-structured designs. The identical submodel 
could be used for data sets in which the timing and spacing of 
waves differs across people.2 For now, we work with this time-
structured (p.51)

example; in 
chapter 5, we 
extend our 
presentation to 
data sets in 
which data 
collection 
schedules vary 
across people.
In writing 
equation 3.1, 
we use 
brackets to 
distinguish 
two parts of 
the submodel: 
the structural
part (in the 
first set of 
brackets) and 
the stochastic
part (in the 
second). This 
distinction 
parallels the 
classical psychometric distinction between “true scores” and 
“measurement error,” but as we discuss below, its 
implications are much broader.

3.2.1 The Structural Part of the Level-1 Submodel

The structural part of the level-1 submodel embodies our 
hypotheses about the shape of each person’s true trajectory of 
change over time. Equation 3.1 stipulates that this trajectory is 
linear with age and has individual growth parameters π0i and 
π1i that characterize its shape for the ith child in the 
population. Harkening back to section 2.2.2, these individual 
growth parameters are the population parameters that lie 

Figure 3.2.  Understanding the structural 
and stochastic features of the level-1 
individual growth model. Mapping the 
model in equation 3.1 onto imaginary 
data for child i, an arbitrarily selected 
member of the population.



Introducing the Multilevel Model for Change

Page 10 of 41

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

beneath the individual intercepts and slopes obtained when we 
fit OLS-estimated individual change trajectories in our 
exploratory analyses.

To clarify what the individual growth model says about the 
population, examine figure 3.2, which maps the model onto 
imaginary data for an arbitrarily selected member of the 
population, child i. First notice the intercept. Because we 
specify the level-1 submodel using the predictor (AGE-1), the 
intercept, π0i, represents child i’s true cognitive performance 
at age 1. We concretize this interpretation in figure 3.2 by 
showing that the child’s hypothesized trajectory intersects the
Y axis at π0i. Because we hypothesize that each child in the 
population has his or her own (p.52)  intercept, this growth 
parameter includes the subscript i. Child 1‘s intercept is π01, 
child 2’s intercept is π02, and so on.

Notice that equation 3.1 uses a special representation for the 
predictor, AGE. We used a similar approach in chapter 2, when 
we subtracted 11 from each adolescent’s age before fitting 
exploratory OLS change trajectories to the tolerance data. 
This practice, known as centering, facilitates parameter 
interpretation. By using (AGE-1) as a level-1 predictor, instead 
of AGE, the intercept in equation 3.1 represents child i’s true 
value of Y at age 1. Had we simply used AGE as a level-1 
predictor, with no centering, π0i would represent child i’s true 
value of Y at age 0, an age that precedes the onset of data 
collection. This representation is less attractive because: (1) 
we would be predicting beyond the data’s temporal limits; and 
(2) we don’t know whether the trajectory extends back to birth 
linearly with age.

As you become adept at positing level-1 submodels, you will 
find that it is wise to consider empirical and interpretive 
issues like these when chosing the scale of your temporal 
predictor. In section 5.4, we explore other temporal 
representations, including those in which we center time on its 
middle and final values. The approach we adopt here—
centering time on the first wave of data collection—is usually a 
good way to start. Aligning π0i with the first wave of data 
collection allows us to interpret its value using simple 



Introducing the Multilevel Model for Change

Page 11 of 41

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

nomenclature: it is child i’s true initial status. If π0i is large, 
child i has a high true initial status; if π0i is small, child i has 
low true initial status. We summarize this interpretation in the 
first row of the top panel of table 3.2, which defines all 
parameters in equation 3.1.

The second parameter in equation 3.1, π1i, represents the
slope of the postulated individual change trajectory. The slope 
is the most important parameter in a level-1 linear change 
submodel because it represents the rate at which individual i
changes over time. Because AGE is clocked in years, π1i

represents child i’s true annual rate of change. We represent 
this parameter in figure 3.2 using the right triangle whose 
hypotenuse is the child’s hypothesized trajectory. During the 
single year under study in our example—as child i goes from 
age 1 to 2—the trajectory rises by π1i. Because we hypothesize 
that each individual in the population has his (or her) own rate 
of change, this growth parameter is subscripted by i. Child 1’s 
rate of change is π11, child 2’s rate of change is π12, and so on. 
If π1i is positive, child i’s true outcome increases over time; if 
π1i is negative, child i’s true outcome decreases over time (this 
latter case prevails in our example).

In specifying a level-1 submodel that attempts to describe 
everyone (all the i’s) in the population, we implicitly assume 
that all the true individual change trajectories have a common 
algebraic form. But we do not assume that everyone has the 
same exact trajectory. Because each person (p.53)

Table 3.2: Definition and interpretation of 
parameters in the multilevel model for change

Symbol Definition Illustrative 
interpretation

Level-1 
Model (See 
Equation
3.1)
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Symbol Definition Illustrative 
interpretation

Individual 
growth 
parameters

π0i Intercept of the 
true change 
trajectory for 
individual i in 
the population.

Individual i’s true 
value of COG at 
age 1 (i.e., his
true initial 
status).

π1i Slope of the 
true change 
trajectory for 
individual i in 
the population.

Individual i’s 
yearly rate of 
change in true
COG (i.e., his true 
annual rate of 
change).

Variance 
component

Level-1 
residual 
variance across 
all occasions of 
measurement, 
for individual i
in the 
population.

Summarizes the 
net (vertical) 
scatter of the 
observed data 
around individual
i’s hypothesized 
change trajectory.

Level-2 
Model (See 
Equation
3.3)

Fixed 
effects

γ00 Population 
average of the 
level-1 
intercepts, π0i

for individuals 
with a level-2 
predictor value 
of 0.

Population 
average true 
initial status for 
nonparticipants.
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Symbol Definition Illustrative 
interpretation

γ01 Population 
average 
difference in 
level-1 
intercept, π0i

for a 1-unit 
difference in 
the level-2 
predictor.

Difference in 
population 
average true 
initial status 
between 
participants and 
nonparticipants.

γ10 Population 
average of the 
level-1 slopes, 
π1i, for 
individuals with 
a level-2 
predictor value 
of 0.

Population 
average annual 
rate of true 
change for 
nonparticipants.

γ11 Population 
average 
difference in 
level-1 slope, 
π1i, for a 1-unit 
difference in 
the level-2 
predictor.

Difference in 
population 
average annual 
rate of true 
change between 
participants and 
non-participants.

Variance 
components

Level-2 
residual 
variance in true 
intercept, π0i, 
across all 
individuals in 
the population.

Population 
residual variance 
of true initial 
status, controlling 
for program 
participation.
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Symbol Definition Illustrative 
interpretation

Level-2 
residual 
variance in true 
slope, π1i, 
across all 
individuals in 
the population.

Population 
residual variance 
of true rate of 
change, 
controlling for 
program 
participation.

σ01 Level-2 
residual 
covariance 
between true 
intercept, π0i, 
and true slope, 
π1i, across all 
individuals in 
the population.

Population 
residual 
covariance 
between true 
initial status and 
true annual rate 
of change, 
controlling for 
program 
participation.

(p.54)  has his or her own individual growth parameters 
(intercepts and slopes), different people can have their own distinct 
change trajectories.
Positing a level-1 submodel allows us to distinguish the 
trajectories of different people using just their individual 
growth parameters. This leap is the cornerstone of individual 
growth modeling because it means that we can study 
interindividual differences in change by studying 
interindividual variation in the growth parameters. Imagine a 
population in which each member dips into a well of possible 
individual growth parameter values and selects a pair—a 
personal intercept and a slope. These values then determine 
his or her true change trajectory. Statistically, we say that 
each person has drawn his or her individual growth parameter 
values from an underlying bivariate distribution of intercepts 
and slopes. Because each individual draws his or her 
coefficients from an unknown random distribution of 
parameters, statisticians often call the multilevel model for 
change a random coefficients model.



Introducing the Multilevel Model for Change

Page 15 of 41

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

3.2.2 The Stochastic Part of the Level-1 Submodel

The stochastic part of the level-1 submodel appears in the 
second set of brackets on the right-hand side of equation 3.1. 
Composed of just one term, the stochastic part represents the 
effect of random error, εij, associated with the measurement of 
individual i on occasion j. The level-1 errors appear in figure
3.2 as εi1, εi2 and εi3. Each person’s true change trajectory is 
determined by the structural component of the submodel. But 
each person’s observed change trajectory also reflects the 
measurement errors. Our level-1 submodel accounts for these 
perturbations—the differences between the true and observed 
trajectories—by including random errors: εi1 for individual i’s 
first measurement occasion, εi2 for individual i’s second 
measurement occasion, and so on.

Psychometricians consider random errors a natural 
consequence of measurement fallibility and the vicissitudes of 
data collection. We think it wise to be less specific, labeling 
the εij as level-1 residuals. For these data, each residual 
represents that part of child i’s value of COG at time j not 
predicted by his or her age. We adopt this vaguer 
interpretation because we know that we can reduce the 
magnitude of the level-1 residuals by introducing selected 
time-varying predictors other than AGE into the level-1 
submodel (as we show in section 5.3). This suggests that the 
stochastic part of the level-1 submodel is not just 
measurement error.

Regardless of how you conceptualize the level-1 errors, one 
thing is incontrovertible: they are unobserved. In ultimately 
fitting the level-1 submodel to data, we must invoke 
assumptions about the distribution of the level-1 residuals, 
from occasion to occasion and from person to person. (p.55)

Traditional OLS regression invokes “classical” assumptions: 
that residuals are independently and identically distributed, 
with homoscedastic variance across occasions and individuals. 
This implies that, regardless of individual and occasion, each 
error is drawn independently from an underlying distribution 
with zero mean and an unknown residual variance. Often, we 
also stipulate the form of the underlying distribution, usually 
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claiming normality. When we do, we can embody our 
assumptions about the level-1 residuals, εij, by writing:

(3.2) 
where the symbol ~ means “is distributed as,” N stands for a 
normal distribution, and the first element in parentheses identifies 
the distribution’s mean (here, 0) and the second element identifies 
its variance (here, ). As documented in table 3.2, the residual 
variance parameter captures the scatter of the level-1 residuals 
around each person’s true change trajectory.
Of course, classical assumptions like these may be less 
credible in longitudinal data. When individuals change, their 
level-1 error structure may be more complex. Each person’s 
level-1 residuals may be autocorrelated and heteroscedastic 
over time, not independent as equation 3.2 stipulates. Because 
the same person is measured on several occasions, any 
unexplained person-specific time-invariant effect in the 
residuals will create a correlation across occasions. So, too, 
the outcome may have a different precision (and reliability) for 
individuals at different times, perhaps being more suitable at 
some occasions than at others. When this happens, the error 
variance may differ over time and the level-1 residuals will be 
heteroscedastic over occasions within person. How does the 
multilevel model for change account for these possibilities? 
Although this is an important question, we cannot address it 
fully without further technical work. We therefore delay 
addressing the issues of residual autocorrelation and 
heteroscedasticity until chapter 4, where we show, in section 
4.2, how the full multilevel model for change accommodates 
automatically for certain kinds of complex error structure. 
Later, in chapter 8, we go further and demonstrate how using 
covariance structure analysis to conduct analyses of change 
lets you hypothesize, implement, and evaluate other 
alternative error structures.

3.2.3 Relating the Level-1 Submodel to the OLS Exploratory 
Methods of Chapter 2

The exploratory OLS-fitted trajectories of section 2.2.2 may 
now make more sense. Although they are not fully efficient 
because they do not (p.56)  properly exploit all the 
information present in longitudinal data, they do provide 
invaluable insights into the functioning of the hypothesized 
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individual growth model. The top panel of figure 3.3
presents the results of using OLS methods to fit the level-1 
submodel in equation 3.1 to the data for all 103 children 
(regressing COG on (AGE-1), separately by ID). The bottom 
panel presents stem and leaf displays for three summary 
statistics from these models: the fitted intercepts, the fitted 
slopes, and the estimated residual variances.

For most children, cognitive performance declines over time. 
For some, the decline is rapid; for others, less so. Few children 
show any improvement. Each fitted intercept estimates that 
child’s true initial status; each fitted slope estimates that 
child’s true annual rate of change during the second year of 
life. The fitted intercepts are centered near 110; the fitted 
slopes are centered near −10. This suggests that at age 1, the 
average child has a true cognitive level slightly above the 
national norm (of 100 for this test). Over time, however, most 
children decline (we estimate that only 7 improve).

The stem-and-leaf displays in the bottom left panel of figure
3.3 reveal great heterogeneity in fitted intercept and slope 
across children in the sample and suggest that not all children 
have identical trajectories of change. Of course, you must be 
cautious when interpreting the interindividual heterogeneity 
in change trajectories evident in figure 3.3. The between-
person variation in the estimated change trajectories that you 
observe is necessarily inflated over the underlying 
interindividual variability in the unknown true change 
trajectories because the fitted trajectories, having been 
estimated from observed data, are fallible representations of 
true change. The actual variability in underlying true change 
will always be somewhat less than what you observe in 
exploratory analysis, with the magnitude of the difference 
depending on the quality of your outcome measurement and 
the efficacy of your hypothesized individual growth model.

The skewed distribution of residual variances in the bottom 
right panel of figure 3.3 suggests great variation in the quality
of the OLS summaries across children (we expect the 
distribution of these statistics to be skewed, as they are 
“squared” quantities and are therefore bounded by zero 
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Figure 3.3.  Observed variation in fitted 
OLS trajectories. Fitted OLS trajectories 
for participants in the early intervention 
study as well as stem and leaf displays for 
fitted initial status, fitted rate of change, 
residual variance.

below). When the residual variance is near 0, as it is for many 
children, the fitted trajectories are reasonable summaries of 
the observed data for those children. When the residual 
variance is larger, as it often is here, the fitted trajectories are 
poorer summaries: the observed values of COG are further 
away from the fitted lines, making the magnitude of the 
estimated level-1 residuals, and therefore the residual 
variance, large.

(p.57)

3.3 The 
Level-2 
Submodel 
for 
Systematic 

Interindividual Differences in Change

Figure 3.3.  Observed variation in fitted 
OLS trajectories. Fitted OLS trajectories 
for participants in the early intervention 
study as well as stem and leaf displays for 
fitted initial status, fitted rate of change, 
residual variance.
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The level-2 submodel codifies the relationship between 
interindividual differences in the change trajectories and time-
invariant characteristics of the individual. The ability to 
formulate this relationship using a (p.58)  level-2 submodel 
stems from the realization that adoption of a common level-1 
submodel forces people to differ only in the values of their 
individual growth parameters. When we use a level-1 linear 
change model, people can differ only in their intercepts and 
slopes. This allows us to recast vague questions about the 
relationship between “change” and predictors as specific 
questions about the relationship between the individual 
growth parameters and predictors.

Like all statistical models, the level-2 submodel describes 
hypothesized population processes, not sample behavior. But 
insights gleaned from sample data can often provide valuable 
insight into model formulation. In this spirit, examine the top 
panel of figure 3.4, which separately plots fitted OLS 
trajectories according to the child’s program participation 
(program participants in the right panel, nonparticipants in 
the left). The average change trajectory for each group is 
shown in bold. Program participants tend to have higher 
scores at age 1 and decline less precipitously over time. This 
suggests that their intercepts are higher but their slopes are 
shallower. Also note the substantial interindividual 
heterogeneity within groups. Not all participants have higher 
intercepts than nonparticipants; not all nonparticipants have 
steeper slopes. Our level-2 model must simultaneously account 
for both the general patterns (here, the between-group 
differences in intercepts and slopes) and interindividual 
heterogeneity in patterns within groups.

What kind population model might have given rise to these 
patterns? The preceding discussion suggests four specific 
features for the level-2 submodel. First, its outcomes must be 
the individual growth parameters (here, π0i and π1i from 
equation 3.1). As in regular regression, where we model the 
population distribution of a random variable by making it an 
outcome, here, where we model the population distribution of 
the individual growth parameters, they, too, must be the 
outcomes. Second, the level-2 submodel must be written in 
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separate parts, one for each level-1 growth parameter. When 
we use a linear change individual growth model at level-1 (as 
in equation 3.1), we need two level-2 submodels: one for the 
intercept, π0i, another for the slope, π1i. Third, each part must 
specify a relationship between an individual growth parameter 
and the predictor (here, PROGRAM). As you move across the 
panels in the top of figure 3.4, the value of the predictor,
PROGRAM, shifts from 0 to 1. This suggests that each level-2 
model should ascribe differences in either π0i or π1i to
PROGRAM just as in a regular regression model. Fourth, each 
model must allow individuals who share common predictor 
values to vary in their individual change trajectories. This 
means that each level-2 submodel must allow for stochastic 
variation in the individual growth parameters.

(p.59)
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Figure 3.4.  Understanding the structural 
and stochastic features of the level-2 
submodel for inter-individual differences 
in change. Top panel presents fitted OLS 
trajectories separately by levels of the 
predictor PROGRAM. Bottom panel maps 
the model in equation 3.3 onto imaginary 
data for an arbitrary child i and the 
average population trajectory. The 
shaded portion in each of the lower 
panels is designed to suggest the 
existence of many distinct population 
trajectories for different children.

(p.60) These 

considerations lead us to postulate the following level-2 
submodel for these data:

(3.3) 

Figure 3.4.  Understanding the structural 
and stochastic features of the level-2 
submodel for inter-individual differences 
in change. Top panel presents fitted OLS 
trajectories separately by levels of the 
predictor PROGRAM. Bottom panel maps 
the model in equation 3.3 onto imaginary 
data for an arbitrary child i and the 
average population trajectory. The 
shaded portion in each of the lower 
panels is designed to suggest the 
existence of many distinct population 
trajectories for different children.
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Like all level-2 submodels, equation 3.3 has more than one 
component, each resembling a regular regression model. Taken 
together, the two components treat the intercept (π0i) and the slope 
(π1i) of an individual’s growth trajectory as level-2 outcomes that 
may be associated with the predictor, PROGRAM. Each component 
also has its own residual—here, ζ0i and ζ1i—that permits the level-1 
parameters (the π’s) of one person to differ stochastically from 
those of others.
Although not yet apparent, the two components of this level-2 
submodel have seven population parameters: the four 
regression parameters (the γ’s) shown in equation 3.3 and 
three residual variance/covariance parameters we will soon 
define. All are estimated when we fit the multilevel model for 
change to data. We list, label, and define these parameters in 
the second section of table 3.2 and illustrate their action in the 
bottom panel of figure 3.4. We discuss their interpretation 
below.

3.3.1 Structural Components of the Level-2 Submodel

The structural parts of the level-2 submodel contain four 
level-2 parameters—γ00, γ01, γ10, and γ11—known collectively 
as the fixed effects. The fixed effects capture systematic 
interindividual differences in change trajectory according to 
values of the level-2 predictor (s). In equation 3.3, two of the 
fixed effects, γ00 and γ10, are level-2 intercepts; two, γ01 and 
γ11, are level-2 slopes. As in regular regression, the slopes are 
of greater interest because they represent the effect of 
predictors (here, the effect of PROGRAM) on the individual 
growth parameters. You can interpret the level-2 parameters 
much as you do regular regression coefficients, except that 
you must remember that they describe variation in “outcomes” 
that are themselves level-1 individual growth parameters.

The easiest way to unravel the meaning of the level-2 fixed 
effects is to identify a prototypical individual distinguished by 
particular predictor values, substitute those values into the 
level-2 submodel, and examine the consequences. To derive 
the postulated level-2 submodel for a prototypical 
nonparticipant, for example, we set PROGRAM to 0 in both 
parts of equation 3.3 to find: when PROGRAM = 0, π0i = γ00 + 
ζ0i and π1i = γ10 + ζ1i. This model hypothesizes that, in the 
population of nonparticipants, the values of initial status and 
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annual rate of change, π0i and π1i, are centered around the 
level-2 parameters γ00, and γ10. γ00 represents the average 
true initial (p.61)  status (cognitive score at age 1);γ10

represents the average true annual rate of change. By fitting 
the multilevel model for change to data and estimating these 
parameters, we address the question: What is the average true 
trajectory of change in the population for children who did not 
receive the early intervention program? The lower left panel of 
figure 3.5 depicts this average population trajectory. Its 
intercept is γ00; its slope is γ10.

We repeat this process for program participants by setting
PROGRAM to 1: in this case, π0i = (γ00 + γ01) + ζ0i and π1i = 
(γ10 + γ11) + ζ1i. In the population of program participants, 
the values of initial status and annual rate of change, π0i and 
π1i, are centered around (γ00 + γ01) and (γ10 + γ11). 
Comparing these centers to those for nonparticipants 
illustrates that the level-2 parameters γ01 and γ11 capture the 
effects of PROGRAM. γ01 represents the hypothesized 
difference in average true initial status between groups; γ11

represents the hypothesized difference in average true annual 
rate of change. This allows us to think of the level-2 slopes, γ01

and γ11, as “shifts” associated with program participation. The 
lower right panel of figure 3.4 depicts these shifts. If γ01 and 
γ11 are non-zero, the average population trajectories in the 
two groups differ; if they are both 0, they do not. These two 
level-2 slope parameters therefore address the question: What 
is the difference in the average trajectory of true change 
associated with program participation?

3.3.2 Stochastic Components of the Level-2 Submodel

Each part of the level-2 submodel contains a residual that 
allows the value of each person’s growth parameters to be 
scattered around the relevant population averages. These 
residuals, ζ0i and ζ1i in equation 3.3, represent those portions 
of the level-2 outcomes—the individual growth parameters—
that remain “unexplained” by the level-2 predictor(s). As is 
true for most residuals, we are interested less in their specific 
values than in their population variances and covariance, 
which we label , , and σ01. You should know that labeling 
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conventions for these population variances vary considerably 
across authors and statistical packages. For example, 
Raudenbush and Bryk (2002) label them τ00, τ11, and τ01, 
while Goldstein (1995) labels them , , and σu01.

If child i is a member of the population of nonparticipants,
PROGRAM takes on the value 0 and the level-2 residuals in 
equation 3.3 represent deviations between his or her true 
initial status and annual rate of change from the population 
average intercept and slope for nonparticipants (γ00 and γ10). 
We display a trajectory for this prototypical child in the lower 
left panel of figure 3.4. The trajectory begins at a true initial 
status of (γ00 + ζ0i) and has a (declining) true annual rate of 
change of (γ10 + ζ1i). (p.62)  Trajectories for other children 
can be constructed similarly by combining parameters γ00 and 
γ10 with other child-specific residuals. The shaded area in this 
panel is designed to suggest the existence of many different 
true trajectories, one for each nonparticipant in the population 
(if they could be fully enumerated). Similarly, if child i is a 
member of the population of participants, PROGRAM takes on 
the value 1 and the level-2 residuals in equation 3.3 represent 
deviations between his true initial status and annual rate of 
change and the population average intercept and slope for 
participants (γ00 + γ01) and (γ10 + γ11). To illustrate the 
heterogeneity in change for this group, the lower right panel 
of figure 3.4 also includes a shaded area.

Because the level-2 residuals represent deviations between 
the individual growth parameters and their respective 
population averages, their variances, and , summarize the 
population variation in true individual intercept and slope 
around these averages. Because they describe those portions 
of the intercepts and slopes left over after accounting for the 
effect(s) of the model’s predictor(s), they are actually
conditional residual variances. Conditional on the presence of 
the model’s predictors, represents the population residual 
variance in true initial status and represents the population 
residual variance in true annual rate of change. These 
variance parameters allow us to address the question: How 
much heterogeneity in true change remains after accounting 
for the effects of program participation?
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When we posit a level-2 submodel, we also allow for a possible 
association between individual initial status and individual 
rates of change. Children who begin at a higher level may 
have higher (or lower) rates of change. To account for this 
possibility, we permit the level-2 residuals to be correlated. 
Since ζ0i and ζ1i represent the deviations of the individual 
growth parameters from their population averages, their 
population covariance summarizes the association between 
true individual intercepts and slopes. Again because of their 
conditional nature, the population covariance of the level-2 
residuals, σ01, summarizes the magnitude and direction of the 
association between true initial status and true annual rate of 
change, controlling for program participation. This parameter 
allows us to address the question: Controlling for program 
participation, are true initial status and true rate of change 
related?

To fit the multilevel model for change to data, we must make 
some assumptions about the level-2 residuals (just as we did 
for the level-1 residuals in equation 3.2). But because we have 
two level-2 residuals, we describe their underlying behavior 
using a bivariate distribution. The standard assumption is that 
the two level-2 residuals, ζ0i and ζ1i, are bivariate normal with 
mean 0, unknown variances, , and , and unknown (p.63)

covariance, σ01. We can express these assumptions compactly 
using matrix notation by writing:

(3.4) 
Matrix notation greatly simplifies the way in which we codify the 
model’s assumptions. In broad outline, we interpret equation 3.4 in 
the same way we interpret the assumptions about the level-1 
residuals in equation 3.2. The first matrix on the right of the equals 
sign in parentheses specifies the bivariate distribution’s mean 
vector; here, we assume it to be 0 for each residual (as usual). The 
second matrix specifies the bivariate distribution’s variance-
covariance matrix, also known as the level-2 error covariance 
matrix because it captures the covariation among the level-2 
residuals (or errors). Two variances, and , appear along the 
diagonal, the covariance, σ01, appears on the off-diagonal. Because 
the covariance between ζ0i and ζ1i is the same as the covariance 
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between ζ1i and ζ0i, the off-diagonal elements are identical—that is, 
σ01 = σ10. The complete set of residual variances and covariances—
both the level-2 error variance-covariance matrix and the level-1 
residual variance, —is known collectively as the model’s variance 
components.

3.4 Fitting the Multilevel Model for Change to 
Data

Until the widespread availability of software for fitting 
multilevel models, researchers used ad hoc strategies like 
those presented in chapter 2 to analyze longitudinal data: they 
fitted individual growth trajectories in separate within-person 
OLS-regression analyses and then they regressed the 
individual growth parameter estimates obtained on selected 
level-2 predictors (Willett, 1989). But as previously discussed, 
this approach has at least two flaws: (1) it ignores information 
about the individual growth parameter estimates’ precision, 
even though we know that it varies (as seen in the varying 
residual variances in the bottom panel of figure 3.3); and (2) it 
replaces true individual growth parameters—the real 
outcomes in a level-2 submodel—with their fallible estimates. 
The level-2 submodels do not describe the relationship 
between the parameter estimates and predictors, but between 
the parameters’ true values and predictors.

Beginning in the 1980s, several teams of statisticians began 
developing specialized software for fitting the multilevel model 
for change to data. By the early 1990s, four major packages 
were widely used: HLM (Bryk, Raudenbush, & Congdon,
1988), MLn (Rasbash & Woodhouse, 1995), GENMOD (Mason, 
Anderson, & Hayat, 1988), and VARCL (Longford, 1993).

(p.64)  Although the latter two are no longer supported, HLM 

(Raudenbush, Bryk, Cheong, & Congdon, 2001, available from
http://www.ssicentral.com) and MLwiN (Goldstein, 1998, 
available from http://multilevel.ioe.ac.uk) continue to be 
modified, expanded, and upgraded regularly to handle an 
increasing variety of multilevel models. Several multipurpose 
software packages have also added multilevel routines, 
including SAS PROC MIXED and PROC NLMIXED (SAS 
Institute, 2001, http://www.sas.com), the STATA “xt” routines, 
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such as xtreg (Stata, 2001, http://www.stata.com), and SPLUS’ 
NLME library (Pinheiro & Bates, 2001, available from http://
cm.bell-labs.com/cm/ms/departments/sia/project/nlme/). So, 
too, teams of statisticians continue to develop new specialty 
programs including BUGS (Gilks, Richardson, & Spiegelhalter,
1996, available from http://www.mrcbsu.cam.ac.uk/bugs) and 
MIXREG (Hedeker & Gibbons, 1996; available from http://
www.uic.edu/~hedeker).

As this list suggests, you have a wide and growing array of 
model fitting options in the investigation of change. We 
ourselves have no vested interest in any particular software 
program and do not promote any one above the others. All 
have their strengths, and we use many of them in our research 
and in this book. At their core, each program does the same 
job: it fits the multilevel model for change to data and provides 
parameter estimates, measures of precision, diagnostics, and 
so on. There is also some evidence that all the different 
packages produce the same, or similar, answers to a given 
problem (Kreft & de Leeuw, 1990). So, in one sense, it does 
not matter which program you choose. But the packages do 
differ in many important ways including the “look and feel” of 
their interfaces, their ways of entering and preprocessing 
data, their model specification process, their estimation 
methods, their strategies for hypothesis testing, and the 
provision of diagnostics. These differences may lead you to 
decide that one piece of software is especially convenient for 
your work.

For now, we focus on one particular method of estimation—
maximum likelihood—as implemented in one program, HLM 
(Raudenbush, Bryk, Cheong, & Congdon, 2001). In subsequent 
chapters, we describe other methods of estimation and we 
apply other statistical software, allowing us to provide advice 
and compare the competing approaches and packages.

3.4.1 The Advantages of Maximum Likelihood Estimation

The method of maximum likelihood (ML) is currently the most 
popular approach to statistical estimation. Its popularity 
results, in part, from its excellent performance in large 
random samples from well-defined target (p.65)  populations. 
As sample size increases, ML estimates have three desirable 
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properties: (1) they are asymptotically unbiased (consistent)—
they converge on the unknown true values of population 
parameters; (2) they are asymptotically normally distributed—
their sampling distributions are approximately normal with 
known variance; and (3) they are asymptotically efficient—
their standard errors are smaller than those derived by other 
methods. Another advantage is that any function of ML 
estimates is also an ML estimate. This means that predicted 
growth trajectories (constructed from ML estimates of initial 
status and rates of change) are ML estimates of the true 
trajectories. All else being equal, statisticians prefer estimates 
that are consistent and efficient, that make use of well-
established normal theory, and that can generate decent 
estimates of more complex quantities. Hence the appeal of ML 
methods.

Notice that the attractive properties of ML estimates are
asymptotic. This means that in practice—in any actual analysis 
of a real sample—the properties hold only approximately. In 
large samples, they are likely to hold; in small samples, they 
may not.3 To enjoy these advantages, you need a relatively 
large sample, and the question, how large is large, has no 
simple answer. Although 10 is certainly small and 100,000 is 
certainly large, no one can say definitively how large is large 
enough. In cross-sectional work, Long (1997), for example, 
recommends a minimum of 100 individuals and he labels 
sample sizes of 500 “adequate.” For a general multilevel 
model, Snijders and Bosker (1999) consider samples of 30 or 
more large. Although “rules of thumb” like these provide 
broad guidelines, we tend to distrust them. The answer to the 
question “How large?” differs by context, by the particularities 
of different types of ML estimation, by features of the data, 
and by the requirements of the tests conducted. Instead we 
simply offer practical advice: if you use ML methods in “small” 
samples, treat p-values and confidence intervals 
circumspectly.

Derivation of computational formulas for ML estimation is 
beyond our scope or intent here. Below, we offer a heuristic 
explanation of what happens when you use ML methods to fit 
a multilevel model for change. Our goal is to lay the 
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conceptual foundation for future chapters by explaining why 
ML estimates make sense and why they have such useful 
properties. Readers interested in mathematical details should 
consult Raudenbush and Bryk (2002), Goldstein (1995), or 
Longford (1993).

3.4.2 Using Maximum Likelihood Methods to Fit a Multilevel Model

Conceptually, maximum likelihood estimates are those guesses 
for the values of the unknown population parameters that 
maximize the (p.66)  probability of observing a particular 
sample of data. In the early intervention study, they are those 
estimates of the fixed effects and variance components that 
make it most likely we would have observed the specific 
patterns of change found for these 103 children.

To derive an ML estimate for a population parameter, a 
statistician must first construct a likelihood function—an 
expression that describes the probability of observing the 
sample data as a function of the model’s unknown parameters. 
Then, he, she, or more accurately, a computer, numerically 
examines the relative performance of potentially competing 
estimates until those that maximize the likelihood function are 
found. The likelihood function for the early intervention data is 
a function of the probability that we would observe the 
particular temporal pattern of COG values found in the person-
period data set. We seek estimates of the fixed effects and 
variance components whose values maximize the probability of 
observing this specific pattern.

All likelihood functions are expressed as the product of 
probabilities (or probability densities). For cross-sectional 
data, each sample member usually contributes just one term, 
related to the probability that that person has his or her 
observed data. But because longitudinal data consist of 
several observations, one per measurement occasion, each 
person contributes several terms to the likelihood function, 
which contains as many terms as there are records in the 
person-period data set.

The particular term that each person contributes on each 
occasion depends on the specification and assumptions of the 
hypothesized model. The multilevel model contains structural 
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parts (as shown in, for example, in equations 3.1 and 3.3) and 
stochastic parts (whose behavior is described in equations 3.2
and 3.4). The structural portion describes the true outcome 
value for person i on occasion j for his or her particular 
predictor values. It depends on the unknown values of the 
fixed effects. The stochastic portion—the level-1 and level-2 
residuals—introduce an element of randomness into the 
proceedings, scattering the observations for person i on 
occasion j from the structurally specified value.

To derive a maximum likelihood estimate, we must also make 
assumptions about the distribution of the residuals. We have 
already stated assumptions in equation 3.2 for the level-1 
residual, εij, and in equation 3.4 for the two-level-2 residuals, 
ζ0i and ζ1i. Each is assumed to be normally distributed with 
mean 0; εij has unknown variance, ; ζ0i and ζ1i have unknown 
variances, and , and covariance, σ01. We also assume that the 
level-2 residuals are independent of the level-1 residual and 
that all residuals are independent of the model’s predictors.

Given a model and its underlying assumptions, a statistician 
can write (p.67)  a mathematical expression for the 

distribution, or probability density, of the outcome. This 
expression has a mean determined by the model’s structural 
parts and a variance determined by its stochastic parts. As a 
probability density function, it also describes the likelihood 
that a person with particular values of the predictors—only
PROGRAM in equation 3.3—could have particular outcome 
values using a set of unknown fixed effects and variance 
components whose values we would like to estimate. That is, it 
also contains the actual data values observed for that person 
on that occasion.

It is a short step from here to the full sample likelihood, which 
we reach by exploiting the well-known multiplicative property 
of independent probabilities. If you toss one coin, there is a 
probability of .5 that it will turn up heads. If you independently 
toss two coins, the probability that each will turn up heads is 
still .5. But taken together, the probability that you will obtain 
two heads is only .25 (.5 × .5). If you independently toss three 
coins, the probability of three heads declines to 0.125 (.5 × .5 
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× .5). Statisticians use this principle to create a full sample 
likelihood from the separate person-period likelihoods just 
developed. First they write down the value of the probability 
density of the outcome for each person in the data set on 
every occasion, thereby describing the likelihood that he or 
she obtained his or her particular value of the outcome on that 
occasion. Then they multiply these terms together, yielding an 
expression for the likelihood of simultaneously observing all
the data in the person-period data set. Because each person-
period likelihood is a function of the data and the unknown 
parameters, so is their product the full sample likelihood.

To find ML estimates of the unknown population parameters, 
we identify those values of the unknown parameters that 
maximize this product of probabilities. Conceptually, imagine 
a computer trying out billions of alternative estimates, 
multiplying them together as specified in the sample likelihood 
function to yield a numeric value for the likelihood, and 
comparing those numeric values across all of the billions of 
tries until those estimates that yield the maximum value of the 
likelihood function are found. These would be the maximum 
likelihood estimates for this particular problem.

Of course, an enormous numerical search like this is daunting, 
even with fast computers. Calculus can facilitate the search, 
but it cannot eliminate the difficulty of working with the 
products of probability densities that make up the sample 
likelihood function. To facilitate the search, statisticians use a 
simple strategy: instead of finding those values of the 
unknown parameters that maximize the likelihood function, 
they find those that maximize its logarithm. Working with this 
new function, known (p.68)  as the log-likelihood function, 
sacrifices nothing because the values that maximize it also 
maximize the raw likelihood function. The transformation to 
logarithms simplifies the intensive numerical calculations 
involved because (1) the logarithm of a product is a sum of the 
separate logarithms, and (2) the logarithm of a term raised to 
a power is the power multiplied by the logarithm of the term. 
And so, since the sample likelihood contains both 
multiplicative and exponentiated terms, the logarithmic 
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transformation moves the numerical maximization into a more 
tractable sphere, computationally speaking.

Although simpler than maximizing the likelihood function 
itself, maximizing the log-likelihood function also involves 
iteration. All software programs that provide ML estimates for 
the multilevel model for change use an iterative procedure. To 
begin, the program generates reasonable “starting” values for 
all model parameters, usually by applying something like the 
OLS methods we just rejected in chapter 2! In successive 
iterations, the program gradually refines these estimates as it 
searches for the log-likelihood function’s maximum. When this 
search converges—and the difference between successive 
estimates is trivially small—the resultant estimates are output. 
If the algorithm does not converge (and this happens more 
often than you might like), you must repeat the search 
allowing more iterations or you must improve your model 
specification. (We discuss these issues in section 5.2.2.)

Once the ML estimates are found, it is relatively easy for a 
computer to estimate their associated sampling variation in 
the form of asymptotic standard errors (ase). We use the 
adjective “asymptotic” because, as noted earlier, ML standard 
errors are accurate only in large samples. Like any standard 
error, the ase measures the precision with which an estimate 
has been obtained—the smaller the ase, the more precise the 
estimate.

We now use maximum likelihood methods to fit the multilevel 
model in equations 3.1 and 3.3 to the early intervention data. 
Table 3.3 presents results obtained using the HLM software.4

We first discuss the estimated fixed effects in the first four 
rows; in section 3.6, we discuss the estimated variance 
components shown in the next four rows.

3.5 Examining Estimated Fixed Effects

Empirical researchers usually conduct hypothesis tests before 
scrutinizing parameter estimates to determine whether an 
estimate warrants inspection. If an estimate is consistent with 
a null hypothesis of no population effect, it is unwise to 
interpret its direction or magnitude. (p.69)
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Table 3.3: Results of fitting a multilevel model 
for change to the early intervention data (n=103)

Parameter Estimate ase z

Fixed 
Effects

Initial 
status, π0i

Intercept γ00 107.84***2.04 52.97

PROGRAM γ01 6.85* 2.71 2.53

Rate of 
change, π1i

Intercept γ10 −21.13***1.89 −11.18

PROGRAM γ11 5.27* 2.52 2.09

Variance 
Components

Level 1: Within-
person, εij

74.24*** 10.34 7.17

Level 2: In initial 
status, ζ0i

124.64***27.38 4.55

In rate of 
change, ζ1i

12.29 30.50 0.40

Covariance 
between 
ζ0i and ζ1i

σ01 −36.41 22.74 −1.60

~p < .10; * p < .05; ** p < .01; *** p < .001.

This model predicts cognitive functioning between ages 1 
and 2 years as a function of (AGE-1) (at level-1) and
PROGRAM (at level-2).

Note: Full ML, HLM.

Although we agree that it is wise to test hypotheses before 
interpreting parameters, here we reverse this sequence for 
pedagogic reasons, discussing interpretation in section 3.5.1 and 
testing in section 3.5.2. Experience convinces us that when 
learning a new statistical method, it is easier to understand what 
you are doing if you interpret parameters first and conduct tests 
second. This sequence emphasizes conceptual understanding over 
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up-or-down decisions about “statistical significance” and ensures 
that you understand the hypotheses you test.

3.5.1 Interpreting Estimated Fixed Effects

The fixed effects parameters of the level-2 submodel—the γ’s 
of equation 3.3—quantify the effects of predictors on the 
individual change trajectories. In our example, they quantify 
the relationship between the individual growth parameters 
and program participation. We interpret these estimates much 
as we do any regression coefficient, with one key difference: 
the level-2 “outcomes” that these fixed effects describe are the 
level-1 individual growth parameters themselves.

Until you are comfortable directly interpreting the output from 
software programs, we strongly recommend that you take the 
time to actually write down the structural portion of the fitted 
model before attempting to interpret the fixed effects. 
Although some software programs facilitate the linkage 
between model and estimates through (p.70)  structured 
displays (e.g., MlwiN), others (e.g., SAS PROC MIXED) use 
somewhat esoteric conventions for labeling output. 
Substituting estimates ŷ in table 3.3 into the level-2 submodel 
in equation 3.3, we have:

(3.5) 
The first part of the fitted submodel describes the effects of
PROGRAM on initial status; the second part describes its effects on 
the annual rates of change.
Begin with the first part of the fitted submodel, for initial 
status. In the population from which this sample was drawn, 
we estimate the true initial status (COG at age 1) for the 
average nonparticipant to be 107.84; for the average 
participant, we estimate that it is 6.85 points higher (114.69). 
The means of both groups are higher than national norms (100 
for this test). The age 1 performance of participants is 6.85 
points higher than that of nonparticipants. Before concluding 
that this differential in initial status casts doubt on the 
randomization mechanism, remember that the intervention 
started before the first wave of data collection, when the 
children were already 6 months old. This modest seven-point 
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elevation in initial status may reflect early treatment gains 
attained between ages 6 months and 1 year.

Next, examine the second part of the fitted submodel, for the 
annual rate of change. In the population from which this 
sample was drawn, we estimate the true annual rate of change 
for the average nonparticipant to be −21.13; for the average 
participant, we estimate it to be 5.27 points higher (−15.86). 
The average nonparticipant dropped over 20 points during the 
second year of life; the average participant dropped over 15. 
The cognitive functioning of both groups of children declines 
over time. As we suspected when we initially examined these 
data, the intervention slows the rate of decline.

Another way of interpreting fixed effects is to plot fitted 
trajectories for prototypical individuals. Even in a simple 
analysis like this, which involves just one dichotomous 
predictor, we find it invaluable to inspect prototypical 
trajectories visually. For this particular multilevel model, only 
two prototypes are possible: a program participant 
(PROGRAM = 1) and a nonparticipant (PROGRAM = 0). 
Substituting these values into equation 3.5 yields the 
estimated initial status and annual growth rates for each:

(p.71)  
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Figure 3.5.  Displaying the results of a 
fitted multilevel model for change. 
Prototypical trajectories for an average 
program participant and nonparticipant 
in the early intervention data.

We use these 
estimates to 
plot the fitted 
individual 
change 
trajectories in 
figure 3.5. 
These plots 
reinforce the 
numeric 
conclusions 
just 
articulated. In 
comparison to 

nonparticipants, the average participant has a higher score at age 
1 and a slower annual rate of decline.

3.5.2 Single Parameter Tests for the Fixed Effects

As in regular regression, you can conduct a hypothesis test on 
each fixed effect (each γ) using a single parameter test. 
Although you can equate the parameter value to any pre-
specified value in your hypothesis test, most commonly you 
examine the null hypothesis that, controlling for all other 
predictors in the model, the population value of the parameter 
is 0, H 0: γ= 0, against the two-sided alternative that it is not,
H 1: γ ≠ 0. When you use ML methods, this test’s properties 
are known only asymptotically (for exceptions, see note 3). 

Figure 3.5.  Displaying the results of a 
fitted multilevel model for change. 
Prototypical trajectories for an average 
program participant and nonparticipant 
in the early intervention data.
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You test this hypothesis for each fixed effect by computing the 
familiar z-statistic:

(3.7) 
Most multilevel modeling programs provide z-statistics; if not, you 
can easily compute them by hand. However, care is needed 
because there is much looseness and inconsistency in output 
labels; terms like z-statistic, z-ratio, quasi-t-statistic, t-statistic, and
t-ratio, which are not the same, are (p.72)  used interchangeably. 
In HLM, the package we used here, this statistic is labeled a “t-
ratio.” Most programs also output either an associated p-value or 
confidence interval to facilitate testing.5

Table 3.3 presents z-statistics (column 6) and approximate p-
values (as superscripts in column 4) for testing hypotheses 
about the fixed effects. We reject all four null hypotheses, 
suggesting that each parameter plays a role in the story of the 
program’s effect on children’s cognitive development. In 
rejecting (at the .001 level) the null hypotheses for the two 
level-2 intercepts, γ00 and γ10, we conclude that the average 
nonparticipant had a non-zero cognitive score at age 1 (hardly 
surprising!) which declined over time. In rejecting (at the .05 
level) the null hypotheses for the two level-2 slopes, γ01 and 
γ11, we conclude that differences between program 
participants and nonparticipants—in both initial status and 
annual rates of change—are statistically significant.

3.6 Examining Estimated Variance Components

Estimated variance and covariance components are trickier to 
interpret as their numeric values have little absolute meaning 
and there are no graphic aids to fall back on. Interpretation 
for a single fitted model is especially difficult as you lack 
benchmarks for evaluating the components’ magnitudes. This 
increases the utility of hypothesis testing, for at least the tests 
provide some benchmark (against the null value of 0) for 
comparison.
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3.6.1 Interpreting Estimated Variance Components

Variance components assess the amount of outcome variability 
left—at either level-1 or level-2—after fitting the multilevel 

model. The level-1 residual variance, , summarizes the 
population variability in an average person’s outcome values 
around his or her own true change trajectory. Its estimate for 
these data is 74.24, a number that is difficult to evaluate in 
absolute terms. In chapter 4, we provide strategies making 
relative comparisons to residual variances in other models.

The level-2 variance components summarize the between-
person variability in change trajectories that remains after 
controlling for predictors (here, PROGRAM). Using the matrix 
notation of equation 3.4, we write:

Because hypothesis tests, discussed below, reveal that only one of 

these elements, , is significantly different from 0, it is the only 
parameter we (p.73)  discuss here. But because we have no point 
of comparison, it is difficult to say whether its value, 124.64, is 
small or large. All we can say is that it quantifies the amount of 
residual variation in true initial status remaining after we control 
for program participation.

3.6.2 Single Parameter Tests for the Variance Components

Tests for variance components evaluate whether there is any 
remaining residual outcome variation that could potentially be 
explained by other predictors. The level of the particular 
variance component—either level-1 or level-2—dictates the 
type of predictor that might be added. In general, all the tests 
are similar in that they assess the evidence concerning the 
null hypothesis that the parameter’s population value is 0, H 0: 
σ2 = 0, against the alternative that it is not, H 1: σ2 ≠ 0.

There are two very different methods for conducting these 
hypothesis tests. In this chapter, we offer the simpler 
approach—the single parameter test. Some programs provide 
this test as a z-statistic—the ratio of the estimated variance 
component to its asymptotic standard error. Others offer the 
identical test by squaring the z-statistic and labeling it a χ2
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statistic on one degree of freedom. The appeal of a single 
parameter hypothesis test is simple. Even if you fit just one 
statistical model, as we have here, you can garner some 
insight into the variance components’ relative values—at least 
in comparison to 0.

Unfortunately, statisticians disagree as to the nature, form, 
and effectiveness of these tests. Miller (1986), Raudenbush 
and Bryk (2002), and others have long questioned their utility 
because of their sensitivity to departures from normality. 
Longford (1999) describes their sensitivity to sample size and 
imbalance (unequal numbers of observations per person) and 
argues that they are so misleading that they should be 
abandoned completely. Because they can be useful for quick, 
albeit imprecise, assessment, we suggest you examine them 
only with extreme caution. In section 4.6, we present a 
superior method for testing hypotheses about variance 
components, an approach whose use we normally recommend.

Table 3.3 presents single-parameter hypothesis tests for the 
model’s four variance/covariance components. The first three 
test the null hypothesis that the population variance of the 
level-1 residuals, , is 0, that the population variance of the 
level-2 residuals for initial status, , is 0 and that the population 
variance of the level-2 residuals for the annual rate of 
change, , is 0. The last tests whether the covariance between 
the level-2 residuals for initial status and annual rates of 
change, σ01, is 0, indicating whether true initial status and 
true annual rate of (p.74)  change are correlated, after 
participation in the intervention program is accounted for.

For these data, we reject only two of these null hypotheses 

(each at the .001 level). The test for the level-1 residual, on 
, suggests the existence of additional outcome variation at 
level-1, which may be predictable. To explain some of this 
remaining within-person variation, we might add suitable 
time-varying predictors such as the number of books in the 
child’s home or the amount of parent-child interaction to the 
level-1 submodel.

The test for the level-2 residual for initial status, on , 
suggests the existence of additional variation in true initial 
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status, π0i, after accounting for the effects of program 
participation. This again suggests the need for additional 
predictors, but because this is a level-2 variance component 
(describing residual variation in true initial status), we would 
consider adding both time-invariant and time-varying 
predictors to the multilevel model.

We cannot reject the null hypotheses for the two remaining 
variance components. Failure to reject the null hypothesis for

 indicates that PROGRAM explains all the potentially 
predictable variation between children in their true annual 
rates of change. Failure to reject the null hypothesis for σ01

indicates that the intercepts and slopes of the individual true 
change trajectories are uncorrelated—that there is no 
association between true initial status and true annual rates of 
change (once the effects of PROGRAM are removed). As we 
discuss in subsequent chapters, the results of these two tests 
might lead us to drop the second level-2 residual, ζ1i, from our 
model, for neither its variance nor with ζ0i, is significantly 
different from 0.

Notes:

(1.) If the window of observation were wider or there were 
more waves of data, we might hypothesize a more complex 
trajectory. In the larger data set from which this sample was 
drawn, which included up to 12 waves of data per child, 
Burchinal and colleagues specified individual change as a 
cubic function of age.

(2.) With time-structured data, the subscript i on the temporal 
predictor (AGE) is redundant because we need not distinguish 
measurement occasions for different individuals. When this 
happens, you can eliminate this subscript. We preserve it here 
to emphasize the model’s generality.

(3.) The situation is more complex than we admit here. When 
longitudinal data are balanced and time structured, with no 
missing data, and the same predictors used in each part of the 
level-2 submodel, statistical tests conducted via restricted ML 
(see section 4.3.2) are exact, not approximate, even in small 
samples (Raudenbush, 2002, private communication).
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(4.) The estimates presented here are full maximum likelihood 
estimates. In section 4.3, we distinguish between full and
restricted ML methods.

(5.) Under the conditions listed in note 3, all tests are exact
and the label “t-statistic” is appropriate (Raudenbush, 2002, 
private communication).
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We are restless because of incessant change, but we 
would be frightened if change were stopped.

—Lyman Bryson

In chapter 3, we used a pair of linked statistical models to 
establish the multilevel model for change. Within this 
representation, a level-1 submodel describes how each person 
changes over time and a level-2 submodel relates 
interindividual differences in change to predictors. To 
introduce these ideas in a simple context, we focused on just 
one method of estimation (maximum likelihood), one predictor 
(a dichotomy), and a single multilevel model for change.

We now delve deeper into the specification, estimation, and 
interpretation of the multilevel model for change. Following 
introduction of a new data set (section 4.1), we present a
composite formulation of the model that combines the level-1 
and level-2 submodels together into a single equation (section 
4.2). The new composite model leads naturally to 
consideration of alternative methods of estimation (section 
4.3). Not only do we describe two new methods—generalized 
least squares (GLS) and iterative generalized least squares
(IGLS)—within each, we distinguish further between two types 
of approaches, the full and the restricted.

The remainder of the chapter focuses on real-world issues of 
data analysis. Our goal is to help you learn how to articulate 
and implement a coherent approach to model fitting. In 
section 4.4, we present two “standard” multilevel models for 
change that you should always fit initially in any analysis—the
unconditional means model and the unconditional growth
model—and we discuss how they provide invaluable baselines 
for subsequent comparison. In section 4.5, we discuss 
strategies for adding time-invariant predictors to the 
multilevel model for change. We then discuss methods for 
testing complex hypotheses (sections 4.6 and 4.7) and 
examining model assumptions and residuals (section 4.8). We 
conclude, (p.76)  in section 4.9, by recovering “model-based” 
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estimates of the individual growth trajectories that improve 
upon the exploratory person-by-person OLS estimates 
introduced in chapter 3. To highlight concepts and strategies 
rather than technical details, we continue to limit our 
presentation in several ways, by using: (1) a linear individual 
growth model; (2) a time-structured data set in which 
everyone shares the same data collection schedule; and (3) a 
single piece of statistical software (MLwiN).

4.1 Example: Changes in Adolescent Alcohol Use

As part of a larger study of substance abuse, Curran, Stice, 
and Chassin (1997) collected three waves of longitudinal data 
on 82 adolescents. Each year, beginning at age 14, the 
teenagers completed a four-item instrument assessing their 
alcohol consumption during the previous year. Using an 8-
point scale (ranging from 0 = “not at all” to 7 = “every day”), 
adolescents described the frequency with which they (1) drank 
beer or wine, (2) drank hard liquor, (3) had five or more drinks 
in a row, and (4) got drunk. The data set also includes two 
potential predictors of alcohol use: COA, a dichotomy 
indicating whether the adolescent is a child of an alcoholic 
parent; and PEER, a measure of alcohol use among the 
adolescent’s peers. This latter predictor was based on 
information gathered during the initial wave of data collection. 
Participants used a 6-point scale (ranging from 0 = “none” to 
5 = “all”) to estimate the proportion of their friends who drank 
alcohol occasionally (one item) or regularly (a second item).

In this chapter, we explore whether individual trajectories of 
alcohol use during adolescence differ according to the history 
of parental alcoholism and early peer alcohol use. Before 
proceeding, we note that the values of the outcome we 
analyze, ALCUSE, and of the continuous predictor, PEER, are 
both generated by computing the square root of the sum of 
participants’ responses across each variable’s constituent 
items. Transformation of the outcome allows us to assume 
linearity with AGE at level-1; transformation of the predictor 
allows us to assume linearity with PEER at level-2. Otherwise, 
we would need to posit nonlinear models at both levels in 
order to avoid violating the necessary linearity assumptions. If 
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Figure 4.1.  Identifying a suitable 
functional form for the level-1 submodel. 
Empirical growth plots with 
superimposed OLS trajectories for 8 
participants in the alcohol use study.

you find these transformations unsettling, remember that each 
item’s original scale was arbitrary, at best. As in regular 
regression, analysis is often clearer if you fit a linear model to 
transformed variables instead of a nonlinear model to raw 
variables. We discuss this issue further when we introduce 
strategies for evaluating the tenability of the multilevel 
model’s assumptions in section 4.8, and we explicitly 
introduce models that relax the linearity assumption in 
chapter 6.

(p.77)

To inform 
model 
specification, 
figure 4.1
presents 
empirical 
change plots 
with 
superimposed 
OLS-
estimated 
linear 
trajectories 
for 8 
adolescents 
randomly 
selected from 
the larger 
sample. For 
them, and for most of the other 74 not shown, the relationship 
between (the now-transformed) ALCUSE and AGE appears 
linear between ages 14 and 16. This suggests that we can 
posit a level-1 individual growth model that is linear with 
adolescent age Y ij = π0i + π1i(AGE ij − 14) + εij, where Y ij is 
adolescent i’s value of ALCUSE on occasion j and AGE ij is his 
or her age (in years) at that time. We have centered AGE on 14 
years (the age at the first wave of data collection) to facilitate 
interpretation of the intercept.

Figure 4.1.  Identifying a suitable 
functional form for the level-1 submodel. 
Empirical growth plots with 
superimposed OLS trajectories for 8 
participants in the alcohol use study.
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As you become comfortable with model specification, you may 
find it easier to write the level-1 submodel using a generic 
variable TIME ij instead of a specific temporal predictor like 
(AGE ij – 14):

(4.1) 
This representation is general enough to apply to all longitudinal 
data sets, regardless of outcome or time scale. Its parameters have 
the usual interpretations. In the population from which this sample 
was drawn: (p.78)

• π0i represents individual i’s true initial status, the value of 
the outcome when TIME ij = 0.

• π1i represents individual i’s true rate of change during the 
period under study.

• εij represents that portion of individual i’s outcome that is 
unpredicted on occasion j.

We also continue to assume that the εij are independently drawn 

from a normal distribution with mean 0 and variance . They are 
also uncorrelated with the level-1 predictor, TIME, and are 
homoscedastic across occasions.
To inform specification of the level-2 submodel, figure 4.2
presents exploratory OLS-fitted linear change trajectories for 
a random sample of 32 of the adolescents. To construct this 
display, we twice divided this subsample into two groups: once 
by COA (top panel) and again by PEER (bottom panel). 
Because PEER is continuous, the bottom panel represents a 
split at the sample mean. Thicker lines represent coincident 
trajectories—the thicker the line, the more trajectories. 
Although each plot suggests considerable interindividual 
heterogeneity in change, some patterns emerge. In the top 
panel, ignoring a few extreme trajectories, children of 
alcoholic parents have generally higher intercepts (but no 
steeper slopes). In the bottom panel, adolescents whose young 
friends drink more appear to drink more themselves at age 14 
(that is, they tend to have higher intercepts), but their alcohol 
use appears to increase at a slower rate (they tend to have 
shallower slopes). This suggests that both COA and PEER are 
viable predictors of change, each deserving further 
consideration.
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We now posit a level-2 submodel for interindividual 
differences in change. For simplicity, we focus only on COA, 
representing its hypothesized effect using the two parts of the 
level-2 submodel, one for true initial status (π0i) and a second 
for true rate of change (π1i):

(4.2) 
In the level-2 submodel:

• γ00 and γ10, the level-2 intercepts, represent the 
population average initial status and rate of change, 
respectively, for the child of a non-alcoholic (COA = 0). If 
both parameters are 0, the average child whose parents are 
non-alcoholic uses no alcohol at age 14 and does not 
change his or her alcohol consumption between ages 14 
and 16.

(p.79)
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Figure 4.2.  Identifying potential 
predictors of change by examining OLS 
fitted trajectories separately by levels of 
selected predictors. Fitted OLS 
trajectories for the alcohol use data 
displayed separately by COA status 
(upper panel) and PEER alcohol use 
(lower panel).

(p.80)

• γ01 and 
γ11, the 
level-2 
slopes, 
represent 
the effect 
of COA on 
the change 

trajectories, providing increments (or decrements) to initial 
status and rates of change, respectively, for children of 
alcoholics. If both parameters are 0, the average child of an 
alcoholic initially uses no more alcohol than the average 
child of a non-alcoholic and the rates of change in alcohol 
use do not differ as well.

• ζ0i and ζ1i, the level-2 residuals, represent those portions 
of initial status or rate of change that are unexplained at 

Figure 4.2.  Identifying potential 
predictors of change by examining OLS 
fitted trajectories separately by levels of 
selected predictors. Fitted OLS 
trajectories for the alcohol use data 
displayed separately by COA status 
(upper panel) and PEER alcohol use 
(lower panel).
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level-2. They represent deviations of the individual change 
trajectories around their respective group average trends.

We also continue to assume that ζ 0i and ζ 1i are independently 
drawn from a bivariate normal distribution with mean 0, variances 
and , and covariance σ01. They are also uncorrelated with the 
level-2 predictor, COA, and are homoscedastic over all values of
COA.
As in regular regression analysis, we can modify the level-2 
submodel to include other predictors—for example, replacing
COA with PEER or adding PEER to the current model. We 
illustrate these modifications in section 4.5. For now, we 
continue with a single level-2 predictor so that we can 
introduce a new idea: the creation of the composite multilevel 
model for change.

4.2 The Composite Specification of the 
Multilevel Model for Change

The level-1/level-2 representation above is not the only 
specification of the multilevel model for change. A more 
parsimonious representation arises if you collapse the level-1 
and level-2 submodels together algebraically into a single
composite model. The composite representation, while 
identical to the level-1/level-2 specification mathematically, 
provides an alternative way of codifying hypotheses and is the 
specification required by many multilevel statistical software 
programs (including MLwiN and SAS PROC MIXED).

To derive the composite specification, first notice that any pair 
of linked level-1 and level-2 submodels share some common 
terms. Specifically, the individual growth parameters of the 
level-1 submodel are the outcomes of the level-2 submodel. We 
can therefore collapse the submodels together by substituting 
for π0i and π1i from the level-2 submodel (in equation 4.2, say) 
into the level-1 submodel (equation 4.1), as follows:

(p.81)  The first parenthesis contains the level-2 specification for 
the level-1 intercept, π0i; the second parenthesis contains the 
level-2 specification for the level-1 slope, π1i. Multiplying out and 
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rearranging terms then yields the composite multilevel model for 
change:
(4.3)

where we once again use brackets to distinguish the model’s 
structural and stochastic components.
Even though the composite specification in equation 4.3
appears more complex than the level-1/level-2 specification, 
the two forms are logically and mathematically equivalent. 
Each posits an identical set of links between an outcome (Yij) 
and predictors (here, TIME and COA). The specifications differ 
only in how they organize the hypothesized relationships, each 
providing valuable insight into what the multilevel model 
represents. The advantage of the level-1/level-2 specification is 
that it reflects our conceptual framework directly: we focus 
first on individual change and next on interindividual 
differences in change. It also provides an intuitive basis for 
interpretation because it directly identifies which parameters 
describe interindividual differences in initial status (γ00 and 
γ01) and which describe interindividual differences in change 
(γ10 and γ11). The advantage of the composite specification is 
that it clarifies which statistical model is actually being fit to 
data when the computer begins to iterate.

In introducing the composite model, we do not argue that its 
representation is uniformly superior to the level-1/level-2 
specification. In the remainder of this book, we use both 
representations, adopting whichever best suits our purposes 
at any given time. Sometimes we invoke the substantively 
appealing level-1/level-2 specification; other times we invoke 
the algebraically parsimonious composite specification. 
Because both are useful, we recommend that you take the 
time to become equally facile with each. To aid in this process, 
below, we now delve into the structural and stochastic 
components of the composite model itself.

4.2.1 The Structural Component of the Composite Model

The structural portion of the composite multilevel model for 
change, in the first set of brackets in equation 4.3, may appear 
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unusual, at least at first. Comfortingly, it contains all the 
original predictors—here, COA and TIME—as well as the now 
familiar fixed effects, γ00, γ01, γ10, and γ11. In chapter 3, we 
demonstrated that the γ’s describe the average change (p.82)

trajectories for individuals distinguished by their level-2 
predictor values: γ00 and γ10 are the intercept and slope of the 
average trajectory for the children of parents who are not 
alcoholic; (γ00 + γ01) and (γ10 + γ11) are the intercept and 
slope of the average trajectory for the children of alcoholics.

The γ’s retain these interpretations in the composite model. To 
demonstrate this equivalence, let us substitute different values 
of COA into the model’s structural portion and recover the 
population average change trajectories. As COA has only two 
values, 0 and 1, recovery is easy. For the children of non-
alcoholic parents, we substitute 0 into equation 4.3 to find:

(4.4a)

a trajectory with intercept γ00 and slope γ10, as indicated in the 
previous paragraph. For the children of alcoholic parents, we 
substitute in 1 to find:
(4.4b)

a trajectory with intercept (γ00 + γ01) and slope (γ10 + γ11) also as 
just described.
Although their interpretation is identical, the γ’s in the 
composite model describe patterns of change in a different 
way. Rather than postulating first how ALCUSE is related to
TIME and the individual growth parameters, and second how 
the individual growth parameters are related to COA, the 
composite specification in equation 4.3 postulates that
ALCUSE depends simultaneously on: (1) the level-1 predictor,
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TIME; (2) the level-2 predictor, COA; and (3) the cross-level
interaction, COA by TIME. From this perspective, the 
composite model’s structural portion strongly resembles a 
regular regression model with predictors, TIME and COA, 
appearing as main effects (associated with γ10 and γ01, 
respectively) and in a cross-level interaction (associated with 
γ11).

How did this cross-level interaction arise, when the level-1/
level-2 specification appears to have no similar term? Its 
appearance arises from the “multiplying out” procedure used 
to generate the composite model. When we substitute the 
level-2 submodel for π1i into its appropriate position (p.83)  in 
the level-1 submodel, the parameter γ11, previously associated 
only with COA, gets multiplied by TIME. In the composite 
model, then, this parameter becomes associated with the 
interaction term, COA by TIME. This association makes sense 
if you consider the following logic. When γ11 is non-zero in the 
level-1/level-2 specification, the slopes of the change 
trajectories differ according to values of COA. Stated another 
way, the effect of TIME (whose effect is represented by the 
slopes of the change trajectories) differs by levels of COA. 
When the effects of one predictor (here, TIME) differ by the 
levels of another predictor (here, COA), we say that the two 
predictors interact. The cross-level interaction in the 
composite specification codifies this effect.

4.2.2 The Stochastic Component of the Composite Model

The random effects of the composite model appear in the 
second set of brackets in equation 4.3. Their representation is 
more mysterious than that of the fixed effects and differs 
dramatically from the simple error terms in the separate 
submodels. But as you would expect, ultimately, they have the 
same meaning under both the level-1/level-2 and composite 
representations. In addition, their structure in the composite 
model provides valuable insight into our assumptions about 
the behavior of residuals over time in longitudinal data.

To understand how to interpret this stochastic portion, recall 
that in chapter 3, we described how the random effects allow 
each person’s true change trajectory to be scattered around 
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the relevant population average trajectory. For example, given 
that the population average change trajectory for the children 
of non-alcoholic parents (in equation 4.4a has intercept γ00 and 
slope γ10, the level-2 residuals, ζ0i and ζ1i, allow individual
i’s trajectory to differ from this average. The true trajectory 
for individual i, a specific child of non-alcoholic parents, 
therefore has intercept (γ00 + ζ0i) and slope (γ10 + ζ1i). Once 
this trajectory has been determined, the level-1 residuals, εij, 
then allow his or her data for occasion j to be scattered 
randomly about it.

We can see how the composite model represents this 
conceptualization by deriving the true trajectories for different 
individuals with specific predictor values. Using equation 
(4.3), we note that if adolescent i has nonalcoholic parents 
(COA = 0):

(p.84)  leading to a true trajectory with intercept (γ00 + ζ0i) and 
slope (γ10 + ζ1i) as described above. If adolescent i has an alcoholic 
parent (COA = 1):

leading to a true trajectory with intercept (γ00 + γ01 + ζ0i) and 
slope (γ10 + γ11 + ζ1i).
A distinctive feature of the composite multilevel model is its 
“composite residual,” the three terms in the second set of 
brackets on the right of equation 4.3 that combine together 
the level-1 residual and the two level-2 residuals:

The composite residual is not a simple sum. Instead, the second 
level-2 residual, ζ1i, is multiplied by the level-1 predictor, TIME, 
before joining its siblings. Despite its unusual construction, the 
interpretation of the composite residual is straightforward: it 
describes the difference between the observed and the expected 
value of Y for individual i on occasion j.
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The mathematical form of the composite residual reveals two 
important properties about the occasion-specific residuals not 
readily apparent in the level-1/level-2 specification: they can 
be both autocorrelated and heteroscedastic within person. As 
we describe briefly below, and more elaborately explain in 
chapter 7, these are exactly the kinds of properties that you 
would expect among residuals for repeated measurements of a 
changing outcome.

When residuals are heteroscedastic, the unexplained portions 
of each person’s outcome have unequal variances across 
occasions of measurement. Although heteroscedasticity has 
many roots, one major cause is the effects of omitted 
predictors—the consequences of failing to include variables 
that are, in fact, related to the outcome. Because their effects 
have nowhere else to go, they bundle together, by default, into 
the residuals. If their impact differs across occasions, the 
residual’s magnitude may differ as well, creating 
heteroscedasticity. The composite model allows for 
heteroscedasticity via the level-2 residual ζ1i. Because ζ1i is 
multiplied by TIME in the composite residual, its magnitude 
can differ (linearly, at least, in a linear level-1 submodel) 
across occasions. If there are systematic differences in the
magnitudes of the composite residuals across occasions, there 
will be accompanying differences in residual variance, hence 
heteroscedasticity.

When residuals are autocorrelated, the unexplained portions 
of each (p.85)  person’s outcome are correlated with each 
other across repeated occasions. Once again, omitted 
predictors, whose effects are bundled into the residuals, are a 
common cause. Because their effects may be present 
identically in each residual over time, an individual’s residuals 
may become linked across occasions. The presence of the 
time-invariant ζ0i’s and ζ1i’s in the composite residual of 
equation 4.3 allows the residuals to be auto-correlated. 
Because they have only an “i” subscript (and no “j”), they 
feature identically in each individual’s composite residual on 
every occasion, creating the potential for autocorrelation 
across time.
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4.3 Methods of Estimation, Revisited

When we discussed estimation in section 3.4, we focused on 
the method of maximum likelihood (ML). As we suggested 
then, there are other ways of fitting the multilevel model for 
change. Below, in section 4.3.1, we describe two other 
methods that are extensions of the popular OLS estimation 
method, with which you are already familiar: generalized least 
squares (GLS) estimation and iterative generalized least 
squares (IGLS) estimation. In section 4.3.2, we delve deeper 
into ML methods themselves and distinguish further between 
two important types of ML estimation—called full and
restricted maximum-likelihood estimation. Finally, in section 
4.3.3, we comment on the various methods and how you might 
choose among them.

4.3.1 Generalized Least-Squares Estimation

Generalized least-squares (GLS) estimation is an extension of 
ordinary least-squares estimation that allows you to fit 
statistical models under more complex assumptions on the 
residuals. Like OLS, GLS seeks parameter estimates that 
minimize the sum of squared residuals.1 But instead of 
requiring the residuals to be independent and homoscedastic, 
as OLS does, GLS allows them to be autocorrelated and 
heteroscedastic, as in the composite multilevel model for 
change.

To understand how you can use GLS to fit the composite 
multilevel model for change, first reconsider the inefficient 
exploratory OLS analyses of chapter 2. In section 2.3, our 
exploratory analyses actually mirrored our later level-1/level-2 
specification of the multilevel model for change. To fit the 
model, we used OLS methods twice. First, in a set of 
exploratory level-1 analyses, we divided the person-period 
data set into person-specific chunks (by ID) and fit separate 
within-person regressions of the outcome on TIME. Then, in an 
exploratory level-2 analysis, we regressed (p.86)  the resultant 
individual growth parameter estimates on predictors. The 
existence and form of the composite multilevel model for 
change suggests that, instead of this piecewise analysis, you 
could keep the person-period data set intact and regress the 
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outcome (here, ALCUSE) on the predictors in the structural 
portion of the composite model for change (here, TIME, COA, 
and COA by TIME). This would allow you to estimate the fixed 
effects of greatest interest (γ00, γ10, γ01, γ11) without dividing 
the data set into person-specific chunks.

Were you to use OLS to conduct this regression analysis in the 
full person-period data set, the resultant regression 
coefficients (estimates of γ00, γ10, γ01, γ11) would indeed be 
unbiased estimates of the composite model’s fixed effects. 
Unfortunately, their standard errors would not possess the 
optimal properties needed for testing hypotheses efficiently 
because the residuals in the stochastic portion of the 
composite model do not possess the “classical” assumptions of 
independence and homoscedasticity. In other words, the OLS 
approach is simply inappropriate in the full person-period data 
set. To estimate the fixed effects efficiently by fitting the 
composite model directly in the person-period data set 
requires the methods of GLS estimation.

This leads to a conundrum. In reality, to estimate the fixed 
effects in the composite model by a regression analysis in the 
entire person-period data set, we need GLS methods. But to 
conduct a GLS analysis, we need to know the shape and 
contents of the true error covariance matrix—specifically we 
need to know the degree of autocorrelation and 
heteroscedasticity that actually exists among the residuals in 
the population so that we can account for this error structure 
during GLS estimation. We cannot know these population 
values explicitly, as they are hidden from view; we only 
possess information on the sample, not the population. Hence 
the conundrum: to conduct an appropriate analysis of the 
composite multilevel model for change directly in the person-
period data set we need information that we do not, indeed 
cannot, know.

GLS addresses this conundrum using a two-stage approach. 
First, fit the composite model by regressing ALCUSE on 
predictors TIME, COA, and COA by TIME in the full person-
period data set using OLS methods and estimate the error 
covariance matrix using residuals from the OLS-fitted model. 
Then, refit the composite model using GLS treating the
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estimated error covariance matrix as though it were the true
error covariance matrix. In this process, the first stage uses 
OLS to provide starting values (initial estimates) of the fixed 
effects. These starting values then yield predicted outcome 
values that allow computation of the residuals for each person 
on each occasion. The population error covariance matrix is 
then estimated using these residuals. In the second stage, 
compute revised GLS (p.87)  estimates of the fixed effects and 
associated standard errors under the assumption that the 
estimated error covariance matrix from the first stage is a 
correct representation of the population error covariance 
matrix of the composite model. All of this, of course, is hidden 
from view because the computer does it for you.

If GLS estimation with two steps is good, could GLS estimation 
with many steps be better? This simple question leads to an 
extension of GLS known as IGLS (iterative generalized least 
squares). Instead of stopping after one round of estimation 
and refitting, you ask the computer to implement the approach 
repeatedly, each time using the previous set of estimated fixed 
effects to re-estimate the error covariance matrix, which then 
leads to GLS estimates of the fixed effects that are further 
refined. After each round, you can ask the computer to check 
whether the current set of estimates is an improvement over 
the last. If they have not improved (as judged by criteria that 
you define, or the software package specifies by default), then 
declare that the process has converged and stop, out-putting 
the estimates, their standard errors, and model goodness-of-fit 
statistics for your perusal.

As with all iterative procedures, the convergence of IGLS is 
not guaranteed. If your data set is small or severely 
unbalanced, or if your hypothesized model is too complex, 
IGLS may iterate indefinitely. To prevent this, all software 
packages invoke an upper limit on the number of iterations for 
each analysis (that you can modify, if you wish). If an IGLS 
analysis fails to converge after a pre-specified number of 
iterations, you can try again, increasing this upper limit. If it 
still fails to converge, the estimates may be incorrect and 
should be treated with caution. We illustrate the use of IGLS 
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methods later in this chapter and discuss issues of 
nonconvergence in section 5.2.

4.3.2 Full and Restricted Maximum-Likelihood Estimation

Statisticians distinguish between two types of maximum 
likelihood estimation: full (FML) and restricted (RML). These 
two variants on a common theme differ in how the likelihood 
function is formed, which affects parameter estimation and the 
strategies used to test hypotheses. You must select a 
particular ML method before fitting models. Perhaps more 
importantly, you should understand which method your 
software package selects as its default (although this can 
usually be overridden).

Although we were not specific in chapter 3, the ML method 
that we described there was FML. The likelihood function 
described in section 3.4 assesses the joint probability of 
simultaneously observing all the (p.88)  sample data actually 
obtained. The sample likelihood, a function of the data and the 
hypothesized model and its assumptions, contains all the 
unknown parameters, both the fixed effects (the γ’s) and the 

variance components (  and σ01). Under FML, the 
computer computes those estimates of these population 
parameters that jointly maximize this likelihood.

FML estimation is not without problems. Because of the way 
we construct and maximize the likelihood function, FML 
estimates of the variance components ( and ) contain FML 
estimates of the fixed effects (the ’s). This means that we 
ignore uncertainty about the fixed effects when estimating the 
variance components, treating their values as known. By 
failing to allocate some degrees of freedom to the estimation 
of fixed effects, FML overstates the degrees of freedom left for 
estimating variance components and underestimates the 
variance components themselves, leading to biased estimates 
when samples are small (they are still asymptotically 
unbiased).

These concerns led statisticians to develop restricted 
maximum likelihood (RML; Dempster Laird & Rubin, 1977). 
Because both FML and RML require intensive numerical 
iteration when used to fit the multilevel model for change, we 
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cannot illustrate their differences algebraically. But because 
similar issues arise when these methods are used to fit simpler 
models, including the linear regression model for cross-
sectional data, we can illustrate their differences in this 
context where closed-form estimates can be written down.

We begin by describing what happens when we use FML to fit 
a linear regression model to cross-sectional data. Imagine 
using the following simple regression model to predict an 
outcome, Y, on the basis of p predictors, X 1 through X p, in a 
sample of size n, Y i = β0 + β1 X 1i + β2 X 2i + … + βp X pi + εi, 
where i indexes individuals and εi represents the usual 
independent, normally distributed residual with zero mean 
and homoscedastic variance, . If it were somehow possible to 
know the true population values of the regression parameters, 
the residual for individual i would be: εi = Y i – (β0 + β1 X 1i + β2

X 2i + … + βp X pi). The FML estimator of the unknown residual 
variance , would then be the sum of squared residuals divided 
by the sample size, n:

(4.5a) 
Because we imagine that we know the population values of the 
regression coefficients, we need not estimate them to compute 
residuals, leaving n degrees of freedom for the residual variance 
calculation.

(p.89) In practice, of course, we never know the true 
population values of the regression parameters; we estimate 
them using sample data, and so:

Substituting these estimates into equation (4.5a) yields an FML 
estimate of the residual variance:

(4.5b) 
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because functions of FML estimators, the ’s, are themselves FML 
estimators.
Notice that the denominator of the FML estimated residual 
variance in equation 4.5b is the sample size n. Use of this 
denominator assumes that we still have all the original 
degrees of freedom in the sample to estimate this parameter. 
But because we estimated (p + 1) regression parameters to 
compute the residuals, and did so with uncertainty, we used 
up (p + 1) degrees of freedom. An unbiased estimate of the 
residual variance decreases the denominator of equation 4.5b
to account for this loss:

(4.5c) 
The distinction between the estimated residual variances in 
equations 4.5b and 4.5c is exactly the same as that between full and
restricted ML estimation in the multilevel model for change. Like 
RML, equation 4.5c accounts for the uncertainty associated with 
estimating the regression parameters (the fixed effects) before 
estimating the residual variance (the variance components); like 
FML, equation (4.5b) does not.
How are RML estimates computed? Technical work by 
Patterson and Thompson (1971) and Harville (1974) provides 
a conceptually appealing strategy. RML estimates of the 
variance components are those values that maximize the 
likelihood of observing the sample residuals (not the sample 
data). Once again, an iterative process is used. First, we 
estimate the fixed effects, the γ’s, using some other method, 
often OLS or GLS. Next, as in regular regression analysis, we 

use the ’s to estimate a residual for each person on each 
occasion (by subtracting observed and predicted values). 
Under the usual assumptions about the level-1 and level-2 
residuals—independence, homoscedasticity, and normality—
we can write down the likelihood of observing this particular 
collection of “data” (that is, residuals), in terms of the 
residuals and the unknown (p.90)  variance components that 
govern their distributions. We then take the logarithm of the 
restricted likelihood and maximize it to yield RML estimates of 
the variance components, the only unknown parameters 
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remaining (as we have assumed that the fixed effects, the γ’s, 
are known).

For decades, controversy has swirled around the comparative 
advantages of these two methods. Although Dempster et al. 
(1977, p. 344) declared RML to be “intuitively more correct,” 
it has not proved to be unilaterally better than FML in 
practice. In their review of simulation studies that compare 
these methods for fitting multilevel models, Kreft and 
deLeeuw (1998) find no clear winner. They suggest that some 
of the ambiguity stems from the decreased precision that 
accompanies the decreased small sample bias of RML 
estimation.

If neither approach is uniformly superior, why belabor this 
distinction? An important issue is that goodness-of-fit statistics 
computed using the two methods (introduced in section 4.6) 
refer to different portions of the model. Under FML, they 
describe the fit of the entire model; under RML, they describe 
the fit of only the stochastic portion (the random effects). This 
means that the goodness-of-fit statistics from FML can be used 
to test hypotheses about any type of parameter, either a fixed 
effect or a variance component, but those from RML can be 
used only to test hypotheses about variance components (not 
the fixed effects). This distinction has profound implications 
for hypothesis testing as a component of model building and 
data analysis (as we will soon describe). When we compare 
models that differ only in their variance components, we can 
use either method. When we compare models that differ in 
both fixed effects and variance components, we must use full 
information methods. To further complicate matters, different 
software programs use different methods as their default 
option (although all can use either approach). SAS PROC 
MIXED, for example, uses RML by default, whereas MLwiN 
and HLM use FML. This means that when you use a particular 
statistical computer program, you must be sure to ascertain 
which method of ML estimation is used by default; if you 
prefer the alternative method—for reasons of potentially 
increased precision or the ability to conduct a wider array of 
hypothesis tests—be sure you are obtaining the desired 
estimates.
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4.3.3 Practical Advice about Estimation

Generalized least squares and maximum likelihood estimation 
are not identical methods of estimation. They use different 
procedures to fit the model and they allow us to make 
different assumptions about the distribution (p.91)  of the 

random effects. We obtain GLS estimates by minimizing a 
weighted function of the residuals; we obtain ML estimates by
maximizing a log-likelihood. Only ML estimation requires that 
the residuals be normally distributed. These differences imply 
that GLS and ML estimates of the same parameters in the 
same model using the same data may differ. Although you 
might find this disturbing, we note that two methods can yield 
unbiased estimates of the same population parameter but that 
the estimates themselves can differ. While extensive 
simulation studies comparing methods are still underway 
(Draper, 1995; Browne & Draper, 2000), limited data-based 
comparisons suggest that, in practice, both methods lead to 
similar conclusions (Kreft, de Leeuw & Kim, 1990).

There is one condition under which the correspondence 
between GLS and ML methods is well known: if the usual 
normal distribution assumptions required for ML estimation 
hold, GLS estimates are ML estimates.2 This equivalence 
means that, if you are prepared to assume normality for β and 
the ζ’s, as we did in chapter 3, GLS estimates usually enjoy the 
same asymptotic unbiasedness, efficiency, and normality that 
ML estimates do. And since you must invoke normal theory 
assumptions to conduct hypothesis tests anyway, most data 
analysts find them compelling and easy to accept. In the 
remainder of the book, we therefore continue to invoke the 
standard normal theory assumptions when specifying the 
multilevel model for change.

GLS and ML are currently the dominant methods of fitting 
multilevel models to data. They appear in a variety of guises in 
different packages. Both FML and RML appear in HLM and 
SAS PROC MIXED. STATA xtreg uses a GLS approach. MLwiN 
uses IGLS and an extension of it, restricted IGLS (RIGLS), 
which is the GLS equivalent of RML. And new estimation 
approaches appear each year. This suggests that whatever we 
write about a particular method of estimation, or its 
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implementation in a particular package, will soon be out of 
date. But if your goal is data analysis (not the development of 
estimation strategies), these modifications of the software are 
unproblematic. The educated user needs to understand the 
statistical model, its assumptions, and how it represents 
reality; the mathematical details of the method of estimation 
are less crucial. That said, we have three reasons for 
recommending that you take the time to become comfortable 
with both ML and GLS methods, at least at the heuristic level 
presented here. First, you cannot conduct credible analyses 
nor interpret parameter estimates without at least a 
conceptual understanding how the model is fit. Second, under 
the assumptions for which they were designed, these methods 
have decent statistical properties. Third, most new methods 
will ultimately descend from, or seek to (p.92)  rectify 
weaknesses in, these methods. In other words, the ML and 
GLS methods are here to stay.

4.4 First Steps: Fitting Two Unconditional 
Multilevel Models for Change

You’ve articulated your research questions, created a person-
period data set, conducted exploratory analyses, chosen an 
estimation approach, and selected a software package. 
Although you might be tempted to begin by fitting models that 
include your substantive predictors, we suggest that you first 
fit the two simpler models presented in this section: the
unconditional means model (section 4.4.1) and the
unconditional growth model (section 4.4.2). These 
unconditional models partition and quantify the outcome 
variation in two important ways: first, across people without 
regard to time (the unconditional means model), and second, 
across both people and time (the unconditional growth model). 
Their results allow you to establish: (1) whether there is 
systematic variation in your outcome that is worth exploring; 
and (2) where that variation resides (within or between 
people). They also provide two valuable baselines against 
which you can evaluate the success of subsequent model 
building, as we discuss in section 4.4.3.
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4.4.1 The Unconditional Means Model

The unconditional means model is the first model you should 
always fit. Instead of describing change in the outcome over 
time, it simply describes and partitions the outcome variation. 
Its hallmark is the absence of predictors at every level:

(4.6a) 
where we assume, as usual, that:
(4.6b)

Notice that because there is only one level-2 residual, ζ0i, we 
assume univariate normality at level-2 (not bivariate normality, as 
we do when we have two level-2 residuals).
The unconditional means model stipulates that, at level-1, the 
true individual change trajectory for person i is completely 
flat, sitting at elevation π0i. Because the trajectory lacks a 
slope parameter associated with a temporal predictor, it 
cannot tilt. The single part of the level-2 submodel (p.93)

stipulates that while these flat trajectories may differ in 
elevation, their average elevation, across everyone in the 
population, is γ00. Any interindividual variation in elevation is 
not linked to predictors. Even though you hope that this model 
did not give rise to your sample data—for it is not really about
change at all—we recommend that you always fit it first 
because it partitions the total variation in the outcome 
meaningfully.

To understand how this variance partition operates, notice 
that flat individual change trajectories are really just means. 
The true mean of Y for individual i is π0i; the true mean of Y
across everyone in the population is γ00. Borrowing 
terminology from analysis of variance, π0i is the person-
specific mean and γ00 is the grand mean. The unconditional 
means model postulates that the observed value of Y for 
individual i on occasion j is composed of deviations about these 
means. On occasion j, Yij deviates from individual i’s true mean 
(π0i) by εij. The level-1 residual is thus a “within-person” 
deviation that assesses the “distance” between Y ij and π0i. 
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Then, for person i, his or her true mean (π0i) deviates from the 
population average true mean (γ00) by ζ0i. This level-2 residual 
is thus a “between-person” deviation that assesses the 
“distance” between π0i and γ00.

The variance components of equation 4.6b summarize the 
variability in these deviations across everyone in the 
population: is the “within-person” variance, the pooled scatter 
of each person’s data around his or her own mean; is the 
“between-person” variance, the pooled scatter of the person-
specific means around the grand mean. The primary reason 
we fit the unconditional means model is to estimate these 
variance components, which assess the amount of outcome 
variation that exists at each level. Associated hypothesis tests 
help determine whether there is sufficient variation at that 
level to warrant further analysis. If a variance component is 
zero, there is little point in trying to predict outcome variation
at that level—there is too little variation to explain. If a 
variance component is non-zero, then there is some variation 
at that level that could potentially be explained.

Model A of table 4.1 presents the results of fitting the 
unconditional means model to the alcohol use data. Its one 

fixed effect, , estimates the outcome’s grand mean across 
all occasions and individuals. Rejection of its associated null 
hypothesis (p < .001) confirms that the average alcohol 
consumption of the average adolescent between ages 14 and 
16 is non-zero. Squaring 0.922 (which yields 0.85) to obtain its 
value on the instrument’s original scale, we conclude that the 
average adolescent does drink during these years, but not very 
much.

Next, examine the random effects, the major purpose for 
fitting this model. The estimated within-person variance, , is 
0.562; the estimated (p.94)
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Table 4.1: Results of fitting a taxonomy of multilevel models for change to the alcohol use data (n = 82)

Parameter Model 
A

Model 
B

Model 
C

Model 
D

Model 
E

Model F 
(CPEER)

Model G 
(CCOA &
CPEER)

Fixed Effects

Initial 
status, π0i

Intercept γ00 0.922***0.651***0.316***−0.317***−0.314***0.394*** 0.651***

(0.096) (0.105) (0.131) (0.148) (0.146) (0.104) (0.080)

COA γ01 0.743***0.579*** 0.571*** 0.571*** 0.571***

(0.195) (0.162) (0.146) (0.146) (0.146)

PEER γ02 0.694*** 0.695*** 0.695*** 0.695***

(0.112) (0.111) (0.111) (0.111)

Rate of 
change, 
π1i

Intercept γ10 0.271***0.293***0.429*** 0.425*** 0.271*** 0.271***

(0.062) (0.084) (0.114) (0.106) (0.061) (0.061)

COA γ11 −0.049 −0.014

(0.125) (0.125)

PEER γ12 −0.150~ −0.151~ −0.151~ −0.151~
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Parameter Model 
A

Model 
B

Model 
C

Model 
D

Model 
E

Model F 
(CPEER)

Model G 
(CCOA &
CPEER)

(0.086) (0.085) (0.085) (0.085)

Variance Components

Level 1 Within-person 0.562***0.337***0.337***0.337*** 0.337*** 0.337*** 0.337***

(0.062) (0.053) (0.053) (0.053) (0.053) (0.053) (0.053)

Level 2 In initial status 0.564***0.624***0.488** 0.241** 0.241** 0.241** 0.241**

(0.119) (0.148) (0.128) (0.093) (0.093) (0.093) (0.093)

In rate of change 0.151** 0.151* 0.139* 0.139* 0.139* 0.139*

(0.056) (0.056) (0.055) (0.055) (0.055) (0.055)

Covariance −0.068 −0.059 −0.006 −0.006 −0.006 −0.006

(0.070) (0.066) (0.055) (0.055) (0.055) (0.055)

Pseudo R2 Statistics and Goodness-of-fit

.043 .150 .291 .291 .291 .291

.40 .40 .40 .40 .40 .40

.218 .614 .614 .614 .614

.000 .079 .079 .079 .079
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Parameter Model 
A

Model 
B

Model 
C

Model 
D

Model 
E

Model F 
(CPEER)

Model G 
(CCOA &
CPEER)

Deviance 670.2 636.6 621.2 588.7 588.7 588.7 588.7

AIC 676.2 648.6 637.2 608.7 606.7 606.7 606.7

BIC 683.4 663.0 656.5 632.8 628.4 628.4 628.4
~ p < .10; * p < .05; ** p < .01; *** p < .001

These models predict ALCUSE between ages 14 and 16 as a function of AGE-14 (at level-1) and various combinations of COA and
PEER (at level-2). Models C, D, and E enter the level-2 predictors in their raw form; Models F and G enter the level-2 predictors in
centered forms as indicated.

Note: MLwiN, full IGLS.
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(p.95)  (p.96)  between-person variance, , is 0.564. Using the 
single parameter hypothesis tests of section 3.6, we can reject both 
associated null hypotheses at the .001 level. (Although these tests 
can mislead—(see section 3.6.2), we use them in table 4.1 because 
it turns out—for these data, at least—that the conclusions are 
supported by the superior methods of testing presented in section 
4.6.) We conclude that the average adolescent’s alcohol 
consumption varies over time and that adolescents differ from each 
other in alcohol use. Because each variance component is 
significantly different from 0, there is hope for linking both within-
person and between-person variation in alcohol use to predictors.
The unconditional means model serves another purpose: it 
allows us to evaluate numerically the relative magnitude of the 
within-person and between-person variance components. In 
this data set, they happen to be almost equal. A useful statistic 
for quantifying their relative magnitude is the intraclass 
correlation coefficient, ρ, which describes the proportion of 
the total outcome variation that lies “between” people. 
Because the total variation in Y is just the sum of the within 
and between-person variance components, the population 
intraclass correlation coefficient is:

(4.7) 
We can estimate ρ by substituting the two estimated variance 
components from table 4.1 into equation (4.7). For these data, we 
find:

indicating that half the total variation in alcohol use is attributable 
to differences among adolescents.
The intraclass correlation coefficient has another role as well: 
it summarizes the size of the residual autocorrelation in the 
composite unconditional means model. To understand how it 
does this, substitute the level-2 submodel in equation 4.6a into 
its level-1 submodel to yield the following composite 
unconditional means model:

(4.8) 
In this representation, Yij is composed of one fixed effect, γ00, and 
one composite residual (ζ0i + εij). Each person has a different 
composite residual on each occasion of measurement. But notice 
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the difference in the subscripts of the pieces of the composite 
residual: while the level-1 residual, εij, has two subscripts (i and j), 
the level-2 residual, ζ0i, has only one (i). Each person can have a 
different εij on each occasion, but has only (p.97)  one ζ0i across 
every occasion. The repeated presence of ζ0i in individual i’s 
composite residual links his or her composite residuals across 
occasions. The error autocorrelation coefficient quantifies the 
magnitude of this linkage; in the unconditional means model, the 
error autocorrelation coefficient is the intraclass correlation 
coefficient. Thus, we estimate that, for each person, the average 
correlation between any pair of composite residuals—between 
occasions 1 and 2, or 2 and 3, or 1 and 3—is 0.50. This is quite 
large, and far from the zero residual autocorrelation that an OLS 
analysis of these data would require. We discuss the intraclass 
correlation coefficient further in chapter 7.

4.4.2 The Unconditional Growth Model

The next logical step is the introduction of predictor TIME into 
the level-1 submodel. Based on the exploratory analyses of 
section 4.1, we posit a linear change trajectory:

(4.9a) 
where we assume that

(4.9b) 
Because the only predictor in this model is TIME, we call equation 
4.9 the unconditional growth model.
Begin by comparing the unconditional growth model in 
equation 4.9a to the unconditional means model in equation
4.6a. We facilitate this comparison in table 4.2, which presents 
these models as well as several others we will soon fit. Instead 
of postulating that individual i’s observed score on occasion j, 
Yij, deviates by εij from his or her person-specific mean, it 
specifies that Yij deviates by εij from his or her true change 
trajectory. In other words, altering the level-1 specification 
alters what the level-1 residuals represent. In addition, we 
now have a second part to the level-2 submodel that depicts 
interindividual variation in the rates of change (π1i). But 
because the model includes no substantive predictors, each 
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part of the level-2 submodel simply stipulates that an 
individual growth parameter (either π0i or π1i) is the sum of an 
intercept (either γ00 or γ10) and a level-2 residual (ζ0i or ζ1i).

An important consequence of altering the level-1 specification 
is that the meaning of the variance components changes as 
well. The level-1 (p.98)

Table 4.2: Taxonomy of multilevel models for 
change fitted to the alcohol use data
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Level-1/level-2 specification

Model level-1 model level-2 model Composite 
model
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Figure 4.3.  Displaying the results of 
fitted multilevel models for change. 
Prototypical trajectories from three 
models presented in table 4.1: Model B: 
the unconditional growth model, Model 
C: the uncontrolled effect of COA, Model 
E: the effect of COA controlling for PEER.

These models predict ALCUSE between ages 14 and 16 as a 
function of AGE-14 (at level-1) and various combinations of
COA and PEER (at level-2). Models C, D, and E enter the 
level-2 predictors in their raw form; Models F and G enter 
the level-2 predictors in centered forms as indicated. 
Results of model fitting appear in Table 4.1.

(p.99)

residual 
variance, , now 
summarizes 
the scatter of 
each person’s 
data around his 
or her own 
linear change 
trajectory (not 
his or her 
person-specific 
mean). The 
level-2 residual 
variances, 
and , now 
summarize 
between-
person 
variability in 
initial status 
and rates of change. Estimating these variance components allows 
us to distinguish level-1 variation from the two different kinds of 
level-2 variation and to determine whether interindividual 
differences in change are due to interindividual differences in true 
initial status or true rate of change.
Model B in table 4.1 presents the results of fitting the 
unconditional growth model to the alcohol use data. The fixed 
effects, and estimate the starting point and slope of the 
population average change trajectory. We reject the null 
hypothesis for each (p < .001), estimating that the average 
true change trajectory for ALCUSE has a non-zero intercept of 
0.651 and a non-zero slope of +0.271. Because there are no 
level-2 predictors, it is simple to plot this trajectory, as we do 
in the left panel of figure 4.3. Although alcohol use for the 

Figure 4.3.  Displaying the results of 
fitted multilevel models for change. 
Prototypical trajectories from three 
models presented in table 4.1: Model B: 
the unconditional growth model, Model 
C: the uncontrolled effect of COA, Model 
E: the effect of COA controlling for PEER.
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average adolescent remains low, we estimate that ALCUSE
rises steadily between ages 14 and 16, from 0.65 to 1.19. We 
will soon determine whether these trajectories differ 
systematically by parental alcoholism history or early peer 
alcohol use.

To assess whether there is hope for future analyses—whether 
there is statistically significant variation in individual initial 
status or rate of (p.100)  change that level-2 predictors could 
explain—examine the variance components. By now, we hope 
you are beginning to see that variance components are often 
more interesting than fixed effects. The level-1 residual 
variance, , summarizes the average scatter of an individual’s 
observed outcome values around his or her own true change 
trajectory. If the true change trajectory is linear with age, the 
unconditional growth model will do a better job of predicting 
the observed outcome data than the unconditional means 
model, resulting in smaller level-1 residuals and a smaller 
level-1 residual variance. Comparing in Model B to that of 
Model A, we find a decline of .40 (from 0.562 to 0.337). We 
conclude that 40% of the within-person variation in ALCUSE is 
systematically associated with linear TIME. Because we can 
reject the null hypothesis for this variance component in 
Model B, we also know that some important within-person 
variation still remains at level-1 (p < .001). This suggests that 
it might be profitable to introduce substantive predictors into 
the level-1 submodel. We defer discussion of level-1 
substantive predictors until section 5.3 because they must be
time-varying (not time-invariant like the level-2 predictors in 
this data set).

The level-2 variance components quantify the amount of 
unpredicted variation in the individual growth parameters. 
assesses the unpredicted variability in true initial status (the 
scatter of the π0i around γ00); assesses the unpredicted 
variability in true rates of change (the scatter of the π1i around 
γ10). Because we reject each associated null hypothesis (at p
< .001 and p < .01, respectively), we conclude that there is 
non-zero variability in both true initial status and true rate of 
change. This suggests that it worth trying to use level-2 
predictors to explain heterogeneity in each parameter. When 
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we do so, these variance components—0.624 and 0.151—will 
provide benchmarks for quantifying the predictors’ effects. We 
do not compare these variance components with estimates 
from the unconditional means model because introduction of
TIME into the model changes their interpretation.

The population covariance of the level-2 residuals σ01, has an 
important interpretation in the unconditional growth model. It 
not only assesses the relationship between the level-2 
residuals, it quantifies the population covariance between true 
initial status and true change. This means that we can assess 
whether adolescents who drink more at age 14 increase their 
drinking more (or less) rapidly over time. Interpretation is 
easier if we re-express the covariance as a correlation 
coefficient, dividing it by the square root of the product of its 
associated variance components:

(p.101)  We conclude that the relationship between true rate of 

change in ALCUSE and its level at age 14 is negative and weak and, 
because we cannot reject its associated null hypothesis, possibly 
zero.
We can learn more about the residuals in the unconditional 
growth model by examining the composite specification of the 
multilevel model:

(4.10) 
Each person has j composite residuals, one per occasion of 
measurement. The structure of the composite residual, which 
combines the original level-1 and level-2 residuals (with ζ1i

multiplied by TIME before being bundled into the sum), provides 
the anticipated heterosce-dasticity and autocorrelation that 
longitudinal data analysis may demand.
First, we examine the variances of the composite residual. 
Mathematical results not presented here allow us to write the 
population variance of the composite residual on the jth 
occasion of measurement as:

(4.11) 
Substituting the estimated variance components from Model B in 
table 4.1 we have:
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Substituting values for TIME at ages 14 (TIME 1 = 0), 15 (TIME 2 = 
1) and 16 (TIME 3 = 2), we find estimated composite residual 
variances of 0.961, 0.976, and 1.293, respectively. While not 
outrageously heteroscedastic, especially for ages 14 and 15, this is 
beyond the bland homoscedasticity we assume of residuals in 
cross-sectional data.
Further mathematical results not shown here allow us to write 
the autocorrelation between composite residuals on occasions
j and j′ as:

(4.12)

where the residual variances in the denominator are given by 
equation (4.11). Substituting the estimated variance components 
and TIME into equation 4.12 yields a residual autocorrelation of 
0.57 between occasions 1 and 2, 0.64 between occasions 2 and 3, 
and 0.44 between occasions 1 and 3. We conclude that there is 
substantial autocorrelation between the residuals across successive 
measurement occasions. We explore this behavior further in 
chapter 7.

(p.102) 4.4.3 Quantifying the Proportion of Outcome Variation 
“Explained”

The two unconditional models assess whether there is 
potentially predictable outcome variation and, if so, where it 
resides. For these data, the unconditional means model 
suggests roughly equal amounts of within-person and 
between-person variation. The unconditional growth model 
suggests that some of the within-person variation is 
attributable to linear TIME and that there is between-person 
variation in both true initial status and true rate of change 
that level-2 predictors might explain.

In multiple regression analysis, we quantify the proportion of 
outcome variation that a model’s predictors “explain” using an
R 2 (or adjusted R 2) statistic. In the multilevel model for 
change, definition of a similar statistic is trickier because total 
outcome variation is partitioned into several variance 
components: here, , and . As a result, statisticians have yet to 
agree on appropriate summaries (Kreft & deLeeuw, 1998; 
Snidjers & Bosker, 1994). Below, we present several pseudo-R
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2 statistics that quantify how much outcome variation is 
“explained” by a multilevel model’s predictors. First, we 
assess the proportion of total variation explained using a 
statistic similar to the traditional R 2 statistic; second, we 
dissect the level-1 and level-2 outcome variation using 
statistics similar to traditional adjusted-R 2 statistics. These 
pseudo-R 2 statistics can be useful data analytic tools, as long 
as you construct and interpret them carefully.

An Overall Summary of Total Outcome Variability Explained

In multiple regression, one simple way of computing a 
summary R 2 statistic is to square the sample correlation 
between observed and predicted values of the outcome. The 
same approach can be used in the multilevel model for 
change. All you need do is: (1) compute a predicted outcome 
value for each person on each occasion of measurement; and 
(2) square the sample correlation between observed and 
predicted values. The resultant pseudo-R 2 statistic assesses 
the proportion of total outcome variation “explained” by the 
multilevel model’s specific combination of predictors.

The bottom panel of table 4.1 presents this pseudo-R 2 statistic 
(labeled ) for each model fit. We calculate these statistics by 
correlating predicted and observed values of ALCUSE for each 
person on each occasion of measurement. For Model B, for 
example, the predicted values for individual i on occasion j
are: . As everyone in this data set has the identical set of 
measurement occasions (0, 1, and 2), Model B yields only 
three distinct predicted values: (p.103)

Across the entire person-period data set, the sample correlation 
between these predicted values and the observed values is 0.21, 
which yields a pseudo-R 2 statistic of .043. We conclude that 4.3% 
of the total variability in ALCUSE is associated with linear time. As 
we add substantive predictors to this model, we examine whether, 
and by how much, this pseudo-R 2 statistic increases.
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Pseudo-R 2 Statistics Computed from the Variance Components

Residual variation—that portion of the outcome variation
unexplained by a model’s predictors—provides another 
criterion for comparison. When you fit a series of models, you 
hope that added predictors further explain unexplained 
outcome variation, causing residual variation to decline. The 
magnitude of this decline quantifies the improvement in fit. A 
large decline suggests that the predictors make a big 
difference; a small, or zero, decline suggests that they do not. 
To assess these declines on a common scale, we compute the
proportional reduction in residual variance as we add 
predictors.

Each unconditional model yields residual variances that serve 
as yardsticks for comparison. The unconditional means model 
provides a baseline estimate of ; the unconditional growth 
model provides baseline estimates of and . Each leads to its 
own pseudo-R 2 statistic.

Let us begin by examining the decrease in within-person 
residual variance between the unconditional means model and 
unconditional growth model. As shown in table 4.1, our initial 
level-1 residual variance estimate, 0.562, drops to .337 in the 
initial model for change. As the fundamental difference 
between these models is the introduction of TIME, this 
pseudo-R 2 statistic assesses the proportion of within-person 
variation “explained by time.” We compute the statistic as:

(4.13)

For the alcohol use data, we have (.562 − .337)/.562 = 0.400. We 
conclude that 40.0% of the within-person variation in ALCUSE is 
explained by linear TIME. The only way of reducing this variance 
component further is to add time-varying predictors to the level-1 
submodel. As this (p.104)  data set has no such predictors, remains 

unchanged in every subsequent model in table 4.1.
We can use a similar approach to compute pseudo-R 2

statistics quantifying the proportional reduction in level-2 
residual variance on the addition of one or more level-2 
predictors. Each level-2 residual variance component has its 
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own pseudo-R 2 statistic. A level-1 linear change model, with 
two level-2 variance components, and , has two pseudo-R 2s. 
Baseline estimates of these components come from the 
unconditional growth model. For any subsequent model, we 
compute a pseudo-R 2 statistic as:

(4.14)

Estimates of these statistics for each of the models in table 4.1
appear in the bottom of the table. We will examine these 
proportional declines in the next section when we evaluate the 
results of subsequent model fitting.
Before doing so, however, we close by identifying a potentially 
serious flaw with the pseudo-R 2 statistics. Unlike traditional R
2 statistics, which will always be positive (or zero), some of 
these statistics can be negative! In ordinary regression, 
additional predictors generally reduce the residual variance 
and increase R 2. Even if every added predictor is worthless, 
the residual variance will not change and R 2 will not change. 
In the multilevel model for change, additional predictors 
generally reduce variance components and increase pseudo-R
2 statistics. But because of explicit links among the model’s 
several parts, you can find yourself in extreme situations in 
which the addition of predictors increases the variance 
components’ magnitude. This is most likely to happen when 
all, or most, of the outcome variation is exclusively either 
within-individuals or between-individuals. Then, a predictor 
added at one level reduces the residual variance at that level 
but potentially increases the residual variance(s) at the other 
level. This yields negative pseudo-R 2 statistics, a disturbing 
result to say the least. Kreft and de Leeuw (1998, pp. 117–118) 
and Snijders and Bosker (1999, pp. 99–109) provide 
mathematical accounts of this phenomenon, explicitly calling 
for caution when computing and interpreting pseudo-R 2

statistics.

4.5 Practical Data Analytic Strategies for Model 
Building
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A sound statistical model includes all necessary predictors and 
no unnecessary ones. But how do you separate the wheat from 
the chaff? We (p.105)  suggest you rely on a combination of 
substantive theory, research questions, and statistical 
evidence. Never let a computer select predictors mechanically. 
The computer does not know your research questions nor the 
literature upon which they rest. It cannot distinguish 
predictors of direct substantive interest from those whose 
effects you want to control.

In this section, we describe one data analytic path through the 
alcohol use data, distilling general principles from this specific 
case. We begin, in section 4.5.1, by introducing the notion of a
taxonomy of statistical models, a systematic path for 
addressing your research questions. In section 4.5.2, we 
compare fitted models in the taxonomy, interpreting 
parameter estimates, their associated tests and pseudo-R 2

statistics. In section 4.5.3, we demonstrate how to display 
analytic results graphically. In section 4.5.4, we discuss 
alternative strategies for representing the effects of 
predictors. In the remaining sections of the chapter, we use 
these basic principles to introduce other important topics 
related to model building.

4.5.1 A Taxonomy of Statistical Models

A taxonomy of statistical models is a systematic sequence of 
models that, as a set, address your research questions. Each 
model in the taxonomy extends a prior model in some sensible 
way; inspection and comparison of its elements tell the story 
of predictors’ individual and joint effects. Most data analysts 
iterate toward a meaningful path; good analysis does not 
proceed in a rigidly predetermined order.

We suggest that you base decisions to enter, retain, and 
remove predictors on a combination of logic, theory, and prior 
research, supplemented by judicious hypothesis testing and 
comparison of model fit. At the outset, you might examine the 
effect of each predictor individually. You might then focus on 
predictors of primary interest (while including others whose 
effects you want to control). As in regular regression, you can 
add predictors singly or in groups and you can address issues 
of functional form using interactions and transformations. As 
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you develop the taxonomy, you will progress toward a “final 
model” whose interpretation addresses your research 
questions. We place quotes around this term to emphasize that 
we believe no statistical model is ever final; it is simply a 
placeholder until a better model is found.

When analyzing longitudinal data, be sure to capitalize on 
your intuition and skills cultivated in the cross-sectional world. 
But longitudinal analyses are more complex because they 
involve: (1) multiple level-2 outcomes (the individual growth 
parameters), each of which can be related to predictors; and 
(2) multiple kinds of effects, both fixed effects and variance

(p.106)  components. A level-1 linear change submodel has 
two level-2 outcomes; a more complex level-1 submodel may 
have more. The simplest strategy is to initially include each 
level-2 predictor simultaneously in all level-2 submodels, but 
as we show below, they need not remain. Each individual 
growth parameter can have its own predictors, and one goal of 
model building is to identify which predictors are important 
for which level-1 parameters. So, too, although each level-2 
submodel can contain fixed and random effects, both are not 
necessarily required. Sometimes a model with fewer random 
effects will provide a more parsimonious representation and 
clearer substantive insights.

Before fitting models, take the time to distinguish between: (1)
question predictors, whose effects are of primary substantive 
interest; and, (2) control predictors, whose effects you would 
like to remove. Substantive and theoretical concerns usually 
support the classification. For the alcohol use data, our 
classifications and analytic path will differ depending on our 
research questions. If interest centers on parental influences,
COA is a question predictor and PEER a control. We would 
then evaluate the effect of COA on its own and after control for
PEER. But if interest centers on peer influences, PEER is a 
question predictor and COA a control. We would then evaluate 
the effect of PEER on its own and after control for COA. 
Different classification schemes may lead to the same “final 
model,” but they would arrive there via different paths. 
Sometimes, they lead to different “final models,” each 
designed to answer its own research questions.
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In what follows, we assume that research interest centers on 
the effects of parental alcoholism; PEER is a control. This 
allows us to adopt the analytic path illustrated in tables 4.1
and 4.2. Model C includes COA as a predictor of both initial 
status and change. Model D adds PEER to both level-2 models. 
Model E is a simplification of Model D in which the effect of
COA on one of the individual growth parameters (the rate of 
change) is removed. We defer discussion of Models F and G 
until section 4.5.4.

4.5.2 Interpreting Fitted Models

You need not interpret every model you fit, especially those 
designed to guide interim decision making. When writing up 
findings for presentation and publication, we suggest that you 
identify a manageable subset of models that, taken together, 
tells a persuasive story parsimoniously. At a minimum, this 
includes the unconditional means model, the unconditional 
growth model, and a “final model.” You may also want to 
present intermediate models that either provide important 
building blocks or tell interesting stories in their own right.

(p.107) Columns 4–8 of table 4.1 present parameter estimates 
and associated single parameter hypothesis tests for five 
models in our taxonomy. (We discuss the last two models in 
section 4.5.4.) We recommend that you always construct a 
table like this because it allows you to compare fitted models 
systematically, describing what happens as you add and 
remove predictors. Sequential inspection and comparison of 
estimated fixed effects and variance components and their 
associated tests allows you to: (1) ascertain whether, and how, 
the variability in initial status and rate of change is gradually 
“explained”; and (2) identify which predictors explain what 
variation. Tests on the fixed effects help identify the predictors 
to retain; tests on the variance components help assess 
whether there is additional outcome variation left to predict. 
Integrating these conclusions helps identify the sources of 
outcome variation available for prediction and those 
predictors that are most effective in explaining that variation. 
As we have discussed Models A and B in section 4.3, we turn 
now to Model C.
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Model C: The Uncontrolled Effects of COA

Model C includes COA as a predictor of both initial status and 
change. Interpretation of its four fixed effects is 
straightforward: (1) the estimated initial ALCUSE for the 
average child of non-alchoholic parents is 0.316 (p < .001); (2) 
the estimated differential in initial ALCUSE between children 
of alchoholic and non-alchoholic parents is 0.743 (p < .001); 
(3) the estimated rate of change in ALCUSE for an average 
child of non-alchoholic parents is 0.293 (p < .001); and (4) the 
estimated differential in the rate of change in ALCUSE
between children of alchoholic and nonalcoholic parents is 
indistinguishable from 0 (−0.049, ns). This model provides 
uncontrolled answers to our research questions, suggesting 
that while children of alchoholic parents initially drink more 
than children of non-alchoholic parents, their rate of change in 
alcohol consumption between ages 14 and 16 does not differ.

Next examine the variance components. The statistically 
significant within-person variance component for Model C is 
identical to that of Model B, reinforcing the need to explore 
the effects of time-varying predictors (if we had some). 
Stability like this is expected because we added no additional 
level-1 predictors (although estimates can vary because of 
uncertainties arising from iterative estimation). The level-2 
variance components, however, do change: declines by 21.8% 
from Model B. Because it is still statistically significant, 
potentially explainable residual variation in initial status 
remains. While is unchanged, it, too, is still statistically 
significant, suggesting the continued presence of (p.108)

potentially explainable residual variation in rates of change. 
These variance components are now called partial or 
conditional variances because they quantify the interindividual 
differences in change that remain unexplained by the model’s 
predictors. We conclude that we should explore the effects of 
a level-2 predictor like PEER because it might help explain 
some of the level-2 residual variation.

Failure to find a relationship between COA and the rate of 
change might lead some analysts to immediately remove this 
term. We resist this temptation because COA is our focal 
question predictor and we want to evaluate the full spectrum 
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of its effects. If subsequent analyses continue to suggest that 
this term be removed, we can always do so (as we do, in Model 
E).

Model D: The Controlled Effects of COA

Model D evaluates the effects of COA on initial status and 
rates of change in ALCUSE, controlling for the effects of PEER
on initial status and rate of change. Notice that the level-2 
intercepts change substantially from Model C: reverses sign, 
from +0.316 to −0.317; increases by 50%, from 0.293 to 
0.429. We expect changes like these when we add level-2 
predictors to our model. This is because each level-2 intercept 
represents the value of the associated individual growth 
parameter—π0i or π1i—when all predictors in each level-2 
model are 0. In Model C, which includes only one predictor,
COA, the intercepts describe initial status and rate of change 
for children of non-alchoholic parents. In Model D, which 
includes two predictors, the intercepts describe initial status 
and rate of change for a subset of children of non-alchoholic 
parents—those for whom PEER also equals 0. Because we can 
reject the null hypothesis associated with each parameter (p
< .001), we might conclude that children of non-alchoholic 
parents whose early peers do not drink have non-zero levels of 
alcohol consumption themselves. But this conclusion is 
incorrect because the fitted intercept for initial status 
(−0.317) is negative suggesting that the confidence interval 
for the parameter does not even reach zero from below! As
ALCUSE cannot be negative, this interval is implausible. As in 
regular regression, fitted intercepts may be implausible even 
when they correspond to observable combinations of predictor 
values. We discuss strategies for improving the interpretability 
of the level-2 intercepts in section 4.5.4.

The remaining parameters in Model D have expected 
interpretations: γ01 and γ11 describe the differential in
ALCUSE between children of alchoholic and non-alchoholic 
parents controlling for the effects of PEER and γ02 and γ12

describe the differential in ALCUSE for a one-unit (p.109)

difference in PEER controlling for the effect of COA. Given our 
focus on the effects of COA, we are more interested in the 
former effects than the latter. We therefore conclude that, 
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controlling for the effects of PEER: (1) the estimated 
differential in initial ALCUSE between children of alchoholic 
and non-alchoholic parents is 0.579 (p < .001); and (2) the 
estimated differential in the rate of change in ALCUSE
between children of alchoholic and non-alchoholic parents is 
indistinguishable from 0 (−0.014, ns). This model provides
controlled answers to our research questions. As before, we 
conclude that children of alchoholic parents initially drink 
more than children of non-alchoholic parents but their annual 
rate of change in consumption between ages 14 and 16 is no 
different. The magnitude of the early differential in ALCUSE
is lower after PEER is controlled. At least some of the 
differential initially found between the two groups may be 
attributable to this predictor.

Next examine the associated variance components. Comparing 
Model D to the unconditional growth model B, we find that 
while remains stable (as expected), and both decline. Taken 
together, PEER and COA explain 61.4% of the variation in 
initial status and 7.9% of the variation in rates of change. 
Notice that we can compare these random effects across 
models even though we cannot compare their fixed effects 
( and ). This is because the random effects describe the 
residual variance of the level-1 growth parameters—π0i or π1i

—which retain their meaning across successive models even 
though the corresponding fixed effects (at level-2) do not.

Rejection of the null hypotheses associated with and suggests 
that there is further unpredicted variation in both initial status 
and rates of change. If our data set had included other person-
level predictors, we would introduce them into the level-2 
model to explain this variation. But we have no such 
predictors. And hypothesis tests for the parameter associated 
with the effect of COA on rate of change (γ11) suggest that it 
need not be included in Models C or D as a predictor of 
change. In comparison to all other fixed effects, it is the only 
one whose null hypothesis cannot be rejected. We conclude 
that even though COA is our focal question predictor, we 
should remove this term to obtain a more parsimonious model.
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Model E: A Tentative “Final Model” for the Controlled Effects of 
COA

Model E includes PEER as a predictor of both initial status and 
change but COA as a predictor of only initial status. For ease 
of exposition, we tentatively label this our “final model,” but 
we hasten to add that our (p.110)  decision to temporarily stop 
here is based on many other analyses not shown. In particular, 
we examined issues of functional form, including nonlinearity 
and interactions, and found no evidence of either (beyond that 
which we addressed by transforming the original outcome and 
predictor). We discuss issues like these in section 4.8 and in 
subsequent chapters as we extend the multilevel model for 
change.

By now, you should be able to interpret the fixed effects in 
Model E directly. Controlling for the effects of PEER, the 
estimated differential in initial ALCUSE between children of 
alchoholic and non-alchoholic parents is 0.571 (p < .001) and 
controlling for the effect of parental alcoholism, for each 1-
point difference in PEER: the average initial ALCUSE is 0.695 
higher and the average rate of change in ALCUSE is .151 
lower. We conclude that children of alchoholic parents drink 
more alcohol initially than children of non-alchoholic parents 
but their rate of change in consumption between ages 14 and 
16 is no different. We also conclude that PEER is positively 
associated with early consumption but negatively associated 
with the rate of change in consumption. Fourteen-year-olds 
whose friends drink more tend to drink more at that age, but 
they have a slower rate of increase in consumption over time.

Examining the random effects for Model E in comparison to 
Model D, we find no differences in , or . This confirms that we 
lose little by eliminating the effect of COA on change. As 
before, rejection of all three associated null hypotheses 
suggests the presence of unpredicted variation that we might 
be able to explain with additional predictors. The population 
covariance of the level-2 residuals, σ01, summarizes the 
bivariate relationship between initial status and change, 
controlling for the specified effects of COA and PEER; in other 
words, the partial covariance between true initial status and 
change. Its estimate, −0.006, is even smaller than the 
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unconditional estimate of −0.068 in the initial model for 
change and its associated hypothesis test indicates that it may 
well be zero in the population. We conclude that, after 
accounting for the effects of PEER and COA, initial status and 
rate of change in alcohol use are unrelated.

4.5.3 Displaying Prototypical Change Trajectories

Numerical summaries are just one way of describing the 
results of model fitting. For longitudinal analyses, we find that 
graphs of fitted trajectories for prototypical individuals are 
more powerful tools for communicating results. These plots 
are especially helpful when fitted intercepts in level-2 
submodels refer to unlikely or implausible combinations of 
predictors, as they do for Model E (as evidenced by the 
negative fitted intercept for the initial status model). Some 
multilevel software packages provide these (p.111)  plots; if 
not, the calculations are simple and can be executed in any 
spreadsheet or graphics program, as shown below.

Let us begin with Model C, which includes the effect of COA
on both initial status and change. From table 4.1, we have the 
following two level-2 fitted models:

We can obtain fitted values for each group by substituting 0 and 1 
for COA:

The average child of a non-alchoholic parent has a fitted trajectory 
with an intercept of 0.316 and a slope of 0.293; the average child of 
an alchoholic parent has a fitted trajectory with an intercept of 
1.059 and a slope of 0.244.
We plot these fitted trajectories in the middle panel of figure
4.3. Notice the dramatic difference in level and trivial 
(nonsignificant) difference in slope. Unlike the numeric 
representation of these effects in table 4.1, the graph depicts 
both how much higher the ALCUSE level is at each age among 
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children of alchoholic parents and it emphasizes the similarity 
in slopes.

We can also obtain fitted trajectories by working directly with 
the composite specification. From Model C’s composite 
specification , we obtain the following two trajectories by 
substituting in the two values of COA:

By working with composite model directly, we obtain fitted 
trajectories expressed as a function of TIME.
It is easy to extend these strategies to models with multiple 
predictors, some of which may be continuous. Instead of 
obtaining a fitted function for each predictor value, we 
recommend that you select prototypical values of the 
predictors and derive fitted functions for combinations of these 

(p.112)  predictor values. Although you may be tempted to 
select many prototypical values for each predictor, we 
recommend that you limit yourself lest the displays become 
crowded, precluding the very interpretation they were 
intended to facilitate.

Prototypical values of predictors can be selected using one (or 
more) of the following strategies:

• Choose substantively interesting values. This strategy is 
best for categorical predictors or those with intuitively 
appealing values (such as 8, 12, and 16 for years of 
education in the United States).

• Use a range of percentiles. For continuous predictors 
without well-known values, consider using a range of 
percentiles (either the 25th, 50th, and 75th or the 10th, 
50th, and 90th).

• Use the sample mean ± .5 (or 1) standard deviation. 
Another strategy useful for continuous predictors without 
well-known values.
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• Use the sample mean. If you just want to control for the 
impact of a predictor rather than displaying its effect, set 
its value to the sample mean, yielding the “average” fitted 
trajectory controlling for that predictor.

Exposition is easier if you select whole number values (if the scale 
permits) or easily communicated fractions (e.g., ¼, ½, and ¾). 
When using sample data to obtain prototypical values, be sure to do 
the calculations on the time-invariant predictors in the original 
person data set, not the person-period data set. If you are 
interested in every substantive predictor in a model, display fitted 
trajectories for all combinations of prototypical predictor values. If 
you want to focus on certain predictors while statistically 
controlling for others, eliminate clutter by setting the values of 
these latter variables to their means.
The right panel of figure 4.3 presents fitted trajectories for 
four prototypical adolescents derived from Model E. To 
construct this display we needed to select prototypical values 
for PEER. Based on its standard deviation of 0.726, we chose 
0.655 and 1.381, values positioned a half a standard deviation 
from the sample mean (1.018). For ease of exposition, we label 
these “low” and “high” PEER. Using the level-1/level-2 
specification, we calculate the fitted values as follows:

PEER COA Initial status ( ) Rate of change ( )

Low No −0.314 + 
0.695(0.655) + 
0.571(0) = 0.142

0.425 − 0.151(0.655) 
=0.326

Low Yes −0.314 + 
0.695(0.655) + 
0.571(1) = 0.713

0.425 − 0.151(0.655) 
=0.326

High No −0.314 + 
0.695(1.381) + 
0.571(0) = 0.646

0.425 − 0.151(1.381) 
=0.216

High Yes −0.314 + 
0.695(1.381) + 
0.571(1) = 1.217

0.425 − 0.151(1.381) 
=0.216

(p.113)  The fitted trajectories of alcohol use differ by both 
parental history of alcoholism and peer alcohol use. At each level of
PEER, the trajectory for children of alchoholic parents is 
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consistently above that of children of non-alchoholic parents. But
PEER also plays a role. Fourteen-year-olds whose friends drink 
more tend to drink more at that age. Regardless of parental 
history, the fitted change trajectory for high PEER is above that of 
low PEER. But PEER has an inverse effect on the change in
ALCUSE over time. The slope of the prototypical change trajectory 
is about 33% lower when PEER is high, regardless of parental 
history. We note that this negative impact is not sufficient to 
counteract the positive early effect of PEER. Despite the lower 
rates of change, the change trajectories when PEER is high never 
approach, let alone fall below, that of adolescents whose value of
PEER is low.

4.5.4 Recentering Predictors to Improve Interpretation

When introducing the level-1 submodel in chapter 2, we 
discussed the interpretive benefits of recentering the 
predictor used to represent time. Rather than entering time as 
a predictor in its raw form, we suggested that you subtract a 
constant from each observed value, creating variables like
AGE-11 (in chapter 2), AGE-1 (in chapter 3), and AGE-14 (here 
in chapter 4). The primary rationale for temporal recentering 
is that it simplifies interpretation. If we subtract a constant 
from the temporal predictor, the intercept in the level-1 
submodel, π0i, refers to the true value of Y at that particular 
age—11, 1, or 14. If the constant chosen represents a study’s 
first wave of data collection, we can simplify interpretation 
even further by referring to π0i as individual i’s true “initial 
status.”

We now extend the practice of rescaling to time-invariant 
predictors like COA and PEER. To understand why we might 
want to recenter time-invariant predictors, reconsider Model E 
in tables 4.1 and 4.2. When it came to the level-2 fitted 
intercepts, and , interpretation was difficult because each 
represents the value of a level-1 individual growth parameter
—π0i or π1i—when all predictors in the associated level-2 
model are 0. If a level-2 model includes many substantive 
predictors or if zero is not a valid value for one or more of 
them, interpretation of its fitted intercepts can be difficult. 
Although you can always construct prototypical change 
trajectories in addition to direct interpretation of parameters, 
we often find it easier to recenter the substantive predictors
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before analysis so that direct interpretation of parameters is 
possible.

The easiest strategy for recentering a time-invariant predictor 
is to subtract its sample mean from each observed value. 
When we center a (p.114)  predictor on its sample mean, the 

level-2 fitted intercepts represent the average fitted values of 
initial status (or rate of change). We can also recenter a time-
invariant predictor by subtracting another meaningful value—
for example, 12 would be a suitable centering constant for a 
predictor representing years of education among U.S. 
residents; 100 may be a suitable centering constant for scores 
on an IQ test. Recentering works best when the centering 
constant is substantively meaningful—either because it has 
intuitive meaning for those familiar with the predictor or
because it corresponds to the sample mean. Recentering can 
be equally beneficial for continuous and dichotomous 
predictors.

Models F and G in tables 4.1 and 4.2 demonstrate what 
happens when we center the time-invariant predictors PEER
and COA on their sample means. Each of these models is 
equivalent to Model E, our tentative “final” model, in that all 
include the effect of COA on initial status and the effect of
PEER on both initial status and rate of change. The difference 
between models is that before fitting Model F, we centered
PEER on its sample mean of 1.018 and before fitting Model G, 
we also centered COA on its sample mean of .451. Some 
software packages (e.g., HLM) allow you to center predictors 
by toggling a switch on an interactive menu; others (e.g., 
MLwiN and SAS PROC MIXED) require you to create a new 
variable using computer code (e.g., by computing CPEER =
PEER − 1.018). Our only word of caution is that you should 
compute the sample mean in the person-level data set. 
Otherwise, you may end up giving greater weight to 
individuals who happen to have more waves of data (unless 
the person-period data set is fully balanced, as it is here).

To evaluate empirically how recentering affects interpretation, 
compare the last three columns of table 4.1 and notice what 
remains the same and what changes. The parameter estimates 
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for COA and PEER remain identical, regardless of recentering. 
This means that conclusions about the effects of predictors 
like PEER and COA are unaffected: remains at 0.571, remains 
at 0.695, and remains at −0.151 (as do their standard errors). 
Also notice that each of the variance components remains 
unchanged. This demonstrates that our conclusions about the 
variance components for the level-1 and level-2 residuals are 
also unaffected by recentering level-2 predictors.

What does differ across Models E, F and G are the parameter 
estimates (and standard errors) for the intercepts in each 
level-2 submodel. These estimates change because they 
represent different parameters:

• If neither PEER nor COA are centered (Model E), the 
intercepts represent a child of non-alchoholic parents 
whose peers at age 14 were totally abstinent (PEER = 0 and 
COA = 0).

(p.115)

• If PEER is centered and COA is not (Model F), the 
intercepts represent a child of non-alchoholic parents with 
an average value of PEER (PEER = 1.018 and COA = 0).

• If both PEER and COA are centered (Model G), the 
intercepts represent an average study participant—
someone with average values of PEER and COA (PEER = 
1.018 and COA = 0.451).

Of course, this last individual does not really exist because only two 
values of COA are possible: 0 and 1. Conceptually, though, the 
notion of an average study participant has great intuitive appeal.
When we center PEER and not COA in Model F, the level-2 
intercepts describe an “average” child of non-alchoholic 
parents: estimates his or her true initial status (0.394, p < .
001) and estimates his or her true rate of change (0.271, p < .
001). Notice that the latter estimate is unchanged from Model 
B, the unconditional growth model. When we go further and 
center both PEER and COA in Model G, each level-2 intercept 
is numerically identical to the corresponding level-2 intercept 
in the unconditional growth model (B).3
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Given that Models E, F, and G are substantively equivalent, 
which do we prefer? The advantage of Model G, in which both
PEER and COA are centered, is that its level-2 intercepts are 
comparable to those in the unconditional growth model (B). 
Because of this comparability, many researchers routinely 
center all time-invariant predictors—even dichotomies—
around their grand means so that the parameter estimates 
that result from the inclusion of additional predictors hardly 
change. Model E has a different advantage: because each 
predictor retains its original scale, we need not remember 
which predictors are centered and which are not. The 
predictor identified is the predictor included.

But both of these preferences are context free; they do not 
reflect our specific research questions. When we consider not 
just algebra but research interests—which here focus on 
parental alcoholism—we find ourselves preferring Model F. 
We base this decision on the easy interpretability of 
parameters for the dichotomous predictor COA. Not only is 
zero a valid value, it is an especially meaningful one (it 
represents children of non-alchoholic parents). We therefore 
see little need to center its values to yield consistency in 
parameter estimates with the unconditional growth model. 
When it comes to PEER, however, we have a different 
preference. Because it is of less substantive interest—we view 
it as a control predictor—we see no need not to center its 
values. Our goal is to evaluate the effects of COA controlling 
for PEER. By centering PEER at its mean, we achieve the goal 
of statistical control and interpretations of the level-2 
intercepts are reasonable and credible. For the remainder of

(p.116)  this chapter, we therefore adopt Model F as our “final 
model.” (We continue to use quotes to emphasize that even 
this model might be set aside in favor of an alternative in 
subsequent analyses.)

4.6 Comparing Models Using Deviance Statistics

In developing the taxonomy in tables 4.1 and 4.2, we tested 
hypotheses on fixed effects and variance components using 
the single parameter approach of chapter 3. This testing 
facilitated our decision making and helped us determine 
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whether we should render a simpler model more complex (as 
when moving from Model B to C) or a more complex model 
simpler (as when moving from Model D to E). As noted in 
section 3.6, however, statisticians disagree as to the nature, 
form, and effectiveness of these tests. The disagreement is so 
strong that some multilevel software packages do not 
routinely output these tests, especially for variance 
components. We now introduce an alternative method of 
inference—based on the deviance statistic—which statisticians 
seem to prefer. The major advantages of this approach are 
that it: (1) has superior statistical properties; (2) permits 
composite tests on several parameters simultaneously; and (3) 
conserves the reservoir of Type I error (the probability of 
incorrectly rejecting H0 when it is true).

4.6.1 The Deviance Statistic

The easiest way of understanding the deviance statistic is to 
return to the principles of maximum likelihood estimation. As 
described in section 3.4, we obtain ML estimates by 
maximizing numerically the log-likelihood function, the 
logarithm of the joint likelihood of observing all the sample 
data actually observed. The log-likelihood function, which 
depends on the hypothesized model and its assumptions, 
contains all the unknown parameters (the γ’s and σ’s) and the 
sample data. ML estimates are those values of the unknown 
parameters (the ’s and ’s) that maximize the log-likelihood.

As a by-product of ML estimation, the computer determines 
the magnitude of the log-likelihood function for this particular 
combination of observed data and parameter estimates. 
Statisticians call this number the sample log-likelihood
statistic, often abbreviated as LL. Every program that uses ML 
methods outputs the LL statistic (or a transformation of it). In 
general, if you fit several competing models to the same data, 
the larger the LL statistic, the better the fit. This means that if 
the models you compare yield negative LL statistics, those that 
are smaller in absolute (p.117)  value—i.e., closer to 0—fit 
better. (We state this obvious point explicitly as there has 
been some confusion in the literature about this issue.)

The deviance statistic compares log-likelihood statistics for 
two models: (1) the current model, the model just fit; and (2) a
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saturated model, a more general model that fits the sample 
data perfectly. For reasons explained below, deviance is 
defined as this difference multiplied by −2:

(4.15)

For a given set of data, deviance quantifies how much worse the 
current model is in comparison to the best possible model. A model 
with a small deviance statistic is nearly as good as any you can fit; 
a model with a large deviance statistic is much worse. Although the 
deviance statistic may appear unfamiliar, you have used it many 
times in regression analysis, where it is identical to the residual 

sum of squares, .
To calculate a deviance statistic, you need the log-likelihood 
statistic for the saturated model. Fortunately, in the case of 
the multilevel model for change, this is easy because a 
saturated model contains as many parameters as necessary to 
achieve a perfect fit, reproducing every observed outcome 
value in the person-period data set. This means that the 
maximum of its likelihood function—the probability that it will 
perfectly reproduce the sample data—is 1. As the logarithm of 
1 is 0, the log-likelihood statistic for the saturated model is 0. 
We can therefore drop the second term on the right-hand side 
of equation 4.15, defining the deviance statistic for the 
multilevel model for change as:

(4.16) 
Because the deviance statistic is just −2 times the sample log-
likelihood, many statisticians (and software packages) label it 
−2logL or −2LL. As befits its name, we prefer models with smaller 
values of deviance.
The multiplication by −2 invoked during the transition from 
log-likelihood to deviance is more than cosmetic. Under 
standard normal theory assumptions, the difference in 
deviance statistics between a pair of nested models fit to the 
identical set of data has a known distribution. This allows us to 
test hypotheses about differences in fit between competing 
models by comparing deviance statistics. The resultant
likelihood ratio tests are so named because a difference of 
logarithms is equal to the logarithm of a ratio.
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4.6.2 When and How Can You Compare Deviance Statistics?

Deviance statistics for the seven models fit to the alcohol use 
data appear in table 4.1. They range from a high of 670.16 for 
Model A to a low of (p.118)  588.69 for Model D. We caution 
that you cannot directly interpret their magnitude (or sign). 
(Also notice that the deviance statistics for Models E, F, and G 
are identical. Centering one or more level-2 predictors has 
absolutely no effect on this statistic.)

To compare deviance statistics for two models, the models 
must meet certain criteria. At a minimum: (1) each must be 
estimated using the identical data; and (2) one must be nested
within the other. The constancy of data criterion requires that 
you eliminate any record in the person-period data set that is 
missing for any variable in either model. A difference of even 
one record invalidates the comparison. The nesting criterion 
requires that you can specify one model by placing constraints
on the parameters in the other. The most common constraint 
is to set one or more parameters to 0. A “reduced” model is 
nested within a “full” model if every parameter in the former 
also appears in the latter.

When comparing multilevel models for change, you must 
attend to a third issue before comparing deviance statistics. 
Because these models involve two types of parameters—fixed 
effects (the γ’s) and variance components (the σ’s)—there are 
three distinct ways in which full and reduced models can 
differ: in their fixed effects, in their variance components, or 
in some combination of each. Depending upon the method of 
estimation—full or restricted ML—only certain types of 
differences can be tested. This limitation stems from principles 
underlying the estimation methods. Under FML (and IGLS), 
we maximize the likelihood of the sample data; under RML 
(and RIGLS), we maximize the likelihood of the sample
residuals. As a result, an FML deviance statistic describes the 
fit of the entire model (both fixed and random effects), but a 
RML deviance statistic describes the fit of only its stochastic 
portion of the model (because, during estimation, its fixed 
effects are assumed “known”). This means that if you have 
applied FML estimation, as we have here, you can use 
deviance statistics to test hypotheses about any combination 
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of parameters, fixed effects, or variance components. But if 
you have used RML to fit the model, you can use deviance 
statistics to test hypotheses only about variance components. 
Because RML is the default method in some multilevel 
programs (e.g., SAS PROC MIXED), caution is advised. Before 
using deviance statistics to test hypotheses, be sure you are 
clear about which method of estimation you have used.

Having fit a pair of models that meets these conditions, 
conducting tests is easy. Under the null hypothesis that the 
specified constraints hold, the difference in deviance statistics 
between a full and reduced model (often called “delta 
deviance” or ΔD) is distributed asymptotically as a χ2

distribution with degrees of freedom (d.f.) equal to the number 
of independent (p.119)  constraints imposed. If the models 
differ by one parameter, you have one degree of freedom for 
the test; if they differ by three parameters, you have three. As 
with any hypothesis test, you compare ΔD to a critical value, 
appropriate for that number of degrees of freedom, rejecting 
H0 when the test statistic is large.4

4.6.3 Implementing Deviance-Based Hypothesis Tests

Because the models in table 4.1 were fit using Full IGLS, we 
can use deviance statistics to compare their goodness-of-fit, 
whether they differ by only fixed effects (as do Models B, C, D, 
and E, F, G) or both fixed effects and variance components (as 
does Model A in comparison to all others). Before comparing 
two models, you must: (1) ensure that the data set has 
remained the same across models (it does); (2) establish that 
the former is nested within the latter; and (3) compute the 
number of additional constraints imposed.

Begin with the two unconditional models. We obtain multilevel 
Model A from Model B by invoking three independent 
constraints: γ10 = 0, and σ01 = 0. The difference in deviance 
statistics, (670.16 − 636.61) = 33.55, far exceeds 16.27, the .
001 critical value of a χ2 distribution on 3 d.f., allowing us to 
reject the null hypothesis at the p < .001 level that all three 
parameters are simultaneously 0. We conclude that the 
unconditional growth model provides a better fit than the 
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unconditional means model (a conclusion already suggested by 
the single parameter tests for each parameter).

Deviance-based tests are especially useful for comparing what 
happens when we simultaneously add one (or more) 
predictor(s) to each level-2 submodel. As we move from Model 
B to Model C, we add COA as a predictor of both initial status 
and rate of change. Noting that we can obtain the former by 
invoking two independent constraints on the latter (setting 
both γ01 and γ11 to 0) we compare the difference in deviance 
statistics of (636.61 – 621.20) = 15.41 to a χ2 distribution on 2
d.f.. As this exceeds the .001 critical value (13.82), we reject 
the null hypothesis that both γ01 and γ11 are simultaneously 0. 
(We ultimately set γ11 to 0 because we are unable to reject its 
single parameter hypothesis test in Model D. Comparing 
Models D and E, which differ by only this term, we find a 
trivial difference in deviance of 0.01 on 1 d.f.).

You can also use deviance-based tests to compare nested 
models with identical fixed effects and different random 
effects. Although the strategy is the same, we raise this topic 
explicitly for two reasons: (1) if you use restricted methods of 
estimation (RML or RIGLS), these are the only types of 
deviance comparisons you can make; and (2) they address an

(p.120)  important question we have yet to consider: Must the 
complete set of random effects appear in every multilevel 
model?

In every model considered so far, the level-2 submodel for 
each individual growth parameter (π0i and π1i) has included a 
residual (ζ0i or ζ1i). This practice leads to the addition of three
variance components: , , and σ01. Must all three always 
appear? Might we sometimes prefer a more parsimonious 
model? We can address these questions by considering the 
consequences of removing a random effect. To concretize the 
discussion, consider the following extension of Model F, which 
eliminates the second level-2 residual, ζ1i:
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and and . In the parlance of multilevel modeling, we have “fixed” 
the individual growth rates, preventing them from varying 
randomly across individuals (although we allow them to be related 
to CPEER). Removing this one level-2 residual (remember, 
residuals are not parameters) eliminates two variance components 
(which are parameters): and σ01.
Because the fixed effects in this reduced model are identical to 
those in Model F, we can test the joint null hypothesis that 

both  and σ01 are 0 by comparing deviance statistics. When 
we fit the reduced model to data, we obtain a deviance 
statistic of 606.47 (not shown in table 4.1). Comparing this to 
588.70 (the deviance for Model F) yields a difference of 18.77. 
As this exceeds the .001 critical value of a χ2 distribution with 
2 d.f. (13.82), we reject the null hypothesis. We conclude that 
there is residual variability in the annual rate of change in
ALCUSE that could potentially be explained by other level-2 
predictors and that we should retain the associated random 
effects in our model.

4.6.4 AIC and BIC Statistics: Comparing Nonnested Models Using 
Information Criteria

You can test many important hypotheses by comparing 
deviance statistics for pairs of nested models. But as you 
become a more proficient data analyst, you may occasionally 
want to compare pairs of models that are not nested. You are 
particularly likely to find yourself in this situation when you 
would like to select between alternative models that involve
different sets of predictors.

Suppose you wanted to identify which subset of interrelated 
predictors best captures the effect of a single underlying 
construct. You might, for (p.121)  example, want to control 
statistically for the effects of parental socioeconomic status 
(SES) on a child outcome, yet you might be unsure which 
combination of many possible SES measures—education, 
occupation, or income (either maternal or paternal)—to use. 
Although you could use principal components analysis to 
construct summary measures, you might also want to compare 
the fit of alternative models with different subsets of 
predictors. One model might use only paternal measures; 
another might use only maternal measures; still another might 
be restricted only to income indicators, but for both parents. 
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As these models would not be nested (you cannot recreate one 
by placing constraints on parameters in another), you cannot 
compare their fit using deviance statistics.

We now introduce two ad hoc criteria that you can use to 
compare the relative goodness-of-fit of such models: the 
Akaike Information Criterion (AIC; Akaike, 1973) and the 
Bayesian Information Criterion (BIC; Schwarz, 1978). Like the 
deviance statistic, each is based on the log-likelihood statistic. 
But instead of using the LL itself, each “penalizes” (i.e., 
decreases) the LL according to pre-specified criteria. The AIC 
penalty is based upon the number of model parameters. This is 
because adding parameters—even if they have no effect—will 
increase the LL statistic, thereby decreasing the deviance 
statistic. The BIC goes further. Its penalty is based not just 
upon the number of parameters, but also on the sample size. 
In larger samples, you will need a larger improvement before 
you prefer a more complex model to a simpler one. In each 
case, the result is multiplied by −2 so that the information 
criterion’s scale is roughly equivalent to that of the deviance 
statistic. (Note that the number of parameters you consider in 
the calculations differs under full and restricted ML methods.) 
Under full ML, both fixed effects and variance components are 
relevant. Under restricted ML, as you would expect, only the 
variance component parameters are relevant.

Formally, we write:

For the AIC, the scale factor is 1; for the BIC, it is half the log of 
the sample size. This latter definition leaves room for some 
ambiguity, as it is not clear whether the sample size should be the 
number of individuals under study or the number of records in the 
person-period data set. In the face of this ambiguity, Raftery (1995) 
recommends the former formulation, which we adopt here.

(p.122) AICs and BICs can be compared for any pair of 

models, regardless of whether one is nested within another, as 
long as both are fit to the identical set of data. The model with 
the smaller information criterion (either AIC or BIC) fits 
“better.” As each successive model in table 4.1 is nested within 
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a previous one, informal comparisons like these are 
unnecessary. But to illustrate how to use these criteria, let us 
compare Models B and C. Model B involves six parameters 
(two fixed effects and four variance components); Model C 
involves eight parameters (two additional fixed effects). In this 
sample of 82, we find that Model B has an AIC statistic of 
636.6 + 2(1) (6) = 648.6 and an BIC of 636.6 + 2(In(82)/2)(6) 
= 663.0, while Model C has an AIC statistic of 621.2 + 2(1)(8) 
= 637.2 and an BIC of 621.2 + 2(In(82)/2)(8) = 656.5. Both 
criteria suggest that C is preferable to B, a conclusion we 
already reached via comparison of deviance statistics.

Comparison of AIC and BIC statistics is an “art based on 
science.” Unlike the objective standard of the χ2 distribution 
that we use to compare deviance statistics, there are few 
standards for comparing information criteria. While large 
differences suggest that the model with the smaller value is 
preferable, smaller differences are difficult to evaluate. 
Moreover, statisticians have yet to agree on what differences 
are “small” or “large.” In his excellent review extolling the 
virtues of BIC, Raftery (1995) declares the evidence associated 
with a difference of 0–2 to be “weak,” 2–6 to be “positive,” 6–
10 to be “strong,” and over 10 to be “very strong.” But before 
concluding that information criteria provide a panacea for 
model selection, consider that Gelman and Rubin (1995) 
declared these statistics to be “off-target and only by 
serendipity manage to hit the target in special 
circumstances” (p. 165). We therefore offer a cautious 
recommendation to examine information criteria and to use 
them for model comparison only when more traditional 
methods cannot be applied.

4.7 Using Wald Statistics to Test Composite 
Hypotheses About Fixed Effects

Deviance-based comparisons are not the only method of 
testing composite hypotheses. We now introduce the Wald 
statistic, a generalization of the “parameter estimate divided 
by its standard error” strategy for testing hypotheses. The 
major advantage of the Wald statistic is its generality: you can 
test composite hypotheses about multiple effects regardless of 
the method of estimation used. This means that if you use 
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restricted methods of estimation, which prevent you from 
using deviance-based (p.123)  tests to compare models with 
different fixed effects, you still have a means of testing 
composite hypotheses about sets of fixed effects.

Suppose, for example, you wanted to test whether the entire 
true change trajectory for a particular type of adolescent—say, 
a child of non-alchoholic parents with an average value of
PEER—differs from a “null” trajectory (one with zero intercept 
and zero slope). This is tantamount to asking whether the 
average child of non-alchoholic parents drinks no alcohol at 
age 14 and remains abstinent over time.

To test this composite hypothesis, you must first figure out the 
entire set of parameters involved. This is easier if you start 
with a model’s composite representation, such as Model F: Yij

= γ00 + γ01 COA i + γ02 CPEER i + γ10 TIME ij + γ12 CPEER i ×
TIME ij + [ζ0i + ζ1i TIME ij + εij]. To identify parameters, 
simply derive the true change trajectory for the focal group, 
here children of non-alchoholic parents with an average value 
of CPEER. Substituting COA = 0 and CPEER = 0 we have:E[Y i

∣ COA = 0, CPEER = 0] = γ00 + γ01(0) + γ02(0) + γ10 TIME ij + 
γ12(0) × TIME ij = γ00 + γ10 TIME ij, where the expectation 
notation, E[…], indicates that this is the average population 
trajectory for the entire COA = 0, CPEER = 0 subgroup. 
Taking expectations eliminates the level-1 and level-2 
residuals, because—like all residuals—they average to zero. To 
test whether this trajectory differs from the null trajectory in 
the population, we formulate the composite null hypothesis:

(4.17) 
This joint hypothesis is a composite statement about an entire 
population trajectory, not a series of separate independent 
statements about each parameter.
We now restate the null hypothesis in a generic form known as 
a general linear hypothesis. In this representation, each of the 
model’s fixed effects is multiplied by a judiciously chosen 
constant (an integer, a decimal, a fraction, or zero) and then 
the sum of these products is equated to another constant, 
usually zero. This “weighted linear combination” of 
parameters and constants is called a linear contrast. Because 
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Model F includes five fixed effects—even though only two are 
under scrutiny here—we restate equation 4.17 as the following 
general linear hypothesis:

(4.18) 
Although each equation includes all five fixed effects, the carefully 
chosen multiplying constants (the weights) guarantee that only the 
two focal parameters, γ00 and γ10, remain viable in the statement. 
While this (p.124)  may seem like little more than an excessively 
parameterized reshuffling of symbols, its structure allows us to 
invoke a widely used testing strategy.
Most software programs require you to express a general 
linear hypotheses in matrix notation. This allows 
decomposition of the hypothesis into two distinct parts: (1) a 
matrix of multiplying constants (e.g., the 0’s and 1’s in 
equation 4.18); and (2) a vector of parameters (e.g., the γ’s). 
To construct the matrix of multiplying constants, commonly 
labeled a constraints or contrast matrix, C, simply lift the 
numbers in the general linear hypothesis equation en bloc and 
array them in the same order. From equation 4.18 we have:

To form the vector of fixed effects, commonly labeled the
parameter vector, or γ, lift the parameters in the general linear 
hypothesis en bloc and array them in the same order as well:

The general linear hypothesis is formed from the product of the C
matrix and the transposed γ vector:

which can be written generically as: H 0: Cγ' = 0. For a given 
model, the elements of C will change from hypothesis to hypothesis 
but the elements of γ will remain the same.
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Any general linear hypothesis that can be written in this Cγ' =
0 form can be tested using a Wald statistic. Instead of 
comparing a parameter estimate to its standard error, the 
Wald statistic compares the square of the weighted linear 
combination of parameters to its estimated variance. As the 
variance of an estimate is the square of its standard error, the 
Wald statistic then resembles a squared z-statistic. (Indeed, if 
you use a Wald statistic to test a null hypothesis about a single 
fixed effect, W reduces to the square of the usual z-statistic.) 
Under the null hypothesis and usual normal theory 
assumptions, W has a χ2 distribution with degrees of freedom 
equal to the number of rows in the C matrix (because the 
number of rows determines the number of independent 
constraints the (p.125)  null hypothesis invokes). For this 

hypothesis, we obtain a Wald statistic of 51.01 on 2 d.f., 
allowing us to reject the composite null hypothesis in equation
4.18 at the .001 level.

General linear hypotheses can address even more complex 
questions about change over time. For example, when we 
examined the OLS estimated change trajectories in figure 4.2, 
we noticed that among children of non-alchoholic parents, 
those with low values of CPEER tended to have a lower initial 
status and steeper slopes than those with high values of
CPEER. We might therefore ask whether the former group 
“catches up” to the latter. This is a question about the 
“vertical” separation between these two groups” true change 
trajectories at some later age, say 16.

To conduct such a test, you must once again first figure out 
the specific parameters under scrutiny. As before, we do so by 
substituting appropriate predictor values into the fitted model. 
Setting COA to 0 (for the children of non-alchoholic parents) 
and now selecting −.363 and +.363 as the low and high values 
of CPEER (because they correspond to .5 standard deviations 
on either side of the centered variable’s mean of 0) we have:
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The predicted ALCUSE levels at age 16 are found by substituting
TIME = (16 – 14) = 2 into these equations:

How do we express the “catching up” hypothesis? If the low CPEER
group “catches up,” the expected values of the two groups should 
be identical at age 16. We therefore derive the composite null 
hypothesis by equating their expected values:

Simplifying yields the following constraint γ02 + 2γ12 = 0, which we 
can be re-expressed as:
(4.19)

Notice that unlike the composite null hypothesis in equation 4.18, 
which required two equations, this composite null hypothesis 
requires just one. (p.126)  This is a result of a reduction in the 
number of independent constraints. Because the first hypothesis 
simultaneously tested two independent statements—one about γ00

and the other about γ10—it required two separate equations. 
Because this hypothesis is just a single statement—albeit about two 
parameters, γ02 and γ12—it requires just one. This reduction 
reduces the dimensions of the contrast matrix, C.
We next express the composite null hypothesis in matrix form. 
The parameter vector, γ, remains unchanged from equation
4.18 because the model has not changed. But because the null 
hypothesis has changed, the constraint matrix must change as 
well. Stripping off the numerical constants in equation 4.19 we 
have C = [0 0 1 0 2].

As expected, C is just a single row reflecting its single 
constraint. The composite null hypothesis is:
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which has the requisite C γ′ = 0 algebraic form. Conducting this 
test we find that we can reject the null hypothesis at the usual level 
of statistical significance (χ2 = 6.23, p = .013). We conclude that 
these average true change trajectories do not converge by age 16. 
In other words, the alcohol consumption of children of non-
alchoholic parents with low CPEER does not catch up to the alcohol 
consumption of children of non-alchoholic parents with high 
CPEER.
Because many research questions can be stated in this form, 
general linear hypothesis testing is a powerful and flexible 
technique. It is particularly useful for conducting omnibus 
tests of several level-2 predictors so that you can assess 
whether sets of predictors make a difference as a group. If we 
represent a nominal or ordinal predictor using a set of 
indicator variables, we could use this approach to test their 
overall effect and evaluate pair-wise comparisons among 
subgroups.

Although Wald statistics can be used to test hypotheses about 
variance components, we suggest that you do not do so. The 
small-sample distribution theory necessary for these tests is 
poorly developed. It is only in very large samples—that is,
asymptotically—that the distribution of a W statistic involving 
variance components converges on a χ2 distribution as your 
sample size tends to infinity. We therefore do not recommend 
the use of Wald statistics for composite null hypotheses about 
variance components.

(p.127) 4.8 Evaluating the Tenability of a Model’s 
Assumptions

Whenever you fit a statistical model, you invoke assumptions. 
When you use ML methods to fit a linear regression model, for 
example, you assume that the errors are independent and 
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normally distributed with constant variance. Assumptions 
allow you to move forward, estimate parameters, interpret 
results, and test hypotheses. But the validity of your 
conclusions rests on your assumptions’ tenability. Fitting a 
model with untenable assumptions is as senseless as fitting a 
model to data that are knowingly flawed. Violations lead to 
biased estimates, incorrect standard errors, and erroneous 
inferences.

When you fit a multilevel model for change, you also invoke 
assumptions. And because the model is more complex, its 
assumptions are more complex as well, involving both 
structural and stochastic features at each level. The structural 
specification embodies assumptions about the true functional 
form of the relationship between outcome and predictors. At 
level-1, you specify the shape of the hypothesized individual 
change trajectory, declaring it to be linear (as we have 
assumed so far) or nonlinear (as we assume in chapter 6). At 
level-2, you specify the relationship between each individual 
growth parameter and time-invariant predictors. And, as in 
regular regression analysis, you can specify that the level-2 
relationship is linear (as we have so far) or more complex 
(nonlinear, discontinuous, or potentially interactive). The 
stochastic specification embodies assumptions about that 
level’s outcome (either Yij at level-1 or π0i and π1i at level-2) 
that remains unexplained by the model’s predictors. Because 
you know neither their nature nor value, you make 
assumptions about these error distributions, typically 
assuming univariate normality at level-1 and bivariate 
normality at level-2.

No analysis is complete until you examine the tenability of 
your assumptions. Of course, you can never be completely 
certain about the tenability of assumptions because you lack 
the very data you need to evaluate their tenability: information 
about the population from which your sample was drawn. 
Assumptions describe true individual change trajectories, 
population relationships between true individual growth 
parameters and level-2 predictors, and true errors for each 
person. All you can examine are the observed properties of
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sample quantities—fitted individual change trajectories,
estimated individual growth parameters, and sample residuals.

Must you check the assumptions underlying every statistical 
model you fit? As much as we would like to say yes, reality 
dictates that we say no. Repetitive model checking is neither 
efficient nor plausible. We suggest instead that you examine 
the assumptions of several initial models and then again in any 
model you cite or interpret explicitly.

(p.128) We offer simple multilevel model checking strategies 
in the three sections below. Section 4.8.1 reviews methods for 
assessing functional form; although we introduced the basic 
ideas earlier, we reiterate them here for completeness. We 
then extend familiar strategies from regression analysis to 
comparable issues in the multilevel context: assessing 
normality (section 4.8.2) and homoscedasticity (section 4.8.3). 
Table 4.3 summarizes what you should look for at each stage 
of this work.

4.8.1 Checking Functional Form

The most direct way of examining the functional form 
assumptions in the multilevel model for change is to inspect 
“outcome versus predictors” plots at each level.

• At level-1. For each individual, examine empirical growth 
plots and superimpose an OLS-estimated individual change 
trajectory. Inspection should confirm the suitability of its 
hypothesized shape.

• At level-2. Plot OLS estimates of the individual growth 
parameters against each level-2 predictor. Inspection 
should confirm the suit ability of the hypothesized level-2 
relationships.

For the eight adolescents in figure 4.1, for example, the hypothesis 
of linear individual change seems reasonable for subjects 23, 32, 56 
and 65, but less so for subjects 04, 14, 41, and 82. But it is hard to 
argue for systematic deviations from linearity for these four cases 
given that the departures observed might be attributable to 
measurement error. Inspection of empirical growth plots for the 
remaining adolescents leads to similar conclusions.
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Examination of the level-2 assumptions is facilitated by figure
4.4, which plots OLS-estimated individual growth parameters 
against the two substantive predictors. In the left pair of plots, 
for COA, there is nothing to assess because a linear model is 
de facto acceptable for dichotomous predictors. In the right 
pair of plots for PEER, the level-2 relationships do appear to 
be linear (with only a few exceptions).

4.8.2 Checking Normality

Most multilevel modeling packages can output estimates of 
the level-1 and level-2 errors, εij, ζ0i and ζ1i. We label these 
estimates, , and , “raw residuals.” As in regular regression, 
you can examine their behavior using exploratory analyses. 
Although you can also conduct formal tests for normality 
(using Wilks-Shapiro and Kolmogorov-Smirnov statistics, say), 
we prefer visual inspection of the residual distributions.

(p.129)

Table 4.3: Strategies for checking assumptions 
in the multilevel model for change, illustrated 
using Model F of tables 4.1 and 4.2 for the 
alcohol use data
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Assumption and 
what to expect is 
tenable

What we find in the alcohol use data

level-1 
residual, 

level-2 residual, level-2 residual,

Shape. Linear 
individual change 
trajectories and 
linear 
relationships 
between 
individual growth 
parameters and 
level-2 
predictors.

Empirical 
growth plots 
suggest that 
most 
adolescents 
experience 
linear change 
with age. For 
others, the 
small number 
of waves of 
data (3) makes 
it difficult to 
declare 
curvilinearity 
making the 
linear 
trajectory a 
reasonable 
approximation.

Because COA is 
dichotomous, 
there is no 
linearity 
assumption for . 
With the 
exception of two 
extreme data 
points, the plot 
of vs. PEER
suggests a 
strong linear 
relationship.

Because COA is 
dichotomous, 
there is no 
linearity 
assumption for . 
Plot of vs. PEER
suggests a weak 
linear 
relationship.
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Assumption and 
what to expect is 
tenable

What we find in the alcohol use data

level-1 
residual, 

level-2 residual, level-2 residual,

Normality. All 
residuals, at both 
level-1 and 
level-2, will be 
normally 
distributed.

A plot of vs. 
normal scores 
suggests 
normality. We 
find further 
support for 
normality in a 
plot of 
standardized 
vs ID, which 
reveals no 
unusual data 
points.

A plot of vs. 
normal scores 
suggests 
normality. So 
does a plot of 
standardized vs.
ID, which 
reveals no 
unusual data 
points. There is 
slight evidence 
of a floor effect 
in the outcome.

A plot of vs. 
normal scores 
suggests 
normality, at 
least in the 
upper tail. The 
lower tail seems 
compressed. We 
find further 
support for this 
claim when we 
find no unusual 
data points in a 
plot of 
standardized vs.
ID. There is also 
evidence of a 
floor effect in 
the outcome.

Homoscedasticity. 
Equal variances 
of the level-1 and 
level-2 residuals 
at each level of 
every predictor.

A plot of 
vs. AGE 
suggests 
approximately 
equal 
variability at 
ages 14, 15, 
and 16.

A plot of  vs.
COA suggests 
homoscedasticity 
at both values of
COA. So does a 
plot vs. PEER, at 
least for values 
up to, and 
including, 2. 
Beyond this, 
there are too few 
cases to judge.

A plot of  vs.
COA suggests 
homoscedasticity 
at both values of
COA. So does a 
plot vs. PEER at 
least for values 
up to, and 
including, 2. 
Beyond this, 
there are too few 
cases to judge.

(p.130)
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Figure 4.4.  Examining the level-2 
linearity assumption in the multilevel 
model for change. OLS estimated 
individual growth parameters (for the 
intercept and slope) plotted vs. selected 
predictors. Left panel is for the predictor
COA; right panel is for the predictor
PEER.

For each raw 
residual—the 
one at level-1 
and the two at 
level-2—
examine a
normal 
probability 
plot, a plot of 
their values 
against their 
associated
normal 
scores. If the 
distribution is 
normal, the 
points will 
form a line. 
Any departure 
from linearity 
indicates a 
departure 
from 
normality. As 
shown in the 
left column of 
figure 4.5, the normal probability plots for Model F for the 
alcohol use data appear linear for the level-1 residual, , and 
the first level-2 residual, . The plot for second level-2 
residual, , is crooked, however, with a foreshortened lower tail 
falling closer to the center than anticipated. As the second 
level-2 residual describes unpredicted inter-individual 
variation in rates of change, we conclude that variability in 
this distribution’s lower tail may be limited. This may (p.131)

Figure 4.4.  Examining the level-2 
linearity assumption in the multilevel 
model for change. OLS estimated 
individual growth parameters (for the 
intercept and slope) plotted vs. selected 
predictors. Left panel is for the predictor
COA; right panel is for the predictor
PEER.
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Figure 4.5.  Examining normality 
assumptions in the multilevel model for 
change. Left panel presents normal 
probability plots for the raw residuals at 
level-1 and level-2. Right panel presents 
plots of standardized residuals at level-1 
and level-2 vs. ID numbers.

(p.132)  be 
due to the 
bounded 
nature of
ALCUSE, 
whose “floor” 
of zero 
imposes a limit 
on the possible 
rates of 
change.
Plots of
standardized
residuals—
either 
univariate 
plots or 
bivariate plots 
against 
predictors—
can also 
provide 
insight into 
the tenability 
of normality 
assumptions. 
If the raw 
residuals are 
normally 
distributed, 
approximately 
95% of the standardized residuals will fall within ±2 standard 
deviations of their center (i.e., only 5% will be greater than 2). 
Use caution when applying this simple rule of thumb, 
however, because there are other distributions that are not
normal in which about 5% of the observations also fall in these 
tails.

You can also plot the standardized residuals by ID to identify 
extreme individuals (as in the right panel of figure 4.5). In the 
top plot, the standardized level-1 residuals appear to conform 
to normal theory assumptions—a large majority fall within 2 

Figure 4.5.  Examining normality 
assumptions in the multilevel model for 
change. Left panel presents normal 
probability plots for the raw residuals at 
level-1 and level-2. Right panel presents 
plots of standardized residuals at level-1 
and level-2 vs. ID numbers.
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standard deviations of center, with relatively few between 2 
and 3, and none beyond. Plots of standardized level-2 residuals 
suggest that the negative residuals tend to be smaller in 
magnitude, “pulled in” toward the center of both plots. This 
feature is most evident for the second level-2 residual, , in the 
lower plot, but there is also evidence of its presence in the plot 
for . Again, compression of the lower tail may result from the 
fact that the outcome, ALCUSE, has a “floor” of zero.

4.8.3 Checking Homoscedasticity

You can evaluate the homoscedasticity assumption by plotting 
raw residuals against predictors: the level-1 residuals against 
the level-1 predictor, the level-2 residuals against the level-2 
predictor(s). If the assumption holds, residual variability will 
be approximately equal at every predictor value. Figure 4.6
presents these plots for Model F of the alcohol use data.

The level-1 residuals, , have approximately equal range and 
variability at all ages; so, too, do the level-2 residuals plotted 
against COA. The plots of the level-2 residuals against PEER
reveal a precipitous drop in variability at the highest predictor 
values (PEER > 2.5), suggesting potential heteroscedasticity 
in this region. But the small sample size (only 82 individuals) 
makes it difficult to reach a definitive conclusion, so we satisfy 
ourselves that the model’s basic assumptions are met.

4.9 Model-Based (Empirical Bayes) Estimates of 
the Individual Growth Parameters

One advantage of the multilevel model for change is that it 
improves the precision with which we can estimate individual 
growth parameters. Yet (p.133)
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Figure 4.6.  Examining the 
homoscedasticity assumptions in the 
multilevel model for change. Top panel 
presents raw level-1 residuals vs. the 
level-1 predictor AGE. Remaining panels 
present raw level-2 residuals vs. the two 
level-2 predictors, COA and PEER.

(p.134)  we 
have continued 
to display 
exploratory 
OLS estimates 
even though 
we know they 
are inefficient. 
In this section, 
we present 
superior 
estimates by 
combining OLS 
estimates with 
population 
average 
estimates 
derived from 
the fitted 
model. The 
resultant 
trajectories, 
known as
model-based or
empirical 
Bayes
estimates, are 
usually your 
best bet if you 
would like to 
display 
individual 
growth 
trajectories for particular sample members.
There are two distinct methods for deriving model-based 
estimates. One is to explicitly construct a weighted average of 
the OLS and population average estimates. The other, which 
we adopt here, has closer links to the model’s conceptual 
underpinnings: first we obtain population average trajectories 
based upon an individual’s predictor values and second we 
add individual-specific information to these estimates (by 
using the level-2 residuals).

Figure 4.6.  Examining the 
homoscedasticity assumptions in the 
multilevel model for change. Top panel 
presents raw level-1 residuals vs. the 
level-1 predictor AGE. Remaining panels 
present raw level-2 residuals vs. the two 
level-2 predictors, COA and PEER.
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We begin by computing a population average growth 
trajectory for each person in the data set using a particular 
model’s estimates. Adopting Model F for the alcohol use data, 
we have:

Substituting each person’s observed predictor values into these 
equations yields his or her population average trajectory. For 
example, for subject 23, a child of an alchoholic parent whose 
friends at age 14 did not drink (resulting in a value of −1.018 for
CPEER) we have:
(4.20)

a trajectory that begins at 0.257 at age 14 and rises linearly by 
0.425 each year.
This intuitively appealing approach has a drawback: it yields 
identical trajectories for everyone with the same specific 
combination of predictor values. Indeed, it is indistinguishable 
from the same approach used in Section 4.5.3 to obtain fitted 
trajectories for prototypical individuals. The trajectory in 
equation 4.20 represents our expectations for the average
child of alchoholic parents whose young friends do not drink. 
However, what we seek here is an individual trajectory for this 
person, subject 23. His OLS trajectory does not take 
advantage of what we have learned from model fitting. Yet his 
population average trajectory does not capitalize on a key 
feature of the model: its explicit allowance for interindividual 
variation in initial status and rates of change.

The level-2 residuals, and which distinguish each person’s 
growth parameters from his or her population average 
trajectory, provide (p.135)  the missing link. Because each 
person has his or her own set of residuals, we can add them to 
the model’s fitted values:
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(4.21) 
where we place a ~ over the model-based estimates to distinguish 
them from the population average trajectories. Adding residuals to 
the population averages distinguishes each person from his or her 
peer group (defined by his or her predictor values). Most multilevel 
modeling software programs routinely provide these residuals (or 
the model-based estimates themselves). For subject 23, for 
example, the child of alchoholic parents whose peers did not drink, 
his level-2 residuals of 0.331 and 0.075 yield the following model-
based estimates of his individual growth trajectory:

Notice that both of these estimates are larger than the population 
average values obtained above.
Figure 4.7 displays the observed data for the eight individuals 
depicted in figure 4.1 and adds three types of fitted 
trajectories: (1) OLS-estimated trajectories (dashed lines); (2) 
population average trajectories (faint lines); and (3) model-
based individual trajectories (bold lines). First, notice that 
across the plots, the population average trajectories (the faint 
lines) are the most stable, varying the least from person to 
person. We expect greater stability because these are average
trajectories for groups of individuals who share particular 
predictor values. People who share identical predictor values 
will have identical average trajectories, even though their 
observed outcome data may differ. Population average 
trajectories do not reflect the behavior of individuals and 
hence are likely to be the least variable.

Next examine the model-based and OLS estimates (the bold 
and dashed lines), each designed to provide the individual 
information we seek. For three adolescents, the difference 
between estimates is small (subjects 23, 41, and 65), but for 
four others (subjects 4, 14, 56, and 82) it is pronounced and 
for subject 32, it is profound. We expect discrepancies like 
these because we estimate each trajectory using a different 
method and they depend upon the data in different ways. This 
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Figure 4.7.  Model-based (empirical 
Bayes) estimates of the individual growth 
trajectories. Each plot presents the 
observed ALCUSE measurements (as data 
points), OLS fitted trajectories (dashed 
lines), population average trajectories 
(faint lines), and model-based empirical 
Bayes trajectories (bold lines).

does not mean that one of them is “right” and the other 
“wrong.” Each has a set of statistical properties for which it is 
valued. OLS estimates are unbiased but inefficient; model-
based estimates are biased, but more precise.

(p.136)

Now notice 
how each 
model-based 
trajectory (in 
bold) falls 
between its 
OLS and 
population 
average 
trajectories 
(the dashed 
and faint 
lines). This is 
a hallmark of 
the model-
based 
procedure to 
which we 
alluded 
earlier. 
Numerically, 
the model-
based estimates are weighted averages of the OLS and 
population average trajectories. When OLS estimates are 
precise, they have greater weight; when OLS estimates are 
imprecise, the population average trajectories have greater 
weight. Because OLS trajectories differ markedly from person 
to person, the model-based trajectories differ as well, but their 
discrepancies are smaller because the population average 
trajectories are more stable. Statisticians use the term 
“borrowing strength” to describe procedures like this in which 
individual estimates are enhanced by incorporating 
information from others with whom he or she shares 
attributes. In this case, the model-based trajectories are
shrunk toward the average trajectory of that person’s peer 

Figure 4.7.  Model-based (empirical 
Bayes) estimates of the individual growth 
trajectories. Each plot presents the 
observed ALCUSE measurements (as data 
points), OLS fitted trajectories (dashed 
lines), population average trajectories 
(faint lines), and model-based empirical 
Bayes trajectories (bold lines).
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group (those with the same predictor values). This 
combination yields a superior, more precise, estimate.

Model-based estimates are also more precise because they 
require estimation of fewer parameters. In positing the 
multilevel model for change, (p.137)  we assume that everyone 

shares the same level-1 residual variance, . When we fit 
OLS trajectories, we estimate a separate level-1 variance for 
each individual in the sample. Fewer parameters in the 
multilevel model for change mean greater precision.

In choosing between OLS- and model-based trajectories, you 
must decide which criterion you value most, unbiasedness or
precision. Statisticians recommend precision—indeed, 
increased precision is a fundamental motivation for fitting the 
multilevel model. But as we extol the virtues of model-based 
estimates, we conclude with a word of caution. Their quality 
depends heavily on the quality of the model fit. If the model is 
flawed, particularly if its level-2 components are specified 
incorrectly, then the model-based estimates will be flawed as 
well.

How might you use model-based estimates like these in 
practice? Stage (2001) provides a simple illustration of the 
power of this approach in his evaluation of the relationship 
between first-grade reading fluency and changes in oral 
reading proficiency in second-graders. He began by fitting a 
multilevel model for change to four waves of second-grade 
data, demonstrating that while first-grade performance was a 
strong predictor of initial status it was not a statistically 
significant predictor of rate of change. Stage went on to 
compute empirical Bayes estimates of the number of words 
each child was able to read by the end of second grade and he 
compared these estimates to: (1) the number of words each 
child was observed to have read at the end of second grade; 
and (2) the number of words each child was predicted to have 
read on the basis of simple OLS regression analyses within 
child. As Stage suggests, administrators might be better off 
assigning children to summer school programs (for remedial 
reading) not on the basis of observed or OLS-predicted end-of-
year scores but rather on the basis of the empirical Bayes 
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estimates, which yield more precise estimates of the child’s 
status at the end of the year.

Notes:

(1.) GLS minimizes a multivariate weighted sum of squares 
(Raudenbush, 2002, private communication).

(2.) Actually, ML and GLS may not be identical, even under 
normality, depending on how the weighted sum of squares 
that is minimized in GLS is constructed. If the weights are 
based on ML estimates of the residual variances and 
covariances, the GLS estimator will produce ML estimates 
(Raudenbush, 2002, private communication).

(3.) A further advantage of grand mean centering is that it 
allows the data analyst to evaluate the increased precision in 
the level-1 individual growth model that accrues from adding 
level-2 predictors by comparing the changing magnitude of the 
associated standard errors. In this example, notice that while 
the level-2 intercepts remain identical from Model B to G, 
their associated standard errors decline (from 0.105 to 0.080 
for initial status and from 0.062 to 0.061 for rates of change). 
This demonstrates that the inclusion of COA and PEER in the 
multilevel model improves the precision with which we 
estimate the average individual growth trajectory.

(4.) S. W. Raudenbush (2002, private communication) states 
that methodologists disagree about using deviance statistics to 
test null hypotheses that constrain parameters to values at the 
boundary of the parameter space (i.e., testing that a variance 
component is zero). Then, a difference of deviances does not 
have the χ 2 distribution we think it has and the test is 
conservative, but can still be used (Pinheiro & Bates, 2000). 
Other authors disagree (Verbeke & Molenbergs, 2000).
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All the illustrative longitudinal data sets in previous chapters 
share two structural features that simplify analysis. Each is: 
(1) balanced—everyone is assessed on the identical number of 
occasions; and (2) time-structured—each set of occasions is 
identical across individuals. Our analyses have also been 
limited in that we have used only: (1) time-invariant predictors 
that describe immutable characteristics of individuals or their 
environment (except for TIME itself); and (2) a representation 
of TIME that forces the level-1 individual growth parameters 
to represent “initial status” and “rate of change.”

The multilevel model for change is far more flexible than these 
examples suggest. With little or no adjustment, you can use 
the same strategies to analyze more complex data sets. Not 
only can the waves of data be irregularly spaced, their number 
and spacing can vary across participants. Each individual can 
have his or her own data collection schedule and the number 
of waves can vary without limit from person to person. So, too, 
predictors of change can be time-invariant or time-varying, 
and the level-1 submodel can be parameterized in a variety of 
interesting ways.

In this chapter, we demonstrate how you can fit the multilevel 
model for change under these new conditions. We begin, in 
section 5.1, by illustrating what to do when the number of 
waves is constant but their spacing is irregular. In section 5.2, 
we illustrate what to do when the number of waves per person 
differs as well; we also discuss the problem of missing data, 
the most common source of imbalance in longitudinal work. In 
section 5.3, we demonstrate how to include time-varying 
predictors in your data analysis. We conclude, in section 5.4, 
by discussing why and how you can adopt alternative 
representations for the main effect of TIME.

(p.139) 5.1 Variably Spaced Measurement 
Occasions

Many researchers design their studies with the goal of 
assessing each individual on an identical set of occasions. In 
the tolerance data introduced in chapter 2, each participant 
was assessed five times, at ages 11, 12, 13, 14, and 15. In the 
early intervention data introduced in chapter 3 and the alcohol 



Treating TIME More Flexibly

Page 3 of 69

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

use data introduced in chapter 4, each participant was 
assessed three times: at ages 12, 24, and 36 months or ages 
14, 15, and 16 years. The person-period data sets from these 
time-structured designs are elegantly balanced, with a 
temporal variable that has an identical cadence for everyone 
under study (like AGE in tables 2.1, and 3.1).

Yet sometimes, despite a valiant attempt to collect time-
structured data, actual measurement occasions will differ. 
Variation often results from the realities of fieldwork and data 
collection. When investigating the psychological consequences 
of unemployment, for example, Ginexi, Howe, and Caplan 
(2000) designed a time-structured study with interviews 
scheduled at 1, 5, and 11 months after job loss. Once in the 
field, however, the interview times varied considerably around 
these targets, with increasing variability as the study went on. 
Although interview 1 was conducted between 2 and 61 days 
after job loss, interview 2 was conducted between 111 and 220 
days, and interview 3 was conducted between 319 and 458 
days. Ginexi and colleagues could have associated the 
respondents’ outcomes with the target interview times, but 
they argue convincingly that the number of days since job loss 
is a better metric for the measurement of time. Each 
individual in their study, therefore, has a unique data 
collection schedule: 31, 150, and 356 days for person 1; 23, 
162, and 401 days for person 2; and so on.

So, too, many researchers design their studies knowing full 
well that the measurement occasions may differ across 
participants. This is certainly true, for example, of those who 
use an accelerated cohort design in which an age-
heterogeneous cohort of individuals is followed for a constant 
period of time. Because respondents initially vary in age, and
age, not wave, is usually the appropriate metric for analysis 
(see the discussion of time metrics in section 1.3.2), observed 
measurement occasions will differ across individuals. This is 
actually what happened in the larger alcohol-use study from 
which the small data set in chapter 4 was excerpted. Not only 
were those 14-year-olds re-interviewed at ages 15 and 16, 
concurrent samples of 15- and 16-year-olds were re-
interviewed at ages 16 and 17 and ages 17 and 18, 
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respectively. The advantage of an accelerated cohort design is 
that you can model change over a longer temporal period 
(here, the five years between ages 14 and 18) using fewer 
waves of data. Unfortunately, under the usual conditions, the 
data sets (p.140)  are then sparser at the earliest and latest 
ages, which can complicate the specification of the level-1 
submodel.

In this section, we show how you can use the methods of 
previous chapters to analyze data sets with variably spaced 
measurement occasions. All you need to deal with are some 
minor coding issues for the temporal predictor in the person-
period data set; model specification, parameter estimation, 
and substantive interpretation proceeds as before. To 
illustrate just how simple the analysis can be, we begin by 
discussing data sets in which the number of waves is constant 
but their spacing varies. We discuss data sets in which the
number of waves varies as well in section 5.2.

5.1.1 The Structure of Variably Spaced Data Sets

We illustrate how to analyze data sets with variably spaced 
measurement occasions using a small sample extracted from 
the Children of the National Longitudinal Study of Youth 
(CNLSY). The data set, comprising children’s scores on the 
reading subtest of the Peabody Individual Achievement Test 
(PIAT), includes three waves of data for 89 African-American 
children. Each child was 6 years old in 1986, the first year of 
data collection. During the second wave of data collection, in 
1988, these children were to be 8; during the third wave, in 
1990, they were to be 10. We focus here on an unconditional 
growth model, not the inclusion of level-2 predictors, because 
this second aspect of analysis remains unchanged.

Table 5.1 presents excerpts from the person-period data set. 
Notice that its structure is virtually identical to all person-
period data sets shown so far. The only difference is that it 
contains three temporal variables denoting the passage of 
time: WAVE, AGE, and AGEGRP. Although we will include only 
one of these in any given model, a distinctive feature of time-
unstructured data sets is the possibility of multiple metrics for 
clocking time (often called metameters).
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WAVE is the simplest but least analytically useful of the three. 
Although its values—1, 2, and 3—reflect the study’s design, 
they have little substantive meaning when it comes to 
addressing the research question. Because WAVE does not 
identify the child’s age at each occasion, nor does it capture 
the chronological distance between occasions, it cannot 
contribute to a meaningful level-1 submodel. We mention this 
issue explicitly because empirical researchers sometimes 
postulate individual growth models using design variables like
WAVE (or year of data collection) even though other temporal 
predictors are generally more compelling.

AGE is a better predictor because it specifies the child’s actual 
age (to the nearest month) on the day each test was 
administered. A child like (p.141)

Table 5.1: Excerpts from the person-period data 
set for the reading study

ID WAVE AGEGRP AGE PIAT

04 1 6.5 6.00 18

04 2 8.5 8.50 31

04 3 10.5 10.67 50

27 1 6.5 6.25 19

27 2 8.5 9.17 36

27 3 10.5 10.92 57

31 1 6.5 6.33 18

31 2 8.5 8.83 31

31 3 10.5 10.92 51

33 1 6.5 6.33 18

33 2 8.5 8.92 34

33 3 10.5 10.75 29

41 1 6.5 6.33 18

41 2 8.5 8.75 28

41 3 10.5 10.83 36
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ID WAVE AGEGRP AGE PIAT

49 1 6.5 6.50 19

49 2 8.5 8.75 32

49 3 10.5 10.67 48

69 1 6.5 6.67 26

69 2 8.5 9.17 47

69 3 10.5 11.33 45

77 1 6.5 6.83 17

77 2 8.5 8.08 19

77 3 10.5 10.00 28

87 1 6.5 6.92 22

87 2 8.5 9.42 49

87 3 10.5 11.50 64

… … … … …

Note that TIME is clocked using three distinct variables:
WAVE, AGEGRP, and AGE.

ID 04, who had just turned 6 at wave 1, has an AGE of 6.00 for that 
record; a child like ID 87, who would soon turn 7, has an AGE of 
6.92. The average child is 6.5 years old at wave 1, as we would 
expect if births and testing occasions were randomly distributed. If 
data collection had proceeded according to plan, the average child 
would have been 8.5 and 10.5 years old at the next two waves. Not 
surprisingly, actual ages varied around these targets. By wave 2, 
the youngest child had just turned 8 while the oldest was well over 
9. By wave 3, the youngest child had just turned 10 while the oldest 
was nearly 12. Like many longitudinal studies, the CNLSY suffers 
from “occasion creep”—over time, the temporal separation of

(p.142)  occasions widens as the actual ages exceed design 
projections. In this data set, the average child is 8.9 years in wave 
2 and nearly 11 years in wave 3.
The third temporal variable, AGEGRP, is a time-structured 
predictor that is more substantively meaningful than the 
design variable WAVE. Its values indicate the child’s “expected 
age” on each measurement occasion (6.5, 8.5, and 10.5). This 
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time-structured predictor clocks time on a scale that is 
comparable numerically to the irregularly spaced predictor
AGE. Adding AGEGRP to the person-period data set allows us 
to demonstrate that the characterization of a data set as time-
structured or irregular can depend on nothing more than the
cadence of the temporal predictor used to postulate a model. If 
we postulate our model using AGEGRP, the data set is time-
structured; if we postulate a comparable model using AGE, it 
is not.

The multilevel model for change does not care if the 
individual-specific cadence of the level-1 predictor is identical 
for everyone or if it varies from case to case. Because we fit 
the model using the actual numeric values of the temporal 
predictor, spacing is irrelevant. We can postulate and fit a 
comparable model regardless of the variable’s cadence. Of far 
greater importance is the choice of the functional form for the 
level-1 submodel. Should it represent linear change or a more 
complex shape for the individual growth trajectory? Might this 
decision depend upon the specific temporal predictor chosen 
for model building?

To address these questions, figure 5.1 presents empirical 
change plots with superimposed OLS linear change 
trajectories for 9 children. Each panel plots each child’s PIAT
scores twice, once for each temporal predictor. We use •’s and 
a dashed line when plotting by AGE; we use +’s and a solid 
line when plotting by AGEGRP. With just three waves of data—
whichever temporal predictor we use—it is difficult to argue 
for anything but a linear change individual growth model.

If we can postulate a linear change individual growth model 
using either temporal predictor, which one should we use? As 
argued above, we prefer AGE because it provides more precise 
information about the child at the moment of testing. Why set 
this information aside just to use the equally spaced, but 
inevitably less accurate, AGEGRP. Yet this is what many 
researchers do when analyzing longitudinal data—indeed, it is 
what we did in chapters 3 and 4. There, instead of using the 
participant’s precise ages, we used integers: 12, 18, and 24 
months for the children in chapter 3; 14, 15, and 16 for the 
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Figure 5.1.  Comparing time-structured 
and time-unstructured representations of 
the effect of TIME. Empirical change 
plots with superimposed OLS trajectories 
for 9 participants in the reading study. 
The +’s and solid lines are for TIME
clocked using the child’s target age at 
data collection; the •’s and dashed lines 
are for TIME clocked using each child’s 
observed age.

teenagers in chapter 4. Although the loss of precision may be 
small, as suggested by the close correspondence between the 
pairs of fitted OLS trajectories in each panel of figure 5.1, 
there are children for whom the differential is much larger. To 
investigate this question empirically, we fit two multilevel 
models for change to these data: one using AGEGRP, another 
using AGE as the (p.143)

(p.144)

temporal 
predictor at 
level-1. Doing 
so allows us to 
demonstrate 
how to analyze 
irregularly 
spaced data 
sets and to 
illustrate the 
importance of 
assessing the 
merits for time 
empirically.

5.1.2
Postulating 
and Fitting 
Multilevel 
Models with 
Variably 
Spaced Waves 
of Data

Regardless of 
which 
temporal 

representation we use, we postulate, fit, and interpret the 

Figure 5.1.  Comparing time-structured 
and time-unstructured representations of 
the effect of TIME. Empirical change 
plots with superimposed OLS trajectories 
for 9 participants in the reading study. 
The +’s and solid lines are for TIME
clocked using the child’s target age at 
data collection; the •’s and dashed lines 
are for TIME clocked using each child’s 
observed age.
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multilevel model for change using the same strategies. 
Adapting the general specification of an unconditional growth 
model in equations 4.9a and 4.9b, let Y ij be child i’s PIAT
score on occasion j and TIME ij represent either temporal 
variable:

(5.1a) 
where

(5.1b) 
If we center both AGE and AGEGRP on age 6.5—the average child’s 
age at wave 1—the parameters have the usual interpretations. In 
the population from which this sample was drawn, γ00 represents 
the average child’s true initial status (at age 6.5); γ10 represents 
the average child’s annual rate of true change between ages 6 and 
11; summarizes the within-child scatter around his or her own true 
change trajectory; and and summarize the between-child variability 
in initial status and annual rates of change.
Use of a generic representation TIME ij in the level-1 growth 
model (instead of a specific representation like AGE – 6.5 or
AGEGRP – 6.5) yields these interpretations. We can postulate 
the same model for either predictor because TIME ij includes 
subscripts that are both person-specific (i) and time-specific 
(j). If TIME represents AGEGRP – 6.5, the data set is time 
structured; if we use AGE – 6.5, it is not. From a data-analytic 
perspective, you just specify the relevant temporal 
representation to your statistical software. From an 
interpretive perspective, the distinction is moot.

Table 5.2 presents the results of fitting these two 
unconditional growth models to these data: the first uses
AGEGRP – 6.5; the second uses AGE – 6.5. Each was fit using 
full ML in SAS PROC MIXED. The parameter estimates for 
initial status, , are virtually identical—21.16 and 21.06—as are 
those for the within-child variance, : 27.04 and 27.45. But the 
similarities stop there. For the slope parameter, γ10, the 
estimated growth (p.145)
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Table 5.2: Results of using alternative 
representations for the main effect of TIME (n = 
89) when fitting an unconditional growth model 
to the CNLSY reading data

Predictor 
representing TIME

Parameter AGEGRP 
– 6.5

AGE – 
6.5

Fixed Effects

Initial 
status, 
π0i

Intercept γ00 21.1629***21.0608***

(0.6143) (0.5593)

Rate of 
Change, 
π1i

Intercept γ10 5.0309*** 4.5400***

(0.2956) (0.2606)

Variance Components

Level-1: within-
person

27.04*** 27.45***

Level-2: In initial 
status

11.05* 5.11

In rate of 
change

4.40*** 3.30***

Goodness-of-fit

Deviance 1819.8 1803.9

AIC 1831.9 1815.9

BIC 1846.9 1830.8
~ p < .10; * p < .05; ** p < .01; *** p < .001.

The first model treats the data set as time-structured by 
using the predictor (AGEGRP – 6.5); the second model 
treats the data set as time-unstructured by using each 
child’s actual age at each assessment, (AGE – 6.5).
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Note. SAS Proc Mixed, Full ML. Also note that the 
covariance component, σ01, is estimated, but not displayed.

rate is half a point larger in a model with AGEGRP – 6.5 (5.03 vs. 
4.54). This cumulates to a two-point differential in PIAT scores over 
the four years under study. So, too, the two level-2 variance 
components are much larger for a model with AGEGRP – 6.5.
Why are these estimates larger when we treat the data set as 
time-structured, using AGEGRP – 6.5 as our level-1 predictor, 
than when we treat it as irregular, using AGE – 6.5? We obtain 
a larger fixed effect for linear growth because AGEGRP
associates the data for waves 2 and 3 with earlier ages (8.5 
and 10.5) than observed. If we amortize the same gain over a 
shorter time period, the slope must be steeper. We obtain 
larger estimated variance components because the model with 
the time-structured predictor fits less well—there is more 
unexplained variation in initial status and growth rates—than 
when we associate each child’s data with his or her age at 
testing. In other words, treating this unstructured data set as 
though it is time-structured introduces error into the analysis
—error that we can reduce by using the child’s age at testing 
as the temporal predictor.

We conclude that the model with AGEGRP as the level-1 
temporal (p.146)  predictor fits less well than the model with
AGE. With the former representation, the slope is 
inappropriately larger—inaccurately implying more rapid 
gains—and there is more unexplained variation in initial status 
and rates of change. The superiority of the model with AGE as 
the temporal predictor is supported by its smaller AIC and BIC 
statistics. The bottom line: never “force” an unstructured data 
set to be structured. If you have several metrics for tracking 
time—and you often will—investigate the possibility of 
alternative temporal specifications. Your first choice, 
especially if tied to design, not substance, may not always be 
the best.

5.2 Varying Numbers of Measurement Occasions

Once you allow the spacing of waves to vary across 
individuals, it is a small leap to allow their number to vary as 
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well. Statisticians say that such data sets are unbalanced. As 
you would expect, balance facilitates analysis: models can be 
parameterized more easily, random effects can be estimated 
more precisely, and computer algorithms will converge more 
rapidly.

Yet a major advantage of the multilevel model for change is 
that it is easily fit to unbalanced data. Unlike approaches such 
as repeated measures analysis of variance, with the multilevel 
modeling of change it is straightforward to analyze data sets 
with varying numbers of waves of data. To illustrate the 
general approach, we begin, in section 5.2.1, by introducing a 
new data set in which the number of waves per person varies 
widely, from 1 to 13. We extend this discussion in section 
5.2.2, by discussing implementation and estimation problems 
that can arise when data are unbalanced. We conclude, in 
section 5.2.3, by discussing potential causes of imbalance—
especially missing data—and how they can affect statistical 
analysis.

5.2.1 Analyzing Data Sets in Which the Number of Waves per 
Person Varies

Murnane, Boudett, and Willett (1999) used data from the 
National Longitudinal Survey of Youth (NLSY) to track the 
labor-market experiences of male high school dropouts. Like 
many large panel studies, the NLSY poses a variety of design 
complications: (1) at the first wave of data collection, the men 
varied in age from 14 to 17; (2) some subsequent waves were 
separated by one year, others by two; (3) each wave’s 
interviews were conducted at different times during the 
calendar year; and (4) respondents could describe more than 
one job at each interview. Person-specific schooling and 
employment patterns posed further problems. Not only could 
respondents drop out of school at different times and enter the

(p.147)

Table 5.3: Excerpts from the person-period data 
set for the high school dropout wage study

ID EXPER LNW BLACK HGC UERATE

206 1.874 2.028 0 10 9.200
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ID EXPER LNW BLACK HGC UERATE

206 2.814 2.297 0 10 11.000

206 4.314 2.482 0 10 6.295

332 0.125 1.630 0 8 7.100

332 1.625 1.476 0 8 9.600

332 2.413 1.804 0 8 7.200

332 3.393 1.439 0 8 6.195

332 4.470 1.748 0 8 5.595

332 5.178 1.526 0 8 4.595

332 6.082 2.044 0 8 4.295

332 7.043 2.179 0 8 3.395

332 8.197 2.186 0 8 4.395

332 9.092 4.035 0 8 6.695

1028 0.004 0.872 1 8 9.300

1028 0.035 0.903 1 8 7.400

1028 0.515 1.389 1 8 7.300

1028 1.483 2.324 1 8 7.400

1028 2.141 1.484 1 8 6.295

1028 3.161 1.705 1 8 5.895

1028 4.103 2.343 1 8 6.900

labor force at different times, they also changed jobs at different 
times. To track wages on a common temporal scale, Murnane and 
colleagues decided to clock time from each respondent’s first day 
of work. This allows each hourly wage to be associated with a 
temporally appropriate point in the respondent’s labor force 
history. The resulting data set has an unusual temporal schedule, 
varying not only in spacing but length.
Table 5.3 presents excerpts from the person-period data set. 
To adjust for inflation, each hourly wage is expressed in 
constant 1990 dollars. To address the skewness commonly 
found in wage data and to linearize the individual wage 
trajectories, we analyze the natural logarithm of wages, LNW. 
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Then, to express this outcome on its original scale, we take 
antilogs (e.g., e(2.028) = $7.60 per hour).

The temporal variable EXPER identifies the specific moment—
to the nearest day—in each man’s labor force history 
associated with each observed value of LNW. Notice the 
variability in the number and spacing of waves. Dropout 206 
has three waves, for jobs held at 1.874, 2.814 and 4.314 years 
of experience after labor force entry. Dropout 332 has 10 
waves, the first for a job held immediately after entering the 
labor force, the others for jobs held approximately every 
subsequent year. Dropout (p.148)  1028 has 7 waves; the first 
three describe the first six months of work (at 0.004, 0.035, 
and 0.515 years). Across the full sample, 77 men have 1 or 2 
waves of data, 82 have 3 or 4, 166 have 5 or 6, 226 have 7 or 
8, 240 have 9 or 10, and 97 have more than 10. The earliest 
wave describes someone’s first day of work; the latest 
describes a job held 13 years later.

This is the first data set we have presented in which the 
number of waves of data varies across individuals. Some men 
even have fewer than three waves—less than the minimum 
articulated in previous chapters. A major advantage of the 
multilevel model for change is that everyone can participate in 
the estimation, regardless of how many waves he contributes 
to the data set. Even the 38 men with just 1 wave of data and 
the 39 with just 2 waves are included in the estimation. 
Although they provide less, or no, information about within-
person variation—and hence do not contribute to variance 
component estimation—they can still contribute to the 
estimation of fixed effects where appropriate. Ultimately, each 
person’s fitted trajectory is based on a combination of his: (1) 
observed trajectory, and (2) a model-based trajectory 
determined by the values of the predictors.

You need no special procedures to fit a multilevel model for 
change to unbalanced data. All you need do is specify the 
model appropriately to your statistical software. As long as the 
person-period data set includes enough people with enough 
waves of data for the numeric algorithms to converge, you will 
encounter no difficulties. If the data set is severely 
unbalanced, or if too many people have too few waves for the 
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complexity of your hypothesized model, problems may arise in 
the estimation. For now, we continue with this data set, which 
includes so many people with so many waves that estimation is 
straightforward. We discuss strategies for identifying and 
resolving estimation problems in section 5.2.2.

Table 5.4 presents the results of fitting three multilevel models 
for change to the wage data, using full ML in SAS PROC 
MIXED. First examine the results for Model A, the 
unconditional growth model. The positive and statistically 
significant fixed effect for EXPER indicates that inflation-
adjusted wages rise over time. Because the outcome, LNW, is 
expressed on a logarithmic scale, its parameter estimate, , is 
not a linear growth rate. As in regular regression, however, 
transformation facilitates interpretation. If an outcome in a 
linear relationship, Y, is expressed as a natural logarithm and , 
is the regression coefficient for a predictor X, then 100 ( – 1) is 
the percentage change in Y per unit difference in X. Because
EXPER is calibrated in years, this transformation yields an 
annual percentage growth rate in wages. Computing 
100(e(0.0457) – 1) = 4.7, we estimate that the average high 
school dropout’s inflation-adjusted hourly wages rise by 4.7% 
with each year of labor force participation.

(p.149)

Table 5.4: Results of fitting a taxonomy of 
multilevel models for change to the high school 
dropout wage data (n = 888)

Parameter Model A Model B Model C

Fixed Effects

Initial 
status, 
π0i

Intercept γ00 1.7156***1.7171***1.7215***

(0.0108) (0.0125) (0.0107)

(HGC – 
9)

γ01 0.0349***0.0384***

(0.0079) (0.0064)
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Parameter Model A Model B Model C

BLACK γ02 0.0154

(0.0239)

Rate of 
change, 
π1i

Intercept γ10 0.0457***0.0493***0.0489***

(0.0023) (0.0026) (0.0025)

(HGC – 
9)

γ11 0.0013

(0.0017)

BLACK γ12 −0.0182**−0.0161***

(0.0055) (0.0045)

Variance Components

Level-1: within-
person

0.0951***0.0952***0.0952***

Level-2: In initial 
status

0.0543***0.0518***0.0518***

In rate of 
change

0.0017***0.0016***0.0016***

Goodness-of-fit

Deviance 4921.4 4873.8 4874.7

AIC 4933.4 4893.8 4890.7

BIC 4962.1 4941.7 4929.0

~ p < .10; * p < .05; ** p < .01; *** p < .001.

Model A is an unconditional growth model; Model B 
includes the effects of highest grade completed (HGC – 9) 
and race (BLACK) on both initial status and rate of change; 
Model C is a reduced model in which (HGC – 9) predicts 
only initial status and BLACK predicts only rate of change.

Note: SAS Proc Mixed, Full ML. Also note that the 
covariance component, σ01, is estimated, but not displayed.
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Figure 5.2.  Displaying the results of a 
fitted multilevel model for change. Log 
wage trajectories from Model C of table
5.4 for four prototypical dropouts: Blacks 
and Whites/Latinos who dropped out in 
9th and 12th grades.

After specifying a suitable individual growth model, you add 
level-2 predictors in the usual way. The statistically significant 
variance components in Model A, for both initial status and 
rate of change, suggest the wisdom of this action. Models B 
and C examine the effects of two predictors: (1) the race/
ethnicity of the dropout; and (b) the highest grade he 
completed before dropping out. Although the sample includes 
438 Whites, 246 African Americans, and 204 Latinos, analyses 
not shown here suggest that we cannot distinguish statistically 
between the trajectories of Latino and White dropouts. For 
this reason, these models include just one race/ethnicity 
predictor (BLACK). Highest grade completed, HGC, is a 
continuous variable that ranges from 6th through 12th grade, 
with an average of 8.8 and a standard deviation of 1.4. To 
facilitate (p.150)

interpretation, 
our analyses 
use a rescaled 
version, HGC – 
9, which 
centers HGC
around this 
substantively 
meaningful 
value near the 
sample mean 
(see section 
4.5.4 for a 
discussion of 
centering).
Model B of 
Table 5.4
associates 
each 
predictor with 
initial status 
and rate of 
change. The 
estimated 
fixed effects 
suggest that HGC – 9 is related only to initial status while

Figure 5.2.  Displaying the results of a 
fitted multilevel model for change. Log 
wage trajectories from Model C of table
5.4 for four prototypical dropouts: Blacks 
and Whites/Latinos who dropped out in 
9th and 12th grades.
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BLACK is related only to the rate of change. We therefore fit 
Model C, whose level-2 submodels reflect this observation. 
The fixed effect for HGC – 9 on initial status tells us that 
dropouts who stay in school longer earn higher wages on labor 
force entry ( = 0.0384, p < .001), as we might expect because 
they are likely to have more skills than peers who left school 
earlier. The fixed effect for BLACK on rate of change tells us 
that, in contrast to Whites and Latinos, the wages of Black 
males increase less rapidly with labor force experience ( = –
0.0161, p < .001). The statistically significant level-2 variance 
components indicate the presence of additional unpredicted 
interindividual variation in both initial status and rate of 
change. In sections 5.3.3 and 6.1.2, we add other predictors 
that explain some of this remaining variation.

Figure 5.2 summarizes the effects in Model C by displaying 
wage trajectories for four prototypical dropouts: Blacks and 
Whites/Latinos who dropped out in 9th and 12th grades. We 
obtained these trajectories using the same two-stage process 
presented in section 4.5.3. We first substituted the two values 
of BLACK (0 and 1) into Model C and then substituted in two 
prototypical values of HGC – 9 (0 and 3, to correspond to 9 and 
12 years of education). The plots document the large and 
statistically significant effects of education and race on the 
wage trajectories. The longer a prospective dropout stays in 
school, the higher his wages on labor force entry. But race 
plays an important role, not on initial wages but on the rate of 
change. Although the average Black dropout initially earns an

(p.151)  hourly wage indistinguishable from the average White 
or Latino dropout, his annual percentage increase is lower. 
Controlling for highest grade completed, the average annual 
percentage increase is 100(e(0.0489) – 1) = 5.0% for Whites and 
Latinos in comparison to 100(e(0.0328) – 1) = 3.3% for Blacks. 
Over time, this race differential overwhelms the initial 
advantage of remaining in school. Beyond 7 years of labor 
force participation, a Black male who left school in 12th grade 
earns a lower hourly wage than a White or Latino male who 
left in 9th.

5.2.2 Practical Problems That May Arise When Analyzing 
Unbalanced Data Sets
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We encountered no problems when fitting models to the 
unbalanced data in section 5.2.1. The most complex model (C) 
converged in just three iterations and we could estimate every 
parameter in the model. But if your data set is severely 
unbalanced, or if too few people have enough waves of data, 
computer iterative algorithms may not converge and you may 
be unable to estimate one or more variance components.

Why does imbalance affect the estimation of variance 
components but not fixed effects? No matter how unbalanced 
the person-period data set, the estimation of fixed effects is 
generally no more difficult than the estimation of regression 
coefficients in a regular linear model. To demonstrate why, let 
us begin with a multilevel model—for simplicity, an 
unconditional growth model—expressed in composite form:

(5.2a) 
If we re-express the composite error term in the second set of 
brackets as: , we obtain an equivalent representation of equation
5.2a:

(5.2b) 
Equation 5.2b resembles a standard regression model, with γ’s 
instead of β’s and instead of εij The difference is that we do not 
assume that the composite residuals are independent and normally 
distributed with mean 0 and variance . Instead we assume that 
their constituents—ζ0i,ζ1i, and εij—follow the assumptions:

It is these complex assumptions—about the variance components—
that complicate estimation.
Now consider the following thought experiment. Suppose we 
are willing (p.152)  to make a simplifying assumption about 
the composite residuals, declaring them to be independent 
and normally distributed:. This is tantamount to assuming that 
both level-2 residuals, ζ0i and ζ1i, are always 0, as would be 
their associated variance components (i.e., both and are also 
0). In the language of multilevel modeling, we would be fixing
the intercept and rate of change, making them constant across 
individuals. Whether each person contributed one wave or 
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many, estimation of the two fixed effects and the one variance 
component would then become a standard regression 
problem. All you would need are a sufficient number of 
distinct values of TIME ij in the person-period data set—
enough distinct points in a plot of Y ij vs. TIME ij—to identify 
the level-1 submodel’s functional form. In a time-structured 
data set, this plot would be composed of vertical stripes, one 
for each measurement occasion. This is why you would need at 
least three waves of data—the stripes would lie at just those 
three occasions. In an unstructured data set, the variable 
spacing of waves makes it easier to estimate fixed effects 
because the data points are more separated “horizontally.” 
This allows you to relax the data minimum per person—
allowing some people to have fewer than three waves—as long 
as you have enough distinct values of TIME ij to estimate the 
fixed effects.

If we are unwilling to make these simplifying assumptions—
and we generally are—estimation of variance components can 
be difficult if too many people have too few waves. Variability 
in the spacing of waves helps, but may not resolve the 
problem. Estimation of variance components requires that 
enough people have sufficient data to allow quantification of 
within-person residual variation—variation in the residuals 
over and above the fixed effects. If too many people have too 
little data, you will be unable to quantify this residual 
variability.

When does the numeric task become so difficult that the 
variance components cannot be estimated? We offer no rules 
because so many issues are involved, including the degree of 
imbalance, the complexity of the model, the number of people 
with few vs. many waves, and the inclusion of time-varying 
predictors (discussed in section 5.3). Suffice it to say that 
when imbalance is severe enough, numeric computer 
algorithms can produce theoretically impossible values or fail 
to converge. Each statistical software program has its own 
way of informing the user of a problem; once discovered, we 
recommend that you be proactive and not automatically 
accept the default “solution” your program offers. Below, we 
discuss each of the two major estimation problems.
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Boundary Constraints

Many population parameters have boundary constraints—
limits beyond which they cannot theoretically lie. Like 
variances and correlation (p.153)  coefficients, the variance/
covariance components in the multilevel model have clear 
boundaries: (1) a variance component cannot be negative; and 
(2) a covariance component, expressed in correlation form, 
must lie between −1 and +1. Because of the complexity of the 
estimation task—especially with unbalanced data—as well as 
the iterative nature of the computational algorithms, 
multilevel modeling programs occasionally generate 
parameter estimates that reach, or lie outside, these limits. 
When this happens, the program may output the implausible 
estimate or its boundary value (e.g., it might set a variance 
component to 0).

How will you know if you have encountered a boundary 
constraint? The warning signs differ across programs. If you 
use SAS PROC MIXED, the program log will note that “the G 
matrix [the variance-covariance matrix for the variance 
components] is not positive definite.” By default, SAS sets the 
offending estimate to its boundary value. MLwiN does not 
provide a note; instead, it sets the offending estimate, and all 
associated estimates, to boundary values. If your output 
indicates that an estimate is exactly 0, you have likely 
encountered a boundary constraint. HLM will provide you with 
a warning message and modify its computational algorithm to 
avoid the problem. With all software, one clue that you may be 
approaching a “boundary” is if you find you need an excessive 
number of iterations to reach convergence.

We recommend that you never let a computer program 
arbitrarily make important decisions like these. Regardless of 
which program you use, you should be proactive about 
boundary constraints. Overspecification of the model’s 
stochastic portion is the usual cause; model simplification is 
generally the cure. A practical solution is to compare 
alternative models that remove one, or more, offending 
random effects systematically until the model can be fit. This 
strategy, known as fixing a predictor’s effect, usually resolves 
the problems.



Treating TIME More Flexibly

Page 22 of 69

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

We illustrate this approach using a small data set purposefully 
selected from the larger wage data set just analyzed. We 
constructed this sample for pedagogic purposes, hoping to 
create such extreme imbalance that boundary constraints 
would arise. This new data set is composed of the 124 men 
who had three or fewer waves of wage data: 47 men have 
three waves, 39 have two, and 38 have only one. The earliest 
value of EXPER is 0.002; the latest is 7.768. This data set is
not a random sample of the original group.

Table 5.5 presents the results of fitting three models to this 
smaller data set; each is based upon Model C, the “final” 
model of table 5.4. As before, each was fit using ML in SAS 
PROC MIXED. In the first model, which is identical to Model 

C, the estimated variance component for linear growth, , is 
exactly 0. This is a standard sign of a boundary (p.154)

Table 5.5: Comparison of three alternative 
approaches to fitting Model C of table 5.4 to a 
severely unbalanced subset of the high school 
dropout wage data (n = 124)

Parameter A 
Default 
method

B 
Removing 
boundary 
constraints

C Fixing 
rates of 
change

Fixed Effects

Initial 
status, 
π0i

Intercept γ00 1.7373***— 1.7373***

(0.0476) (0.0483)

(HGC – 
9)

γ01 0.0462~ — 0.0458~

(0.0245) (0.0245)

Rate of Intercept γ10 0.0516* — 0.0518*

change, 
π1i

(0.0211) (0.0209)

BLACK γ12 −0.0596~— −0.0601~
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Parameter A 
Default 
method

B 
Removing 
boundary 
constraints

C Fixing 
rates of 
change

(0.0348) (0.0346)

Variance Components

Level-1: Within-
person

0.1150***0.1374*** 0.1148***

Level-2: In initial 
status

0.0818** 0.0267 0.0842***

In rate 
of 
change

0.0000 −0.0072 —

Goodness-of-fit

Deviance 283.9 — 283.9

AIC 297.9 — 295.9

BIC 317.6 — 312.8

~ p < .10; * p < .05; ** p < .01; *** p < .001.

Model A uses the default option in SAS PROC MIXED; 
Model B removes boundary constraints for the variance 
components; Model C removes the level-2 residual for rate 
of change, eliminating the associated variance component 
(as well as the associated covariance component).

Note. SAS Proc Mixed, Full ML. Also note that the 
covariance component, σ01, is estimated where appropriate, 
but not displayed.

problem, used by both SAS PROC MIXED and MLwiN. Estimates of 
0 are always suspicious; here they indicate that the algorithm has 
encountered a boundary constraint. (Note that SAS allows the 
associated covariance component to be non-zero, whereas MLwiN 
would also set that term to 0.)
Model B in table 5.5 represents our dogged attempt to fit the 
specified model to data. To do so, we invoke a software option 
that relaxes the default boundary constraint permitting us to 



Treating TIME More Flexibly

Page 24 of 69

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

obtain a negative variance component. When analyzing 
severely unbalanced data, eliminating automatic fix-ups can 
help identify problems with boundary constraints. 
Unfortunately, in this case, the iterative algorithm does not 
converge (a different problem that we will soon discuss). 
Nevertheless, notice that the estimated variance component 
for rate of change at the last iteration is (p.155)  negative—a 
logical impossibility. This, too, is another sign suggesting the 
need for model simplification.

Model C in table 5.5 constrains the variance component for the 
linear growth rate, and its associated covariance component, 
to be 0. Notice that the deviance statistic for this model is 
identical to that of the first, suggesting the wisdom of fixing 
this parameter. This model fits no worse and involves fewer 
parameters (as reflected by the superior AIC and BIC 
statistics). This means that with this data set—which is not a 
random sample from the original—we cannot confirm the 
existence of any systematic residual variation in the slopes of 
the wage trajectories beyond the modest effect of BLACK
shown in the final column of table 5.5.

Nonconvergence

As discussed in section 4.3, all multilevel modeling programs 
implement iterative numeric algorithms for model fitting. 
These algorithms compare fit criteria (such as the log-
likelihood statistic) across successive iterations and declare 
convergence when the change in the fit criterion is sufficiently 
“small.” Although the user can determine how small is “small 
enough,” all programs have a default criterion, generally an 
arbitrarily small proportional change. When the criterion is 
met, the algorithm converges (i.e., stops iterating). If the 
criterion cannot be met in a large number of iterations, 
estimates should be treated with suspicion.

How many iterations are needed to achieve convergence? If 
your data set is highly structured and your model simple, 
convergence takes just a few iterations, well within the default 
values set by most programs. With unbalanced data sets and 
complex models, convergence can take hundreds or thousands 
of iterations although the algorithms in specialized packages 
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(e.g., HLM and MLwiN) usually converge more rapidly than 
those in multipurpose programs (e.g., SAS PROC MIXED).

For every model you fit—but especially for models fit to 
unbalanced data—be sure to check that the algorithm has 
converged. In complex problems, the program’s default limits 
on the maximum number of iterations may be too low to reach 
convergence. All packages allow you to increase this limit. If 
the algorithm still does not converge, sequentially increase the 
limit until it does. Some programs allow you to facilitate this 
search by providing “starting values” for the variance and 
covariance components.

No matter how many iterations you permit and no matter how 
much prior information you provide, there will be times when 
the algorithm will not converge. Nonconvergence can result 
from many factors, but two common causes are poorly 
specified models and insufficient data; their (p.156)

combination can be deadly. If you need an extremely large 
number of iterations to fit a model to data, closely examine the 
variance components and determine whether you have 
sufficient information to warrant allowing level-2 residuals for 
both initial status and rates of change. (If you are fitting 
nonlinear models using the methods of chapter 6, scrutinize 
other variance components as well.) Remember that any given 
data set contains a finite amount of information. You can 
postulate a complex model, but it is not always possible to fit 
that model to the available data.

We conclude by noting that other problems besides boundary 
constraints can cause nonconvergence. One problem, easily 
remedied, is a variable’s scale. If an outcome’s values are too 
small, the variance components will be smaller still; this can 
cause nonconvergence via rounding error issues. Simple 
multiplication of the outcome by 100, 1000, or another factor 
of 10 can usually ameliorate this difficulty. Predictor scaling 
can also cause problems but usually you want to adjust its 
metric in the opposite direction. For a temporal predictor, for 
example, you might move from a briefer time unit to a longer 
one (from days to months or months to years) so as to increase 
the growth rate’s magnitude. These kinds of transformations 
have only cosmetic effects on your essential findings. (They 
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will change the value of the log likelihood and associated 
statistics, but leave the results of tests unaffected.)

5.2.3 Distinguishing among Different Types of Missingness

No discussion of imbalance is complete without a 
complementary discussion of its underlying source. Although 
some researchers build imbalance into their design, most 
imbalance is unplanned, owing to scheduling problems, missed 
appointments, attrition, and data processing errors. Further 
imbalance accrues if individuals who miss a wave of data 
collection subsequently return to the sample. For example, 
although the NLSY has a low annual attrition rate—less than 
5% of the original sample initially leave in each of the first 13 
years—many participants miss one or two waves. In their 
exhaustive study of NSLY attrition, MaCurdy, Mroz, and Gritz 
(1998) find many differences among persisters, dropouts, and 
returnees. Of relevance for the wage analyses just presented 
are the findings that attrition is higher for both the 
unemployed and men who once earned high wages.

Unplanned imbalance, especially when it stems from attrition 
or other potentially systematic sources, may invalidate your 
inferences. The issue is not the technical ability to fit a model 
but rather a substantive question about credible 
generalization. To probe the issues, statisticians frame

(p.157)  the problem, not in terms of imbalance, but rather in 

terms of missing data. When you fit a multilevel model for 
change, you implicitly assume that each person’s observed 
records are a random sample of data from his or her 
underlying true growth trajectory. If your design is sound and 
has no built-in bias, and everyone is assessed on every planned 
occasion, your observed data will meet this assumption. If one 
or more individuals are not assessed on one or more 
occasions, your observed data may not meet this assumption. 
In this case, your parameter estimates may be biased and your 
generalizations incorrect.

Notice that we use the word “may,” not “will,” throughout the 
previous paragraph. This is because missingness, in and of 
itself, is not necessarily problematic. It all depends upon what 
statisticians call the type of missingness. In seminal work on 
this topic, Little (1995), refining earlier work with Rubin 
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(Little & Rubin, 1987), distinguishes among three types of 
missingness: (1) missing completely at random (MCAR); (2) 
covariate-dependent dropout (CDD); and (3) missing at 
random (MAR) (see also Schafer, 1997). As Laird (1988) 
demonstrates, we can validly generalize the results of fitting a 
multilevel model for change under all three of these 
missingness conditions, which she groups together under 
rubric ignorable nonresponse.

When we say that data are MCAR, we argue that the observed 
values are a random sample of all the values that could have 
been observed (according to plan), had there been no missing 
data. Because time-invariant predictors are usually measured 
when a study begins, their values are rarely missing. As a 
result, when a multilevel model includes no time-varying 
predictors, the only predictor that can be missing is TIME
itself (when a planned measurement occasion is missed). This 
means that longitudinal data are MCAR if the probability of 
assessment on any occasion is independent of: (1) the 
particular time; (2) the values of the substantive predictors; 
and (3) the values of the outcome (which are, by definition, 
unobserved). For the NLSY wage data just analyzed, we can 
make a case for the MCAR assumption if the probability of 
providing wage data at any point in time is independent of the 
particular moment in that individual’s labor force history, all 
other predictors, and the unobserved wage. There cannot be 
particular moments when a man would be unlikely to grant an 
interview, as would be the case if men were unwilling to do so 
on specific days (which seems unlikely). But missingness must 
also not vary systematically by an individual’s wage or other 
potentially unobserved characteristics. MaCurdy and 
colleagues (1998) convincingly demonstrate that these latter 
two conditions are implausible for the NLSY.

The conclusion that the MCAR assumption is untenable for the 
NLSY (p.158)  data is unsurprising as this assumption is 
especially restrictive—wonderful when met, but rarely so. 
Covariate dependent dropout (CDD) is a less restrictive 
assumption that permits associations between the probability 
of missingness and observed predictor values (“covariates”). 
Data can be CDD even if the probability of missingness is 
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systematically related to either TIME or observed substantive 
predictors. For the NLSY wage data, we can argue for the 
validity of the CDD assumption even if there are particular 
moments when men are unlikely to grant interviews. 
Missingness can also vary by either race or highest grade 
completed (our two observed predictors). By including these 
observed predictors in the multilevel model, we deflect the 
possibility of bias, allowing appropriate generalization of 
empirical results.

The major difficulty in establishing the tenability of the MCAR 
and CDD assumptions is the requirement of demonstrating 
that the probability of missingness at any point in time is 
unrelated to the contemporaneous value of the associated 
outcome. Because this outcome is unobserved, you cannot 
provide empirical support as you lack the very data you need. 
Only a substantive argument and thought experiment will do. 
Any potential relationship between the unobserved outcome 
and the probability of missingness invalidates these 
assumptions. For example, if men with particularly high or low 
wages are less likely to participate in an NLSY interview, we 
cannot support either assumption. As this hypothesis is both 
tenable and likely, we cannot defend either assumption for the 
NLSY wage data (nor for many other longitudinal data sets).

Fortunately, there is an even less restrictive type of 
missingness—more common in longitudinal research—that still 
permits valid generalization of the multilevel model for 
change: the MAR assumption. When data are MAR, the 
probability of missingness can depend upon any observed 
data, for either the predictors or any outcome values. It 
cannot, however, depend upon any unobserved value of either 
any predictor or the outcome. So if we are willing to argue 
that the probability of missingness in the NLSY depends only 
upon observed predictor values (that is, BLACK and HGC) and
wage data, we can make a case for the MAR assumption. The 
allowance for dependence upon observed outcome data can 
account for a multitude of sins, often supporting the credibility 
of the MAR assumption even when MCAR and CDD 
assumptions seem far-fetched.
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As general as it seems, you should not accept the MAR 
assumption without scrutiny. Greenland and Finkle (1995) 
examine this assumption in cross-sectional research and 
suggest that even it can be difficult to meet. To illustrate their 
point, they argue that someone’s unwillingness to answer a 
question about sexual preference (i.e., heterosexual vs. 
homosexual) (p.159)  is likely correlated with his or her true 
sexual preference. We agree, but believe that there are many 
times when an individual’s outcome values will adequately 
reflect such concerns. Yet even this assertion can be untrue. 
For example, a recovering alcoholic’s willingness to continue 
participating in a study about abstinence is likely related to his 
or her ability to stay sober on each occasion. Such a 
systematic pattern—even if impossible to prove—invalidates 
the MAR assumption.

In practice, the burden of evaluating the tenability of these 
missingness assumptions rests with you. Any type of ignorable 
missingness permits valid inference; you just need to 
determine which seems most credible for your project. We 
suggest that you act as your own harshest critic—better you 
than the reviewers! As MAR is the least restrictive 
assumption, it provides the acid test. The key question is 
whether it is safe to assume that the probability of 
missingness is unrelated to unobserved concurrent outcomes 
(conditional on all observed outcomes). For the NLSY wage 
data, we can invent two plausible scenarios that undermine 
this assumption: If men are less likely to be interviewed at a 
particular wave if, at that time, they are earning especially: (1)
high wages—because they might be less willing to take the 
time off from work to participate; or (2) low wages—because 
they might be less willing to reveal these low values to an 
interviewer. Because current wages (even unobserved) are 
strongly correlated with past and future wages, however, 
these risks are likely minimal. We therefore conclude that they 
are unlikely to be a major source of missingness for these 
data, supporting the credibility of the MAR assumption.1

If you cannot invoke one of these three missingness 
assumptions, you will need to add corrections to the multilevel 
model for change. Two different strategies are currently used:
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selection models and pattern mixture models. Under the 
selection approach, you build one statistical model for the 
“complete” data and a second model for the selection process 
that gave rise to the missingness. Under the pattern mixture 
approach, you identify a small number of missingness patterns 
and then fit a multilevel model stratified by these patterns. For 
further information, we direct your attention to the excellent 
papers by Hedeker and Gibbons (1997), Little (1995), and 
Little and Yau (1998).

5.3 Time-Varying Predictors

A time-varying predictor is a variable whose values may differ 
over time. Unlike their time-invariant cousins, which record an 
individual’s static status, time-varying predictors record an 
individual’s potentially differing (p.160)  status on each 
associated measurement occasion. Some time-varying 
predictors have values that change naturally; others have 
values that change by design.

In their four-year study of how teen employment affects the 
amount of time adolescents spend with their families, 
Shanahan, Elder, Burchinal, and Conger (1996) examined the 
effects of three time-varying predictors: (1) the average 
number of hours worked per week; (2) the total amount of 
money earned per year; and (3) whether earnings were used 
for nonleisure activities (e.g., schoolbooks or savings). At age 
12½, the average adolescent spent 16.3 hours per week with 
his or her family; over time, this amount declined at an 
average annual rate of 1.2 hours per week. Teen employment 
had both positive and negative effects. Although teens who 
made more money experienced steeper declines than peers 
who made less, those who spent some earnings on nonleisure 
activities or who worked especially long hours spent more
time, on average, with their families (although their rates of 
decline were no shallower). The authors conclude that: 
“adolescent work constitutes a potentially positive source of 
social development, although this depends on how its multiple 
dimensions—earnings, spending patterns, [and] hours …—fit 
with the adolescent’s broader life course” (p. 2198).
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In this section, we demonstrate how you can include time-
varying predictors in the multilevel model for change. We 
begin, in section 5.3.1, by showing how to parameterize, 
interpret, and graphically display a model that includes a time-
varying predictor’s main effect. In section 5.3.2, we allow the
effect of a time-varying predictor to vary over time. In section 
5.3.3, we discuss how to recenter time-varying predictors so 
as to facilitate interpretation. We conclude, in section 5.3.4, 
with some words of caution. Having described the analytic 
opportunities that time-varying predictors afford, we raise 
complex conceptual issues that can compromise your ability to 
draw clear convincing conclusions.

5.3.1 Including the Main Effect of a Time-Varying Predictor

Conceptually, you need no special strategies to include the 
main effect of a time-varying predictor in a multilevel model 
for change. The key to understanding why this is so lies in the
structure of the person-period data set. Because each 
predictor—whether time-invariant or time-varying—has its 
own value on each occasion, it matters little whether these 
values vary across each person’s multiple records. A time-
invariant predictor’s values remain constant; a time-varying 
predictor’s values vary. There is nothing more complex to it 
than that.

(p.161)

Table 5.6: Excerpts from the person-period data 
set for the unemployment study

ID MONTHS CES-D UNEMP

7589 1.3142 36 1

7589 5.0924 40 1

7589 11.7947 39 1

55697 1.3471 7 1

55697 5.7823 4 1

65641 0.3285 32 1

65641 4.1068 9 0
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ID MONTHS CES-D UNEMP

65641 10.9405 10 0

65441 1.0842 27 1

65441 4.6982 15 1

65441 11.2690 7 0

53782 0.4271 22 1

53782 4.2382 15 0

53782 11.0719 21 1

We illustrate the general approach using data from Ginexi and 
colleagues’ (2000) study of the effects of unemployment on 
depressive symptoms (mentioned briefly in section 5.1). By 
recruiting 254 participants from local unemployment offices, 
the researchers were able to interview individuals soon after 
job loss (within the first 2 months). Follow-up interviews were 
conducted between 3 and 8 months and 10 and 16 months 
after job loss. Each time, participants completed the Center 
for Epidemiologic Studies’ Depression (CES-D) scale (Radloff,
1977), which asks them to rate, on a four-point scale, the 
frequency with which they experience each of 20 depressive 
symptoms. CES-D scores can vary from a low of 0 for someone 
with no symptoms to a high of 80 for someone in serious 
distress.

Just over half the sample (n = 132) was unemployed at every 
interview. Others had a variety of re-employment patterns: 62 
were always working after the first interview; 41 were still 
unemployed at the second interview but working by the third; 
19 were working by the second interview but unemployed at 
the third. We investigate the effect of unemployment using the 
time-varying predictor, UNEMP. As shown in the person-
period data set in table 5.6, UNEMP represents individual i’s 
unemployment status at each measurement occasion. Because 
subjects 7589 and 55697 were consistently unemployed, their 
values of UNEMP are consistently 1. Because the 
unemployment status of the remaining cases changed, their 
values of UNEMP change as well: subject 65641 was working 
at both the second and third interviews (pattern 1-0-0); subject 
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65441 was working by the third (pattern 1-1-0); and subject 
53782 was working at the second (p.162)  interview but 
unemployed again by the third (pattern 1-0-1). For any 
individual, UNEMP can be either 0 or 1 at each measurement 
occasion except the first (because, by design, everyone was 
initially unemployed).

We begin, as usual, with an unconditional growth model 
without substantive predictors:

(5.3a) 
where
(5.3b)

Model A of table 5.7 presents the results of fitting this model to 
data, where TIME ij indicates the number of months (to the nearest 
day) between the date of interview j for person i and his date of 
initial unemployment. On the first day of job loss (TIME ij = 0), we 
estimate that the average person has a non-zero CES-D score of 
17.67 (p < .01); overt ime, this level declines linearly at a rate of 
0.42 per month (p < .001). The variance components for both initial 
status and rates of change are statistically significant, suggesting 
the wisdom of exploring the effects of person-specific predictors.

Using a Composite Specification

Because many respondents eventually find work, the 
unconditional growth model likely tells an incomplete story. If 
employment alleviates depressive symptoms, might the 
reemployment of half the sample explain the observed 
decline? If you exclusively use level-1/level-2 representations, 
you may have difficulty postulating a model that addresses this 
question. In particular, it may not be clear where—in which 
model—the time-varying predictor should appear. So far, 
person-specific variables have appeared in level-2 submodels 
as predictors of level-1 growth parameters. Although you 
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might therefore conclude that substantive predictors must 
always appear at level-2, this conclusion would be incorrect!

The easiest way of understanding how to include a time-
varying predictor is to use the composite specification of the 
multilevel model. It is not that we cannot include a time-
varying predictor in a model written using a level-1/level-2 
specification (we will soon show how to do so), but rather that 
it is easier to learn how these predictors’ effects operate and 
what types of models you might fit, if you start here.

We begin with the composite specification for the 
unconditional (p.163)
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Table 5.7: Results of fitting a taxonomy of multilevel models for change to the unemployment data (n = 254)

Parameter Model A Model B Model C Model D

Fixed Effects

Composite Intercept γ00 17.6694** 12.6656*** 9.6167*** 11.2666***

model (initial status) (0.7756) (1.2421) (1.8893) (0.7690)

TIME γ10 −0.4220*** −0.2020* 0.1620

(rate of 
change)

(0.0830) (0.0933) (0.1937)

UNEMP γ20 5.1113*** 8.5291*** 6.8795***

(0.9888) (1.8779) (0.9133)

UNEMP by γ30 −0.4652* −0.3254**

TIME (0.2172) (0.1105)

Variance Components

Level−1: Within-person 68.85*** 62.39*** 62.03*** 62.43***

Level−2: In intercept 86.85*** 93.52*** 93.71*** 41 52***

In rate of 
Change

0.36* 0.46** 0.45** —

In UNEMP — — — 40.45*
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Parameter Model A Model B Model C Model D

In UNEMP by
TIME

— — — 0.71**

Goodness-of-fit

Deviance 5133.1 5107.6 5103.0 5093.6

AIC 5145.1 5121.6 5119.7 5113.6

BIC 5166.3 5146.4 5147.3 5148.9

~ p < .10; * p < .05; ** p < .01; *** p < .001.

These models predict depression scores (on the CES-D) in the months following unemployment as a function of the time-varying 
predictor UNEMP. Model A is an unconditional growth model (see equation 5.4). Model B adds the main effect of UNEMP as a fixed 
effect (see equation 5.5); Model C also adds the interaction between UNEMP and linear TIME (see equation 5.7). Model D allows
UNEMP to have both fixed and random effects (see equation 5.10). Notice that we have changed the order in which the fixed effects 
appear to correspond to the composite specification of the model.

Note: Full ML, SAS Proc Mixed. Also note the models include all associated covariance parameters, which we do not display to 
conserve space.
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growth model, formed by substituting the second and third 
equations in equation 5.3a into the first:
(5.4)

As in chapter 4, we use brackets to distinguish the model’s fixed 
and stochastic portions. Because the fixed portion in the first 
bracket resembles a standard regression model, we can add the 
main effect of the time-varying predictor, UNEMP, by writing:

(p.164)

(5.5)

The two subscripts on UNEMP signify its time-varying nature. In 
writing equation 5.5, we assume that individual i’s value of Y at 
time j depends upon: (1) the number of months of since job loss 
(TIME); (2) his or her contemporaneous value of UNEMP; and (3) 
three person-specific residuals, ζ0i, ζ1i, and εij.
What does this model imply about the time-varying predictor’s 
main effect? Because the fixed effects, the γ’s, are essentially 
regression parameters, we can interpret them using standard 
conventions:

• γ10 is the population average monthly rate of change in 
CES-D scores, controlling for unemployment status.

• γ20 is the population average difference, over time, in 
CES-D scores between the unemployed and employed.

The intercept, γ00, refers to a logical impossibility: someone who is 
employed (UNEMP = 0) on the first day of job loss (TIME = 0). As 
in regular regression, an intercept can fall outside the range of the 
data (or theoretical possibility) without undermining the validity of 
the remaining parameters.
We can delve further into the model’s assumptions by 
examining figure 5.3, which presents four average population 
trajectories implied by the model. As in figure 3.4, we obtained 
these trajectories by substituting in specific values for the 
substantive predictor(s). But because UNEMP is time-varying, 
we substitute in time-varying patterns not constant values. 
Since everyone was initially unemployed, UNEMP can take on 
one of four distinct patterns: (1) 1 1 1, for someone 
consistently unemployed; (2) 1 0 0, for someone who soon 
finds a job and remains employed; (3) 1 1 0, for someone who 
remains unemployed for a while but eventually finds a job; and 
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(4) 1 0 1, for someone who soon finds a job only to lose it. 
Each pattern yields a different population trajectory, as shown 
in figure 5.3.

The unbroken trajectory in the upper left panel represents the 
predicted change in depressive symptoms for people who 
remain unemployed during the study. Because their values of
UNEMP do not change, their implied average trajectory is 
linear. In displaying this single line, we do not mean to 
suggest that everyone who is consistently unemployed follows 
this line. The person-specific residuals, ζ0i and ζ1i, allow 
different individuals to have unique intercepts and slopes. But 
every true trajectory for someone who is consistently 
unemployed is linear, regardless of its level or slope.

The remaining trajectories in figure 5.3 reflect different 
patterns of temporal variation in UNEMP. Unlike the 
population trajectories in previous (p.165)
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Figure 5.3.  Identifying a suitable level-1 
model for a time-varying predictor. Four 
average population trajectories implied 
by equation 5.5 for the effects of time-
varying unemployment (UNEMP) on CES-
D scores. In each panel, the magnitude of 
the effect of unemployment remains 
constant (at γ20), but because UNEMP is 
time-varying, the model implies different 
population average trajectories 
corresponding to alternative patterns of 
unemployment and reemployment.

(p.166)

chapters, these 
are
discontinuous. 
Discontinuity is 
a direct 
consequence of 
UNEMP’s 
dichotomous 
time-varying 
nature. The 
upper right 
panel, for the 1 
0 0 pattern, 
presents a 
hypothesized 
population 
trajectory for 
someone who 
finds a job at 5 
months and 
remain 
employed. The 
lower left 
panel, for the 1 
1 0 pattern, 
presents a 
hypothesized 
trajectory for 
someone who 
finds a job at 
10 months and 
remains 
employed. The 
lower right 
panel, for the 1 
0 1 pattern, 
presents a 
hypothesized trajectory for someone who finds a job at 5 months 
only to lose it at 10.
In offering these hypothetical trajectories, we must mention 
two caveats. First, although we link the upper and lower 
segments in each panel using dashed lines, our model implies 
only the solid portions. We use the dashed lines to emphasize 
that a change in unemployment status is associated with a 

Figure 5.3.  Identifying a suitable level-1 
model for a time-varying predictor. Four 
average population trajectories implied 
by equation 5.5 for the effects of time-
varying unemployment (UNEMP) on CES-
D scores. In each panel, the magnitude of 
the effect of unemployment remains 
constant (at γ20), but because UNEMP is 
time-varying, the model implies different 
population average trajectories 
corresponding to alternative patterns of 
unemployment and reemployment.
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switch in trajectory. Second, these few trajectories are not the 
only ones implied by the model. As in the first panel, person-
specific residuals—ζ0i and ζ1i—suggest the existence of many 
other discontinuous trajectories, each with its own intercept 
and slope. But because the model constrains the effect of
UNEMP to be constant, the gap between trajectories—for any 
individual—will be identical, at γ20, the parameter associated 
with UNEMP. (We relax this assumption in section 5.3.2.)

Model B of table 5.7 presents the results of fitting this model 

to data. The parameter estimate for TIME, , suggests that 
the monthly rate of decline in CES-D, while still statistically 
significant, has been cut in half (to 0.20 from 0.42 in Model A). 
This suggests that reemployment explains some of the 
observed decline in CES-D scores. This conclusion is 
reinforced by: (1) the large statistically significant effect of
UNEMP—the average CES-D score is 5.11 points higher (p < .
001) among the unemployed; and (2) the poorer fit of Model A 
in comparison to Model B—the difference in deviance 
statistics is 25.5 on the addition of one parameter (p < .001) 
and the AIC and BIC statistics are much lower as well. (We 
discuss the variance components later in this section.)

The left panel of figure 5.4 displays prototypical trajectories 
for Model B. Rather than present many different discontinuous 
trajectories reflecting the wide variety of transition times for
UNEMP, we present just two continuous trajectories: the 
upper one for someone consistently unemployed; the lower 
one for someone consistently employed after 3.5 months. 
Displaying only two trajectories reduces clutter and highlights 
the most extreme contrasts possible. Because of this study’s 
design, we start the fitted trajectory for UNEMP = 0 at 3.5 
months, the earliest time when a participant could be 
interviewed while working. To illustrate what would happen 
were we to extrapolate this trajectory back to TIME = 0, we 
include the dashed line. Because the model includes only the 
main effect of UNEMP, the two fitted trajectories are 
constrained to be parallel.

(p.167)
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Figure 5.4.  Displaying the results of 
fitted multilevel models for change that 
include a time-varying predictor. 
Prototypical trajectories from three 
models presented in table 5.7: Model B—
the main effect of UNEMP and TIME, 
Model C—the interaction between
UNEMP and TIME, and Model D—which 
constrains the effect of TIME to be 0 
among the reemployed.

How do these 
two fitted 
trajectories 
display the 
main effect of 

unemployment status in Model B? Had the study followed just 
two static groups—the consistently unemployed and the 
consistently employed—these two trajectories would be the 
only ones implied by the model. But because UNEMP is time-
varying, Model B implies the existence of many more 
depression trajectories, one for each possible pattern of 
unemployment/employment. Where are these additional 
trajectories? We find it helpful to think of the extremes shown 
as a conceptual envelope encompassing all discontinuous 
trajectories implied by the model. If UNEMP remains constant, 
an individual stays on one depression trajectory; if UNEMP
changes, an individual shifts trajectories. As everyone in this 
study is unemployed at the first interview, everyone begins on 
the top trajectory. Those who find new jobs drop to the lower 
trajectory. Those who remain employed stay there. Those who 
lose their new jobs return to the upper trajectory. 
Conceptually, envision many dashed vertical lines running 
from the upper trajectory to the bottom (and back again) for 
individuals who change employment status. The set of these 

Figure 5.4.  Displaying the results of 
fitted multilevel models for change that 
include a time-varying predictor. 
Prototypical trajectories from three 
models presented in table 5.7: Model B—
the main effect of UNEMP and TIME, 
Model C—the interaction between
UNEMP and TIME, and Model D—which 
constrains the effect of TIME to be 0 
among the reemployed.
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trajectories, which fall within the envelope shown, represent 
the complete set of prototypes implied by the model.

(p.168) Using a Level-1/Level-2 Specification

Having included a time-varying predictor under the composite 
specification, we now show how you can specify the identical 
model using a level-1/level-2 specification. This representation 
provides further insight into how time-varying predictors’ 
effects operate; it also allows you to include time-varying 
predictors using software packages (e.g., HLM) that require a 
level-1/level-2 specification of the multilevel model for change.

To derive the level-1/level-2 specification that corresponds to a 
given composite specification, you proceed backwards. In 
other words, just as we can substitute level-2 submodels into a 
level-1 submodel to form a composite specification, so, too, 
can we decompose a composite model into its constituent 
level-1 and level-2 parts. Because the time-specific subscript j
can appear only in a level-1 model, all time-varying predictors 
must appear in at level-1. We therefore write the level-1 
submodel for the composite main effects model in equation 5.5
as:

(5.6a) 
Person-specific predictors that vary over time appear at level-1, not 
level-2. If you have no time-invariant predictors, as here, the 
accompanying level-2 models are brief:

(5.6b) 
You can verify that substituting these level-2 models into the level-1 
model in equation 5.6a yields the composite specification in 
equation 5.5. To add the effects of time-invariant predictors, you 
include them, as usual, in the level-2 submodels.
Notice that the third equation in equation 5.6b, for π2i, the 
parameter for UNEMP, includes no level-2 residual. All the 
multilevel models fit so far have invoked a similar constraint—
that the effect of a person-specific predictor is constant across 
population members. Time-invariant predictors require this 
assumption because they have no within-person variation to 
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allow for a level-2 residual. But for time-varying predictors we 
could easily modify the last model in equation 5.6b to be:

(5.6c) 
This allows the effect of UNEMP to vary randomly across 
individuals in the population. Adding this residual relaxes the 
assumption that (p.169)  the gap between postulated trajectories 

in figure 5.3 is constant. To fit the new model to data, we revise the 
distributional assumptions for the residuals as presented in 
equation 5.3b. Commonly, we expand the assumption of 
multivariate normality to include all three level-2 residuals:

(5.6d) 
Notice that in adding one extra residual, ζ2i we add three extra 

variance components: , σ20 and σ21.
Just because we can add these terms to our model does not 
mean that we should. Before doing so, we must decide 
whether the additional parameters are: (1) necessary; and (2) 
estimable using the available data. To address the first issue, 
consider whether the effect of employment on CES-D scores, 
controlling for time, should vary randomly across individuals. 
Before answering yes, remember that we are talking about
random variation. If we expect the effect of unemployment to 
vary systematically across people, we can add substantive 
predictors that reflect this hypothesis. The question here is 
whether we should go further and add a residual that allows 
the effect of UNEMP to vary randomly. To be sure, much of 
our caution stems from concerns about the second point—the 
ability to estimate the additional parameters. With three (and 
sometimes fewer) measurement occasions per person, we 
often lack sufficient data to estimate additional variance 
components. Indeed, if we attempt to fit this more elaborate 
model, we encounter boundary constraints (as described in 
section 5.2.2). We therefore suggest that you resist the 
temptation to automatically allow the effects of time-varying 
predictors to vary at level-2 unless you have good reason, and 
sufficient data, to do so. (We will soon do so in section 5.3.2.)

As your models become more complex, we offer some practical 
advice (born of the consequences of the failure to follow it). 
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When including time-varying predictors, we suggest that you 
write out the entire model before specifying your choice to a 
computer package. We suggest this extra step because it is 
not always obvious which random effects to include. In 
equation 5.6b, for example, the level-2 submodels require the 
first two parameters to be random and the third to be fixed. In 
other words, to fit this model you must use what appears to be 
an inconsistent set of level-2 submodels. As in many aspects of 
longitudinal analysis, the default or “standard” specifications 
may not yield the model you want to fit.

(p.170) Time-Varying Predictors and Variance Components

In section 4.5.2, we discussed how the magnitude of variance 
components generally change on the inclusion of time-
invariant predictors: (1) the level-1 variance component, , 
remains relatively stable because time-invariant predictors 
cannot explain much within-person variation; but (2) the 
level-2 variance components, and , will decline if the time-
invariant predictors “explain” some of the between-person 
variation in initial status or rates of change, respectively. 
Time-varying predictors, in contrast, can affect all three 
variance components because they vary both within- and
between-persons. And although you can interpret a decrease 
in the magnitude of the level-1 variance component, changes 
in level-2 variance components may not be meaningful, as we 
now show.

The general principles can be illustrated simply using Models 
A and B in table 5.7. Adding UNEMP to the unconditional 
growth model (Model A) reduces the magnitude of the within-

person variance component, , by 9.4% (from 68.85 to 
62.39). Using strategies from section 4.4.3, equation 4.13, we 
conclude that time-varying unemployment status explains just 
over 9% of the variation in CES-D scores. This interpretation is 
straightforward because the time-varying predictor is added to 
the level-1 model, reducing the magnitude of the level-1 
residual, εij.

But ascribing meaning to observed changes in the level-2 
variance components and can be nearly impossible. As we 
move from Model A to B both estimates increase! Although we 
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alluded to this possibility in section 4.4.3, this is first example 
in which we observe such a pattern. The explanation for this 
seeming paradox—that changes in level-2 variance 
components do not assess the effects of time-varying 
predictors—lies in the associated level-1 submodel. When you 
add a time-varying predictor, as either a main effect or an 
interaction, you change the meaning of the individual growth 
parameters because:

• The intercept parameter, π0i, now refers to the value of 
the outcome when all level-1 predictors, not only TIME but 
also the time-varying predictor, are zero.

• The slope parameter, π1i, is now a conditional rate of 
change, controlling for the effects of the time-varying 
predictor.

Altering the population quantity that each parameter represents 
alters the meaning of the associated level-2 variance component. 
Hence, it makes no sense to compare the magnitude of these 
variance components across successive models.
This means that you must rely on changes in the time-varying 
predictors fixed effects, and associated goodness-of-fit 
statistics, when deciding (p.171)  whether to retain a time-
varying predictor in your model. As tempting as it is to 
compute the percentage reduction in a variance component 
associated with the inclusion of a time-varying predictor, there 
is no consistently meaningful way of doing so.

5.3.2 Allowing the Effect of a Time-Varying Predictor to Vary over 
Time

Might unemployment status also affect the trajectory’s slope? 
In previous chapters, we initially associated predictors with 
both initial status and rates of change. Yet because Model B 
includes only the main effects of TIME and UNEMP, the 
trajectories are constrained to be parallel.

There are many ways to specify a model in which the 
trajectories’ slopes vary by unemployment status. The easiest 
approach, and the one we suggest you begin with, is to add 
the cross-product—here, between UNEMP and TIME—to the 
main effects model:
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(5.7)

Notice the close resemblance between this and the composite 
model that includes an interaction between a time-invariant
predictor and TIME (shown in equation 4.3). The differences 
between the two are purely cosmetic: (1) the substantive predictor 
(here UNEMP and there COA) has an additional subscript j to 
indicate that it is time-varying; and (2) different subscripts 
reference the relevant fixed effects (the γ’s).
Model C of table 5.7 presents the results of fitting this model 
to data. The interaction between TIME and UNEMP is 
statistically significant ( ). As with all interactions, we can 
interpret this effect in two ways: (1) the effect of 
unemployment status on CES-D scores varies over time; and 
(2) the rate of change in CES-D scores over time differs by 
unemployment status. Rather than delve into these 
interpretations, we draw your attention to the prototypical 
trajectories for this model displayed in the middle panel of 
figure 5.4. Here we find an unexpected pattern: while CES-D 
scores decline among the unemployed, the reverse is found 
among the re-employed—their CES-D scores appear to 
increase! The parameter estimate for the main effect of TIME, 
suggests why we observe this anomaly—it is not statistically 
significant (it is even smaller than its standard error, 0.19). 
Although we estimate a non-zero rate of change among the re-
employed, we might have obtained this estimate even if the 
true rate of change in the population was zero.

This suggests that it might be wise to constrain the trajectory 
among the re-employed to be flat, with a slope of 0, while 
allowing the trajectory (p.172)  among the unemployed to 
decline over time. Were we fitting a standard regression 
model, we might achieve this goal by removing the main effect 
of TIME:

(5.8)

Had we fit this model to data and obtained fitted trajectories by 
unemployment status we would find: when UNEMP = 0, , when
UNEMP = 1, .
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This model’s structural portion yields trajectories with the 
desired properties: (1) for the employed, we would have a flat 
line at level ; and (2) for the unemployed, we would have a 
slanted line, with intercept and slope .

We do not fit this model, however, because of the lack of 
congruence between its structural and stochastic portions. 
Comparing the elements in the two sets of brackets in 
equation 5.8, notice that the model includes: (1) a random 
effect for TIME, ζ1i, but no corresponding main effect (we 
removed γ10 from the model when we removed the main effect 
of TIME); and (2) a fixed effect for the UNEMP by TIME
interaction (γ30) and no corresponding random effect. We 
therefore postulate an alternative model in which the fixed 
and random effects are better aligned:

(5.9)

Notice that the interaction term, UNEMP by TIME, appears as both 
a fixed and a random effect. But when we attempt to fit the model 
in equation 5.9 to data, we find that its AIC and BIC statistics are 
larger (worse) than that of Model C (we cannot conduct a formal 
test because this model is not fully nested within the other, nor do 
we present the results in table 5.7).
It might appear, then, that Model C is preferable. But before 
reaching this conclusion, we revisit a question raised in the 
previous section: Should the effect of UNEMP be constant 
across the population? When we previously attempted to allow 
this effect to vary randomly (by augmenting Model B, which 
included the main effect of TIME) we could not fit the model to 
data. But having constrained the model’s structural portion so 
that the trajectory among the re-employed is flat, we notice an 
inconsistency in equation 5.8: it allows the intercept among 
the employed, γ00, to vary randomly (through the inclusion of 
the residual, ζ0i) but not the increment to this intercept 
associated with unemployment, γ20 (there is no corresponding 
residual, ζ2i). Why should we allow the flat level of the 
trajectory among the re-employed to vary and not (p.173)

allow the increment to this flat level (which yields the the 
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intercept among the unemployed) to vary randomly as well? 
Perhaps the fit of the model in equation 5.9 is poorer than 
Model C because of this unrealistically stringent constraint on 
the random effects.

We address this supposition by fitting Model D:

(5.10) 
which allows each fixed effect to have an associated random effect. 
The results of fitting this model are shown in the final column of 
table 5.7 and are graphed in the right panel of figure 5.4. 
Immediately upon layoff, the average unemployed person in the 
population has a CES-D score of 18.15 (=11.27 + 6.88). Over time, 
as they acclimate to their new status, the average unemployed 
person’s CES-D scores decline at a rate of –0.33 per month (p < .
01). CES-D scores among those who find a job are lower (by as 
much as 6.88 if the job is found immediately after layoff or as little 
as 2.97 if 12 months later (14.24 – 11.27). Once a formerly 
unemployed individual finds a job and keeps it, we find no evidence 
of systematic change in CES-D scores over time. We believe that 
this model provides a more realistic representation of the patterns 
of change in CES-D scores over time than Model C. Not only is it 
substantively compelling, its AIC statistic is superior (and its BIC 
nearly equivalent) even though it includes several additional 
parameters (the extra variance components shown in table 5.7 as 
well as the extra covariance components not shown).
We hope that this example illustrates how you can test 
important hypotheses about time-varying predictors’ effects 
and investigate even more ways in which outcomes might 
change over time (here, how CES-D scores change not just 
with time but also re-employment). As we will show in chapter
6, the ability to include time-varying predictors opens up a 
world of analytic opportunities. Not only can level-1 individual 
growth models be smooth and linear, they can also be 
discontinuous and curvilinear. This allows us to postulate and 
fit level-1 submodels that better reflect our hypotheses about 
the population processes that give rise to sample data and 
assess the tenability of such hypotheses with data. But to 
adequately build a foundation for pursuing those types of 
analyses, we must consider other issues that arise when 
working with time-varying predictors, and we do so by 
beginning with issues of centering.
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5.3.3 Recentering Time-Varying Predictors

In chapter 4, when discussing interpretation of parameters 
associated with time-invariant predictors, we introduced the 
practice of recentering: (p.174)  subtracting a constant from a 
predictor’s values to alter its parameter’s meaning. In some 
analyses, we subtracted a predictor’s overall sample mean 
(known as grand-mean centering); in others, we subtracted a 
substantively interesting value (such as 9 for highest grade 
completed). We now describe similar strategies you can use 
with time-varying predictors.

To concretize the discussion, let us return to the wage data for 
high school dropouts summarized in table 5.4. We can express 
Model C in composite form by writing: Y ij = [γ00 + γ10 TIME ij

+ γ01(HGC i – 9) + γ12 BLACK i × TIME ij] + [ζ0i + ζ1i TIME ij + 
εij]. As did the original researchers, we now introduce the 
possibility that wages might be affected by a time-varying 
predictor, UERATE, the unemployment rate in the local 
geographic area:

(5.11)

We restrict attention to the main effect of UERATE because 
extensive analysis suggests that its effect on log wages does not 
vary over time.
Adapting recentering strategies outlined in section 4.5.4 for 
time-invariant predictors, we could include UERATE in several 
different ways, each using one of the following:

• Its raw values

• Deviations around its grand mean in the person-period 
data set (7.73)

• Deviations from another meaningful constant (say, 6, 7 or 
8, common unemployment rates during the time period 
under study)

Each strategy would lead to virtually identical conclusions. Were 
we to fit the model in equation 5.11 using each, we would find 
identical parameter estimates, standard errors, and goodness-of-fit 
statistics with just one exception: for the intercept, γ00. Inspecting 
equation 5.11 clarifies why this is so. As in regression, adding a 
main effect does not alter the meaning of the model’s remaining 
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parameters. If UERATE is expressed on its raw scale, γ00 estimates 
the average log wage on the first day of work (EXPER = 0) for a 
black male who dropped out in ninth grade (HGC – 9 = 0) and who 
lives in an area with no unemployment (UERATE = 0). If UERATE is 
grand-mean centered, γ00 estimates the average log-wage for a 
comparable male who lives in an area with an “average” 
unemployment rate. But because this “average” would be 
computed in the person-period data set, in which both the 
measurement occasions and number of waves vary across people, it 
may not be particularly meaningful.

(p.175)

Table 5.8: Results of adding three alternative 
representations of the time-varying predictor for 
local area unemployment rate (UERATE) to 
Model C of table 5.4 for the high school dropout 
wage data (n = 888)

Parameter Model 
A: 
centered 
at 7

Model B: 
within 
person 
centering

Model 
C: 
time-1 
centered

Fixed Effects

Initial 
status, 
π0i

Intercept γ00 1.7490***1.8743*** 1.8693***

(0.0114) (0.0295) (0.0260)

(HGC – 
9)

γ01 0.0400***0.0402*** 0.0399***

(0.0064) (0.0064) (0.0064)

UERATE γ20 −0.0120***−0.0177***−0.0162***

(0.0018) (0.0035) (0.0027)

Deviation 
of

γ30 −0.0099***−0.0103***

UERATE
from

(0.0021) (0.0019)

centering 
value



Treating TIME More Flexibly

Page 51 of 69

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Parameter Model 
A: 
centered 
at 7

Model B: 
within 
person 
centering

Model 
C: 
time-1 
centered

Rate of 
change, 
π1i

Intercept γ10 0.0441***0.0451* 0.0448***

(0.0026) (0.0027) (0.0026)

BLACK γ12 −0.0182***−0.0189***−0.0183***

(0.0045) (0.0045) (0.0045)

Variance Components

Level
−1:

within-
person

0.0948***0.0948*** 0.0948***

Level
−2:

In initial 
status

0.0506***0.0510*** 0.0503***

In rate of 
change

0.0016***0.0016*** 0.0016***

Goodness-of-fit

Deviance 4830.5 4827.0 4825.8

AIC 4848.5 4847.0 4845.8

BIC 4891.6 4894.9 4893.7

~ p < .10; * p < .05; ** p < .01; *** p < .001.

Model A adds (UERATE – 7); Model B centers UERATE at 
each person’s mean; Model C centers UERATE around each 
person’s value of UERATE at his first measurement 
occasion.

Note: SAS Proc Mixed, Full ML. Also note that the 
covariance component, σ01, is estimated, but not displayed.

We therefore often prefer recentering time-varying predictors
not around the grand-mean but rather around a substantively 
meaningful constant—here, say 7. This allows γ00 to describe 
the average log-wage for someone whose local area has a 7% 
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unemployment rate. The results of fitting this last model 
appear in the first column of table 5.8. As in section 5.2.1, we 
can interpret this parameter estimate by computing 100(e(–

0.0120) − 1) = − 1.2. We conclude that each one-percentage 
point difference in local area unemployment rate is associated 
with wages that are 1.2 percent lower.

(p.176) Given that centering has so little effect on model 
interpretation, you may wonder why we raise this issue. We do 
so for three reasons: (1) the topic receives much attention in 
the multilevel literature (see, e.g., Kreft et al., 1995; Hofmann 
& Gavin, 1998); (2) some computer programs tempt analysts 
into recentering their predictors through the availability of 
simple toggle switches on an interactive menu; and (3) there 
are still other meaningful ways of recentering. Not only can 
you recenter around a single constant, you can recenter 
around multiple constants, one per person. It is this approach, 
also known as within-context or group-mean centering, to 
which we now turn.

The general idea behind within-context centering is simple: 
instead of representing a time-varying predictor using a single 
variable, decompose the predictor into multiple constituent 
variables, which, taken together, separately identify specific 
sources of variation in the outcome. Of the many ways of 
decomposing a time-varying predictor, two deserve special 
mention:

• Within-person centering: include the average
unemployment rate for individual i,, as well as the deviation 
of each period’s rate from this average, (UERATE ij − ).

• Time-1 centering: include time-1’s unemployment rate for 
individual i, UERATE i1, as well as the deviation of each 
subsequent rate from this original value, (UERATE ij −
UERATE i1).

Within-context centering provides multiple ways of representing a 
time varying predictor. Under within-person centering, you include 
a time-invariant average value and deviations from that average; 
under time-1 centering, you include the time-invariant initial value 
and deviations from that starting point. In both cases, as well as in 
the many other possible versions of within-context centering, the 
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goal is to represent the predictor in a way that provides greater 
insight into its effects. (Of course, within-person centering raises 
interpretive problems of endogeneity, discussed in the following 
section.)
The last two columns of table 5.8 present the results of fitting 
the multilevel model for change with UERATE centered within-
person (Model B) and around time-1 (Model C). Each 
contributes a particular insight into the negative effect of local 
unemployment on dropouts’ wages. Model B reveals an 
association between wages and two aspects of the 
unemployment: (1) its average over time—the lower the 
average rate, the lower the wage; and (2) its relative 
magnitude, at each point in time, in comparison to this 
average. Model C demonstrates that wages are also associated 
with two other aspects of the time-varying unemployment 
rates: (1) their initial value, when the dropout first enters the 
labor force; and (2) the (p.177)  increment or decrement, at 
each subsequent point in time, from that initial value. Is either 
of these centered options clearly superior to the raw variable 
representation? Given that we cannot compare deviance 
statistics (because no model is nested within any other), 
comparison of AIC and BIC statistics suggests that all three 
are roughly comparable, with BIC giving the nod to Model A 
and AIC the nod to Model C.

These strategies for representing the effect of a time-varying 
predictor are hardly the only options. We offer them primarily 
in the hope that they will stimulate your thinking about 
substantively interesting ways of representing predictors’ 
effects. We find routine recommendations to always, or never, 
center unconstructive. We prefer instead to recommend that 
you think carefully about which representations might provide 
the greatest insight into the phenomenon you are studying.

5.3.4 An Important Caveat: The Problem of Reciprocal Causation

Most researchers get very excited by the possibility that a 
statistical model could represent the relationship between 
changing characteristics of individuals and their 
environments, on the one hand, and individual outcomes on 
the other. We now dampen this enthusiasm by highlighting 
interpretive difficulties that time-varying predictors can 
present. The problem, known generally as reciprocal causation
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or endogeneity, is the familiar “chicken and egg” cliché: if X
is correlated with Y, can you conclude that X causes Y or is it 
possible that Y causes X?

Many, but not all, time-varying predictors are subject to these 
problems. To help identify which are most susceptible, we 
classify time-varying predictors into four groups: defined, 
ancillary, contextual, and internal2. In the context of individual 
growth modeling, classification is based on the degree to 
which a predictor’s values at time t ij are: (1) assignable a 
priori; and (2) potentially influenced by the study participant’s 
contemporaneous outcome. The more “control” a study 
participant has over his or her predictor values, the more 
clouded your inferences.

A time-varying predictor is defined if, in advance of data 
collection, its values are predetermined for everyone under 
study. Defined predictors are impervious to issues of 
reciprocal causation because no one—not the study 
participants nor the researchers—can alter their values. Most 
defined predictors are themselves functions of time. All 
representations of TIME are defined because their values 
depend solely on a record’s time-period. Time-varying 
predictors that reflect other periodic aspects of time—such as 
season (fall, summer, etc) or anniversary (anniversary month, 
nonanniversary month)—are defined because once the metric

(p.178)  for time is chosen, so, too, are their values. Predictors 
whose values are set by an external schedule are also defined. 
If Ginexi and colleagues (2000) added a variable representing 
each person’s time-varying unemployment benefits, its values 
would be defined because payments reflect a uniform 
schedule. Similarly, when comparing the efficacy of time-
varying drug tapering regimens in a randomized trial, an 
individual’s dosage is defined if the researcher determines the 
entire dosing schedule a priori. Different people may take 
different doses at different times, but if the schedule is 
predetermined, the predictor is defined.

A time-varying predictor is ancillary if its values cannot be 
influenced by study participants because they are determined 
by a stochastic process totally external to them. We use the 
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term “stochastic process” to emphasize that, unlike a defined 
predictor, an ancillary predictor can behave erratically over 
time. Ancillary predictors are impervious to issues of 
reciprocal causation because no one involved in the study 
directly affects their values. Most ancillary predictors assess 
potentially changing characteristics of the physical or social 
environment in which respondents live. In his study of marital 
dissolution, for example, South (1995) divided the United 
States into 382 local marriage markets and used census data 
to create a time-varying predictor assessing the availability of 
spousal alternatives in each market. His availability index
contrasted the number of unmarried persons “locally 
available” to the respondent with the number of unmarried 
persons “locally available” to the respondent’s spouse. As no 
respondent could be part of the local marriage market 
(because all were married), this predictor is ancillary. If some
were part of the local market (as they would be in a study of 
marital initiation), this predictor would be approximately 
ancillary because: (1) the contribution of any individual to the 
index would be negligible (given that the smallest marriage 
market included over a half million people); and (2) few 
individuals move to a particular area because of the 
availability of spousal alternatives. Following this logic, the 
local area unemployment rate just used in the high school 
dropout wage analysis is approximately ancillary. Other 
ancillary predictors include weather (Young, Meaden, Fogg, 
Cherin, & Eastman, 1997) and treatment, if randomly 
assigned.

A contextual time-varying predictor also describes an 
“external” stochastic process, but the connection between 
units is closer—between husbands and wives, parents and 
children, teachers and students, employers and employees. 
Because of this proximity, contextual predictors can be 
influenced by an individual’s contemporaneous outcome 
values; if so, they are susceptible to issues of reciprocal 
causation. To assess whether reciprocal causation is a 
problem, you must analyze the particular situation. For 
example, in their 30-year study of the effects of parental 
divorce (p.179)  on mental health, Cherlin, Chase-Lansdale 
and McRae (1998) included time-varying predictors denoting 
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whether children had experienced a parental divorce during 
four developmental phases: 7–10, 11–15, 16–22, and 23–33. 
These contextual time-varying predictors are unlikely to create 
interpretive problems because it is doubtful that someone’s 
level of emotional problems would influence either the 
occurrence or the timing of a parental divorce. But in their 
three-year study of the link between the quality of childcare 
centers and children’s early cognitive and language 
development, Burchinal et al. (2000) face a thornier problem. 
Because parents may choose particular childcare centers 
precisely because they emphasize particular skills, observed 
links between center quality and child development may be 
due to a link between development and quality, not quality and 
development. If such criticisms seem reasonable, we suggest 
that you treat a contextual time-varying predictor as if it were 
internal, and address issues of reciprocal causation in ways we 
now describe.

Internal time-varying predictors describe an individual’s 
potentially changeable status over time. Some describe
psychological states (mood or satisfaction), while others 
describe physical states (respiratory function, blood levels),
social states (married/unmarried, working/unemployed), or 
other personal attributes. In their four-year study of 
adolescent smoking, for example, Killen, Robinson, Haydel, et 
al. (1997) annually assessed dozens of internal predictors 
ranging from counts of the number of friends who smoke and 
the frequency of drinking to the adolescent’s height and 
weight. And in their four-year study of conduct disorder in 
boys, Lahey, McBurnett, Loeber, & Hart (1995) collected 
annual data on receipt of various kinds of psychological 
treatment, both in-patient and out-patient, medication and talk 
therapy.

Internal time-varying predictors raise serious interpretive 
dilemmas. Isn’t it reasonable to argue, for example, that as 
teens start smoking, they increase the number of friends who 
smoke, increase their frequency of drinking, and lose weight? 
So, too, isn’t it possible that as a child’s behavior worsens a 
parent may be more likely to initiate psychotherapy? Although 
the causal link may be from predictor to outcome, it may also 
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run the opposite way. Some readers may believe that 
longitudinal data—and the associated statistical models—
should resolve such concerns. But resolution of the directional 
arrow is more difficult. As long as a model links
contemporaneous information about time-varying predictors 
and outcomes, we effectively convert a longitudinal problem 
into a cross-sectional one, fully burdened by questions of 
reciprocal causation.

Given the conceptual appeal of internal and contextual time-
varying predictors, what should you do? We have two concrete 
recommendations. (p.180)  First, use theory as a guide, play 
your own harshest critic, and determine whether your 
inferences are clouded by reciprocal causation. Second, if your 
data allow, consider coding time-varying predictors so that 
their values in each record in the person-period data set refer 
to a previous point in chronological time. After all, there is 
nothing about the multilevel model for change that requires 
contemporaneous data coding. Most researchers use 
contemporaneous values by default. Yet it is often more logical 
to link prior status on a predictor with current status on an 
outcome.

For example, in their study of conduct disorder (CD) in boys, 
Lahey and colleagues (1995) carefully describe three ways 
they coded the effect of time-varying predictors representing 
treatment:

In each case, the treatment was considered to be present 
in a given year if that form of treatment had been 
provided during all or part of the previous 12 months
(emphasis added).… In addition, the analyses of 
treatment were repeated using the cumulative number of 
years that the treatment had been received as the time-
varying covariate to determine whether the accumulated 
number of years of treatment influenced the number of 
CD symptoms in each year. Finally, a 1-year time-lagged 
analysis was conducted to look at the effect of treatment 
on the number of CD symptoms in the following year. (p. 
90)

By linking each year’s outcomes to prior treatment data, the 
researchers diminish the possibility that their findings are clouded 
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by reciprocal causation. So, too, by carefully describing several 
alternative coding strategies, each of which describes a predictor 
constructed from the prior year’s data, the researchers appear 
more credible and thoughtful in their work.
How might we respond to questions about reciprocal 
causation in Ginexi and colleagues’ (2000) study of the link 
between unemployment and depression? A critic might argue 
that individuals whose CES-D scores decline over time are 
more likely to find jobs than peers whose levels remain stable 
or perhaps increase. If so, the observed link between re-
employment and CES-D scores might result from the effects of 
CES-D on employment, not employment on CES-D. To rebut 
this criticism, we emphasize that the re-employment predictor 
indicates whether the person is currently employed at each 
subsequent interview. As a result, the moment of re-
employment is temporally prior to the collection of CES-D 
scores. This design feature helps ameliorate the possibility 
that the observed relationship between unemployment and 
depression is a result of reciprocal causation. Had the CES-D 
and re-employment data been collected simultaneously, it 
would have been more difficult to marshal this argument.

(p.181) Our message is simple: just because you can establish 
a link between a time-varying predictor and a time-varying 
outcome does not guarantee that the link is causal. While 
longitudinal data can help resolve issues of temporal ordering, 
the inclusion of a time-varying predictor can muddy the very 
issues the longitudinal models were intended to address. 
Moreover, as we will show in the second half of this book, 
issues of reciprocal causation can be even thornier when 
studying event occurrence because the links between 
outcomes and predictors are often more subtle than the 
examples just presented suggest. This is not to say you should 
not include time-varying predictors in your models. Rather, it 
is to say that you must recognize the issues that such 
predictors raise and not naively assume that longitudinal data 
alone will resolve the problem of reciprocal causation.

5.4 Recentering the Effect of TIME

TIME is the fundamental time-varying predictor. It therefore 
makes sense that if recentering a substantive time-varying 
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predictor can produce interpretive advantages, so, too, should 
recentering TIME. In this section, we discuss an array of 
alternative recentering strategies, each yielding a different set 
of level-1 individual growth parameters designed to address 
related, but slightly different, research questions.

So far, we have tended to recenter TIME so that the level-1 
intercept, π0i, represents individual i’s true initial status. Of 
course, the moment corresponding to someone’s “initial 
status” is context specific—it might be a particular 
chronological age in one study (e.g., age 3, 6.5, or 13) or the 
occurrence of a precipitating event in another (e.g., entry into 
or exit from the labor force). In selecting a sensible starting 
point, we seek an early moment, ideally during the period of 
data collection, inherently meaningful for the process under 
study. This strategy yields level-2 submodels in which all 
parameters are directly and intrinsically interpretable, and it 
ensures that the value of TIME associated with the intercept, 
π0i, falls within TIME’s observed range. Not coincidentally, 
this approach also yields a level-1 submodel that reflects 
everyday intuition about intercepts as a trajectory’s 
conceptual “starting point.”

Although compelling, this approach is hardly sacrosanct. Once 
you are comfortable with model specification and parameter 
interpretation, a world of alternatives opens up. We illustrate 
some options using data from Tomarken, Shelton, Elkins, and 
Anderson’s (1997) randomized trial evaluating the 
effectiveness of supplemental antidepressant medication for 
individuals with major depression. The study began with an 
overnight (p.182)
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Table 5.9: Alternative coding strategies for TIME in the antidepressant trial

WAVE DAY READING TIME OF DAY TIME (TIME – 3.33) (TIME – 6.67)

1 0 8 A.M. 0.00 0.00 −3.33 −6.67

2 0 3 P.M. 0.33 0.33 −3.00 −6.33

3 0 10 P.M. 0.67 0.67 −2.67 −6.00

4 1 8 A.M. 0.00 1.00 −2.33 −5.67

5 1 3 P.M. 0.33 1.33 −2.00 −5.33

6 1 10 P.M. 0.67 1.67 −1.67 −5.00

…

11 3 3 P.M. 0.33 3.33 0.00 −3.33

…

16 5 8 A.M. 0.00 5.00 1.67 −1.67

17 5 3 P.M. 0.33 5.33 2.00 −1.33

18 5 10 P.M. 0.67 5.67 2.33 −1.00

19 6 8 A.M. 0.00 6.00 2.67 −0.67

20 6 3 P.M. 0.33 6.33 3.00 −0.33

21 6 10 P.M. 0.67 6.67 3.33 0.00
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hospital stay for 73 men and women who were already being 
treated with a nonpharmacological therapy that included bouts of 
sleep deprivation. During the pre-intervention night, the 
researchers prevented each participant from obtaining any sleep. 
The next day, each person was sent home with a week’s worth of 
pills (placebo or treatment), a package of mood diaries (which use 
a five-point scale to assess positive and negative moods), and an 
electronic pager. Three times a day—at 8 A.M., 3 P.M., and 10 P.M.
—during the next month, respondents were electronically paged 
and reminded to fill out a mood diary. Here we analyze the first 
week’s data, focusing on the participants’ positive moods. With full 
compliance, each person would have 21 assessments. Although two 
people were recalcitrant (producing only 2 and 12 readings), 
everyone else was compliant, filling out at least 16 forms.
Table 5.9 presents seven variables that represent related, but 
distinct, ways of clocking time. The simplest, WAVE, counts 
from 1 to 21; although great for data processing, its cadence 
has little intuitive meaning because few of us divide our weeks 
into 21 conceptual components. DAY, although coarse, has 
great intuitive appeal, but it does not distinguish among 
morning, afternoon, and evening readings. One way to capture 
this finer information is to add a second temporal variable, 
such as READING or TIME OF DAY. Although the metric of the 
former makes it difficult to analyze, the metric of the latter is 
easily understood: 0 for morning readings; 0.33 for afternoon 
readings; 0.67 for evening readings. (We could (p.183)  also 
use a 24-hour clock and assign values that were not 
equidistant.) Another way to distinguish within-day readings is 
to create a single variable that combines both aspects of time. 
The next three variables, TIME, TIME – 3.33, and TIME – 6.67, 
achieve this goal. The first, TIME, operates like our previous 
temporal variables—it is centered on initial status. The others 
are linear transformations of TIME: one centered on 3.33, the 
study’s midpoint, and the other centered on 6.67, the study’s
final wave.

Having created these alternative variables, we could now 
specify a separate set of models for each. Instead of 
proceeding in this tedious fashion, let us write a general 
model that uses a generic temporal variable (T) whose values 
are centered around a generic constant (c):
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(5.12a) 
We can then write companion level-2 models for the effect of 
treatment:

(5.12b) 
and invoke standard normal theory assumptions for the residuals. 
This same model can be used for most of the temporal variables in 
table 5.9 (except those that distinguish only between within-day 
readings).
Table 5.10 presents the results of fitting this general model 
using the three different temporal variables, TIME, TIME – 
3.33, and TIME – 6.67. Begin with the initial status 
representation of TIME. Because we cannot reject null 
hypotheses for either linear change or treatment, we conclude 
that: (1) on average, there is no linear trend in positive moods 
over time in the placebo group (); and (2) when the study 
began, the groups were indistinguishable () as randomization 
would have us expect. The statistically significant coefficient 
for the effect of TREAT on linear change () indicates that the 
trajectories’ slopes differ. The prototypical trajectories in 
figure 5.5 illustrate these findings. On average, the two groups 
are indistinguishable initially, but over time, the positive mood 
scores of the treatment group increase while those of the 
control group decline. The statistically significant variance 
components for the intercept and linear change indicate that 
that substantial variation in these parameters has yet to be 
explained.

What happens as we move the centering constant from 0 
(initial status), to 3.33 (the study’s midpoint), to 6.67 (the 
study’s endpoint)? As expected, some estimates remain 
identical, while others change. The general principle is simple: 
parameters related to the slope remain stable while those 
related to the intercept differ. On the stable side, we obtain

(p.184)

Table 5.10: Results of using alternative 
representations for the main effect of TIME when 
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evaluating the effect of treatment on the positive 
mood scores in the antidepressant trial (n = 73)

Temporal predictor in 
level−1 model

Parameter TIME (TIME – 
3.33)

(TIME – 
6.67)

Fixed Effects

Level−1 Intercept γ00 167.46***159.40***151.34***

intercept, 
π0i

(9.33) (8.76) (11.54)

TREAT γ01 −3.11 15.35 33.80*

(12.33) (11.54) (15.16)

Rate of Intercept γ10 −2.42 −2.42 −2.42

Change, 
π1i

(1.73) (1.73) (1.73)

TREAT γ11 5.54* 5.54* 5.54*

(2.28) (2.28) (2.28)

Variance Components

Level−1: within-
person

1229.93***1229.93***1229.93***

Level−2: In level-1 
intercept

2111.33***2008.72***3322.45***

In rate of 
change

63.74*** 63.74*** 63.74***

Covariance σ01 −121.62*90.83 303.28***

Goodness-of-fit

Deviance 12680.5 12680.5 12680.5

AIC 12696.5 12696.5 12696.5

BIC 12714.8 12714.8 12714.8

~ p < .10; * p < .05; ** p < .01; *** p < .001.
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TIME is centered around initial status, middle status, and 
final status.

Note: Full ML, SAS PROC MIXED.

identical estimates for the linear rate of change in the placebo 
group ( ) and the effect of treatment on that rate (). So, too, we 
obtain identical estimates for the residual variance in the rate of 
change () and the within-person residual variance (). And, most 
important, the deviance, AIC and BIC statistics remain unchanged 
because these models are structurally identical.
Where these models differ is in the location of their 
trajectories’ anchors, around their starting point, midpoint, or 
endpoint. Because the intercepts refer to these anchors, each 
model tests a different set of hypotheses about them. If we 
change c, we change the anchors, which changes the 
estimates and their interpretations. In terms of the general 
model in equations 5.12a and 5.12b, γ00 assesses the elevation 
of the population average change trajectory at time c; γ01

assesses the differential elevation of this trajectory at time c

between groups;  assesses the population variance in true 
status at time c; and σ01 assesses the population (p.185)
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Figure 5.5.  Understanding the 
consequences of rescaling the effect of
TIME. Prototypical trajectories for 
individuals by TREATMENT status in the 
antidepressant experiment. The dashed 
vertical lines reflect the magnitude of the 
effect of TREATMENT if time is centered 
at the study’s beginning (0), midpoint 
(3.33), and endpoint (6.67).

covariance 
between true 
status at time c
and the per-
unit rate of 
change in Y.
Although 
general 
statements 
like these are 
awkward, 
choice of a 
suitable 
centering 
constant can 
create simple, 
even elegant, 

interpretations. If we choose c to be 3.33, this study’s 
midpoint, the intercept parameters assess effects at midweek. 
Because the treatment is still nonsignificant ( ), we conclude 
that the average elevation of the two trajectories remains 
indistinguishable at this time. If we choose c to be 6.67, this 
study’s endpoint, the intercept parameters assess effects at 
week’s end. Doing so yields an important finding: Instead of 
reinforcing the expected nonsignificant early differences 
between groups, we now find a statistically significant 
treatment effect (). After a week of antidepressant therapy, the 
positive mood score for the average member of the treatment 
group differs from that of the average member of the control 
group.

How can changing the centering constant for TIME have such 
a profound impact, especially since the fundamental model is 
unchanged? The dashed vertical lines in the prototypical plots 
in figure 5.5 provide an explanation. In adopting a particular 
centering constant, we cause the resultant estimates to 

Figure 5.5.  Understanding the 
consequences of rescaling the effect of
TIME. Prototypical trajectories for 
individuals by TREATMENT status in the 
antidepressant experiment. The dashed 
vertical lines reflect the magnitude of the 
effect of TREATMENT if time is centered 
at the study’s beginning (0), midpoint 
(3.33), and endpoint (6.67).
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describe the trajectories’ behavior at that specific point in 
time. Changing the trajectory’s anchor changes the location of 
the focal comparison. Of course, you could conduct post hoc
tests of these contrasts (using methods of section 4.7) and 
obtain identical results. But (p.186)  when doing data analysis, 
it is sometimes easier to establish level-1 parameters that 
automatically yield readymade tests for hypotheses of greatest 
interest. We urge you to identify a scale for TIME that creates 
a level-1 submodel with directly interpretable parameters. 
Initial status often works well, but there are alternatives. The 
midpoint option is especially useful when total study duration
has intrinsic meaning; the endpoint option is especially useful 
when final status is of special concern.

Statistical considerations can also suggest the need to 
recenter TIME. As shown in table 5.10, a change in center can 
change the interpretation, and hence values, of selected 
random effects. Of particular note is the effect that a 
recentering can have on σ01, the covariance between a level-1 
model’s intercept and slope. Not only can a recentering affect 
this parameter’s magnitude, it can also affect its sign. In these 
data, the covariance between intercept and slope parameters 
moves from – 121.62 to 90.83 to 303.28 as the centering 
constant changes. These covariances (and their associated 
variances) imply correlation coefficients of –0.33, 0.25, and 
0.66, respectively. As you might imagine, were we to choose 
an even larger centering constant, outside the range of the 
data, it would be possible to find oneself specifying a model in 
which the correlation between parameters is close to 1.00. As 
Rogosa and Willett (1985) demonstrate, you can always alter 
the correlation between the level-1 growth parameters simply 
by changing the centering constant.

Understanding that the correlation between level-1 individual 
growth parameters can change through a change of centering 
constants has important analytic consequences. Recall that in 
section 5.2.2, we alluded to the possibility that you might 
encounter boundary constraints if you attempted to fit a model 
in which the correlation between intercept and slope is so high 
that iterative algorithms may not converge and you cannot 
find stable estimates. We now introduce the possibility that 
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the correlation between true intercept and true slope can be 
so high as to preclude model fitting. When this happens, 
recentering TIME can sometimes ameliorate your problem.

There is yet another reason you might recenter time: it can 
sometimes lead to a simpler level-1 model. For this to work, 
you must ask yourself: Is there a centering constant that might 
totally eliminate the need for an explicit intercept parameter? 
If so, you could decrease the number of parameters needed to 
effectively characterize the process under study. This is 
precisely what happened in the work of Huttenlocher, Haight, 
Bryk, Seltzer, and Lyons (1991). Using a sample of 22 infants 
and toddlers, the researchers had data on the size of 
children’s vocabularies at up to six measurement occasions 
between 12 and 26 months. Reasoning that there must be an 
age at which we expect children to have no words, (p.187)  the 

researchers centered TIME on several early values, such as 9, 
10, 11, and 12 months. In their analyses, they found that 
centering around age 12 months allowed them to eliminate the 
intercept parameter in their level-1 submodel, thereby 
dramatically simplifying their analyses.

We conclude by noting that there are other scales for TIME
that alter not only a level-1 submodel’s intercept but also its 
slope. It is possible, for example, to specify a model that uses 
neither a traditional intercept nor slope, but rather 
parameters representing initial and final status. To do so, you 
need to create two new temporal predictors, one to register 
each feature, and eliminate the stand-alone intercept term.

To fit a multilevel model for change in which the level-1 
individual growth parameters refer to initial and final status, 
we write:

(5.13a)

In the context of the antidepressant medication trial, in which the 
earliest measurement is at time 0 and the latest at time 6.67, we 
have:
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Although it may not appear so, this model is identical to the other 
linear growth models; it is just that its parameters have new 
interpretations. This is true despite the fact that equation 5.13a
contains no classical “intercept” term and TIME appears twice in 
two different predictors.
To see how the individual growth parameters in this model 
represent individual i’s initial and final status, substitute the 
minimum and maximum values for TIME (0 and 6.67) and 
simplify. When TIME = 0, we are describing someone’s initial 
status. At this moment, the second term of equation 5.13a falls 
out and the first term becomes π0i so that individual i’s initial 
status is π0i + εij Similarly, when TIME = 6.67, we are 
describing someone’s final status. At this moment, the first 
term of equation 5.13a falls out and the second term becomes 
π1i so that individual i’s final status is π1i + εij.

We can then specify standard level-2 submodels—for example:

(5.13b) 
and invoke standard normal theory assumptions about the 
residuals. When we fit this model to data, we find the same 
deviance statistic we found before—12,680.5—reinforcing the 
observation that this model is identical to the three linear models in 
table 5.10. And when it comes to (p.188)  the parameter estimates, 

notice the similarity between these and selected results in table
5.10:

The first model provides estimates of initial status in the control 
group (167.46) and the differential in initial status in the treatment 
group (−3.11). The second model provides estimates of final status 
in the control group (151.34) and the differential in final status in 
the treatment group (33.80).
This unusual parameterization allows you to address questions 
about initial and final status simultaneously. Simultaneous 
investigation of these questions is superior to a piecemeal 
approach based on separate analyses of the first and last 
wave. Not only do you save considerable time and effort, you 
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increase statistical power by using all the longitudinal data, 
even those collected at intermediate points in time.

Notes:

(1.) A fundamental advantage of the multilevel model for 
change is that it can be used under all three missingness 
assumptions. This stands in contrast to other longitudinal 
methods (including the generalized estimating equations 
(GEE) approach of Diggle, Liang, and Zeger (1994), which 
requires the MCAR assumption).

(2.) The terms defined, ancillary, and internal were first used 
by Kalbfleisch and Prentice (1980). The fourth category—
contextual—builds upon ideas in Blossfeld and Rohwer (1995) 
and Lancaster (1990).
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Things have changed.

—Bob Dylan

All the multilevel models for change presented so far assume 
that individual growth is smooth and linear. Yet individual 
change can also be discontinuous or nonlinear. Patients’ 
perceptions of their psychological well-being may abruptly 
shift when psychiatrists intervene and change their 
medications. Initial decreases in employee self-efficacy may 
gradually abate as new hires develop confidence with 
experience on the job.

This is not the first time we have confronted such possibilities. 
In the early intervention study of chapter 3, the trajectory of 
the child’s cognitive development was nonlinear between 
infancy and age 12. To move forward and fit a model to these 
data, we focused on a narrower temporal period—the year of 
life between 12 and 24 months—in which the linearity 
assumption was tenable. In chapter 4, when changes in 
adolescent alcohol use seemed nonlinear, we transformed the 
outcome (and one of the predictors). Although the researchers 
used a nine-point scale to assess alcohol consumption, we 
analyzed the square root of scores on this scale, which yielded 
approximately linear change trajectories.

In this chapter, we introduce strategies for fitting models in 
which individual change is explicitly discontinuous or 
nonlinear. Rather than view these patterns as inconveniences, 
we treat them as substantively compelling opportunities. In 
doing so, we broaden our questions about the nature of 
change beyond the basic concepts of initial status and rate of 
change to a consideration of acceleration, deceleration, 
turning points, shifts, and asymptotes. The strategies that we 
use fall into two broad classes. Empirical strategies that let the 
“data speak for themselves.” Under this approach, you inspect 
observed growth records systematically and identify a 
transformation of the outcome, or of TIME, that linearizes the

(p.190)  individual change trajectory. Unfortunately, this 
approach can lead to interpretive difficulties, especially if it 
involves esoteric transformations or higher order polynomials. 
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Under rational strategies, on the other hand, you use theory to 
hypothesize a substantively meaningful functional form for the 
individual change trajectory. Although rational strategies 
generally yield clearer interpretations, their dependence on 
good theory makes them somewhat more difficult to develop 
and apply.

We begin, in section 6.1, by describing ways of incorporating 
abrupt discontinuities into the individual change trajectory. 
This approach is especially useful when discrete shocks or 
time-limited treatments affect the life course. In section 6.2, 
we show how transformation of either the outcome or TIME
can lead to a multilevel model for linear change based on the 
transformed variable(s). In section 6.3, we extend this basic 
idea by specifying trajectories that are polynomial functions of
TIME. While admittedly atheoretical, we show that you can 
obtain curvilinear trajectories of almost any level of 
complexity just by adding higher order terms to a polynomial 
growth function. We conclude, in section 6.4, by surveying 
several models for individual change in which the outcome is 
an explicit nonlinear function of the growth parameters. This 
includes well-known trajectories such as the logistic and 
negative exponential growth curves, and others whose origins 
lie in theoretical work on expected patterns of change in the 
social, biological, and physical sciences.

6.1 Discontinuous Individual Change

Not all individual change trajectories are continuous functions 
of time. When analyzing the wage data for high school 
dropouts introduced in chapter 5, Murnane and colleagues 
(1999) asked whether the (log) wage trajectories might fail to 
remain the smooth functions of work experience postulated in 
section 5.2. In particular, they hypothesized that dropouts who 
obtain a GED (a General Education Development diploma, an 
alternative certificate awarded those who pass a high school 
equivalency examination) might command higher salaries. If 
so, their wage trajectories could exhibit a discontinuity—a 
shift in elevation and/or slope—upon GED receipt.

If you have reason to believe that individual change 
trajectories might shift in elevation and/or slope, your level-1 
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model should reflect this hypothesis. Doing so allows you to 
test ideas about how the trajectory’s shape might change over 
time: here, how a dropout’s wage trajectory might change not 
just with work experience but also upon GED receipt. This 
simple notion—that individual trajectories might suddenly shift 
in (p.191)  elevation or slope for identifiable reasons—has 
many applications. Psychologists following preschoolers into 
an early intervention program might test whether service 
provision produces a discontinuity in development. 
Organizational researchers following employees assigned to 
different work groups might assess whether contextual change 
produces a discontinuity in productivity.

To postulate a discontinuous individual change trajectory, you 
need to know not just why the shift might occur but also when. 
This is because your level-1 individual growth model must 
include one (or more) time-varying predictor(s) that specify 
whether and, if so, when each person experiences the 
hypothesized shift. In some studies, the precipitating event 
occurs at the same exact moment for everyone. When tracking 
students’ test scores between adjacent grades, for example, all 
students take a summer break during the same months. If test 
scores decline when students are out of school, we would 
expect a discontinuity during vacation periods. In other 
studies, the precipitating event occurs at different times for 
different people and some participants may not experience the 
event at all. When tracking adolescent girls through 
menarche, for example, some will start their periods before 
data collection, others will do so during data collection, and 
still others may not do so for years to come. This suggests a 
model with a person-specific discontinuity, one that represents 
the time-varying menarcheal status of each sample member.

In this section, we discuss how to conceptualize, parameterize, 
and select among discontinuous individual change trajectories. 
We begin, in section 6.1.1, by outlining an array of options, 
each displaying a different discontinuity. In section 6.1.2, we 
offer strategies for choosing among them. We conclude, in 
section 6.1.3, by extending these ideas to a wider set of 
alternative trajectories. In our discussion, we emphasize the 
general case of person-specific discontinuities. At the end of 
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the section, we apply these ideas to data sets in which the 
discontinuity occurs at a common point in time.

6.1.1 Alternative Discontinuous Level-1 Models for Change

To postulate a discontinuous level-1 individual growth model, 
you must first decide on its functional form. Although you can 
begin empirically, we prefer to focus on substance and the 
longitudinal process that gave rise to the data. What kind of 
discontinuity might the precipitating event create? What 
would a plausible level-1 trajectory look like? Before 
parameterizing models and constructing variables, we suggest 
that you: (1) take pen and paper and sketch some options; and 
(2) articulate—in (p.192)

Table 6.1: Excerpts from the person-period data 
set for the high school dropout wage study

ID LNW EXPER GED POSTEXP GED by EXPER

206 2.028 1.874 0 0 0

206 2.297 2.814 0 0 0

206 2.482 4.314 0 0 0

2365 1.782 0.660 0 0 0

2365 1.763 1.679 0 0 0

2365 1.710 2.737 0 0 0

2365 1.736 3.679 0 0 0

2365 2.192 4.679 1 0 4.679

2365 2.042 5.718 1 1.038 5.718

2365 2.320 6.718 1 2.038 6.718

2365 2.665 7.872 1 3.192 7.872

2365 2.418 9.083 1 4.404 9.083

2365 2.389 10.045 1 5.365 10.045

2365 2.485 11.122 1 6.442 11.122

2365 2.445 12.045 1 7.365 12.045

4384 2.859 0.096 0 0 0
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ID LNW EXPER GED POSTEXP GED by EXPER

4384 1.532 1.039 0 0 0

4384 1.590 1.726 1 0 1.726

4384 1.969 3.128 1 1.402 3.128

4384 1.684 4.282 1 2.556 4.282

4384 2.625 5.724 1 3.998 5.724

4384 2.583 6.024 1 4.298 6.024

words, not equations—the rationale for each. We recommend these 
steps because, as we demonstrate, the easiest models to specify 
may not display the type of discontinuity you expect to find.
We illustrate this approach using the high school dropout 
wage data of sections 5.2.1 and 5.3.3. There, our level-1 
individual growth model expressed the natural logarithm of 
individual i’s wages at time j (LNW ij or, more generally, Yij) as 
a linear function of work experience since labor force entry 
(EXPER ij):

(6.1a) 

where  We also identified three additional 
predictors deserving inclusion: highest grade completed (HGC – 9), 
race (BLACK), and local area unemployment rate (UERATE – 7). To 
focus on specification of a discontinuous level-1 model, we have 
temporarily set these latter predictors aside. When we fit the 
postulated alternatives to data (in section 6.1.2), we will quickly 
reintroduce them.
Table 6.1 updates the person-period data set excerpted in 
table 5.3. (p.193)
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Figure 6.1.  Comparing a linear change 
trajectory with three potential 
discontinuous change trajectories. Model 
A is a linear change trajectory, Model B 
postulates a shift in level but not slope, 
Model C postulates a shift in slope but 
not level, Model D postulates a shift in 
both level and slope.

Dropout 206 
appears in the 
earlier table; 
dropouts 2365 
and 4384 are 
new. The time-
varying 
predictor, GED
ij, indicates 
whether the 
record for 
individual i at 
time j is “pre” 
or “post” GED 
receipt. 
Because 
pursuit of a 
GED is a 
personal 
decision, many 
high school 
dropouts do 
not receive it; 
those who do, 
earn it at 
different times. 
In this sample, 
581 dropouts 
did not receive 
a GED; among 
the remaining 
307, the timing
of GED attainment varies. Dropout 206 did not earn a GED during 
data collection; his three values of this predictor remain at 0. 
Dropout 2365 received a GED 4.679 years after labor-force entry; 
his values of GED begin at 0 (for EXPER of 0.660, 1.679, 2.737, and 
3.679) and change to 1 thereafter. Dropout 4384 received his GED 
1.726 years after labor-force entry; his first two values of GED are 0 
and his later ones are 1. We will soon describe the remaining 
predictors.
How might GED receipt affect individual i’s wage trajectory? 
Figure 6.1 offers four plausible alternatives. The simplest 
answer—not at all—leads to the linear trajectory (A) with no 

Figure 6.1.  Comparing a linear change 
trajectory with three potential 
discontinuous change trajectories. Model 
A is a linear change trajectory, Model B 
postulates a shift in level but not slope, 
Model C postulates a shift in slope but 
not level, Model D postulates a shift in 
both level and slope.
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discontinuity. If GED has an effect, it may take different forms. 
Upon receipt of a GED, we might find:

• An immediate shift in elevation, but no shift in slope: In 
trajectory B, individual i’s wages increase abruptly upon 
GED receipt, but his subsequent rate of change unaffected. 
This means that the elevation of his level-1 trajectory 
jumps, but its slope in the pre- and post-GED epochs remain 
the same.

(p.194)

• An immediate shift in slope, but no shift in elevation: In 
trajectory C, individual i’s wages remain stable upon GED 
receipt, but his subsequent rate of change increases. This 
means that the elevation of his level-1 trajectory is no 
higher at GED receipt, but its slope in the pre- and post-
GED epochs differs.

• Immediate shifts in both elevation and slope: In trajectory 
D, individual i’s wages change in two ways as a result of 
GED receipt: they abruptly rise and their subsequent rate of 
change increases. This means that both the elevation and 
the slope of the level-1 trajectory differ pre- and post-GED 
receipt.

Even if we assume linear segments pre- and post-GED, these 
options are just the beginning. In sketching these trajectories, for 
example, we do not specify whether the magnitude of any shift (in 
elevation or slope) differs by the timing of GED attainment. If 
timing is irrelevant, we would specify a model in which the 
magnitude of any shift is constant regardless of when the GED was 
earned. But might the effect of GED attainment decline over time, 
if employers use work experience, not education, to signal 
background competence? This would lead to a growth model in 
which the magnitude of any GED shift diminishes over time.
As this discussion suggests, the array of possible 
discontinuous trajectories is vast. We do not attempt to 
catalogue them all, focusing instead on the major options in 
figure 6.1. By carefully walking through these alternatives, we 
hope to illustrate the general principles with sufficient clarity 
so that you can apply these ideas—with appropriate 
customization—to your own research.
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Including a Discontinuity in Elevation, not Slope

We begin with the simplest type of discontinuity—one that 
immediately affects a trajectory’s elevation but not its slope. 
In trajectory B, GED receipt immediately “bumps up” 
individual i’s wage trajectory, but has no effect on his 
subsequent rate of change. We can postulate a level-1 
individual growth model of this type by adding the time-
varying predictor GEDij to the level-1 linear-change model in 
equation 6.1:

(6.2) 
Because GED ij distinguishes the pre- and post-GED epochs for
individual i, it permits the elevation of his trajectory to differ upon 
GED receipt. The individual growth parameter π 2i captures the 
magnitude of this shift. Because GED takes on only two values—0 
and 1—this magnitude is identical regardless of when the 
certificate is earned.
To verify that this growth model demonstrates the postulated 
discontinuity, (p.195)  substitute the two values of GED ij. 
Before individual i passes the exam, GED ij = 0, yielding the 
trajectory’s pre-GED portion: Yij = π 0i + π1i EXPER ij + εij. If, 
and when, individual i passes the exam, GED ij becomes 1, 
yielding its post-GED portion:

We have two line segments with identical slopes, π 1i, but different 
intercepts: π0i, pre-GED; (π0i + π2i), post-GED. This confirms that 
the individual growth parameter associated with GED ij, π2i, 
describes the magnitude of the hypothesized shift in elevation at 
GED receipt.
The top left panel of figure 6.2 plots a hypothetical true level-1 
trajectory for a dropout from this population who received his 
GED three years after labor-force entry. To facilitate 
interpretation, the plot also includes a dashed line segment 
that continues the pre-GED portion of the trajectory into the 
post-GED era. Known as a counterfactual, this line segment 
illustrates what his wage trajectory would have been had he 
not earned his GED in year 3. Comparison of his post-GED 
trajectory and his counter-factual highlights the model’s 
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discontinuity. Although counterfactuals may appear 
unnecessary in simple cases like this, we will soon 
demonstrate their importance when working with more 
complex models.

Including a Discontinuity in Slope, not Elevation

To specify a level-1 individual growth model that includes a 
discontinuity in slope, not elevation, you need a different time-
varying predictor. Unlike GED, this predictor must clock the 
passage of time (like EXPER). But unlike EXPER, it must do so 
within only one of the two epochs (pre- or post-GED receipt). 
Adding a second temporal predictor allows each individual 
change trajectory to have two distinct slopes: one before the 
hypothesized discontinuity and another after.

Construction of a suitable time-varying predictor to register 
the desired discontinuity is often the hardest part of model 
specification. To create a trajectory that differs only in slope, 
not elevation, we use POSTEXP ij, which clocks labor force 
participation from the day of GED attainment (see table 6.1). 
Before individual i earns a GED, POSTEXP is 0. On the day a 
GED is earned, POSTEXP remains at 0. On the very next day, 
its values begin to climb, traveling in concert with the primary 
temporal predictor, here EXPER.

To clarify how POSTEXP operates, and its crucial relationship 
to EXPER, examine the data for dropout 2365. His first five 
records reveal (p.196)
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Figure 6.2.  Alternative discontinuous 
change trajectories for the high school 
dropout wage data.

(p.197)  that 
he earned his 
GED 4.679 
years after 
labor-force 
entry (the 
value of EXPER
in the record 
when GED
switches from 
0 to 1). In the 
following 
record, after 
5.718 years,
POSTEXP = 
1.038, the 
length of time 
since GED 
receipt. A 
fundamental 
feature of
POSTEXP—
indeed, any 
temporal 
predictor 
designed to 
register a shift 
in slope—is 
that the difference between each non-zero pair of consecutive 
values must be numerically identical to the difference between the 
corresponding pair of values for the basic temporal predictor (here,
EXPER). To verify this behavior, examine the remaining person-
period records for dropout 2365: the first pair differs by 1, the 
following by 1.154; the final by 0.923. This identical cadence 
ensures that these predictors move in lockstep, a feature we soon 
exploit. Notice, too, that because the timing of GED attainment is 
person-specific, the cadence of POSTEXP ij is also person-specific. 
For dropout 4384, for example, POSTEXP remains at 0 until his 
fourth record, when EXPER is 3.138 and POSTEXP is 1.402 (a 
difference of 1.726, the time when he earned his GED). If someone 
does not earn a GED, such as dropout 206, POSTEXP ij remains at 0 
for every person-period record.
To postulate a level-1 individual growth trajectory with a 
discontinuity in slope but not level, we add this second 
temporal predictor to the basic model in equation 6.1:

Figure 6.2.  Alternative discontinuous 
change trajectories for the high school 
dropout wage data.
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(6.3) 
To verify that this growth model displays the postulated 
discontinuity, we again divide the trajectory into its two 
components. Before GED receipt, POSTEXP ij = 0, which yields the 
familiar linear-change trajectory—Pre-GED: Yij = π0i + π1i EXPER ij
+ εij. After GED receipt, we cannot eliminate POSTEXP ij because it 
takes on many different values. Instead, we find another equation 
with the same intercept as the pre-GED segment but two “slopes”—
Post-GED: Y ij = π0i + π1i EXPER ij +π3i POSTEXP ij + εij. Each slope 
assesses the effect of work experience, but it does so from a 
different origin: (1) π1i captures the effects of total work experience 
(measured from labor force entry); and (2) π3i captures the added
effect of post-GED work experience (measured from GED receipt).
Key to understanding how these two slopes reflect the 
postulated discontinuity is the recognition that once someone 
earns a GED, his values of both EXPER and POSTEXP increase 
at the same exact rate (even though their values differ). A one-
unit increase in one predictor parallels a one-unit increase in 
the other. This behavior, a consequence of our variable 
construction strategy, simplifies interpretation of the 
associated parameters. Before GED receipt, the trajectory’s 
slope—which assesses the difference in log wages for a one-
unit difference in time—is π1i. After GED (p.198)  receipt, we 

can add these slopes together because a one-unit increase in
EXPER is accompanied by a one-unit increase in POSTEXP. As 
a result, the post-GED trajectory has a slope of (π1i + π3i).

The important role of π3i is highlighted in the top right panel 
of figure 6.2, which presents a hypothetical true level-1 
change trajectory for a dropout who earned his GED three 
years after labor-force entry. As before, the dashed line 
represents the counterfactual—his postulated wage trajectory 
had he not earned a GED. π3i does not represent his slope 
after GED attainment but rather the increment (or decrement) 
to what his slope would have been had he not earned his GED. 
If π3i is 0, the slopes are the same; if π3i is non-zero, the slopes 
differ.

Including Discontinuities in Both Elevation and Slope

We now postulate a level-1 individual growth model with 
discontinuities in both elevation and slope. But instead of 
offering one approach, we offer two. We begin by including all 
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three predictors: EXPER, GED, and POSTEXP. We then specify 
a second growth model that includes EXPER, GED, and their 
statistical interaction (based upon ideas introduced in section 
5.3.2). Although it may not be obvious, these two approaches, 
which appear similar, are not equivalent!

Let us begin by adding GED and POSTEXP to the basic level-1 
individual growth model:

(6.4)

Once again, interpretation is clearer if we parse the model into its 
pre- and post-GED components. Before GED receipt, both GED and
POSTEXP are 0, and we have the familiar simple linear-change 
trajectory:

After degree attainment, GED becomes 1 and POSTEXP begins its 
steady climb in lockstep with EXPER. This yields a post-GED 
trajectory with a different intercept and two “slopes”:

So unlike equation 6.3, which includes EXPER and POSTEXP and 
not GED, equation 6.4 describes a population in which the 
components of individual i’s wage trajectory differ in both intercept 
and slope. As before, π1i captures the effect of total work 
experience (EXPER) and π3i captures the incremental effect of post-
GED work experience (POSTEXP). With (p.199)  regard to the 
intercepts, however, π0i now assesses individual i’s log wages on 
his first day of labor force entry and π2i assesses how much higher 
(or lower) his wages immediately rise on GED receipt.
The bottom left panel of figure 6.2 presents an illustrative 
change trajectory for a hypothetical dropout who earned his 
GED three years after labor-force entry. Before then, both
GED and POSTEXP are 0, yielding a line with slope π1i. Once 
he earns his GED, two things happen: GED changes from 0 to 
1 and POSTEXP starts its climb in lockstep with EXPER. The 
change in GED creates the vertical shift in year 3; the 
additional annual change in POSTEXP creates the differential 
in slope. We include two counterfactuals in this display. The 
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bottom dashed line describes what his post-GED trajectory 
would look like if GED receipt had no effect. The upper dashed 
line describes what his post-GED trajectory would look like if 
GED receipt affected his intercept but not slope. (Although 
there is a third counterfactual—what his post-GED trajectory 
would look like if GED receipt affected only his slope—we do 
not display this option.)

We now present an alternative approach for postulating a 
similar—but fundamentally different—individual growth 
model. Underlying this approach is the observation that some 
people might view GED and POSTEXP as nothing more than 
ordinary time-varying predictors. Although we understand this 
perspective, we believe that time-varying predictors like these, 
which may fundamentally alter the shape of the level-1 change 
trajectory, are different and deserve special attention.1

Nevertheless, how would we include GED in our level-1 
individual growth model if it were just an “ordinary” time-
varying predictor? In addition to the main effects in equation
6.2, we might explore interactions among the level-1 
predictors (as in section 5.3.2). After all, including an 
interaction between GED and TIME would generate change 
trajectories with varying intercepts and slopes—the very 
properties we seek. We therefore offer the following level-1 
individual growth model:

(6.5)

To understand how this model differs from its cousin in equation
6.4, let us substitute in the two values of GED and compute its 
separate segments. Pre-GED we have:

Post-GED we have:
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(p.200)  The intercepts of these two line segments differ by π2i, the 
parameter associated with GED. The slopes differ by π3i, the 
parameter associated with the GED by EXPER interaction.
The bottom right panel of figure 6.2 presents an illustrative 
trajectory for a hypothetical dropout who earned his GED 
three years after labor-force entry. Comparing the two bottom 
panels of figure 6.2 reveals some similarities between models. 
In both, π0i, assesses individual i’s log wages at labor-force 
entry and π1i assesses his annual growth in log wages before 
GED attainment.

But when it comes to the other parameters, there are some 
striking differences. First examine π3i, the parameter 
associated with POSTEXP in equation 6.4 and the GED by
EXPER interaction in equation 6.5. Oddly, even though this 
parameter is associated with different predictors, its 
interpretation is the same: it represents the increment (or 
decrement) to the slope in the post-GED epoch. In other 
words, π3i consistently measures the effect of GED attainment 
on individual i’s post-GED slope (even though it is associated 
with a different predictor in each model).

Next examine π2i, the parameter associated with GED. Here 
we observe the opposite behavior. Even though this parameter 
is associated with the same predictor in each model, it does 
not represent the same quantity! In equation 6.4, π2i assesses 
the magnitude of the instantaneous increment (or decrement) 
associated with GED attainment; in equation 6.5, π2i assesses 
the magnitude of the increment (or decrement) associated 
with GED attainment at a particular—and not particularly 
meaningful—moment: the day of labor force entry!

These interpretative differences cannot be resolved by 
rescaling the temporal predictor, EXPER. This is because 
these growth models differ in fundamental ways. The unique 
features of the interaction model are that it:

• Allows the magnitude of the instantaneous GED effect to 
vary over time. Although the illustration in figure 6.2
depicts the elevation differential only for someone who 
earns his GED in year 3, the model allows this differential 
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to vary with experience (over time). As shown in the figure, 
the general form of the differential is: Elevation differential 
on GED receipt: π2i + π3i EXPER ij. In some situations, you 
may find a “jig” with a variable magnitude appealing; in 
others, you may not.

• Does not include a single explicit parameter that assesses 
the instantaneous effect of GED attainment. Although it is 
easy to estimate the GED effect at different values of total 
work experience (using the equation above), the model does 
not focus on this issue. This (p.201)  realization has 
important implications when specifying level-2 submodels 
because π2i does not assess the effect of GED attainment 
for individual i. Instead it assesses what the effect of GED 
attainment would be were individual i to have earned his 
GED on the day of labor-force entry.

These differences are more than cosmetic. Although both models 
include discontinuities in elevation and slope, they reflect 
fundamentally different assumptions about the behavior of the 
wage trajectories.
Which model better represents discontinuities in both 
elevation and slope? Not surprisingly, this question has no 
universal answer. As usual, theory should be your foremost 
guide. Should the instantaneous effect of GED receipt be 
constant or time-varying? Even when competing theories 
support each approach—as they do here—we still focus on 
substantive considerations. As we need empirical evidence to 
move the discussion forward, let us now postulate the 
associated level-2 submodels and fit these discontinuous 
trajectories to our wage data.

6.1.2 Selecting among the Alternative Discontinuous Models

Which of these hypothesized discontinuous change trajectories 
best suits our wage data? To answer this question, we fit a 
taxonomy of multilevel models for change. Because we have 
previously uncovered important effects of level-1 predictors
EXPER and (UERATE – 7) and level-2 predictors (HGC – 9) and
BLACK in table 5.8 and section 5.3.3, we begin with a more 
elaborate model for change than is usual.

Our “baseline” level-1 individual growth model contains the 
main effects of predictors EXPER and (UERATE – 7) at level-1:
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(6.6a)

and the effects of (HGC – 9) and BLACK on initial status and rate of 
change at level-2:

(6.6b) 
where:
(6.6c)

Notice that as in section 5.3.3, we fix the effect of (UERATE– 7) at 
level-2.

(p.202) Table 6.2 briefly summarizes a taxonomy of 
discontinuous multilevel models for change fitted to the wage 
data. Each row presents a different multilevel model (labeled 
alphabetically in column 1). The table lists the fixed and 
random effects present in each model (columns 2 and 3), 
counts the number of fixed effects and variance components 
included (columns 4 and 5), lists the model deviance statistic 
(column 6), and provides the difference in deviance between 
the current model and a comparison model, along with the 
degrees of freedom associated with the test of difference in fit 
(column 7). Because we are comparing multilevel models for 
change that differ in both fixed effects and variance 
components, we use full ML for model fitting. The first model 
listed, Model A, is the “baseline.” As you can see from both 
equation 6.6 and the table, the model contains five fixed 
effects: (1) the intercept, γ00, (2) the effect of (HGC – 9) on 
initial status, γ01, (3) the main effect of EXPER, γ10, (4) the 
effect of BLACK on rate of change, γ12 (which shows up in the 
table in its “composite model” formulation as an interaction 
between BLACK and EXPER), and (5) the main effect of 
(UERATE – 7), γ20. Model A also contains the four variance 
components listed in equation 6.6c: (1) the level-1 residual 
variance, (2) the level-2 variance of initial status, , (3) the 
level-2 variance of rate of change, , and (4) the level-2 
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covariance of initial status and rate of change, σ01. Model A’s 
deviance statistic is 4830.5 with a total of nine parameters.

Each subsequent model in the table builds systematically upon 
this baseline. Model B adds a discontinuity in elevation (but 
not slope) by including fixed and random effects for GED. 
Comparing its deviance statistic to that of Model A (last 
column) reveals a difference of 25.0 (p < .001). This suggests 
that the level-1 log wage trajectory does indeed display a 
discontinuity in elevation upon GED receipt. To determine 
whether the magnitude of this discontinuity varies across 
individuals, Model C excludes the three variance/covariance 
components associated with GED in Model B. Because its fit is 
significantly worse (p < 0.05), we retain those terms.

Models D and E explore a discontinuity in slope, not elevation. 
Although Model D, which includes both fixed and random 
effects for POSTEXP, represents a significant improvement 
over Model A (p < .01), Model E, which eliminates the 
associated variance component, fits nearly as well (p > .25). 
This suggests we might easily remove the variance component 
for POSTEXP from the model. Before doing so, however, let us 
fit models with discontinuities in both elevation and slope 
because we will soon find that once the main effect of GED is 
included, the variance component associated with POSTEXP
differs.

(p.203)
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Table 6.2: Comparison of fitting alternative discontinuous change trajectories to the high school dropout wage 
data (n = 888)

n parameters for …

Model Fixed effects Variance components (in addition to ) Fixed 
effects

Variance 
components

Deviance Comparison 
model: 
ΔDeviance (df)

A Intercept, EXPER, 
HGC – 9, BLACK ×
EXPER, UERATE – 7

Intercept, EXPER 5 4 4830.5 —

B Model A + GED Intercept, EXPER, GED 6 7 4805.5 A: 25.0*** (4)

C Model B Model B w/o GED 6 4 4818.3 B: 12.8** (3)

D Model A + POSTEXP Intercept, EXPER, POSTEXP 6 7 4817.4 A: 13.1** (4)

E Model D Model D w/o POSTEXP 6 4 4820.7 D: 3.3 (ns) (3)

F Model A + GED and
POSTEXP

Intercept, EXPER, GED, POSTEXP 7 11 4789.4 B: 16.2** (5)

D: 28.1*** (5)

G Model F Model F w/o POSTEXP 7 7 4802.7 F: 13.3** (4)

H Model F Model F w/o GED 7 7 4812.6 F: 23.3*** (4)
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n parameters for …

Model Fixed effects Variance components (in addition to ) Fixed 
effects

Variance 
components

Deviance Comparison 
model: 
ΔDeviance (df)

I Model A + GED
and GED × EXPER

Intercept, EXPER, GED, GED × EXPER 7 11 4787.0 B: 18.5*** (5)

J Model I Model I w/o GED × EXPER 7 7 4804.6 I: 17.6** (4)

~p < .10; * p < .05; ** p < .01; *** p < .001.

Model A is identical to linear trajectory shown as Model A of table 5.8. Models B through J add discontinuities in elevation (B and 
C), rate of change (D and E), or both (F through J) at the moment of GED attainment. Parameter estimates and standard errors for 
Model F are tabulated in table 6.3.

Note: Full ML, SAS Proc Mixed.
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(p.204) Model F includes discontinuities in both elevation 

(through GED) and slope (through POSTEXP), each entered as 
fixed effects and variance components. To evaluate whether 
each predictor—on its own—merits inclusion, we make two 
comparisons, with: (1) Model B, which includes GED, so we 
can evaluate the effect of POSTEXP; and (2) Model D, which 
includes POSTEXP, so we can evaluate the effect of GED. In 
each case, we find evidence to support the predictor’s 
inclusion, suggesting the need for a level-1 trajectory that 
includes both types of discontinuity.

Models G and H investigate whether we can simplify Model F 
by eliminating one or both variance components for POSTEXP. 
Given that Model E suggested that the variance component for
POSTEXP might be unnecessary, these comparisons are 
especially important. Because each test rejects (at the .01 
level for POSTEXP and the .001 level for GED), we continue 
with Model F, which includes variance components for both
GED and POSTEXP.

Models I and J also include discontinuities in elevation and 
slope but they allow the magnitude of the GED differential to 
vary over time. Comparison with the relevant main effects 
model, B, confirms the need for the interaction. Comparison 
with Model J, which removes the interaction term’s random 
effect, confirms the need for the associated variance 
components. Can we use the deviance statistic for this model, 
which is slightly smaller than Model F (4787.0 vs. 4789.3), to 
conclude that its fit is superior? However tempting this may 
be, we cannot do so as one model is not nested in the other. 
Although the associated AIC and BIC statistics would give a 
trivial nod to Model I (as the number of parameters remains 
unchanged), we share the original researchers’ preference for 
Model F. This decision rests upon two considerations: (1) 
there is no reason to expect that the elevation differential 
associated with GED attainment should vary over time; and (2) 
this specification leads to level-2 models with greater 
substantive interest.

Before examining Model F in depth, we note that we fit six 
other multilevel models for change not shown in table 6.2. 



Modeling Discontinuous and Nonlinear Change

Page 22 of 72

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Each explored the possibility that one of the discontinuities—
in either elevation or slope—was impacted by the substantive 
predictors (HGC– 9), BLACK, or (UERATE – 7). No effects were 
found. Although this may suggest an equitable society, it also 
indicates that GED attainment does not allow dropouts who 
leave school early, live in areas of high unemployment, or are 
Black to catch up with their peers.

Detailed results for Model F appear in table 6.3. To conserve 
space, we present estimates of only the fixed effects and 
variance components (not the associated covariance 
components). Figure 6.3 presents trajectories for four 
prototypical dropouts who obtained the GED after three years:

(p.205)

Table 6.3: Results of fitting Model F of table 6.2, 
a trajectory with discontinuities in elevation and 
slope to the high school dropout wage data (n = 
888)

Parameter Estimate

Fixed Effects

Composite Intercept γ00 1.7386***

model (0.0119)

(HGC– 9) on 
initial status

γ01 0.0390***

(0.0062)

(UERATE–7) γ20 −0.0117***

(0.0018)

EXPER (rate of 
change)

γ10 0.0415***

(0.0028)

BLACK on rate 
of change

γ12 −0.0196***

(0.0045)

GED γ30 0.0409~
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Parameter Estimate

(0.0220)

POSTEXP γ40 0.0094~

(0.0055)

Variance Components

Level-1: within-person 0.0939***

Level-2: In initial status 0.0413***

In rate of 
change

0.0014***

In GED
discontinuity

0.0163***

In POSTEXP 0.0034**

Goodness-of-fit

Deviance 4789.4

AIC 4825.5

BIC 4911.6

~p < .10; * p < .05; ** p < .01; *** p < .001.

Note: Full ML, SAS Proc Mixed. Also note that all relevant 
covariance components were estimated (even though they 
are not displayed to conserve space).

Blacks and Whites/Latinos, who dropped out in 9th grade or 12th 
grade, and who live in communities where local area 
unemployment rates remain stable at 7%. On labor-force entry, a 
White male who dropped out in 9th grade and who lives in a 
community with an unemployment rate of 7% is expected to earn 
an hourly log wage of 1.7386 ($5.69 in constant 1990 dollars). 
Before GED attainment, log wages rise annually by 0.0415 (4.2% in 
raw wages). Upon GED receipt, log wages rise immediately by 
0.0409 (4.2%) and then annually by 0.0415 + 0.0094 = 0.0509 
(5.2%). Because the GED and POSTEXP fixed effects are not 
significantly different from 0 at conventional levels, the GED 
increment and the slope pre- and post-GED receipt may be no 
different for the average individual. (p.206)  



Modeling Discontinuous and Nonlinear Change

Page 24 of 72

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Figure 6.3.  Displaying the results of 
fitting a discontinuous change trajectory 
to the high school dropout wage data. 
Log wage trajectories from table 6.3 for 
four prototypical dropouts—Blacks and 
Whites/Latinos who dropped out in 9th 
and 12th grades—each of whom earned a 
GED after three years in the labor force.

We retain both 
terms, 
however, 
because their 
associated 
random effects
are statistically 
significant, 
indicating that 
for at least 
some people, 
GED receipt 
has either (or 
both) an 
immediate 
impact and a 
subsequent 
effect on wage 
growth. The 
effects of the 
three 
substantive 
predictors—
local area 
unemployment 
rate, race, and 
highest grade 
completed—
remain similar 
to those found 
in chapter 5.

6.1.3 Further Extensions of the Discontinuous Growth Model

It is easy to generalize these strategies to models with other 
discontinuities. Quality of theory and richness of data usually 
present greater obstacles to model development than do 
computer algorithms and algebraic constraints. You can parse 
each person’s trajectory into discrete epochs by adding 
multiple discontinuities. You can include a discontinuity that 
occurs at a common point in time for everyone under study. 
Rather than catalogue the many possibilities, here we describe 
two simple extensions.

Figure 6.3.  Displaying the results of 
fitting a discontinuous change trajectory 
to the high school dropout wage data. 
Log wage trajectories from table 6.3 for 
four prototypical dropouts—Blacks and 
Whites/Latinos who dropped out in 9th 
and 12th grades—each of whom earned a 
GED after three years in the labor force.
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Dividing TIME into Multiple Phases

You can divide TIME into multiple epochs, allowing the 
trajectories to differ in elevation (and perhaps slope) during 
each. Suppose, for example, that some GED recipients 
subsequently graduated from community college. If we 
hypothesized a constant effect of work experience over time, 
we would add another time-varying predictor, CC, to the 
level-1 individual growth model: Yij = π0i+ π1i EXPER ij + π2i

GED ij + π3i CC ij + εij. Taken together, GED and CC
create three distinct phases: one pre-GED and pre-CC, one 
post-GED but pre-CC, and a third post-GED and (p.207)  post-
CC. π2i assesses the immediate shift associated with GED 
receipt; π3i assesses the immediate shift upon community 
college graduation.

You can also allow temporal slopes to differ across epochs. 
Researchers who conduct phased randomized experiments 
following individuals into, and out of, treatments can use such 
models. Consider a three-phase longitudinal study: during the
baseline period, patients take their usual medication; during 
the experimental phase, they take an alternative; during
follow-up, they return to the original drug. This “regression 
discontinuity” design leads to a level-1 individual growth 
trajectory with multiple discontinuities. If symptoms are linear 
with TIME, but elevation and slope differ with medication 
change, you might postulate that:

(6.7) 
The two epoch dummies, PHASE1 and PHASE2, distinguish the two 
experimental phases from the baseline; the two additional temporal 
predictors, TIMEP1 and TIMEP2, measure the additional passage of 
time during subsequent phases. These “phase” and “temporal” 
predictors function like GED and POSTEXP in the high school 
dropout data: PHASE1 and TIMEP1 allow for discontinuities in 
elevation and slope during phase 1; PHASE2 and TIMEP2 allow for 
additional discontinuities in phase 2. By specifying level-2 models 
and estimating fixed effects, you can address questions about the 
treatment’s immediate (π2i, π3i) and long-term (π4i, π5i) effects.

Phased models like equation 6.7 are useful in naturalistic 
studies if you expect people to change in a step- or stage-like 
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fashion. Psychologists often hypothesize such patterns when 
studying cognitive, affective, and moral development. With 
little adjustment, equation 6.7 could represent development 
across three contiguous cognitive or moral stages. 
Precipitating events can also lead you to divide time into 
discrete periods: transitions across grades and schools, entry 
or exit into prison, the deaths of parents or spouses. Although 
the nature of the discontinuity will be domain specific, the 
strategies for model specification are straightforward 
extensions of the principles above.

Discontinuities at Common Points in Time

In some data sets, the timing of the discontinuity will not be 
person-specific; instead, everyone will experience the 
hypothesized transition at a common point in time. You can 
hypothesize a similar discontinuous change trajectory for such 
data sets by applying the strategies outlined above.

(p.208) Suppose, for example, we assessed students three 
times a year (fall, winter, and spring) for each of three grades 
(third, fourth, and fifth). Rather than postulating a linear 
trajectory, we might hypothesize a discontinuous alternative. 
If we thought, for example, that students made general 
progress through grades, but that within a grade, there might 
be even steeper progress, we might postulate that: Yij = π0i + 
π1i (GRADE ij – 4) + π2i SEASON ij + εij, where both (GRADE ij–
4) and SEASON ij take on the values -1, 0, and 1. In this model, 
π0i represents individual i’s true test score in the middle of 
fourth grade, π1i represents his true rate of linear growth 
across grades, and π2i represents any additional linear growth 
that occurs during the academic year. This model would yield 
a zigzag trajectory. Alternatively, if we thought that growth 
would generally be linear but that fall readings might be low 
because test scores may drop during the summer when 
children are out of school, we could postulate that: Yij = π0i + 
π1i (ASSESSMENT#ij – 1) + π2i FALL ij + εij. In this model, π0i

represents individual i’s true initial test score at the beginning 
of third grade (controlling for the fact that it is a fall 
assessment), π1i represents his true rate of linear growth 
across assessments, and π2i represents the potential 
decrement in test scores associated with the fall assessment. 



Modeling Discontinuous and Nonlinear Change

Page 27 of 72

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

This model yields an underlying linear trajectory punctuated 
by fall-specific drops.

Please treat these examples not as explicit directives but as 
inspirational starting points. If you have reason to hypothesize 
a particular type of discontinuity, you should develop a 
customized model that reflects your hypothesis and not adopt 
an “off-the-shelf” parameterization that may not. Once you 
move away from the standard linear change trajectory, your 
options grow as does your burden of proof. Good theory and a 
compelling rationale should always be your guides.

6.2 Using Transformations to Model Nonlinear 
Individual Change

We now consider smooth, but nonlinear, individual change 
trajectories. Certainly the easiest strategy for fitting such 
models is to transform either the outcome, or TIME, in the 
level-1 submodel so that a growth model that specifies linear 
change in the transformed outcome or predictor will suffice. 
When confronted by obviously nonlinear trajectories, we 
usually begin with the transformation approach for two 
reasons. First, a straight line—even on a transformed scale—is 
a simple mathematical form whose two parameters have clear 
interpretations. Second, because the metrics of many 
variables are ad hoc to begin with, transformation to another 
ad hoc scale may sacrifice little. If the original scale lacks 
well-accepted intuitive (p.209)
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Figure 6.4.  Re-expressing the 
prototypical trajectories in figure 4.3
for ALCUSE on the outcome’s original 
scale. These prototypical trajectories are 
identical to those in figure 4.3 except that 
here we have squared the model’s 
predicted values to reverse the effect of 
taking square roots before statistical 
analysis.

anchors, you 
lose nothing by 
using a 
transformed 
alternative. It 
matters not 
whether you 
conduct 
analyses in one 
arbitrary world 
(the original 
metric) or 
another (e.g., 
the “square 
root” metric). 
Either metric 
allows you to 
track 
individuals 
over time and 
to identify 
predictors 
associated with 
their 
differential 
patterns of 
change.
To support 
these 
assertions, 
reconsider 
the alcohol 
use data of 
chapter 4 and 
ask: What 
would those 
findings look 
like if we “de-transformed” the outcome back to its original 
nine-point scale? Figure 6.4 displays de-transformed 
trajectories based on the fitted trajectories in the final panel of 
figure 4.3. We obtained these trajectories by squaring the 
predicted values from the linear model fit to the square root 
data (thereby reversing the transformation, as “squaring” is 
the inverse of “square rooting”). As in figure 4.3, we display 

Figure 6.4.  Re-expressing the 
prototypical trajectories in figure 4.3
for ALCUSE on the outcome’s original 
scale. These prototypical trajectories are 
identical to those in figure 4.3 except that 
here we have squared the model’s 
predicted values to reverse the effect of 
taking square roots before statistical 
analysis.
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prototypical trajectories for children of alcoholics and 
nonalcoholics at low and high values of peer alcohol use. 
Reversing the transformation returns us to the original nine-
point metric. Because this changes the scale of the vertical 
axis, the once linear change trajectories are now curved.

Despite this transition between metrics, the findings remain: 
children of alcoholics initially drink more but are no more 
likely to increase their drinking over time. But the “slopes” of 
the detransformed trajectories defy a “single number” 
summary. In the square root metric we originally analyzed, 
“annual rate of change” was meaningful because the 
trajectory was linear in the transformed world. But once we 
detransform back into the original measurement metric, the 
trajectory is curved and the rate of change is no longer 
constant over time: alcohol use increases more (p.210)  rapidly 
as time passes. Although you might think there is a conflict 
between these representations, each interpretation is correct
in its own world. In the transformed metric, change in alcohol 
use is linear—its rate of change is constant over time. In the 
original metric of measurement, which we enter by 
detransformation, change in alcohol use is nonlinear—it
accelerates over time. Our current formulation of the 
multilevel model for change assumes a level-1 linear change 
model. If change is not linear over time, we can seek an 
alternative metric for the outcome, or for time, in which this 
assumption holds. In the transformed world, the methods we 
have developed work well and we violate no assumptions. We 
then display the findings back in the detransformed metric of 
the original outcome to simplify communication of the 
findings.

This suggests a simple general strategy for modeling nonlinear 
change that capitalizes on the best of both worlds. Transform 
the outcome (or the level-1 TIME predictor) so that individual 
change becomes linear. Fit the multilevel model for change 
and test hypotheses in the transformed world, then 
detransform and present findings back in the original metric. 
The key to the success of this strategy is selection of a suitable 
transformation, a topic to which we now turn.
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6.2.1 The Ladder of Transformations and the Rule of the Bulge

You can identify a suitable transformation for “correcting” 
nonlinearity in longitudinal data using the same methods you 
use for “correcting” nonlinearity in cross-sectional data. 
Rather than examining a single “outcome vs. predictor” plot, 
however, you examine multiple empirical growth plots, one for 
each sample member, seeking a transformation that works 
decently for most everyone under study.

A useful aid in this process is Mosteller and Tukey’s (1977) 
ordered list of transformations known as the ladder of powers. 
On the left side of figure 6.5, we present our version of their 
ladder for transforming a generic variable “V,” which appears 
on the center rung. Transformations in the upper half of the 
ladder, above V, are positive powers greater than 1, including 
the square, the cube, and the fourth power. Transformations in 
the lower half, below V, include the logarithm, fractional 
powers (representing the square root, the cube root, etc.), and
negative powers (inverses). When we use a transformation in 
the upper half of the ladder (e.g., V 2, V 3), we say we move 
“up” in V; when we use a transformation in the lower half 
(e.g., LOG(V), 1/V), we say we move “down” in V.

To identify a suitable transformation, inspect the collection of 
empirical growth plots and apply what Mosteller and Tukey 
call the rule of the (p.211)
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Figure 6.5.  The ladder of transformations 
and the rule of the bulge. Guidelines for 
linearizing individual growth trajectories 
through judicious use of transformation.

bulge. We 
reprint their 
guidelines on 
the right side 
of figure 6.5. 
The idea is to 
match the 
general shape 
of the plots 
(discounting 
the effect of 
measurement 
error) to one of 
the four 
exemplars 
shown. You 
find linearizing 

transformations by moving “up” or “down” the ladder in the same 
direction(s) as the direction of the “bulge” in the exemplar. The 
arrows in figure 6.5 indicate the directions for each exemplar. In 
the upper left corner, the arrows point “up” in Y and “down” in
TIME, suggesting that a curve with this shape can be linearized by 
moving “up” in Y (e.g., taking Y 2, Y 3 etc.) or “down” in TIME (e.g., 
taking LOG(TIME), 1/TIME etc). In the bottom right corner, the 
arrows point “down” in Y and “up” in TIME suggesting that a curve 
with this shape can be linearized by moving “down” in Y or “up” in
TIME. The further a transformation is from the ladder’s center, the 
more dramatic its impact.
We suggest you experiment with several transformations 
before selecting one for analysis. The search process is hardly 
an exact science. Even for a single person, one transformation 
may not be equally successful at all points in time. As you 
eventually need to use the same transformation for everyone 
in your sample, selection involves some compromise so that,

(p.212)

Figure 6.5.  The ladder of transformations 
and the rule of the bulge. Guidelines for 
linearizing individual growth trajectories 
through judicious use of transformation.
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Figure 6.6.  Comparing empirical growth 
plots for a single child in the Berkeley 
growth study. The left panel presents raw 
data; the middle panel presents the same 
data with the outcome, IQ, raised to the 
2.3 power; the right panel presents the 
same data with the predictor, TIME, 
expressed as the 2.3th root of AGE.

overall, you 
can argue that 
the resultant 
transformed 
shape is linear 
for most 
everyone.
We illustrate 
this process 
in figure 6.6, 
which 
presents 20 
waves of data 
for a single 
girl from the 
Berkeley 
Growth Study 
(Bayley,
1935). The 
left panel 
displays the child’s cognitive trajectory on its original scale. 
Its curvilinear shape suggests that as she develops, her mental 
ability increases less rapidly—in other words, the curve 
decelerates. This matches the exemplar in the upper left 
corner of figure 6.5. To linearize this trajectory, we can either 
move “up” in Y (e.g., take Y 2, Y 3, etc.) or “down” in TIME
(e.g., take LOG(TIME), 1/TIME, etc.) After trying several 
alternatives, we found that raising IQ to the 2.3rd power was a 
good compromise. The transformed trajectory appears in the 
middle panel. Notice its dogleg at about 20 months—a shift 
apparent in the original trajectory as well—which may be due 
to changes in the measurement method at this age. 
Transformation does not eliminate this discontinuity, but 
provides a reasonably linear change trajectory for both halves.

You can transform either the outcome or TIME, often using the 
inverse of the transformation that is best for the other. But 
applying the inverse of the “outcome” transformation to the 
predictor, or vice versa, will not produce the identical
reduction in nonlinearity owing to differences in the range and 
scale of the variables and the presence of an intercept in the 
model. Such differences make it worth examining the effect of 

Figure 6.6.  Comparing empirical growth 
plots for a single child in the Berkeley 
growth study. The left panel presents raw 
data; the middle panel presents the same 
data with the outcome, IQ, raised to the 
2.3 power; the right panel presents the 
same data with the predictor, TIME, 
expressed as the 2.3th root of AGE.
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both types of transformation. For these data, taking the 2.3th
root of age (shown (p.213)  in the right panel of figure 6.6) is 
not as successful in linearizing the trajectory as raising the 
outcome to the 2.3rd power. If both transformations are 
equally successful, the choice is yours. If one variable is 
measured on an easily understood or widely accepted scale—
as TIME usually is—we recommend that you preserve its 
metric by transforming its partner. Here, a transformation of 
the cognitive outcome is more successful in removing 
nonlinearity and also preserves the metric of TIME.

We conclude by reiterating a caution mentioned in section 
2.3.1. Notice that we examine empirical growth plots for each 
sample member (or a random subset), not the aggregate 
trajectory formed by joining within-occasion sample averages. 
However tempting it is to draw inferences about the shape of 
individual trajectories from the shape of the aggregate, their 
forms may not be identical. The forms are identical when 
change is linear with time but they may not be when change is 
nonlinear. Because you do not know the shape of the true 
individual trajectory—if you did, you wouldn’t need to do this 
detective work—avoid this pitfall by always using individual
plots to identify the shape of individual change. (We expand 
upon this point in section 6.4, when we introduce truly 
nonlinear trajectories.)

6.3 Representing Individual Change Using a 
Polynomial Function of TIME

We can also model curvilinear change by including several 
level-1 predictors that collectively represent a polynomial 
function of time. Although the resulting polynomial growth 
model can be cumbersome, it can capture an even wider array 
of complex patterns of change over time.

Table 6.4 presents an ordered series of polynomial growth 
models. Each relates the observed value of an outcome, Y, to
TIME for individual i on occasion j. The first column labels the 
trajectory; the second presents the associated level-1 model; 
the last illustrates the trajectory’s shape for the arbitrarily 
selected values of Y, TIME, and the individual growth 
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parameters shown in the third column. As we add higher order 
functions of TIME, the true change trajectory becomes more 
complex. Below, we describe how to interpret results (section 
6.3.1) and select among the alternatives (sections 6.3.2 and 
6.3.3).

6.3.1 The Shapes of Polynomial Individual Change Trajectories

The “no change” and “linear change” models are familiar; the 
remaining models, which contain quadratic and cubic 
functions of TIME, are new. For completeness, we comment on 
them all.

(p.214)

Table 6.4: A taxonomy of polynomial individual 
change trajectories
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Illustrative example

Shape Level-1 model Parameter values Plot of the true change 
trajectory
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(p.215) “No Change” Trajectory

The “no change” trajectory is known as a polynomial function 
of “zero order” because TIME raised to the 0th power is 1 (i.e.,
TIME 0 = 1). This model is tantamount to including a constant 
predictor, 1, in the level-1 model, as a multiplier of the sole 
individual growth parameter, the intercept, π0i. The intercept 
represents the vertical elevation of the “no-change” trajectory 
at every point in time (71 in the example). Even though each 
trajectory is flat, different individuals can have different 
intercepts and so a collection of true “no change” trajectories 
is a set of vertically scattered horizontal lines. The “no 
change” trajectory is the level-1 submodel of the 
“unconditional means model” that we introduced in section 
4.4.1. Here, we use the “no change” label to highlight its 
relationship with other polynomial trajectories.

“Linear Change” Trajectory

The “linear change” trajectory is known as a “first order” 
polynomial in time because TIME raised to the 1st power 
equals TIME itself (i.e., TIME 1= TIME). Linear TIME is the 
sole predictor and the two individual growth parameters have 
the usual interpretations. This model allows each individual to 
possess a unique intercept and slope parameter that yield a 
collection of crisscrossing trajectories for a group of people. 
Associated level-2 models can link person-specific 
characteristics to interindividual heterogeneity in both 
intercept and slope.

“Quadratic Change” Trajectory

Adding TIME 2 to a level-1 individual growth model that 
already includes linear TIME yields a second order polynomial 
for quadratic change. Unlike a level-1 model that includes only 
TIME 2, a second order polynomial change trajectory includes 
two TIME predictors and three growth parameters (π0i, π1i and 
π2i). The first two parameters have interpretations that are
similar, but not identical, to those in the linear change 
trajectory; the third is new.

In the quadratic change model, π0i still represents the 
trajectory’s intercept, the value of Y when both predictors, 
here TIME and TIME 2, are 0. But π1i, the parameter 
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associated with TIME, does not represent a constant rate of 
change. Instead, it represents the instantaneous rate of 
change at one specific moment, when TIME = 0.2 Although 
most people still use the “slope parameter” nomenclature, a 
quadratic change trajectory has no constant common slope. 
The rate of change changes smoothly over time. π2i, the
curvature parameter associated with level-1 predictor TIME
2, (p.216)  describes this changing rate of change. 
Hypothesizing a quadratic individual change trajectory allows 
you to formulate level-2 questions about interindividual 
differences in intercept, instantaneous rate of change, and
curvature.

To develop your intuition about quadratic change, examine the 
sample trajectory in table 6.4. It has an instantaneous rate of 
change of 3.8 at TIME 0 and a curvature of –0.03. Because π1i

is positive, the trajectory initially rises, with true status having 
the intention of increasing by 3.8 in the first unit of time. But 
because π2i is negative, this increase does not persist. With 
each passing unit of time, the magnitude of the outcome’s 
rising value diminishes. In essence, π1i and π2i compete to 
determine the value of Y. The quadratic term will eventually 
win because, for numeric reasons alone, TIME 2 increases 
more rapidly than TIME. So, in this example, even though the 
linear term suggests that Y increases over time, the eventual 
domination of the quadratic term removes more than the 
linear term adds and causes the trajectory to peak and then 
decline.

Quadratic trajectories with a single “peak” are said to be
concave to the time axis. The peak is called the “stationary 
point” because the slope momentarily goes to zero before 
reversing direction. Quadratic curves have one stationary 
point. If the curvature parameter is positive, the trajectory is
convex to the time axis, with a single “trough.” Whether 
positive or negative, the larger the magnitude of π2i, the more 
dramatic its effect, rendering the curvature more extreme. 
The moment when the quadratic trajectory curve flips over, at 
either a peak or a trough, is (−π1i/2π2i), which in our example 
is a time of−3.8/(2(−.03)) = 63.33.
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Higher Order Change Trajectories

Adding higher powers of TIME increases the complexity of the 
polynomial trajectory. The fourth row of table 6.4 presents a 
third-order polynomial that includes level-1 predictors TIME, 
TIME 2 and TIME 3. A third-order polynomial has two 
stationary points; here, one peak and one trough. A quartic 
polynomial, which adds TIME 4 to the cubic model, has three 
stationary points—either two peaks and one trough or two 
troughs and one peak depending on the parameters’ signs. A 
fifth-order polynomial has four stationary points; a sixth order 
has five. By using higher order polynomials to represent 
individual change, you can represent trajectories of almost any 
level of complexity.

Interpretation of the individual growth parameters is more 
complex for higher order polynomials. Even the cubic model’s 
parameters do not represent “initial status,” “instantaneous 
growth rate,” and “curvature” as (p.217)  they do in a 
quadratic. In general, we prefer the simpler representations; 
we use higher order polynomials only when other approaches 
fail.

In the next section, we describe strategies for selecting among 
competing polynomial forms. Before doing so, we inject a note 
of reality concerning the data collection demands that these 
models pose. The more complex the polynomial, the more 
waves of data you need to collect to be able to fit the 
trajectory to data. In a time-structured data set, you need at 
least one more wave of data per person than there are 
individual growth parameters in the level-1 individual growth 
model. A level-1 linear change trajectory requires at least 
three waves of data. A quadratic level-1 individual growth 
model requires at least four; a cubic at least five. And these 
are only the minimum requirements. Greater precision and 
power requires more waves. In analysis as in life, nothing 
comes without a cost.3

6.3.2 Selecting a Suitable Level-1 Polynomial Trajectory for Change

We illustrate strategies for selecting a level-1 polynomial 
change trajectory using data on 45 children tracked from first 
through sixth grade as part of a larger study reported by 
Keiley, Bates, Dodge, and Pettit (2000). Near the end of every 
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school year, teachers rated each child’s level of externalizing 
behavior using Achenbach’s (1991) Child Behavior Checklist. 
The checklist uses a three-point scale (0 = rarely/never, 1 = 
sometimes, 2 = often) to quantify the frequency with which 
the child displays 34 aggressive, disruptive, or delinquent 
behaviors. The outcome, EXTERNAL, which ranges from 0 to 
68, is the sum of these 34 scores.

Figure 6.7 presents empirical growth plots for 8 children. (For 
now, ignore the fitted trajectories and focus on the data 
points.) As a group, these cases span the wide array of 
individual change patterns in the data. Child D displays little 
change over time. Child C appears to decline linearly with age 
(at least through fourth grade). Children A, B, and G display 
some type of quadratic change, but their curvatures differ. For 
A, the curvature parameter appears negative; for B and G, 
positive. Child E may have two stationary points—a trough in 
second grade and a peak in fifth—suggesting a cubic 
trajectory. Children F and H may have three stationary points
—a peak, a trough, and another peak—although with only six 
waves, it is difficult to distinguish true quartic change from 
occasion-specific measurement error.

When faced with this many different patterns, which 
polynomial trajectory makes sense? If there is no obvious 
winner, we suggest that you first adopt an exploratory 
approach and fit separate person-specific OLS models to each 
person’s data. This process is relatively easy, albeit tedious:

(p.218)
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Figure 6.7.  Identifying a suitable level-1 
polynomial trajectory. Empirical growth 
plots for 8 participants in the 
externalizing behavior study. The solid 
curves represent a reasonable polynomial 
tailored for each child: a flat line for D; a 
linear trajectory for C; a quadratic 
trajectory for A, B, and G; a cubic for E; 
and a quartic for F and H. The dashed 
lines represent the highest order 
polynomial necessary—a quartic.

(p.219)  all 
you need do is 
create a set of 
temporal 
predictors that 
capture the 
requisite 
polynomial 
shapes—e.g.,
TIME, TIME 2,
TIME 3, and so 
on—and then, 
for each child, 
use the set of 
predictors 
needed to 
represent the 
trajectory 
desired. The 
solid curves in 
figure 6.7
represent the 
choices just 
articulated: (1) 
“no change” 
for D; (2) 
linear for C; (3) 
quadratic for 
A, B and G; (4) cubic for E; and (5) quartic for F and H.
Comparison of observed and fitted values of EXTERNAL
demonstrates the utility of this approach. Most of the fitted 
trajectories reasonably summarize each child’s data record. 
But are ad hoc decisions like these optimal? Closer 
comparison of observed and fitted values suggests cause for 
concern. For child C, the small differences appear systematic. 
Perhaps he really has a quadratic trajectory with a wide flat 
trough that begins in sixth grade. Child H raises a different 
issue. Here, we fitted a quartic model (because of the two 
peaks and one trough), but the fitted trajectory seems 
quadratic (it has just one peak). Inspection of his regression 
results reveals that the cubic and quartic parameters are small 
and indistinguishable from zero. The imagined peaks and 
troughs may be measurement error. This suggests a need for 

Figure 6.7.  Identifying a suitable level-1 
polynomial trajectory. Empirical growth 
plots for 8 participants in the 
externalizing behavior study. The solid 
curves represent a reasonable polynomial 
tailored for each child: a flat line for D; a 
linear trajectory for C; a quadratic 
trajectory for A, B, and G; a cubic for E; 
and a quartic for F and H. The dashed 
lines represent the highest order 
polynomial necessary—a quartic.
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parsimony when specifying polynomial trajectories, a 
recommendation we adopt more vigorously in coming 
sections.

But for now, we move in the opposite direction: fitting 
exploratory trajectories using a common more general shape. 
We do so for two reasons: (1) the decision-making process 
needed to fit custom trajectories to entire data sets can be 
tedious and counterproductive; and (2) we cannot easily 
specify a level-1 individual growth model unless we use a
common shape for the trajectory across people. Instead of 
selecting a unique polynomial form for each child, we select 
the highest order polynomial needed to summarize individual 
change for any child. For the eight children in figure 6.7, we 
select a quartic because no child appears to need a higher 
order polynomial. While hardly parsimonious, a quartic can be 
fit easily to each child’s data; the data will then demand the 
contribution of higher order terms as needed. If we use a 
quartic for Child A, for example, the estimated growth 
parameters for the cubic and quartic terms may be close, or 
equal, to 0.

The dashed curves in figure 6.7 display the results of fitting a 
quartic to each child’s data. (Note that the solid lines already 
represent a quartic for children F and H.) This common 
trajectory simplifies implementation, but clearly overfits. 
While children E and G have fitted trajectories virtually 
identical to those specified using the case-specific approach, 
the others reveal more complex forms. Is this complexity 
necessary? The fitted trajectories for children A and B, which 
previously seemed quadratic, now have an extra “bump.” And 
the fitted trajectory for child D, which seemed flat, now looks 
like a scaled down quartic!

(p.220) Should you be parsimonious and potentially 
underestimate the trajectory’s complexity or should you be 
cautious and potentially overfit? An answer to this question is 
clouded by the use of sample data to draw conclusions about
population trajectories. When you inspect empirical plots, you 
try to account for measurement error, but this is easier said 
than done. For example, you may have been prepared to 
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conclude that the true trajectories for A and B were quadratic, 
but now you might see them as more complex. So, too, the 
quartic hypothesized for child H may be unnecessarily 
complex. Fortunately, when exploratory analyses lead to 
conflicting conclusions, you can resolve this dilemma by 
comparing good-ness-of-fit statistics across a series of models, 
as we now do.

6.3.3 Testing Higher Order Terms in a Polynomial Level-1 Model

Table 6.5 presents the results of fitting four models of 
increasing polynomial complexity at level-1 to the 
externalizing behavior data. Each was fit using Full IGLS in 
MLwiN. For simplicity, we include no other substantive 
predictors at either level-1 or level-2. Note, however, that as 
we increase the complexity of the fixed portion of the level-1 
model we do add the associated random effects. We describe 
the rationale for this decision below as we describe the 
empirical results.

Let us begin with Model A, the “no-change” trajectory. The 
estimated grand mean is 12.96 (p < .001), which suggests that 
between first and sixth grades, the average child has a non-
zero level of externalizing behavior. Examining the variance 
components, we find statistically significant variability both 
within-child (70.20, p < .001) and between-children (87.42, p
< .001). We conclude that externalizing behavior varies from 
occasion to occasion and that children differ from each other.

Is this “no-change” trajectory adequate or should we add a 
linear TIME predictor to the level-1 individual growth model? 
We address this question by comparing Model A to the 
standard linear-change model (B). To facilitate interpretation, 
we express TIME as GRADE-1 so that the intercept (π0i) refers 
to the level of externalizing behavior in first grade. We find 
that while the average child has a non-zero level of 
externalizing behavior in first grade (13.29, p < .001) this level 
does not change linearly over time on average (−0.13, n.s.). 
The statistically significant variance components (

) 
suggest, however, that children differ substantially from these 
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averages. In other words, the average trajectory may be flat 
but many of the individual trajectories are not.

To determine whether Model B is preferable to Model A, we 
test the (p.221)
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Table 6.5: Comparison of fitting alternative polynomial change trajectories to the externalizing behavior data (n = 
48)

Parameter Model A No 
change

Model B 
Linear 
change

Model C 
Quadratic 
change

Model D 
Cubic 
change

Fixed Effects

Composite 
model

Intercept (1st 
grade status)

γ00 12.96*** 13.29*** 13.97*** 13.79***

TIME (linear 
term)

γ10 −0.13 −1.15 −0.35

TIME 2

(quadratic term)

γ20 0.20 −0.23

TIME 3 (cubic 
term)

γ30 0.06

Variance Components

Level−1: Within−person 70.20*** 53.72*** 41.98*** 40.10***

Level−2: In 1st grade 
status

87.42*** 123.52*** 107.08*** 126.09***

Linear term

variance 4.69** 24.60* 88.71
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Parameter Model A No 
change

Model B 
Linear 
change

Model C 
Quadratic 
change

Model D 
Cubic 
change

covar with 1st 
grade status

σ01 −12.54* −3.69 −51.73

Quadratic term

variance 1.22* 11.35

covar with 1st 
grade status

σ02 −1.36 22.83~

covar with 
linear term

σ12 −4.96* −31.62

Cubic term

variance 0.08

covar with 1st 
grade status

σ03 −3.06~

covar with 
linear term

σ13 2.85

covar with 
quadratic term

σ23 −0.97

Goodness−of−fit
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Parameter Model A No 
change

Model B 
Linear 
change

Model C 
Quadratic 
change

Model D 
Cubic 
change

Deviance 
statistic

2010.3 1991.8 1975.8 1967.0

AIC 2016.3 2003.8 1995.8 1997.0

BIC 2021.9 2015.0 2014.5 2025.1

~p < .10; * p < .05; ** p < .01; *** p < .001.

Model A is the “no change” trajectory; Model B is the linear change trajectory; Model C is the quadratic change trajectory; Model D 
is the cubic change trajectory.

Note: Full IGLS, MlwiN.
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(p.222)  compound null hypothesis about the set of differences 
between models (in the linear growth rate, its associated variance 
component, and the extra covariance parameter, σ01): H 0: γ10 = 0,

 = 0, and σ01 = 0. As the difference in deviance statistics 
(18.5) far exceeds the 0.05 critical value of a χ2 distribution on 
three d.f., we reject H0 and abandon the “no change” model.
You can use this same testing strategy to evaluate the impact 
of adding polynomial terms to the level-1 growth model, by 
comparing Model C to B and D to C, and so on. Before doing 
so, however, we draw your attention to a common dilemma 
that arises in model fitting. In Model B, although the variance 

component for linear growth ( ) is statistically significant, its 
associated fixed effect (γ10) is not. This is not an inconsistency, 
but it requires interpretive care. The test for the variance 
component tells us that there is statistically significant 
variation in linear rates of change across children. The test for 
the fixed effect tells us that the average value of these rates is 
indistinguishable from 0. Yet we retain the fixed effect 
because the non-zero variance component suggests that we 
may be able to predict some of this variation with a level-2 
predictor. We might find, for example, that the average slope 
for boys is positive and that the average slope for girls is 
negative. This would be of tremendous interest, even if the 
rates average to zero when boys and girls are pooled. We 
remind you that when selecting a functional form for level-1 
model, you are as interested in the level-2 variance 
components as you are in the level-1 fixed effects.

We now compare the quadratic Model C to the linear Model B. 
Because we seek a level-1 individual growth model that 
describes the fundamental structure of these data, we include 
not just the additional fixed effect (for TIME 2) but also the 
required additional variance components: the population 

variance for curvature, , as well as its covariances with 
first grade status, σ02, and linear growth, σ12. To do otherwise 
would constrain the curvature parameter to be identical 
across individuals, a constraint that seems antithetical to the 
model-building exercise in which we are engaged. We find that 
the deviance statistic declines by 16.0, which exceeds the .01 
critical value of χ2 distribution on four d.f. (13.27). We 
therefore reject the null hypothesis that all four parameters 
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are simultaneously zero and conclude that there is potentially 
predictable variation in curvature across children.

Do we need to go further and adopt a cubic model? 
Comparison of Models D and C suggest that the answer is no. 
Addition of a cubic term adds one fixed effect and four random 

effects ( , σ03, σ13, and σ23), but the deviance statistic 
declines by only 8.8 (1975.8–1967.0), which is less than the 
associated .05 critical value of 11.07 (d.f. = 5).

(p.223) We conclude that we should treat individual change in 
externalizing behavior as though it follows a quadratic 
trajectory. This conclusion, reinforced by the AIC and BIC 
statistics, is a realistic compromise that respects the many 
kinds of variation present in the data. This does not mean that
no child follows a cubic trajectory, but rather that, overall, 
when individual change is hypothesized to be cubic, sufficient 
children end up with cubic parameters that are close enough 
to zero that there is too little systematic variation in this 
parameter to worry about. The reverse is true for the 
quadratic parameter: even though its average value is 
indistinguishable from 0, it displays sufficient variation to 
warrant inclusion.

Having selected a suitable polynomial individual change 
trajectory, model building proceeds as before, although there 
are extra individual growth parameters to explore. Each 
level-1 parameter has its own level-2 submodel. Level-1 
quadratic change provides for three level-2 submodels; a 
level-1 cubic provides for four. To examine the effect of
FEMALE, we would begin by postulating a level-2 association 
with each level-1 parameter:

where
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Having explored a variety of gender differentials in these data, 
however, it turns out that none is statistically significant. FEMALE
has no effect on first-grade status, instantaneous rate of change in 
first grade, or curvature.

6.4 Truly Nonlinear Trajectories

All the individual growth models described so far—including 
the curvilinear ones presented in this chapter—share an 
important mathematical property: they are linear in the 
individual growth parameters. Why do we use the label 
“linear” to describe trajectories that are blatantly nonlinear? 
The explanation for this apparent paradox is that this 
mathematical property depends not on the shape of the 
underlying growth trajectory but rather where—in which 
portion of the model—the nonlinearity arises. In all (p.224)

previous models, nonlinearity (or discontinuity) stems from the 
representation of the predictors. To allow the hypothesized 
trajectory to deviate from a straight line, TIME is either 
transformed or expressed using higher order polynomial 
terms. In the truly nonlinear models we now discuss, 
nonlinearity arises in a different way—through the
parameters.

In this section, we consider models that are not linear in the 
parameters. We begin, in section 6.4.1, by introducing the 
notion of dynamic consistency, a key concept for 
understanding the distinction between our previous models 
and the truly nonlinear ones we discuss here. In section 6.4.2, 
we illustrate a general approach for fitting truly nonlinear 
models by analyzing a data set in which the level-1 individual 
growth trajectory is hypothesized to follow a logistic curve. In 
section 6.4.3, we expand this approach, surveying a range of 
other truly nonlinear growth models including the hyperbolic, 
inverse polynomial, and exponential trajectories. We conclude, 
in section 6.4.3, by describing how researchers have 
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historically translated substantive theories about nonlinear 
growth into mathematical representations that can be fit to 
data.

6.4.1 What Do We Mean by Truly Nonlinear Models?

To highlight the distinction between models that are linear in 
the parameters and those that are not, consider the following 
simple quadratic level-1 trajectory:

. We compute 
individual i’s value of Y at time j—say at TIME = 2—by 
substituting in this value: Y i2 = π0i(1) + π1i(2) + π2i(2)2 + εi2. 
For reasons that will soon become apparent, we add the 
implicit multiplier 1 next to the intercept, π0i. This addition is 
not essential to our explanation, but it simplifies the 
argument.

Ignoring εi2 for a moment, individual i’s hypothesized true 
value of Y at TIME = 2 is the sum of three quantities: π0i(1), 
π1i(2), and and π2i(2)2. Each has a similar form: it is an
individual growth parameter multiplied by a number: π0i times 
1, plus π1i times 2, plus π2i times 22. All true values of Y, for all 
values of TIME, share this property—they are the sum of 
several terms, each of which is the product of an individual 
growth parameter and a numerical weight whose value is 
either constant (such as the “1” multiplying π0i) or dependent 
upon the measurement occasion (such as the 2 and 22

multiplying π1i and π2i). We say that this portion of the growth 
model is a “weighted linear composite of the individual growth 
parameters” or, more simply, that true individual change is 
“linear in the parameters.”

Individual growth models that are linear in the parameters
have important spatial properties to which we alluded in 
chapter 2. These properties are apparent only at the group 
level—that is, when you summarize (p.225)  everyone’s 
changes using an “average trajectory.” As described in section 
2.3, we can derive this average trajectory in one of two ways, 
by computing: (1) the curve of the averages—estimate the 
average outcome on each measurement occasion and then plot 
a curve through these averages; or (2) the average of the 
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curves—estimate the growth parameters for each individual 
trajectory, average these values, and then plot the result. If an 
individual growth model is linear in the parameters, it will not 
matter which approach you use because the “curve of the 
averages” and the “average of the curves” will be identical. In 
addition, the average trajectory possesses the same functional 
form (i.e., the same general shape) as the constituent 
individual trajectories: the average of a heterogeneous group 
of straight lines will be a straight line, the average of a 
heterogeneous group of quadratics will be quadratic, and so 
on.4

These two properties—(1) the coincidence between the “curve 
of the averages” and the “average of the curves,” and (2) the 
equivalence in functional form between individual and average 
trajectories—were labeled dynamic consistency by Keats 
(1983). Many common functions are dynamically consistent, 
including the straight line, the quadratic, and all polynomials. 
If a function is linear in the parameters, it will be dynamically 
consistent.

The concept of dynamic consistency has two important 
consequences for analysis. First, it reinforces why you should 
never draw conclusions about the shape of an individual 
change trajectory from the shape of an average trajectory 
drawn through occasion-specific means. If true change is not 
dynamically consistent, your conclusions about the model’s 
functional form will be incorrect. Second, any level-1 model 
that is dynamically consistent—that is any polynomial, any 
model with a transformed outcome, or any discontinuous 
model—can be fit using standard software for multilevel 
modeling.

Trajectories that are not dynamically consistent are less 
tractable. Many important level-1 models that arise from 
substantive theories—such as the logistic model for individual 
change that we examine next—are not linear in the 
parameters, and as such, are not dynamically consistent. We 
have already alluded to this possibility in section 2.3.1, when 
we stated that the average of a set of logistic trajectories is 
not a logistic but a smoothed step-function. We now illustrate 
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how to proceed when the logical level-1 individual growth 
model is a logistic curve.

6.4.2 The Logistic Individual Growth Curve

We introduce the fitting of truly nonlinear change trajectories 
using data on cognitive growth collected by our colleague, 
Terry Tivnan (1980). (p.226)  During a three-week period, 
Tivnan repeatedly played a two-person checkerboard game, 
Fox n’ Geese, with 17 first- and second-graders. The game 
begins with a “fox,” represented by one black marker, in the 
back rank of one side of the board, and four “geese,” 
represented by four white markers, in the back rank of the 
opposite side. Each player takes turns moving his or her 
pieces, one square at a time, as in checkers, around the light 
squares. The fox can move forward or backward, but geese 
can only move forward. Players have opposing goals: the 
geese try to trap the fox so that it cannot move; the fox tries to 
reach the other side of the board without being trapped.

Fox n’ Geese is a useful tool for studying cognitive growth 
because: (1) there exists a strategy that will always lead to 
victory; (2) this strategy is not immediately obvious to 
someone who has never played the game; and (3) this strategy 
can be deduced, even by most young children, through 
successive rounds of play. In early games, children move their 
geese at random. As they deduce the winning strategy, move-
making becomes directed and adept. Tivnan played up to 27 
games with each child. He summarized each child’s 
performance in each game as the number of moves completed 
before making a catastrophic error (NMOVES). The greater 
the number of moves made before error, the greater a child’s 
skill.

Figure 6.8 presents data for eight children. Each panel plots
NMOVES versus “game number,” Tivnan’s metric for time. 
Although NMOVES always lies between 1 and 20, change 
trajectories vary considerably both within and among children. 
Some children (ids 04, 07, 08, and 15) initially made fatal 
errors but soon found effective strategies and survived up to 
20 moves. Others (ids 11 and 12) took longer to learn. And 
some (ids 01 and 06) never discovered the optimal strategy, 
making early fatal errors in every game.
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Figure 6.8.  Identifying a suitable 
nonlinear trajectory. Empirical growth 
plots for 8 children in the Fox n’ Geese 
study. Note that each resembles a classic 
logistic function.

It makes no sense to hypothesize that the true individual 
change trajectories that gave rise to these sample data are 
linear. Instead, knowledge of the game of Fox n’ Geese and 
inspection of these plots suggests a nonlinear level-1 model 
with three features may be appropriate:

• A lower asymptote. Each child’s trajectory rises from a 
lower asymptote (“floor”) of one because all players, 
regardless of skill, must make at least one move.

• An upper asymptote. Each child’s trajectory approaches 
an upper asymptote (“ceiling”) because he or she can make 
only a finite number of moves before all four geese can no 
longer move. Based on figure 6.8, 20 appears to be a 
reasonable upper asymptote.

• A smooth curve joining these asymptotes. Learning theory 
suggests that each child’s true trajectory will smoothly 
traverse the region (p.227)

(p.228)

between 
asymptotes. 
We further 
expect that 
each 
trajectory 
will 
accelerate 
away from 
the floor as 
the child 
initially 
deduces the 
winning 
strategy 
and 
decelerate 
toward the 
ceiling as 
the child 
finds it increasingly difficult to refine the strategy further.

Although you may not be aware of the fact, these three features 
define a logistic (or “S-shaped”) trajectory. We therefore adopt the 
following logistic function as the hypothesized individual change 
trajectory for Tivnan’s experiment:

Figure 6.8.  Identifying a suitable 
nonlinear trajectory. Empirical growth 
plots for 8 children in the Fox n’ Geese 
study. Note that each resembles a classic 
logistic function.
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(6.8) 
where Y ij represents the number of moves child i makes prior to a 

fatal error in game j and εij ~ N(0, ). Like the level-1 linear-
change growth model, the logistic model has two individual growth 
parameters, which we have also labeled π0i and π1i. But because of 
how and where these parameters appear in the model, they have 
interpretations that are somewhat different from what we usually 
anticipate.
To clarify what this level-1 logistic trajectory postulates about 
the relationship between NMOVES and TIME and how we 
interpret its parameters, figure 6.9 presents true trajectories 
for nine children with specific combinations of parameter 
values for π0i and π1i. We selected these trajectories so that 
the three children in each panel have a common value of π0i

(150, 15, or 1.5) but differing values of π1i (0.1, 0.3, or 0.5). We 
computed each trajectory by substituting the various 
combinations of parameter values into the structural part of 
equation 6.8 and calculating the hypothesized value of
NMOVES at various values of TIME.

Because the level-1 logistic model is not linear in TIME, its 
parameters do not have the usual interpretations. Instead, π0i

and π1i take on roles that relate to, but differ from, their roles 
in a linear model. For example, π0i is not the intercept but it is
related to and determines the value of the intercept. This can 
be deduced from figure 6.9 because the three curves in each 
panel, which share a common value of π0i, also have a common 
intercept. Substituting 0 for TIME into equation 6.8, we find an 
expression for the intercept to be 1 + {19/(1 + π0i)}.

Similarly, the second individual growth parameter, π1i, is not a 
slope per se, but it does determine the rapidity with which the 
trajectory approaches the upper asymptote. Comparison of the 
three curves in each panel illustrates this point. When π1i is 
small (the lower curve in each panel), the logistic trajectory 
rises slowly; but even when the trajectory begins at a higher 
elevation (as in the right panel), it never actually reaches the 
upper asymptote. When π1i is large (the upper curve in each

(p.229)
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Figure 6.9.  Understanding a logistic 
change trajectory. Hypothesized true 
logistic change trajectories for 9 children 
with varying individual growth 
parameters in equation 6.9.

panel), the 
logistic 
trajectory rises 
more rapidly. 
Even though 
these 
curvilinear 
trajectories 
have no single 
slope, the 
greater the 
value of π1i, 
the more 
rapidly the 
curve 
approaches its 
upper 
asymptote. For 
ease of 
exposition, we will therefore refer to this second parameter as a 
“slope.”
Where in the model do the asymptotes appear? Unlike other 
logistic trajectories with which you may be familiar, the model 
in equation 6.8 invokes two constraints: (1) all children have 
identical lower and upper asymptotes; and (2) these 
asymptotes are set to specific values—1 and 20. To verify 
these assertions, examine equation 6.8 and think about what 
would happen to Y as TIME—the number of games—tends to 
infinity, in either direction. (Although TIME cannot strictly 
tend toward minus infinity, the curve in equation 6.8 can.) As
TIME tends to minus infinity, the denominator of the second 
term on the right side increases dramatically, driving Y toward 
1. As TIME tends to plus infinity, the denominator of the 
second term decreases toward 1, driving Y toward 20. If you 
have sufficient data, you can postulate a level-1 logistic growth 
trajectory with asymptotes that vary from child to child. But in 
this small data set with high and erratic outcome variability, 
we cannot estimate child-specific asymptotes with any 
precision. After considering the rules of the Fox n’ Geese 
game and inspecting the data, we decided to pin the 
asymptotes at 1 and 20 for every child (1 and 20 are the 
minimum and maximum values of NMOVES in figure 6.8).

Figure 6.9.  Understanding a logistic 
change trajectory. Hypothesized true 
logistic change trajectories for 9 children 
with varying individual growth 
parameters in equation 6.9.
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(p.230) The logistic level-1 change trajectory in equation 6.8 is 
not linear in the individual growth parameters, π0i and π1i No 
matter how hard you try to manipulate the equation 
algebraically, you cannot express the outcome as a weighted 
linear composite of π0i and π1i, because the parameters: (1) 
appear in the denominator; and (2) are exponentiated. But 
dynamic inconsistency does not prevent us from specifying a 
regular linear level-2 model for variation in the individual 
growth parameters across children. If children differ in their 
trajectories—as the plots in figure 6.8 suggest—a simple pair 
of initial level-2 submodels for inter-individual differences in 
change is:

(6.9a) 
where

(6.9b) 
This model stipulates that level-1 logistic individual growth 
parameters—π0i and π1i—differ across children around unknown 
population average values, γ00 and γ10, with unknown population 
residual variances and , and covariance σ10.
If a level-1 individual growth model is not dynamically 
consistent, we cannot use software designed solely for fitting 
linear models to fit the new multilevel model for change. Many 
standard multilevel packages do not fit these models, although 
some feature additional procedures for specific kinds of 
nonlinear level-1 models. HLM, MLwiN, and STATA all have 
procedures for specifying and fitting a limited form of logistic 
change trajectory at level-1. SAS offers a particularly flexible 
routine, PROC NLMIXED, for fitting a level-1 trajectory of any
kind, whether linear in the parameters or not. In addition, the 
random effects—εij, ζ0i and ζ1i—need not be drawn from a 
normal distribution because binomial, poisson, and user-
defined distributions are also supported. Rather than delve 
into numeric details here, suffice it to say that the software 
uses an iterative maximum likelihood procedure for estimating 
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fixed effects and variance components (see Pinheiro & Bates,
1995, 2000). In what follows, we use this procedure to fit a 
logistic multilevel model for change using standard normal 
theory assumptions codified in equation 6.9b.

Model A of table 6.6 presents the results of fitting the logistic 
multilevel model for change in equations 6.8 and 6.9a to the 
Fox n’ Geese data. Not only are both fixed effects statistically 
significant (p < .001); there is also predictable inter-child 

variation in π1i ( ). (p.231)

Table 6.6: Results of fitting logistic change 
trajectories to the Fox n’ Geese data (n = 17)

Parameter Model A Model B

Fixed Effects

“Intercept,” 
π0i

Intercept γ00 12.9551***12.8840***

(READ –
)

γ01 −0.3745

“Slope,” π0i Intercept γ10 0.1227***0.1223***

(READ –
)

γ11 0.0405

Variance Components

Level-1: Within-
person

13.4005***13.4165***

Level-2: In 
“intercept”

0.6761 0.5610

In “slope” 0.0072* 0.0060~

Covariance 
between

“intercept” 
and

σ01 −0.0586 −0.0469

“slope”

Goodness-of-fit
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Parameter Model A Model B

Deviance 2479.7 2477.8

AIC 2491.7 2493.8

BIC 2496.7 2500.5
~ p < .10; * p < .05; ** p < .01; *** p < .001.

Model A is an unconditional logistic change model; Model B 
associates the level-2 predictor, READ, with both the 
“intercept” and “slope” of the logistic change trajectory.

Note: SAS PROC NLMIXED, Adaptive Gaussian Quadrature.

Because these parameters are not actually intercepts or slopes, we 
use a plot to facilitate interpretation. The left panel of figure 6.10
presents a prototypical trajectory for the average child. As 
hypothesized, this trajectory begins low and rises smoothly and 
nonlinearly over time. It does not near the potential asymptote of 
20 because the game’s difficulty prevents the average child from 
becoming proficient.
We next ask whether we can predict variation in the individual 
growth parameters. We illustrate this process by asking 
whether the level-1 individual growth parameters differ by the 
children’s scores on a standardized reading test. Model B of 
table 6.6 postulates the following level-2 submodel:

(6.10a) 
where we: (1) center READ on the sample mean to preserve the 
comparability of level-2 parameters across models; and (2) invoke 
the same assumptions about the level-2 residuals articulated in 
equation 6.9b. Neither relationship with either individual growth 
parameter is (p.232)  
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Figure 6.10.  Displaying the results of 
fitting a logistic change trajectory to the 
Fox n’ Geese data. Model A: 
Unconditional logistic growth model. 
Model B: Allows parameters in the 
logistic growth model to vary by the 
child’s reading skill.

statistically 
significant, 
possibly 
because of the 
small sample 
size. Notice, 
however, that 
better readers 
approach the 
upper 
asymptote 
more rapidly (

). This 
differential is 
apparent in the 
right panel of 
figure 6.10, 
which displays 
fitted 
trajectories for 
two 
prototypical 
children with 
reading scores two standard deviations above and below the 
sample mean. Although initially indistinguishable, better readers 
are more likely to near the upper asymptote of 20 after playing the 
full complement of 27 games.

6.4.3 A Survey of Truly Nonlinear Change Trajectories

By now you should realize that you can represent individual 
change using a virtually limitless number of mathematical 
functions. Even the “simple” class of polynomials in table 6.4 is 
infinite in size, one for each order of polynomial. If you 
multiply these by all the possible transformations—for both 
the outcome and temporal predictor—and all the possible 
discontinuities, the number of trajectories grows without 
bound. And these are only the dynamically consistent 
trajectories! There also exist an infinite number of trajectories 
that are not dynamically consistent. And in an infinite 
universe, everything that is possible, is possible an infinite 
number (p.233)  of times. In other words, for any set of 

longitudinal data, there exists an unlimited number of ways to 

Figure 6.10.  Displaying the results of 
fitting a logistic change trajectory to the 
Fox n’ Geese data. Model A: 
Unconditional logistic growth model. 
Model B: Allows parameters in the 
logistic growth model to vary by the 
child’s reading skill.
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select an equally well-fitting level-1 individual growth 
trajectory!

How then can you possibly specify a suitable model for your 
data and purposes? Clearly, you need more than empirical 
evidence. Among a group of well-fitting growth models, blind 
numeric comparison of descriptive statistics, goodness-of-fit, 
and regression diagnostics will rarely pick out the best one. As 
you might expect, we recommend that you blend theory and 
empirical evidence, articulating a rationale that you can 
translate into a statistical model. This recommendation 
underscores an important point that can often be overlooked 
in the heat of data analysis: substance is paramount. The best 
way to select an appropriate individual growth model is to 
work within an explicit theoretical framework. We suggest 
that you ask not “What is the best model for the job?” but, 
rather, “What model is most theoretically sound?”

As we highlight the importance of substance, we hasten to 
note that we are statisticians writing about methods, not 
substantive researchers writing about theories of change. In 
some ways, this makes the task we are about to embark upon
—an overview of substantively motivated individual growth 
models—impossible. To be complete, we would need to survey 
all models for change within dozens of substantive areas—
psychiatry, criminology, sociology, medicine, economics, and 
so on. This is not possible, nor is it our job. Instead, we offer a 
taste of available models by reviewing ideas within two 
substantive areas: biology and cognitive science. Through 
these discipline-based examples, we hope to scaffold your 
work in your substantive field.

Thoughtful work on trajectories of biological change goes back 
more than a century. The Count de Montbeillard conducted 
the first documented study of biological growth between 1759 
and 1777, when he recorded annual data on the physical 
stature of his son (see Tanner, 1964). Since then, biologists 
have used an enormous variety of curvilinear models to 
represent change. Mead and Pike (1975) divided this large set 
into four classes: (1) polynomial, (2) hyperbolic, (3) inverse 
polynomial, and (4) exponential.
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Having discussed the polynomial family in section 6.3, we 
spend little time on them here. Few biologists use polynomials 
because these trajectories do not flatten out asymptotically as 
the curve approaches an upper or lower limit. This feature is 
impractical when modeling physical constructs like height (but 
perhaps not weight!), as body shape and size typically level off 
with age. Because hypotheses about biological change often 
include a plateau, investigators usually choose growth models 
from the other families of curves, which do contain 
asymptotes.

(p.234)

Table 6.7: Selected curvilinear trajectories, and 
level-1 models, used for truly nonlinear change 
over time

Family Specific 
curve

Level-1 model

Hyperbolic Rectangular 
hyperbola

Inverse 
polynomial

Inverse 
quadratic

Exponential Simple 
exponential

Negative 
exponential

Logistic

Table 6.7 presents examples of the most popular models from 
the three remaining families. The table contains one example 
from the hyperbolic and inverse polynomial classes, and three 
from the exponential class. Whenever a parameter’s role 
resembles its role in a corresponding polynomial model, we 
have tried to use consistent labels. For example, although π0i

is not always equal to the trajectory’s intercept, if we label it 
“π0i,” it is usually associated with, and in someway 
determines, the intercept. Similarly, π1i is not always equal to 
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the trajectory’s slope—after all, curves do not have a single 
slope—but when we use this label, the parameter usually 
determines the rate at which the outcome grows or 
approaches an asymptote. In addition to the familiar “π” 
symbols, these models include several “α” parameters with 
labels like αi, α1i, and α2i. Each represents a type of 
asymptote, again for the ith individual. Learning what each 
parameter represents in its trajectory is a critical part of using 
these models.

Hyperbolic Growth

The rectangular hyperbola is one of the simplest nonlinear 
models for individual change. TIME enters as a reciprocal in 
the denominator of the model’s right side. This model 
possesses an important property for modeling biological and 
agricultural growth: over time, its outcome smoothly 
approaches—but never reaches—an asymptote. This behavior 
is apparent in the top left panel of figure 6.11, which plots 
rectangular hyperbolae for specific combinations of values of 
the individual growth parameters. In plotting these 
trajectories, we ignore the level-1 residuals and display only 
the true change trajectory. We therefore label the ordinate

(p.235)
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Figure 6.11.  Understanding how 
alternative nonlinear change trajectories 
represent different patterns of change 
over time.

E(Y), the 
“population 
expectation of
Y.” For clarity, 
we also drop 
the subscript i.
All three 
hyperbolae 
decelerate 
smoothly 
toward a 
ceiling, 
regardless of 
the 
parameters’ 
specific 
values. What 
role does 
each 
parameter 
play in 
determining 
the 
trajectory’s 
shape? To 
highlight 
these roles, 
we have 
selected the 
hyperbolic 
trajectories in figure 6.11 so that αi is constant at (p.236)  100 
and π1i is 0.01, 0.02, or 0.10. Notice that all three trajectories 
approach the same asymptote, 100, which is the value of αi. 
The trajectories differ, however, in their rate of approach. The 
second parameter, π1i, determines this rate: the smaller its 
value, the more rapid the approach. The reason for this
inverse relationship (in which higher values reflect a less rapid
approach) is that π1i appears in the model’s denominator. 
Notice, too, that seemingly small differences in π1i yield large 
differences in the shape of the trajectory.5

Figure 6.11.  Understanding how 
alternative nonlinear change trajectories 
represent different patterns of change 
over time.
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Despite these compelling interpretations, the hyperbolic 
model is rarely an ideal representation for biological change. 
The problem is that as TIME nears zero, Y zooms off toward 
negative infinity (we avoided this calamity in our plots by 
blithely eliminating every part of the trajectory below Y=0). 
This disconcerting behavior leads most researchers, who 
otherwise like this curve’s simplicity and asymptotic 
properties, to reject it in favor of the inverse polynomial and 
exponential models that we now describe.

Inverse Polynomial Growth

The family of inverse polynomials extends the rectangular 
hyperbola by adding higher powers of TIME to the 
denominator of the quotient on the model’s right side. Table
6.7 presents one example: the inverse quadratic. The inverse 
quadratic contains three parameters, the first two of which, αi

and π1i, function like their identically named peers in the 
rectangular hyperbola. We display three true inverse 
quadratic trajectories in upper right panel of figure 6.11 at 
selected values of the third parameter, π2i. In drawing these 
curves, we fix αi at 100 and π1i at 0.02, as we did for the 
middle rectangular hyperbolic trajectory in the upper left 
panel of figure 6.11.

Comparing these three inverse polynomial trajectories, notice 
that π2i acts to disturb the “usual” curvature of the hyperbolic 
path to asymptote (just as π2i does in a pure quadratic). When 
π2i = 0, the inverse quadratic and the rectangular hyperbola 
are identical (as expected). When π2i is positive, the inverse 
quadratic approaches its asymptote more rapidly than the 
corresponding hyperbola; when π2i is negative, the inverse 
quadratic approaches its asymptote less rapidly. If π2i is 
sufficiently large and negative, the trajectory can even turn 
away from its asymptote (as the lower trajectory illustrates). 
Unfortunately, like the rectangular hyperbola, the inverse 
quadratic trajectory departs dramatically for negative infinity 
at small values of TIME.

These specifications just touch the surface of the pool of 
possible hyperbolic and inverse polynomials. You can generate 
others by modifying (p.237)  the expressions in table 6.7, for 
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example, by: (1) changing the negative signs into positive 
signs; (2) adding higher orders of TIME (with additional 
growth parameters) to the denominator of the inverse 
quadratic; or (3) combining either model with a standard 
polynomial to create a “mixture” model. Even within these 
families, you will be amazed at the complexity of shape that 
can be generated. But if you devise new models using our 
examples as springboards, remember that parameter 
interpretation changes with changing mathematical structure. 
We suggest that you always plot intuitive exemplars to help 
illustrate the model’s behavior.

Exponential Growth

Exponential growth is probably the most widely used class of 
truly nonlinear models. This theoretically compelling group 
has been used for centuries to model biological, agricultural, 
and physical growth. This class includes a wide range of 
different functional forms, but all contain an exponent of e, the 
base of the natural logarithm. The last three rows of table 6.7
present three popular alternatives. The two bottom panels of 
figure 6.11 display underlying true trajectories for two of 
these: the simple exponential and the negative exponential.

The simple exponential growth model, also known as an
explosive trajectory, is used by biologists to model the 
unbridled breeding of bacteria in the presence of unlimited 
nutrients. Those who say the earth’s population is “increasing 
exponentially” are referring to this model. We find it helpful to 
view this model as an extension of a linear model whose 
outcome has been transformed logarithmically. This link to 
linearity allows us to interpret its parameters, π0i and π1i, in 
ways that are related to the intercept and slope of a straight 
line. The bottom left panel of figure 6.11 presents three true 
explosive growth trajectories in which the first parameter, π0i, 
is set to 5. Notice that this is also the value of its intercept, 
and so trajectories with higher values of π0i begin at higher 
elevations. The second growth parameter, π1i, determines how 
rapidly the trajectory “explodes” upwards: the higher the 
value of π1i, the more rapid the rise toward infinity.
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Next consider the negative exponential growth model, 
displayed in the lower right panel of figure 6.11. This model 
dampens the unbridled growth of the simple exponential by 
including a ceiling beyond which the curve cannot rise. 
Epidemiologists use this model to track the growth of the 
number of new cases in epidemics, which necessarily level off 
when there is no one new left to infect. Agricultural 
researchers use this model to track crop yields and other 
outcomes that demand a single upper (p.238)  asymptote. The 
negative exponential model has three parameters, αi, π0i, and 
π1i. As shown in the lower right panel of figure 6.11, π0i and αi

represent the intercept and asymptote, and π1i determines 
how rapidly the trajectory approaches its asymptote; the 
larger its value, the more rapid the approach.

The logistic trajectory is widely used in biology because it 
contains both a lower and an upper asymptote. We have 
already used one version when modeling children’s 
performance in the game of Fox n’ Geese. Additional 
parameters α1i and α2i represent the lower and upper 
asymptotes, respectively. Figure 6.9 already presented three 
sets of logistic growth trajectories whose values of α1i and α2i

are set to 1 and 20, respectively. In these displays, we forced 
everyone to have these common asymptotes. With sufficient 
data, you can estimate the asymptotes as well. The remaining 
parameters, π0i and π1i, again determine, but do not equal, the 
trajectory’s intercept and the rapidity with which it transits 
between asymptotes. This is also apparent in figure 6.9, in 
which the trajectories with the lower values of π0i have lower 
intercepts and those with the higher values of π1i approach the 
upper asymptote more rapidly.

6.4.4 From Substantive Theory to Mathematical Representations of 
Individual Growth

Having surveyed a broad array of nonlinear trajectories, we 
now take a different approach. Instead of proceeding from 
mathematical model to application, we proceed from 
substantive theory to mathematical model. In doing so, we 
hope to show how you can translate theories into 
mathematical representations that you can then examine 
empirically with data. To focus our discussion, we draw from 
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the literature on human cognition (see, e.g., Guire and 
Kowalski, 1979; and Lewis, 1960).

We begin with Robertson’s (1909) theory of human learning, 
developed from a well-known law of physical chemistry known 
as the autocatalytic principle. Some chemical reactions are 
accelerated by catalysts, an external substance that helps the 
reaction along. Others autocatalyze—that is, the products of 
the reaction itself accelerate the process. According to the 
autocatalytic principle, the rate at which a reaction proceeds 
is proportional to the product of: (1) the amount of catalyst 
currently available; and (2) the amount of chemical as yet 
unreacted.

Robertson hypothesized that learning could be modeled as an 
autocatalytic brain process that follows the same 
mathematical law. Expressing this principle in cognitive terms, 
we represent the rate at which learning occurs as: (p.239)

where the symbol “∞” means “is proportional to.” For readers 
familiar with differential calculus, we can express this equation in 
mathematical terms by writing:

where Y is the amount learned by time t, α is an upper limit (or 
asymptote) on the amount that can be learned, and k is a constant 
of proportionality. For readers unfamiliar with differential calculus, 
the expression on the left side of this equation is known as the first 
derivative of Y with respect to time. Fortunately, we know this 
quantity quite well by another name: the rate of change in Y over 
time.
Robertson’s learning equation appears to differ dramatically 
from our other models, but any difference is more cosmetic 
than real. The model above is a first-order differential equation
framed in terms of the rate of change in Y. Using the standard 
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practices of calculus, we can re-express this differential 
equation in terms of Y by integrating this expression with 
respect to time. Using terms that reflect our usual notation, 
and adding subscripts i and j to represent persons and 
occasions, integration of Robertson’s equation yields:

where π0i and π1i are constants related to the original constant of 
proportionality k.6 Examining the truly nonlinear models in table
6.7, we see that Robertson’s autocatalytic hypothesis leads to a 
logistic trajectory for learning. Over time, the knowledge of 
individual i rises smoothly from a lower asymptote (of 0) toward an 
upper asymptote of αi at a rate determined by π1i. A plot of this 
curve would follow a logistic trajectory (such as those in figure 6.9).
As we demonstrate how to translate substantive theory into 
models, we must highlight a serious flaw in our argument: the 
omission of measurement errors. Our formulation of 
Robertson’s learning curve includes no residuals, no errors, no 
ε’s. You could argue that this omission is not problematic 
because this curve represents Robertson’s hunch about true
change—about the deep functioning of the human brain. But a

(p.240)  representation without errors implies that we can 
measure brain functioning infallibly, which we cannot. The 
number of moves a child makes when playing Fox n’ Geese 
does not tell us about the inner functioning of his or her brain. 
It tells us about the child’s actions, which we hope reflect 
cognitive ability. To account for measurement error, we 
restate Robertson’s hypothesis by adding a residual term:

When you fit this trajectory to data, you evaluate its goodness of fit 
and assess whether a logistic trajectory provides a reasonable 
description. But because measurement is not infallible, neither are 
your conclusions.
Robertson’s elegant argument is compelling, in part, because 
of its scientific roots. By beginning with a hypothesis about the 
neurological mechanism that drives learning, he used 
mathematical symbols, algebra, and calculus to express his 
hypothesis as a statistical model. Psychologists who fit a 
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logistic model to empirical data on learning—as we did for the 
Fox n’ Geese data—implicitly test Robertson’s hypotheses 
about brain function. Our ability to fit a logistic trajectory to 
our data provides support for his autocatalytic hypothesis. Of 
course, we do not argue that consistency between the data 
and model proves Robertson’s hypothesis. Other hypotheses 
and other models may fit equally well, or better. But such is 
the nature of empirical research: the best we can do is fail to 
disprove Robertson’s, or anyone’s, hypothesis.

Robertson hypothesized other models for learning based upon 
his biochemical conceptions. For example, he hypothesized 
that the neurological autocatalytic process that drives learning 
could be retarded by a reverse chemical process that dampens 
growth. Addition of a dampening effect does not alter the 
logistic trajectory’s fundamental shape, but it modifies its 
asymptote and the rate at which this asymptote is approached. 
In building this model, Robertson argued that each learner 
could keep only a given amount of material in his or her brain. 
This suggested that the rate at which learning took place was 
proportional not to Y (α – Y) as above, but rather to Yα.

He applied these ideas to the study of rote memorization, by 
making subjects repeatedly read and recall lists of nonsense 
syllables. He thereby developed another individual growth 
trajectory that still enjoys wide application today:

where we use our usual notation system and add a residual term. In 
Robertson’s study, Y ij represents the number of syllables individual
i could (p.241)  recall on occasion j and TIME ij is the number of 
repetitions required to achieve that level of memorization. 
Comparing this equation to those in table 6.7, we find that this 
dampened autocatalytic process is a simple exponential trajectory 
in which π0i and π1i play the familiar “intercept” and “rate” roles. 
Although Robertson (1908) fit this model to data, he found it 
imperfect because he believed that the curve should eventually “tip 
over” (as in a logistic function).
Clark Hull (1943, 1952) developed a variety of statistical 
models for human learning trajectories from theoretical 
conceptions about the acquisition and extinction of simple 
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responses. His neurological hypotheses about how simple 
learned responses are evoked led him to postulate the 
following negative exponential trajectory for the development 
of what he called habit strength:

where we use our usual notation and add a residual term. Outcome
Y ij represents habit strength for individual i on occasion j and TIME
represents the corresponding number of trials. αi is an upper 
asymptote parameter and π1i is a “rate” parameter that determines 
how rapidly individual i approaches that asymptote. Examining 
table 6.7, you will see that this is just a negative exponential 
growth model with intercept zero (because Hull assumed that habit 
strength must be zero prior to the trials).
Hull’s negative exponential model for individual change 
remains popular today. It is identical to an earlier learning 
curve proposed by the Russian physicist Schukarew (1907), 
which was based—like Robertson’s—on the application of 
principles of physical chemistry to brain function. Throughout 
the last century, the negative exponential learning curve has 
arisen repeatedly in many domains, exciting cognitive 
theorists and empiricists alike. Estes and Burke used it to 
develop a statistical theory of learning (Estes, 1950; Estes and 
Burke, 1955), Grice (1942) applied it to the negotiation of 
mazes by hungry albino rats and Hicklin (1976) applied it to 
mastery learning and IQ growth in human beings.

Psychologist L. L. Thurstone broke theoretical and empirical 
ground on human learning in his doctoral thesis (1917) and 
elsewhere (1930). Stressing the importance of specifying “a 
rational equation for the learning function,” he hypothesized 
that attainment (Y) could depend upon practice (a proxy for 
time) for individual i on occasion j, using the following model:

where, as usual, π0i represents the intercept, αi represents the 
upper asymptote, and π1i determines how rapidly the curve 
approaches (p.242)  
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Figure 6.12.  Understanding alternative 
nonlinear change trajectories implied by 
Thurstone’s learning equation.

asymptote. We 
present 
illustrative true 
trajectories for 
Thurstone’s 
learning 
trajectory in 
figure 6.12, for 
three values of 
the rate 
parameter, π1i

(1, 5, and 10). 
Notice that the 
curve 
resembles a 
hyperbola, 
with a finite 
intercept 
(instead of the 
infinite 
intercept of the 
rectangular 
hyperbola in 
figure 6.11). 
The larger the 
value of the 
rate 
parameter, the
less rapidly the 
curve 
approaches the 
asymptote. As 
with the rectangular hyperbola, this inverse relationship arises 
because the rate parameter appears in the equation’s denominator. 
Thurstone used this trajectory to model the learning of mazes by 
rats, and his equation was subsequently modified and extended by 
many colleagues, including Gulliksen (1934, 1953), to represent 
more complex kinds of learning.

Notes:

(1.) As shown in section 6.1.2, this perspective has important 
implications when postulating level-2 submodels. Because 
these level-1 discontinuities are fundamental features of our 
model, we will allow these parameters to vary randomly at 

Figure 6.12.  Understanding alternative 
nonlinear change trajectories implied by 
Thurstone’s learning equation.
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level-2. This stands in stark contrast to our recommendations 
about generic time-varying predictors offered in chapter 5.

(2.) Differentiating with respect to time, the true slope of the 
quadratic change trajectory is π 1i + 2π 2i TIME ij, which then 
has value π 1i when TIME ij = 0.

(3.) Actually, we oversimplify here. The number of waves of 
data needed also depends on whether you fix any of the 
individual growth parameters at level-2. If you fix some of 
them, you may require fewer waves of data, depending on the 
temporal design of the data-collection (Rindskopf, 2002, 
private communication).

(4.) Strictly speaking, this argument about average curves 
requires the data to be balanced and time structured.

(5.) The slope of the hyperbolic trajectory is (1/π 1i t 2), and so 
rate of change in the outcome is proportional to (1/π 1i), as 
implied in the text, but also depends on the value of time, as 
expected for a curved trajectory.

(6.) Specifically, π 0 = e(−cα) and π 1 = kα, where c is the 
constant of integration.
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Change begets change. Nothing propagates so fast.… 
The mine which Time has slowly dug beneath familiar 
objects is spring in an instant, and what was rock before, 
becomes but sand and dust.

—Charles Dickens

In previous chapters, we often emphasized the fixed effects in 
the multilevel model for change. Doing so made great sense 
because the fixed effects typically provide the most direct 
answers to our research questions. In this chapter, in contrast, 
we focus on the model’s random effects as embodied in its 
error covariance structure. Doing so allows us to both 
describe the particular error covariance structure that the 
“standard” multilevel model for change invokes and it also 
allows us to broaden its representation to other—sometimes 
more tenable assumptions—about its behavior.

We begin, in section 7.1, by reviewing the “standard” 
multilevel model for change, expressed in composite form. In 
section 7.2, we closely examine this model’s random effects, 
demonstrating that the composite error term is indeed both 
heteroscedastic and autocorrelated, as we would prefer for 
longitudinal data. But we also find that this error covariance 
structure may not be as general as we might like and, in some 
settings, alternatives may have greater appeal. This brings us 
to section 7.3, in which we compare several alternative error 
covariance structures and provide strategies for choosing 
among them.

7.1 The “Standard” Specification of the 
Multilevel Model for Change

Throughout this chapter, we use a small, time-structured data 
set first presented in Willett (1988). On each of four days, 
spaced exactly one week apart, 35 people completed an 
inventory that assesses their performance (p.244)

Table 7.1: Ten cases from a person-level data set 
containing scores on an opposite’s naming task 
across four occasions of measurement, obtained 
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weekly, and a baseline measurement of COG, a 
measure of cognitive skill, obtained in the first 
week

ID OPP1 OPP2 OPP3 OPP4 COG

01 205 217 268 302 137

02 219 243 279 302 123

03 142 212 250 289 129

04 206 230 248 273 125

05 190 220 229 220 81

06 165 205 207 263 110

07 170 182 214 268 99

08 96 131 159 213 113

09 138 156 197 200 104

10 216 252 274 298 96

on a timed cognitive task called “opposites naming.” At wave 1, 
each person also completed a standardized instrument assessing 
general cognitive skill. Table 7.1 presents the first ten cases in the 
person-level data set (we use this format to conserve space), which 
includes values of: (a) OPP1, OPP2, OPP3, and OPP4—the 
individual’s opposites-naming score on each occasion; and (b) COG, 
the baseline cognitive skill score. The full person-period data set 
has 140 records, 4 per person. In what follows, we assume that any 
skill improvement over time results from practice, not cognitive 
development. That said, research interest centers on determining 
whether opposites-naming skill increases more rapidly with 
practice among individuals with stronger cognitive skills.
We specify the “standard” multilevel model for change in the 
usual manner. For individual i on occasion j, we assume that 
opposites-naming score, Y ij, is a linear function of TIME:

(7.1a) 
where subscript i has been omitted from predictor TIME because 
the data are time-structured and

(7.1b) 
To allow the individual growth parameters to take on their usual 
interpretations for person i—π0i as the true initial level and π1i as 
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the true weekly rate of change—we scale TIME so that the first 
measurement occasion is labeled 0 and the others are labeled 1, 2, 
and 3. In the “standard” model we also assume that the random 
effects εij are drawn from a (p.245)  univariate normal distribution 

with zero mean and unknown variance  To further clarify the 
meaning of this assumption—our focus in this chapter—we add the 
notation “iid,” which declares that the errors are mutually
independent, across occasions and persons, and
identically distributed. We discuss the implications of this 
assumption in detail further below.
To allow individual change trajectories to differ systematically 
across people, we posit a level-2 submodel in which the 
cognitive skills score (COG) is associated with both growth 
parameters:

(7.2a) 
where

(7.2b) 
To facilitate interpretation, we center the continuous predictor
COG on its sample mean. The level-2 fixed effects capture the 
effect of cognitive skill on the average trajectories of change; the 
level-2 random effects, ζ0i and ζ1i, represent those parts of the 
level-2 outcomes that remain “unexplained” by cognitive skill. In 
the “standard” multilevel model, we assume that these random 
effects have zero mean and that everyone draws them 
independently from a normal distribution. To allow for the 
possibility that even after accounting for cognitive skill, the 
unpredicted portions of a person’s true intercept and true slope 
may be intertwined, we assume that each person draws both 
level-2 residuals simultaneously from a bivariate normal 
distribution with variances and and covariance σ01.

Table 7.2 presents the results of fitting this “standard” 
multilevel model for change to the opposites-naming data. 
Because we focus in this chapter on the model’s stochastic 
portion, we use restricted, not full, maximum likelihood (see 
section 4.3 for a comparison of methods). For an individual of 
average cognitive skill, initial level of opposites-naming skill is 
estimated to be 164.4 (p < .001); this average person’s weekly 
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rate of linear change is estimated to be 27.0 (p < .001). 
Individuals whose cognitive skills differ by one point have an 
initial opposites-naming score that is 0.11 lower (although this 
decrement is not statistically significant, p = .82); their 
average weekly rate of linear change is 0.43 higher (p < .01). 
Even after including cognitive skill as a predictor of both 
initial status and change, we detect statistically significant 
level-2 residual variation in (p.246)

Table 7.2: Change in opposite’s naming over a 
four-week period as a function of baseline IQ

Parameter Estimate

Fixed Effects

Initial 
status, 
π0i

Intercept γ00 164.37***

(COG – ) γ01 −0.11

Rate of 
change, 
π1i

Intercept γ10 26.96***

(COG – ) γ11 0.43**

Variance Components

Level–1: Within-person 
variance

159.48***

Level–2: Variance in ζ0i 1236.41***

Variance in ζ1i 107.25***

Covariance of ζ0i

and ζ1i

σ01 −178.23*

Goodness-of-fit

Deviance 1260.3

AIC 1268.3

BIC 1274.5

~ p < .10; * p < .05; ** p < .01; *** p < .001.
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Parameter estimates, approximate p-values, and goodness-
of-fit statistics from fitting a standard multilevel model for 
change (n = 35).

Note: SAS PROC MIXED, Restricted ML.

both initial status (1236.41, p < .001) and rate of change (107.25, p
< .001). We also detect a statistically significant negative 
covariance (−178.2, p < .05) between the level-2 residuals, ζ0i and 
ζ1i, which suggests that, after controlling for cognitive skill, those 
with weaker initial opposites-naming skills improve at a faster rate, 
on average, than those with stronger initial skills. To interpret this 
estimate more easily, we compute the partial correlation between 
change and initial status to find:

Finally, the estimated level-1 residual variance, , is 159.5.

7.2 Using the Composite Model to Understand 
Assumptions about the Error Covariance Matrix

To understand the error covariance structure in the 
“standard” multilevel model for change, we move to the 
composite representation obtained by collapsing the level-2 
submodels in equation 7.2a into the level-1 submodel in 
equation 7.1a: (p.247)

(7.3)

Multiplying out and rearranging terms yields:
(7.4)

where random effects εij, ζ0i, and ζ1i retain the distributional 
assumptions of equations 7.1b and 7.2b.
As in section 4.2, brackets distinguish the model’s structural
and stochastic portions. Its structural portion contains our 
hypotheses about the way that opposites-naming skill changes 
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with time and depends on baseline cognitive skill. Its 
stochastic portion contains the composite residual, which we 
now label r, for convenience. The value of r for individual i on 
occasion j is:

(7.5) 
which is a weighted linear combination of the original three 
random effects from the level-1/level-2 specification (εij, ζ0i and ζ1i, 
with constants 1, 1, and TIME j acting as the weights). Our major 
focus in this chapter is on the statistical properties of r ij.
But before examining these properties, let us simplify the 
composite model in equation 7.4 by substituting r ij as defined 
in equation 7.5 into equation 7.4:

(7.6)

The composite model now looks like a regular multiple regression 
model, with the “usual” error term replaced by “r.” This reinforces 
the notion, discussed in chapter 4, that you can conceptualize the 
multilevel analysis of change as a multiple regression analysis in 
the person-period data set, in which you regress the outcome on 
the main effects of TIME, a level-2 predictor (COG), and their 
statistical interaction.
Because of the special nature of “r,” our standard practice is 
to fit the model in equation 7.6 by GLS regression analysis, not 
OLS, making specific assumptions about the distribution of the 
residuals. But before doing so, let’s suppose for a hypothetical 
moment that we were willing to invoke the simpler OLS 
assumptions that all the r ij are independent and normally 

distributed, with zero means and homoscedastic variance ( , 
say). (p.248)  We could codify these simple distributional 
assumptions for all the residuals simultaneously in one grand 
statement:
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(7.7)

where, because we have four waves of data per person, we have 
four residuals (one per occasion) for each of the n sample members. 
With a different number of waves of data, we would simply rescale 
the component vectors and matrices.
While equation 7.7 may appear needlessly complex for 
describing the behavior of the residuals in an OLS analysis, it 
provides a convenient and generalizable form for codifying 
assumptions on residuals that we will find useful, later. It says 
that the complete set of residuals in the analysis has a
multivariate normal distribution. The statement has several 
important features:

• It contains a vector of random variables whose 
distribution is being specified. To the left of the “is 
distributed as” sign (“~”), a column contains all the random 
variables whose distribution is being specified. This vector
contains all the model’s residuals, which, for our data, run 
from the four residuals for person 1 (r 11, r 12, r 13, and r 14), 
to those for person 2 (r 21, r 22, r 23, r 24) and so on, through 
the four residuals for person n.

• It states the distribution type. Immediately after the ~, we 
stipulate that every element in the residual vector is 
normally distributed (“N”). Because the vector has many 
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(“multi”) entries, the residuals have a multivariate normal 
distribution.

• It contains a vector of means. Also to the right of the ~, 
inside the (p.249)  parentheses and before the comma, is a 
vector of hypothesized means, one for each residual. All 
these elements are 0, reflecting our belief that the 
population mean of each residual is 0.

• It contains an error (or, residual) covariance matrix. The 
last entry in equation 7.7 is the error covariance matrix, 
which contains our hypotheses about the residual variances 
and covariances. Under classical OLS assumptions, this 
matrix is diagonal—all elements are zero, except those 
along the main diagonal. The off-diagonal zero values 
represent the residual independence assumption, which 
stipulates that that the residuals do not covary. Along the 
diagonal, all residuals have an identical population 

variance, . This is the residual homoscedasticity
assumption.

The distributional statement in equation 7.7 is inappropriate for 
longitudinal data. Although we expect the composite residuals to be 
independent across people and normally distributed with zero 
means, within people we expect them to be heteroscedastic and
correlated over time. We can write an error covariance matrix that 
reflects these new “longitudinal” assumptions as:
(7.8)
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where, again, the dimensions of the vectors and matrices reflect 
the design of the opposites-naming study.
The new distributional specification in equation 7.8 allows the 
residuals in the composite model to have a multivariate 
normal distribution with zero means and a block diagonal, not
diagonal, error covariance structure. The term “block 
diagonal” means that all the matrix’s elements are zero, 
except those within the “blocks” arrayed along the diagonal, 
one per person. The zero elements outside the blocks indicate 
that each (p.250)  person’s residuals are independent of all 

others’—in other words, the residuals for person i have zero 
covariance with everyone else’s residuals. But the non-zero 
covariance parameters within each block allow the residuals to 
covary within person. In addition, the multiple distinct 
parameters along each block’s diagonal allow the variances of 
the within-person residuals to differ across occasions. These 
distinctions between the diagonal and the block diagonal error 
covariance matrices demark the fundamental difference 
between a cross-sectional and longitudinal design.1

Notice that the blocks of the error covariance matrix in 
equation 7.8 are identical across people. This homogeneity 
assumption says that, in an analysis of change, although the 
composite residuals may be heteroscedastic and dependent
within people, the entire error structure is repeated identically 
across people—that is, everyone’s residuals are identically 
heteroscedastic and autocorrelated. This assumption is not 
absolutely necessary, as it can be tested and relaxed in limited 
ways (provided you have sufficient data). Yet we typically 
invoke it for practical reasons, as it improves dramatically the 
parsimony with which we can specify the model’s stochastic 
portion. Limiting the number of unique variance/covariance 
components in a hypothesized model improves the rapidity 
with which iterative model fitting converges. If we allowed 
each person in this study to possess a unique set of variance 
components, for example, we would be need to estimate 10n
variance components—6n more than the number of 
observations on the outcome in the person-period data set!

Adopting the homogeneity assumption allows us to express the 
distributional assumptions in equation 7.8 in more 
parsimonious terms by writing:
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(7.9) 
Equation 7.9 says that the complete vector of residuals r has a 
multivariate normal distribution with mean vector 0 and a block-
diagonal error covariance matrix constituted from submatrices, Σr

and 0, where:

(7.10) 
(p.251)  Again, the dimensions of Σr reflect the design of the 

opposite-naming study.
When you investigate random effects in the analysis of change, 
you anticipate that the composite residuals will have a 
multivariate distributional form like equation 7.8 or 7.9. As 
part of your analyses, you estimate the elements of this error 
covariance matrix, which means that—under the homogeneity 
assumption—you estimate the elements of the error 
covariance submatrix Σr, in equation 7.10.

This specification of the Σr error covariance submatrix—and 
hence the shape of the full error covariance matrix—is very 
general. It contains a set of error variance and covariance 
parameters (four of the former and six of the latter, for the 
opposites-naming data), each of which can take on an 
appropriate value. But when you specify a particular multilevel 
model for change, you invoke specific assumptions about these 
values. Most important for our purposes here is that the 
“standard” multilevel model for change invokes a specific 
mathematical structure for the r ij As we show below, this 
model constrains the error covariance structure much more 
than that specified in equations 7.9 and 7.10.
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What does the error covariance submatrix Σr of the “standard” 
multilevel model for change look like? When we presented this 
model earlier in the book, we focused on its ability to 
represent hypotheses about fixed effects. Does it also provide 
a reasonable covariance structure for the composite residuals? 
Fortunately, most of its behavior is exactly what you would 
hope and expect. First, because a weighted linear combination 
of normally distributed variables is also normally distributed, 
for example, each composite residual in equation 7.5 is also 
normally distributed, as specified in equation 7.9. Second, 
because the mean of a weighted linear combination of random 
variables is equal to an identically weighted linear 
combination of the means of those variables, the mean of the 
composite residual in equation 7.5 must also be zero, as 
specified in equation 7.9. Third, the error covariance matrix of 
the composite residuals is indeed block diagonal, as specified 
in equation 7.9. But fourth, in the standard multilevel model 
for change, the elements of the Σr error covariance blocks in 
equations 7.9 and 7.10 possess a powerful dependence on 
time. As this is both the most interesting—and potentially 
troublesome—aspect of the standard model, we delve into this 
feature in some detail below.

7.2.1 Variance of the Composite Residual

We begin by examining what the “standard” multilevel model 
for change hypothesizes about the composite residual’s 
variance. Straightforward (p.252)  algebraic manipulation of r

ij in equation 7.5 provides an equation for the diagonal 
elements of the error covariance submatrix Σr, in equation
7.10, for the standard multilevel model for change, in terms of
TIME and the model’s variance components. Under the 
standard multilevel model for change, the population variance 
of the composite residual at TIME t j is:

(7.11)

We can use this equation to obtain estimates of composite residual 
variance on each occasion for the opposites-naming data. 
Substituting the four associated values of TIME (0, 1, 2, and 3) and 
estimates of the variance components from table 7.2 into equation
7.11, we have:
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Rewriting the estimated error covariance sub-matrix  in 
equation 7.10 with its diagonal entries replaced by their estimates, 
we have:
(7.12)

So, under the standard multilevel model for change, composite 
residual variance for the opposites-naming data differs across 
occasions, revealing anticipated heteroscedasticity. For the 
opposites-naming data, composite residual variance is greatest at 
the beginning and end of data collection and smaller in between. 
And, while not outrageously heteroscedastic, this situation is 
clearly beyond the bland homoscedasticity that we routinely 
assume for residuals in cross-sectional data.
Based on the algebraic representation in equation 7.11, what 
can we say about the general temporal dependence of 
composite residual variance (p.253)  in the “standard” 
multilevel model for change? We can gain insight into this 
question by completing the square in equation 7.11:
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(7.13)

Because t j appears in a term that is squared, equation 7.13
indicates that composite residual variance in the “standard” 
multilevel model for change has a quadratic dependence on time. It 

will be at its minimum at time  and will increase
parabolically and symmetrically over time on either side of this 
minimum. For the opposites-naming data, we have:

which tells us that, under the standard multilevel model for change, 
the composite residual variance has an estimated minimum of 
almost 1100, occurring about two-thirds of the way between the 
second and third measurement occasions in the case of the 
opposites-naming data.
So, ask yourself! Does it make sense to assume, in real data—
as the “standard” multilevel model for change does implicitly
—that composite residual variance increases parabolically 
over time from a single minimum? For the “standard” model to 
make sense, and be applied in the real world, your answer 
must be yes. But are other patterns of heteroscedasticity 
possible (or likely)? In longitudinal data, might residual 
heteroscedasticity possess both a minimum and a maximum? 
Might there be even multiple minima and maxima? Might 
composite residual variance decline from a maximum, on 
either side of some fiducial time, rather than increasing from a 
minimum? Although compelling, none of these options is 
possible under the “standard” multilevel model for change.

Before concluding that the model we have spent so long 
developing is perhaps untenable because of the restriction it 
places on the error covariance matrix, let us quickly offer 
some observations that we hope will assuage your concerns. 
Although the “standard” multilevel model for change assumes 
that composite residual variance increases parabolically from 
a minimum with time, the temporal dependence of residual 
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heteroscedasticity need not be markedly curved. The 
magnitude of the curvature depends intimately on the 
magnitude of the model’s variance/covariance components. If 
all three level-2 components—, and σ01—are near zero, for 
example, the error covariance matrix is (p.254)

actually close to homoscedastic, with common variance . Or, if 
level-2 residual slope variability, , and residual initial status/
slope covariance, σ01, are near zero, composite residual 
variance will still be homoscedastic, but with common 
variance . In both cases, the “curvature” of the parabolic 
temporal dependence approaches zero and heteroscedasticity 
flattens.

In our own experience, these situations are common. The first 
occurs when the level-2 predictors “explain” most, or all, of 
the between-person variation in initial status and rate of 
change. The second occurs when the slopes of the change 
trajectories do not differ much across people—a common 
occurrence when study duration is short. Finally, as the sizes 

of the residual slope variance  and initial status/slope 
covariance, σ01, differ relative to one another, the time at 
which minimum residual variance occurs can easily move 
beyond the temporal limits of the period of observation. When 
this happens, which is often, no minimum is evident within the 
period of observation, the composite residual variance appears 
to either increase or decrease monotonically over the time 
period under study. We conclude from these special cases and 
the general temporal dependence of the residual variance 
that, while the composite residual variance is indeed 
functionally constrained in the “standard” multilevel model for 
change, it is also capable of adapting itself relatively smoothly 
to many common empirical situations. Nonetheless, in any 
analysis of change, it makes great sense to check the 
hypothesized structure of the error covariance matrix—
whether obtained implicitly, by adopting the standard model, 
or not—against data just as it is important to check the 
tenability of the hypothesized structure of the fixed effects. We 
illustrate the checking process in section 7.3.
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7.2.2 Covariance of the Composite Residuals

We now examine the temporal dependence in the covariance
of the composite residuals in the “standard” multilevel model 
for change. These covariances appear in the off-diagonal 
elements of the error covariance submatrix Σr, in equation
7.10. Again, mathematical manipulation of the composite 
residual in equation 7.5 provides the covariance between 
composite residuals at TIMES t j and and t j:

(7.13) 
where all terms have their usual meanings. For the opposites-
naming data, substitution of appropriate values for time and 
estimates of the variance components from table 7.2 let us fill out 

the rest of  in equation 7.12 with numerical values: (p.255)

(7.14) 
Notice the somewhat imperfect “band diagonal” structure, in which 
the overall magnitude of the residual covariances tends to decline 
in diagonal “bands” the further you get from the main diagonal. 
The magnitude of the residual covariance is around 900 to 1050 in 
the band immediately below the main diagonal, between 840 to 880 
in the band beneath that, and about 700 in the band beneath that. 
We often anticipate a band diagonal structure in longitudinal 
studies because we expect the strength of the correlation between 
pairs of residuals to decline as they become more temporally 
remote, within person.
The expression for the covariance between composite 
residuals in equation 7.13 and the estimated error covariance 
matrix in equation 7.14 allow us to make some general 
comments about the temporal dependence of the composite 
residual covariance in the “standard” multilevel model for 
change. The dependence is powerful, principally because the 
covariance contains the product of pairs of times (the third 
term in equation 7.13). This product dramatically affects the 
magnitude of the error covariance when time values are large. 
Special cases are also evident—as in equation 7.14—the 
magnitude of the error covariance depends on the magnitudes 
of the three level-2 variance components. If all three level-2 



Examining the Multilevel Model’s Error Covariance 
Structure

Page 17 of 28

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

components are close to zero, the composite residual 
covariances will also be near zero and the error covariance 
matrix in equations 7.9 and 7.10 becomes diagonal (in addition 
to being homoscedastic, as described in section 7.2.1). 
Regular OLS assumptions then apply, even for longitudinal 
data. Similarly, if only the level-2 residual slope variability, , 
and residual initial status/slope covariance, σ01, are both 
vanishingly small, then the composite residual covariance 
takes on a constant value, . In this case, the error covariance 
matrix is compound symmetric, with the following structure:

(7.15)

Compound symmetric error covariance structures are particularly 
common in longitudinal data, especially if the slopes of the change

(p.256)  trajectories do not differ much across people. Regardless 
of these special cases, however, the most sensible question to ask 
of your data is whether the error covariance structure that the 
“standard” multilevel model for change demands is realistic when 
applied to data in practice? The answer to this question will 
determine whether the standard model can be applied ubiquitously, 
a question we soon address in section 7.3.

7.2.3 Autocorrelation of the Composite Residuals

Finally, for descriptive purposes, we can also estimate the 
autocorrelations imposed among the composite residuals in 
the “standard” multilevel model for change. Applying the 
usual formula for computing a correlation coefficient from two 
variances and their covariance, we have:

which yields a composite residual autocorrelation matrix of:
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The approximate band-diagonal substructure of the error 
covariance matrix in the “standard” model is even more apparent 
in the error correlation matrix. For observations separated by one 
week, the residual autocorrelation is about 0.8; for observations 
separated by two weeks, the residual autocorrelation is about 0.70; 
for observations separated by three weeks, the residual 
autocorrelation is about 0.5. These magnitudes, regardless of 
temporal placement, are considerably larger than the zero
autocorrelation anticipated among residuals in an OLS analysis.

7.3 Postulating an Alternative Error Covariance 
Structure

To postulate an appropriate multilevel model for change, any 
properties imposed on the model’s composite residual—either 
implicitly by the assumptions of the model itself, or explicitly—
must match those required by data. In specifying the model’s 
stochastic portion, you should allow for heteroscedasticity and 
autocorrelation among the composite residuals. But what type 
of heteroscedasticity and autocorrelation makes the most 
sense? Is the composite residual as specified by default in the 
“standard” multilevel model for change, uniformly 
appropriate? Do its random (p.257)  effects always have the 
properties required of real-world residuals in the study of 
change? If you can answer yes to these questions, the 
“standard” multilevel model for change makes sense. But to 
determine whether you can safely answer yes, it is wise to 
evaluate the credibility of some plausible alternative error 
covariance structures, as we do now.

Fortunately, it is easy to specify alternative covariance 
structures for the composite residual and determine 
analytically which specification—the “standard” or an 
alternative—fits best. You already possess the analytic tools 
and skills needed for this work. After hypothesizing alternative 
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models—as we describe below—you can use familiar goodness 
of fit statistics (deviance, AIC, and BIC) to compare their 
performance. Each model will have identical fixed effects but a 
different error covariance structure. The main difficulty you 
will encounter is not doing the analysis itself but rather 
identifying the error structures to investigate from among the 
dizzying array of options.

Table 7.3 presents six particular error covariance structures 
that we find to be the most useful in longitudinal work:
unstructured, compound symmetric, heterogeneous compound 
symmetric, autoregressive, heterogeneous autoregressive and
Toeplitz. The table also presents the results of fitting the 
multilevel model for change in equation 7.6 to the opposites-
naming data, imposing each of the designated error 
structures. The table also presents selected output from these 
analyses: goodness-of-fit statistics; parameter estimates for 
the variance components and approximate p-values; and the 

fitted error covariance matrix of the composite residual,  As 
in table 7.2, we fit these models with SAS PROC MIXED and 
restricted ML. Because each has identical fixed effects, we 
could have used either full or restricted methods to compare 
models. We chose restricted methods because the obtained 
goodness-of-fit statistics then reflect only the fit of only 
model’s stochastic portion, which is our focus here.

You compare these models in the usual way. A smaller 
deviance statistic indicates better fit, but because an 
improvement generally requires additional parameters, you 
must either formally test the hypotheses (if the models are 
nested) or use AIC and BIC statistics. Both penalize the log-
likelihood of the fitted model for the number of parameters 
estimated, with the BIC exacting a higher penalty for 
increased complexity. The smaller the AIC and BIC statistics, 
the better the model fits.

7.3.1 Unstructured Error Covariance Matrix

An unstructured error covariance matrix is exactly what you 
would anticipate from its name: it has a general structure, in 
which each element of (p.258)
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Table 7.3: Selection of alternative error covariance matrices for use with the multilevel model for change in 
opposite naming, including goodness-of-fit statistics, variance component estimates, and fitted error covariance 
matrix

Goodness-of-
fit

Variance 
components

Description Hypothesized error 
covariance 
structure, Σr

-2LL AIC BIC Parameter Estimate Fitted error covariance Matrix, 

~p < .10; * p < .05; ** p < .01; *** p < .001.

Note: SAS PROC MIXED, Restricted ML.
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(p.259) (p.260)  Σr takes on the value that the data demand. For 
the opposites-naming data, an unstructured error covariance 
matrix has 10 unknown parameters: 4 variances and 6 covariances. 
In table 7.3, we represent these parameters as , , , , σ21, σ31, σ32, 
σ41, σ42, and σ43. (Notice that in expressing the various error 
covariance matrices in table 7.3, we constantly reuse the same 
symbols—σ2, , , σ21, ρ, and so on. Use of the same symbol does not 
imply that we are estimating the same parameter. For example, we 
use the symbol for two entirely different purposes in the 
unstructured and compound symmetric error structures and each 
of these differs from its use in the level-2 submodel in equation
7.2b)
The great appeal of an unstructured error covariance 
structure is that it places no restrictions on the structure of Σr. 
For a given set of fixed effects, its de0viance statistic will 
always be the smallest of any error covariance structure. If 
you have just a few waves of data, this choice can be 
attractive. But if you have many waves, it can require an 
exorbitant number of parameters. For 20 waves, you would 
need 20 variance parameters and 190 covariance parameters
—210 parameters in all—whereas the “standard” model 
requires only 3 variance components ( and ) and one 
covariance component, σ01.

In most analyses, a more parsimonious structure is desirable. 
Yet because the unstructured error covariance model always 
has the lowest deviance statistic, we usually begin exploratory 
comparisons here. For the opposites-naming data, we find a 
deviance statistic of 1255.8 for this model, about 4.5 points
less than that for the “standard” model. But this modest 
improvement uses up 10 degrees of freedom (as opposed to 
the 4 in the “standard” model). It should come as no surprise 
then that the AIC and BIC statistics, which both penalize us 
for overuse of unknown parameters, are larger under this 
assumption than they are under the “standard” multilevel 
model (1275.8 vs. 1268.3 for AIC; 1291.3 vs. 1274.5 for BIC). 
So, of the two potential error structures, we prefer the 
“standard” to the unstructured. The excessive size of BIC, in 
particular (it is 16.8 points larger!), suggests that we are 
“wasting” considerable degrees of freedom in choosing an 
unstructured form for Σr.
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7.3.2 Compound Symmetric Error Covariance Matrix

A compound symmetric error covariance matrix requires just 
two parameters, labeled σ2 and in table 7.3. Under compound 
symmetry, the diagonal elements of Σr are homoscedastic 
(with variance σ2 + ) on all occasions, and all pairs of residuals 
have a constant covariance, regardless of the times with which 
they are associated.

As we would expect, this model fits less well than the 
multilevel model (p.261)  with an unstructured Σr. But it also 
fits less well than the “standard” multilevel model. All three of 
its goodness-of-fit statistics are much larger: deviance is 26.7 
points larger, AIC is 22.7 points larger, and BIC is 19.7 points 
larger. Interestingly, as specified in equation 7.15, a 
compound symmetric Σr is a special case of the “standard” 
model, when there is little or no residual variation (and hence 
no residual covariation) in the true slopes of the change 
trajectories across people. Since we know, from hypothesis 
tests in table 7.2, that the residual slope variability and 
covariability are not zero for these data, it comes as no 
surprise that compound symmetry is not an acceptable error 
covariance structure for these data. This form is most 
attractive, then, when you find little or no residual variance in 
slopes among the individual change trajectories.

7.3.3 Heterogeneous Compound Symmetric Error Covariance 
Matrix

The third error covariance matrix in table 7.3 is heterogeneous 
compound symmetric. In our example, this extension of the 
compound symmetric structure requires five parameters. 
Under heterogeneous compound symmetry, the diagonal 
elements of Σr are heteroscedastic (with variances , , and on 
each occasion for these data). In addition, all pairs of errors 
have their own covariance (you can see this most easily in the 
fitted error covariance matrix in table 7.3). Specifically, these 
covariances are the products of the corresponding error
standard deviations and a constant error autocorrelation 
parameter, labeled ρ, whose magnitude is always less than or 
equal to unity.
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Based on the deviance statistics alone, a model with a 
heterogeneously compound symmetric Σr fits the opposites-
naming data better than a compound symmetric model 
(1285.0 vs. 1287.0), but still not as well as the 
“standard” (1285 vs. 1260.3). So, too, the AIC and BIC 
statistics penalize the heterogeneous compound symmetry 
model for its additional parameters (AIC = 1295.0; BIC = 
1302.7), over both the compound symmetric and the 
“standard.” We conclude that the heterogeneous compound 
symmetric model is probably less acceptable—for these data—
than any other multilevel model fit so far.

7.3.4 Autoregressive Error Covariance Matrix

The fourth potential error covariance matrix in table 7.3 has 
an autoregressive (actually, first-order autoregressive) 
structure. Many researchers are drawn to an autoregressive 
error structure because its “band-diagonal” shape seems 
appropriate for growth processes. When Σr is first-order

(p.262)  autoregressive, the elements on the main diagonal of 

Σr are homoscedastic (with variance σ2). In addition, pairs of 
errors have identical covariances in bands parallel to the 
leading diagonal (again, examine the fitted error covariance 
matrix in table 7.3). These covariances are the product of the 
residual variance, σ2, and an error autocorrelation parameter, 
labeled ρ, whose magnitude is again always less than, or equal 
to, unity. Error variance σ2 is multiplied by ρ to provide the 
error covariances in the first band immediately below the 
leading diagonal, by ρ2 in the band beneath that, by ρ3 in the 
band beneath that, and so on. Thus, because the magnitude of 
ρ is always fractional, the error covariances in the bands of Σr

decline, the further you go from the leading diagonal. 
Although an autoregressive Σr “saves” considerable degrees of 
freedom—it uses only two variance components—its elements 
are tightly constrained: the identical covariances in any band 
must be the same fraction of any entry in the previous band as 
are the entries in the following band of them.

Although the autoregressive model fits the opposites-naming 
data reasonably well, its constraints on the variance 
components’ relative magnitudes prevent it from fitting as 
well as the “standard” multilevel model for change. Both the 
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deviance statistic (1265.9) and AIC statistic (1269.9) are 
slightly larger than their peers in the “standard” multilevel 
model. On the other hand, the BIC statistic is slightly smaller 
in this model than it is in the “standard” (1273.0 for the 
former, 1274.5 for the latter), owing to the burden of 
additional parameters (4 vs. 2) in the “standard.” 
Interestingly, although it cannot compete in a world of 
deviance, the autoregressive model is superior to the 
unstructured model according to AIC and BIC (as you might 
expect, given the number of the unknown parameters required 
by each model, 2 vs. 10).

7.3.5 Heterogeneous Autoregressive Error Covariance Matrix

The heterogeneous autoregressive error structure is a relaxed 
version of the strict autoregressive structure just described. 
Its main diagonal elements are heteroscedastic (with 
variances and for the four waves here). In addition, the bands 
of constant covariances between pairs of errors that appeared 
parallel to the main diagonal in the regular autoregressive 
model are free to differ in magnitude along the bands (again, 
examine the fitted error covariance matrix in table 7.3). This is 
achieved by multiplying the same error autocorrelation 
parameter, ρ, that appeared above by the product of the 
relevant error standard deviations. Thus, the band diagonal 
structure—with the magnitudes of the covariances declining 
across the bands, away from the main diagonal—is some-what

(p.263)  preserved, but loosened by the inclusion of additional 
variance components. A model with heterogeneous 
autoregressive Σr spends additional degrees of freedom, but 
benefits from additional flexibility over its simpler sibling.

As you might expect, the model with heterogeneous 
autoregressive error structure benefits in terms of the 
deviance statistic over the homogeneous autoregressive case, 
but can be penalized from the perspective of AIC and BIC. For 
these data, the model with heterogeneous autoregressive Σr

fits less well than the “standard” multilevel model for change. 
Notice that, in the heterogeneous autoregressive model, the 
deviance statistic (1264.8), AIC (1274.8), and BIC (1282.6) are 
all larger than the equivalent statistics in the “standard.” As 
with its homogeneous sibling, although it cannot compete in 
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terms of deviance, the heterogeneous autoregressive model is 
superior to the unstructured model according to both the AIC 
and BIC statistics.

7.3.6 Toeplitz Error Covariance Matrix

For the opposites-naming data, the Toeplitz error covariance 
structure represents a far superior option. The Toeplitz 
structure has some of the characteristics of the autoregressive 
structure, in that it has bands of identical covariances arrayed 
parallel to the main diagonal. However, these elements are not 
forced to be an identical fraction of the elements in the prior 
band. Instead, their magnitudes within each band are 
determined by the data and are not constrained to stand in 
identical ratios to one another. For the opposites-naming data, 
we need four variance components to specify a Toeplitz 
structure (σ2, σ1, σ2, and σ3 in table 7.3) and so Σr is more 
flexible than the homogeneous autoregressive structure but 
more parsimonious that its heterogeneous sibling.

For these data, a Toeplitz error covariance structure fits 
better than the “standard” multilevel model for change and
better than all other error covariance structures we have 
tested, regardless of which goodness-of-fit statistic you 
consult. The deviance statistic is 1258.1 (as opposed to 
1260.3), AIC is 1266.1 (as opposed to 1268.3), and BIC is 
1272.3 (as opposed to 1274.5). As we discuss below, however, 
these differences in goodness-of-fit are relatively small.

7.3.7 Does Choosing the “Correct” Error Covariance Structure 
Really Matter?

The error covariance structures presented in table 7.3 are but 
the beginning. Even though the Toeplitz structure appears 
marginally more (p.264)  successful than the implicit error 
covariance structure of the “standard” multilevel model for 
change, it is entirely possible that there are other error 
structures that would be superior for these data. Such is the 
nature of all data analysis. In fitting these alternative models, 
we have refined our estimates of the variance components and 
have come to understand better the model’s stochastic 
component. We would argue that, for these data, the 
“standard” multilevel model for change performs well—its 
deviance, AIC, and BIC statistics are only marginally worse 
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than those of the Toeplitz model. The difference in BIC 
statistics—2.2 points—is so small that adopting Raftery’s 
(1995) guidelines, we would conclude that there is only weak 
evidence that adoption of a Toeplitz error structure improves 
on the “standard” multilevel model.

If you focus exclusively on the deviance statistic, however, an 
unstructured error covariance matrix always leads to the best 
fit. This model will always fit better than the “standard” 
model, and than any other model that is constrained in some 
way. The question is: How much do we sacrifice if we choose 
the unstructured model over these others? For these data, it 
cost 10 degrees of freedom to achieve this best fit for the 
model’s stochastic portion—five more degrees of freedom than 
any other error covariance structure considered here. 
Although some might argue that losing an additional handful 
of degrees of freedom is a small price to pay for optimal 
modeling of the error structure—a consequence of the fact 
that we have only four waves of data—in other settings, with 
larger panels of longitudinal data, few would reach this 
conclusion.

Perhaps most important, consider how choice of an error 
covariance structure affects our ability to address our 
research questions, especially given that it is the fixed effects
—and not the variance components—that usually embody 
these questions. Some might say that refining the error 
covariance structure for the multilevel model for change is 
akin to rearranging the deck chairs on the Titanic—it rarely 
fundamentally changes our parameter estimates. Indeed, 
regardless of the error structure chosen, estimates of the fixed 
effects are unbiased and may not be affected much by choices 
made in the stochastic part of the model (providing that 
neither the data, nor the error structure, are idiosyncratic).

But refining our hypotheses about the error covariance 
structure does affect the precision of estimates of the fixed 
effects and will therefore impact hypothesis testing and 
confidence interval construction. You can see this happening 
in table 7.4, which displays estimates of the fixed effects and 
asymptotic standard errors for three multilevel models for 
change in opposites-naming: the “standard” model (from table
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7.2) and models with a Toeplitz and unstructured error 
covariance matrix (from table 7.3). Notice that that the 
magnitudes of the estimated fixed effects (p.265)

Table 7.4: Change in opposite’s naming score 
over a four-week period, as a function of baseline 
IQ

Model with …

Parameter Standard 
error 
covariance 
structure

Toeplitz 
error 
covariance 
structure

Unstructured 
error 
covariance 
structure

Fixed Effects

Initial 
status, 
π0i

Intercept γ00 164.37*** 165.10*** 165.83***

(6.206) (5.923) (5.952)

(COG –
)

γ01 −0.11 −0.00 −0.07

(0.504) (0.481) (0.483)

Rate of 
change, 
π1i

Intercept γ10 26.96*** 26.895*** 26.58***

(1.994) (1.943) (1.926)

(COG –
)

γ11 0.43** 0.44** 0.46**

(0.162) (0.158) (0.156)

Goodness-of-fit

Deviance 1260.3 1258.1 1255.8

AIC 1268.3 1266.1 1275.8

BIC 1274.5 1272.3 1291.3

~p < .10; * p < .05; ** p < .01; *** p < .001.
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Parameter estimates (standard errors), approximate p-
values, and goodness-of-fit statistics after fitting a 
multilevel model for change with standard, Toeplitz and 
unstructured error covariance structures (n= 35).

Note: SAS PROC MIXED, Restricted ML.

are relatively similar (except, as you might expect, for γ01, which is 
not statistically significant anyway). But also notice that the 
respective asymptotic standard errors decline as the error 
covariance structure is better represented. The standard errors are 
generally smaller in the Toeplitz and unstructured models than in 
the “standard,” although differences between the Toeplitz and 
unstructured models are less unanimous. You should find it 
reassuring that—given the widespread application of the 
“standard” multilevel model for change—the differences in 
precision shown here are small and likely inconsequential. Of 
course, this conclusion is specific to these data; ensuing differences 
in precision may be greater in some data sets, depending on the 
design, the statistical model, the choices of error covariance 
structure, and the nature of the forces that bind the repeated 
observations together. To learn more about this topic, we refer 
interested readers to Van Leeuwen (1997); Goldstein, Healy, and 
Rasbash (1994); and Wolfinger (1993, 1996).

Notes:

(1.) Specifically, the identical blocks in the error covariance 
matrix in equation 7.8 require completely balanced data.
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Change does not necessarily assure progress, but 
progress implacably requires change.

—Henry S. Commager

Interestingly, the multilevel model for change can be mapped 
directly onto the general mathematical framework provided by
covariance structure analysis (also known as structural 
equation modeling). The resulting analytic approach has 
become known as latent growth modeling. At its core, a latent 
growth model is essentially a multilevel model for change. But 
not only does the mapping of the multilevel model for change 
onto the general covariance structure model provide an 
alternative approach to model specification and estimation, its 
flexibility can dramatically extend your analytic reach.

In this chapter, we describe how to conceptualize, postulate, 
fit, and interpret a latent growth model. We begin, in section 
8.1, by reviewing the general covariance structure model. 
Here, as in the rest of the chapter, we assume a basic level of 
familiarity with covariance structure analysis. If you lack this 
foundation, we suggest that you review the method using one 
of the excellent books that are available (e.g., Bollen, 1989). In 
section 8.2, we map the multilevel model for change onto the 
general covariance structure model. In section 8.3, we 
illustrate an invaluable extension of this approach that allows 
you to investigate whether change in one construct is related 
to change in another. We conclude, in section 8.4, by listing 
additional extensions of the basic approach briefly.

8.1 The General Covariance Structure Model

Covariance structure analysis (CSA) can be viewed as an 
extension of multivariate regression analysis and path analysis 
that contains elements of (p.267)  both factor analysis and test 
theory. In a succinct historical overview, Bollen (1989, pp. 4–
9) describes its roots in a variety of disciplines including 
statistics, sociology, economics, psychology, and 
psychometrics. With the advent of easily accessible computer 
software, CSA has become commonplace throughout the social 
sciences.
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CSA was initially devised as a comprehensive technique for 
testing complex hypotheses about relationships among many 
quantities on a single occasion. Its utility derives not just from 
its generality but also from the compelling rationale 
underlying its core statistical model. The model was devised 
and refined to match researchers’ intuitions about the way the 
world works. Perhaps what is most interesting for longitudinal 
analysis is that, although originally devised for cross-sectional 
data, we can manipulate the model so that it can be used to 
represent change over time.

To support the development of this mapping, in this section we 
review the basic CSA model. To concretize our presentation, 
we use Conger, Elder, Lorenz, & Simons (1994) study of the 
relationships among parental depression, marital conflict, and 
adolescent adjustment in a cross-sectional sample of 220 
White middle-class families. For each family, their data set 
includes a variety of information about three members: the 
mother, the father, and a female seventh-grader.

Figure 8.1 presents a path diagram that succinctly represents 
our substantive hypotheses (based upon arguments presented 
in the original paper). Like all path diagrams, figure 8.1 makes 
explicit two important distinctions:

• Between underlying constructs and the indicators that 
measure them

• Between outcomes and predictors

These distinctions are embodied in the geometric shapes—the 
circles, rectangles, and arrows—of the path diagram. Before 
delving into the models, we explore the rationale and consequences 
of these distinctions.
The first distinction is between a construct and its indicators. 
In a path diagram, we represent the former by circles; the 
latter by squares. The circle in the upper left corner of figure
8.1 contains the construct “Paternal Depression.” This 
construct has two indicators: “Depression Subscale of the 
SCL-90-R” and “Observer Rating of Depression.” A single-
headed arrow leads from the construct to each indicator. This 
representation couples our theoretical interest in the 
underlying level of the father’s depressive mood (the circle) 
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Figure 8.1.  Hypothesized path diagram 
linking parental depression, marital 
conflict, and adolescent adjustment.

with the recognition that we cannot directly observe his true 
mood; instead, we measure the values of indicators (the 
squares). Paternal depression is a construct; the two ratings 
are observed indicators of its true level.

(p.268)

It seems 
natural to 
distinguish a 
construct 
from its 
indicators. 
Depression is 
something 
unseen within 
the father, 
something
latent
(hidden) that 
underpins his 
functioning 
and drives his 
observed 
indicators, each in its own metric. This belief—that a construct 
causes its indicators to take on specific values—is reflected in 
the direction of the single-headed arrow from the construct to
the indicator. Similar collections of circles, boxes, and arrows 
link the remaining constructs to their respective indicators. 
Parallel indicators of “Maternal Depression” appear in the 
lower left corner. In the center, the construct “Marital 
Conflict” is measured by two indicators: parental interaction 
during a discussion of family life (e.g., parenting strategies 
and household chores) and parental interaction during a 
discussion of the history and status of the relationship. On the 
right, the construct “Adolescent Adjustment” is measured by 
three indicators: teacher-reported GPA, self-report of peer 
relations, and a standardized measure of self esteem.

Because of the realities of data collection—using real 
instruments with real people—indicators are fallible measures 
of a construct’s true value. Some indicators, such as the 

Figure 8.1.  Hypothesized path diagram 
linking parental depression, marital 
conflict, and adolescent adjustment.
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standardized depression scale, will measure (p.269)  the 
construct well. Others, such as an observer’s rating of 
depression, will be less precise. To account for this fallibility, 
we distinguish the construct’s true value from its indicators’ 
observed values and we also allow for the presence of 
measurement error. We show errors of measurement—one per 
indicator—using a short single-headed arrow pointing into
the indicator from the side opposite the arrow denoting the 
contribution of the construct. As in classical test theory, the 
path diagram stipulates that an indicator’s “observed” value 
derives from the “true” contribution of the construct plus the 
“error” introduced by measurement. In CSA, this distinction 
among “observed,” “true,” and “error” scores is captured in 
the specification of a measurement model (described below in 
sections 8.1.1 and 8.1.2).

The second distinction is between “outcomes” and 
“predictors.” Use of these labels implies that you have a 
theory that makes the outcome a consequence of the 
predictor. Outcomes like marital conflict may be a 
consequence of predictors like maternal and paternal 
depression and, in its turn, adolescent adjustment may be 
affected by parental marital conflict. If parental depression is 
deeper, marital conflict may be greater. With higher levels of 
parental conflict at home, the adolescent may be less well 
adjusted. This is a causal theory of action; you expect less 
depressed parents to live more harmonious lives and their 
children to be better adjusted. Even though you may not be 
able to test this causal theory with cross-sectional data, you 
can still hypothesize that some effects are causes and others 
are consequences.

CSA allows you to make even subtler distinctions between 
“predictors” and “outcomes.” As the path diagram in figure 8.1
suggests, one predictor’s outcome may be another outcome’s 
predictor. In the first half of the diagram, marital conflict is an 
outcome, being “caused” by parental depression. In the 
second half, marital conflict is a predictor of adolescent 
adjustment. To account for these multiple roles, CSA 
distinguishes between two conditions: exogeneity and
endogeneity. A construct is exogenous if forces entirely 
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outside the hypothesized system determine its values. In 
figure 8.1, paternal and maternal depression are exogenous; if 
they have causes, which they undoubtedly do, they do not 
appear in this system. An endogenous variable or construct, in 
contrast, is determined within the system. In this example, 
marital conflict and adolescent adjustment are endogenous.

We express the central hypotheses in CSA using statements 
about relationships among constructs. This recognizes that, 
although your data measure the values of indicators, your 
research questions demand that these indicators be purged of 
their measurement error when examining the underlying true 
relationships. You are not interested in the relationship 
between observer ratings of parental depression and marital 
conflict, (p.270)  but in the relationship between the true 
values that underlie these indicators, which themselves are 
related. Although one way of absolving measurement error is 
to disattenuate sample correlation and regression coefficients 
using external estimates of reliability, CSA instead uses each 
construct’s multiple indicators to tease out the measurement 
error from the underlying true score.

A path diagram uses several devices to display simultaneous 
hypotheses about relationships among constructs. A single-
headed arrow represents a hypothesized “causal” relationship 
between an exogenous and endogenous construct. The two 
arrows joining paternal and maternal depression (two 
exogenous constructs) to marital conflict (an endogenous 
construct) represent a hypothesized link between parents’ 
moods and the health of their marriage. A single-headed arrow 
can also represent a hypothesized relationship between 
endogenous constructs, as shown in figure 8.1 for marital 
conflict and adolescent adjustment. A double-headed arrow 
allows exogenous constructs to covary, as in the extreme left 
of figure 8.1 which links maternal and paternal depression. 
This type of relationship is qualitatively different from that 
hypothesized between exogenous and endogenous constructs 
or among endogenous constructs. Single-headed arrows 
represent our causal theories of action—we believe the prior 
construct causes the latter. Double-headed arrows simply 
allow constructs to be associated; we have no theory about 
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whether one causes the other. This is similar to what happens 
in regular regression, where you hypothesize that predictors 
“cause” the outcome, but the predictors themselves can be 
interrelated.

The general CSA model contains two types of submodels:
measurement models, which distinguish a construct from its 
indicators; and a structural model, which represents the 
hypothesized nature and interrelationship of the constructs. 
Because there are two types of constructs—exogenous and 
endogenous—there are two measurement models. In the 
sections below, we describe all three: the X-measurement 
model (section 8.1.1), the Y-measurement model (section 
8.1.2), and the structural model (section 8.1.3).

8.1.1 The X-Measurement Model

Our example contains two exogenous constructs: paternal and 
maternal depression. On the left side of figure 8.1, we provide 
notation for scores for adolescent i on: (1) the four observed 
indicators (X 1i, X 2i, X 3i, and X 4i); (2) the four corresponding 
measurement errors (δ1i, δ2i, δ3i and δ4i); (3) and the two 
underlying constructs (ξ1i, ξ2i). An X-measurement model 
connects these quantities.

(p.271) How should we represent this model? Classical test 
theory coupled with some thought about the nature of 
empirical measurement suggests one reasonable form. Begin 
by focusing on the first indicator, the father’s score on the 
depression scale of the SCL-90: X 1i in figure 8.1. Classical test 
theory suggests that this “observed score” is the sum of a 
“true score” and an “error,” which suggests the simple model
X 1i = ξ1i + δ1i. Although sensible, this specification ignores 
several issues that arise when we have multiple indicators of 
each underlying construct. We therefore use the more general 
representation:

(8.1) 

where the new symbols, τx1 and , account for differences in the
centering and scaling of each indicator.



Modeling Change Using Covariance Structure 
Analysis

Page 8 of 48

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

The parameter τx1 represents the mean of observed indicator
X 1i across all adolescents in the population. We assume that, 
in the population of fathers, observed depression scores will 
be scattered around this unknown value, which we estimate 
using sample data. Including τx1 allows observed scores on 
different indicators of the same construct to have different 
means. Conceptually, τx1 “centers” the indicator’s observed 
value on its population average. It allows the observed 
indicator for adolescent i to be expressed as the sum of: (1) the 
average across all adolescents; and (2) adolescent i’s deviation 
from that average. This decomposition resembles the familiar 
decomposition of one-way analysis of variance. All exogenous 
indicators have their own mean parameters: τx2, τx3, and τx4. 
Although we do not display these parameters in figure 8.1 to 
avoid clutter, they are present in the model and estimated 
during analysis.

The measurement model multiplies the value of the construct 

for adolescent i, ξ1i, by a scaling factor or “loading,” . The 
construct ξ1i is similar to the “true score” of classical test 
theory. A scaling factor allows the indicators and the construct 
to be measured on different scales. This permits a single latent 
construct to drive the values of several indicators, each 
measured in it own metric. The presence of different loadings 
allows the construct paternal depression (measured in some 
underlying “true” metric, as yet undetermined) to be 
simultaneously rescaled into both a depression score and an 
observer rating.

Finally, a comment on δ1i, adolescent i’s “measurement error.” 
After we remove the population mean of X and rescale the 
underlying construct, what is left? If you subscribe to the 
tenets of classical test theory, you will respond “measurement 
error,” because you believe that “observed” must equal “true” 
plus “error.” And, so far, we have treated “δ” in the X-
measurement model as the “error” that remains after the 
systematic part of the observed score is removed (or otherwise 
represented). We prefer, (p.272)  however, to think of the δ 

part of the measurement model as that part of indicator X that 
does not depend on underlying construct ξ. The δ may be 
measurement error, but it may also be nothing more than a 
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portion of the observed score that is determined by constructs 
currently unspecified in the analysis.

We now generalize these ideas to the remaining indicators. 
The path diagram in figure 8.1 includes two exogenous 
constructs, each supporting a pair of indicators, each with its 
own means and loadings. An adolescent whose father has a 
“high” value on the underlying construct of depression will 
probably have high values on both associated indicators, the 
depression scale and the observer rating. Similarly, a mother’s 
depressive mood construct will be reflected in her depression 
scale and observer rating. Using the format of equation 8.1, 
we write all four hypothesized measurement relationships as:

(8.2) 
Make sure, by reference to figure 8.1, that you understand what 
each equation represents. Each indicator has a unique mean 
parameter, loading, and error score, but there are only two 
underlying “true” scores, ξ1i and ξ2i, corresponding to the two 
exogenous constructs (paternal and maternal depression).
The four equations in 8.2 constitute the X-measurement model 
for our example. We can write these statements more 
parsimoniously in a matrix equation:

(8.3) 
As you review this matrix representation, we draw your attention to 
three important features. First, the observed scores on the four 
exogenous indicators (X 1i, X 2i, X 3i, X 4i) appear as a four-element 
(4 × 1) vector, as do the four mean parameters (τx1, τx2, τx3, τx4) 
and the four errors (δ1i, δ2i, δ3i, δ4i). If we had additional indicators 
of each construct, we would generalize this representation by 
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extending the length of each vector. Second, scores on the two 
latent constructs (ξ1i, ξ2i) are contained in (p.273)  a two-element 
(2 × 1) vector, because we hypothesize that two exogenous 
constructs generate scores on the four observed indicators. If we 
hypothesized the existence of additional exogenous constructs, this 
vector would grow in length. Third, all scaling factors

 appear in a two-dimensional (4 × 2)
loading matrix that allows each indicator to be an appropriately 
rescaled version of its corresponding construct. If you have 
additional indicators or constructs, you would enlarge the loading 
matrix accordingly. Notice that four elements in this matrix are set 
to zero to ensure that indicators X 1i and X 2i are not linked to 
construct ξ2i, and that indicators X 3i and X 4i are not linked to 
construct ξ1i. This “each indicator to its own construct” restriction 
is not required. An indicator can measure more than one construct; 
the model can easily handle this duplicity by freeing up one or 
more of the zeroes in the loading matrix. The restrictions in 
equation 8.3 are simply consequences of the hypotheses embodied 
in figure 8.1.
We now abbreviate the matrix representation of the X-
measurement model in equation 8.3 using bold symbols: X, ξ, 
and δ to represent vectors of observed, true, and error scores, 
respectively; τ x to represent a vector of population means; and 
Λ x to represent a matrix of loadings:

(8.4) 
where
(8.5)

In what follows, we use equation 8.4 as “shorthand” for the X-
measurement model.1

When modeling the behavior of observed indicators, 
constructs, and error scores, we must also account for 
variability across individuals. Not only will the unseen values 
of the latent construct differ across individuals, so will the 
unseen measurement errors. “True” and “error” variability is 
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then pooled according to the measurement model and is 
revealed as the interindividual variability in indicators. To 
handle this eventuality, and to provide variance components 
that assess this variability, the X-measurement model 
hypothesizes that the construct and error score vectors are 
drawn from multivariate normal distributions with mean 
vectors and covariance matrices, as we now describe.

First, let’s deal with the error scores. As with all residuals, we 
assume that the errors have a zero mean. To model their 
distribution, we need (p.274)  a covariance matrix that 
captures hypothesized variation in their values across people. 
In the X-measurement model, the covariance matrix Θ δ

contains the population variability in the δ’s. Since there are 
four errors in our measurement model, their population 
covariance matrix is a symmetric four-by-four matrix:

(8.6)

where the main diagonal contains four variance parameters that 
represent interindividual variability in each error and the six 
covariance parameters capture bivariate associations among
errors. Notice that the errors need not be homoscedastic and
independent. It is entirely possible that, given the unique metrics of 
the indicators and their simultaneous measurement, these errors 
will be both heteroscedastic and intercorrelated.
In some analyses, you will assume that certain elements of this 
error covariance matrix are zero and that others are identical. 
For instance, if you think that error variances in depression 
scores should be identical for mothers and fathers, you would 
constrain the first and third diagonal elements to be identical. 
If you think that observer ratings of parental depression are 
homoscedastic across parents, you would force the second and 
fourth diagonal elements to be identical. If you think that none 
of the errors are correlated across indicators, you would set 
all off-diagonal elements to zero. Or you might selectively 
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constrain a subset to zero to reflect hypotheses about the 
potential association of the errors of measurement within-
indicator across-parent, but not across-indicator within-parent. 
A beauty of CSA is that you can entertain these various 
hypotheses just by specifying an appropriate structure for the 
error covariance matrix and asking whether the model fits 
your data. We return to this issue in section 8.2.

The underlying “true” latent construct scores also differ 
across individuals. And so, within the rubric of the X-
measurement model, we must allow them to vary. We do this, 
as you might expect, by assuming that the exogenous 
constructs are drawn from a multivariate normal distribution, 
with mean vector k and covariance matrix Φ. In our example, 
where the maternal and paternal depression are the two 
exogenous constructs, the means are contained in k, a (2 × 1) 
vector:

(8.7) 
(p.275)  and the variances and covariance in Φ, a (2 × 2) matrix:

(8.8) 
The two elements in k represent the population averages of the 
exogenous constructs of maternal and paternal depression; the 
elements of Φ represent their variation (two elements, on the 
diagonal) and covariation (one element, off the diagonal). Of 
particular interest in equation 8.8 is the parameter in the lower left 
corner, σξ2ξ1. This parameter captures the magnitude and 
direction of the bivariate association between the two exogenous 
constructs on the left side of figure 8.1 represented by a double-
headed arrow.
We conclude our presentation of the X-measurement model by 
highlighting a redundancy with important implications. 
Because the model includes two mean vectors, τ x and k, the 
population means of exogenous indicators are overspecified. 
Taking expectations throughout equation 8.4 for a generic 
exogenous indicator X (recalling that the mean of 
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measurement error, δ, is zero), the mean of X is a weighted 
linear composite of τx and μξ, μx = τx + λxμξ. This expression 
has two interesting special cases. First, if you force the 
population mean of the exogenous construct to zero (i.e., set 
μξ = 0) by constraining the appropriate element of the k
vector to zero, the mean of X must be represented entirely by 
τx which will become μx. If you instead set τx to zero, the mean 
of X must be forced into the corresponding element of k In this 
case, the mean of X will be a rescaled version of the mean of 
the underlying construct, λxμξ. This redundancy in the 
modeling of the means allows for multiple equivalent 
specifications of the CSA model, as we demonstrate later in 
section 8.2.1.

8.1.2 The Y-Measurement Model

The Y-measurement model describes relationships among the 
endogenous constructs and their indicators. Its name derives 
from the convention of labeling endogenous indicators Y (to 
correspond to the notion of an “outcome”). The symbol η 
represents the associated construct and ε represents 
corresponding errors of measurement.

Figure 8.1 includes two endogenous constructs; their values 
for adolescent i are represented by η1i (marital conflict) and η2i

(adolescent adjustment). Marital conflict supports two 
indicators, Y 1i and Y 2i, the two observer ratings of parental 
interaction. Adolescent adjustment supports three indicators: 
teacher-reported GPA (Y 3i), a self-report of peer relations (Y

4i), and a standardized measure of self-esteem (Y 5i). Each 
construct is linked to its corresponding indicators by single-
headed arrows (p.276)  with associated scaling factors, and . 
Scores on each indicator have population means of τy1, τy2, 
τy3, τy4, and τy5, and are disturbed by errors of measurement, 
ξ1i, ξ2i, ξ3i, ξ4i, and ξ5i, respectively.

A Y-measurement model hypothesizes population relationships 
between endogenous constructs and indicators. As you would 
expect, it is structurally similar to the X-measurement model. 
There are five endogenous construct/indicator relationships in 
figure 8.1:
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(8.9) 
which can be written in matrix form:
(8.10)

Elements, vectors, and matrices in this new measurement model 
have their usual interpretation, and the entire model can be 
referred to in shorthand as:

(8.11) 
with
(8.12)

If appropriate, you can expand this representation to contain 
additional constructs and indicators simply by lengthening the 
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respective vectors and enlarging the corresponding loading 
matrix.2

As before, we must also account for population variability 
across individuals in the observed indicator, construct, and 
error scores. As with the X-measurement model, the Y-
measurement model hypothesizes that the (p.277)  error 

vector in equation 8.10 is drawn from a multivariate normal 
distribution with zero mean vector and covariance matrix, Θ ε. 
Since there are five elements in the error vector, the 
population error covariance matrix is a symmetric five-by-five 
matrix:

(8.13)

where the main diagonal contains five variance parameters 
assessing interindividual variability in each error and the ten 
covariance parameters capture bivariate associations among
errors. As before, errors can be heteroscedastic and correlated or 
these conditions can be constrained and tested with data.
An interesting departure from the symmetry of the two 
measurement models is that we do not specify a mean vector 
and covariance matrix for the scores on the endogenous 
constructs, as we did for the exogenous constructs (using 
vector k and matrix Φ). Their equivalents are not needed 
because variability in the endogenous constructs is ultimately 
modeled in the final part of the CSA model, the structural 
model, to which we now turn.

8.1.3 The Structural Model

The structural model codifies hypothesized relationships 
among the exogenous and endogenous constructs. The path 
diagram in figure 8.1 contains several such relationships. 
First, on the left, we hypothesize that the two exogenous 
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constructs, paternal and maternal depression (ξ1i and ξ2i), 
predict the first endogenous construct, marital conflict (η1i). 
We quantify the magnitude and direction of these 
relationships using a pair of structural “regression” 
parameters, γ11 and γ12. Although these parameters describe 
relationships among constructs, they are similar in 
interpretation to ordinary regression coefficients: they 
represent the difference in the “outcome” construct per unit 
difference in the “predictor” construct. If positive, greater 
maternal and paternal depression are associated with higher 
levels of marital conflict. Second, the path diagram 
hypothesizes that the first endogenous construct, marital 
conflict (η1i), predicts adolescent adjustment (η2i). This 
relationship is captured in the structural regression parameter 
β21. If negative, daughters of less conflicted parents are better 
adjusted in school. We purposefully use (p.278)  different 
symbols—γ and β—to distinguish the two types of relationship: 
(1) between endogenous and exogenous constructs; and (2) 
among endogenous constructs. This difference in symbolic 
representation reappears below when we codify the structural 
model algebraically.

As in regular regression, we must account for the reality that 
our predictions may not be “perfect.” To represent the 
possibility that there may be a “residual” left over after we 
predict marital conflict using maternal and paternal 
depression, figure 8.1 includes a residual, ζ1i, using a short 
arrow, pointing slightly backwards into the construct η1i. If 
maternal and paternal depression predict marital conflict 
successfully, this “true” residual will be small. Each individual/
family pairing has its own values of parental depression and 
marital conflict and its own true residual, hence the subscript
i. Similarly, because marital conflict may not perfectly predict 
adolescent adjustment, a second “true” residual, ζ2i takes up 
the slack in η2i. Although these residuals pertain to the 
regression of construct upon construct, they serve the same 
function as ordinary residuals: they represent the 
“unpredicted” portion of an outcome after accounting for 
predictors.
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With these additions, we can now express the hypothesized 
relationships among constructs. In this example, we postulate 
a pair of simultaneous structural (construct-level) regression 
equations:

(8.14) 
The first equation postulates that marital conflict depends 
simultaneously on maternal and paternal depression. The second 
equation postulates that adolescent adjustment depends on marital 
conflict. The two new parameters—α1 and α2—provide the 
population means of the two endogenous constructs, which went 
unrepresented in the Y-measurement model. These parameters 
function as intercepts, representing the population value of the 
“outcome” construct when the values of the “predictor” constructs 
are zero. They can be interpreted using familiar strategies from 
regression.3

The structural model in equation 8.14 can be represented in 
matrix form using the construct score vectors defined in the 
measurement models, along with new parameter matrices that 
contain the structural regression parameters used to define 
the construct-level relationships in the path diagram:

(8.15)

(p.279)  which, as before, can be presented in “shorthand” version 
as

(8.16) 
where score vectors ξ and η have been defined in equations (8.5)
and (8.12), and
(8.17)

You should check, by matrix multiplication, that equations 8.15 and
8.14 are identical. As before, expansion of the various score vectors 
and parameter matrices would allow us to include additional 
constructs and more complex relationships among constructs.
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Notice that in writing the matrix representation we set five 
elements of Γ and Β to zero. Two of these zeros, elements of Γ, 
which would have been labeled γ21 and γ22 had they been 
needed, represent the pair of paths between parents’ 
depression and adolescent adjustment that have been omitted 
from figure 8.1 as a result of the researchers’ theory that these 
exogenous constructs affect adolescent adjustment indirectly
through marital conflict. A third zero, in the upper right 
corner of Β, sits in place of coefficient β12, a parameter that, if 
present, would permit adolescent adjustment to “reverse” 
predict marital conflict.4 The remaining two zeros, on the 
diagonal of Β, are never included in a structural model 
because they represent something nonsensible: the prediction 
of an endogenous construct by itself!

We conclude our specification of the structural model by 
accounting for variability across individuals in the endogenous 
constructs. Inspection of equations 8.15 and 8.16 indicates 
that the “total” variation in η is a composite of “true” variation 
(that part of the variability in η that can be predicted by the 
exogenous and other endogenous constructs), and residual 
variation, due to ζ. As with the measurement models, the 
structural model hypothesizes that the residual vector is 
drawn from a multi-variate normal distribution with zero mean 
vector and a covariance matrix, Ψ. Since there are two 
elements in the true residual vector, the population covariance 
matrix of the residuals is a symmetric two-by-two matrix:

(8.18) 
where the main diagonal contains variance parameters 
representing interindividual variability in each true residual and 
the covariance parameter captures any hypothesized bivariate 
association among residuals. As (p.280)  before, these true 
residuals can be heteroscedastic and correlated or these conditions 
can be constrained and tested with data.

8.1.4 Fitting the CSA Model to Data

Having postulated an X-measurement model, a Y-measurement 
model, and a structural model, you can use software to fit 
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these models simultaneously to data. The major task in CSA is 
to specify the correct shapes, sizes, and contents of the 
vectors and matrices that constitute your models. Some 
programs ask that you directly describe the matrices; others 
offer a point-and-click graphical interface that accepts (or 
constructs) a path diagram. In what follows, we use the 
LISREL software (Joreskog & Sorbom, 1996), but identical 
analyses can be implemented using programs such as EQS 
(Bentler, 1995), and MPLUS (Muthen, 2001). A variety of 
estimation methods are available, including GLS and ML. 
Whichever method you select, all programs provide: (1) 
parameter estimates, standard errors, z- (or t)-statistics, and p-
values; (2) measures of model goodness-of-fit; and (3) some 
type of residual analysis. Because our earlier discussions of 
estimation and hypothesis testing apply directly, we now turn 
to extending the basic CSA model to longitudinal data.

8.2 The Basics of Latent Growth Modeling

For years, empirical researchers with longitudinal data 
conducted “between-wave” analyses using CSA that “chained” 
their outcome values over time: allowing status at time 1 to 
predict status at time 2, status at time 2 to predict status at 
time 3, and so on. Although not invalid, such analyses do not 
address questions about change over time. Instead, they 
assess the stability of the rank order of individuals on the 
outcome over time, addressing questions like: Does an 
individual who scores high at the beginning of time remain 
high on all future occasions?

More recently, methodologists have made it possible to use 
the CSA model to study individual change over time by 
mapping the multilevel model for change onto the general CSA 
model. This approach has become known as latent growth 
modeling (or latent growth curve analysis) and many people 
have contributed to its development. Meredith and Tisak 
(1984, 1990; see also Tisak & Meredith, 1990) showed how the 
CSA model provided a framework for representing 
interindividual differences in development. McArdle and 
colleagues extended their approach, demonstrating its 
flexibility to problems in psychology and the social sciences 
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(McArdle, 1986a, 1986b, 1989, 1991; McArdle, Anderson & 
Aber, 1987; (p.281)  McArdle & Epstein, 1987; McArdle, 

Hamagami, Elias, & Robbins, 1991). Muthén and colleagues 
explored and extended the model, and have done important 
work on time-unstructured data and missing data (Muthén,
1989, 1991, 1992; Muthén & Satorra, 1989).

In this section, we introduce this kind of analysis by showing 
how you can fit a latent growth model by mapping the 
multilevel model for change onto the general CSA model. The 
mapping is straightforward, with particular pieces of the CSA 
model acting as “containers” for different facets of the 
multilevel model for change:

• The Y-measurement model contains the level-1 individual 
change trajectory.

• The structural model contains the level-2 model for 
interindividual differences in change.

• The X-measurement model “loads” time-invariant 
predictors into the level-2 model.

To concretize our presentation, we use three waves of self-report 
data collected by Barnes, Farrell, and Banerjee (1994). At each of 
three points in time—the beginning of seventh grade, the end of 
seventh grade, and the end of eighth grade—1122 adolescents used 
a six-point scale to rate how frequently they had consumed beer, 
wine, and liquor during the previous month. The composite rating 
of alcohol use that we analyze is the average of these three items. 
The top panel of table 8.1 presents example data for five boys and 
five girls from the dataset. Column 1 contains an ID, columns 3 
through 5 contain the three assessments of alcohol use (ALC1, 
ALC2, and ALC3) and column 2 indicates the adolescent’s gender 
(FEMALE). We describe the remaining three variables in section 
8.3. Our goal here is to determine whether the trajectories of 
change in alcohol use differ for boys and girls.
Notice that table 8.1 presents a person-level data set, not a
person-period data set (see section 2.1 for a discussion of the 
distinction). To fit a latent growth model with CSA, your data 
must be organized at the person level, in a multivariate format. 
Values of the outcome for each occasion (ALC1, ALC2, and
ALC3) appear in a separate column. Each person has a single 
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row, with multiple (multi-) variables (-variate) containing the 
time-varying data. Unlike our previous representations of the 
multilevel model for change, CSA analyzes a covariance 
structure. As such, it requires a sample covariance matrix (and 
mean vector) that summarizes the associations among (and 
levels of) the variables, including the repeated measures of the 
outcome, as input. The sample covariance matrix and mean 
vector for the full sample appear in the bottom of table 8.1. 
Once you have specified a latent growth model, you (or more

(p.282)
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Table 8.1: The alcohol use study: excerpts from the multivariate format data set and estimated means and 
variance/covariance matrix

Excerpts from the multivariate format data set

FEMALE ALC1 ALC2 ALC3 PEER1 PEER2 PEER3

0018 0 1.00 1.33 2.00 3 2 2

0021 0 1.00 2.00 1.67 1 1 1

0236 0 3.33 4.33 4.33 2 1 3

0335 0 1.00 1.33 1.67 1 2 1

0353 0 2.00 2.00 1.67 1 1 2

0555 1 2.67 2.33 1.67 2 3 1

0850 1 1.33 1.67 1.33 3 1 2

0883 1 3.00 2.67 3.33 4 5 1

0974 1 1.00 1.67 2.67 1 5 6

1012 1 1.00 1.67 2.33 1 2 4

Estimated means and variance/covariance matrix for transformed data

Covariances

Variable Mean FEMALE ALC1 ALC2 ALC3 PEER1 PEER2 PEER3

FEMALE 0.612 0.238
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Covariances

Variable Mean FEMALE ALC1 ALC2 ALC3 PEER1 PEER2 PEER3

ALC1 0.225 −0.008 0.136

ALC2 0.254 −0.013 0.078 0.155

ALC3 0.288 −0.005 0.065 0.082 0.181

PEER1 0.177 −0.009 0.066 0.045 0.040 0.174

PEER2 0.290 −0.022 0.064 0.096 0.066 0.072 0.262

PEER3 0.347 −0.024 0.060 0.074 0.132 0.1 0.112 0.289

Note that these sample statistics were computing after taking natural logarithms of both the alcohol use and peer pressure 
variables.
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accurately, your software) compare the sample estimates to the 
mathematical implications of your models for the structure of the 
underlying population covariance matrix and mean vector. Because 
you compare sample and predicted covariance matrices (and mean 
vectors), the data must be formatted in a way that supports the 
estimation of covariance matrices (and mean vectors).
Notice that there is no dedicated column that records the 
values of time. This is unnecessary as each outcome has a 
unique but constant temporal value. ALC1 was measured at 
the start of seventh grade; ALC2 was (p.283)  measured at the

end of seventh grade; ALC3 was measured at the end of eighth 
grade. To identify the occasions of measurement, you specify 
the values of time when specifying your CSA model. For this 
reason, it is easiest to fit latent growth models when your data 
are time-structured—that is, when everyone is measured on 
the same (or similar sets of) occasions (see section 5.1 for 
discussion).

8.2.1 Mapping the Level-1 Model onto the Y-Measurement Model

We begin, as usual, by using empirical change plots to identify 
a suitable level-1 growth model for individual change over 
time. Visual inspection of the data in table 8.1 suggests 
heterogeneity in both initial status and rate of change. 
Graphical analyses in the full sample confirm this and suggest 
that we can posit a level-1 linear-change model if we analyze 
the natural logarithm of alcohol use. Letting Yij represent (log) 
alcohol use for adolescent i on occasion j we write:

(8.19) 
where TIME j = (GRADE j-7). Because everyone is assessed on the 
same three occasions, TIME includes just a single subscript j. Since
GRADE j takes on the value 7 at the “start of seventh grade,” 7.75 
at the “end of seventh grade,” and 8.75 at the “end of eighth 
grade,” TIME j takes on three values: 0, 0.75, and 1.75. To write the 
model more generally, we identify these three occasions as t 1, t 2, 
and t 3. The parameters of the level-1 model have the usual 
interpretations: π0i represents individual i’s true initial status at the 
beginning of seventh grade and π1i represents individual i’s true 
annual rate of linear change in log-alcohol use during the two-year 
period.
We now diverge slightly from our usual practice. Because each 
individual has three values of the observed outcome, we can 
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use equation 8.19 to write down how each value—Y i1, Y i2, and
Y i3, for individual i—is related to the three values of TIME
employed in the data collection design—t 1, t 2, and t 3—and 
the two individual growth parameters, π0i and π1i:

(8.20) 
With a little algebraic manipulation, we can write these equations 
in matrix form as: (p.284)

(8.21) 
While the level-1 individual growth model in equation 8.21 may 
appear dramatically different from the familiar representation in 
equation 8.19, it says the same exact thing: observed values of Y
are related to TIME (t 1, t 2, and t 3) and a pair of individual 
parameters (π0i and π1i); on each occasion, there is also a unique 
measurement error (εi1, εi2, and εi3). Equation 8.21 simply uses 
vectors and matrices to contain the various numerical values and 
parameters. (Don’t be misled by the strange vector of zeros to the 
immediate right of the equals sign. This cosmetic addition simply 
facilitates our subsequent mapping onto the CSA model.)
Given this representation, we can map the hypothesized 
individual growth model in equation 8.21 onto the CSA Y-
measurement model. Recall from equation 8.11 that the Y-
measurement model is:

(8.22) 
So if we set the score vectors in equation 8.22 to

(8.23) 
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and the parameter matrices τ y and Λy to

(8.24) 
we obtain the model in equation 8.21. This demonstrates that, as 
long as we specify the score vectors and parameter matrices 
correctly, the Y-measurement model in CSA can “contain” our 
level-1 individual growth trajectory in the multilevel modeling of 
change.
Equations 8.20 and 8.21 state that, for adolescent i, 
measurement error disturbs his or her true status by εi1 on the 
first measurement occasion, εi2 on the second, and εi3 on the 
third. But we have not yet made any assumptions about the 
level-1 error covariance structure. Are the errors 
homoscedastic and independent? Heteroscedastic and 
autocorrelated? The flexibility of the Y-measurement model, 
which allows us to specify these distributions using the Θ ε

matrix in equation 8.13, permits great flexibility. During 
analysis, you can compare the goodness of fit of models

(p.285)  with alternative error structures and select an 
appropriate one. For these data, additional analyses not shown 
here suggest the tenability of the assumption that the level-1 
errors are distributed independently and heteroscedastically 
over time within person. We therefore write the Θ ε parameter 
matrix as:

(8.25) 
Unlike what happens in a conventional CSA, the Λ y loading matrix 
in equation 8.24 is a set of known times and constants, not a set of 
unknown parameters to be estimated. In this sense, the Y-
measurement model “forces” the individual growth parameters, π0i

and π1i, into the endogenous construct vector η, creating what we 
call the latent growth vector. This notion—that, in a latent growth 
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model, the CSA η-vector can be forced to contain the individual 
growth parameters, π0i and π1i—is critical for level-2 analyses of 
interindividual differences in change, because it means that this 
variation can be modeled in a structural model, as we now show.

8.2.2 Mapping the Level-2 Model onto the Structural Model

As we have noted before, even if everyone in the population 
shares a common functional form for their individual change, 
their trajectories may differ because of interindividual 
variation in the growth parameters. Some adolescents may 
have different intercepts, others may have different slopes. In 
previous chapters, we used level-2 submodels to represent this 
variation, both unconditional models (that include no 
substantive predictors) and conditional models (that add time-
invariant predictors at level-2). We now demonstrate how to 
specify models of both types by adopting a suitable form for 
the CSA structural model.

An Unconditional Latent Growth Model

An unconditional growth model (as in equations 4.9a and 4.9b) 
allows individual growth parameters to differ across people 
but does not relate their variation to predictors. This is 
equivalent to hypothesizing that the individual growth 
parameters are distributed across people in the population. To 
investigate heterogeneity in change trajectories, we assume, 
as before, that adolescents draw their intercepts and slopes 
from a multivariate normal distribution: (p.286)

(8.26) 
This equation is, in fact, an unconditional level-2 model for 
interindividual differences in change in that it allows different 
people to have different intercepts and slopes.
Each of the five unique level-2 parameters in equation 8.26
plays an important role. The two means, μπ0 and μπ1, describe 
the average intercept and slope of the true change trajectory 
across everyone in the population. They address the question: 
What is the trajectory of true change in (log) alcohol use 
during grades seven and eight? The two variance parameters, 
and , summarize population interindividual differences in true 
initial status and true rate of change. They answer the 
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question: Do the change trajectories of true (log) alcohol use 
differ across adolescents? The off-diagonal covariance 
parameter, σπ0π1, summarizes the strength and direction of 
the population relationship between true initial status and true 
rate of change. It answers the question: Is there an association 
between true initial status and true rate of change in (log) 
alcohol use among adolescents through grades seven and 
eight?

The unconditional distribution of the individual growth 
parameters in equation 8.26 can be represented in a CSA 
structural model because it allows the latent growth vector to 
differ across people. The requisite structural model is simple—
it stipulates that the latent growth vector is the sum of an
average and a residual (that is, a deviation from the average):

(8.27) 
which has the form of the CSA structural model in equation 8.16:

(8.28) 
with all of its parameter matrices except α set to zero:

(8.29) 
and with the latent growth vector η defined as in equation 8.23.
In an unconditional growth model, the properties of the latent 
residual vector, ζ, are particularly interesting. Because the α
vector explicitly represents the population averages of the 
intercepts and slopes, π0i and π1i, the elements of the latent 
residual vector contain deviations of π0i and π1i from their 
population means. As with all residuals, these deviations

(p.287)  have a mean of zero. In addition, equation 8.18

reminds us that the latent residual vector ζ has a covariance 
matrix Ψ:

(8.30) 
Because Ψ contains the level-2 variance and covariance parameters 
from equation 8.26, we are most interested in this matrix.
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Together, equations 8.21 and 8.26 represent an unconditional 
multilevel model for change. Equations 8.22 through 8.25
and 8.27 through 8.30 re-express this model as a CSA model. 
By carefully specifying score and parameter matrices, the Y-
measurement model becomes the level-1 model (including our 
assumptions about the distribution of the measurement errors) 
and the structural model becomes the level-2 model (including 
our assumptions about the distribution of the level-2 
residuals). The top panel of figure 8.2 presents a path diagram 
that reflects this specification. Notice how the loadings link 
the observed measures of alcohol use (Y i1, Y i2, and Y i3) to 
their respective latent constructs (π0i and π1i) and force the 
latter to become the true intercept and slope of the 
hypothesized individual change trajectory.

The most important implication of this mapping is that you can 
use standard CSA methods to fit the multilevel model for 
change. Doing so provides estimates of the parameters in the
α vector, Θ ε matrix and Ψ matrix, which address research 
questions about change. Model A in table 8.2 presents FML 
parameter estimates and goodness-of-fit statistics, along with 
approximate p-values, for the unconditional model just 
specified. Notice that this model fits particularly well (χ2 = 
0.05, d.f. = 1, p = .83).

We interpret the fixed effects as usual. The estimated average 
true intercept is 0.226 (p < .001); the estimated average true 
slope is 0.036 (p < .001). Because alcohol use is expressed as 
a natural logarithm, we can use the methods of section 5.2.1 
to interpret the slope in percentage terms. Computing 
100(e(0.0360) – 1) = 3.66%, we conclude that during grades 
seven and eight, the average adolescent increases his or her 
alcohol consumption by just under 4% a year. Substituting the 
intercept and slope estimates into the hypothesized change 
trajectory in equation 8.19 provides an algebraic expression 
for the average fitted change trajectory in (log) alcohol use:

As with other models that use a logarithmically transformed 
outcome, we can take antilogs (computing e(0.2257+0.0360(GRADE-7))) 
and plot a fitted (p.288)  
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Figure 8.2.  Three hypothesized path 
diagrams of a latent growth model for 
(log) alcohol use. Top panel: 
Unconditional model. Middle panel: 
Adding FEMALE as a time-invariant 
predictor. Bottom panel: Adding PEER 
PRESSURE as a time-varying predictor 
for a cross-domain analysis of change.

(p.289)

Figure 8.2.  Three hypothesized path 
diagrams of a latent growth model for 
(log) alcohol use. Top panel: 
Unconditional model. Middle panel: 
Adding FEMALE as a time-invariant 
predictor. Bottom panel: Adding PEER 
PRESSURE as a time-varying predictor 
for a cross-domain analysis of change.
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Table 8.2 Results of fitting selected latent 
growth models for the alcohol use data (n = 
1222)

Model A Model B Model C Model D

Fixed Effects

Latent μπ0 0.2257***

Growth μπ1 0.0360***

Model α0 0.2513***0.2481***0.0667***

α1 0.0312** 0.0360*** 0.0083

γπ0

FEMALE
−0.0419~−0.0366~

γπ1

FEMALE
0.0079

0.7985***

0.0805

−0.1433~

0.5767**

Variance Components

Level-1 0.0485***0.0489***0.0489***0.0481***

0.0758***0.0756***0.0756***0.0763***

0.0768***0.0771***0.0772***0.0763***

Level-2: 0.0871***0.0864***0.0865***0.0422***

0.0198***0.0195***0.0195***0.0092~

σπ0π1 −0.0125***−0.0122***−0.0122***−0.0064

Distribution of the Exogenous Construct PEER PRESSURE

0.1882***

0.0962***

0.0698***

0.0285**

0.0012



Modeling Change Using Covariance Structure 
Analysis

Page 32 of 48

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Model A Model B Model C Model D

Goodness-of-fit

χ2 0.05 1.54 1.82 11.54

df 1 2 3 4

p 0.83 0.46 0.61 0.0211

~ p < .10; * p < .05; ** p < .01; *** p < .001.

Model A is an unconditional growth model; Models B and C 
are conditional growth models that include the effect of
FEMALE; Model D is a cross-domain model that includes
PEER PRESSURE.

Note: LISREL VII, Full ML.

trajectory in terms of raw alcohol use, as in the left panel of figure
8.3. Although this trajectory may appear linear, this is only because 
the estimated slope is small and the study duration limited making 
the underlying curvature almost imperceptible.
The level-1 variance components summarize the error 
variances at each occasion. Their values—0.049, 0.076, and 
0.077—suggest some (p.290)
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Figure 8.3.  Displaying the results of 
fitting a latent growth model. Fitted 
trajectories for alcohol use from an 
unconditional model (left panel) and a 
conditional model including the main 
effect of FEMALE (right panel).

heteroscedasticity 
from t 1 to t 2
but little from t
2 to t 3. We can 
also use these 
components to 
estimate the 
reliability of 
the outcome 
measure—the 
proportion of 
observed 
variance in the 
outcome that is 
true variance—
on each 
occasion. 
Computing 
{(0.136 − 
0.0490)/
0.136}, 
{(0.155 − 
0.076)/0.155}, and {(0.181 − 0.077)/0.181}, we conclude that the 
reliability of the outcome is moderate—0.64, 0.51, and 0.58—on 
each occasion.
The level-2 variance components summarize population 
heterogeneity in true intercept (0.087, p < .001) and true 
slope (0.020, p < .001). Because both are non-zero, we 
conclude that adolescents vary in both their initial status and 
their rate of change. Finally, examine the estimated 
covariance between true intercept and true rate of change. As 
in the unconditional growth model in section 4.4.2, we can 
combine this with the estimated variances, to find that the 
estimated correlation between true intercept and true rate of 
change is −0.30. This moderate, but statistically significant (p
< .001), value suggests that adolescents who report lower 
seventh-grade alcohol use have more rapid rates of change as 
they age.

(p.291) Including a Time-Invariant Predictor in the X-
Measurement Model

Given that the unconditional growth model suggests that there 
is predictable interindividual heterogeneity in the change 
trajectories, a natural next step is to ask whether we can 

Figure 8.3.  Displaying the results of 
fitting a latent growth model. Fitted 
trajectories for alcohol use from an 
unconditional model (left panel) and a 
conditional model including the main 
effect of FEMALE (right panel).
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actually predict some of this heterogeneity. To keep our 
illustration simple, we investigate whether heterogeneity in 
the alcohol use trajectories depends on the time-invariant 
dichotomy FEMALE. In a latent growth model, we address 
such questions by incorporating the predictor into the 
structural (level-2) model.

The key idea here is to take advantage of the unused X-
measurement model to jimmy predictors into the structural 
model. In this example, this task is disarmingly simple because 
there is just one predictor, FEMALE, which we are prepared to 
assume is measured without error. As a result, and although it 
may appear a bit unusual, we will derive an X-measurement 
model from the following tautology: FEMALE i = 0 + 
1(FEMALE i) + 0, which facilitates comparison with the 
standard X-measurement model:

(8.31) 
Examination of equation 8.31 in light of this tautology suggest that 
you can incorporate a single predictor into a CSA model by 
specifying an X-measurement model in which four conditions hold. 
First, the exogenous indicator vector X must contain a single 
element—here, the predictor FEMALE. Second, the measurement 
error vector δ must contain a single element whose value is fixed at 
zero; this embodies our belief that gender is measured infallibly 
(i.e., with “zero” error). Third, the τ x vector must contain a single 
element whose value is also fixed at zero. We discuss this 
counterintuitive condition below (given that it is the mean of the 
exogenous indicator X that would naturally reside in τ x if the latter 
were free to accept it). Fourth, the matrix of loadings Λ x must 
contain a single element whose value is fixed to 1; this recognizes 
that the scales of the exogenous construct for gender and its 
indicator are identical. As a result, by specifying an X-measurement 
model in which the score vectors are constrained to be:

(8.32) 
and the parameter matrices are fixed at

(8.33) 
we “force” FEMALE into the exogenous construct ξ. And, since ξ 
will play the role of “predictor” in a forthcoming structural model, 
we (p.292)  have succeeded in “inserting” our chosen predictor 
into the level-2 submodel.
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Why did we force the sole element of τ x to be zero when we 
know full well that FEMALE does not have a zero mean? The 
answer to this paradox is rooted in a basic redundancy that is 
built into CSA via the X-measurement model (see the 
discussion at the end of section 8.1.1). The X-measurement 
model represents means using two parameter vectors: τ x

and k. If we take expectations throughout for a single generic 
exogenous indicator (recalling that the population mean of 
measurement error δ is zero), the mean of the observed 
exogenous indicator X is a linear combination of the contents 
of τ x and the population mean of the underlying exogenous 
construct, μξ:

This suggests that, by being crafty about the way we specify τ x and
k, we can force the mean of exogenous indicator X either entirely 
into, τ x or entirely into the mean of the exogenous construct μξ or
force it to be shared between them.
Of course, these multiple specifications are redundant. Your 
choice affects neither model fit nor substantive findings. It 
does, however, affect parameter interpretation and this 
usually suggests a particular specification. Consider, for 
example, what happens if we force the population mean of the 
exogenous construct to be zero (i.e., set μξ = 0) by fixing the 
appropriate element of the k vector at zero. To accommodate 
the mean of the exogenous indicator X, we would have to free 
the corresponding element of τ x, which would assume a value 
of μX. Permitting the population mean of X to be estimated in τ

x is equivalent to centering the observed indicator on its 
sample average, which translates into a centering of the 
predictor in the level-2 model. Based upon arguments about 
centering presented in section 4.5, we choose not to do this 
here, as we prefer to enter dichotomous predictors (like
FEMALE) in their raw state. (With continuous predictors, we 
often prefer the other option.)
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Now consider what happens if we force τ x to zero. The mean 
of the exogenous construct ξ cannot be zero (FEMALE’s mean 
has to go somewhere) and so the corresponding element of k
must be freed up. The latent construct acquires a non-zero 
mean and the mean of exogenous indicator X becomes a 
rescaled version of the mean of its underlying construct, λxμξ

This is equivalent to passing FEMALE into the level-2 
structural model in its raw state. As far as the exogenous 
indicators are (p.293)  concerned, the CSA model contains a 
redundancy because you do not need two independent places 
to model their means. This leaves you with two choices: (1) 
you can capture the mean directly in τ x (the most usual 
practice), in which case the mean of the exogenous construct 
will be zero and the predictor will be centered on its average; 
or (2) you can force the mean into the exogenous construct, 
μξ, by freeing up the appropriate element of k and 
constraining the corresponding element of τ x to zero, in which 
case the predictor will not be centered. The choice is yours 
and should be governed by considerations articulated in 
section 4.5.

The X-measurement model in equations 8.31 through 8.33
forces the exogenous construct ξ to become FEMALE. As a 
result, the population mean of FEMALE appears as the sole 
element of the k vector

(8.34) 
and the population variance of FEMALE appears as the sole 
element of covariance matrix Φ associated with the exogenous 
construct

(8.35) 
We estimate both of these when the CSA model is ultimately fit.
Although we do not demonstrate it, you can easily allow the X-
measurement model in equations 8.31 through 8.33 to 
accommodate additional time-invariant predictors and several 
indicators of each predictor construct. As Willett and Sayer 
(1994) show, you simply expand the exogenous indicator and 
construct score vectors to include sufficient elements to 
contain the new indicators and constructs, and you expand the 



Modeling Change Using Covariance Structure 
Analysis

Page 37 of 48

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

parameter matrix Λx to include the requisite loadings (under 
the usual requirements for identification).

Once the X-measurement model is specified, you use the CSA 
structural model to specify hypothesized relationships 
between the true change trajectory’s growth parameters and 
the predictor(s). The level-1 individual growth model remains 
unchanged. To do so, we modify the unconditional structural 
model in equations 8.27 through 8.30 so that the newly defined 
exogenous construct vector (here, FEMALE) becomes active in 
the equation’s right side. We achieve this by using the latent 
regression-weight matrix Γ, which is present in the structural 
model solely for the purpose of modeling the relationship 
between the η and ξ vectors. To predict interindividual 
differences in change, we free those parameters in the Γ
matrix that permit the regression of true intercept and slope 
on predictor:

(8.36)

(p.294)  which is a CSA structural model with constituent 
parameter matrices:

(8.37) 
In this model, α0 and α1 represent the population average intercept 
and slope of the (log) alcohol use trajectory for boys (when
FEMALE = 0). Latent regression parameters γπ0FEMALE and 
γπ1FEMALE represent the increments to these parameters for girls. 
In the middle panel of figure 8.3, we extend the baseline path 
diagram in the top panel to include FEMALE as a time-invariant 
predictor. Notice that FEMALE is introduced as an exogenous 
indicator/construct pairing on the diagram’s left side.
When we introduce a time-invariant predictor into the 
structural model, the elements of the latent residual vector ζ
in equation 8.36 represent those portions of the intercept and 
slope of the true trajectory that are not (linearly) related to the 
predictor. They are the “adjusted” values of true intercept and 
slope, controlling for the effect of FEMALE. The latent residual 



Modeling Change Using Covariance Structure 
Analysis

Page 38 of 48

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

vector ζ in equation 8.36 is distributed with zero mean vector, 
and covariance matrix Ψ:

(8.38)

which now contains the partial variances and covariance of true 
intercept and slope, controlling for the linear effects of the 
predictor (hence the addition of the symbol “|FEMALE ”—for 
“conditional on FEMALE ” to each element in equation 8.38). If our 
predictions are successful, the partial variances on the diagonal of
Ψ will be smaller than their unconditional cousins in equation 8.30. 
In other words, the proportional decline in the variance of either 
true intercept or slope on the diagonal of Ψ on inclusion of a 
predictor provide a pseudo-R 2 statistic that summarizes how much 
of the between-person variation in the change trajectory is 
associated with the predictor of change (see section 4.4.3 for a 
related discussion in the regular multilevel model for change).
The results of fitting this conditional model are shown in 
Model B of table 8.2. Notice that the model fits well (χ2 = 1.54, 
d.f. = 2, p = .46). We interpret the fixed effects using familiar 
strategies. The elements of indicate that the average 
adolescent boy has an estimated true intercept of 0.2513 (p < .
001) and an estimated true slope of 0.0312 (p < .01). The 
latent regression coefficients and assess gender differentials 
in these quantities. Because is −0.0419 (p < .10), we conclude 
that girls initially report a lower level of alcohol consumption. 
But is indistinguishable from 0 (0.0079, p > .10), we conclude 
that there is no discernible gender differential in rates of 
change.

(p.295) Before moving to the variance components, notice that 
we do not compare goodness-of-fit statistics for Models A and 
B. However tempting it might be, you cannot compare the fit 
statistics of these models because FEMALE was not included 
in the sample covariance matrix for Model A. To test the effect 
of FEMALE on the entire change trajectory, you must assess 
the joint impact of γπ0FEMALE and γπ1FEMALE by comparing 
Model B to a baseline that is identical in all aspects except 
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that it fixes these two parameters to zero. When we fit this 
baseline, we find that it, too, fits well (χ2 = 5.36, d.f. = 4, p > .
25). Comparing it to Model B, we are unable to reject the joint 
hypothesis that γπ0FEMALE and γπ1FEMALE are jointly zero (Δχ2

= 3.816, Δd.f. = 2, p < .15).

Now examine the variance components for Model B. The 
level-1 variance components estimate the variances of the 
level-1 errors and describe the fallibility of outcome 
measurement on each occasion. They remain similar in 
magnitude and interpretation to those in Model A. The level-2 
variance components are the estimated partial variances and 
covariance of true intercept and true slope, controlling for the 
linear effects of FEMALE. Comparing these partial variances 
with their unadjusted cousins, we see that inclusion of
FEMALE as a level-2 predictor in the model reduces them only 
slightly, by 0.8% and 1.5%, respectively. This suggests that, 
despite being a statistically significant predictor of intercept 
(p < .10), FEMALE is of minor importance in explaining extant 
inter-individual variation in true change.

Given that FEMALE seems to have no impact on the true rate 
of change, we fit an additional model, Model C, which is 
identical to Model B except that γπ1FEMALE is fixed to zero. 
Using parameter estimates from Model C, we have the 
following two fitted change trajectories for prototypical boys 
and girls:

By substituting a range of appropriate values for GRADE and 
antilogging the obtained fitted values, we constructed the 
prototypical change trajectories in the right panel of figure 8.3. 
Boys and girls enter seventh grade displaying differences in alcohol 
use, but their upwardly curved trajectories remain parallel.

8.3 Cross-Domain Analysis of Change

We now demonstrate an interesting way of incorporating a 
time-varying predictor into a latent growth model. The last 
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three columns of table 8.1 (p.296)  present time-varying data 
on peer pressure to drink. On each occasion, each adolescent 
used a six-point scale to report the number of times during the 
past month a friend offered him or her alcoholic drink. These 
data allow us to determine whether adolescents’ use of alcohol 
increases more rapidly if peer pressure also increases more 
rapidly. In statistical terms, this is a question about whether 
the rate of change in alcohol use can be predicted by the rate 
of change in peer pressure—a kind of “growth on growth” 
analysis.5 For simplicity, in what follows, we set aside the 
time-invariant predictor FEMALE. Once you understand the 
general strategy, you can simultaneously include predictors of 
both types.

8.3.1 Modeling Individual Change in both the X- and Y-
Measurement Models

To determine whether change in an outcome is associated with
change in a time-varying predictor, we can simultaneously 
model individual change in both variables and investigate the 
relationship between the two sets of individual growth 
parameters. To achieve this, in the current data set, we must 
specify individual growth models for both alcohol use and peer 
pressure.

Individual change in the outcome is modeled as before, in the
Y-measurement model. Equations 8.22 through 8.25 offer the 
usual specification. The individual growth parameters that 
describe true change in self-reported (log) alcohol use are 
forced, as usual, into latent growth vector η.

In the new context, however, we use the X-measurement 
model to represent individual change in the time-varying 
predictor. Exploratory analyses (not included here) suggest 
that the natural log of peer pressure for adolescent i on 
occasion j, Xij, is a linear function of time, so we write the 
level-1 growth model as:

(8.39) 
where we add superscripts to the parameters to distinguish them 
from those representing change in (log) alcohol use. Even though 
equation 8.39 describes the behavior of a predictor, we interpret its 
parameters in the usual way: represents individual i’s true initial 
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peer pressure at the beginning of seventh grade and represents 
individual i’s true rate of linear change in peer pressure during the 
two-year period.
The level-1 individual growth model for the exogenous peer 
pressure change trajectory in equation 8.39 becomes the X-
measurement model:

(8.40) 
(p.297)  with vectors that contain the empirical growth record, the 

individual growth parameters, and the errors of measurement:

(8.41) 
and with parameter matrices that contain the usual known values 
and constants:

(8.42) 
Notice that the ξ vector in equation 8.41 is a “latent growth vector” 
containing individual growth parameters that describe the true 
change trajectory in exogenous peer pressure. As in any X-
measurement model, the population mean vector and covariance 
matrix of these level-1 parameters will appear in the k vector and Φ
matrix:

(8.43) 
For these data, we assume that the level-1 error vector δ has a 
covariance matrix Θ δ similar to the heteroscedastic error 
covariance matrix specified for the Y-measurement model in 
equation 8.25:

(8.44) 
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When you use both Y- and X-measurement models, you specify 
these covariance matrices, Θ δ and Θ ε, as well as a matrix of their
covariances, Θ δε, which accounts for any correlation between 
measurement errors in the exogenous and endogenous indicators. 
This feature has both substantive and psychometric advantages. In 
this study, this feature allows us to assume that the measurement 
errors in the outcome and predictor may covary across adolescents 
within-occasion:

(8.45) 

(p.298) 8.3.2 Modeling the Relationship between Change 
Trajectories in the Structural Model

Having specified level-1 individual growth models for both the 
outcome and predictor, we now use the CSA structural model 
to represent the relationship between these trajectories. For 
these data, this means that we link interindividual variation in 
the growth parameters for (log) alcohol use and (log) peer 
pressure:

which you will recognize as a CSA structural model:

(8.46) 
with score vectors:

(8.47) 
and parameter matrices:
(8.48)

The latent regression-weight matrix Γ contains the level-2 
regression parameters that capture the potential relationship 
between changes in (log) alcohol use and changes in (log) peer 
pressure.
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The bottom panel of figure 8.2 extends the path diagram in the 
top panel to include time-varying peer pressure as an 
exogenous predictor of change. On the left side, the observed 
indicators of peer pressure, X i1, X i2, and X i3, are the 
consequence of a pair of exogenous constructs representing 
the intercept and slope of the true trajectory of change in peer 
pressure, and . The individual growth parameters, in turn, 
predict the intercept and slope parameters of the endogenous 
true change trajectory in alcohol use. Our principal interest is 
in the γ coefficients in the center of the diagram.

Model D of table 8.2 presents the results of fitting this model 
to data; we omit estimates of the level-1 error structure to 
save space. Although the goodness-of-fit statistic is larger than 
ideal, the model fits reasonably well (χ2 = 11.54, d.f. = 4, p = .
0211). For perspective, we compare Model D to a baseline (not 
shown) which constrains the four regression coefficients in Γ
to zero (χ2 = 342.34, d.f. = 8, p = .0000). The huge decline in 
goodness-of-fit confirms that change in peer pressure is an 
important predictor of change in alcohol use (Δχ2 = 330.8, 
Δd.f. = 4).

(p.299) Just two of the four fixed effects are statistically 
significant. Initial level of (log) peer pressure is positively 
related to initial level of (log) alcohol use and rate of change in 
(log) peer pressure is positively related to rate of change in 
(log) alcohol use . At the beginning of seventh grade, 
adolescents drink more if their friends drink more, and those 
who experience more rapid growth in peer pressure 
experience more rapid growth in alcohol use. We cannot reject 
the null hypotheses for the other coefficients .

The variance/covariance components summarize the outcome 
variation in (log) alcohol use that remains after accounting for 
changes in (log) peer pressure. We find predictable variation 
in both the intercept and slope . When we compare these 
values to their cousins in the baseline (not shown), we find 
steep declines from their original values of 0.0762 and 0.0161. 
This suggests that about 47% and 43% of the variability in 
(log) alcohol use intercepts and slopes, respectively, is 
predicted by change in (log) peer pressure. Once we account 
for change in (log) peer pressure, the covariance is 
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indistinguishable from 0, indicating no residual relationship 
between initial status and rate of change.

The remaining estimates in table 8.2 summarize change in 
(log) peer pressure. The estimated intercept and slope of the 
average trajectory indicate that (log) peer pressure is non-zero 
in seventh grade and climbs steadily over time . Computing 
100(e.0962-1) = 10.1%, we estimate that peer pressure 
increases annually by about 10%. Finally, the statistically 
significant estimated variances for intercepts and slopes 
suggest that the trajectories of change in (log) peer pressure 
differ across adolescents. But because the covariance is 
indistinguishable from 0, we find no relationship between 
initial status and rate of change.

8.4 Extensions of Latent Growth Modeling

As you might expect, the basic latent growth model presented 
in this chapter is just the beginning of what can be achieved 
with CSA and longitudinal data. The CSA framework is an 
invaluable tool for exploring complex relationships in 
longitudinal data, especially relationships among constructs 
that simultaneously change over time. In the section, we 
briefly describe some possible extensions. Our goal is not to be 
exhaustive, but rather to give you a flavor of the exciting 
possibilities.

We begin by noting that you can easily extend the general CSA 
model to handle longer longitudinal data records. Extra waves 
do not alter the basic Y-measurement model in equations 8.22
through 8.25; all you (p.300)  need do is extend the 
dimensions of the constituent score vectors and parameter 
matrices. If we had four waves of data, for example, the 
empirical growth record on the left side of equation 8.21
would contain an extra element for the additional wave, and 
an extra row would be tacked onto the τ y vector, the Λ y

matrix and the ε vector:
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The same is true when you use an X-measurement model to 
represent exogenous change.
So, too, the occasions of measurement need not be equally 
spaced. You can collect panel data at irregular intervals either 
for convenience (e.g., at the beginning and end of the school 
year) or because you want to estimate features of the 
trajectory more precisely by clustering points around times of 
greater interest. Irregularly timed data collection is 
accommodated by specifying appropriate times within the Λ y

matrix of loadings in equation 8.24 (or in the Λ x matrix in 
equation 8.42 for exogenous change). Although we did not 
emphasize it, the temporal spacing of the three waves of data 
in section 8.2 is irregular. Even if subgroups of respondents 
are assessed at different sets of irregularly spaced occasions, 
you can still fit a latent growth model by dividing the sample 
into subgroups with identical temporal designs and using 
multigroup analysis with suitable constraints on the relevant 
parameters across subgroups.6

It is easy to extend the basic level-1 individual growth model 
to include any number of functional forms. Not only can it be a 
polynomial of any order (provided sufficient data are 
available), you can also accommodate any curve in which 
individual status is linear in the parameters (see section 6.4). 
By comparing the goodness-of-fit of competing nested models, 
you can evaluate the need for the additional curvilinear terms, 
as before. To accommodate such modifications, you first add 
appropriate terms to the level-1 model in equation 8.19. This 
forces the additional individual growth parameters that 
represent the curvilinearity into the η latent growth vector in 
equations 8.21 and 8.23 and adds columns to the Λ y loading 
matrix in equation 8.24. With four waves of data, for instance, 
we could postulate quadratic individual change by writing:
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(p.301)  As suggested in section 8.2.1, you can also explicitly 
model the covariance structure of the level-1 measurement errors. 
The population error covariance matrix Θ ε in equation 8.25 can be 
specified very generally. You need not accept the independence 
and homoscedasticity assumptions of classical analysis, nor the 
band-diagonal configuration imposed by repeated-measures 
ANOVA. As in chapter 7, you can compare the fit of alternative 
error structures and determine the best structure analytically. You 
enjoy identical flexibility when modeling exogenous change in the X
-measurement model.
Another extension is the ability to examine intervening effects
in which an exogenous predictor does not act directly on 
endogenous change, but indirectly via the influence of 
intervening factors, each of which may be time-invariant or 
time-varying. To accomplish this, you would employ the 
currently unused latent regression parameter matrix Β in the 
structural model, which permits endogenous constructs to 
predict each other.

But perhaps the most important extension of latent growth 
modeling is when you use it to model simultaneous change in 
several domains. Section 8.3 offers a simple example of this, 
but you can extend this strategy to change in multiple 
exogenous and endogenous domains. When studying students’ 
progress through school, for example, you could 
simultaneously model endogenous change in math, science, 
and reading achievement. All you need do is extend the 
empirical growth record in equation 8.23 to include sufficient 
rows for each wave in each domain. With three waves of data 
in math, science, and reading, for example, the empirical 
growth record would have 9 rows, as would the τ y vector, the
Λ y parameter matrix and the ε error vector. In contrast, the 
latent growth vector η, would expand only to accommodate 
the set of individual growth parameters required to represent 
the three kinds of change:
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(p.302)  where superscripts m, s, and r denote the three 

achievement domains. You can specify the X-measurement model 
similarly to represent simultaneous change in several exogenous 
domains. And, then, via latent regression coefficient matrix Γ in the 
structural model, you can investigate relationships among the 
several exogenous and endogenous changes simultaneously.

Notes:

(1.) In practical analysis, we would need to define a 
measurement metric for each of the underlying constructs 
perhaps by fixing one loading per construct in the ∧x matrix to 
a constant value, such as 1 (see Bollen, 1989).

(2.) Again, in practical analysis, the metrics of the underlying 
endogenous constructs would need to be determined, perhaps 
by fixing selected loadings, one per construct, to a constant 
value, such as 1 (Bollen, 1989).

(3.) Taking expectations in equation 8.14 and substituting for 
μη 1 from the first expression into the second, the population 
means of the endosgenous constructs are μη1 = α1 + γ11μξ1 + 
γ12μξ2 and μη2 = α2 + β21(α1 + γ11μξ1 + γ12μξ2).

(4.) If β 12 and β 21 were both present in B, then a hypothesis of 
“reciprocal causation” (in which each endogenous construct 
was simultaneously predicting the other) would be 
entertained.
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(5.) Notice that this is a different research question than 
would be addressed by incorporating a time-varying variable 
as an extra predictor in the Level-1 submodel, as described in 
section 5.3 in the regular multilevel model for change.

(6.) With completely unstructured data, the number of 
required subgroups would become inhospitable and the 
sample size within subgroup too small to estimate the sample 
covariance matrices required for multigroup analysis.
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This chapter introduces the essential features of event 
occurrence data, explaining how and why they create the need 
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describing three studies of event occurrence, each conducted 
in a different discipline. Section 9.2 identifies the three major 
methodological features of each study: a well-defined “event” 
whose occurrence is being explored; a clearly identified 
“beginning of time”; and a substantively meaningful metric for 
clocking time. Section 9.3 concludes by highlighting the 
hallmark feature of event occurrence data that makes the new 
statistical methods we soon discuss necessary—the problem 
known as censoring.
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Tempora mutantur nos et mutamur in illis. (Times 
change, and we change with them.)

—Anonymous, quoted in Holinshed’s Chronicles, 1578

Each year, on the third Thursday in November, thousands of 
U.S. smokers participate in the Great American Smoke Out, 
pledging to throw away their cigarettes and never smoke 
again. Some participants successfully remain abstinent for the 
rest of their lives, but many others relapse and start smoking 
again. When are people at greatest risk of relapse—
immediately after quitting, when the physical symptoms of 
nicotine withdrawal are strongest, or several weeks later, 
when the social supports of the Smoke Out disappear? Who is 
at greatest risk of relapse—those who smoked the most or 
those who tried to quit on their own, without enrolling in a 
smoking cessation program?

Questions such as these—about the occurrence and timing of 
events—arise throughout the social and behavioral sciences. 
Criminologists ask questions about recidivism. Organizational 
researchers ask questions about employee turnover. 
Psychiatrists ask questions about the onset and recurrence of 
mental illness. Educators ask questions about graduation and 
dropping out. Psychologists ask questions about the 
attainment of developmental milestones. Yet despite their 
ubiquity, many general applied statistics books fail to discuss 
methods for addressing such questions, creating the 
misimpression that standard techniques, such as regression 
analysis and analysis of variance, suffice. Unfortunately, not 
only are these usually versatile methods ill-suited for modeling 
event occurrence, they may also conceal more than they 
reveal.

Researchers who want to study event occurrence must learn 
how to think about their data in new and unfamiliar ways. 
Even traditional methods for data description—the use of 
means and standard (p.306)  deviations—fail to serve 
researchers well. In this chapter, we introduce the essential 
features of event occurrence data, explaining how and why 
they create the need for new analytic methods. To provide a 
context, in section 9.1, we describe three studies of event 
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occurrence, each conducted in a different discipline. In section 
9.2, we identify the three major methodological features of 
each study: (1) a well-defined “event” whose occurrence is 
being explored; (2) a clearly identified “beginning of time”; 
and (3) a substantively meaningful metric for clocking time. 
We conclude, in section 9.3, by highlighting the hallmark 
feature of event occurrence data that makes the new 
statistical methods we soon discuss necessary—the problem 
known as censoring.

9.1 Should You Conduct a Survival Analysis? The 
“Whether” and “When” Test

Researchers use survival analysis in a variety of contexts that 
share a common characteristic: interest centers on describing
whether events occur or when events occur. Data can be 
collected prospectively or retrospectively, over a short period 
of time or a long one, in an experiment or an observational 
study. Time can be measured in years, months, days, or 
seconds. The target event can occur once—e.g., graduation 
from high school or birth of a first child—or repeatedly over 
time—starting a job, leaving a job, buying a house, selling a 
house. Event occurrence can be beyond the individual’s 
control—for example, having a miscarriage or getting fired—or 
well within his or her purview—for example, having an 
abortion or stopping breast-feeding. Because the earliest 
applications of survival analysis were in the study of human 
lifetimes, where the event of interest is death, the statistical 
terminology is shrouded in foreboding language. This leads 
many to assume incorrectly that the methods are appropriate 
only when studying negative events such as disease onset, 
recidivism, divorce, and drug use. Yet the methods care little 
about the valence of the event being studied. They lend 
themselves equally well to the study of positive events (e.g., 
marriage, childbirth, graduation) and neutral events (e.g., 
buying a car, entering day care).

To determine whether a research question calls for survival 
analysis, we find it helpful to apply a simple mnemonic we 
refer to as “the whether and when test.” If your research 
questions include either word—whether or when—you 
probably need to use survival methods. To illustrate the range 
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of research questions for which the methods are suitable, 
below we describe three studies that “pass” this test.

(p.307) 9.1.1 Time to Relapse among Recently Treated Alcoholics

Mental health professionals have long recognized that many 
people who participate in inpatient alcohol treatment 
programs start drinking again after program cessation. To 
decrease the risk of relapse, clinicians have developed after-
care programs that support patients once they leave the 
hospital setting. Cooney, Kadden, Litt, and Getter (1991) 
evaluated the comparative efficacy of two such regimens—one 
that emphasized coping skills and another that emphasized
interaction skills. The researchers randomly assigned 89 
individuals, newly released from a 21-day alcohol treatment 
program, to the two treatments. Each person was followed for 
up to two years. The researchers hypothesized that treatment 
efficacy would vary as a function of the patients’ level of 
psychosocial functioning at release. Specifically, they expected 
that interaction therapy would be more effective for people 
with lower levels of psychopathology, and coping skills 
therapy would be more effective for those with higher levels.

Research interest centered on whether and, if so, when the 
newly released patients relapsed to alcohol use. The 
researchers focused most closely on the subsequent 
occurrence of the first day of “heavy drinking,” defined as 
consuming three or more ounces of alcohol (ethanol) in a 24-
hour period. The outcome, time to first drink, was measured 
as the number of days between the day of release from the 
program and the first day of heavy drinking. During the two-
year follow-up, 57 patients (64.0%) relapsed, 28 (31.5%) 
remained abstinent, and 4 (4.5%) who remained abstinent for 
a while ultimately disappeared. Among those who relapsed, 
some did so immediately after release—in as few as 5 or 10 
days after leaving the hospital—while others relapsed much 
later—after 366, 370, and even 677 days.

Cooney and colleagues wanted to do more than describe these 
relapse patterns; they also wanted to predict time to relapse 
using two variables: level of psychopathology and type of after 
care. Initially, they explored the main effects of each predictor 
and found that neither had any effect. Then, they explored the 
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statistical interaction between the predictors and found that 
certain after-care regimens were especially successful for 
certain types of individuals. As hypothesized, interaction 
therapy was more effective for those with low 
psychopathology scores while coping skills therapy was more 
effective for those with high scores. The researchers 
concluded that no single after-care program fits every 
patient’s needs. To ensure better outcomes, programs and 
patients must be matched.

(p.308) 9.1.2 Length of Stay in Teaching

Since the 1990s, the demand for U.S. public school teachers 
has increased dramatically as student enrollments have grown 
and practicing teachers have retired. In most school districts, 
the greatest demand is in fields—such as special education—
that traditionally have high turnover rates. To determine how 
long special educators stay in teaching and to identify factors 
associated with their stay or leave decisions, Singer (1993) 
examined the career histories of 3941 special educators newly 
hired in Michigan between 1972 and 1978. Using state 
administrative databases, she reconstructed the employment 
history of each teacher from his or her date of hire through 
1985. All teachers were tracked for a minimum of seven years. 
Those in the earlier entry cohorts were tracked for longer 
periods of time, up to 13 years for those hired in 1972.

Research interest centered on whether and if so, when, the 
teachers first left teaching. The outcome—length of stay in 
teaching—was measured as the number of years between a 
teacher’s dates of hire and departure from the Michigan 
public schools. Across the entire sample, 2507 teachers 
(63.6%) left teaching before 1985; the remaining 1434 (36.4%) 
were still teaching when data collection ended. Special 
educators were most likely to leave during the first five years 
of teaching. Approximately one-tenth of those still working at 
the beginning of each of these years left by the end of the 
year. Teachers who survived these initially “hazardous” years 
were much less likely to leave in later years.

After describing this pattern of risk, Singer investigated 
whether certain types of special educators were especially 
likely to leave. As researchers studying regular educators’ 
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careers have found, young women were particularly likely to 
depart, probably to begin a family. She also found that three 
predictors assessing the “opportunity costs” of continuing to 
teach in the public schools (in comparison to switching to 
another occupation) predicted teachers’ stay-or-leave 
behavior. Special educators with the best job opportunities 
outside of teaching (those who provided support services or 
who taught students with speech, hearing, or vision 
disabilities) were at greatest risk of leaving as were those with 
higher test scores and those paid comparatively low salaries. 
Singer concluded that special educators, like their regular 
educator colleagues, assess the “costs” of continuing to teach, 
and those with better options elsewhere are more likely to 
leave.

9.1.3 Age at First Suicide Ideation

Suicide is a major cause of death among adolescents and the 
rate at which young Americans attempt suicide is increasing 
dramatically. Yet because (p.309)  the total number of suicides 
is small and people who take their own lives cannot be 
interviewed, researchers studying this problem generally use 
post-hoc informant interviews to contrast adolescents who 
attempt suicide with those who do not. Bolger, Downey, 
Walker, and Steininger (1989) approached this issue from a 
different perspective by focusing not on suicidal behavior but 
on suicidal ideation. After recruiting 391 undergraduates, ages 
16 to 22, the researchers administered a 15-minute 
anonymous questionnaire that asked “Have you ever thought 
of committing suicide?” and if so, “At what age did the thought 
first occur to you?” Also included were questions assessing 
demographic risk factors (e.g., age, race, and gender) and 
potentially precipitating life experiences (e.g., death of a 
family member, parental absence during childhood).

Research interest centered on whether and, if so, when each 
undergraduate first thought of suicide. A total of 275 (70.3%) 
students reported having had suicidal thoughts; the remaining 
116 (29.7%) did not. Of those who responded affirmatively, 
some reported initial thoughts as young as age 6, while others 
reported initial thoughts as late as age 21—an age older than 
some of the younger members of the sample. Adolescence was 
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the time of greatest risk—149 (54.2%) respondents who had 
ever thought about suicide reported that their initial thoughts 
were manifested between ages 12 and 15.

Bolger and colleagues also investigated whether suicide 
ideation could be predicted using descriptors of an individual’s 
demographic and precipitating life circumstances. They 
examined not only whether a predictor had a consistent effect 
across the life span but also whether a predictor’s effect
differed across developmental stages. Beyond a consistent 
gender differential (females were always at greater risk of 
suicidal ideation), the effects of two other predictors differed 
by developmental stage. In pre-adolescence, but not 
adolescence, parental absence was associated with increased 
risk of suicide ideation. In adolescence, however, a 
pronounced race differential appeared, with whites at greater 
risk than blacks. Because suicidal thoughts were so 
widespread and seemed to occur at developmentally 
vulnerable ages, the researchers concluded that suicidal 
ideation may be a normal part of development, and that at 
early ages, at least, may be precipitated by exposure to 
difficult life experiences.

9.2 Framing a Research Question about Event 
Occurrence

In introducing these studies, we emphasize their substantive
features—their research questions, data collection plans, and 
findings. To determine whether a research question lends 
itself to survival analysis, you (p.310)  must also examine a 

study’s methodological features. Even though these studies 
are set in different disciplines, they share three 
methodological features that make them a candidate for 
survival analysis. Specifically, each has a clearly defined:

• Target event, whose occurrence is being studied

• Beginning of time, an initial starting point when no one 
under study has yet experienced the target event

• Metric for clocking time, a meaningful scale in which 
event occurrence is recorded
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Using this terminology, the alcohol relapse study is asking: In how 
many days, after release from the hospital, do recently treated 
alcoholics start drinking again? Similarly, the teacher turnover 
study is asking: In how many years, after initial hire, do special 
educators stop teaching? To demonstrate why these methodological
features render a research question amenable to survival analysis, 
we now discuss each in turn.

9.2.1 Defining Event Occurrence

Event occurrence represents an individual’s transition from 
one “state” to another “state.” A recently treated ex-alcoholic 
is abstinent (state 1) until he or she starts drinking (state 2). A 
newly hired teacher is working (state 1) until he or she leaves 
the schools (state 2). An individual has never thought about 
suicide (state 1) until he or she does (state 2). We use the term 
“state” because it is so generic, applicable across many 
substantive disciplines. Some states are physical (living in a 
homeless shelter, living in a rented home); others are 
psychological (depressed or healthy) or social (married or 
divorced). The only requirement for survival analysis is that, in 
any particular research setting, the states be both mutually 
exclusive (nonoverlapping) and exhaustive (of all possible 
states).

In most applications, each person can occupy only two 
possible states: drinking or abstinent, employed or 
unemployed. In other applications, each individual can occupy 
three or more possible states. A researcher studying student 
careers, for example, might track high school freshmen as 
they transition from being in school (state 1) to one of two 
alternatives: dropping out (state 2) or graduation (state 3). A 
researcher studying marital duration might track newlyweds 
to see whether their marriages (state 1) end in divorce (state 
2) or with death (state 3). For now, and for most of our 
presentation, we assume that all individuals can occupy only 
one of two states. In section 15.5, we extend these two-state 
methods, using an approach known as competing risks 
survival analysis, to situations in which individuals can occupy 
three or more states.

(p.311) Some states can be occupied only once in a lifetime—
first word, first step, puberty, high school graduation, and 
death, to name a few. Once a person enters these states, he or 
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she can never reenter them. Many other states—including 
depression, incarceration, pregnancy, and marriage—can be 
occupied again and again. In their analysis of the course of 
psychopathology over time, Lavori et al. (1996) track 
individuals as they cycle into, and out of, up to seven 
depressive episodes. Methodologists use the term “spell” to 
refer to a single transition into (or out of) one of a series of 
repeatable states. Economists study employment spells, the 
length of time between hire and leaving a job; psychiatrists 
study illness spells, the length of time between onset and 
remission. Our presentation focuses exclusively on the most 
common and fundamental problem: the analysis of single 
spells.

States must be defined precisely, with clear guidelines 
indicating the behaviors, responses, or scores constituting 
each state. Empirical researchers often find this the most 
difficult requirement to meet. In some situations, you can 
invoke generally accepted definitions and criteria. 
Psychologists, for example, routinely use the DSM 
classification system. Other times, you may use simple face-
valid definitions: a woman is pregnant or not, an adult is 
employed or not. But there will be studies in which state 
definition is difficult. When examining developmental 
milestones among infants, for example, who determines which 
word is the child’s “first?” Is maternal report sufficient, or 
must the child be able to produce the word for an observer? 
How clearly articulated must the pronunciation be? These 
issues are not just academic because the definition of states 
provides the definition of outcomes. In their review of 
recidivism among sex offenders, for example, Furby, Weinrott, 
and Blackshaw (1989) show how different definitions of states
—commission of the same crime, of any sex crime, of any 
crime—yield different outcomes that are associated with 
different predictors. As state definition is primarily a 
measurement issue, we simply raise it here. Prior to data 
collection, we urge you to give serious consideration to a wide 
range of alternative definitions so that the one you ultimately 
select provides the most meaningful basis for analysis.
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9.2.2 Identifying the “Beginning of Time”

The “beginning of time” is a moment when everyone in the 
population occupies one, and only one, of the possible states. 
On the day they are released from the hospital, all recently 
treated alcoholics are abstinent; on the day they were hired, 
all new special educators are teaching. Over time, as 
individuals move from the original state to the next, they

(p.312)  experience the target event. The timing of this 
transition—the distance from the “beginning of time” until 
event occurrence—is referred to as the event time.

To identify the “beginning of time” in a given study, imagine 
placing everyone in the population on a time-line, an axis with 
the “beginning of time” at one end and the last moment when 
event occurrence could be observed at the other. The goal is 
to “start the clock” when no one in the population has yet 
experienced the event but everyone is at least (theoretically) 
eligible to do so. In the language of survival analysis, you want 
to start the clock when everyone in the population is at risk of 
experiencing the event.

Because birth is often meaningful and convenient, it is a 
popular start time, especially in studies that track 
developmental sequences and milestones. Although it may 
seem awkward to report it this way, any study that uses age as 
the metric for time is actually using birth to denote time’s 
beginning. Hence, in the suicide ideation study, which 
examined the age of first suicidal thought, the “beginning of 
time” is birth.

Another common way of setting the beginning of time is to tie 
it to the occurrence of a precipitating event—one that places 
all individuals in the population at risk of experiencing the 
target event. In the alcohol relapse study, the beginning of 
time is the date of hospital release because at that moment no 
one is drinking, yet everyone could theoretically start drinking 
again. In the teacher turnover study, the beginning of time is 
the date of hire because at that moment everyone is working, 
yet everyone could immediately quit. The choice of 
precipitating event varies widely across disciplines and 
research questions. Options have included: entry into high 
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school (Roderick, 1994), graduation from college (Rayman & 
Brett, 1995), release from jail (Harris & Koepsell, 1996), 
marriage (South, 2001), divorce or separation (Wu, 1995), 
hospital admission (Strober, Freeman, Bower, & Rigali,
1996), hospital release, report of child maltreatment (Fryer & 
Miyoshi, 1994), pregnancy (Yamaguchi & Kandel, 1987), and 
childbirth (Fergusson et al., 1984).

What should you do if you have no compelling argument for 
initiating the clock at a particular point in time? Researchers 
in this situation typically use an arbitrary start time, as long as 
that time is unrelated to event occurrence. In an experiment, 
for example, you might use the date of randomization (Peto et 
al., 1976) or the date of intervention (Berk & Sherman, 1988; 
Greenhouse, Stangl, & Bromberg, 1989). Or in a study of 
ongoing social interactions, you might start the clock at any 
convenient moment, for there is little hope of identifying a 
substantively meaningful start time in a long-term continuing 
process. Using this argument, Gardner and Griffin (1988) used 
a single arbitrarily selected (p.313)  20-minute segment of 
interaction in their study of continuities and breaks in gazes 
between a husband and wife during conversations about their 
marriage.

9.2.3 Specifying a Metric for Time

Once you identify the beginning of time, you must select the 
units in which you will record its passage. Sometimes you can 
record time using thin precise units. In the alcohol relapse 
study, Cooney and colleagues (1991) counted the number of
days between a patient’s release from the hospital and his or 
her first episode of heavy drinking. Such precision allows 
distinctions among individuals who relapsed, for example, in 5, 
15, and 25 days. Often, however, you will only be able to 
record time using a series of finite intervals. In the teacher 
turnover study, for example, time was recorded in years. In 
other settings, you might know the semester an adolescent 
dropped out of school (Graham, 1997) or the month when a 
patient was readmitted to the hospital (Mojtabai, Nicholson, & 
Neesmith, 1997). We distinguish between data recorded in 
thin precise units and those recorded in thicker intervals by 
calling the former continuous time and the latter discrete time.
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Time should be recorded in the smallest possible units 
relevant to the process under study. No single metric is 
universally appropriate, and even different studies of the 
identical event might use different scales. Consider three 
studies of job turnover: one focusing on members of the U.S. 
Congress, another focusing on teachers, and a third focusing 
on clerical workers. Political scientists studying congressional 
turnover generally use two-year time intervals because, with 
the few exceptions that result from death and mid-term 
resignation, all representatives complete their two years of 
elected service. Educational researchers studying teacher 
turnover typically use one-year intervals because most 
teachers leave their jobs at the end of the school year. 
Organizational researchers studying clerical workers, in 
contrast, record time in weeks or months because many 
employees in these jobs stay for less than one or two years, 
rendering the wider intervals, useful in the other studies, too 
coarse to reflect meaningful variation in the timing of 
transitions.

Despite the obvious advantages of measuring time as precisely 
as possible, many researchers find themselves with discrete 
time data. Three related factors underlie this phenomenon. 
First, some events can occur only at discrete points in time. 
High school students, for example, can graduate at only a 
small number of preset times during the year. Once 
graduated, they can enter college only at another small 
number of registration periods. Second, although some events 
can theoretically occur (p.314)  across a wide range of times, 
many individuals do not experience them this way. Although 
employees with term contracts might be able to quit their jobs 
at any point in time, most (especially professionals) leave 
when their contracts expire. Professors leave colleges at the 
end of the academic year; physicians leave health clinics when 
their obligations end (see, e.g., Singer, Davidson, Graham & 
Davidson, 1998). Third, data collection constraints—especially 
in retrospective studies—often force researchers to use 
intervals to record the passage of time. Due to memory failure, 
respondents can usually supply dates and times only in ranges 
or round numbers, even if encouraged by interviewers to be 
more precise. In the suicide ideation study, for example, only 
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15 people recalled their age at first suicidal thought with more 
precision than a full year, even though all respondents were 
asked to report their age to the half-year. Similarly, in a 
retrospective study of the age (in months) when young 
children were first placed in day care, Singer, Fuller, Keiley, 
and Wolf (1998) found that only 8% of the parents reported 
placement at any time other than the child’s first 6 months of 
life, his or her birthday (12, 24, 36, or 48 months precisely) or 
his or her half birthday (6, 18, 30, 42, or 54 months precisely). 
Even if this pattern reflects overt decision making to place 
children in care when they reach their birthday (or half 
birthday) and does not reflect rounding, the effect on the data 
is the same: time is measured in discrete intervals.

Distinguishing between continuous- and discrete-time data is 
more than a methodological detail. Almost every feature of 
survival analysis—parameter definition, model construction, 
estimation, and testing—depends on the metric for time. 
Although the earliest descriptive methods for event 
occurrence (e.g., life-table methods) were developed for 
discrete-time data, modern methods of analysis (e.g., Cox 
regression—also known as proportional hazards modeling) 
assume that time is recorded on a continuous scale. This 
emphasis arises from the fact that researchers in medicine 
and engineering—the areas in which survival methods were 
originally developed—can usually record event occurrence 
precisely. Epidemiologists can use death certificates to 
measure human lifetimes in days; industrial product engineers 
can measure a machine’s lifetime in minutes (and sometimes 
seconds).

Unfortunately, continuous-time methods break down when 
event times are highly discretized due to a problem known as 
“ties” (Cox & Oakes, 1984). With continuous-time data, the 
probability that two or more individuals share an identical 
event time (are “tied”) is infinitesimally small. Because the 
probability of a tie is small, actual ties are few, and those that 
do occur can be treated as little more than a methodological 
nuisance. In section 14.2.2, we offer various approaches for 
handling such ties, each (p.315)  predicated on the assumption 
that observations only “appear” tied because the metric for 
time, while continuous, is too coarse. But even these solutions 
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fail as the number of ties increases (Hertz-Picciotto & 
Rockhill, 1997; Hsieh, 1995) and they are obviously 
inappropriate if events can occur only at specific moments 
(Allison, 1984; Singer & Willett, 1993; Raftery, Lewis, 
Aghajanian, & Kahn, 1996).

In discrete-time data, ties are pervasive. In the teacher 
turnover study, for example, there are only 12 times when 
teachers can leave. Because the sample includes nearly 4000 
teachers, the data set has thousands of ties. In the suicide 
ideation study, in which there are 16 possible event times (age 
6 through age 21), there is only one age (21) at which there 
are no ties. Why analyze your data using an adaptation of a 
method that assumes that ties do not exist when you know, a 
priori, that they will be commonplace? Even more to the point, 
why use a method that you know is likely to break down with 
the data that you actually have in your hand?

These concerns lead us to divide our presentation of survival 
methods into two broad sections—discrete-time methods 
(chapters 10 through 12) and continuous-time methods 
(chapters 13 through 15). Although beginning in discrete time 
prevents us from initially exploiting the survival analysis 
programs widely available in statistical packages, it has a 
pedagogic advantage that we believe outweighs this liability: it 
turns out that parameter definition, model structure, 
statistical analysis, and interpretation of results—in short, 
everything about survival analysis—is simpler and more 
comprehensible in discrete time. This advantage is 
considerable for it permits us to present most of the new 
concepts in a more easily understood framework and then 
exploit this knowledge when we move to the admittedly more 
commonplace continuous world. It has been our experience 
that researchers who learn survival analysis using this two-
step approach develop a more intuitive understanding of the 
model, its assumptions, and its implementation.

9.3 Censoring: How Complete Are the Data on 
Event Occurrence?

Having outlined the methodological features necessary for 
phrasing research questions about event occurrence, it may 
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appear straightforward to move directly on to a presentation 
of statistical models for survival analysis. After all, it would 
seem that anyone who has studied introductory statistics will 
know how to describe the distribution of a quantitative 
outcome—here, time to event—by computing statistics like the 
sample mean, the standard deviation, the range, and so on. 
Whether the (p.316)  distribution is symmetric or skewed, 
unimodal or bimodal, with many or few unusual values, it 
appears easy to tabulate the data, examine its behavior, and 
compute familiar single-number summaries.

But researchers studying event occurrence face an analytic 
difficulty not encountered by those studying other kinds of 
outcomes. It is a difficulty encapsulated in the question: What 
should you do with the data from those individuals who do not 
experience the target event during the period of data 
collection? In each of studies described so far, approximately 
one-third of the sample did not experience the target event 
while the researcher watched: 32 of the former alcoholics 
remained abstinent, 2704 of the newly hired teachers were 
still teaching, 116 of the undergraduates remained free of 
suicidal thoughts. How can you estimate a mean length of time 
to event, or any other statistic, when you don’t even know
whether some members of the sample experienced the event, 
let alone when they did so?

How should you analyze such data? Should you set aside the 
cases with unknown event times? Yet these people are an 
important subgroup of respondents—they are not a random 
subset of the sample, they are the ones least likely to 
experience the event. To include them in the computation of 
summary statistics, it appears that you would need to assign 
them a value for the outcome. But what value is appropriate? 
How can you impute an outcome value that is, by its very 
nature, unknown? Does assigning event times to those who do 
not experience the event during the period of data collection 
even make sense, given that some of them may never
experience the target event at all? Although all teachers will 
eventually leave teaching, some of the ex-alcoholics will never 
relapse and some of the undergraduates will never 
contemplate suicide.
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Thorny questions, indeed. No matter when data collection 
begins, and no matter how long it lasts, some sample members 
are likely to have unknown event times. Statisticians call this 
problem censoring and they label the people with the unknown 
event times censored observations. Because censoring is 
inevitable—and a fundamental conundrum in the study of 
event occurrence—we now explore it in detail, first describing 
how it arises, next describing its different forms, and then 
describing how researchers have (incorrectly) attempted to 
handle it analytically.

9.3.1 How and Why Does Censoring Arise?

Censoring occurs whenever a researcher does not know an 
individual’s event time. There are two major reasons for 
censoring: (1) some individuals will never experience the 
target event; and (2) others will experience the event, but not 
during the study’s data collection. Some of these (p.317)

latter individuals will experience the event shortly after data 
collection ends while others will do so at a much later time. As 
a practical matter, though, these distinctions matter little 
because you cannot distinguish among them. That, 
unfortunately, is the nature of censoring: it prevents you from 
knowing the very quantity of interest—whether and, if so,
when the target event occurs for a subset of the sample.

Depending upon a study’s design, censoring can occur at a 
single point in time or at multiple points in time. In a 
prospective follow-up of a single cohort, censoring will occur 
at only one point in time—at the end of data collection. In the 
alcohol relapse study, all 28 individuals who were abstinent 
two years after hospital release were censored at 720 days. In 
a prospective follow-up of multiple cohorts that ends in a 
single chronological year, censoring will occur at multiple 
points in time. In the teacher turnover study, which tracked all 
special educators newly hired between 1972 and 1978 through 
1985, those in the first entry cohort (1972) were censored at 
12 years while those in the last entry cohort (1978) were 
censored at 7. A similar pattern of censoring arises in 
retrospective studies of age-heterogeneous samples—like the 
suicide ideation study—but for a different reason. Because 
individuals are censored not by the end of data collection but 
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by the occurrence of data collection, those who have not yet 
experienced the target event are censored at their current 
age. This means that the 23 18-year-olds who had never 
contemplated suicide before filling out the questionnaire were 
censored at age 18 while the 26 21-year-olds who were also 
free of suicidal thoughts were censored at age 21.

The amount of censoring in a study is related to two factors: 
(1) the rate at which events occur; and (2) the length of data 
collection. If the event is common and data collection 
sufficiently long, most people will experience the event during 
data collection and your sample will contain few censored 
cases. If the event is rare or data collection is curtailed by 
resource or practical constraints, censoring will be 
widespread. After following a sample of young boys for five 
years—from age 6 through age 10—to see whether and when 
they reported getting drunk for the first time, Masse and 
Tremblay (1997) found that only 52% of their sample was 
censored. But after following a sample of men for twice as 
long (11 years, from age 17 to age 28) to determine whether 
and when they used cocaine for the first time, Burton, 
Johnson, Ritter, and Clayton (1996) found that 76% of their 
sample was censored.

Censoring can be minimized by design, but it can rarely be 
eradicated. Researchers conducting prospective studies can 
minimize censoring by following respondents for a longer 
period of time, but this comes at increased cost. Researchers 
conducting retrospective studies can (p.318)  minimize 
censoring by selecting older respondents and asking them to 
reflect back on a longer period of time, but this yields noisier 
recall data. And in both types of studies, people who never
experience the target event will remain censored regardless of 
design. The bottom line in research on event occurrence: 
Censoring is inevitable.

9.3.2 Different Types of Censoring

Although the term “censored” refers to any individual with an 
unknown event time, there are actually several different types 
of censoring. Methodologists make two major types of 
distinctions: first, between noninformative and informative
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censoring mechanisms, and second, between right- and left-
censoring. We discuss each of these below.

Noninformative versus Informative Censoring

A noninformative censoring mechanism operates independent 
of event occurrence and the risk of event occurrence. If 
censoring is under an investigator’s control, determined in 
advance by design—as it usually is—then it is noninformative. 
In the teacher turnover study, censoring is noninformative 
because it occurs in a single calendar year (1985) for all 3941 
special educators. So, too, in the suicide ideation study—
censoring is noninformative because it occurs at the same 
chronological time (the day of data collection) for all 391 
respondents. In both these examples, censoring occurs 
because data collection ends, not because of actions taken by 
study participants. We can therefore assume that all 
individuals who remain in the study after the censoring date 
are representative of everyone who would have remained in 
the study had censoring not occurred.

If censoring occurs because individuals have experienced the 
event or are likely to do so in the future, the censoring 
mechanism is informative. Consider the alcohol relapse study, 
which included two censoring mechanisms. The first was the 
end of data collection, when 28 individuals were still 
abstinent; this censoring mechanism is noninformative. The 
second was the attrition of four individuals who were lost to 
follow up after being abstinent for one year. If they were lost 
because they moved out of town (or due to some other 
unforeseen random occurrence), then this censoring 
mechanism is noninformative. But if they were lost because 
they started drinking again and stopped notifying 
investigators of their whereabouts, then this censoring 
mechanism is informative—people with censored data are 
likely to have experienced the event. Under these 
circumstances, we can no longer assume that those people

(p.319)  who remain in the study after this time are 
representative of all individuals who would have remained in 
the study had censoring not occurred. The noncensored 
individuals differ systematically from the censored individuals.
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No statistical method can produce unbiased analyses of event 
occurrence data if the censoring mechanism is informative. 
The problem, of course, is that when censoring is not 
determined by design, you have no way of knowing whether it 
is due to a random occurrence (e.g., the individual just 
stopped participating in the study) or to impending event 
occurrence (e.g., the treatment was no longer effective, so the 
individual stopped participating). The validity of a survival 
analysis rests on the assumption that censoring is 
noninformative, either because it occurs at random or because 
it occurs at a time dictated by design. If the process you are 
studying is prone to informative censoring mechanisms—as is 
common when studying treatment efficacy because individuals 
not responding tend to drop out—you must work hard to 
eliminate these problems before they arise. Attrition is the 
bane of longitudinal research, especially when it is systematic. 
Throughout what follows, we assume that the censoring 
mechanisms are noninformative.

Right- versus Left-Censoring

Right-censoring arises when an event time is unknown 
because event occurrence is not observed. Left-censoring 
arises when an event time is unknown because the beginning 
of time is not observed. All the censoring mechanisms 
described so far have led to right-censoring. Because this type 
of censoring is the one typically encountered in practice, and 
because it is the type for which survival methods were 
developed, references to censoring, unencumbered by a 
directional modifier, usually refer to right-censoring.

How do left-censored observations arise? Often they arise 
because researchers have not paid sufficient attention to 
identifying the beginning of time during the design phase. If 
the beginning of time is defined well—as that moment when all 
individuals in the population are eligible to experience the 
event but none have yet done so—left-censoring can be 
eliminated. It is for this reason that we emphasized the need 
for a careful specification of the beginning of time in the 
previous section. Unlike right-censoring, which usually exists 
regardless of design, left-censoring can generally be 
eradicated by thoughtfulness.
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Some researchers nevertheless do find themselves with left-
censored data. Those studying the occurrence of potentially 
repeatable events are especially susceptible. This was the 
dilemma faced by Fichman (1989) in (p.320)  his prospective 
study of absenteeism among coal miners. During a single 
calendar year, Fichman studied the length of each coal 
miner’s many “attendance spells,” which began when a miner 
returned to work after an absence and stopped when the 
miner was absent another day. On average, each of the 465 
miners generated 11 attendance spells of known length. In 
addition, each generated one right-censored spell (the time 
between his last return to work and the end of data collection) 
and one left-censored spell (the time between his last return 
during the previous calendar year—the date of which is 
unknown—and his first absence during the year of data 
collection).

Left-censoring presents challenges not easily addressed even 
with the most sophisticated of survival methods (Hu & 
Lawless, 1996). Little progress has been made in this area 
since Turnbull (1974, 1976) offered some basic descriptive 
approaches and Flinn and Heckman (1982) and Cox and Oakes 
(1984) offered some directions for fitting models under a 
restrictive set of assumptions. The most common advice, 
followed by Fichman, is to set the left-censored spells aside 
from analysis. After all, he argued, there is nothing sacred 
about identifying January 1 as the “beginning of time.” He 
therefore eliminated all left-censored spells by redefining the 
beginning of time as the date when each miner returned to 
work after the first absence of the calendar year. Redefining 
the beginning of time to coincide with a precipitating event—
here a return from an absence—is often the best way of 
resolving the otherwise intractable problems that left-
censored data pose. Whenever possible, we suggest that 
researchers consider such a redefinition or otherwise 
eliminate left-censored data through design.

In what follows, we typically assume that all censoring occurs 
on the right. In section 15.6, however, we describe what you 
can do when your data set includes what are known as late 
entrants into the risk set. You are most likely to encounter late 



A Framework for Investigating Event Occurrence

Page 21 of 25

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Figure 9.1.  Distribution of the number of 
years in teaching by censoring status, for 
the 3941 special educators.

entrants if you study stock samples, age-heterogeneous groups 
of people who already occupy the initial state when data 
collection begins—for example, a random sample of adults 
who have yet to experience a depressive episode. Your plan is 
to follow everyone for a fixed period of time—say ten years—
and record whether and when sample participants experience 
their first episode. Because each sample member was a 
different age when data collection began, however, the ten 
years you cover do not cover the same ten years of peoples’ 
lives: you follow the 20-year-olds until they are 30, the 21-
year-olds until they are 31, the 22-year-olds until they are 32, 
and so on. For an outcome like depression onset, it makes 
little sense to clock “time” using chronological years (2009, 
2010, etc). Instead, you would like to clock “time” in terms of
age, but you do not observe everyone during the identical set 
of (p.321)

ages. The 
flexible 
strategies 
described in 
section 15.6 
are useful for 
addressing this 
complication, 
and ultimately 
allow you to 
consider a 
range of 
alternative 
metrics for 
clocking time.

9.3.3 How Does Censoring Affect Statistical Analysis?

Censoring’s toll can be seen in figure 9.1, which presents data 
from the teacher turnover study. The front row summarizes 
the sample distribution of the number of years in teaching for 
the 2207 special educators with known event times. Each 
teacher left at some point prior to the end of data collection: 
456 left by the end of their first year, 384 left by the end of 
their second, and so on. The back row presents the 
distribution of current length of time in teaching for the 1734 
special educators with censored event times. Although you 

Figure 9.1.  Distribution of the number of 
years in teaching by censoring status, for 
the 3941 special educators.
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probably should not label these latter data “event 
times” (because these teachers have yet to leave) statisticians 
refer to them as “censored event times”—the times when each 
individual had yet to experience the target event. Some of 
these teachers will leave the year after they were censored, 
while others will leave at a much later point in time.

Notice how different the two sample distributions are. The 
distribution for the 2207 teachers with known events times is 
skewed, peaking in year 1 and declining thereafter. The 
distribution for the 1734 teachers with censored event times is 
almost uniform, with no values less than 7 and approximately 
equal numbers of teachers at 8, 9, 10, and 11 years. The peak 
in the censored data distribution is at 12 years—the maximum

(p.322)  observable length of stay in teaching given that data 
collection lasted 13 years.

This discrepancy in distributions—between those with known 
event times and those with censored event times—is typical. In 
prospective studies like this one, the discrepancy arises 
because the individuals with censored event times have the 
longest “lives”; here, they are those teachers who were still 
teaching when data collection ended. In retrospective studies, 
such as the suicide ideation study, a similar discrepancy 
results, but for a different reason. Those event histories are 
censored at the moment of data collection when, in age-
heterogeneous samples, individuals are of different ages. 
Unless your sample includes many people who are as young as 
other sample members were at the earliest event times, the 
censored event times generally exceed most of the known 
event times.

Given these two disparate distributions, how can we 
adequately summarize how long teachers teach? Researchers 
faced with problems like these have adopted a variety of ad 
hoc approaches, none completely satisfactory. Some have 
simply set aside all individuals with censored event times (e.g., 
Abedi & Benkin, 1987; Siegfried & Stock, 2001). Researchers 
who exclusively study only those people who experience the 
target event are implementing this strategy, whether they 
recognize it or not. It is easy to fall into this trap—at first 
glance, it seems reasonable to use a sample of former teachers 
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to ask how long the average teacher teaches. Were we to 
construct such a sample with these data, we would estimate 
the mean career duration to be 3.7 years.

But analyzing only those individuals who have actually 
experienced the target event excludes a crucial subgroup: 
here, the 1734 teachers still teaching. In fact, the length of 
time that the average teacher teaches must be greater than 
3.7 years because that estimate relies exclusively on data from 
those who left early in their careers. To learn about “true” 
average career length and understand when teachers are 
especially likely to leave, data from both the censored and the 
uncensored cases must be incorporated simultaneously in the 
analysis. Censored career histories provide important 
information, especially about the probability that teachers will 
stay in the profession for long periods of time. Censored cases 
must not be excluded, even though we do not know when (or 
in other studies, even whether) they will ultimately experience 
the target event.

Cognizant of these concerns, some investigators incorporate 
the censored cases into their analyses by imputing event 
times. The most popular approach is to assign the censored 
cases the event time they possess at the end of data collection 
(e.g., Frank & Keith, 1984). Applying this (p.323)  strategy to 
our teacher career data (e.g., assigning a career length of 7 
years to the 280 teachers censored in year 7, etc.) yields an 
estimated mean career duration of 7.5 years. While suitably 
longer than the former underestimate of 3.7 years, this 
estimate, too, cannot be correct. Imputing event times for 
censored cases simply changes all “nonevents” into “events” 
and further assumes that all these new “events” occur at the 
earliest time possible—that is, at the moment of censoring. 
Surely these decisions are most likely wrong.

Given these problems, some researchers proceed more 
cautiously. Rather than imputing event times, they abandon 
the “When?” question entirely, setting aside most of the 
information they possess about duration. They then 
dichotomize all individual event histories at some particular 
(and often arbitrary) point in time and ask whether the event 
has occurred by that time (e.g., Sargeant, Bruce, Florio, & 
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Weissman, 1990) or by each of several successive points in 
time (e.g., Myers, McCauley, Calderon, & Treder, 1991). If we 
apply this tradition to our teacher career data, we might 
distinguish between teachers who leave before and after five 
years of service.

Although this approach is better than data elimination or 
incorrect imputation, dichotomization of event times does not 
resolve the censoring dilemma; it simply obscures it from 
view. Despite its simplicity, there are at least five major 
problems with dichotomization. First, dichotomization 
eliminates meaningful variation in event times by collapsing 
together individuals who left at many different points in their 
careers. Teachers who leave teaching after one year in the 
classroom undoubtedly differ from those who leave after four, 
yet they are all indistinguishable in an analysis dichotomized 
at year 5. Second, any particular dividing line, even one 
ostensibly relevant to the process under study, is arbitrary. 
Why dichotomize at year 5, rather than at years 3 or 7? Third, 
seemingly contradictory conclusions can result from nothing 
more than changes in the time chosen for dichotomization. 
Dichotomizing at year 2 in our teacher career data, for 
example, we conclude that men and women are almost equally 
likely to leave teaching (quit rates of 19% and 22%, 
respectively) but dichotomizing at year 8, we find an enormous 
sex differential (quit rates of 57% and 70%). Fourth, 
dichotomization discards information about later event 
occurrence. If we dichotomize at year 5, for example, we 
discard the known event times of the 495 teachers who left 
teaching between years 6 and 12. And fifth, once you have 
dichotomized, you can no longer address the fundamental 
question: “How long does the average teacher teach?”

Clearly, an alternative approach is needed, one that deals 
evenhandedly with both known and censored event times. 
After all, censored (p.324)  observations do tell you something 

about event occurrence, or more precisely about event
nonoccurrence. If an observation is censored, you know that 
the individual did not experience the target event by the time 
of censoring. It is this insight—that, in telling us about event
nonoccurrence, the censored cases do provide some 
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information about event that leads to a comprehensive 
strategy for incorporating censored cases into analyses, as we 
discuss in the next chapter.
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Abstract and Keywords

This chapter presents a framework for describing discrete-
time event occurrence data. Section 10.1 introduces the life 
table, the primary tool for describing event occurrence data. 
Section 10.2 introduces three essential statistical summaries 
of the life table—the hazard function, the survivor function, 
and the median lifetime—and demonstrates that these 
ingenious statistics, which deal evenhandedly with censored 
and noncensored cases, are intuitively appealing as well. 
Section 10.3 applies the new techniques to four empirical 
studies, to help you develop intuition about the behavior, 
interpretation, and interrelationships of life table methods. 
Section 10.4 focuses on sampling variation, showing how to 
estimate standard errors. Section 10.5 concludes by showing 
how to compute all these summaries using standard cross-
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tabulation programs available in every major statistical 
package.

Keywords:   life table, event occurrence data, hazard functions, survivor 
functions, median lifetimes, sampling variation

Time does not change us, it just unfolds us.

—Max Frisch

Most empirical researchers are so comfortable conducting 
descriptive analyses that they rarely imagine that familiar 
statistical workhorses—such as means and standard deviations
—may not always be suitable. As explained in chapter 9, 
censoring makes standard statistical tools inappropriate even 
for simple analyses of event occurrence data. A censored 
event time provides only partial information: it tells you only 
that the individual did not experience the target event by the 
time of censoring. In essence, it tells you more about event
nonoccurrence than about event occurrence (the latter, of 
course, being your primary interest). Traditional statistical 
methods provide no ready way of simultaneously analyzing 
observed and censored event times. Survival methods do.

In this chapter, we present a framework for describing 
discrete-time event occurrence data. In addition to our 
primary agenda—which involves demonstrating how to 
implement the new methods and interpret their results—we 
have a secondary agenda: to lay the foundation for model 
building, the focus of chapters 11 and 12. As we will show, the 
conceptual linchpin for all subsequent survival methods is to 
approach the analysis on a period-by-period basis. This allows 
you to examine event occurrence sequentially among those 
individuals eligible to experience the event at each discrete 
point in time.

We begin in section 10.1 by introducing the life table, the 
primary tool for describing event occurrence data. Then, in 
section 10.2, we introduce three essential statistical 
summaries of the life table—the hazard function, the survivor 
function, and the median lifetime—and demonstrate that these 
ingenious statistics, which deal evenhandedly with censored 
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and noncensored cases, are intuitively appealing as well. In 
section (p.326)  10.3, we apply the new techniques to four 
empirical studies, to help you develop intuition about the 
behavior, interpretation, and interrelationships of life table 
methods. Sampling variation is the topic of section 10.4, 
where we show how to estimate standard errors. We conclude, 
in section 10.5, by showing you how to compute all these 
summaries using standard cross-tabulation programs available 
in every major statistical package.

10.1 The Life Table

The fundamental tool for summarizing the sample distribution 
of event occurrence is the life table. As befits its name, a life 
table tracks the event histories (the “lives”) of a sample of 
individuals from the beginning of time (when no one has yet 
experienced the target event) through the end of data 
collection. Table 10.1 presents a life table for the special 
educator data set introduced in section 9.1.2. Recall that this 
study tracked the careers of 3941 teachers newly hired in the 
Michigan public schools between 1972 and 1978. Everyone 
was followed until 1985, when data collection ended. Defining 
the “beginning of time” as the teacher’s date of hire, research 
interest centers on whether and, if so, when these special 
educators stopped teaching.

Divided into a series of rows indexing time intervals (identified 
in columns 1 and 2), a life table includes information on the 
number of individuals who:

• Entered the interval (column 3)

• Experienced the target event during the interval (column 
4)

• Were censored at the end of the interval (column 5)

Here, these columns tally, for each year of the career, the number 
of teachers employed at the beginning of the year, the number who 
stopped teaching during the year, and the number who were 
censored at the end of the year (who were still teaching when data 
collection ended). We discuss the remaining elements of the life 
table in section 10.2.
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Taken together, these columns provide a narrative history of 
event occurrence over time. At the “beginning of time,” when 
everyone was hired, all 3941 teachers were employed. During 
the first year, 456 teachers quit, leaving 3485 (3941 – 456) to 
enter the next interval, year 2. During the second year, 384 
teachers quit, leaving 3101 (3485 – 384) to enter the next 
interval, year 3. During the 7th year, censoring begins to 
affect the narrative. Of the 2045 special educators who taught 
continuously for 7 years, 123 quit by the end of that year and 
280 were (p.327)
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Table 10.1: Life table describing the number of years in teaching for a sample of 3941 special educators

Number Proportion of

Year Time 
interval

Employed at the 
beginning of the 
year

Who left 
during the 
year

Censored at 
the end of the 
year

Teachers at the 
beginning of the year 
who left during the year

All teachers still 
employed at the end 
of the year

0 [0,1) 3941 — — — 1.0000

1 [1,2) 3941 456 0 0.1157 0.8843

2 [2,3) 3485 384 0 0.1102 0.7869

3 [3,4) 3101 359 0 0.1158 0.6958

4 [4,5) 2742 295 0 0.1076 0.6209

5 [5,6) 2447 218 0 0.0891 0.5656

6 [6,7) 2229 184 0 0.0825 0.5189  Median lifetime

7 [7,8) 2045 123 280 0.0601 0.4877

8 [8,9) 1642 79 307 0.0481 0.4642

9 [9, 10) 1256 53 255 0.0422 0.4446

10 [10,11) 948 35 265 0.0369 0.4282

11 [11,12) 648 16 241 0.0247 0.4177

12 [12,13) 391 5 386 0.0128 0.4123
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Number Proportion of

Year Time 
interval

Employed at the 
beginning of the 
year

Who left 
during the 
year

Censored at 
the end of the 
year

Teachers at the 
beginning of the year 
who left during the year

All teachers still 
employed at the end 
of the year

 Risk set  Hazard function  Survivor function
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(p.328)  censored. This left only 1642 teachers (2045 – 123 – 280) 
to enter their 8th year and of these, 79 quit by the end of that year 
and 307 were censored. In the later rows of the life table, 
censoring exacts a heavy toll on our knowledge about event 
occurrence. Among the 648 special educators still teaching at the 
beginning of year 11, for example, only 16 quit by the end of the 
year but 241 (15 times as many) were censored. All told, this life 
table describes the event histories for 22,668 “person-years:” 3941 
year 1’s, 3485 year 2’s, up through 391 year 12s.
Like all life tables, table 10.1 divides continuous time into a 
series of contiguous intervals. In column 1, we label these 
intervals using ordinal numbers; in column 2, we define 
precisely which event times appear in each. The intervals in 
table 10.1 reflect a standard partition of time, in which each 
interval includes the initial time and excludes the concluding 
time. Adopting common mathematical notation, [brackets] 
denote inclusions and (parentheses) denote exclusions. Thus, 
we bracket each interval’s initial time and place a parenthesis 
around its concluding time, writing these 13 intervals as [0, 1), 
[1, 2), [2, 3),…, [12, 13). Teachers are hired at time 0, so the 
0th interval refers to that period of time between contract 
signing and the first day of school, a period when no event can 
occur. Each subsequent interval—labeled 1 through 12—refers 
to a specific year of the career. We define a year as that period 
of time between the first day of school in the fall and the end 
of the associated summer. The first day of school for the 
following academic year falls into the next interval. Under this 
partition, any event occurring between the first day of year 1 
up to (but excluding) the first day of year 2 is classified as 
occurring during year 1. Any event occurring during the 
second year—be it on the first day of school or the last day of 
summer—is classified as occurring during year 2.

When devising your own life tables, you should select the 
temporal partition most relevant for your chosen time metric 
and for the way in which events unfold. More generally, we 
represent any arbitrary division of time by using the letter t to 
denote time and the subscript j to index time periods. We then 
write a series of general time intervals as [t 0, t 1), [t 1, t 2), …, 
[t j−1, t j), [t j, t j+1) …, and so on. Any event occurring at t 1 or 
later but before t 2, is classified as happening during the first 
time interval [t 1, t 2). The jth time interval, written as [t j, t j
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+1), begins immediately at time t j and ends just before time t j
+1. No events can occur during the 0th interval, which begins 
at time 0 and ends just before t 1, the first observable event 
time. Conceptually, this interval represents the “beginning of 
time.”

The next column of the life table displays information on the 
number (p.329)  of individuals who enter each successive time 

period. Statisticians use the term risk set to refer to this pool: 
those eligible to experience the event during that interval. For 
intervals in which no one is censored—here, the early years of 
the career—identification of the risk set is straightforward. 
Each year’s risk set is just the prior year’s risk set minus those 
individuals who experienced the event during the prior year. 
The year 4 risk set (2742), for example, is just the year 3 risk 
set (3101) diminished by the 359 teachers who quit during 
their third year. In those intervals when censoring occurs—in 
our example, during the later years of the career—the risk set 
declines because of both event occurrence and censoring. The 
year 9 risk set (1256), for example, is just the year 8 risk set 
(1642) diminished by the 79 teachers who quit during year 8 
and the 307 teachers who were censored at the end of year 8.

An essential feature of the risk set’s definition is that it is 
inherently irreversible: once an individual experiences the 
event (or is censored) in one time period, he or she drops out 
of the risk set in all future time periods. Irreversibility is 
crucial, for it ensures that everyone remains in the risk set 
only up to, and including, the last moment of eligibility. The 
risk set for year 9, for example, comprises only those 
individuals (1256 of the original sample of 3941) who taught 
continuously for at least 9 years. Individuals who left or were 
censored in a previous year are not “at risk” of leaving in year 
9 and are therefore excluded from the risk set in this period 
and all subsequent periods.

Why is the concept of a risk set important? If censoring is non-
informative (as described in section 9.3), we can assume that 
each interval’s risk set is representative of all individuals who
would have been at risk of event occurrence in that interval 
had everyone been followed for as long as necessary to 
eliminate all censoring (that could be eliminated). To 
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understand the implications of this assumption, consider the 
risk sets in years 7 (2045) and 8 (1642). If censoring is 
noninformative, the 1642 teachers in the year 8 risk set are 
representative of that subset of the 2045 teachers who would
have entered their eighth year if we could have observed them 
through that point in time (that is, were there no censoring). 
For this to be true, the 280 teachers censored at the end of 
year 7, who could not be observed in year 8, must be no 
different from the 1642 teachers who were observed in year 8. 
Under this assumption, we can generalize the behavior of the 
1642 people in the year 8 risk set back to the entire population 
of teachers who would have entered their eighth year. This 
allows us to analyze event occurrence among the members of 
each year’s risk set yet generalize results back to the entire 
population.

(p.330) 10.2 A Framework for Characterizing the 
Distribution of Discrete-Time Event Occurrence 
Data

Having described how the life table tallies data about event 
occurrence over time, we now introduce three invaluable 
statistical summaries of this information: the hazard function, 
the survivor function, and the median lifetime.

10.2.1 Hazard Function

The fundamental quantity used to assess the risk of event 
occurrence in each discrete time period is known as hazard. 
Denoted by h(t ij), discrete-time hazard is the conditional 
probability that individual i will experience the event in time 
period j, given that he or she did not experience it in any 
earlier time period.1 Because hazard represents the risk of 
event occurrence in each discrete time period among those 
people eligible to experience the event (those in the risk set) 
hazard tells us precisely what we want to know: whether and 
when events occurs.

We can formalize this definition by adopting some notation. 
Let T represent a discrete random variable whose values T i

indicate the time period j when individual i experiences the 
target event. For a teacher who leaves in year 1, T i = 1; for a 
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teacher who leaves in year 8, T i = 8. Methodologists typically 
characterize the distribution of a random variable like T by 
describing its probability density function, the probability that 
individual i will experience the event in time period j, Pr[T i =
j], or its cumulative density function, the probability that 
individual i will experience the event before time period j, Pr[T
i < j]. But because event occurrence is in herently conditional
—an event can occur only if it has not already occurred—we 
characterize T by its conditional probability density function: 
the distribution of the probability that individual i will 
experience the event in time period j given that he or she did 
not experience it at any time prior to j. This is algebraically 
equivalent to the probability that the event will occur in the 
current time period, given that it must occur now, or sometime 
in the future, as follows:2

(10.1) 
The set of discrete-time hazard probabilities expressed as a 
function of time—labeled h(t ij)—is known as the population
discrete-time hazard function.

We cannot overemphasize the importance of the conditionality 
inherent in the definition of hazard. Individual i can experience 
the event in time period j if, and only if, he or she did not
already experience it any (p.331)  prior period. Conditionality 
ensures that hazard represents the probability of event 
occurrence among those individuals eligible to experience the 
event in that period—those in the risk set. As people 
experience events, they drop out of the risk set and are 
ineligible to experience the event in a later period. Because of 
this conditionality, the hazard probability for individual i in 
time period j assesses his or her unique risk of event 
occurrence in that period.

Notice that each individual in the population has his or her 
own discrete-time hazard function. This is similar to the way 
we specified individual growth models, by allowing each 
person to have his or her own true growth trajectory. Here, we 
specify that each individual, whom we ultimately distinguish 
from other members of the population on the basis of 
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predictors (e.g., gender and subject specialty), has a hazard 
function that describes his or her true risk of event occurrence 
over time. In chapter 11, when we develop statistical models 
for predicting discrete-time hazard, we specify the relationship 
between parameters characterizing each person’s hazard 
function and predictors. For now, because we are simply 
describing the distribution of event occurrence for a random 
sample of individuals from a homogeneous population among 
whom we are not (yet) distinguishing, we drop the subscript i
(that indexes individuals) and write the discrete-time hazard 
function for a random individual in this population as h(t j).

Although this definition of hazard may appear far removed 
from sample data, examination of column 6 of the life table 
reveals that it is a commonsense summary of event 
occurrence. Column 6 presents the proportion of teachers 
teaching at the beginning of each year who left by the end of 
the year. Phrased more generally, it presents the proportion of 
each interval’s risk set that experiences the event during that 
interval. Among these 3941 special educators, .1157 (n = 456) 
left by the end of their first year. Of the 3485 who stayed more 
than one year, .1102 (n = 384) left by the end of their second. 
Notice that these proportions, just like the definition of 
hazard, are conditional. Each represents the fraction of that 
year’s risk set that leaves that year. This allows the 
proportions to be computed easily in every year, regardless of 
censoring. Among the 2045 teachers who taught continuously 
for six years, for example, .0601 (n = 123) left by the end of 
their seventh; of the 948 who taught continuously for 9 years, .
0369 (n = 35) left at the end of their tenth.

What is the relationship between the population definition of 
discrete-time hazard in equation 10.1 and these sample 
proportions? Quite simply, these proportions are maximum 
likelihood estimates of the discrete-time hazard function 
(Singer & Willett, 1993). They are also the discrete limit of the 
well-known Kaplan-Meier estimates of hazard for continuous-
time (p.332)  data (Efron, 1988). More formally, if we let n 
events j represent the number of individuals who experience 
the target event in time period j and n at risk j represent the 
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number of individuals at risk during time period j, we estimate 
the value of discrete-time hazard in time period j as:

(10.2) 
Thus, we estimate to be 0.1157, to be .1102, and so on. 
Because no one is eligible to experience the target event 
during the initial time interval, here [0, 1), h(t 0) is undefined.

The magnitude of hazard in each time interval indicates the 
risk of event occurrence in that interval. When examining 
estimated values of discrete-time hazard, remember that:

• As a probability, discrete-time hazard always lies between 
0 and 1.

• Within these limits, hazard can vary widely. The greater 
the hazard, the greater the risk; the lower the hazard, the 
lower the risk.

Examining the estimated hazard function for the special 
educator data displayed in table 10.1, we see that in the first 
four years of teaching, hazard is consistently high, exceeding .
10. This indicates that over 10% of the teachers still teaching 
at the beginning of each of these years leaves by the end of 
the year. After these initial “hazardous” years, the risk of 
leaving declines steadily over time. By year 8, hazard never 
exceeds 5%, and by year 10, it is just barely above 0.

A valuable way of examining the estimated discrete-time 
hazard function is to graph its values over time. The top panel 
of figure 10.1 presents the kind of plot we consider most 
useful, and we often display such a plot in lieu of tabling 
estimated hazard probabilities. Although some methodologists 
present discrete-time hazard functions as a series of lines 
joined together as a step function, we follow the suggestions 
of Miller (1981) and Lee (1992) and plot the discrete-time 
hazard probabilities as a series of points joined together by 
line segments. Plots like these can help you to:

• Identify especially risky time periods—when the event is 
particularly likely to occur
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Figure 10.1.  Estimated sample hazard 
and survivor functions for the 3941 
special educators (with estimated median 
lifetime in parentheses on the plot of the 
sample survivor function).

• Characterize the shape of the hazard function—
determining whether risk increases, decreases, or remains 
constant over time

In this study, like many other studies of employee turnover, 
the estimated hazard function peaks in the first few years and 
declines thereafter. (p.333)

Novice special 
educators, or 
those with only 
a few years of 
experience, are 
at greatest risk 
of leaving 
teaching. Once 
they gain 
experience (or 
perhaps, 
tenure), the 
risk of leaving 
declines. We 
present 
additional 
examples of 
estimated 
hazard 
functions in section 10.3, after we finish introducing the remaining 
elements of the life table.

(p.334) 10.2.2 Survivor Function

The survivor function provides another way of describing the 
distribution of event occurrence over time. Unlike the hazard 
function, which assesses the unique risk associated with each 
time period, the survivor function cumulates these period-by-
period risks of event occurrence (or more properly,
nonoccurrence) together to assess the probability that a 
randomly selected individual will “survive”—will not 
experience the event. Formally denoted by S(t ij), the survival 
probability is defined as the probability that individual i will 
survive past time period j. For this to happen, individual i must
not experience the target event in the j th time period or in any 
earlier period. In terms of T, the random variable for time, this 

Figure 10.1.  Estimated sample hazard 
and survivor functions for the 3941 
special educators (with estimated median 
lifetime in parentheses on the plot of the 
sample survivor function).
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implies that teacher i will still be teaching at the end of year
j; in other words, T i exceeds j. We therefore write the survival 
probability for individual i in time period j as:

(10.3) 
and we refer to the set of survival probabilities expressed as a 
function of time—S(t ij)—as that individual’s survivor function. As 
before, when we do not distinguish people on the basis of 
predictors, we write the survivor function for a random member of 
the population without the subscript i as S(t j).
How does a survivor function behave over time? At the 
beginning of time, when no one has yet experienced the event, 
everyone is surviving, and so by definition, its value is 1. Over 
time, as events occur, the survivor function declines toward 0 
(its lower bound). In those time periods when hazard is high, 
the survivor function drops rapidly. In those time periods 
when hazard is low, it declines slowly. But unlike the hazard 
function, which can increase, decrease, or remain the same 
between adjacent intervals, the survivor function will never 
increase. When passing through time periods when no events 
occur, the survivor function simply remains steady at its 
previous level.

There are two ways of using sample data to compute 
maximum likelihood estimates of the population survivor 
function. The direct method, presented in the last column of 
table 10.1, can be used only in those intervals that precede the 
first instance of censoring. Although this limitation renders 
this method impractical for everyday use, we begin with it for 
its pedagogic value. To understand this method, think about 
what it means to “survive” through the end of an interval. For 
this to happen, a teacher must still be teaching by the end of 
that year. Column 6 captures this idea by presenting the 
proportion of all teachers (that is, of all 3941 teachers) still 
teaching by the end of each year. We see that .8843 
(3485/3941) of (p.335)  the entire sample teach (survive) more 
than one year, .7869 (3101/3941) teach more than two years, 
and .5189 (2045/3941) teach more than six years. More 
generally we write:
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In year 7 and beyond, we can no longer compute these 
proportions because we do not know the event times of the 
censored teachers. We therefore have no way of knowing how 
many people did not experience the target event by the end of 
each of these later time periods.

The alternative method, which can be used regardless of 
censoring, proceeds indirectly, capitalizing on the information 
about event occurrence contained in the estimated hazard 
function. The idea is that, for each interval, the estimated 
hazard probability tells us not only about the probability of 
event occurrence but also about the probability of
nonoccurrence, which in turn tells us about survival. Let us 
first review the logic in the early years, before censoring takes 
its toll. The year 1 estimated hazard probability of .1157 tells 
us that (1 – .1157) or .8843 of the original sample survives 
through the end of the first year. Similarly, the year 2 
estimated hazard probability of .1102 tells us that (1 – .1102) 
or .8898 of those special educators who enter year 2 survive 
through the end of that year. But because only .8843 of the 
original sample actually enters their second year, only .8898 of 
the .8843, or .7869 of the original sample, survives through 
the end of year 2. We therefore estimate the survival 
probability for year 2 to be (.8898) (.8843) = .7869, a value 
identical to that obtained from the direct method.

We can use the indirect method to estimate values of the 
survivor function in any year, even in the presence of 
censoring. The estimated survival probability for year j is 
simply the estimated survival probability for the previous year 
multiplied by one minus the estimated hazard probability for 
that year:

(10.4) 
For example, we estimate that .5189 of all teachers survive 
through the sixth year of teaching. Because the estimated 
hazard probability for year 7 is .0601, we estimate that .9399 
of those in the seventh-year risk set will not leave teaching 
that year. An estimate of the survival probability at the end of 
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year 7 is thus (.5189) (.9399) =.4877. We have used this 
formula to estimate the survival probabilities for years 7 
through 12 in table 10.1 (shown in italics). Plotted values 
appear in the lower panel of figure 10.1.

(p.336) The estimated survivor function provides maximum 
likelihood estimates of the probability that an individual 
randomly selected from the population will “survive”—not 
experience the event—through each successive time period. In 
figure 10.1, notice that unlike the hazard function, which is 
presented only in the first time interval and beyond, the 
survivor function takes on the value 1.0 for interval 0—the 
origin of the time axis. As events occur, the estimated survivor 
function drops, here to .6958 by year 3, to .5656 by year 5, to .
4877 by year 7, and to .4446 by year 9. Because many 
teachers stay for more than 12 years, the estimated survivor 
function does not reach zero, ending here at .4123. An 
estimated 41% of all special educators teach for more than 12 
years; by subtraction, an estimated 59% leave in 12 years or 
less.

Notice that our estimate of the percentage of teachers still 
teaching after 12 years (41%) differs from the percentage still 
teaching at the end of data collection, 44% (1734/3941). 
Although small in this data set, this differential can be large, 
and it speaks volumes about what happens during analysis. 
Until the first censored event time, we can compute the 
percentage of the sample who survive directly so that these 
two percentages are identical. Once censoring occurs, we can 
no longer estimate the survivor function directly; we must 
estimate indirectly based upon those individuals who remain 
in the risk set. The beauty of survival analysis is that, under 
the assumption of independent censoring, we can use the risk 
set to estimate what would have happened to the entire 
remaining population were there no censoring. For example, 
although we know about year 12 event occurrence for only 
those 391 special educators in the first entry cohort who 
taught for 12 years, we can use these data to estimate what
would have happened to teachers in the later cohorts were 
they to teach for 12 consecutive years. It is through this 
extrapolation that we generalize our sample results (including 
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data on the censored individuals) back to the entire 
population.

Before leaving this discussion of the survivor function, let us 
resolve one small detail about its estimation. Use of equation
10.4 in any time interval requires an estimate of the function 
in the previous interval. Is there any way to eliminate this 
dependence, allowing the survivor function to be estimated 
solely on the basis of the hazard function? To see that the 
answer is yes, use equation 10.4 to write an expression for the 
sample survivor function in year (j – 1):

By repeatedly substituting this type of formula into equation
10.4 until time 0, when S(t 0) = 1.0, we find: (p.337)

(10.5)

In other words, each year’s estimated survival probability is 
the successive product of the complement of the estimated 
hazard probabilities across this and all previous years. For 
example, an estimate of the year 7 survival probability is (1 – .
0601) (1 – .0825) (1 – .0891) (1 – .1076) (1 – .1158) (1 – .1102) 
(1 – .1157) = .4877. Equation 10.5 allows us to estimate the 
survivor function directly from the estimated hazard function. 
Unfortunately, censoring prevents us from working in the 
opposite direction, estimating the hazard function directly 
from the estimated survivor function.

10.2.3 Median Lifetime

Having characterized the distribution of event times using the 
hazard and survivor functions, we often want to identify the 
distribution’s center. Were there no censoring, all event times 
would be known, and we could compute a sample mean. But 
because of censoring, another estimate of central tendency is 
preferred: the median lifetime.

The estimated median lifetime identifies that value of T for 
which the value of the estimated survivor function is .5. It is 
the point in time by which we estimate that half of the sample 
has experienced the target event, half has not. Examining the 



Describing Discrete-Time Event Occurrence Data

Page 18 of 40

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

estimated survivor function presented in column 6 of table
10.1, we know that the estimated median lifetime falls 
somewhere between year 6 (when an estimated .5189 of the 
teachers are still working at the end of the year) and year 7 
(when this proportion drops below .5 to .4877). Because our 
metric for time is discretized at the year level, one way to 
report this conclusion would be to write that the average 
special educator leaves after completing six, but not a full 
seven, years of teaching.

Another way to estimate the median lifetime is to use 
interpolation. Interpolation is most useful when comparing 
subsamples, especially if medians fall in the same time 
interval. Even if this happens, the sub-samples rarely have 
identical estimated survivor functions, suggesting that a 
median computed without interpolation is too coarse to 
characterize the differing survival experiences of the groups.

Following Miller (1981), we linearly interpolate between the 
two values of S(t j) that bracket .5. Let m represent the time 
interval when the sample survivor function is just above .5 
(here, year 6), let represent the value of the sample survivor 
function in that interval, and let represent its value for the 
following interval (when it must be just below .5), we estimate 
the median lifetime as: (p.338)

(10.6)

For the special educators, we compute the estimated median 
length of stay to be:

In the lower panel of figure 10.1, we graphically illustrate this 
interpolation by drawing a line parallel to the time axis when the 
estimated survivor function equals .50 and by then dropping a 
perpendicular from the estimated survivor function to the time axis 
to identify the corresponding value of T.
Unlike the biased estimates of mean duration presented in 
section 9.3.3, the estimated median lifetime of 6.6 years 
correctly answers the question “How long does the average 
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teacher teach?” We now see that the answer is not the mean 
3.7 years we calculated by setting aside all censored 
observations nor the mean 7.5 years we calculated by treating 
all censored event times as known event times. Notice, too, 
that although we derive this estimate through a circuitous 
route—by first estimating a hazard function, then a survivor 
function, and finally a median lifetime—our answer is 
expressed in a comprehensible metric. Perhaps because 
physicians now routinely provide estimated median lifetimes 
to patients following diagnosis of an illness or initiation of 
treatment, you can use these summaries in other fields to 
communicate results. Although it is wise to remind your 
audience that this estimate is just a median—half the teachers 
stay for less than 6.6 years, the other half stay longer (or in 
some studies, may never experience the target event)—the 
statistic has much intuitive appeal.

What should you do if the estimated survivor function does not 
reach .5? This tells you that less than half of the population is 
predicted to experience the target event by the last time in the 
life table. This dilemma arises in studies of short duration or of 
rare (or less common) events, such as the onset of mental 
illness or illicit drug use. Although we can estimate a different 
percentile of the survivor function (say the 75th percentile), 
more often researchers present cumulative survival rates, 
values of the estimated survivor function after pre-specified 
lengths of time. In medical research, one-year, three-year, and 
five-year survival rates are common. In your own study, 
choose benchmarks suitable for the metric for time and the 
rate at which events occur. When studying teachers’ (p.339)

careers, for example, estimated five- and ten-year survival 
rates (here 57% and 43% respectively) are common.

10.3 Developing Intuition About Hazard 
Functions, Survivor Functions, and Median 
Lifetimes

Developing intuition about these sample statistics requires 
exposure to estimates computed from a wide range of studies. 
To jump-start this process, we review results from four studies 
that differ across three salient dimensions—the type of event 
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investigated, the metric used to record discrete time, and most 
important, the underlying profile of risk—and discuss how we 
would examine, and describe, the estimated hazard functions, 
survivor functions, and median lifetimes.

The four panels of figure 10.2 provide the basis for our work.

• Panel A presents data from Hall, Havassy, and 
Wasserman’s (1990) study of relapse to cocaine use among 
104 former addicts released from an in-patient treatment 
program. After 12 weekly follow ups, 62 people had 
relapsed; 42 (40.4%) were censored (drug-free).

• Panel B presents data from Capaldi, Crosby, and 
Stoolmiller’s (1996) study of the grade when a sample of at-
risk adolescents males had heterosexual intercourse for the 
first time. Among 180 boys tracked from seventh grade, 54 
(30.0%) were still virgins (were censored) when data 
collection ended in 12th grade.

• Panel C describes the age at first suicide ideation for the 
391 undergraduates in Bolger and colleagues’ (1989) study 
introduced in section 9.1.3. Recall that 275 undergraduates 
reported having previously thought about suicide; 116 
(29.7%) were censored (had not yet had a suicidal thought).

• Panel D describes how long female members of the U.S. 
House of Representatives remain in office. This data set 
tracks the careers of all 168 women who were elected 
between 1919 and 1996, for up to eight terms (or until 
1998); the careers of 63 (37.5%) were censored.

10.3.1 Identifying Periods of High and Low Risk Using Hazard 
Functions

Hazard functions are the most sensitive tool for describing 
patterns of event occurrence. Unlike survivor functions, which
cumulate information (p.340)
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Figure 10.2.  Estimated hazard functions, 
survivor functions, and median lifetimes 
from four studies: Panel A: Time to 
cocaine relapse after release from an in-
patient treatment program. Panel B: 
Grade at first heterosexual intercourse 
for males. Panel C: Age at first suicide 
ideation. Panel D: Duration of 
uninterrupted congressional careers for 
female representatives.

(p.341)

across time, 
hazard 
functions 
display the
unique risk 
associated with 
each time 
period. By 
examining 
variation over 
time in the 
magnitude of 
the hazard 
function, we 
identify when 
events are 
particularly 
likely, or 
unlikely, to 
occur.
We describe 
variation in 
the 
magnitude of 
the hazard 
function by 
locating its 
distinctive 
peaks and 
troughs. 
Peaks 
pinpoint 
periods of 
elevated risk; 
troughs pinpoint periods of low risk. When identifying peaks 
and troughs, be sure to look beyond minor period-to-period 
differences that may reflect nothing more than sampling 
variation (discussed in section 10.4). The goal is to learn about 
“the big picture”—the general profile of risk over time. 
Imagine stepping back from the estimated hazard functions in 
figure 10.2, glossing over the small inevitable zigzags between 
adjacent time periods, focusing instead on the function’s 

Figure 10.2.  Estimated hazard functions, 
survivor functions, and median lifetimes 
from four studies: Panel A: Time to 
cocaine relapse after release from an in-
patient treatment program. Panel B: 
Grade at first heterosexual intercourse 
for males. Panel C: Age at first suicide 
ideation. Panel D: Duration of 
uninterrupted congressional careers for 
female representatives.
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overall shape. From this vantage point, the pronounced peaks 
and troughs appear at different locations along the time axis. 
The top two hazard functions have a single distinctive peak 
and a single distinctive trough—they are monotonic. The 
bottom two hazard functions have multiple distinctive peaks or 
troughs—they are nonmonotonic. Although the length of data 
collection affects our ability to identify peaks and troughs (in 
ways we will soon describe), let us examine each of these 
functions in greater detail, describing broadly how risk rises 
and falls over time.

Aside from sampling variation, the hazard function in Panel A 
peaks immediately after the “beginning of time” and declines 
rather steadily thereafter. Recently treated former cocaine 
addicts are most likely to relapse shortly after leaving 
treatment. Over time, as they acclimate to life outside the 
hospital, the risk of relapse declines. Monotonically decreasing 
hazard functions like these—also shown in figure 10.1 for the 
teacher turnover data—appear throughout the social and 
behavioral sciences. To some extent, this preponderance 
reflects social scientists’ fascination with recurrence and 
relapse. Whether the target event is substance abuse (e.g., 
Hasin et al., 1996), mental illness (e.g., Mojtabia et al., 1997), 
child abuse (e.g., Fryer & Miyoshi, 1994), or incarceration 
(e.g., Harris & Koepsell, 1996; Brown, 1996), risk of 
recurrence is highest immediately after treatment, 
identification, or release. Monotonically decreasing hazard 
functions arise when studying other events as well. Two 
examples are Hurlburt, Wood and Hough’s (1996) study of 
whether and when homeless individuals find housing and 
Diekmann, Jungbauer-Gans, Krassnig, and Lorenz’s (1996) 
study of whether and when drivers respond aggressively to 
being blocked by a double-parked car.

The hazard function in Panel B is also monotonic but in the 
opposite direction: it begins low and increases over time. Few 
boys initiated intercourse in either seventh or eighth grade. 
Beginning in ninth grade, the (p.342)  risk of first intercourse 
increases annually among those who remain virgins. In ninth 
grade, for example, an estimated 15.0% of the boys who had 
not yet had sex do so for the first time; by 12th grade, 31.7% 
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of the remaining virgins (admittedly only 45.1% of the original 
sample) do likewise. Monotonically increasing hazard 
functions are common when studying events that are 
ultimately inevitable (or near universal). At the “beginning of 
time,” few people experience the event, but as time 
progresses, the decreasing pool of individuals who remain at 
risk succumb. Keifer (1988) found a similar pattern when 
characterizing the time it takes to settle a labor dispute, as did 
Campbell, Mutran, and Parker (1987), who studied how long it 
takes workers to retire.

Some hazard functions display multiple peaks or troughs. 
Panel C suggests that the risk of suicide ideation is low during 
childhood, peaks during adolescence, and then declines to 
near (but not quite) early childhood levels in late adolescence. 
(Do not pay much attention to the apparent increase in the last 
time period, for it is little more than sampling variation.) 
Diekmann and Mitter (1983) found a similar type of hazard 
function when they asked a sample of young adults to 
retrospectively report whether and if so when they had ever 
shoplifted. They found that the age at first shoplift varied 
widely, from age 4 to 16, with a peak during early adolescence
—ages 12 to 14. In a different context, Gamse and Conger 
(1997) found a similar shape hazard function when following 
the academic careers of recipients of a postdoctoral research 
fellowship. The hazard function describing time to tenure was 
low in the early years of the career, peaked in years 6 through 
8, and declined thereafter.

The U-shaped pattern in Panel D is nicknamed the “bathtub” 
hazard function. Risk is high at two different moments: 
immediately after the “beginning of time” and again, at the 
end of time. In studies of human lifetimes, especially in 
developing countries, the high initial risk reflects the effects of 
infant mortality while the later high risk reflects the effects of 
old age. Here, we find a similar pattern. Congresswomen are 
at greatest risk of leaving office at two points in their careers: 
immediately after their first election and then after having 
served for a long period of time (seven or eight terms). In the 
middle period—between the second and sixth terms—the 
effects of incumbency reign, with relatively few continuing 
representatives stepping down or losing an election.
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Nonmonotonic hazard functions, like those in Panels C and D, 
generally arise in studies of long duration. This design 
dependency arises for a simple reason: in brief studies, the 
particular time associated with the middle peak (or trough) 
appears on the far right of the time axis—erroneously 
suggesting a monotonically increasing (or decreasing) hazard.

(p.343)  The problem is that when data collection is brief (and 
brief can be years!), we have no way of knowing what happens 
in time periods that occur after the end of data collection. To 
find a reversal, indicated by the multiple peaks (or troughs), 
data collection must be of a sufficient length.

This illustrates the need for a caveat whenever describing 
hazard functions: Be sure that the time indicated at the end of 
the time axis has substantive meaning as an “end of time.” If 
not, use extreme caution when identifying (and describing) the 
varying pattern of risk. In Panel B, for example, had Capaldi 
and colleagues (1996) followed the 56 young men who had not 
had sex by the end of 12th grade, they might have found that 
the annual risk of initiation peaks even later, after high school. 
Or had we followed the congresswomen in Panel D for only 
four terms, we would have concluded that risk monotonically 
decreases over time. Although this conclusion is accurate for 
the first four terms, we would not want to erroneously 
generalize this short-term finding. Statements about periods of 
elevated (or diminished) risk must always be tied to 
statements about the range of time actually studied. Failure to 
do so is tantamount to extrapolating (through silence) beyond 
the range of the data.

What happens if the hazard function displays no peaks or 
troughs? When hazard is flat, risk is unrelated to time. Under 
these circumstances, event occurrence is independent of 
duration in the initial state implying that events occur 
(seemingly) at random. Because of age, period, and cohort 
effects—all of which suggest duration dependence—flat hazard 
functions are rare in the social and behavioral sciences. Two 
interesting examples, however, are whether and when couples 
divorce following the birth of a child (Fergusson, Horwood, & 
Shannon, 1984) and whether and when elementary school 
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children shift their attention away from their teacher (Felmlee 
& Eder, 1984).

10.3.2 Survivor Functions as a Context for Evaluating the 
Magnitude of Hazard

As is apparent in figure 10.2, all survivor functions share a 
common shape, a monotonically nonincreasing function of 
time. At the beginning of time, each takes on the value 1.0. 
Over time, as events occur, each drops toward 0. Because of 
censoring, and because some individuals may never 
experience certain events no matter how long data collection 
lasts, few estimated survivor functions fall to zero. The value 
of the survivor function at the “end of time” estimates the 
proportion of the population that will survive past this last 
observed period.

(p.344) Studying the concurrent features of the estimated 

hazard and survivor functions in figure 10.2 reveals a great 
deal about their interrelationship. Examining the four panels 
we see that:

• When hazard is high, the survivor function drops rapidly—
as in the early time periods in Panels A and D.

• When hazard is low, the survivor function drops slowly—
as in the early time periods in Panels B and C and the later 
time periods of A and C.

• When hazard is zero, the survivor function remains 
unchanged. Although not shown here, if h(t j) = 0, S(t j) will 
be identical to S(t j+1).

In general, large values of hazard produce great changes in 
survivorship; small values produce little change.
If the survivor function is simply a cumulative reflection of the 
magnitude of the peaks and troughs in the hazard function, of 
what additional value is it? One advantage is its intuitive 
appeal, which renders it useful when communicating findings. 
More important, though, the survivor function provides a 
context for evaluating the period-by-period risks reflected in 
the hazard function. Because the survivor function cumulates 
these risks to estimate the fraction of the population 
remaining in each successive time period, its value indicates 
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the proportion of people exposed to each period’s hazard. If 
the estimated survival probability is high when hazard is high, 
many people are affected; if it is low, even if hazard is high, 
there are few people left to experience the elevated risk.

The practice of using the survivor function to provide a 
context for evaluating the magnitude of hazard is similar to 
epidemiologists’ practice of studying both prevalence and 
incidence. Incidence measures the number of new events 
occurring during a time period (expressed as a proportion of 
the number of individuals at risk), whereas prevalence 
cumulates these risks to identify the total number of events 
that have occurred by a given point in time (also as a 
proportion; see, e.g., Kleinbaum, Kupper, & Morgenstern,
1982; Lilienfeld & Stolley 1994). Stated this way, we can see 
that incidence and prevalence correspond directly to hazard 
and survival: hazard represents incidence, survival represents 
cumulative prevalence. Epidemiologists rely on incidence 
when identifying the risk factors associated with disease 
occurrence because prevalence confounds incidence with 
duration—conditions of longer duration may be more 
prevalent even if they have equal or lower incidence rates. But 
epidemiologists also recognize that prevalence, like survival, 
has an advantage: it assesses the extent of a problem at a 
particular point in time. Estimates of prevalence thereby 
provide a context for evaluating (p.345)  the magnitude of 
incidence. In survival analysis, estimates of the survivor 
function provide a similar context for evaluating the 
magnitude of hazard.

The consequence of this argument is that the survivor function 
indicates whether the elevated risks in periods of high hazard 
are likely to affect large numbers, or small numbers, of people. 
At the extreme, if risk is high among a very small group, the 
times of greatest risk may not be the times when most events 
occur. If hazard is increasing while the risk set is decreasing, 
a high hazard may have little effect. In both the age at first 
intercourse study and the congressional turnover study, the 
last periods are those with the highest hazards. But the risk 
sets in these periods are smaller than the risk sets in the 
earlier periods, so the elevated hazard may indicate that fewer 
total events take place in these periods than did in the earlier 
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periods with lower hazards. For example, three times as many 
congresswomen (n = 19) leave office in their second term, 
when hazard is .17, than leave in their eighth term (n = 6), 
when hazard is .27.

This irregular correspondence between hazard and the 
number of events does not indicate a flaw in the concept of 
hazard; rather, it underscores the need for examining the 
survivor function. Hazard is inherently conditional: it only 
describes the risk of event occurrence among those at risk. Be 
sure to reassert this conditionality periodically so that you do 
not mistakenly conclude that more events occur in time 
periods when fewer events actually occur.

10.3.3 Strengths and Limitations of Estimated Median Lifetimes

Unlike hazard and survivor functions, which describe the
distribution of event times, the median lifetime identifies the 
distribution’s location or “center.” Examining the estimated 
median lifetimes displayed in figure 10.2, for example, we see 
that the average former addict relapses 7.6 weeks after 
treatment (Panel A), the average at-risk adolescent male 
initially has heterosexual intercourse midway through the 
second semester of tenth grade (Panel B), the average 
teenager has had a suicidal thought by age 14.8 years old 
(Panel C), and the average U.S. congresswoman remains in 
office for 3.5 terms (Panel D).

When examining a median lifetime, we find it helpful to 
remember three important limitations on its interpretation. 
First, it identifies only an “average” event time; it tells us little 
about the distribution of event times and is relatively 
insensitive to extreme values. Second, the median lifetime is 
not necessarily a moment when the target event is especially

(p.346)  likely to occur. For example, although the average 
congresswoman remains in office for just under four terms, 
hazard is actually low during the fourth term. Third, the 
median lifetime reveals little about the distribution of risk over 
time; identical median lifetimes can result from dramatically 
different survivor and hazard functions.

We illustrate these insights in figure 10.3, which presents 
estimated hazard functions, survivor functions, and median 
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lifetimes for four hypothetical data sets. We constructed these 
data sets purposefully, with the goal of highlighting the 
difficulties inherent in the interpretation of median lifetimes. 
In each data set, comprising ten time intervals, the estimated 
survival probability in period 5 is exactly .50 so that the 
estimated median lifetime is precisely 5.0.

Notice the dramatic differences in the accompanying hazard 
and survivor functions. Although all four data sets have the 
same estimated median lifetime, few researchers examining 
these panels would conclude that the studies had anything in 
common. In Panel A, hazard begins low, rises steadily until its 
peak in period 5, and then declines steadily until period 10. 
This type of situation, in which the estimated median lifetime 
of 5.0 coincides with the period of greatest risk, is what most 
people initially believe the estimated median lifetime suggests.

But before concluding that an estimated median lifetime tells 
us anything about the shape of the hazard or survivor function, 
examine Panel B. The first half of the hazard function in this 
panel is identical to that of Panel A—it begins low and climbs 
steadily to its peak in period 5. After that point in time, 
however, hazard remains high, at the same value as in time 
period 5. Yet the median lifetime remains unchanged because 
its computation depends solely on the early values of the 
estimated survivor function (before it reaches .50). Its later 
values have no effect whatsoever on the calculation.

The remaining two data sets present even more extreme 
relationships between profiles of risk and median lifetimes. In 
Panel C, hazard begins high and declines steadily over time. 
Here, the estimated median lifetime of 5.0 corresponds to a 
low risk period and the distribution of risk over the entire time 
axis looks entirely different from that presented in Panels A 
and B (although the estimated medians of the survivor 
functions are identical). A similar conclusion comes from 
examining Panel D. Here, hazard is constant across time and 
yet the estimated median lifetime falls in the same exactly 
place on the time axis.
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Figure 10.3.  Learning to interpret 
median lifetimes. Results from four 
hypothetical data sets constructed so that 
each has the same estimated median 
lifetime (5.0), but dramatically different 
estimated hazard and survivor functions.

What conclusions should you draw from this exercise?

• Never draw inferences about the hazard or survivor 
functions on the basis of an estimated median lifetime. All 
this statistic does is identify one (p.347)

(p.348)

particular 
point—
albeit a 
meaningful 
one—along 
the 
estimated 
survivor 
function’s 
path.

• Never 
assume 
that the 
time 

corresponding to the estimated median lifetime is one of 
particularly high risk. The estimated median lifetime tells 
us nothing about hazard in that, or any other, time period.

• Remember that a median is just a median—nothing more 
than one estimate of the location of a distribution. If you 
want to know more about the distribution of event 

Figure 10.3.  Learning to interpret 
median lifetimes. Results from four 
hypothetical data sets constructed so that 
each has the same estimated median 
lifetime (5.0), but dramatically different 
estimated hazard and survivor functions.
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occurrence, the hazard function and, to a lesser extent, the 
survivor function are more useful.

10.4 Quantifying the Effects of Sampling 
Variation

When examining estimated hazard functions, we suggested 
that small period-to-period fluctuations were likely due to 
sampling variation. We now quantify the degree of sampling 
variation by computing the standard errors of the estimated 
hazard probabilities (section 10.4.1) and survival probabilities 
(section 10.4.2).

10.4.1 The Standard Error of the Estimated Hazard Probabilities

Consider the population value of hazard in the jth time period,
h(t j). Using equation 10.2, we can estimate this parameter as 
that fraction of time period j’s risk set (n j) who experience the 
target event in that period. Because this estimate is simply a 
sample proportion, its standard error can be estimated using 
the usual formula for estimating the standard error of a 
proportion:

(10.7) 
The left side of table 10.2 presents estimated hazard 
probabilities and their accompanying standard errors for the 
special educator data. We present these estimates to seven 
decimal places so that you can confirm our calculations with 
precision. Notice that all the standard errors are very small, 
never exceeding .007, indicating that each hazard probability 
is estimated very precisely. Precision is a direct consequence 
of the large number of teachers being tracked and the 
relatively low annual exit rates. The hazard probability for 
year 1 is estimated using a risk set of 3941 and even the 
much-diminished risk set for year 11 has 391 members. If your

(p.349)
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Table 10.2: Calculating standard errors for estimated hazard and survival probabilities

Hazard function Survivor function

Year n j Estimated hazard 
probability

Standard 
error

Estimated survivor 
probability

Term under the square root 
sign

Standard 
error

1 3941 0.1157067 0.0050953 0.8842933 0.0000332 0.0050953

2 3485 0.1101865 0.0053041 0.7868561 0.0000687 0.0065235

3 3101 0.1157691 0.0057455 0.6957625 0.0001109 0.0073288

4 2742 0.1075857 0.0059173 0.6209084 0.0001549 0.0077282

5 2447 0.0890886 0.0057588 0.5655925 0.0001948 0.0078958

6 2229 0.0825482 0.0058289 0.5189038 0.0002352 0.0079589

7 2045 0.0601467 0.0052576 0.4876935 0.0002665 0.0079622

8 1642 0.0481120 0.0052812 0.4642295 0.0002973 0.0080048

9 1256 0.0421974 0.0056726 0.4446402 0.0003324 0.0081067

10 948 0.0369198 0.0061243 0.4282242 0.0003728 0.0082686

11 648 0.0246913 0.0060961 0.4176508 0.0004119 0.0084764

12 391 0.0127877 0.0056821 0.4123100 0.0004450 0.0086981
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initial sample size is smaller and the rate of decline in the risk set 
steeper, the standard errors for each successive time interval will 
be larger.
How can you develop your intuition about the magnitude of 
these standard errors? Although a precise answer involves 
simultaneous examination of the numerator and denominator 
of equation 10.7, we can examine each component separately 
to develop two general ideas:

• The closer hazard is to .50, the less precise the estimate; 
the closer hazard is to 0 (or 1), the more precise. The 
numerator in equation 10.7 is at its maximum when the 
estimated value of hazard is .50 and it declines as it goes 
toward either 0 or 1. Because the estimated value of hazard 
is usually below .5 (less than half of a risk set experiences 
the event), we can simplify this statement to say that larger 
values of hazard are usually measured less precisely and 
smaller values measured more precisely (for the same size 
risk set).

• The larger the risk set, the more precise the estimate of 
hazard; the smaller the risk set, the less precise. Because 
the size of the risk set appears in the denominator of 
equation 10.7, the estimated standard error will be larger in 
those time periods when fewer people are at risk. As the 
risk set declines over time, later estimates of hazard will 
tend to be less precise than earlier estimates.

(p.350) Why, then, do we not observe a more dramatic 
increase in the standard error for hazard in the special 
educator data in table 10.2? This stability results from two 
phenomena. First, the estimated value of hazard declines over 
time, so the general increase in standard error that 
accompanies a decrease in the size of the risk set is 
counterbalanced by the decrease in the standard error that 
accompanies hazard’s decline. Second, although the size of 
the risk set declines over time, even the last time period in this 
data set contains 391 individuals. Were the later risk sets 
smaller, we would observe a more noticeable increase in the 
standard error of hazard.



Describing Discrete-Time Event Occurrence Data

Page 33 of 40

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

10.4.2 Standard Error of the Estimated Survival Probabilities

Estimating the standard error of a survival probability is a 
more difficult task than estimating the standard error of its 
associated hazard probability. This is because unlike hazard, 
which is estimated as the fraction of the risk set that 
experience the target event in any given period, the survival 
probability is estimated as a product of (1-hazard) for this and 
all previous time periods. Estimating the standard error of an 
estimate that is itself the product of several estimates is a 
difficult statistical task. Indeed, it is so difficult that 
statisticians rarely recommend that you estimate the standard 
error of the survival probabilities directly; rather, you can do 
almost as well by relying on what is known as Greenwood’s 
approximation.

In an early classic paper on life tables, Greenwood (1926) 
demonstrated that the standard error of the survival 
probability in time period j can be approximated as:

(10.8)

The summation under the square root involves all time periods up 
to and including the time period of interest. The standard error of 
the estimated survivor function in time period 1 involves only the 
first term; the standard error in time period 2 involves only the first 
two terms. As the estimated survivor function in time period j
depends upon the estimated hazard function in that time period as 
well as estimates from all preceding time periods (as shown in 
equation 10.5), it should come as no surprise that its standard error 
also involves the estimated values of hazard in all preceding time 
periods.
The standard errors of the estimated survival probabilities for 
the special educator data are shown in table 10.2. Each is very 
small, never (p.351)  even reaching 0.01. This suggests that 
our individual estimates of the survival probabilities, just like 
our individual estimates of the hazard probabilities, are quite 
precise. But as an approximation, Greenwood’s formula is 
accurate only asymptotically. Harris and Albert (1991) suggest 
that these standard errors should not be trusted for any time 
period in which the size of the risk set drops below 20.
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10.5 A Simple and Useful Strategy for 
Constructing the Life Table

Having demonstrated the value of the life table, we now 
address the practical question: How can you construct a life 
table for your data set? For preliminary analyses, it is easy to 
use the prepackaged routines available in the major statistical 
packages. If you choose this approach, be sure to check 
whether your package allows you to: (1) select the partition of 
time; and (2) ignore any “actuarial” corrections invoked due to 
continuous-time assumptions (that do not hold in discrete 
time). When event times have been measured using a discrete-
time scale, actuarial corrections (discussed in chapter 13) are 
inappropriate. Although most packages clearly document the 
algorithm being used, we suggest that you double-check by 
comparing results with one or two estimates computed by 
hand.

Despite the simplicity of preprogrammed algorithms, we 
prefer an alternative approach for life table construction. This 
approach requires construction of a person-period data set, 
much like the person-period data set used for growth 
modeling. Once you create the person-period data set, you can 
compute descriptive statistics using any standard cross-
tabulation routine. The primary advantage of this approach 
rests not with its use for the descriptive analyses outlined in 
this chapter but in its use for model building. As will become 
apparent in chapters 11 and 12, the person-period data set is 
an integral tool for the systematic fitting of discrete-time 
hazard models. And as will become apparent in chapters 14
and 15, it also forms the conceptual foundation for fitting 
certain continuous time hazard models as well. An associated 
website presents code for creating person-period data sets in 
several major statistical packages.

10.5.1 The Person-Period Data Set

Like the person-period data set used for growth modeling, the 
person-period data set used for discrete-time survival analysis 
has multiple lines (p.352)  of data for each person under study. 
An important difference, however, is that the person-period 
data set used for growth modeling has a separate record for 
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each time period when an individual is observed, whereas the 
person-period data set for discrete-time survival analysis has a 
separate record for each time period when an individual is at 
risk.

Researchers often store event history data in a “person-
oriented” file, in which each individual’s data appears on a 
single record. Each record contains all the data ever collected 
for that person. As you collect additional longitudinal data, you 
add variables to the file. If you think of this file as a 
spreadsheet, with individuals indexed in rows and variables in 
columns, over time the file grows in width but never in length. 
A person-period data set, in contrast, spreads the data for 
each individual across multiple records, each record 
describing a specific time period. With each additional wave of 
data collection, the person-period data set grows in length. A 
person-period data set grows in width only if new variables, 
not assessed on a previous occasion, are added to the 
protocol.

Figure 10.4 illustrates the conversion from a person-oriented 
data set (in the left panel) to a person-period data set (in the 
right panel) using three individuals from the special educator 
study. The first two teachers have known event times (they 
stayed 3 and 12 years, respectively); the third was censored at 
12 years. The person-oriented data set describes these 
teachers’ event histories using two variables:

• Event time (here, T). For the first two teachers with 
known event times, T i is set to that time (3 and 12, 
respectively). For the third teacher, who was still teaching 
when data collection ended, T i is also set to 12 (the last 
time period when the event could have occurred).

• Censoring indicator (here, CENSOR). For teachers with 
known event times (subjects 20 and 126), CENSOR = 0; for 
teachers with censored event times (subject 129), CENSOR
= 1.

As there are 3941 teachers in this sample, the data set has 3941 
records.
In the person-period data set, each individual has a separate 
record for each discrete-time period when he or she was at 
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Figure 10.4.  Conversion of a person-level 
data set into a person-period data set for 
three special educators from the teacher 
turnover study.

risk of event occurrence. Because individuals first become at 
risk during year 1, j = 1 is the first time period recorded in the 
person-period data set for each teacher. (In other data sets, it 
may be meaningful to count time from another origin; if so, 
simply set the values of this variable accordingly.) Teacher 20, 
who taught for three years, has three records, one for the first, 
second, and third years of teaching. Teacher 126, who taught 
for 12 years has 12 records, one per year, as does teacher 129 
(who was still teaching when (p.353)

data collection 
ended, thereby 
remaining at 
risk of event 
occurrence in 
all 12 years). 
The values of 
the variables in 
the person-
period data set 
reflect the 
status of 
person i on 
that variable in 
the jth period. 
Referring to 
the right panel 
of figure 10.4, 
the simplest 
person-period 
data set 
includes:

• A period 
variable, 
here
PERIOD, 
which 
specifies the time-period j that the record describes. For 
teacher 1, this variable takes on the values 1, 2, and 3 to 
indicate that this teacher’s three records describe her 
status in these three years. For the other two cases,
PERIOD takes on the values 1 through 12, to indicate that 
those are the years represented in the twelve records.

Figure 10.4.  Conversion of a person-level 
data set into a person-period data set for 
three special educators from the teacher 
turnover study.
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• An event indicator, here EVENT, which indicates whether 
the event occurred in that time period (0 = no event, 1 = 
event). For each (p.354)  person, the event indicator must

be 0 in every record except the last. Noncensored 
individuals experience the event in their last period, so
EVENT takes on the value 1 in that period (as in the third 
record for teacher 20 and in the 12th record for teacher 
126). Censored individuals (such as teacher 129) never 
experience the event, so EVENT remains at 0 throughout.

If you want to include data on substantive predictors that 
might be associated with event occurrence (such as a 
teacher’s gender, salary, or classroom assignment), these 
variables could be easily added to the person-period data set. 
We discuss this extension at length in section 11.3.

Person-period data sets have many more records than their 
corresponding person-oriented data sets because they have 
one record for each time period that an individual is at risk of 
event occurrence. Since 3941 teachers were at risk in year 1, 
3485 were at risk in year 2, 3101 were in risk in year 3, up 
through the 391 who were at risk in year 12, this person-
period data set will have 3941 + 3485 + … + 391 = 24,875 
records. We can also compute the number of records for which 
EVENT = 1 by subtracting the number of censored cases 
(those who will never receive the value 1) from the size of the 
original risk set (n). In this example, because 1734 of the 
original 3941 teachers have censored event times, we know 
that EVENT will take on the value 1 in only (3941 – 1734) = 
2207 of the records and the value 0 in the remaining (24,875 – 
2207) = 22,668.

10.5.2 Using the Person-Period Data Set to Construct the Life Table

All the life table’s essential elements can be computed through 
cross-tabulation of PERIOD and EVENT in the person-period 
data set. Any statistical package can produce the output, as 
displayed in table 10.3. To numerically verify the accuracy of 
this approach, compare these entries to the life table in table
10.1. Below, we explain why this approach works.

The cross-tabulation of PERIOD by EVENT in the person-
period data set produces a J by 2 table. Each row j describes 
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the event histories of those people in the risk set during the
jth time period. The number of cases in the row (the TOTAL 
column in table 10.3) identifies the size of that period’s risk 
set. This is because an individual contributes a record to a 
period if, and only if, he or she is at risk of event occurrence in 
that period. The column labeled EVENT = 1 indicates the 
number of people experiencing the event in the jth
period. This is because the variable EVENT takes on the value 
1 only in the particular time period when the individual 
experiences the event. In all other time periods, EVENT
must (p.355)

Table 10.3: Cross-tabulation of event indicator 
(EVENT) and time-period indicator (PERIOD) in 
the person-period data set to yield components 
of the life table

PERIOD EVENT = 
0

EVENT = 
1

Total Proportion EVENT
= 1

1 3,485 456 3,941 0.1157

2 3,101 384 3,485 0.1102

3 2,742 359 3,101 0.1158

4 2,447 295 2,742 0.1076

5 2,229 218 2,447 0.0891

6 2,045 184 2,229 0.0825

7 1,922 123 2,045 0.0601

8 1,563 79 1,642 0.0481

9 1,203 53 1,256 0.0422

10 913 35 948 0.0369

11 632 16 648 0.0247

12 386 5 391 0.0128

Total 22,668 2,207 24,875

be 0 (as shown in the adjoining column). Given that the table 
provides period by period information about the size of the risk set 
and the number of people who experienced the event, it should 
come as no surprise to find that the row percentage (shown in the 
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last column) estimates hazard, as shown in equation 10.2. Taken 
together, then, the cross-tabulation provides all information 
necessary for constructing the life table.
Notice how this cross-tabulation reflects the effects of 
censoring. In each of the first seven time periods, when no 
data are censored, the number of individuals for whom EVENT
= 0 (the number not experiencing the event) is identical to the 
number of individuals at risk of event occurrence in the next 
time period. For example, because 2742 teachers did not leave 
teaching in year 3, these same 2742 teachers were eligible to 
leave teaching in year 4. After year 7, however, this 
equivalence property no longer holds: the number of 
individuals at risk of event occurrence in each subsequent 
year is smaller than the number who did not experience the 
event in the previous year. Why? The answer reflects the 
effects of censoring. The discrepancy between the number of 
events in the jth period and the number at risk in the (j + 1)st 
period indicates the number of individuals censored in the jth 
time period. For example, because 1563 teachers did not leave 
teaching in year 8 but only 1256 were at risk of leaving in year 
9, we know that (1563 – 1256) = 307 were censored at the end 
of year 8 (as shown in table 10.1).

(p.356) The ability to construct a life table using the person-
period data set provides a simple strategy for conducting the 
descriptive analyses outlined in this chapter. This strategy 
yields appropriate statistics regardless of the amount, or 
pattern, of censoring. Perhaps even more important, the 
person-period data set is the fundamental tool for fitting 
discrete-time hazard models to data, using methods that we 
describe in the next chapter.

Notes:

(1.) Strictly speaking, hazard is the conditional probability of 
event occurrence per unit of time. Because attention here is 
restricted to the case of discrete-time, where the unit of time 
is an “interval” assumed to be of length 1, we omit the 
temporal qualifier. When we move to continuous time, in 
chapters 13 through 15, we invoke a temporal qualifier (as 
well as an altered definition of hazard).



Describing Discrete-Time Event Occurrence Data

Page 40 of 40

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

(2.) Owing to its genesis in modeling human lifetimes, the 
hazard function is also known as the conditional death density 
function and its realizations at any given time are known as 
the force of mortality (Gross & Clark, 1975). A comparison of 
these terms suggests that while the phrase “hazard function” 
has a negative connotation, the valence of this word is far 
milder than the valence of the competing alternatives!
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Abstract and Keywords

Good data analysis involves more than using a computer 
package to fit a statistical model to data. To conduct a credible 
discrete-time survival analysis, one must: specify a suitable 
model for hazard and understand its assumptions; use sample 
data to estimate the model parameters; interpret results in 
terms of your research questions; evaluate model fit and test 
hypotheses about (and/or construct confidence intervals for) 
model parameters; and communicate your findings. This 
chapter illustrates this entire process using the “age at first 
intercourse” study introduced in section 10.3. This sets the 
stage for a subsequent discussion of how to evaluate the 
assumptions underpinning the model and how to extend it 
flexibly across many circumstances in Chapter 12.

University Press Scholarship Online

Oxford Scholarship Online



Fitting Basic Discrete-Time Hazard Models

Page 2 of 62

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Keywords:   statistical model, discrete-time hazard, parameter estimation, data 
analysis, sample data

To exist is to change, to change is to mature.

—Henri Bergson

As you summarize your event history data by constructing life 
tables, plotting sample hazard and survival probabilities, and 
estimating median lifetimes, you may find yourself asking
Why? Why do some teachers leave teaching after only one 
year, while others stay in the career for ten? Why do some 
teens contemplate suicide while others never have a suicidal 
thought?

We address questions like these—questions about why events 
occur at different times for different people—by fitting 
statistical models of hazard to data. In specifying a particular 
hazard model, you make hypotheses about how you think the 
risk of event occurrence is systematically related to 
predictors. In estimating the model’s parameters and 
evaluating its goodness-of-fit, you gather evidence for the 
tenability of your hypotheses and you quantify predictor effect 
size. But just as the definition of hazard depends on whether 
time has been measured continuously or discretely, so, too, 
does the form of the statistical model used to represent the 
relationship between hazard and predictors. In this chapter 
and the next, we present statistical models of hazard for data 
collected in discrete time. The relative simplicity of these 
models makes them an ideal entrée into the world of survival 
analysis. In subsequent chapters, we extend these basic ideas 
to situations in which event occurrence is recorded in 
continuous time.

Good data analysis involves more than using a computer 
package to fit a statistical model to data. To conduct a credible 
discrete-time survival analysis, you must: (1) specify a suitable 
model for hazard and understand its assumptions; (2) use 
sample data to estimate the model parameters; (3) interpret 
results in terms of your research questions; (4) evaluate model

(p.358)  fit and test hypotheses about (and/or construct 
confidence intervals for) model parameters; and (5) 
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communicate your findings. In this chapter, we illustrate this 
entire process using the “age at first intercourse” study 
introduced in section 10.3. Our goal is to explicate the 
essential concepts and illustrate the logical steps involved in 
fitting basic discrete-time hazard models to data. This sets the 
stage for our subsequent discussion of how to evaluate the 
assumptions underpinning the model and how to extend it 
flexibly across many circumstances in chapter 12.

11.1 Toward a Statistical Model for Discrete-
Time Hazard

When we developed the earlier multilevel model for change, 
we explored our data by examining empirical growth 
trajectories coded separately by values of a predictor (for 
example, the plots for boys and girls in figure 2.7). This helped 
us see that a two-level model, expressing parameters from 
each individual’s growth trajectory as a function of predictors, 
could represent a hypothesized relationship between growth 
over time and a predictor. Using a similar exploratory 
approach, we now use plots of sample hazard and survivor 
functions to help motivate the creation of a statistical model 
for studying hypothesized relationships between event 
occurrence and predictors in discrete-time.

Throughout this chapter, we use Capaldi et al.’s (1996) data 
on the grade of first heterosexual intercourse for a sample of 
180 at-risk boys (introduced in section 10.3). In figure 10.2
(Panel B), we saw that the hazard probability associated with 
first heterosexual intercourse increased fairly steadily over 
time so that by the end of data collection, in twelfth grade, 
70.0% of the boys had already engaged in sex. Now we 
explore the hypothesis that grade at first intercourse is 
systematically related to the boys’ early childhood experiences
—specifically whether they lived with both of their biological 
parents throughout their formative years. To ensure that this 
predictor is exogenous, predating event occurrence, we focus 
on parental transitions that occurred prior to seventh grade, 
the first time period in which a boy could have reported 
having had sex. This predictor, which we call PT, takes on two 
values: 0 for boys who lived with both biological parents (n = 
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Figure 11.1.  Estimated hazard functions 
and survivor functions for grade at first 
heterosexual intercourse, by presence or 
absence of parenting transitions prior to 
7th grade.

72, 40.0% of the sample) and 1 for boys who experienced one 
or more parenting transitions (n = 108, 60.0%).

11.1.1 Plots of Within-Group Hazard Functions and Survivor 
Functions

Plots of sample hazard functions and survivor functions 
estimated separately for groups distinguished by their 
predictor values are invaluable (p.359)

exploratory 
tools. If a 
predictor is 
categorical, 
like PT, 
construction of 
these displays 
is 

straightforward. If a predictor is continuous, you should just 
temporarily categorize its values for plotting purposes. Figure 11.1
presents estimated hazard functions (top panel) and survivor 
functions (bottom panel) by levels of PT. The bold functions are for 
boys with no parenting transitions (PT = 0); the fainter functions 
are for boys with one or more transitions (PT = 1). Because we 
refer to the estimated values of these functions throughout this 
chapter, table 11.1 presents the life tables on which the displays 

Figure 11.1.  Estimated hazard functions 
and survivor functions for grade at first 
heterosexual intercourse, by presence or 
absence of parenting transitions prior to 
7th grade.
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are based (top and middle panels), as well as estimated hazard and 
survival probabilities for the pooled sample (bottom panel).
Let’s begin by examining the within-group hazard functions. 
Even though these plots present summary statistics, not 
individual data points, we examine them for the same reasons 
we examine scatterplots: to help us formulate statistical 
models suitable for representing the process (p.360)

Table 11.1: Life table describing the grade at 
first heterosexual intercourse, by presence or 
absence of parenting transitions prior to seventh 
grade (top and middle panels) and overall 
(bottom panel)

Number who …

Grade Were at 
risk 
(virgins) 
at the 
beginning 
of the 
grade

Had 
sex 
during 
the 
grade

Were 
censored 
at the 
end of 
the 
grade

Hazard 
probability

Survival 
probability

No Parenting Transitions (PT = 0)

7 72 2 0 0.0278 0.9722

8 70 2 0 0.0286 0.9444

9 68 8 0 0.1176 0.8333

10 60 8 0 0.1333 0.7222

11 52 10 0 0.1923 0.5833

12 42 8 34 0.1905 0.4722

One or More Parenting Transitions (PT = 1)

7 108 13 0 0.1204 0.8796

8 95 5 0 0.0526 0.8333

9 90 16 0 0.1778 0.6852

10 74 21 0 0.2838 0.4907

11 53 15 0 0.2830 0.3519
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Number who …

Grade Were at 
risk 
(virgins) 
at the 
beginning 
of the 
grade

Had 
sex 
during 
the 
grade

Were 
censored 
at the 
end of 
the 
grade

Hazard 
probability

Survival 
probability

12 38 18 20 0.4737 0.1852

Overall, Regardless of Parenting Transitions

7 180 15 0 0.0833 0.9167

8 165 7 0 0.0424 0.8778

9 158 24 0 0.1519 0.7444

10 134 29 0 0.2164 0.5833

11 105 25 0 0.2381 0.4444

12 80 26 54 0.3250 0.3000

under investigation and to discover unusual features in the data. 
When examining plots like these, you should ask two major 
questions:

• What is the shape of the hazard function for each group?
When are the peaks and troughs? Do they occur at similar, 
or different, times for each group?

• Does the relative level of the hazard function differ across 
groups? Is the hazard function for one group consistently 
higher than for the other(s)? Is the relative magnitude of 
the differential in hazard between groups consistent over 
time, or does it vary over time?

Answers to these questions help inform hazard model specification 
and parameter estimation. As we will see, the basic discrete-time 
hazard model (p.361)  assumes that the shape of the hazard 

function is similar across groups, but that its relative level differs. If 
exploratory analysis suggests a violation of either of these 
assumptions, we need a modified model like those presented in 
chapter 12.
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What do we see in these subsample hazard functions in figure
11.1? Examining their shape, we find a strong similarity: both 
begin low (in 7th and 8th grade) and climb steadily thereafter. 
Between 8th and 11th grade, for example, the sample hazard 
probability for boys with no parenting transitions increases 
sixfold, from .0286 to .1923; for boys with a transition, it 
increases fivefold, from .0526 to .2830. Although the precise
locations of the peaks and troughs differ slightly across 
groups, their relative temporal positions are similar—a trough 
at the “beginning of time” and a peak at the “end of time.” It is 
this gestalt impression, not the individualities of each group’s 
particular estimated hazard function, that we look for when 
exploring graphs of sample summary data. To focus on the 
precise details of each function would be unwise, given the 
effects of sampling variation.

Next examine each sample hazard function’s relative level. 
Notice the substantial differential between the groups—in 
each time period, the hazard function for boys who 
experienced a parenting transition is higher than that for boys 
who did not. This means that, in each grade between 7th and 
12th, the conditional probability of having initial intercourse is 
greater for boys not raised with both biological parents. Is this 
differential in level consistent over time? Once again, we seek 
an overall impression, not precise quantification. Although the 
relative magnitude of the differential varies somewhat across 
periods—in 9th grade it is 51% higher among boys with a 
parenting transition (.1778 vs. .1176) whereas in 12th grade it 
is 149% higher (.4737 vs. .1905)—experience suggests that 
this amount of period-to-period variability is not extreme.

What do we look for when exploring the corresponding within-
group sample survivor functions? The survivor function does 
not tell us about the risk of event occurrence in any given 
period because it cumulates hazard (or more precisely the 
complement of hazard) across this and all previous periods. 
When evaluating the effect of predictors this disadvantage has 
an advantage: Because of cumulation, within-group survivor 
functions are ideal summaries of the predictors’ compounded
effects. But when moving from examining hazard to examining 
survivor functions, be aware of the inevitable reversal in their 
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relative rankings: the group with the higher hazard function 
(the group with the greater probability of event occurrence) 
will have the lower survivor function (the lower probability of 
survival). Here, the survivor function for boys who 
experienced a parenting transition is lower than that for boys 
raised with their two biological parents (because the hazard 
function is higher).

(p.362) What do these within-group sample survivor functions 

tell us about the cumulative effects of the predictor PT? The 
overwhelming message is that its effect is large. By as early as 
9th grade, only 68.5% of the boys who experienced a 
parenting transition remained virgins in comparison to 83.3% 
for the boys raised by both biological parents. By 12th grade, 
only 18.5% had not yet had intercourse compared to 47.2% of 
boys in the two-parent group. These sizable differentials 
translate into dramatic differences in median lifetimes. For 
boys with a parental transition, the estimated median grade at 
first intercourse is 10.0; for boys raised with their two 
biological parents, the median is just under 12 (11.7). Capaldi 
and colleagues (1996) assert (and most parents would agree) 
that this nearly two-year delay—from the beginning of 10th 
grade until the end of 11th grade—is substantial, with 
potentially serious psychological, social, and health 
consequences.

11.1.2 What Kind of Statistical Model Do These Graphs Suggest?

To postulate a statistical model to represent the relationship 
between the population discrete-time hazard function and 
predictors, we must deal with two complications apparent in 
these displays. One is that any hypothesized model must 
describe the shape of the entire discrete-time hazard function
over time, not just its value in any one period, in much the 
same way that a multilevel model for change characterizes the 
shape of entire individual growth trajectory over time. A 
second complication is that, as a conditional probability, the 
value of discrete-time hazard must lie between 0 and 1. Any 
reasonable statistical model for hazard must recognize this 
constraint, precluding the occurrence of theoretically 
impossible values.
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Before presenting the formal model specification, which we do 
in section 11.2, we now presage its salient features using 
sample data. By proceeding this way, we hope to motivate the 
representation we adopt and indicate how its parameters 
address substantive questions about the effects of predictors.

The Bounded Nature of Hazard

Let us first consider how we can deal with hazard’s upper and 
lower bounds of 0 and 1. The easiest solution, recommended 
for reasons both practical (see, e.g., Mosteller & Tukey, 1977) 
and theoretical (see, e.g., Box & Cox, 1964), is transformation
—expressing a variable on a different scale. Transformation 
can improve distributional behavior (for example, (p.363)
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Figure 11.2.  Re-expressing estimated 
hazard functions on different scales: 
Panel A: hazard. Panel B: odds. Panel C: 
logit (hazard).

variables with 
skewed 
distributions 
can be 
transformed to 
symmetry), 
and in the case 
of discrete-
time survival 
analysis, can 
also: (1) 
prevent 
specification of 
inadmissable 
values; and (2) 
render 
disparate 
values of 
hazard more 
easily 
comparable.
For 
(conditional) 
probabilities 
like the values 
of discrete-
time hazard, 
Cox (1972) 
recommends 
two 

transformations: the odds and log odds (commonly referred to 
as logits) transformations.1 The effect of both these 
transformations is shown in figure 11.2, which plots the 
within-group (p.364)  hazard functions for the first intercourse 
data in three ways. The top panel presents the raw functions, 
displayed on a scale of 0 to 1 (expanded from figure 11.1). The 
middle panel transforms the hazard probabilities to odds, 
which here also happen to range between 0 and 1. The bottom 
panel presents the same functions on a logit scale. We now 
examine these displays, exploring how each transformation 
affects the shapes and levels of the within-group functions.

Figure 11.2.  Re-expressing estimated 
hazard functions on different scales: 
Panel A: hazard. Panel B: odds. Panel C: 
logit (hazard).
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In general, odds compare the relative magnitude of two 
complementary probabilities: the probability that an event will
occur and the probability that it will not occur. If the 
probability that an event will occur is .50, then the probability 
that it will not occur is also .50, and we say that the associated 
odds of occurrence are 50: 50 or 1 to 1. If the probability of 
event occurrence is .80, the probability that the event will not 
occur is .20, and the associated odds are 80: 20 or 4 to 1. 
Generically, to express odds as a single number (not as a 
ratio), we compute the following quotient:

(11.1) 
In the case of discrete-time survival analysis, where hazard is a 
conditional probability—the probability that an event will occur in 
any time period given that it has not occurred in earlier periods—if 
hazard is .80 in a particular time period, then the (conditional) odds 
of event occurrence in that period are 4.0 (the phrase “to 1” is 
implicit). If hazard is .20, odds are 0.25, and so on. Notice that the 
value 1.0 is the “center” of the odds scale. In any time period, if a 
hazard probability is greater than .50, the conditional odds of event 
occurrence are greater than 1.0; if hazard probability is below .50, 
as is common when studying event occurrence, the conditional 
odds of event occurrence are less than 1.0.
The effect of the odds transformation on the distance between 
hazard functions depends on the magnitude of hazard. 
Comparing the first two panels of figure 11.2, we see that 
when hazard is small, less than approximately .15 (as in the 
first three time periods), taking odds has little effect on the 
separation of the sample hazard functions. This is because 
when hazard is small, the denominator in equation 11.1 is 
close to 1 and the value of odds is approximately equal to the 
value of hazard. When hazard is large, the effect of the 
transformation is greater—notice the dramatic difference in 
the 12th grade values in the two panels. The net effect of 
taking odds here is to widen the gap between the two within-
group hazard functions, accentuating the differences in level 
found on the raw scale.

(p.365) The odds metric is not without problems, however. 
First, although odds can take on any nonnegative value, the 



Fitting Basic Discrete-Time Hazard Models

Page 12 of 62

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

odds statistic is still bounded below by the value 0. This allows 
for the possibility that a linear model that represents odds as a 
function of predictors could lead to logically impossible (i.e., 
negative) predicted values. Second, the odds scale is 
asymmetric. A raw difference of .50 in odds translates into a 
different magnitude of effect depending upon the value of 
odds. Taking the natural logarithm of odds—log e(odds), 
commonly referred to as a logit transformation—as we do in 
the bottom panel of figure 11.2, ameliorates these difficulties.

The effect of the logit transformation also depends on the 
magnitude of the hazard itself. If two values of hazard are 
small (close to 0) the logit transformation increases the 
distance between them; if two values of hazard are large (far 
from 0) the logit transformation decreases the distance 
between them. Comparing the middle and bottom panels of 
figure 11.2, we find that on the logit scale, the distance 
between the two functions in the early time periods (when 
hazard and odds are both small) is larger and the distance 
between the two functions in the later time periods (when 
hazard and odds are larger, closer to .50) is smaller. When 
working with log odds, don’t be dismayed by negative values; 
logit hazard is unbounded and negative whenever hazard is 
less than .50. The relative ordering of risk remains the same, 
however: the higher the value of logit hazard (the closer it is 
to 0), the greater the risk of event occurrence.

The changing size of the gap between the within-group 
functions illustrates the secondary benefit of the logit 
transformation: in comparison to the raw scale, the logit scale 
renders the distance between functions more comparable over 
time. This is not a coincidence, but a well-known feature of the 
transformation that makes it so popular. In the top and middle 
panels, the size of the gap between the functions increases
over time. In the logit scale in the bottom panel, the size of the 
gap is fairly stable over time. The small differences in raw 
hazard (and odds) in the 7th and 8th grades translate into 
larger differences in logit hazard while the large difference in 
raw hazard (and odds) in 12th grade diminishes substantially, 
so that it is nearly comparable to the size of the gap in all 
other time periods. Taking logits stabilizes the gap between 
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Figure 11.3.  Three hypothesized 
discrete-time hazard models. Panel A: 
logit hazard is horizontal with time. Panel 
B: logit hazard is linear with time. Panel 
C: logit hazard is completely general with 
time.

the two functions over time, facilitating comparison (and 
ultimately modeling).

What Statistical Model Could Have Generated These Sample 
Data?

Having expressed hazard on a logit scale, now examine the 
bottom plot in figure 11.2 and ask: What statistical model 
should we use to represent (p.366)

the population 
relationship 
between logit 
hazard and its 
predictors 
(here, just PT). 
What 
functional form 
should the 
model have? 
Will a linear 
model suffice 
or is a more 
complex 
function 
necessary? 
How should 
the predictor’s 
effect be 
represented in 
the proposed 
model?
Figure 11.3
depicts three 
alternative 
population 
models for 
discrete time 
logit hazard 
in this 
example. We 
display the 
models 
graphically, not algebraically, to highlight their 
representation, not parameterization. To facilitate comparison 

Figure 11.3.  Three hypothesized 
discrete-time hazard models. Panel A: 
logit hazard is horizontal with time. Panel 
B: logit hazard is linear with time. Panel 
C: logit hazard is completely general with 
time.
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of the model and the within-group hazard functions, (p.367)

the panels include symbols denoting the latter’s values (+ for
PT = 1; • for PT = 0). This juxtaposition allows you to think of 
these plotted symbols as “data points” or “observed values” 
that might have been generated by the underlying 
hypothesized model. Although we do not adopt all of them, we 
present these three models to emphasize that there is no 
single and uniquely suitable discrete-time hazard model. The 
term refers to a broad class of models; these examples are 
only three.

Similarities across these models highlight three assumptions 
inherent in the broad class of discrete-time hazard models 
presented in this chapter:

• For each value of the predictor, there is a postulated logit 
hazard function. If the predictor is dichotomous, we 
postulate that the population comprises two functions; if the 
predictor is continuous, we postulate that the population 
comprises as many hazard functions as there are predictor 
values. (For models with more than one predictor, we 
postulate the existence of as many functions as there are
combinations of predictor levels.)

• Each of these logit hazard functions has an identical 
shape, although there is great flexibility in the specification 
of that shape. We constrain the shape of each function to be 
the same for all predictor values. Within this constraint, we 
have great flexibility in the choice of shapes. The logit 
hazard functions can be flat (the top panel), linear (the 
middle panel), completely general (the bottom panel), or 
any other shape imaginable.

• The distance between each of these logit hazard functions 
is identical in every time period. Regardless of the common
shape of the postulated logit hazard functions, the 
differences in level for the different values of the predictors 
remain the same. The gap cannot be larger in some periods 
and smaller in others. This means that effect of the 
predictor on the log odds of event occurrence is 
hypothesized to be constant over time.
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These three features of the discrete-time hazard model are
assumptions about the population that may, or may not, hold in 
practice. Assumptions allow us to postulate models, estimate 
parameters, and evaluate goodness of fit. As with any assumption, 
we retain some healthy skepticism about its tenability. For now, 
though, we ask you that you hold this skepticism in abeyance. In 
chapter 12, we discuss how to evaluate these assumptions and how 
to relax them when necessary.
As you examine figure 11.3, focus on the correspondence 
between the plotted and hypothesized values. Although the 
degree of correspondence varies across panels, all three 
models seem plausible to a greater (p.368)  or lesser degree. 
The less constrained the model, of course, the better the fit. In 
the top panel, where the hypothesized model constrains 
population logit hazard to be flat over time, we find the largest 
differences between observed and hypothesized values. In the 
middle panel, where we postulate a linear relationship 
between logit hazard and time, this discrepancy diminishes 
substantially. In the third model, where we place no 
constraints on the hypothesized functions’ shape, allowing 
them to be completely general (although constant in shape 
across groups), the difference between observed and 
hypothesized values virtually disappears.

A major task in specifying a suitable model for discrete-time 
hazard is to select a suitable representation for the common 
shape of the logit hazard function. This is similar to the task in 
growth modeling of selecting a parametric form for the 
common shape of the individual growth trajectory. Although 
theory may provide a guide, prespecification of a particular 
common shape can be difficult. For this reason, in survival 
analysis, we typically begin with a general specification that 
places no constraints on the shape of the logit hazard function 
(as in the bottom panel of figure 11.3). Letting the “data speak 
for themselves” allows the common shape to reflect the overall 
log odds of event occurrence in each time period. In chapter
12, we introduce methods for deciding whether a more 
constrained representation might suffice.

What do these models say about the effect of the predictor PT? 
Notice that, in each panel, regardless of the shape of the 
common hypothesized logit hazard function, the gap between 
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them is identical across time periods. This means that each 
model postulates that the effect of the predictor PT essentially 
acts to “shift” one entire logit hazard function vertically 
relative to the other. To formalize the idea, we:

• Label one of the logit hazard functions as the “baseline,” 
the logit hazard function obtained when the value of the 
substantive predictor is 0. (If there is more than one 
substantive predictor, it is the logit hazard function 
obtained when all are 0.) In this example, the baseline 
function is the logit hazard function for boys without an 
early parenting transition (for whom PT = 0).

• Quantify the size of the shift between the baseline 
function and the other function obtained with a one-unit 
increment in the value of the predictor. The effect of the 
predictor is to shift the entire baseline function vertically. 
The size of the gap between the two functions obtained for 
a one-unit difference in the value of the predictor measures 
the size of the predictor’s effect. If the gap is narrow, the 
baseline function is hardly shifted and the predictor’s effect

(p.369)  is small. If the gap is wide, the baseline function is 
shifted substantially, and the predictor’s effect is large.

Conceptually, then, our model ascribes any vertical displacement in 
logit hazard to predictors in much the same way as we ascribe 
differences in mean levels of a continuous outcome to predictors in 
a linear regression model. All we need now is a strategy for 
specifying this model algebraically in a way that: (1) is flexible 
enough to allow the shape of the common logit hazard function to 
take on a different value in each time period; and (2) includes shift 
parameters that indicate the size of the vertical displacement in 
logit hazard resulting from one unit differences in the value of the 
predictors.

11.2 A Formal Representation of the Population 
Discrete-Time Hazard Model

Let us now step back from the specifics of this data set and 
consider the general problem. In section 10.1, when we 
defined h(t ij), the population discrete-time hazard function for 
individual i in time period j, we assumed that the population 
was homogeneous: individuals were not distinguished from 
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each other on the basis of predictors. Now, we introduce the 
possibility that the population is heterogeneous: that different 
individuals, distinguished on the basis of their values of 
selected predictors, may have different hazard functions. This 
is known as observed heterogeneity, the hypothesis that 
individuals will have different hazard functions if they have 
different values for observed predictors. (Individuals who have 
identical values on observed predictors will still have identical 
hazard functions.)

We introduce observed heterogeneity into the definition of 
hazard by first identifying predictors hypothesized to be 
associated with event occurrence. Some will be time-invariant, 
like PT; others will be time varying, like the boy’s drug use (or 
subsequent occurrence of a parenting transition). As in the 
multilevel model for change, time-varying predictors can take 
on different values in each time period (although we assume 
that their values remain constant within periods). To write the 
model generally, so that it can include predictors of both 
types, let X1ij, X2ij, …, XPij represent the P predictors and xpij

denote individual i’s values for the pth predictor in time period
j. If the predictor is time-invariant, it simply takes on the same 
value in each period; if it is time varying, it can take on 
different values. We introduce observed heterogeneity into the 
definition of the hazard function by writing: (p.370)

(11.2)

The population value of discrete-time hazard for person i in time 
period j is the probability that he or she will experience the target 
event in that time period, conditional on no prior event occurrence
and his or her particular values for the P predictors in that time 
period.
Equation 11.2 indicates that the population value of hazard for 
individual i in time period j depends upon his or her values for 
the P predictors; it does not specify the functional form of that 
dependence. This is where the ideas of section 11.1.2 come in. 
There, we saw that it makes sense to describe the relationship 
between a predictor and the entire population logit discrete-
time hazard function by focusing on one logit hazard function 
(a “baseline”) and vertically shifting this baseline function by a 
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constant amount in each time period per unit difference in the 
predictor. To specify the model, we need a way of expressing 
the baseline function so that it displays the flexible shape we 
desire. Were we constraining logit hazard to be linear with 
time (as in the middle panel of figure 11.3), we might write the 
baseline function using terms similar to the level-1 growth 
model (by including a component like β 0i + β 1i TIME). But to 
invoke the most flexible representation, we do not use a linear 
specification (or even a quadratic or cubic). Instead, we use a 
set of “time indicators,” dichotomies whose values index the 
many discrete time periods.

The easiest way to understand what the time indicators 
represent is to return to the person-period data set 
(introduced in section 10.4) and focus on the variable PERIOD, 
which identifies the particular time period a given record 
represents. Because the event can occur in one of J time 
periods, the standard dummy variable representation of
PERIOD yields J “time indicators,” D 1ij, D 2ij, …, D Jij. For 
simplicity, we drop the subscripts i and j and write the time 
indicators as D 1, D 2, … D J. Each time indicator is set to 1 in 
the time period it represents and 0 elsewhere. For example, D
1 = 1 in the first time period and 0 thereafter, D 2 = 1 in the 
second time period and 0 in all other periods, as shown below.

PERIOD D 1 D 2 … D J–1 DJ

1 1 0 0 0 0

2 0 1 0 0 0

… 0 0 … 0 0

J – 1 0 0 0 1 0

J 0 0 0 0 1

(p.371) Because PERIOD identifies the J time periods when an 
event can occur, we often refer to the collective set of time 
indicators using the conceptual label “TIME.” This 
nomenclature highlights an apparent paradox of the discrete-
time hazard model: time, the conceptual outcome, is actually 
the fundamental predictor. This seeming anomaly reflects our 
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reformulation of the research question from “What is the 
relationship between event times and predictors?” to “What is 
the relationship between the risk of event occurrence in each 
time period and predictors?” This reformulation is vital, for it 
is by answering the second question that we answer the first.

Using the time indicators as well as the substantive predictors 
(the X’s), we can write the population discrete-time hazard 
model as:

(11.3)

As expected, the model’s left side presents a transformed version of 
hazard. When we write a statistical model in this manner, the 
transformation used is called the link function—the function that 
“links” predictors to outcomes (McCullagh & Nelder, 1989). The 
discrete-time hazard model in equation 11.3 uses a logit link. The 
model’s right side is composed of two sets of terms separated by 
brackets. The first set of terms, the α’s multiplied by their 
respective time indicators, act as multiple intercepts, one per 
period. As a group, these parameters represent the baseline logit 
hazard function, the value of logit hazard when all P substantive 
predictors are 0. The second set of terms, the β’s multiplied by 
their respective substantive predictors, represent the shift in the 
baseline logit hazard function corresponding to unit differences in 
the associated predictors.
The representation in equation 11.3 provides the desired 
flexible representation for the baseline logit hazard function 
(through the terms in the first set of brackets) while 
constraining the effect of each predictor to be constant across 
time periods (through the terms in the second set of brackets). 
It also facilitates parameter interpretation in that:

• Each intercept parameter, α1, α2…, αJ, represents the 
value of logit hazard (the log odds of event occurrence) in 
that particular time period for individuals in the “baseline” 
group.

• Each slope parameter, β1, β2 …, βP,assesses the effect of a 
one unit difference in that predictor on event occurrence, 
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statistically controlling for the effects of all other predictors 
in the model.

When writing a discrete-time hazard model, especially one with no 
time-varying predictors, we often make two minor changes to the 
subscripts in the hopes of increasing clarity with little loss of 
generality: (p.372)

(11.4) 
This representation eliminates: (1) the subscript i, indexing 
individuals, because its presence is implicit; and (2) the subscript j, 
indexing time periods, from the right side of the equation because 
it is either redundant (for the time indicators) or implicit (for the 
substantive predictors). When writing a model for a specific data 
set, we usually renumber the subscripts for the α’s and the time 
indicators as well. For the grade at first intercourse data, for 
example, a model for the main effect of PT is:
(11.5)

so that the subscripts on the α’s and the time indicators now 
identify the time periods when events can occur (grades 7 through 
12) instead of the general periods 1 through J.

11.2.1 What Do the Parameters Represent?

The discrete-time hazard model includes two types of 
parameters: the α’s, which represent the baseline logit hazard 
function, and the β’s, which assess the effects of substantive 
predictors. We can clarify these parameters’ roles and 
interpretations by examining the link between the population 
discrete-time hazard model in equation 11.5 and the graphical 
display in the bottom panel of figure 11.3.

Substituting the two possible values of PT into equation 11.5
yields two submodels:

(11.6)

The first model in equation 11.6 indicates that when PT = 0, the 
entire logit hazard function can be written using just the α
parameters and their time indicators. Because PT is the only 
substantive predictor, and it takes on the value 0 for this group, 
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this submodel represents the baseline logit hazard function (the 
value of logit hazard when all predictors in the model are 0). The 
second submodel indicates that when PT = 1, the population logit 
hazard function can be written by shifting this entire baseline 
function vertically by the constant amount, β 1.

How does the first model in equation 11.6 actually represent 
the baseline logit hazard function? Notice that unlike a 
familiar regression model, the model contains no single stand-
alone intercept, a parameter not multiplied by any predictor.2

Instead, the parameters α 7 through α 12 act (p.373)  like 
multiple intercepts, one per time period, indicating the value 
of the outcome in each particular period. We can interpret 
these parameters as intercepts because of the way we have 
defined the time indicators. In seventh grade, for example, 
only D 7 = 1, so that all other terms disappear leaving the 
population value of logit hazard in 7th grade to be α 7. 
Similarly, in eighth grade, only D 8 = 1 so that all terms except 
that involving D 8 disappear, leaving the population value of 
logit hazard in eighth grade to be α 8. More generally, we 
write:

(11.7) 
Because each α parameter represents the conditional log odds of 
event occurrence in that time period for individuals in the baseline 
group, taken together, the α’s represent the baseline logit hazard 
function.
The population parameter β 1 represents the hypothesized 
influence of the predictor PT on the logit hazard function. To 
clarify its interpretation, compare the two submodels in 
equation 11.6. When PT = 0, the model contains no β1, and the 
value of logit hazard in each time period is given in equation
11.7. When PT = 1, this “slope” parameter increases the value 
of logit hazard in every time period by β1:

(11.8)

The parameter β1 therefore quantifies the difference in the 
population value of logit hazard per unit difference in the predictor. 
Because PT is a dichotomy, β1 quantifies the increment in the log 
odds of first intercourse in every time period for boys who 
experienced a parenting transition.
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This algebraic decomposition maps directly onto the graphical 
representation in the bottom panel of figure 11.3. The top 
panel of figure 11.4 clarifies this correspondence by displaying 
the values of the time indicators (D 7 – D 12) in each time 
period (on the axis for GRADE) and the hypothesized values of 
the population parameters α 7– α 12 and β 1 (on the plot). 
Because the α’s indicate the value of logit hazard when the 
predictor PT = 0, α 7 represents the value of logit hazard in 
seventh grade for this group, α 8 represents the value in eighth 
grade, and so on, as shown using the square plotting symbol 
(▪). As a group, then, the α’s represent the baseline logit 
hazard function. The population parameter β 1 (shown using an 
arrow ↑) assesses the effect of one unit difference in the value 
of the predictor. As this predictor takes on only two values (0 
and 1), β 1 represents the size of the vertical shift in the entire 
logit hazard function for the second group of boys (those with 
a parenting transition). Notice that we display β 1 only once on 
the plot because the size of the gap is identical across time 
periods.

(p.374)
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Figure 11.4.  Understanding the 
parameters included in the population 
discrete-time hazard model by 
superimposing the hypothesized model 
on the estimated logit hazard functions 
for the age at first intercourse data. Panel 
A is for Model 11.3 with the effect of a 
single dichotomous predictor PT. Panels 
B and C re-express the hypothesized 
discrete-time hazard model on the scale 
of odds and hazard.

What happens 
if we have 
more than 
one 
substantive 
predictor, 
some of which 
are 
continuous, 
not 
categorical? 
Notice that 
when writing 
the general 
discrete-time 
hazard model 
in equation
11.3, we 
made no 
assumptions 
about the 
number, or 
type, of 
predictors. 
We write the 
model 
generally 
because, as in 
regression, 
within limits 
imposed by 
identification

(p.375)  and 
power, both 
categorical 
and 
continuous predictors (and interactions) can be included. 
Later in this chapter, we consider the effects of a second 
predictor, PAS, which assesses the parents’ level of antisocial 
behavior during the child’s formative years. Like PT, this 
variable is time-invariant, measured before the child entered 

Figure 11.4.  Understanding the 
parameters included in the population 
discrete-time hazard model by 
superimposing the hypothesized model 
on the estimated logit hazard functions 
for the age at first intercourse data. Panel 
A is for Model 11.3 with the effect of a 
single dichotomous predictor PT. Panels 
B and C re-express the hypothesized 
discrete-time hazard model on the scale 
of odds and hazard.
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seventh grade, but unlike PT it is continuous, not dichotomous. 
Across the full sample, it ranges from −1.7 to +2.8 with a 
mean of 0. We write a discrete-time hazard model including 
the main effects of both these predictors as:

(11.9)

The set of α’s remains known as the baseline logit hazard function, 
but the addition of a second predictor changes the identity of the 
baseline group. The baseline in this model is the subset of boys who 
lived with both biological parents (PT = 0) and who scored 
precisely 0 on the antisocial behavior measure (PAS = 0). Because 
the change in the identity of the baseline group changes the 
interpretation of the α’s, we expect that when we fit this (or any 
other) model to these data, the estimated values of the α’s will 
differ as well. As in any statistical model, consistent use of a symbol 
to represent a parameter does not imply that the parameter 
consistently represents the same population quantity.
The change in the identity of the baseline group raises a 
question concerning the wisdom of using the term “baseline” 
to describe a feature of a hazard model. The term, used in 
both discrete-time and continuous-time survival analysis, is 
just a label; it need not refer to the hazard function for an 
actual (or even plausible) group. If 0 is a valid value for all 
substantive predictors, the baseline group is plausible. If it is 
not valid for just one substantive predictor, the baseline group 
does not actually exist in practice. Lack of plausibility is of 
little concern, however. As in regression, where the single 
intercept will not represent a plausible value if a model 
includes a predictor that cannot be 0, the multiple intercepts
in the discrete-time hazard model need not be directly 
interpretable either. Regardless, they function as place-
holders; hence the label “baseline.” (If 0 is not a valid value for 
a substantive predictor, we compute other predicted values of 
hazard by substituting alternative values of the predictor that 
are valid. We discuss this further in section 11.5 when 
describing how to plot the results of a fitted discrete-time 
hazard model.)

Interpretation of the slope parameters (here, β 1 and β 2) is 
altered by the inclusion of multiple predictors in ways you 
would expect. Each represents the effect of a one-unit 
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difference in its associated predictor while statistically 
controlling for the other predictors in the model. β 1

assesses the effect of parenting transitions controlling for 
parental (p.376)

Table 11.2: Formulas for re-expressing logits and 
odds into odds and probabilities

Original 
scale

Desired 
scale

Use the transformation

Logit Odds Odds = elogit

Odds Probability

Logit Probability

antisocial behavior and β 2 assesses the effect of the parental 
antisocial behavior, controlling for parental transitions.

11.2.2 An Alternative Representation of the Model

The discrete-time hazard model in equations 11.3 and 11.4
expresses logit hazard as a linear function of J time indicators 
and P substantive predictors. We begin with this 
representation because we believe it is easier to understand a 
model that links a transformed outcome to a linear function of 
predictors than an equivalent model that links a raw outcome 
to a nonlinear function of predictors. But the discrete-time 
hazard model can be expressed in alternative ways by 
applying an inverse transformation to both sides of the 
equation. As we have gone from probabilities (in the form of 
hazard), through odds, and finally to logits, we need three 
inverse transformations: from logits to odds, from odds to 
probabilities, and from logits directly to probabilities. Table
11.2 presents formulas for these three transformations.

The formulas in table 11.2 can be applied to any value of odds 
or logits. Using the first transformation, a value of −2.0 on a 
logit scale becomes a value of e−2.0 = 0.1353 on an odds scale. 
Using the second transformation, this value of odds can be 
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transformed into a probability: 0.1353/(1 + 0.1353) = 0.1192. 
The third transformation permits direct conversion from a 
logit scale to a probability (without passing through the odds 
scale), so that we find, for example, that 1/(1 + e−(−2.0)) is 
0.1192.0.

Inverse transformations can also be applied to entire 
equations like the discrete-time hazard model in equation
11.3. Applying the third transformation in table 11.2 we have:

(11.10)

Notice that, expressed in this way, the hypothesized discrete-time 
hazard model is just a variant of a standard logistic regression 
model. The difference (p.377)  is that instead of a single intercept, 
this model has multiple intercepts, one per time period. This 
representation highlights an important feature of the postulated 
model: By specifying a linear relationship between predictors and 
logit hazard we imply a nonlinear relationship between predictors 
and raw hazard.
How does this nonlinear relationship manifest itself? We 
address this question by plotting the population discrete-time 
hazard model on different scales. The top panel of figure 11.4
uses a logit scale. The remaining panels apply the 
transformations of table 11.2 to yield displays on an odds scale 
(the middle panel) and a hazard scale (the bottom panel). 
Although perhaps not apparent, all that changes from panel to 
panel is the scale of the Y axis. All three graphs present the 
identical model.

To understand the consequences of the nonlinearity inherent 
in the discrete-time hazard model, focus initially on the top 
two panels. Although the models are identical, the impression 
they create about the distance between the functions in each 
panel differs:

• When hazard is expressed on a logit scale (the top panel), 
the distance between functions is identical in every time 
period. This is an assumption of our model that seems 
reasonable in this data set and in many others.
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• When hazard is expressed on an odds scale (the middle 
panel), the distance between functions is not identical; 
instead, one function is a constant magnification (or 
diminution) of the other. Although the actual distance
between functions differs across periods, the relative 
distance does not. The ratio of the value of one function in a 
given period is a constant multiple of the value of the other 
in that same time period.

Closely examining the panels, we see that in those time periods 
when logit hazard is far from 0 (7th and 8th grades), the distance 
between functions has shrunk whereas in those time periods when 
logit hazard is closer to 0 (11th and 12th grades), the distance has 
grown. This change is guaranteed by the nature of the inverse 
transformation for converting logits into odds. Antilogging logit-
hazard profiles with a constant vertical separation will yield odds 
profiles that are constant multiples of each other. Because these 
profiles are proportional, the assumption of constant vertical 
separation in a logarithmic scale (here, the log odds scale) is 
known as the proportionality assumption, and a model that invokes 
this assumption about odds is known as a proportional odds model. 
We examine the proportionality assumption in more detail in 
chapter 12; for now, simply note that a discrete-time hazard model 
expressed using a logit transformation assumes that the population 
odds profiles, computed at all possible values (p.378)  of the 
predictor (or combinations of predictors), are proportional to each 
other.
Is the pair of population hazard functions in the bottom panel 
also proportional? Although they may appear so, any perceived 
proportionality is only approximate. The ratio of hazards in 
12th grade is actually smaller, for example, than the 
comparable ratio in 7th. You perceive approximate 
proportionality because the discrepancy between odds and 
hazard is small when odds are small (because the denominator 
of the transformation, (1 + odds), is close to 1 when odds are 
small). A discrete-time hazard model based on a logit 
transformation does not assume proportional hazards but 
rather proportional odds. As we show in section 12.2, we can 
also develop a discrete-time hazard model using a different 
transformation—the complementary log-log transformation—
that yields a proportional hazards model.
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Ironically, then, a discrete-time hazard model, which can be 
expressed as a linear relationship between logit hazard and 
predictors or as a proportional relationship between odds and 
predictors, has no simple corresponding interpretation for 
hazard in its raw, untransformed state. This realization has 
two practical consequences when exploring the relationship 
between discrete-time hazard and predictors:

• Use caution when examining within-group hazard 
functions as recommended at the beginning of this chapter
(as in the top panel of figure 11.1). Focus on gestalt 
impressions of differences in level. Because the model 
specifies that the odds of an event occurring will be 
proportional across levels of a predictor, the differential in 
level will be greater when hazard is high and smaller when 
hazard is low.

• Plot within-group hazard functions not just on a raw scale, 
but also on odds and logit scales. Plots like those in figure
11.2 are informative for model specification. Look for 
constant differentials in logit hazard, proportional 
differentials in odds, and approximately proportional 
differentials in raw hazard.

Although the hazard scale remains the easiest scale for 
communicating results, the two alternative scales (odds and log 
odds) can be especially helpful when conducting your analysis.

11.3 Fitting a Discrete-Time Hazard Model to 
Data

With data collected on a random sample of individuals from a 
target population, you can easily fit a discrete-time hazard 
model, estimate its (p.379)  parameters using maximum 
likelihood methods, and evaluate goodness-of-fit. Readers 
seeking the mathematical details—construction and 
maximization of the likelihood function and the statistical 
properties of the resulting estimates—should consult one of 
the many technical papers that present these results (e.g., 
Allison, 1982; Laird & Oliver, 1981; Efron, 1988; Singer & 
Willett, 1993). In this section, we explore the concepts
underlying this process. Our goal is to show that although the 
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model may appear complex and unfamiliar, it can be fit using 
software that is familiar by applying standard logistic 
regression analysis in the person-period data set. Use of 
familiar software facilitates analysis and allows you to 
capitalize on everything you already know about fitting 
statistical models to data.

11.3.1 Adding Predictors to the Person-Period Data Set

To fit the discrete-time hazard model to data, you must add 
some variables to the person-period data set. When introduced 
in section 10.5, the person-period data set contained just two 
variables: PERIOD (indexing time periods) and EVENT
(signifying event occurrence). Now it must include the set of 
time indicators and the substantive predictors you wish to 
examine.

Figure 11.5 illustrates these modifications using three boys 
from the first intercourse study. The first two boys (subjects 
193 and 126) have known event times (9th and 12th grades); 
the third (subject 407) was censored at 12th grade. In addition 
to the two event occurrence variables (T and CENSOR), the 
person-oriented data set (in the top panel) contains time-
invariant predictors, whose values do not change over time 
(here, PT and PAS) and time-varying predictors, whose values
may change over time. Each time-varying predictor must be 
represented by J variables. Here, DRUG7 through DRUG12
assess substance use in each grade on a scale from 0 (total 
abstinence) to 4 (heavy use). Values of time-varying predictors 
can be missing for periods subsequent to event occurrence. 
For this reason, boy 193, who had intercourse in ninth grade, 
has data for DRUG7 through DRUG9, but missing values for
DRUG10 through DRUG12 (denoted using a dot). As there are 
180 boys in this sample, the data set has 180 records.

In the person-period data set, on the other hand, individual i
has J i records, one for each discrete-time period when he or 
she was at risk of event occurrence. For boy 193, who had 
intercourse in ninth grade, J i = 3. For boys 126 and 407, J i = 
6, but for different reasons: one had intercourse in the sixth 
time period (12th grade); the other completed the (p.380)
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Figure 11.5.  Re-expressing the original 
person-level data set as a person-period 
data set: results for three boys included 
in the age at first intercourse study.

study a virgin, 
thereby 
remaining at 
risk for all six 
periods. 
Because the 
“beginning of 
time” in this 
study is 
seventh grade,
j = 7 is the first 
period 
recorded for 
each person in 
the person-
period data 
set. The value 
of each 
variable in this data set reflects the status of person i on that 
variable in period j. Referring to the bottom panel of figure 11.5, 
the person-period data set includes:

• A period indicator, here PERIOD, which specifies the time-
period j that the record describes.

• A set of time indicators, here D 7 through D 12, that also 
identify the particular time-period described in the record.

• An event indicator, here EVENT, which indicates whether 
the target event occurred in that time period (0 = no event, 
1 = event).

• Time-invariant predictors, here PT and PAS, whose values 
remain constant across an individual’s multiple records. PT 
remains at 1 for the three records of boy 193 and the six 
records of boy 126, and it remains at 0 for the six records of 
boy 407. PAS is similarly stable across records.

• Time-varying predictors, here DRUG, which record the 
values of the variable in the time period relevant for the 
record. The original six variables DRUG7–DRUG12 become 
a single variable in the person-period data set, whose 
values reflect the level of (p.381)  drug use in period j. For 

example, the values of DRUG7–DRUG9 for boy 193 (0.67, 
0.00, and 1.33) become the values of DRUG for the three 

Figure 11.5.  Re-expressing the original 
person-level data set as a person-period 
data set: results for three boys included 
in the age at first intercourse study.
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records of this case. This case’s missing values for
DRUG10–DRUG12 are unproblematic because the person-
period data set does not include records for these 
unobserved periods.

Because this study tracked only 180 individuals for up to only six 
years, this person-period data set is relatively small, with only 822 
records.
Adding substantive predictors to the person-period data set is 
an essential precursor to model fitting. But constructing this 
data set has another advantage as well: it can be used to 
estimate the within-group hazard and survivor functions 
needed for exploratory analysis. Following the identical 
strategies presented in section 10.4.2 for a full sample, you 
can obtain all the information necessary for estimating within-
group hazard and survivor functions using three-way cross-
tabulations. To construct the life tables presented in table
11.1, for example, all we did was cross-tabulate the 
substantive predictor PT by the structural predictors PERIOD
and EVENT in the person-period data set.

11.3.2 Maximum Likelihood Estimates for the Discrete-Time 
Hazard Model

As explained in section 3.4 in the context of the multilevel 
model for change, the method of maximum likelihood seeks 
those estimates of the population parameters—here, the α’s 
and the β’s—that maximize the likelihood of observing the 
sample data. Building on that general presentation, below we 
describe conceptually how ML estimates are computed for the 
discrete-time hazard model.

The likelihood function for the discrete-time hazard model 
expresses the probability that we would observe the specific 
pattern of event occurrence actually observed—the exact 
pattern of 0’s and the 1’s for the variable EVENT in the 
person-period data set. Because each individual has J i
observations, one per period of risk, each contributes J i terms 
to the likelihood function. As a result, the likelihood function is 
composed of as many terms as there are records in the person-
period data set.
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The particular value that person i contributes for time period j
depends on his or her true value of hazard in that time period,
h(t ij), and whether he or she experienced the event in that 
time period (EVENT ij). We determine the value of each 
contribution using the following logic.

• The probability that individual i experiences the event in 
time period j, given no previous event occurrence, is h(tij). 
In the time period when (p.382)  individual i experiences 
the event (when EVENT = 1), he or she contributes h(t ij) to 
the likelihood function.

• The probability that individual i doesnot experience the 
event in time period j, given no previous event occurrence, 
is (1 – h(tij)). In all those time periods when individual i does
not experience the event (when EVENT = 0), he or she 
contributes (1 – h(t ij)) to the likelihood function.

Individuals who are censored only contribute terms of the second 
type. Individuals who experience the target event contribute one 
term of the first type and J i – 1 terms of the second type.
To write the likelihood function in such a way that each 
contribution is appropriately included, we use a mathematical 
“trick” that capitalizes on the properties of exponents. The 
variable EVENT takes on only two values, 0 and 1. Recall that 
if we raise any quantity x to the first power (x 1), we simply get
x, and if we raise x to the 0th power (x 0), we simply get 1. We 
therefore write the likelihood function for the discrete-time 
hazard model as:

(11.11)

Although perhaps daunting, all equation 11.11 does is algebraically 
codify the logic just outlined. The two product signs (the Π’s) 
ensure that the likelihood function multiplies the contributions of 
each record in the person-period data set across all individuals 
(through the first product sign) and all time periods for each 
individual (through the second product sign). Because the event 
indicator must be either 0 or 1, but never both, only one of the two 
terms contributes to the likelihood function in each person’s 
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record. In a time period when the event does occur for individual
i, only the first term remains (because the second term becomes 1: 
(1 – h(t ij))0 = 1). In a time period when the event does not
occur for individual i, only the second term remains (because the 
first term becomes 1: h(t ij))0 = 1).
The likelihood function in equation 11.11 expresses the 
probability of observing the sample data on event occurrence 
that we actually observed (the values of the variable EVENT) 
as a function of unknown population parameters. As written, 
each unknown parameter is that person’s population value of 
hazard in that time period (h(t ij)). Where are the unknown 
parameters we care about—the α’s and the β’s—that tell us 
about the baseline logit hazard function and the effects of 
substantive predictors? Reflection on the model in section 11.2 
reveals that these unknown parameters are here in equation
11.11, they are simply lurking in the guise of these population

(p.383)  values of hazard! To make their appearance explicit, 

we rewrite the likelihood function in equation 11.11 by 
substituting in the values of h(t ij) in the discrete-time hazard 
model in equation 11.3:

(11.12)

Notice that both the α’s and the β’s, and their respective predictors, 
the D’s and the X’s, have appeared, showing that the likelihood 
function includes both observed variables (the D’s, the X’s, and
EVENT) and unknown parameters (the α’s and the β’s).
As explained in section 3.4, statisticians routinely take the 
logarithm of the likelihood function so as to make the 
mathematics of estimation more tractable. To see how this 
works, examine the simpler representation of the likelihood 
function in equation 11.11, in which the unknown parameters 
appear through the population values of hazard, instead of the 
more complex representation in equation 11.12 in which the
α’s and the β’s appear. We work with this representation only 
to simplify the equations—the same results accrue if we work 
with the specification in equation 11.12. Taking logarithms of 
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both sides of equation 11.11, we have the log-likelihood 
function:

(11.13)

Notice that products have turned into sums and exponents have 
turned into multipliers. Now, we “only” need to find those values of 
the α’s and the β’s (which allow us to compute the values of h(t ij)) 
that maximize the log-likelihood function.
Although simpler than the likelihood function itself, the 
maximum value of the log-likelihood function in equation 11.13
has no closed form solution either. Fortunately, though, there 
is an easy, practical solution to maximizing this log-likelihood. 
It turns out that the standard logistic regression routines 
widely available in all major statistical packages, when applied 
appropriately in the person-period data set, actually provide 
estimates of the parameters of the discrete-time hazard model 
that maximize the log-likelihood in equation 11.13. We provide 
the mathematical proof of this statement in a technical paper 
published elsewhere (Singer & Willett, (p.384)  1993). From a 
data-analytic perspective, however, you can easily fit the 
discrete-time hazard model to data using the method of 
maximum-likelihood simply by regressing the event indicator,
EVENT, on the time indicators and on the selected substantive 
predictors in the person-period data set using logistic 
regression analysis.

Before returning to the practical matters of fitting the model 
to data, which we do in the next section, let us conclude this 
section by addressing two concerns you may have about this 
approach: How can an analysis of the multiple records in a 
person-period data set yield appropriate parameter estimates, 
standard errors, and goodness-of-fit statistics when: (1) the 
sample size appears to have been inflated (the person-period 
data set is much larger than the number of individuals 
studied); and (2) the J i records for each person in the person-
period data set do not appear to be obtained independently of 
each other.
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Precise resolution of these conundrums requires delving into 
technical topics beyond the scope of this book. Yet the 
intuition behind their resolution can be explained relatively 
simply: once you move from cross-sectional to longitudinal 
analysis, you must think of your data as existing within the
person-period framework. The notion that each individual 
contributes only one record to an analysis is a holdover from 
the cross-sectional world. A person-period data set allows each 
person to contribute data whenever he or she is at risk. From 
this perspective, the analytic sample should be much larger 
than the number of individuals under study because we are 
not modeling a single random variable time (T) but rather the 
conditional probability of event occurrence for each person in 
each of his or her J i periods of risk. It is not that the person-
period data set is too large; rather, the person-oriented data 
set is too small!

As for the nonindependence of the multiple records within a 
person, that conundrum is resolved by remembering that the 
hazard function describes the conditional probability of event 
occurrence, where the conditioning (as shown in equation
11.2) depends upon the individual surviving until each 
particular time period (up through J i) and his or her values for 
the substantive predictors in each time period. We therefore 
assume that all records in the person-period data set are 
conditionally independent.

11.3.3 Fitting the Discrete-Time Hazard Model to Data

To obtain maximum likelihood estimates of the population 
parameters in the discrete-time hazard model in equation
11.3, you simply use a logistic (p.385)  regression routine to 

regress the event indicator (EVENT) on the time indicators (D
1 through D J) and the selected substantive predictors (X 1

through X P) in the person-period data set. Any logistic 
regression routine will do, as all produce equivalent output, 
differing only in format and labeling. For the results presented 
in this chapter, we used the logistic regression routine in SAS 
(PROC LOGISTIC), but you should feel free to use the 
statistical software package with which you are most familiar 
(e.g., SPSS, SYSTAT, Stata).
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To illustrate the process of fitting, interpreting, and testing 
statistical hypotheses for the discrete-time hazard model, in 
the following sections we compare the results of four models 
fitted to the 822 records in the person-period data set for the 
grade at first intercourse study:

(11.14)

Model A includes only the main effect of TIME; Model B includes 
the main effects of TIME and PT; Model C includes the main effects 
of TIME and PAS; and Model D includes the main effects of TIME, 
PT, and PAS. Results of model fitting are presented in table 11.3.
We recommend that you use four complementary strategies to 
facilitate interpretation of results: (1) compare the goodness-
of-fit of alternative models so that you can decide which 
predictors should be included and which can be set aside; (2) 
examine parameter estimates and present numerical 
summaries of effect size; (3) compute, and then graphically 
display, fitted hazard and survivor functions at selected values 
of predictors; and (4) construct confidence intervals for 
interesting parameters. In the sections that follow, we address 
these four topics, beginning with parameter interpretation 
(section 11.4) and display construction (section 11.5) and 
continuing with a discussion of goodness of fit and hypothesis 
testing (section 11.6) and confidence interval construction 
(section 11.7). We once again adopt this unusual sequence, 
placing parameter interpretation and graphical display before 
inference, so as to continue our focus on model 
conceptualization. When analyzing your own data, you will 
undoubtedly test hypotheses first, turning to interpretation 
and display only after choosing a smaller subset of models.

(p.386)

Table 11.3: Results of fitting four discrete-time 
hazard models to the grade at first intercourse 
data (n = 180, n events = 126)
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Model A Model B Model C Model D

Parameter Estimates and Asymptotic Standard Errors

D 7 −2.3979*** −2.9943*** −2.4646*** −2.8932***

(0.2697) (0.3175) (0.2741) (0.3206)

D 8 −3.1167*** −3.7001*** −3.1591*** −3.5847***

(0.3862) (0.4206) (0.3890) (0.4231)

D 9 −1.7198*** −2.2811*** −1.7297*** −2.1502***

(0.2217) (0.2724) (0.2245) (0.2775)

D 10 −1.2867*** −1.8226*** −1.2851*** −1.6932***

(0.2098) (0.2585) (0.2127) (0.2647)

D 11 −1.1632*** −1.6542*** −1.1360*** −1.5177***

(0.2291) (0.2691) (0.2324) (0.2757)

D 12 −0.7309** −1.1791*** −0.6421** −1.0099***

(0.2387) (0.2716) (0.2428) (0.2811)

PT 0.8736*** 0.6605**

(0.2174) (0.2367)

PAS 0.4428*** 0.2964*

(0.1140) (0.1254)

Goodness-of-fit

LL −325.98 −317.33 −318.59 −314.57

Deviance 651.96 634.66 637.17 629.15

n 
parameters

6 7 7 8

AIC 663.96 648.66 651.17 645.15

BIC 681.00 668.54 671.05 667.87

Deviance-based Hypothesis Tests

H0:βPT = 0 17.30***
(1)

8.02** (1)
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Model A Model B Model C Model D

H0: βPAS = 
0

14.79***
(1)

5.51* (1)

Wald Hypothesis Tests

H0: βPT = 0 16.15***
(1)

7.79** (1)

H0: βPAS = 
0

15.10***
(1)

5.59* (1)

~p < .10; * p < .05; ** p < .01; *** p < .001.

11.4 Interpreting Parameter Estimates

Fitting a discrete-time hazard model to data yields two types 
of parameter estimates: the ’s, which together provide 
estimated values of the baseline logit hazard function; and the 
’s, which assess the effects of substantive predictors. Table
11.3 identifies these estimates by their associated predictors—
D 7 through D 12,PT, and PAS. Each of these is discussed in the 
sections below.

(p.387) 11.4.1 The Time Indicators

As a group, the ’s are maximum likelihood estimates of the 
baseline logit hazard function. The amount and direction of 
variation in their values describe the shape of this function 
and tell us whether risk increases, decreases, or remains 
steady over time. If the ’s are approximately equal, the risk of 
event occurrence is unrelated to time and the hazard function 
is flat. If the ’s decline over time—if they are larger in early 
periods compared to later periods—the baseline hazard 
function decreases over time. If the ’s increase over time—if 
they are smaller in early periods compared to later periods—
the hazard function increases over time. The fairly steady 
increase over time in the magnitude of the ’s in each model in 
table 11.3 (from values far below 0 to ones near 0) shows that, 
in this sample of boys, the risk of first intercourse increases 
over time.
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Precise interpretation of the ’s requires identification of the 
baseline group—those individuals for whom every substantive 
predictor in the model takes on the value 0. Each of the 
models in table 11.3 has a different baseline group. In Model 
B, it is the boys for whom PT = 0; in Model C, it is the boys for 
whom PAS = 0; and in Model D, it is the boys who meet both 
criteria. Model A is a special case. Because it includes no 
substantive predictors (such as PT or PAS), its baseline is the
entire sample. The ’s for this model provide the estimated 
value of the logit hazard function for the entire group of boys.

Experience increases the ease with which you can directly 
examine numerical values of the ’s (which are expressed on a 
logit scale) and quantify the relative magnitude of risk in a 
given time period. But even with experience, few researchers 
find the logit metric appealing. We therefore routinely re-
express the ’s using the inverse transformations of table 11.2. 
Although you can convert estimates into odds, it is more 
common to move directly into the metric of hazard by taking 
the antilogit of :

(11.15)

Table 11.4 presents the ’s for Model A expressed on both odds and 
hazard scales. A similar table could be constructed for any set of ’s. 
All that would change is the identity of the baseline group. For 
each time period j, the table identifies the predictor (D j) associated 
with the population parameter α j, the parameter estimate (from 
table 11.3), and the fitted values of odds and hazard. The table 
shows that in the full sample, in which individuals are not 
distinguished by predictors, the risk (p.388)

Table 11.4: Interpreting the results of fitting an 
initial discrete-time hazard model including the 
main effect of TIME; re-expressing parameter 
estimates as fitted odds and fitted hazard 
probabilities



Fitting Basic Discrete-Time Hazard Models

Page 40 of 62

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Fitted 
hazard

Time 
period

Predictor Parameter 

estimate 

Fitted 
odds 

7 D 7 −2.3979 0.0909 0.0833

8 D 8 −3.1167 0.0443 0.0424

9 D 9 −1.7198 0.1791 0.1519

10 D 10 −1.2867 0.2762 0.2164

11 D 11 −1.1632 0.3125 0.2381

12 D 12 −0.7309 0.4815 0.3250

of first intercourse increases fairly steadily over time. In 7th grade, 
the fitted hazard probability is .0833, by 9th grade it has nearly 
doubled to 0.1519, and by 12th grade it has doubled again to 
0.3250. Notice that these fitted values of hazard are identical to the 
sample estimates presented in the overall life table (Panel C of 
table 11.1). This identity holds because we are computing fitted 
values for a model with no substantive predictors.

11.4.2 Dichotomous Substantive Predictors

Model B adds the main effect of the time-invariant predictor
PT to the main effect of TIME. As shown in table 11.3, the 
estimated coefficient for PT is 0.8736. Because PT is a 
dichotomy, which takes on the value 0 for boys who spent 
their early childhood years with both biological parents and 1 
for those who experienced a parenting transition, the 
coefficient’s positive sign indicates that, in every grade from 
7th to 12th, boys in the latter group are at greater risk of 
initially having intercourse. The coefficient’s magnitude tells 
us about the size of the risk differential measured on a logit 
scale. We estimate the vertical separation between the two 
logit hazard functions for these groups to be 0.8736.

As in logistic regression, we rarely interpret raw parameter 
estimates. More commonly, we antilog them, yielding an odds 
ratio, the ratio of the odds of event occurrence in two groups—
one for which the predictor takes on the value 0 and another 
for which the predictor takes on the value 1 (see, e.g., Hosmer 
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& Lemeshow, 2000; Long, 1997; Powers & Xie, 1999). To 
understand how this works, let us compute the odds of event 
occurrence in time period j for each group of boys. When PT = 
0, the estimated odds that a boy will have intercourse in grade
j are . When (p.389)  PT = 1, the estimated odds are . To 

compare these odds, we take the ratio of these estimates:

(11.16)

Notice that the terms involving the subscript j (the time indicators 
and their parameter estimates) cancel out. Equation 11.16, 
therefore, shows that antilogging the single coefficient,, allows us 
to compare the odds of event occurrence for the two groups in
every time period. Antilogging the coefficient for PT in Model B we 
find e0.8736 = 2.40. This tells us that, in every grade, the estimated 
odds of first intercourse are nearly two and one half times as high 
for boys who experienced a parenting transition in comparison to 
boys raised with both biological parents. In substantive terms, an 
odds ratio of this magnitude represents a substantial, and 
potentially important, effect.
As noted in section 11.1.2, odds ratios are symmetric about 1. 
If a dichotomous predictor is associated with an odds ratio of 
1.0, the odds of event occurrence in the two groups are equal. 
If the odds ratio is greater than 1.0, the event is more likely to 
occur in the second group; if they are less than 1.0, it is less 
likely. Because of this symmetry, you can re-express an odds 
ratio using the other group—the one for whom the variable 
takes on the value 1—as the reference group. All you need do 
is compute the reciprocal of the odds ratio, which in this 
example is 1/2.40 = 0.42. This tells us that the estimated odds 
of first intercourse for boys who did not experience a 
parenting transition are approximately 40% of the odds for 
boys who did. These complementary ways of reporting effect 
sizes are equivalent, although many people mistakenly 
perceive that an effect expressed in the metric of odds appears
larger when expressed as a number greater than 1 than when 
expressed as a fraction.
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11.4.3 Continuous Substantive Predictors

Model C adds the main effect of PAS to a model that already 
includes the main effect of TIME. As shown in table 11.3, the 
resulting parameter estimate is 0.4428. Its positive sign 
indicates that, in each grade, boys whose parents manifest 
higher levels of antisocial behavior are more likely to have 
intercourse. Its magnitude estimates the size of the vertical 
differential in logit hazard corresponding to a 1-unit difference 
in PAS.

To express an effect size for a continuous predictor using the 
metric of odds ratios, you must first decide whether a one-unit 
difference is appropriate. If so, as in this example where PAS
ranges from –1.7 to + 2.8, (p.390)  we can antilog the estimate 
(as for a dichotomous predictor) and interpret the resulting 
odds ratio. As e(0.4428) = 1.56, we conclude that, in each grade, 
the estimated odds of first intercourse are just over 50% 
higher for boys whose parents score one unit higher on this 
antisocial behavior index.

If a one-unit difference is not meaningful, you can use a 
different comparative increment. Following the logic 
introduced in section 11.4.2, we compare the odds of event 
occurrence for two groups who differ by the general 
increment c on the variable PAS by computing:

Antilogging yields the estimated odds ratio. For a two-unit 
difference in PAS, for example, we have e(0.4428*2) = 2.42. This tells 
us that for each two-unit difference in PAS, the estimated odds of 
first intercourse in each grade are nearly two and half times as 
high, a value nearly identical to the estimated effect size for the 
dichotomous predictor PT.

11.4.4 Polytomous Substantive Predictors

Similar interpretive strategies can be extended to polytomies: 
variables that take on one of several discrete values. Whether 
nominal or ordinal, with categories representing a single value 
or a set of values, the strategy is the same: If a substantive 
predictor has Q categories, define a set of Q indicator 
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variables, Z 1, Z2, through Z Q, one per level, and enter any (q
– 1) of them into the model. There are many equivalent ways 
of coding the Q indicators. The most common strategy, used 
when constructing the time indicators in section 11.2, is to set
Z q = 1 for those cases taking on the qth value and 0 
otherwise:

Category Z1 Z2 … ZQ

1 1 0 0 0

2 0 1 0 0

… 0 0 … 0

Q 0 0 0 1

Under this coding scheme, parameter interpretation is similar to 
that for any a 0/1 predictor: the group representing the omitted 
level serves as the reference category for all comparative 
statements.

(p.391) To illustrate, let us further explore the child’s parental 

transition history, previously examined using the dichotomy
PT. The researchers actually collected additional data that 
allow us to subdivide the 108 boys who experienced a parental 
transition into three groups: 26 who were raised by a single 
parent who remained single, 37 who were raised by a 
repartnered parent, and 45 who experienced two or more 
separations or repartnerings. This allows us to create three 
new variables—PT1, PT2, and PT3—to represent these 
subgroups. The group of boys for whom PT = 0 remains the 
reference group.

When we fit a discrete-time hazard model that includes the 
main effect of TIME and these three dichotomies, we obtain 
the following results for the substantive predictors:

Predictor Parameter Estimate Estimated Odds Ratio

PT1 0.6570 1.93

PT2 0.5688 1.77

PT3 1.3213 3.75
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The comparative odds of first intercourse are nearly twice as high 
for boys who were raised by a single parent (PT1) or a repartnered 
parent (PT2) and nearly four times as high for boys who 
experienced two or more separations or repartnerings (PT3). The 
global variable PT collapses these three groups together to yield a 
parameter estimate of 0.8736, which is a weighted average of these 
three parameter estimates, and an estimated odds ratio of 2.40, 
which is a weighted average of these three estimated odds ratios. 
In section 11.6, we explore the question of whether this polytomous 
representation is superior to the dichotomous representation used 
so far.

11.5 Displaying Fitted Hazard and Survivor 
Functions

Graphic displays can be powerful tools for identifying and 
summarizing trends over time. We compute fitted hazard and 
survivor functions for particular values of substantive 
predictors by substituting the parameter estimates back into 
the discrete-time hazard models and obtaining predicted 
values of logit hazard. These straightforward calculations can 
be executed either within your statistical package (by 
outputting the parameter estimates from the logistic 
regression procedure) or in any spreadsheet program.

(p.392)
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Table 11.5: Computing fitted hazard probabilities and survival probabilities from Model B for the two groups of 
boys for whom PT = 0 and PT = 1

Fitted value of

Logit hazard Hazard Survival

Time 
period

PT = 0 PT = 1 PT = 0 PT = 1 PT = 0 PT = 1

7 −2.9943 0.8736 −2.9943 −2.1207 0.0477 0.1071 0.9523 0.8929

8 −3.7001 0.8736 −3.7001 −2.8265 0.0241 0.0559 0.9293 0.8430

9 −2.2811 0.8736 −2.2811 −1.4075 0.0927 0.1966 0.8432 0.6772

10 −1.8226 0.8736 −1.8226 −0.9490 0.1391 0.2791 0.7259 0.4882

11 −1.6542 0.8736 −1.6542 −0.7806 0.1605 0.3142 0.6094 0.3348

12 −1.1791 0.8736 −1.1791 −0.3055 0.2352 0.4242 0.4660 0.1928
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11.5.1 A Strategy for a Single Categorical Substantive Predictor

Let us first consider the construction of graphic displays using 
Model B, which includes the single substantive predictor PT. 
As shown in table 11.5, all you need do is table the parameter 
estimates for the time indicators and manipulate these values 
to:

• Derive fitted values of logit hazard at the chosen levels of 
the predictor, by summing appropriate multiples of the 
parameter estimates.

• Transform the fitted values of logit hazard into fitted 
values of hazard, using the inverse transformations shown 
in the third row of table 11.2.

• Compute the fitted values of the survivor function, by 
substituting the fitted values of hazard into equation 10.5.

• Compute fitted median lifetimes using equation 10.6, 
which here yields values of 11.8 and 9.9.

The three panels of figure 11.6 display these results—the top panel 
presents the fitted logit hazard functions, the middle panel 
presents the fitted hazard functions, and the bottom panel presents 
the fitted survivor functions (with identification of the fitted median 
lifetimes).
Begin by examining the fitted hazard functions plotted on a 
logit scale. The discrete-time hazard model guarantees that 
these functions will be separated by a constant amount in each 
time period (here, 0.8736, the value of the estimated 
coefficient for PT). But a constant vertical separation in the 
metric of logit hazard does not produce a constant vertical 
separation in the metric of raw hazard (probability). Instead, 
in the (p.393)
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Figure 11.6.  Fitted logit hazard, hazard, 
and survivor functions for the grade at 
first intercourse data, from Model B, 
which includes the main effects of TIME
and PT.

middle panel of 
figure 11.6, we 
see that the 
top hazard 
function, for 
boys with a 
parenting 
transition, is 
an 
approximate 
magnification 
of the bottom 
hazard 
function for 
boys without a 
transition. 
Recall that we 
add the 
qualifier 
“approximate” 
because, as 
shown in 
section 11.2.2, 
the 
proportionality 
assumption for 
this model 
involves odds, 
not hazards. 
This 
assumption 
yields only an 
approximate 
degree of 
proportionality when expressed in the hazard scale.

(p.394) The middle and bottom panels are perhaps even more 
effective devices for communicating results. Unlike numerical 
summaries, these graphs: (1) explicitly depict just how much 
higher the risk of first intercourse is in each grade among 
boys who have experienced a parenting transition; and (2) 
demonstrate how period-by-period differentials cumulate into 
a substantial difference in survivorship. The fitted median 
grade at first intercourse for boys with one or more transitions 
is 9.9 versus 11.8 for boys in the other group. By the end of 

Figure 11.6.  Fitted logit hazard, hazard, 
and survivor functions for the grade at 
first intercourse data, from Model B, 
which includes the main effects of TIME
and PT.
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ninth grade, we estimate that 68% of the boys who 
experienced a parenting transition remain virgins, in 
comparison to 84% of the boys without a transition. Taking the 
complement of these percentages, we estimate that 32% of the 
former group have had sex, in comparison to 16% of the latter 
group. By the end of 12th grade, these differentials have 
escalated: an estimated 81% of the boys who experienced a 
parenting transition had sex, in comparison to only 53% of the 
boys who did not. We find that summary statistics like these, 
although based on the results of complex analyses, can be 
communicated widely, especially if they are accompanied by 
graphic displays such as these.

11.5.2 Extending this Strategy to Multiple Predictors (Some of 
Which Are Continuous)

It is easy to display fitted hazard and survivor functions for 
models involving multiple predictors by extending these ideas 
in a straightforward manner. Instead of plotting one fitted 
function for each predictor value, select several prototypical
predictor values (using strategies presented in section 4.5.3 
and plot fitted functions for combinations of these values. 
However tempting it is to select many prototypical values for 
each predictor, we suggest that you limit the number of values 
lest the displays become crowded, precluding the very 
interpretation they were intended to facilitate.

Figure 11.7 presents prototypical hazard and survivor 
functions for Model D in table 11.3. (We do not use a logit 
scale because, as noted in section 11.5.1, we rarely use this 
scale for presentation.) To construct these graphs, we needed 
prototypical values for the continuous predictor PAS. We 
selected the values –1, 0, and 1 because: (1) they are round 
numbers; (2) 0 is the sample mean; and (3) –1 and +1 
correspond roughly to the 10th and 90th percentiles. (In the 
person-level data set, the 10th percentile is –0.93 and the 90th 
percentile is +1.20.) To facilitate communication, we refer to 
these values as low, medium, and high PAS. Having chosen 
these values, computation proceeds as in table 11.5. The fitted 
functions for these six prototypical boys display all possible

(p.395)
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Figure 11.7.  Fitted hazard and survivor 
functions for the grade at first 
intercourse data, from Model D, which 
includes the main effects of TIME, PT, 
and PAS.

combinations 
of the selected 
values of PT
and PAS. As in 
figure 11.6, we 
use bold to 
represent the 
fitted functions 
when PT = 0 
and fainter 
lines to 
represent 
those for PT = 
1.
To reduce 
clutter, the 
fitted median 
lifetimes are 
not presented 
on the plot, 
although we 
facilitate their 
identification 
by including a 
dashed line at .50. We can augment this display with a table 
presenting the estimated median lifetimes for the chosen 
prototypical individuals:

Parent 
antisocial score

No parenting 
transition

One or more parenting 
transitions

Low (−1) >12.0 10.7

Medium (0) 11.5 10.1

High (+1) 10.9 9.6

Although a table like this is unnecessary when displaying the 
results of a simple model with just two predictors, its utility 
increases as the number of predictors grows.

(p.396) Coupled with the numerical results in table 11.3 and 
the tabular presentation of the fitted median lifetimes above, 
figure 11.7 provides compelling evidence about these 
predictors’ effects. An average boy whose parents are high on 

Figure 11.7.  Fitted hazard and survivor 
functions for the grade at first 
intercourse data, from Model D, which 
includes the main effects of TIME, PT, 
and PAS.
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the antisocial scale and who experienced a parenting 
transition in childhood has intercourse for the first time in the 
middle of ninth grade (9.6). In contrast, an average boy whose 
parents were low on the antisocial scale and who remained 
together throughout the boy’s early childhood delays 
intercourse until after 12th grade. Controlling statistically for 
the effect of the other predictor, each of these variables has a 
large effect on the risk of first intercourse, suggesting that the 
early childhood environment in which a boy was raised can 
have profound effects during adolescence.

11.5.3 Two Cautions when Interpreting Fitted Hazard and Survivor 
Functions

A serious danger in displaying prototypical trajectories is that 
someone might incorrectly conclude that the predictors’ 
effects vary over time. We have seen many people, even those 
well-schooled in the art and science of survival analysis, 
incorrectly conclude that a varying gap between fitted hazard 
functions indicates a time varying effect. Their reasoning is so 
straightforward that it appears unimpeachable: the only way 
that the gap between fitted hazard functions could vary over 
time is if the effect of the predictor varies over time.

Nothing could be further from the truth. We believe that the 
source of the confusion stems from the inappropriate, but 
understandable, extension of lessons learned when examining 
fitted regression lines (and fitted growth trajectories). When 
fitting linear models, increasing (or decreasing) gaps between 
fitted lines do indicate that the effect of the predictor 
displayed on the plot (here PT or PAS) differs according to 
levels of the predictor displayed on the X axis (here TIME). In 
regression, a varying gap between fitted lines is so intertwined 
with the concept of a statistical interaction that the hypothesis 
test for an interaction is sometimes labeled a test of 
parallelism.

In survival analysis, in contrast, a varying gap between fitted 
hazard functions does not imply a statistical interaction. 
Whenever there is a constant gap between fitted logit hazard 
functions (as specified by the model), there will be a varying 
gap between fitted hazard functions. Because the model 
expresses the linear effect of the predictor on logit hazard, you 
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cannot draw a conclusion about the stability of an effect using 
graphs plotted on a raw hazard scale. In fact, the logic works 
in the opposite direction. If the size of the gap between fitted 
hazard functions (p.397)  is constant over time, effect of the 

predictor must vary over time! If you suspect that the effect of 
a predictor varies over time (as often happens in practice), it is 
straightforward to specify this behavior in ways that we 
introduce in the next chapter.

A second caution about interpreting fitted functions concerns 
the possibility that someone will incorrectly conclude that they 
depict sample estimates for subgroups of individuals, not 
fitted values from a statistical model. Fitted hazard and 
survivor functions (as in figure 11.6 and 11.7) differ from 
sample hazard and survivor functions (as in figure 11.1). 
Fitted values come from models that place constraints on 
predictors’ effects. In the basic discrete-time hazard model, 
we constrain the vertical distance between pairs of fitted logit 
hazard functions to be constant over time. Although this 
assumption may be plausible it will rarely (if ever) be exactly 
true. As a result, fitted values will differ from sample values. 
Just as a fitted regression line will not pass through the 
sample means at every given value of a predictor, so, too, the 
fitted hazard functions will not pass through the sample 
hazard values in every time period. If the model fits the data 
well, the sample and fitted functions will be similar, but not 
coincident. The sample plots in figure 11.1 and the fitted plots 
in figure 11.6 are strikingly similar. We observe this 
resemblance precisely because this model fits the data 
particularly well. In other data sets, the fit may be of lower 
quality and the correspondence will break down. As this issue 
brings us to the broader issue of how well the discrete-time 
hazard model fits the data, we now address this latter issue 
directly.

11.6 Comparing Models Using Deviance 
Statistics and Information Criteria

We now introduce two important questions that we usually 
address before interpreting parameters and displaying results: 
Which of the alternative models fits better? Might a 
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predictor’s observed effect be the result of nothing more than 
sampling variation? Although we purposefully postponed these 
questions so as to emphasize model conceptualization and 
interpretation, we now address these topics. Because we have 
already introduced the basic ideas in the context of the 
multilevel model for change (sections 4.6 and 4.7), our 
discussion capitalizes on that earlier presentation.

11.6.1 The Deviance Statistic

We begin with the log-likelihood statistic, LL, a summary 
statistic routinely output (in some form) by any program that 
provides ML estimates. (p.398)  As discussed in section 4.6, its 
relative magnitude across a series of models fit to the same 
set of data can be informative (although its absolute
magnitude is not). The larger the LL statistic, the better the 
fit. In table 11.3, we see that LL is largest for Model D, which 
includes both substantive predictors and smallest for Model A, 
which includes none.

As in the multilevel model for change, we use the LL statistic 
not as an object of study in its own right but rather as the 
basis for computing a deviance statistic. For a given set of 
data, deviance quantifies how much worse the current model 
is in comparison to the best possible model you could fit, also 
known as the saturated model. For the discrete-time hazard 
model, the saturated model will reproduce every observed 
value of EVENT in the person-period data set. The only model 
that can do this must have as many parameters as there are 
data records. A model short by even just one or two 
parameters may not reproduce the sample data. A saturated 
model therefore has a one-to-one correspondence between ML 
estimates and observed values: just one set of data can 
produce the estimates and the estimates can come from just 
one set of data. Given this correspondence, the value of the 
likelihood function obtained by substituting these ML 
estimates for the unknown parameters must be 1. As the 
logarithm of 1 is 0, the LL statistic for the saturated model 
must be 0.

This allows us to define the deviance statistic for the discrete-
time hazard model as:

(11.18) 



Fitting Basic Discrete-Time Hazard Models

Page 53 of 62

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

just as we did in equation 4.16 for the multilevel model for change. 
A deviance statistic for a discrete-time hazard model will always be 
greater than 0 (unless you compute it for the full model, in which 
case it will be exactly 0). The better the fit of the current model, 
the smaller its deviance. The second row of the second panel in 
table 11.3 presents deviance statistics for each of the four models 
fit. Model D, which has the most parameters, has the smallest 
deviance statistic; Model A, which has the fewest, has the largest.
But perhaps parsimonious Model A doesn’t fit “so” badly? 
Perhaps Model D is unnecessarily complex? When models are 
nested, you can address questions like these using likelihood 
ratio tests, which compare deviance statistics for two 
competing models:

• A current model, which includes predictors whose effects 
you would like to evaluate.

• A reduced model, which does not include these predictors.

We formulate the likelihood ratio test generally by allowing each 
model to also include the time indicators (D 1 through D J) and other 
substantive (p.399)  predictors (X 1 through X P). Using equation

11.4 as a basis, we write the competing models as:
(11.19)

To evaluate whether the improvement in fit resulting from the 
added k predictors, W 1 through W k, is nonnegligible, we test the 
compound null hypothesis:

(11.20) 
by comparing the deviance statistics of the two models. As in the 
case of the multilevel model for change, we can do so only if: (1) 
both models are fit to the identical data; and (2) the reduced model 
is nested within the current one. The constancy of data criterion 
requires elimination of all cases with any missing values for either 
model. The nesting criterion requires that you can write the 
reduced model by placing constraints on the values of the 
parameters in the current model. As framed in equation 11.19, the 
reduced model is nested within the current model because we can 
write the former by setting the β’s associated with the W’s in the 
latter to 0. Under the null hypothesis in equation 11.20, the 
difference in deviance statistics will (asymptotically) have a χ2

distribution on k degrees of freedom: When the difference in 
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deviance statistics is large, we reject the null hypothesis, 
concluding that we prefer the current model. When the difference 
in deviances is small, we fail to reject, concluding that the reduced 
model is not appreciably worse than, and is therefore preferable to, 
the less parsimonious full model.

11.6.2 Deviance-Based Hypothesis Tests for Individual Predictors

Comparing deviance statistics for pairs of nested models that 
differ only by a single substantive predictor permits evaluation 
of the “statistical significance” of that predictor. The tests 
presented in the third panel of table 11.3 focus on the two 
substantive predictors, PT and PAS.

Begin with the uncontrolled test for PT in the second column 
for Model B. Model B differs from Model A by 1 parameter, β
PT, which is associated with the single predictor PT. 
Subtracting deviance statistics (651.96 – 634.66) yields a 
difference of 17.30 (as shown). As the .1% critical value for a χ
2 distribution on one degree of freedom is 10.83, we reject the 
null (p.400)  hypothesis at the p < .001 level that in a model 
with no substantive predictors, βPT = 0. To examine the 
uncontrolled effect of PAS, compare Models A and C. After 
establishing that A is nested within C (because we can write A 
by setting βPAS to 0), we find a difference in deviance statistics 
of 14.79 (651.96 – 637.17). As this also exceeds the .1% 
critical value for a χ 2 distribution on one degree of freedom, 
we reject the null hypothesis at the p < .001 level that in a 
model with no substantive predictors βPAS = 0.

In addition to testing the uncontrolled contribution of each 
substantive predictor, we can examine its controlled
contribution holding constant the other’s effect. To evaluate 
the effect of PT controlling for PAS, we compare the deviances 
of (the nested) models C and D. This yields a difference of 
637.17 – 629.15 = 8.02 on one degree of freedom, which 
exceeds the 1% critical value of a χ2 distribution on one 
degree of freedom (6.63). To evaluate the effect of PAS
controlling for PT, we compare the deviances of (the nested) 
Models B and D. This difference in deviances (5.51) exceeds 
the 5% critical value for the χ2 distribution on one degree of 
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freedom. We therefore reject the controlled null hypotheses as 
well.

11.6.3 Deviance-Based Hypothesis Tests for Groups of Predictors

By using k predictors to formulate the likelihood ratio test in 
equations 11.19 and 11.20, we can use this same approach to 
compare models that differ by groups of predictors. As before, 
we require only that: (1) both models be estimated using the 
identical set of data; and (2) the reduced model be nested
within the current model. In table 11.3, for example, we may 
test the compound null hypothesis H0: βPT = βPAS= 0 by 
comparing Models A and D. As the difference in their deviance 
statistics—22.81—exceeds the .1% critical value of a χ 2

distribution on two degrees of freedom—13.82—we reject this 
compound null at the p < .001 level.

Joint tests are especially useful for evaluating effects of 
several related predictors. Sometimes the related predictors 
will collectively represent the same underlying construct (as 
might several measures of socioeco-nomic status). Other 
times, the related predictors will be a series of dichotomies 
representing a single polytomy, as in section 11.4.4. There, we 
fit a discrete-time hazard model that included three 
dichotomies—PT1, PT2, and PT3—which together indicate 
whether the boy was raised by a single parent, a repartnered 
parent, or a parent who experienced yet another transition. 
The parameter estimates for these three variables were 
0.6570, 0.5688, and 1.3213, respectively.

(p.401) Two models in table 11.3 are nested within this 
discrete-time hazard model. Model A is nested within it 
because it includes only the time indicators; setting the 
parameters for all three dichotomies to 0 yields this simpler 
specification. Model B is nested within it because setting the 
parameters for all three dichotomies to be identical—that is, 
setting βPT1 = γPT2 = βPT3—yields this simpler specification. 
This latter comparison exemplifies an important type of nested 
model. The definition of nesting requires only that it is 
possible to obtain the reduced model by placing constraints on 
the parameters in the current model. Although the most 
popular type of constraint is to set the parameters to 0, a 
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model that constrains these parameters to be identical is also 
nested.

Because both Models A and B are nested within this new 
model, we can compare the deviance statistics for the new 
model to each of these nested models. In doing so, we test two 
different null hypotheses. By comparing the new model to A, 
we test the null that all three parameters are equal to 0 (Ho: 
βPT1 = βPT2 = βPT3 = 0). By comparing the new model to B, we 
test the null that all three parameters are equal to some 
common parameter βPT (Ho: βPT1 = βPT2 = βPT3 = βPT).

What do we find? The deviance statistic for the new model, 
which has nine parameters (the six time indicators and the 
three dichotomies representing the different types of parental 
transitions), is 626.72. Comparing this value to that of Model 
A, we have a difference in deviances of 651.96 – 626.72 = 
25.24, which exceeds the 1% critical value of a χ2 distribution 
on three degrees of freedom. This suggests that the three 
dichotomies should remain in our discrete-time hazard model. 
Comparing this value to that of Model B, we have a difference 
in deviances of 634.66 – 626.72 = 7.94, which exceed the 5% 
point of the χ2 distribution on two degrees of freedom. We 
reject the null hypothesis that all three parameters are 
identical (that H0: βPT1 = βPT2 = βPT3 = βPT) and conclude that 
we should consider adopting this expanded representation of 
the parental transition variable instead of the simpler 
representation that aggregates together the supplemental 
information on parenting transitions (using the single variable
PT).

11.6.4 Comparing Nonnested Models Using AIC and BIC

As discussed in section 4.6.4, you may occasionally want to 
compare the goodness-of-fit of alternative models that are not 
nested. Your goal may not be to test a statistical hypothesis 
about a (set of) population parameter(s) but rather to choose 
between models that include different predictors. As long as 
the focal models are fit to the same set of data, (p.402)  you 
can make useful comparisons based on the information criteria 
AIC and BIC.
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Having discussed their computation in section 4.6.4, we do not 
reiterate those details here. Suffice it to say that both penalize 
the log-likelihood statistic for the number of parameters 
present in the model, but that the BIC statistic also takes into 
account total sample size. If a model has p
parameters, AIC = Deviance + 2p. We use a similar calculation 
to compute BIC, but as it “corrects” for sample size, we must 
decide which sample size to use. Following the 
recommendations of Xie (1994) and Raftery (1995), we use the
number of events, not the number of individuals or the number 
of records in the person-period data set. As 126 boys had 
intercourse during this study, we compute the BIC statistic for 
these models as Deviance + (ln(126))p) or Deviance + 4.84p.

The last row of the second panel of table 11.3 presents AIC 
and BIC statistics for the four models. For each statistic, the 
smaller its value, the better the fit. Comparing these statistics 
we conclude that Model B, which uses the single predictor PT
fits better than Model C, which uses the single predictor PAS, 
because the former has an AIC of 648.66 and a BIC of 668.54 
whereas the latter has an AIC of 651.17 and a BIC of 671.05. 
We also conclude that Model D, which uses two predictors, fits 
better than any of the other models, despite its larger number 
of parameters, for it has an AIC of 645.15 and a BIC of 667.87.

11.7 Statistical Inference Using Asymptotic 
Standard Errors

An alternative strategy for testing hypotheses about 
predictors’ effects is to compare a parameter estimate to its 
asymptotic standard error (ase). Like any standard error, the
ase measures the precision of an estimate; the smaller the ase, 
the more precise the estimate. (The qualifier asymptotic 
indicates that these standard errors are only approximate, 
with the quality of the approximation improving as the sample 
size becomes infinitely large.) Because the sampling 
distribution of a maximum likelihood parameter estimate is 
asymptotically normal, we can use ase’s to test hypotheses 
about population values of model parameters and odds ratios, 
and construct confidence intervals around their associated 
estimates.
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Given the appeal of using ase’s, you might wonder why we 
began our discussion of inference using a deviance-based 
approach that provides no facility for confidence interval 
construction? Our rationale is as follows. As the sample size 
tends toward infinity, hypothesis tests based on deviance 
statistics and ase’s become equivalent. But, in samples that 
are (p.403)  not infinitely large (in other words, in all

actual analyses), the two tests are not equivalent, and in small 
samples, the discrepancy can be large. Although some 
statisticians (e.g., Rothenberg, 1984) suggest that neither 
approach is uniformly better, others (e.g., Hauck & Donner,
1977) suggest that the deviance-based approach is superior 
especially in “small” samples (where “small” refers to sizes 
that most empirical researchers would call large!). We 
therefore recommend that you conduct hypothesis tests using 
the deviance-based approach when possible, and for that 
reason, we present this strategy first.

Yet there are two powerful arguments for using the ase
approach, especially when fitting hazard models to data. First, 
it is easy to implement. Unlike the deviance-based approach, 
which requires fitting multiple nested models and calculating 
differences in deviances (usually by hand), the ase approach is 
routinely offered in all statistical packages. Hypothesis testing 
from this perspective involves little more than determination 
of those parameters with sufficiently small p-values. Second, 
the ase approach allows you to construct confidence intervals 
around estimates of population parameters. The deviance-
based approach does not provide for this option, requiring you 
to evaluate predictors’ effects solely from a hypothesis testing 
perspective. For these reasons, we now describe how to use
ase’s to test statistical hypotheses about interesting population 
parameters, and construct (asymptotic) confidence intervals 
around their associated estimates.

11.7.1 The Wald Chi-Square Statistic

As discussed in section 4.7, a Wald chi-square statistic 
compares a maximum likelihood parameter estimate to its 
asymptotic standard error in much the same way as a t-
statistic in regression analysis compares a least-squares 
parameter estimate to its standard error. But unlike the t-
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statistic, which, under the null hypothesis that a parameter is 
0, is simply the ratio of these two quantities, the Wald chi-
square statistic squares this ratio yielding a test statistic that 
has a χ2 distribution on one degree of freedom. More formally, 
in the following discrete-time hazard model:

(11.21)

We test the null hypothesis that βW = 0 by squaring the ratio of the 
parameter estimate to its asymptotic standard error and comparing 
this result to a χ2 distribution on one degree of freedom:

(11.22) 
(p.404)  When the Wald chi-square statistic is large relative to 

critical values of the χ2 distribution, we reject the null hypothesis; 
when it is small, we fail to reject.
The logistic regression analysis routines in all major statistical 
packages routinely output asymptotic standard errors, Wald 
chi-square statistics, and associated p-values. (Equivalently, 
some packages take the square root of the Wald chi-square 
statistic and present it as a z-statistic, comparatively evaluated 
against a standard normal distribution.) Table 11.3 presents
ase’s alongside their respective parameter estimates; Wald 
chi-square statistics appear in the bottom panel. For the two 
substantive predictors in Model D, we obtain Wald chi-square 
statistics of 7.79 (p = .0053) for PT and 5.59 (p = .0181) for
PAS. As maximum likelihood theory leads us to expect, these 
values are close to those obtained when testing the identical 
null hypotheses using a difference in deviances approach. The 
other approach (shown in the third panel of table 11.3) yields 
test statistics of 8.02 and 5.51, respectively, that are also 
distributed as χ2 on one degree of freedom. Because of the 
similarity in numeric values (both differences are less than .
25), the two approaches lead to identical conclusions about 
rejection of the null hypothesis. With a larger sample size, the 
discrepancies in values would be smaller, and if the sample 
size were “infinite,” the discrepancies would disappear.

As discussed in section 4.7, in the context of the multilevel 
model for change, Wald chi-square statistics can also be used 
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to test simultaneous hypotheses about multiple predictors. 
Because these tests are not routinely supplied by statistical 
packages, and also because we prefer tests based on the 
deviance statistic (which are easy to conduct for multiple 
predictors), we do not present this approach here. Interested 
readers should consult Long (1997) or Hosmer and Lemeshow 
(2000).

11.7.2 Asymptotic Confidence Intervals for Parameters and Odds 
Ratios

Asymptotic standard errors can be used to construct 
asymptotic confidence intervals (ACIs) around estimates of 
population parameters. Focusing on the parameter βW

associated with the additional predictor W in the model in 
equation 11.21, we construct a 95% ACI for βW as:

(11.23) 
A 95% ACI for βPT in Model D of table 11.3 is 0.6605 ± 
1.96(0.2367), which yields (0.1966, 1.1244). A 95% ACI for βPAS in 
this same model is 0.2964 ± 1.96(0.1254), which yields (0.0506, 
0.5422). As with any confidence interval, the true value of the 
population parameter may not fall (p.405)  within the ACI. Because 

these intervals are asymptotic, their accuracy improves with 
increasing sample size.
Because the ACI in equation 11.23 focuses on a parameter that 
we rarely interpret directly, we usually construct a different 
ACI to examine a predictor’s effect. As in section 11.4, where 
we exponentiated parameter estimates and interpreted effects 
as odds ratios, we usually construct an ACI for this population 
parameter instead. To construct an ACI for the population 
odds ratio associated with the predictor W in the model in 
equation 11.21, you exponentiate the limits of equation 11.23:

(11.24) 
Equation 11.24 yields a 95% ACI for the population odds ratio 
associated with a one-unit difference in the predictor W. For the 
two substantive predictors in Model D, for example, we find that 
the 95% ACI for the odds ratio for PT is (e0.1966, e1.1244) or (1.22, 
3.08), and the 95% ACI for the odds ratio associated with the 
predictor PAS is (e0.0506, e0.5422) or (1.05, 1.72).
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Notice that neither of these ACIs covers 1. When an odds ratio 
is 1, the odds of event occurrence for two groups are equal. 
Just as you can test the null hypothesis that βW = 0 by 
determining whether the 95% ACI for that parameter covers 0, 
so, too, may you test the null hypothesis that the population 
odds ratio associated with a one-unit increment in W is 1 by 
determining whether its ACI covers 1. Examining the 95% 
ACIs for these two parameters, we see that neither is likely to 
have an odds ratio as low as 1.0, but the odds ratio for a one-
unit difference in PAS may be as high as nearly 2.0, while the 
odds ratio comparing boys with and without a parenting 
transition may be as high as 3.0.

Unlike many other confidence intervals with which you may be 
familiar (including those in equation 11.23), the ACI for an 
odds ratio is not symmetric about its maximum likelihood 
estimate (known as the “point estimate” of the population 
parameter). The midpoint of the ACI for the odds ratio for PT
is 2.15, in comparison to the point estimate of 1.94 (= e0.6605), 
and the midpoint of the ACI for the odds ratio for PAS is 1.39, 
in comparison to its point estimate of 1.35 (=e0.2964). In other 
words, the maximum likelihood estimate will not fall precisely 
in the middle of this ACI. Asymmetry is guaranteed by the 
formula for computing the ACI for the odds ratio in equation
11.24. Exponentiating the symmetric limits in equation 11.23
must produce limits that are asymmetric. Because of the way 
the exponential transformation works, the point estimate will 
be nearer to the limit closer to 1 than it will be to the limit 
further from 1. When the point estimate is greater than 1, as 
here, it will be closer to the lower ACI limit; when the point 
estimate is less than 1, as when the (p.406)  associated 
parameter estimate is negative, it will be closer to the upper 
ACI limit.

The asymmetry of the ACI for the population odds ratio may 
be disturbing initially, but it has no effect on the interval’s 
interpretation. In addition, the interval has an advantage not 
shared by symmetric intervals: the ACI in equation 11.24 will 
never yield a theoretically impossible value. Because the ACI 
for the odds ratio exponentiates the limits for the parameter 
estimate, and exponentiation will always yield a positive 
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number, it is impossible to derive an limit for the odds ratio 
that is not positive. By working with a statistical model 
designed explicitly for discrete-time data, we ensure that the 
confidence limits for all parameters fall within the range of 
plausibility.

Notes:

(1.) In section 12.2, we introduce a third transformation, the 
complementary log-log transformation, which can also be used 
to specify a discrete-time hazard model.

(2.) Some readers may be more familiar with a specification 
that includes a stand-along intercept and excludes one of the 
time indicators. This alternative specification, although 
identical in fit to the specification we present, precludes the 
simple interpretation of the α’s (as in equation 11.6). Our 
decision to specify the model without a single stand-alone 
intercept has implications for model fitting and estimation. We 
return to this topic in chapter 12.
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The basic discrete-time hazard model invokes assumptions 
about the population that may, or may not, hold in practice. 
This chapter examines its assumptions, demonstrating how to 
evaluate their tenability and relax their constraints when 
appropriate. Section 12.1 revisits the original specification for 
the main effect of TIME in the discrete-time hazard model—
which, in the previous chapter, was specified using a system of 
time indicators—and compares it with other specifications that 
constrain the shape of the baseline hazard function in different 
ways. Section 12.2 re-examines the logit link that used to 
relate hazard to predictors in the previous chapter and 
compare it to an alternative—the complementary log-log link—
which yields an important correspondence with the continuous 
time hazard models that we will describe subsequently. 
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Section 12.3 deals with time-varying predictors, showing how 
to include them in the discrete-time model and discussing 
inferential difficulties that their inclusion raises. Sections 12.4 
through 12.6, examines three important assumptions 
embedded in the discrete-time hazard model—the linear 
additivity assumption (“all predictors operate only as main 
effects”); the proportionality assumption (“the effects of each 
predictor are constant over time”); and the no unobserved 
heterogeneity assumption (“population hazard depends only 
on predictor values”). Section 12.7 concludes by describing 
analytic strategies for “residual” analysis to accompany model 
fitting.

Keywords:   time, discrete-time hazard model, linear additivity, residual analysis

Some departure from the norm will occur as time grows 
more open about it.

—John Ashbery

Like all statistical models, the basic discrete-time hazard 
model invokes assumptions about the population that may, or 
may not, hold in practice. Because no model should be 
adopted without scrutiny, we devote this chapter to examining 
its assumptions, demonstrating how to evaluate their 
tenability and relax their constraints when appropriate. In 
doing so, we illustrate practical principles of data analysis and 
offer theoretical insights into the model’s behavior and 
interpretation.

In section 12.1, we revisit our original specification for the 
main effect of TIME in the discrete-time hazard model—which, 
in the previous chapter, was specified using a system of time 
indicators—and we compare it with other specifications that 
constrain the shape of the baseline hazard function in different 
ways. In doing so, we show how the discrete-time hazard 
model can become more parsimonious, often with little 
sacrifice in goodness-of-fit. In section 12.2, we re-examine the 
logit link that we used to relate hazard to predictors in the 
previous chapter and compare it to an alternative—the
complementary log-log link—which yields an important 
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correspondence with the continuous time hazard models that 
we will describe subsequently. We deal with time-varying 
predictors in section 12.3, showing how to include them in the 
discrete-time model and discussing inferential difficulties that 
their inclusion raises. In sections 12.4 through 12.6, we 
examine three important assumptions embedded in the 
discrete-time hazard model—the linear additivity assumption 
(“all predictors operate only as main effects”); the 
proportionality assumption (“the effects of each predictor are 
constant over time”); and the no unobserved heterogeneity 
assumption (“population hazard depends only on predictor 
values”). We conclude, in section 12.7, by describing (p.408)

analytic strategies for “residual” analysis to accompany model 
fitting. Throughout, our goal is to offer sensible ways of 
evaluating whether standard assumptions hold and to show 
how they can be relaxed when they do not. Together, the 
model and its extensions provide a flexible way of exploring 
relationships between discrete-time event occurrence and 
predictors that is applicable in all but the most unusual 
circumstances.

12.1 Alternative Specifications for the “Main 
Effect of TIME”

The predictors selected to represent the “main effect of TIME” 
in the discrete-time hazard model affect the model’s ability to 
capture the shape of the baseline (logit) hazard function. 
Aware of this, in chapter 11, we used a completely general 
specification for TIME by including J dummy variables, D 1 , D

2, …, D J, to identify the discrete-time periods in the hazard 
model as predictors. This specification not only puts no 
constraints on the shape of the baseline hazard, it is also: (1) 
easily interpretable—each parameter, α j, represents the 
population value of logit hazard in time period j for the 
baseline group; (2) informative—patterns in the values of the 
αj’s describe the temporal shape of hazard; and (3) consistent 
with life table estimates—fitted values from a model with no 
substantive predictors reproduce estimates obtained using the 
life table approach.
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Use of a completely general specification for TIME is an 
analytic decision, not an integral feature of the model. Nothing 
about the model or its estimation requires adoption of this, or 
any other, particular specification for TIME. For example, even 
before writing the model in section 11.2 formally, we 
presented figure 11.3, which suggested that, in the population 
from which the sample was drawn, logit hazard might be 
modeled as constant over time (top panel) or linear over time 
(middle panel). The completely general specification that we 
eventually adopted, while reasonable, is often not essential.

Why might you consider alternative specifications? As Efron 
(1988) and Fahrmeir and Wagenpfeil (1996) argue, the 
completely general specification of TIME: (1) lacks parsimony
—if J is large, it requires the inclusion of many unknown 
parameters in the model; and (2) yields fitted hazard functions 
that can fluctuate erratically across consecutive time periods, 
owing to nothing more than sampling variation. Goodness-of-
fit being equal, it is sensible to prefer parsimonious “well-
behaved” models over those that are excessively 
overparameterized and erratic.

Ideally, as in the choice of an individual growth model, your 
specification for TIME in the discrete-time hazard model 
should be motivated (p.409)  by a combination of theory, 
previous research, and exploratory analysis. Less persuasively, 
post hoc inspection of parameter estimates from the 
completely general specification may also suggest a structure. 
The paramount criterion for decision making is goodness-of-fit. 
The goal is to identify a temporal specification that fits well 
and is parsimonious, too. A secondary criterion is the degree 
to which the parameters can be interpreted.

In this section, we present some alternative specifications for 
the main effect of TIME and discuss how to select among 
them. Although we recommend that you routinely explore such 
alternatives in any analysis, serious consideration is essential 
under three circumstances:

• When your study involves many discrete time periods, 
because the data collection period is long or because time 
is less coarsely discretized. When this happens, the general 
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specification can call for exceedingly many dummy 
predictors. This decreases the overall statistical power of 
your analyses and, as we show in section 12.3.1, decreases 
the power to discern whether the effect of substantive 
predictors varies over time.

• When hazard is expected to be near zero in some time 
periods, because the risk of event occurrence is low. Under 
the completely general specification for time, when few or 
no events occur, in even just one period, maximum 
likelihood model-fitting algorithms may fail to converge, 
coefficient stability decrease, and parameter estimates take 
on implausible or impossible values.

• When some time periods have small risk sets, because 
either the initial sample is small or the effects of hazard and 
censoring dramatically diminish the size of the risk set over 
time. When the risk set is small, the number of events 
occurring in any time period is also likely to be small, 
making it likely that the hazard will be near zero, leading to 
the problems in fitting we have described immediately 
above.

We begin, in section 12.1.1, with a set of polynomial options. In 
section 12.1.2, we offer criteria for selecting among these 
alternatives, and in section 12.1.3, we describe how to interpret the 
resultant parameter estimates.

12.1.1 An Ordered Series of Polynomial Specifications for TIME

Interestingly, even though event occurrence has been 
recorded in discrete time, it is still possible to treat the 
predictor “TIME” as though it (p.410)  has a continuous 
specification in the discrete-time hazard model (provided, of 
course, that you restrain your interpretation of fitted hazard to 
the range of TIME’s observed values). Most person-period data 
sets—including those in figures 10.4 and 11.5—already include 
such a continuous specification, embodied in the variable
PERIOD, whose values identify the time period that the record 
describes. The system of dummy predictors used in chapter 11
to represent the main effect of TIME could easily be replaced 
en masse by the simple predictor PERIOD, if we believed that 
logit hazard was indeed related linearly to time.
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Once you accept the view that TIME can be specified as a 
continuous predictor in a discrete-time hazard model, then 
choosing the completely general specification of its effect—
using a system of dummy predictors—may not be the logical 
starting point for model fitting. Instead, you might first 
hypothesize that logit hazard is perhaps constant over time, or 
that it varies linearly over time, or that it peaks (or bottoms 
out) in one or more periods. Alternatively, you might expect 
logit hazard to vary smoothly during one epoch and then shift 
abruptly to a different smooth functional form in a later epoch. 
How can such features be represented in the hazard model?

The practical dilemma is that for any set of data, there exist an 
infinite number of potential specifications. As we described 
earlier when specifying individual growth models, these 
include: transformations in the ladder of powers (section 6.2); 
polynomial forms (section 6.3); and truly nonlinear trajectories 
(section 6.4). So, too, a smooth specification can include one 
or more discontinuities (as in section 6.1). For the empirical 
researcher, the array of options can be dizzying (or 
paralyzing).

Rather than catalog the (infinitely) many possibilities here (!), 
we focus on a subset of model specifications that we find 
particularly useful: the ordered set of polynomials shown in 
table 12.1. We focus on these not because one of them always 
emerges as “best,” but because, taken together, they 
encompass a wide array of alternatives. Sometimes, you might 
also investigate the utility of the logarithm of TIME as a 
predictor of logit hazard, but this specification is often 
indistinguishable from a linear specification if the number of 
time periods is relatively small (as it usually is). If you have 
reason to believe that log(TIME)—or any other specification, 
for that matter—is superior, we encourage you to investigate 
its performance using the strategies we present below.

Let’s begin with the last row of the table, which presents the 
completely general specification of TIME. Because its fitted 
hazard function will be identical to the life table estimates, 
this model will always have the lowest (best) deviance statistic 
in comparison to any other model (without substantive 
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predictors). No model will ever have a lower deviance 
(although (p.411)

Table 12.1: Selected smooth polynomial 
representations for the main effect of TIME in a 
discrete-time hazard model

Order of 
polynomial

Behavior of 
logit hazard

n
parameters

Model

0 Constant 1 logit h(t j)= α 0
ONE

1 Linear 2 logit h(t j) = α 0
ONE + α 1(TIME j

– c)

2 Quadratic 3 logit h(t j) = α0

ONE + α1(TIME j

– c) + α 2(TIME j –
c)2

3 Cubic 4 logit h(t j) = α 0
ONE + α 1(TIME j

– c) + α 2(TIME j –
c)2 + α 3(TIME j –
c)3

4 Three 
stationary 
points

5 logit h(t j) = α 0
ONE + α 1(TIME j

– c) + α 2(TIME j –
c)2 + α 3(TIME j –
c)3 + α 4(TIME j –
c)4

5 Four 
stationary 
points

6 logit h(t j) = α 0
ONE + α 1(TIME j

– c) + α 2(TIME j –
c)2 + α 3(TIME j –
c)3 + α 4(TIME j –
c)4 + α 5(TIME j –
c)5
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Order of 
polynomial

Behavior of 
logit hazard

n
parameters

Model

Completely 
general

J logit h(t j) = α 1 D

1 + … + α JDJ

the “cost” of the large number of parameters may make this model 
less attractive). As the best fitting model, the completely general 
specification of TIME provides an invaluable anchor on the 
continuum of goodness-of-fit. The goodness-of-fit of any other 
model that includes only the main effect of TIME can never be 
better.
Now consider the first model in the table, a zero-order 
polynomial that eliminates the effect of TIME altogether. By 
eliminating all predictors, this constant model constrains logit 
hazard to be identical across all J periods. In fact, the constant 
value of logit hazard, α0, will be a weighted average of the 
values of all the α’s in the completely general specification. 
However, because the constant model contains only one 
parameter, regardless of the number of periods, it has the 
largest (worst) deviance statistic of any model. So this model 
occupies the other extreme on the goodness-of-fit continuum.

Notice that in specifying the constant model, we associate α0

with an explicit predictor labeled ONE. As befits its name,
ONE takes on the value 1 for every record in the person-period 
data set. Although use of an explicit constant like this may be 
unfamiliar, all computer programs that include an intercept in 
any statistical model by default use such a predictor. Because 
the completely general specification has no single intercept, 
the use of ONE facilitates programming. By including ONE
whenever you want to include an explicit intercept, you can 
consistently (p.412)  exclude the “default” intercept from all

discrete-time hazard models you fit.

The remaining models in table 12.1 contain polynomial 
specifications for the main effect of TIME. As discussed in 
section 6.3.1, the order of the polynomial determines the 
number of stationary points (and therefore bends) in the 
function. A pth order polynomial has (p – 1) stationary points. 
A 1st-order polynomial—a line—has no stationary points. A 
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2nd-order polynomial—a quadratic—has one; a cubic has two; 
a 5th-order polynomial has four. We explore 4th- and 5th-order 
polynomials here because their multiple stationary points 
allow us to test whether, and how many times, the logit hazard 
function hits peaks and troughs. We do not usually adopt these 
complex forms in practice. If your analyses suggest the need 
for a polynomial of this order, perhaps the completely general 
specification—or another alternative—should be used.

As in the multilevel model for change, we can also facilitate 
interpretation by subtracting a centering constant c from
TIME. If c = 0, α0 represents the value of logit hazard in time 
period 0, a value that rarely exists. If c = 1, α0 represents the 
value of logit hazard in period 1, a far more common value. 
More generally, if we set c to any other value, α0 represents 
the value of logit hazard in that period.

How will the goodness-of-fit of these polynomial models 
compare to the extremes provided by the constant and 
completely general specifications? Because each—from the 
linear through the fifth order—is nested within each 
subsequent model, the deviance statistic for a later model will 
be no larger than (no worse than) than that for all earlier 
models. If the added term is unnecessary, the deviance 
statistic will remain unchanged. If the additional term 
improves the fit, the deviance statistic will decrease (improve) 
as well. Each model will have a deviance statistic no larger 
than (no worse than) the constant specification. No polynomial 
model will have a deviance statistic as small as (as good as) 
the completely general specification (unless it is a Jth order 
polynomial).

The net result is that when we compute the deviance statistic 
for every model in table 12.1, for any particular set of data, it 
will never increase across the rows. Moreover, unless each 
extra term adds nothing to the prediction, the deviance 
statistic will consistently decrease from row to row. We 
illustrate this behavior in table 12.2, which presents the 
results of fitting the seven models in table 12.1 to data 
collected by Gamse and Conger (1997). As part of a study of 
the National Academy of Education–Spencer Foundation Post-
Doctoral Fellowship Program, they followed the careers of 260 
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semifinalists and fellowship recipients who took an academic 
job after earning a doctorate. Each was tracked for up to nine 
years to see whether and, if so, when they received tenure. Of 
the (p.413)
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Table 12.2: Comparison of alternative smooth polynomial representations for the main effect of TIME in a baseline 
discrete-time hazard model for the academic tenure data (n = 260, n events = 166)

Difference in deviance in comparison to …

Representation for TIME n parameters Deviance Previous model General model AIC BIC

Constant 1 1037.57 — 206.37 (8) 1039.57 1042.68

Linear 2 867.46 170.11 (1) 36.26 (7) 871.46 877.68

Quadratic 3 836.30 31.16 (1) 5.10 (6) 842.30 851.63

Cubic 4 833.17 3.13 (1) 1.97 (5) 841.17 853.61

Fourth order 5 832.74 0.43 (1) 1.54 (4) 842.74 858.29

Fifth order 6 832.73 0.01 (1) 1.53 (3) 844.73 863.39

General 9 831.20 — — 849.20 877.19
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260, 166 (63.8%) received tenure during data collection; 94 
(36.2%) were censored.
Focus on the first three columns of the table. Each row 
indicates the particular specification for TIME being used, the 
number of parameters in the model, and the deviance statistic. 
As expected, the deviance statistic for the constant model is 
the largest (1037.57). With each successive polynomial, the 
deviance statistic drops from a high of 867.46 (for the linear 
specification) to a low of 832.73 (for the fifth-order 
polynomial). This latter value closely approximates that for the 
general specification, 831.20, which is guaranteed to be the 
smallest. Before considering whether these differences in 
deviance are sufficient to warrant use of an alternative 
specification for TIME, let us examine the corresponding fitted 
logit hazard functions. Doing so not only highlights the 
behavior of logit hazard, it also offers a graphical means of 
comparing the fit of competing specifications. The top panel of 
figure 12.1 presents five fitted functions—for the general 
model (faint lines), the constant, linear, and cubic models 
(dashed lines) and the quadratic model (bold lines). We do not 
present fitted functions for the fourth- and fifth-order 
polynomials because, as suggested by their deviance statistics, 
we cannot distinguish them from the cubic.

When comparing fitted hazard functions derived from 
alternative specifications for TIME, try to discern whether any 
of them reproduces the completely general specification well 
enough to confirm its suitability. For these data, the constant 
hazard function is clearly inappropriate—it fits the data 
poorly. The linear model is also unsuitable, yielding fitted

(p.414)
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Figure 12.1.  Understanding what it 
means to smooth the “main effect of 
time.” Fitted logit hazard functions, 
hazard functions, and survivor functions 
for time to first tenure, using alternative 
specifications for the main effect of time.

(p.415)

values that are 
too high in the 
early periods, 
too low in the 
middle periods, 
and too high 
again in the 
later periods. 
The quadratic 
model 
resembles the 
general 
specification 
(although it is 
a little low in 
the beginning). 
The cubic 
model fits 
better, but its 
superior fit 
(registering 
the additional 
early trough) 
may not be 
“worth” the 
additional 
parameter. As 
these 
considerations 
lead us once 
again to the comparison of deviance statistics in light of the 
number of parameters in the model, we now describe how to make 
these comparisons formally.

12.1.2 Criteria for Comparing Alternative Specifications

The decline in the deviance statistic across models indicates 
that fit improves with increasing complexity of the temporal 
specification. To evaluate the magnitude of this decline, we 
must also account for the increased number of parameters in 
the model. You should not adopt a more complex specification 
if it fits no better than a simpler one. But if an alternative 
specification is (nearly) as good as the most general one, it 
may be “good enough.” At the same time, we would not want 

Figure 12.1.  Understanding what it 
means to smooth the “main effect of 
time.” Fitted logit hazard functions, 
hazard functions, and survivor functions 
for time to first tenure, using alternative 
specifications for the main effect of time.
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an alternative that performs measurably worse than we know 
we can do.

As shown in the fourth and fifth columns of table 12.2, we 
address these issues by comparing each model’s deviance 
statistic to that of: (1) its predecessor; and (2) the completely 
general specification. From section 11.6, we know that if a 
reduced model is nested within a current model, we can test 
hypotheses about the latter’s extra parameters by comparing 
the difference in their deviance statistics to a critical value 
drawn from χ2 distribution with degrees of freedom equal to 
the number of parameters added between the reduced and 
current model.1 We therefore recommend that you:

• Compare deviance statistics across consecutive models to 
test the impact of each new polynomial term. As each model 
adds just one parameter, this difference can be compared 
to a critical value from a χ2 distribution on one degree of 
freedom. By this process, you can identify the lowest order 
polynomial for which no higher order one fits better—that 
is, identify the model that provides the last test that rejects.

• Compare the deviance statistic for each polynomial 
specification to the completely general specification. For a 
model with k parameters, evaluate the difference in 
deviance between it and the completely general model 
against a critical value from a χ2 distribution on J-k degrees 
of freedom. If you fail to reject, the alternative is (p.416)

viable, for it is more parsimonious than the completely 
general model, and fits nearly as well. If not, the alternative 
is not “good enough,” no matter how much better it is than 
a lower order polynomial.

As you are testing multiple hypotheses with the same set of data, 
be careful not to base decisions rigidly on p-values. In table 12.2, 
we use bold type to denote a hypothesis test that rejects at the .05 
level.
AIC and BIC statistics, which penalize the deviance statistic 
for the presence of additional parameters, provide other 
benchmarks for comparison. Although these information 
criteria yield no formal hypothesis test, we have found, across 
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a large number of data sets, that the specification with lowest, 
or nearly lowest, AIC or BIC is often the most attractive.

What do we find when we apply these criteria to the tenure 
data? As shown in table 12.2 (and as suggested by the plots in 
figure 12.1), the linear specification is superior to the constant 
(χ2 = 170.10, 1 d.f.) and the quadratic is better still (χ2 = 
31.158, 1 d.f.). No higher order polynomial appears necessary, 
as all yield differences in deviance of less than 3.84 (the .05 
critical value of the χ2 distribution on 1 d.f.) when compared 
the model preceding them in the list. We also ask whether any 
polynomial (especially the quadratic) is nearly as good as the 
completely general model. Although neither the constant nor 
the linear models are adequate (note the large differences in 
deviance), the quadratic performs well with only three 
parameters (instead of nine). The difference in deviance 
statistics for these two models is 5.10 (far less than the .05 
critical value of a χ2 distribution on 6 d.f.).

All signs therefore point to the superiority of the quadratic 
specification, which fits nearly as well as the general model, 
but with fewer parameters. To further evaluate its 
performance, the bottom panels of figure 12.1 present fitted 
hazard and survivor functions for the quadratic (using bold 
lines) and the completely general (using faint lines) 
specifications. The fitted hazard function for the quadratic 
specification works well in all time periods. Its seemingly poor 
performance in the early periods (in the top plot) is minimized 
in the move to a hazard scale. Because taking antilogits 
bounds the fitted values of hazard between 0 and 1, it tightens 
the distance between the problematic values when logit 
hazard is small. Also notice that the fitted hazard function for 
the quadratic is smoother than that for the general 
specification. The latter has two peaks, in years 6 and 8, with 
an apparent drop in year 7, while the former has a single peak 
in year 7 (with years 8 and 6 providing the next highest 
values). The quadratic seems more satisfactory in the sense 
that small period-to-period fluctuations are smoothed, 
revealing a single peak in year 7—precisely (p.417)  what we 
would expect to find when modeling time to tenure. Finally, 
notice that the fitted survivor functions for the quadratic and 
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general models are nearly coincident. Because survivor 
functions cumulate hazards over time, subtle differences 
between fitted hazard functions yield only modest differences 
in fitted survivor functions. Estimated median lifetimes for 
these two models (shown using the dotted line) are virtually 
identical—5.8 for the general specification and 5.9 years for 
the quadratic.

Our clear preference is for the quadratic specification. But 
before taking this resolution as unambiguous, examine the AIC 
and BIC statistics. Although the BIC is at its minimum for the 
quadratic, the AIC statistic is at its minimum for the cubic
(841.17). Although this difference is trivial, the cubic has some 
appeal. As shown in the top panel of figure 12.1, it fits 
somewhat better, particularly in the early years. Moving to an 
odds scale ameliorates this superiority, but some researchers 
might be attracted to this more complex model. To support 
this decision, they would cite the 3.13 difference in deviance 
between the two, which, although not “statistically 
significant,” is noticeable (especially in contrast to the 
subsequent trivial differences in deviance in table 12.2). We 
mention this alternative not because we recommend it for 
these data, but rather because it highlights the ambiguity of 
data analysis.

Although decision rules cannot substitute for judgment, 
intuition, and common sense, we nevertheless conclude by 
offering two guidelines for selecting among alternative 
specifications:

• If a smooth specification works nearly as well as the 
completely general one, appreciably better than all simpler 
ones, and no worse than all more complex ones, consider 
adopting it.

• If no smooth specification meets these criteria, retain the 
completely general specification.

If this decision process leads you to a polynomial specification, then 
you can interpret the model’s parameters easily, as we now 
discuss.
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12.1.3 Interpreting Parameters from Linear, Quadratic, and Cubic 
Specifications

One advantage of a polynomial specification is that you can 
often interpret its parameters directly. As discussed in section 
6.3.1 in the context of the multilevel model for change, with 
practice you can examine the coefficients in a polynomial 
function and describe a fitted function’s shape without even 
constructing a plot. In this section, we reiterate general 
principles, but some readers might want to review our earlier

(p.418)  presentation before moving on. (In what follows, 
notice that we work directly with the raw parameters 
expressed on a logit hazard scale. Although you can transform 
and interpret them on a hazard scale, we find that this 
becomes cumbersome with higher order polynomials.)

Begin with the simplest possibility, the linear specification. As 
in any linear specification, the intercept, α0, represents the 
value of the outcome (here, logit hazard) when the predictor is 
0. As the predictor in this model is TIME – c, α0 represents the 
value of logit hazard in time period c. The slope parameter, α1, 
is unaffected by the subtraction of c from TIME. It represents 
the increase (or decrease) in logit hazard per unit difference in 
TIME. As these interpretations are straightforward, we omit 
illustration.

In the quadratic model, the intercept, α0, still measures the 
value of logit hazard in time period c. So, too, the “slope 
parameter,” α1, still measures the increase (or decrease) in 
logit hazard per unit of TIME, but only at one particular 
instant, time c. Remember that a quadratic has no single rate 
of change—the differential in logit hazard per unit time varies 
over time. The curvature parameter, α2, identifies whether the 
logit hazard function is convex, with a trough (∪), or concave, 
with a peak (∩). If α2 is positive, the hazard function is convex 
to the time axis; if negative, it is concave. This parameter can 
also be used to determine the time at which logit hazard 
reaches its peak (or trough). By calculus (differentiating with 
respect to TIME and setting the derivative to 0), we can show 
that the time that the function reaches its peak (or trough) is 
[c – 1/2 (α1/α2)]. As with any polynomial, the timing of the peak 
(or trough) may not fall within the range of the data.
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We illustrate this interpretation using the tenure data. Setting
c to 5 and fitting a quadratic discrete-time hazard model, we 

obtain: logit  = −1.4107ONE + 0.6089(TIME j − 5) − 
0.1256(TIME j − 5)2. The fitted value for logit hazard in year 5 
is −1.4107 and the instantaneous rate of change in logit 
hazard in year 5 is 0.6089. Because the parameter estimate 
for the quadratic term is negative, we know that the hazard 
function is concave to the time axis, reaching a peak. 
Computing the time value for the flipover point, [5 − 1/2
(0.6089/(−0.1256))] = 7.4240, we find that the peak occurs 
midway through year 7. As the peak in raw hazard occurs at 
the same moment as that of the peak in logit hazard, we 
estimate that risk of receiving tenure is highest in the middle 
of year 7.

Cubic functions involve not just one bend, but two. As before, 
the intercept, α0, represents the value of logit hazard in time 
period c. The sign of the slope parameter, α1, indicates the 
direction of change in logit hazard over time in time period c—
if α1 is positive, hazard is increasing; (p.419)  if α1 is negative, 
hazard is decreasing. Every cubic curve has one trough and 
one peak, although the bends need not occur within the range 
of the data. The sign of α3 indicates whether the function first 
hits a peak or a trough. If α3 is positive, the cubic has an early 
peak and a late trough; if it is negative, it has an early trough 
and a late peak. To identify when the function reaches these 
bends, we again use calculus (differentiating the model with 
respect to TIME, setting the derivative to 0, and solving the 
resulting quadratic equation), to find:

(12.1)

We illustrate these interpretations by fitting a discrete-time hazard 
model with a cubic temporal specification to the tenure data, to 
find:

The fitted value for logit hazard in year 5 is −1.4555, a value close 
to the −1.4107 of the quadratic. As α1 is positive, we know that the 
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function is increasing over time in year 5. Because the coefficient 
for the cubic term is negative, we know that the hazard function 
has an early trough and a late peak. We identify these times by 
substituting into equation 12.1 to find −1.0877 and 7.1875. The 
early trough falls outside the range of the data. The late peak of 
7.1875 corresponds closely to the peak identified in the quadratic 
model (7.4240). This close correspondence should come as no 
surprise given that the quadratic and cubic models had very 
comparable goodness-of-fit statistics.

12.2 Using the Complementary Log-Log Link to 
Specify a Discrete-Time Hazard Model

When we introduced the discrete-time hazard model, we 
argued that we needed to transform the outcome—discrete-
time hazard—to preclude derivation of theoretically impossible 
fitted hazard values. The logit transformation represented a 
natural choice because it allowed us to: (1) specify the model 
using familiar terminology; (2) use widely available software 
for estimation; and (3) exploit interpretive strategies with 
which many empirical researchers are comfortable.

Just like the choice of a completely general specification for 
the main effect of TIME, use of a logit link is an analytic
decision. Nothing about the way in which the model is 
postulated or fit requires the adoption of (p.420)  this, or any 
other, particular link function. Before logistic regression 
analysis became so popular, for example, statisticians 
routinely analyzed binary outcome data using a probit link, 
which maps probabilities onto the inverse of the cumulative 
standard normal distribution. In fact, the inverse of any
cumulative distribution function can serve as a link function; 
logits owe their popularity to their computational and 
interpretive convenience (Collett, 1991; Hosmer and 
Lemeshow, 2000).

For discrete-time hazard, one other link function deserves 
consideration: the complementary log-log transformation, 
abbreviated clog-log. For a given probability, the 
complementary log-log is:
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(12.2)

Like the logit transformation, the clog-log transformation maps 
probabilities onto a new scale with no upper or lower bound. But 
while the logit transformation yields the logarithm of the odds of 
event occurrence, the clog-log transformation yields the logarithm 
of the negated logarithm of the probability of event nonoccurrence. 
Below, we explain when and why the clog-log transformation is 
useful (section 12.2.1), we develop a discrete-time hazard model 
based upon it (section 12.2.2), and we provide advice for 
researchers trying to choose between these alternative 
specifications (section 12.2.3).

12.2.1 The Clog-Log Transformation: When and Why It Is Useful

Figure 12.2 depicts the effect of the complementary log-log 
transformation by displaying its values (on the vertical axis) 
for a range of underlying hazard probabilities (on the 
horizontal axis). For comparison, the figure also displays the 
same values of hazard transformed using the logit 
transformation. When hazard is small, say below .20, both 
transformations yield similar values. At higher values of 
hazard, the transformations diverge. Once hazard is greater 
than .50 (an admittedly high value), the two sets of 
transformed values are quite disparate.

To understand the impact of the clog-log transformation and 
how it differs from that of the logit transformation, examine 
the relative distances between pairs of transformed values. 
Particularly, notice that the slope of the clog-log versus 
probability curve is less steep at higher values of hazard than 
the slope of the logit vs. probability curve. This means that the 
“distance” between pairs of values on the clog-log scale per 
“unit” difference in hazard probability gets consistently 
smaller at higher values of hazard, compared to their 
companions on the logit scale. Also, unlike the logit 
transformation, which is symmetric on either side of the 
“focal” (p.421)
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Figure 12.2.  Comparing effects of the 
complementary log-log and logit 
transformations. Transformed values are 
plotted for raw probabilities ranging from 
0.00001 to 0.99999.

hazard 
probability of .
5, the clog-log 
transformation 
is asymmetric. 
You can 
demonstrate 
this 
numerically by 
examining two 
particular 
values of 
hazard, .20 
and .30, and 
their 
complements, .
80 and .70. 
Comparing the 
clog-log values 
corresponding 
to the first two 
hazard 
probabilities (−1.50 and −1.04) to those of the second two (.48 
and .19), we find that neither their difference, nor their ratio, is 
constant. Finally, note, too, that there is no decent “round” number 
associated with the “central” hazard probability of .5—while .5 
transforms to 1 on an odds scale and 0 on a logit scale, it becomes 
−0.3665 on the clog-log scale (hardly a memorable value).
All this may lead you to question the new transformation’s 
utility. But as we show in section 12.2.3, it does have one 
fundamental advantage: it provides a discrete-time statistical 
model for hazard that has a built-in proportional hazards
assumption, and not a proportional odds assumption (as in the 
case of the logit link). This would be completely unremarkable 
except for one thing: it provides a conceptual parallelism 
between the clog-log discrete-time hazard model and the 
models that we will ultimately describe for continuous-time 
survival analysis. As we show in chapters 14 and 15, the most 
popular continuous-time hazard model—the Cox regression 
model—also invokes a proportionality assumption in hazards
not odds. Using a clog-log link here provides a discrete-time 
analog for the future-preferred continuous-time hazard model. 
Researchers who (p.422)  seek consistency of assumption in 

Figure 12.2.  Comparing effects of the 
complementary log-log and logit 
transformations. Transformed values are 
plotted for raw probabilities ranging from 
0.00001 to 0.99999.
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their hazard modeling regardless of the way in which time is 
recorded, may find this parallelism compelling.

12.2.2 A Discrete-Time Hazard Model Using the Complementary 
Log-Log Link

Any discrete-time hazard model postulated using a logit link 
can be rewritten using a clog-log link, simply by substituting 
transformations of the outcome. For example, we can write a 
general discrete-time hazard model for J time periods and P
substantive predictors as:

(12.3)

In positing this model, we invoke assumptions similar to those 
articulated in section 11.1.2 for a model with a logit link (cf. 
equation 11.4). The difference here is that the assumptions 
describe the behavior of clog-log hazard, not logit hazard. 
Specifically, we assume that: (1) for each combination of predictor 
values, there is a postulated clog-log hazard function; (2) each of 
these clog-log hazard functions has an identical shape; and (3) the 
distance between each of these clog-log hazard functions is 
identical in every time period. As you would expect, all extensions 
of a discrete-time logit hazard model—for example, use of a smooth 
polynomial for TIME—can be applied directly to the clog-log 
version, too.
Usually, and particularly when risks are low, models fit using 
either link function yield virtually identical results. We can 
presage this close correspondence by examining transformed 
sample hazard functions for the grade of first intercourse data 
of chapter 11. Based on figure 11.2, figure 12.3 presents 
transformed hazard functions by values of the dichotomous 
predictor PT, parental transition status. For each group of 
boys, the graph presents the sample functions plotted on a 
logit scale (the dashed lines) and clog-log scale (the solid 
lines). As we would expect from figure 12.2, the pairs of 
transformed functions are more similar in the early grades 
(when hazard is small) and diverge over time (as hazard 
increases). Note, too, that the equidistance assumption could 
easily be posited between either pair of functions—it is not as 
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Figure 12.3.  Sample hazard functions for 
the grade of first intercourse data 
displayed on different scales. Sample 
functions are expressed on a logit scale 
(the dashed lines) and complementary 
log-log scale (the solid lines).

if this assumption appears more (or less) tenable for functions 
expressed on a clog-log scale in comparison to the logit scale.

Most major statistical packages allow you to fit a discrete-time 
hazard model with a clog-log link. All you need do is specify 
this link when invoking the logistic regression routine within 
the person-period data set. Implementation is easy, but be 
sure to specify the model in terms of event occurrence, not
nonoccurrence; in other words, the EVENT indicator must

(p.423)

be properly 
coded for the 
package’s 
procedure. The 
need for extra 
caution is due 
to the 
asymmetry of 
the clog-log 

transformation. Unlike the logit link, which allows you to simply 
reverse the signs of all parameter estimates if you inadvertently 
model event nonoccurrence, there is no equivalent conversion for 
the clog-log link. The entire model differs if the event indicator is 
reverse coded (behavior you can, and should, confirm with your 
statistical package). Apart from this caution, model fitting proceeds 
as when a logit link is used; so, too, does goodness-of-fit and 
hypothesis testing.
Table 12.3 presents the results of fitting a pair of discrete-time 
hazard models to the grade at first intercourse data: the first 
with a clog-log link, the second with a logit link. (The logit link 
reproduces Model B of table 11.3.) Notice the numerical 

Figure 12.3.  Sample hazard functions for 
the grade of first intercourse data 
displayed on different scales. Sample 
functions are expressed on a logit scale 
(the dashed lines) and complementary 
log-log scale (the solid lines).
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similarity of the parameter estimates—especially for the time 
indicators—and the near coincident deviance statistics (which 
differ by only 0.151). Numerical similarity is common when 
fitting identical models with alternate link functions (and net 
risks of event occurrence are low), and suggests that choice of 
a link function should depend on other considerations.

As with any link, we can derive a fitted baseline hazard 
function by applying the appropriate inverse transformation to 
the parameter estimates and the time indicators (see section 
11.4). The inverse transformation for the clog-log link can be 
obtained by re-expressing equation 12.3 in terms of the 
original probability: (p.424)

Table 12.3: Comparing parameter estimates and 
fitted baseline hazard functions for two discrete-
time hazard models fit to the grade of first 
intercourse data (n = 180, n events =126)

Parameter 
estimates

Fitted baseline hazard

Clog-log Logit

D 7 −2.9733 −2.9943 0.0498 0.0477

D 8 −3.6592 −3.7001 0.0254 0.0241

D 9 −2.3156 −2.2811 0.0940 0.0927

D 10 −1.9001 −1.8226 0.1389 0.1391

D 11 −1.7621 −1.6542 0.1578 0.1605

D 12 −1.3426 −1.1791 0.2298 0.2352

PT 0.7854 0.8736 — —

Deviance 634.501 634.662

One model uses a complementary log-log link; the other a logit link.

(12.4) 
The fourth column of table 12.3 presents the fitted baseline hazard 
function obtained by applying this inverse transformation to the 
model’s parameter estimates. For comparison, the table also 
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presents the fitted baseline hazard function obtained from the 
model fit using a logit link.
Notice the similarity in fitted baseline hazard functions. The 
only time period in which we perceive an appreciable 
difference is the last, when hazard exceeds .20, and even then, 
the difference is trivial. In general, fitted hazard functions 
from models estimated with both link functions will be 
indistinguishable unless hazard is high, once again suggesting 
that the quality of the estimates does not provide a rationale 
for selecting one of these link functions over the other.

When interpreting the effects of substantive predictors, 
however, the interpretation does depend on the link. In both 
cases, we antilog parameter estimates, but whereas an 
antilogged coefficient from a model with a logit link is an odds 
ratio, an antilogged coefficient from a model with a clog-log 
link is a hazard ratio. Antilogging the parameter estimate of 
0.7854 for the predictor PT in the clog-log model yields 2.19. 
In every grade from 7th through 12th, we estimate the hazard 
of first intercourse for boys who experienced a parenting 
transition to be 2.2 times the hazard for their peers raised 
with both biological parents. This interpretation contrasts with 
that from the model with a logit link, which suggests (p.425)

that the odds of first intercourse are 2.4 times the odds for 
boys who experienced a parenting transition.

Which estimate is “right”? Is hazard multiplied by 2.2 or are 
odds multiplied by 2.4? An epidemiologist would be quick to 
remind you that odds-ratios and hazard ratios (also known as 
relative risks) are distinct, but interrelated, measures of effect 
size. As befits their names, one compares odds; the other 
hazards. Numerically, we have:

When hazard is very small, the bottom terms in the odds ratio’s 
numerator and denominator approach 1, making the two ratios 
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nearly identical. When hazard is larger, these bottom terms cannot 
be ignored, and the ratios will differ. For these data, where the 
baseline hazard varies from 0.05 to 0.25, the denominators cannot 
be ignored and hence the estimates of effect size differ. Given the 
similarity in goodness-of-fit, it is difficult to argue that one estimate 
is “right” and the other is “wrong.” The real issue is really the 
choice of statistical model, a topic that we now address.

12.2.3 Choosing between Logit and Clog-Log Links for Discrete-
Time Hazard Models

As the foregoing discussion illustrates, empirical evidence 
rarely indicates the superiority of one link function over 
another. The goodness-of-fit of models with competing link 
functions will differ only if hazard is relatively high during one 
or more time periods. Unless events are especially common, or 
discretization especially coarse, hazard will be low and fitted 
models similar.

How, then, should you choose between alternative link 
functions? In his landmark paper on survival analysis, Cox 
(1972) used a logit link to posit the discrete-time hazard 
model, and this approach enjoys widespread popularity today. 
Among its many advantages are its familiarity, ease of 
implementation, and ease of interpretation. These advantages 
were especially true when no software existed for fitting 
models specified with a clog-log link, but even now—with 
software abundant—the overwhelming popularity of logistic 
regression analysis for binary outcomes cannot be ignored.

If implementation issues are moot, you must base your 
decision on (p.426)  other issues. The primary advantage of 
the clog-log link is that in invoking a proportional hazards 
assumption it yields a direct analog to the continuous time 
hazard model. This was noted as early as 1978 by Prentice and 
Gloeckler, who demonstrated the internal inconsistency in 
Cox’s (1972) original paper. If you believe that the underlying 
metric for time is truly continuous and that the only reason 
you observe discretized values is due to measurement 
difficulties, a model specified with a clog-log link has much to 
recommend it. This suggests that the clog-log link is most 
attractive when analyzing interval-censored data—data in 
which events unfold in continuous time, but your information 
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about event occurrence is restricted to discrete-time intervals 
(see, e.g., Allison, 1995; Hosmer & Lemeshow, 2000).

If data are collected in truly discrete time, the clog-log 
specification has no particular advantage. As Beck (1999); 
Beck, Katz, and Tucker (1998); and Sueyoshi (1995) argue, the 
proportional hazards assumption is no more sacred than the 
proportional odds assumption, and while consistency across 
models is noble, so, too, is simplicity (which decreases the 
chances of mistake). After all, the data “don’t know” whether 
they were generated by a proportional hazards or proportional 
odds model. And why do we need to invoke consistent 
assumptions in discrete and continuous time? When fitting 
linear and logistic regression models to non-censored 
outcomes, we routinely use different link functions: the normal 
link for the linear regression model and the logit link for the 
logistic regression model. Hence, for truly discrete-time data, 
the simpler logit link may suit eminently well.

12.3 Time-Varying Predictors

We introduced a variety of types of time-varying predictors in 
section 5.3 and discussed their advantages in the context of 
the multilevel model for change. As you would expect, similar 
advantages accrue when including time-varying predictors in 
the discrete-time hazard model. In their study of employee 
turnover, Harrison, Virick, and William (1996), for example, 
examined the effect of job performance using two internal 
time-varying predictors. The researchers found effects for 
both concurrent sales volume and monthly rate of change in 
sales volume, concluding that more productive employees and 
those whose sales were on an upward trajectory were less 
likely to leave. When studying precursors of seasonal affective 
disorder (SAD), Young et al. (1997) used an ancillary time-
varying predictor—hours of sunshine—to examine the effect of 
exposure to (p.427)  natural light on disease onset. By 
exploring variation in time to SAD relapse among individuals 
living in different locations, the researchers found evidence to 
support the protective effects of sunlight.

Discrete-time survival analysis adapts naturally to the 
inclusion of time-varying predictors. Because models are fit 
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using a person-period data set, a time-varying predictor simply 
takes on its appropriate value for each person in each period. 
This intuitive behavior allowed us to include a time-varying 
predictor in section 11.3.1 when we explained how to 
construct the person-period data set. Even though we were 
focusing then on time-invariant predictors, we included the 
time-varying predictor DRUG, whose values recorded the boy’s 
reported level of drug use in each specific grade (see figure
11.5).

In this section, we demonstrate how to include time-varying 
predictors in the discrete-time hazard model. We begin, in 
section 12.3.1, by examining the assumptions implicit in a 
model that includes time-varying predictors. In section 12.3.2, 
we show how to fit the model to data and interpret results. We 
conclude, in section 12.3.3, with some words of caution about 
interpreting the effects of time-varying predictors. In addition 
to the issues of reciprocal causation raised in section 5.3.4, 
this model raises other complications that can compromise 
your ability to draw clear convincing conclusions.

12.3.1 Assumptions Underlying a Model with Time-Varying 
Predictors

Conceptually, you need no special strategies to include time-
varying predictors in a discrete-time hazard model. The basic 
model (e.g., equation 11.3) allows for their inclusion because 
each variable has two subscripts—i indexing individuals and j
indexing time periods. To simplify, we suppressed these 
subscripts in equation 11.4 and beyond. We now return to the 
original specification, retaining subscripts i and j when 
appropriate. For example, we can write a model with logit link 
including two predictors, one time-invariant (X 1i) and the 
other time-varying (X 2ij), as:

(12.5)

The model stipulates that individual i’s value of logit hazard in time 
period j depends upon his or her value of X 1, which is constant 
across all occasions, and his or her value of X 2 in time period j.
Given how straightforward this appears, you might ask why 
we devote a special section of our book to time-varying 
predictors in discrete-time hazard models. You might also 
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recognize that we have already included (p.428)  some special 
time-varying predictors in all previous models: the predictors 
representing the “main effect of TIME.” The values of these 
variables—be they dummies or polynomials—vary within
people. The smooth specifications in table 12.1 even include 
the subscript j (TIME j) so as to clarify this predictor’s time-
varying nature.

But most time-varying predictors are special, differing from 
those that represent the main effect of TIME and those that 
are time-invariant. Across rows in the person-period data set, 
these latter predictors are orderly, with values specifiable 
entirely in advance. Most time-varying predictors, in contrast, 
are not so orderly; they can take on any value in any period. 
This possibility—that a predictor can take on different values 
in different time periods—affects the way we conceptualize the 
model’s assumptions.

We illustrate these ideas using data from Wheaton, Rozell, and 
Hall (1997), who examined the link between stressful life 
experiences and the risk of psychiatric disorder. Using a 
random sample of adults, ages 17 to 57, in metropolitan 
Toronto, the researchers conducted a structured interview 
that allowed them to determine whether, and if so at what age 
(in years), each individual first experienced a depressive 
episode. Among the 1393 respondents, 387 (27.8%) 
experienced a first onset between ages 4 and 39. Using the 
same interview, the researchers also ascertained whether, and 
if so at what age, each respondent first experienced 19 
traumatic events, including major hospitalization, physical 
abuse, and parental divorce. Here, we focus on one of these 
stressors, first parental divorce, experienced by one-tenth of 
the sample (n = 145) at risk of an initial depressive episode. 
The time-varying predictor PD ij indicates whether the parents 
of individual i divorced during, or before, time period j. In the 
time periods before the divorce, PD ij = 0; in time periods 
coincident with, or subsequent to, the divorce, PD ij = 1. 
Coding PD ij in this way allows its effect to capture both the 
immediate and long-term impacts of parental divorce.
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As in any discrete-time survival analysis, our first step is to 
select a specification for the main effect of TIME. Because this 
person-period data set is huge (36,997 records) and sparse 
(only 387 events occurred), a completely general specification
—using 36 time dummies—performs poorly, yielding a baseline 
hazard function that fluctuates erratically in the later periods 
and is inestimable in the one early period (age 5) when no one 
reported initial onset. Exploration of the possible polynomial 
specifications of section 12.1 reveals that a cubic function of
TIME fits nearly as well as the completely general 
specification (χ2 = 34.51, 32 d.f., p > .25) and is measurably 
better than a quadratic (χ2 = 5.83, 1 d.f., p < .05). We 
therefore postulate that: (p.429)

(12.6)

Individual i’s value of logit hazard in time period j is a function of 
his or her age and parental divorce status in that particular time 
period.
In specifying this model, we implicitly make three assumptions 
about the relationship between the risk of event occurrence 
and the time-varying predictor. These assumptions, given 
below, are restatements of the three assumptions presented in 
chapter 11 for models with a single time-invariant predictor: 
(1) for each value of the predictor, there is a postulated logit 
hazard function; (2) each of these functions has an identical 
shape; and (3) the distance between each of these functions is 
identical in every time period. When a model includes a time-
varying predictor, we cannot say “for each value of the 
predictor” because the predictor may take on different values 
in different time periods. We therefore assume:

1. For each value of the predictor in time period j, there 
is a postulated value of logit hazard. Notice that we 
refer to the value of logit hazard for each value of the 
predictor in time period j. Interpretation of a time-
varying predictor’s effect must be tied to its values at 
each point in time.
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2. Joining consecutive postulated values of logit hazard 
for constant values of the time-varying predictor yields 
logit hazard functions with identical shapes. The shape 
can be jagged or smooth, but the only hazard functions 
that have identical shapes are those that join 
postulated values of logit hazard corresponding to
constant values of the time-varying predictor. Functions 
joining values of logit hazard corresponding to varying
values of the time-varying predictor will not have 
identical shapes at all!
3. The distance between each of these logit hazard 
functions is identical in every time period. Although the 
values of the time-varying predictor may vary over time, 
its effect on logit hazard in each time period is 
constant. For time-invariant and time-varying 
predictors alike, we assume time-invariant effects on 
logit hazard.

These purposefully general statements apply equally to both time-
varying and time-invariant predictors. For predictors of the latter 
type, these assumptions reduce to those in chapter 11. For models 
with several predictors of either type, simply modify these 
statements so that they describe the behavior of the postulated 
values of logit hazard at all possible combinations of values of the 
predictors.

(p.430) Let’s examine each assumption, beginning with the 
first, which says that to interpret a predictor’s effect, you must 
tie all statements to the predictor’s value in each time period. 
To explore this assumption, consider a second discrete-time 
hazard model that adds a time-invariant gender indicator,
FEMALE:

(12.7)

Adding a time-invariant predictor allows us to contrast the 
comparisons that β1 and β2 assess. First consider β2, which 
assesses the differential risk of initial depression onset (measured 
on a logit hazard scale) for women in comparison to men 
(controlling, of course, for parental divorce status). Because
FEMALE is time-invariant, we need not tie our interpretation to the 
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predictor’s value in a time period—its value in any period is its 
value in all periods. β1, in contrast, assesses the differential in risk 
among people who recently, or previously, experienced a parental 
divorce in comparison to those whose parents are still married 
(controlling for the effects of gender). Because PD is time-varying, 
its effect does not contrast static groups of people—men and 
women—but rather people who differ by unit values on the 
predictor at each point in time (here, respondents with divorced 
and married parents). Although the comparison’s name remains the 
same—it contrasts individuals who have, and have not, experienced 
a parental divorce—the people who constitute the comparison in 
each time period differ.
By including a time-varying predictor we thereby compare
different groups of people at different times. As individuals 
experience a parental divorce, they switch group membership 
(although for the version of PD we use here, each person can 
switch only once, and in only one direction). Not so with time-
invariant predictors. In evaluating the effects of FEMALE, β2

consistently compares the risk differential for the same groups 
people in every time period. Even though the number of men 
and women being compared diminishes over time as the risk 
set decreases (through event occurrence and censoring), no 
member of the risk set ever switches group membership: once 
a woman, always a woman.

Does it make sense to compare different groups of people at 
different times? This flexibility is what allows the model to 
capture the essence of a time-varying predictor’s effect—as 
the predictors’ values change, the groups compared change as 
well. To understand why this makes sense, consider the
sample proportions of the risk set who experienced the target 
event (here, depression onset) in each time period (here, ages 
4 through 39) as a function of each person’s time-dependent 
status on the time-varying (p.431)  predictor (here, PD). 
Proportions like these are easily obtained by cross-tabulating 
three variables in the person-period data set—the period 
indicator (here, AGE), the time-varying predictor (here, PD), 
and the event indicator, here DEPRESS). Although you might 
think it wise to examine sample hazard functions for 
individuals who share temporal patterns of time-varying 
predictors, we rarely do so, for two reasons. First, the values 
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of most time-varying predictors manifest so many possible 
temporal patterns that each unique group of individuals with 
the same profile is too small, yielding erratic estimates. Even a 
constrained dichotomy like PD manifests 37 possible patterns 
of value over time—one for each of the 36 ages when a 
parental divorce could occur, as well as a 37th pattern 
(consistent 0’s) for those whose parents remained married. 
For a dichotomy that can swing freely between its two values, 
2J temporal patterns are possible, and for continuous 
predictors, the number of patterns usually exceeds the 
number of individuals under study! Second, the model does 
not postulate a relationship between predictor patterns and 
logit hazard. The model expresses individual’s i’s value of logit 
hazard in time period j as a function of the values of the 
predictors—both time-varying and time-invariant—in that time 
period. Sample hazard functions for individuals who share 
particular temporal patterns may be interesting, but they are 
not what you model.

Figure 12.4 presents, by age, the proportions of the risk set 
that experienced an initial depressive episode as a function of 
their parental divorce status.2 We plot the proportions on a 
raw scale in the top panel and a logit scale in the bottom 
panel, using •’s for those whose parents are married in the 
period (PD = 0) and +’s for individuals who experienced a 
parental divorce in this, or any previous, period (PD = 1). Over 
and above the effect of parental divorce, notice that the 
proportion experiencing an initial depressive episode is low 
during childhood, accelerates during the teens, peaks in the 
early twenties, and declines somewhat thereafter. Beyond this 
temporal pattern, the proportions are higher among those 
whose parents divorced (the +’s) than among those whose 
parents are still married (the •’s).

How does the hypothesized model reflect these patterns? To 
clarify the link between the model, its assumptions, and the 
sample data, we superimpose a hypothetical specification of 
equation 12.6 on each display. The curves join consecutive 
population values of (logit) hazard for constant values of the 
time-varying predictor. As postulated in assumption 2, this 
yields logit hazard functions with identical shapes (which, of 
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Figure 12.4.  Understanding the link 
between sample data and the postulated 
model when examining the effects of 
time-varying predictors. Proportions of 
the risk set at each age who experienced 
an initial depressive episode at that age, 
as function of their parental divorce 
status at that age, expressed on a raw 
scale (top panel) and logit scale (bottom 
panel). •’s are for those whose parents 
remain married in the period; +’s are for 
individuals who experienced a parental 
divorce in this, or any previous, period.

course, differ in shape when examined on a hazard scale). The 
lower function indicates the hypothesized risk of initial 
depression onset for individuals with a constant value of PD = 
0 over time, those who never experienced a (p.432)

parental 
divorce (until 
age 39, at 
least). The 
upper function 
indicates the 
hypothesized 
risk of initial 
depression 
onset for 
individuals 
with a constant 
value of PD = 
1, those whose 
parents 
divorced when 
they were age 
4 or younger. 
As postulated 
in assumption 
3, the distance 
between these 
logit hazard 
functions is 
identical in 
every time 
period. In 
equation 12.6, 
the α’s 
describe each 
function’s 
identical shape 
and β1 assesses 
the magnitude 
of the constant 
vertical 
distance 
between them.

(p.433)

Notice that we do not present explicit population (logit) 

Figure 12.4.  Understanding the link 
between sample data and the postulated 
model when examining the effects of 
time-varying predictors. Proportions of 
the risk set at each age who experienced 
an initial depressive episode at that age, 
as function of their parental divorce 
status at that age, expressed on a raw 
scale (top panel) and logit scale (bottom 
panel). •’s are for those whose parents 
remain married in the period; +’s are for 
individuals who experienced a parental 
divorce in this, or any previous, period.
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hazard functions for individuals with varying values of PD
over time. We do not do so because assumptions 2 and 3 refer 
to groups of individuals with constant values of the time-
varying predictor. Yet the model in equation 12.6 allows us to 
hypothesize the existence of other population hazard functions 
resulting from all possible temporal patterns of value for the 
time-varying predictor, one for each pattern. Here, we 
hypothesize the existence of 35 additional population 
functions, one for each of the 35 ages (from 5 to 39) when 
parents could divorce.

What do these additional functions look like? Not surprisingly, 
they coincide with portions of the two functions shown in 
figure 12.4. As postulated in assumption 1, logit hazard takes 
on a distinct value for each value of the time-varying predictor 
in time-period j. Because PD is dichotomous, only two 
population values of (logit) hazard are possible in each period. 
In periods before a parental divorce, the values are those on 
the bottom function. In the year of a parental divorce, the 
values are those on the upper function. And because of the 
way we have coded PD—it indicates whether an individual’s 
parents divorced at this or any previous age—people remain on 
the upper function from the time of parental divorce forward. 
For people whose parents divorced when they were 15, for 
example, they initially coincide with the lower curve, jump to 
the upper curve at age 15, and remain there in perpetuity. For 
people whose parent divorced when they were 32, they follow 
the lower curve for longer, until age 32 when they, too, jump 
to the upper curve (and stay there in perpetuity). And given 
the way we have postulated the model, we also assume that 
after age 32, the (logit) hazard functions for these two groups 
are indistinguishable from each other and from those for 
anyone who experienced a parental divorce at any earlier age.

This discussion demonstrates that population (logit) hazard 
functions for individuals with varying values of time-varying 
predictors will not share a common shape. Even in this 
example, in which every population (logit) hazard function 
begins low, jumps up, and remains at this second level in 
perpetuity, the timing of the jump, and hence the shape of the 
function, differs across individuals in the population. Time-
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varying predictors whose behavior is less constrained than PD
can yield population (logit) hazard profiles with even more 
disparate shapes. To illustrate, consider that:

• If a time-varying predictor is continuous, and some 
members of the risk set have increasing values while others 
have decreasing values, the population (logit) hazard 
profiles may cross! The key to understanding this paradox 
is to remember that the (p.434)  assumptions of identical 
shapes and equidistance hold only for individuals who take 
on time-invariant values of the time-varying predictors. 
When the values of these predictors vary, these 
assumptions need not hold.

• If a time-varying predictor is dichotomous, but it can take 
on one of its values on only one occasion, one of the 
population (logit) hazard profiles, while easily drawn, is 
theoretically impossible! If we coded parental divorce as a 
short-term event, occurring only in the time period when 
the divorce occurs, a population (logit) hazard profile for 
individuals with a constant value of 1 cannot exist. 
Hypothetically, though, a function for this constant value 
can still be drawn.

The display of selected functions that are identical in shape and 
equidistant does not imply that all possible logit hazard functions 
share these properties. So, too, the ability to plot a particular 
function does not imply that the function describes the risk of event 
occurrence for a realistic group of people. To accurately interpret a 
time-varying predictor’s effect, you must understand how the 
predictor actually varies with time in practice.
Finally, consider assumption 3: that the effect of the time-
varying predictor is identical over time. We discuss this 
assumption briefly because it is identical to an assumption 
invoked in all discrete-time hazard models: In each time 
period, regardless of predictor type, unit differences in a 
predictor’s values correspond to constant differences in logit 
hazard. In the model in equation 12.6, which compares people 
whose parents have divorced with those who have not, this 
differential is always β1. The magnitude of this effect does not 
depend upon either: (1) the respondent’s age; or (2) the 
respondent’s age at parental divorce. In adopting this 
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specification, we assume that the effect of parental divorce on 
the risk of initial depression onset is the same for a child, a 
teenager, or an adult. So, too, we assume that the effect of 
parental divorce is the same whether the divorce occurred 
when the respondent was a child, teenager, or adult. This 
assumption of time-invariant effects—for both time-varying 
and time-invariant predictors—is, of course, just an 
assumption. For now, we continue to cleave to its validity. In 
section 12.4, we examine its tenability and relax it when 
necessary.

12.3.2 Interpreting and Displaying Time-Varying Predictors’ Effects

You can fit a discrete-time hazard model with time-varying 
predictors using exactly the same strategies presented in 
chapter 11. In the (p.435)  person-period data set, use a 
logistic regression routine to regress the event indicator on 
variables representing the main effect of TIME and the desired 
predictors. Hypotheses can be tested by comparing deviance 
statistics for nested models that include, and exclude, 
particular predictors. Fitting the model in equation 12.7 to the 
depression data, we find:

(12.8)

Comparing deviance statistics for the two models that individually 
exclude PD and FEMALE shows that each predictor is statistically 
significant controlling for the effect of the other (differences of 
5.93 and 26.19, respectively, both exceeding the .05 critical value 
of 3.84 in a χ2 distribution on 1 d.f.).
How do we interpret the magnitude of these effects? 
Antilogging the coefficient for FEMALE (e0.5455 = 1.73) we 
estimate that, controlling for the effect of parental divorce, the 
odds of initial depression onset are 73% higher for women. 
Antilogging the coefficient for PD (e0.4151 = 1.51), we estimate 
that, controlling for the effect of gender, at every age from 4 
to 39, the odds of initial onset are about 50% higher for 
individuals who experienced a concurrent, or previous, 
parental divorce.
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Notice how we modify our interpretation for time-varying 
predictors. For a time-invariant predictor like FEMALE, the 
increased risk of depression onset among women takes it toll 
in every time period. Interpretations need not be tied to any 
single time period or set of time periods. For a time-varying 
predictor like PD, the increased risk that results from parental 
divorce “kicks in” only in those time periods concurrent with, 
or subsequent to, the breakup. In every period from the 
divorce on, the odds of experiencing an initial depressive 
episode are one-half higher. In earlier periods, before the 
divorce occurs, these individuals—who are later at greater risk 
of depression—are not at any greater risk than peers whose 
parents remain married for years to come. Time-bounding the 
comparative statement reinforces the notion that a time-
varying predictor’s effect must be tied to its value in each time 
period. Equivalent time-bounding modifications are made for 
continuous time-varying predictors.3

Plots of fitted hazard and survivor functions for prototypical 
individuals provide another vehicle for conveying a time-
varying predictor’s effect. When offering strategies for 
selecting prototypical values for time-invariant predictors (see 
section 4.5.3), we suggested you select substantively 
interesting values that cover a suitable range of variation. 
Selection (p.436)  of prototypical values for time-varying 
predictors is far more complex because you must specify the 
predictor’s values in not just one, but in all, time periods. We 
therefore suggest that you begin by selecting either:

• Time-invariant values. For the time-varying predictor PD, 
create two prototypical individuals: one who never
experienced a parental divorce (PD j = 0, for all j periods) 
and one who experienced a parental divorce during, or 
before, the first time period (PD j = 1 for all j periods).

• Time-varying values that correspond to substantively 
interesting patterns of temporal variation. Among the 153 
respondents who experienced a parental divorce before age 
40—regardless of whether they experienced a depressive 
episode—the median (respondent) age at (parental) divorce 
was 10, with lower and upper quartiles of 4 and 16. This 
leads to the creation of four prototypes: one who never 
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experienced a parental divorce (representing 90% of the 
sample) and three others who experienced a divorce at an 
early (4), middle (10), and later age (16).

When a time-varying predictor is dichotomous, like PD, these 
strategies are relatively straightforward. When a predictor is 
continuous, these strategies can become complex, as you must 
consider the possibility that the predictor will take on many
different values in each time period. For now, we focus on 
dichotomies; at the end of this section, we adapt these strategies 
for the continuous case.
How can you decide between these approaches? When 
logically plausible, we recommend time-invariant values 
because the resultant fitted hazard functions reflect the 
assumptions of the model (in that, on a logit scale, they have 
an identical shape and are equidistant). For time-varying 
predictors whose values cannot remain constant over time, 
however, the resultant displays may be theoretically 
impossible and potentially misleading. In these situations, we 
recommend selecting values that reflect substantively 
interesting patterns of temporal variation, for at least the 
fitted functions will be plausible and meaningful. 
Unfortunately, these fitted hazard functions, even when 
plotted on a logit scale, will not be equidistant sharing an 
identical shape. We have seen this lead to misinterpretation 
and the misimpression that assumptions are violated. In the 
extreme, if values for one prototypical individual move in one 
direction (e.g., 0, 0, 0, 1, 1, 1) while those for a second move 
in the other (e.g., 1, 1, 1, 0, 0, 0), the fitted (logit) hazard 
functions may cross, creating the erroneous impression that 
the effect of the predictor reverses itself over time, when in 
fact, it remains constant. Regardless of your approach, 
remember that the decision to present fitted functions for a 
small (p.437)
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Figure 12.5.  Displaying the results of 
fitting a discrete-time hazard model with 
a time-varying predictor. Fitted hazard 
and survivor functions for men and 
women who vary with respect to their 
parental divorce status. The darker 
functions are for individuals who did not 
experience a parental divorce before age 
40; the fainter functions are for 
individuals who experienced an initial 
parental divorce at age 4 or earlier.

number of 
prototypical 
patterns does 
not imply that 
these are the 
only ones 
possible. As 
when 
presenting 
fitted hazard 
and survivor 
functions for 
continuous 
time-invariant 
predictors, the 
presentation of 
a few functions 
does not 
negate the 
existence of 
many more.
In figure 12.5, 
we present 
four fitted 
hazard 
functions, two 
for women 
and two for 
men. If we 
treat men 
who never 
experienced a 
parental 
divorce as a 
baseline 
group—they 
have the 
lowest hazard 
function here— (p.438)  the display depicts the elevated risk of 
initial depression onset for men whose parents divorced 
before age 4 (those on the upper male hazard function) and 
women, regardless of whether and when they experienced a 
parental divorce. When describing this display, we would also 

Figure 12.5.  Displaying the results of 
fitting a discrete-time hazard model with 
a time-varying predictor. Fitted hazard 
and survivor functions for men and 
women who vary with respect to their 
parental divorce status. The darker 
functions are for individuals who did not 
experience a parental divorce before age 
40; the fainter functions are for 
individuals who experienced an initial 
parental divorce at age 4 or earlier.
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emphasize the existence of many implicit fitted hazard 
functions—for men and women who experienced a parental 
divorce at any time between ages 4 and 39. Each of these 
groups would initially follow the bottom function for their 
gender (while their parents are still married) and would then 
jump to the upper function for their gender in the year of the 
parental divorce. For this type of predictor, then—a dichotomy 
whose values follow a unidirectional path—each pair of fitted 
hazard functions in figure 12.5 provides an envelope of all 
those possible—the bottom two provide an envelope for men; 
the top two provide an envelope for women. Focusing 
attention on just these two sets reduces clutter and highlights 
the most extreme contrasts possible.

Because survivor functions cumulate complementary values of 
hazard across successive time periods, plots of fitted survivor 
functions provide a different window on the effects of time-
varying predictors. In the bottom panel of figure 12.5, we 
present fitted survivor functions—for men and women—that 
describe the two extremes for each group. Within gender, the 
top function is for a person whose parents remained married 
until age 39; the bottom is for a person who experienced a 
parental divorce by age 4. What about the fitted survivor 
functions for individuals who experienced a parental divorce 
between age 5 and 39? For each of the 35 additional fitted 
hazard functions not shown in the top panel there is a 
corresponding fitted survivor function not shown in the bottom 
panel. The two pairs of fitted survivor functions in figure 12.5
also provide an envelope for them, but this envelope behaves 
differently than that for fitted hazard functions. Because 
survivor functions cumulate the effects of hazard, the 37 fitted 
survivor functions display distinct values in all time periods 
subsequent to the parental divorce. As individuals experience 
a parental divorce, they do not jump from one fitted survivor 
function to the other (as they do with the fitted hazard 
functions). Fitted survivor functions remain coincident only 
until the (respondent) age of parental divorce. When parents 
divorce, the fitted survivor function drops, taking a distinct 
path shared only by those who also experienced a parental 
divorce at that age. Their fitted survivor function never joins 
the others (for this predictor) at any time in the future. In 
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contrast, the fitted hazard functions for men who experienced 
a parental divorce at any earlier age all eventually converge.

What should you do if the time-varying predictor is 
continuous? Above all else, do not base your selection on the
observed distribution of a (p.439)  predictor in each time 
period. To understand why, we describe a study we conducted 
of the career durations of 5100 newly hired teachers in North 
Carolina (Murnane, Singer, & Willett, 1989). Teachers’ time-
varying salary was a statistically significant predictor of their 
stay-or-leave decisions: those paid lower salaries (adjusted for 
inflation) were more likely to leave. When selecting 
prototypical values for display, we did not use the person-
period data set to compute the average salary paid to the 
teachers remaining each year. Although easy to obtain, this 
information is not useful because the average salary paid to 
teachers in the data set in later years is higher simply because 
of the effect of salary on job duration: many of poorly paid 
teachers already left! If we used the “average” salary among 
remaining teachers to present results, the fitted values of 
hazard in the later years would be artificially low.

We therefore used an alternative approach, relying on 
information external to the data set. Using state-level data, we 
constructed an “average salary stream for North Carolina 
teachers.” Selecting the first year of data collection as our 
base year, we computed the average salary paid to a first-year 
teacher in that year, the average salary for a second-year 
teacher in the following year, and so on. All salaries were 
adjusted for inflation (as the time-varying predictor had been). 
We then presented fitted hazard functions for teachers in the 
average salary stream and for two other prototypes: one 
consistently paid $2000 less and another consistently paid 
$2000 more. We chose these $2000 increments because they 
were (1) within the range of the salaries offered; (2) 
substantively interesting; and (3) easily communicated.

If you lack an external source for creating a prototypical 
stream of values, you have two options. One is to use the 
distribution of the predictor in the first time period before 
anyone experiences any events. You can then construct a 
prototypical stream by postulating systematic period-to-period 
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changes from the initial values. A second option, available 
when event occurrence does not remove an individual from 
the overall data set (although it obviously removes them from 
the person-period data set for survival analysis), is to use the 
predictor’s distribution in the full data set. This is precisely 
what we did when we described the distribution of respondent 
age at parental divorce earlier in this section. Although 145 of 
the 1393 respondents experienced a parental divorce while at 
risk of an initial depressive episode, another 8 experienced a 
subsequent parental divorce. The descriptive statistics about 
respondent age at parental divorce given earlier were based 
on the full set of 145 + 8 = 153 individuals.

Some readers may perceive an irony in this discussion. We 
caution against selecting prototypical values based on the 
observed distribution (p.440)  of a predictor over time, yet we 
use these very data for model fitting. If the data are not “good 
enough” for the modest task of prototypical value selection, 
how can they be “good enough” for the important task of 
model fitting? The resolution of this conundrum lies in another 
assumption of the discrete-time hazard model: no unobserved 
heterogeneity. The model assumes that all heterogeneity in 
hazard across individuals is “observed,” embodied in its 
predictor effects. While this assumption cannot be true—no 
model is perfect and all omit some important predictors—as a 
practical matter, we proceed as if it is. (We discuss this 
assumption further in section 12.6.) As the risk set decreases 
owing to event occurrence, its composition changes, changing 
the distribution of both time-varying and time-invariant
predictors. The distribution of any predictor in later time 
period will differ from its distribution at the beginning of time. 
When selecting prototypical values of time-invariant 
predictors, we did not confront this issue because we 
examined these predictors’ distribution only at the beginning 
of time. Were we to examine their distribution in later periods, 
they, too, would differ. Under the assumption of no 
unobserved heterogeneity, we postulate that, in any time 
period, those individuals in the risk set who share particular 
values of the predictors (whether time-varying or time-
invariant) are representative of everyone in the population 
who would share these values at this point in time. This allows 
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the changing risk set to form a valid basis for model fitting 
despite its unsuitability for prototypical value selection.

12.3.3 Two Caveats: The Problems of State and Rate Dependence

When we introduced the use of time-varying predictors in the 
multilevel model for change, we devoted an entire section 
(section 5.3.4) to the problem of reciprocal causation. When 
including time-varying predictors in a hazard model, not only 
do all of those problems apply, two new problems crop up:
state dependence and rate dependence.

A time-varying predictor is state-dependent if its values at time
t j are affected by an individual’s state (event occurrence 
status) at time t j: EVENT ij. A time-varying predictor is rate-
dependent if its values at time t j are affected by the 
individual’s value of hazard (the “rate”) at time t j: h(t ij). To 
illustrate this distinction, imagine studying the relationship 
between marital dissolution and two time-varying predictors: 
employment status and spousal satisfaction. Both predictors 
are likely negatively associated with the risk of divorce. But 
what is the connection between predictors and outcome? Yes 
it makes sense that employment is good for marital (p.441)

stability (or at least that unemployment is bad) and certainly 
spousal satisfaction must also be a plus. Yet a model that links 
contemporaneous values of these time-varying predictors with 
marital status cannot confirm the direction of the link. Isn’t it 
possible that employment is affected by marital status, since 
married individuals are more likely to be working? If so, your 
inferences are clouded by state dependence. And isn’t it 
possible that spousal satisfaction is affected by someone’s risk 
of divorce, since marital instability must decrease satisfaction? 
If so, your inferences are clouded by rate dependence.

Although defined and ancillary time-varying predictors 
generally escape problems of rate and state dependence, 
contextual and internal predictors do not. The core problem is 
that these types of predictors can be potentially influenced 
either by an individual’s event status at time t j or his hazard at 
time t j. Given that contextual and internal time-varying 
predictors are so important, what should you do?
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As suggested in section 5.3.4, use theory as a guide, play your 
own harshest critic, and determine whether your inferences 
are clouded by these problems. Second, if your data allow, 
recode the time-varying predictors so that their coding in time 
period j reflect their values in previous time periods. As with 
the multilevel model for change, a hazard model does not 
require contemporaneous coding. Most researchers use this 
approach without thinking. Yet in some contexts, it might be 
more logical to use lagged predictors to link prior predictor 
status with current outcome status. Your hypothesized models 
may be more compelling and less prone to inferential 
problems.

Lagged predictors are simple to construct and easy to 
interpret. In the depression onset study, suppose we had 
wanted to study the link between parental and child 
depression. We would create a time-varying predictor 
indicating whether the parent had experienced a depressive 
episode at each respondent age. Next, we would create a 
series of lagged predictors whose values indicated whether 
the respondent’s parent experienced a depression in the 
previous year (a lag of one period), the year before that (a lag 
of two periods) and perhaps even the year before that (a lag of 
three periods). The first lagged predictor would assess the 
impact of parental depression in the year after the episode, 
the second lagged predictor would assess the impact in the 
year after that, and so on. Lagged predictors make it difficult 
to argue rate or state dependence because an individual’s 
depression status or risk of depression onset at any age is 
unlikely to have affected his or her parental depression status 
one to three years earlier.

The popularity of lagged predictors is increasing as 
researchers confront the inferential dilemmas of state and rate 
dependence. In their (p.442)  study of the link between 
adolescent family structure and the risk of a premarital birth, 
Wu and Martinson (1993) lagged all time-varying predictors 
by one year. They argued that although the occurrence, or 
risk, of a premarital birth might increase the risk of parental 
transitions in a contemporaneous, or subsequent, year, it is 
difficult to imagine this could happen a full year earlier, before 
either the woman (or her parents) could know about the birth. 
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Similarly, in their 12-week study of relapse among former 
cocaine, nicotine, and alcohol users, Hall, Havassy, and 
Wasserman (1990) lagged all time-varying predictors by one 
week. These researchers argued that it is the individual’s 
status in the prior week that is the substantively interesting 
predictor of relapse in the next.

Lagging, of course, is no panacea. First, it may require 
imputation for the first time period because few researchers 
collect data that describe the values of predictors occurring 
before the first possible event occurrence. Although you could 
discard the first time period entirely and begin your analyses 
one period later, this wasteful approach can discard 
potentially important information. Second, lagged predictors 
can be less compelling theoretically. It would be a shame not 
to explore the contemporaneous link between parental and 
child depression onset, for example, even if the investigation is 
clouded by issues of state and rate dependence. Resolution of 
a potential interpretive dilemma may be too high a price to pay 
if the resulting analyses divert attention from more 
substantively interesting issues.

To illustrate, consider an extreme example of this last point. In 
recent years, researchers have begun to explore anticipatory 
effects, in which a predictor in a later time period may be 
associated with event occurrence in an earlier period. 
Although this may seem backwards, the idea is more plausible 
than it first appears. In the depression onset study, for 
example, Wheaton and colleagues (1997) actually 
hypothesized that the risk of depression onset begins to rise in 
the year or two prior to a parental divorce. Similarly, 
Yamaguchi and Kandel (1985) hypothesized that the risk of 
cocaine onset begins to drop in the year immediately 
preceding marriage. Both sets of researchers found empirical 
evidence to support these anticipatory effects by coding a 
time-varying predictor’s values to reflect future status. To 
respond to the obvious criticisms of reciprocal causation, each 
argued that the value of the predictor (parental divorce or 
marriage), while reflecting status at a later point in time 
actually describes a longer process that began prior to the 
official transition. Neither contemporaneous nor lagged 
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predictors would have uncovered this effect. Our parting 
words are simple: in variable construction, as in all things 
analytic, methodological advice must always be supplemented 
with common sense and substantive theory.

(p.443) 12.4 The Linear Additivity Assumption: 
Uncovering Violations and Simple Solutions

All the hazard models postulated so far have invoked a 
familiar, but restrictive, assumption: that unit differences in 
the value of a predictor (whether time-invariant or time-
varying) correspond to fixed differences in logit hazard. This is 
known as the “linear additivity assumption” because we 
postulate that a predictor’s effect does not depend upon: (1) 
the values of other predictors in the model (i.e., the effect is
additive); or (2) the position of the unit difference along its 
scale (i.e., the effect is linear). When studying the relationship 
between salary and job duration, for example, the first 
assumption stipulates that a $1 difference has the same effect 
for everyone distinguished by other predictors in the model—
for men and women, staff and management. The second 
assumption stipulates that this $1 difference has the same 
effect across the entire salary spectrum. This constrains the 
differential in risk for employees making $25,000 versus 
$25,001 to be identical to that for employees making $125,000 
versus $125,001.

We expect that all readers are comfortable evaluating the 
tenability of these assumptions in other statistical models and 
making corrections when appropriate. Indeed, we did not even 
raise these issues when discussing the multilevel model for 
change as we expect you can figure out how to address these 
issues in that context. When fitting discrete-time hazard 
models, however, you do not have access to many of the 
individual level tools you typically use to evaluate these 
assumptions—plots of individual data, plots of residuals vs. 
predictors, and so on. Because the focus on hazard causes you 
to analyze group level summaries, model violations can be 
more difficult to discern. We therefore devote this section to 
introducing practical strategies for diagnosing and correcting 
violations of the linear additivity assumption.
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12.4.1 Interactions Between Substantive Predictors

The gulf between substantive theory and empirical research is 
great when it comes to the study of statistical interactions. 
Almost every discussion of behavior—from psychology to 
psychiatry to political science to economics—suggests that 
predictors’ effects may differ depending upon an individual’s 
background, culture, and environment. Yet most of the models 
presented in substantive journals emphasize main effects. 
Perhaps this “main effects” bias is understandable. Most 
researchers collect data on so many predictors that it is 
difficult enough to examine all main effects, let alone the many 
pair-wise and higher order interactions. Add to this the

(p.444)  fact that statistical power available for detecting 
interaction effects in any sample is lower than that available 
for detecting main effects, and exploration of interactions 
seems an unrewarding task.

We do not advocate fishing expeditions. Open searches for 
interactions can be counterproductive, leading to the 
discovery of many “effects” that result from little more than 
sampling variation. But there are at least two circumstances 
when a guided search for interactions is crucial:

• When theory (or common sense!) suggests that two (or 
more) predictors will interact in the prediction of the 
outcome. If you hypothesize the existence of interactions a 
priori, your search will be targeted and efficient.

• When examining the effects of “question” predictor(s), 
variables whose effects you intend to emphasize in your 
report. You need to be certain that these predictors’ effects 
do not differ according to levels of other important 
predictors, lest you misrepresent your major findings.

With this in mind, we now demonstrate how to (1) explore your 
data for the possibility of statistical interactions; and (2) include 
the additional appropriate terms when necessary.
We illustrate these ideas using data from Keiley and Martin 
(2002), who examined the effect of child abuse (ABUSED) on 
the risk of first juvenile arrest. In a sample of 1553 
adolescents—887 of whom were abused—342 were arrested 
between ages 8 and 18. Because ABUSED was their focal 
predictor, Keiley and Martin wanted to ensure that they did 
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not erroneously conclude that its effect held equally for all 
individuals when, in fact, it might differ across groups. The 
researchers therefore investigated the interaction between
ABUSED and all other predictors, finding that its effect 
differed by the youth’s race.

How might you uncover a hint of a statistical interaction 
during exploratory analysis? Begin by recalling that, in some 
ways, interaction effects are like main effects—the only 
difference is that they indicate that the effect of one predictor 
is conditioned or moderated by levels of another. So, just as we 
explore main effects by examining within-group sample hazard 
functions, we explore interaction effects by examining within-
group functions defined by combinations of predictors.

The top panel of figure 12.6 presents sample logit hazard 
functions computed separately for the two levels of the 
predictor ABUSED. The left side presents results for White 
youths (two-thirds of the sample); the right side presents 
results for Black youths. In examining plots like these, we 
initially ask the same two questions that we ask when 
examining any set of sample hazard functions: (1) What is the 
shape of the function for (p.445)
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Figure 12.6.  Uncovering statistical 
interactions between substantive 
predictors. The top panel presents sample
(logit) hazard functions for age at first 
juvenile arrest for youths who have (dark 
lines) and have not (dashed lines) been 
abused, by race. The bottom panel 
presents fitted (logit) hazard functions for 
White and Black youths as a function of 
their abuse status.

(p.446)  each 
group? and (2) 
Does its level 
differ across 
groups? Here 
we find that 
the risk of first 
juvenile arrest 
is low during 
childhood, 
accelerates 
during the teen 
years, and 
peaks between 
ages 14 and 
17. We also 
find that 
youngsters 
who have been 
abused are 
consistently at 
greater risk of 
first arrest 
than their 
peers who 
have not been 
abused. But 
because we are 
looking for 
symptoms of 
an interaction, 
we supplement 
these two 
questions with 
a third: Does 
the magnitude 
of the differential in level vary across groups? Among White youths, 
the risk differential associated with abuse is notable, but among 
Black youths, it is profound. A differential magnitude in risk like 
this suggests a possible statistical interaction between predictors.
As you would expect, we can test for an interaction by creating 
a cross-product term and adding it as a predictor to a model 
that includes the component main effects. By comparing the 
goodness-of-fit of nested models that include, and exclude, the 
cross-product, you test whether the interaction is statistically 

Figure 12.6.  Uncovering statistical 
interactions between substantive 
predictors. The top panel presents sample
(logit) hazard functions for age at first 
juvenile arrest for youths who have (dark 
lines) and have not (dashed lines) been 
abused, by race. The bottom panel 
presents fitted (logit) hazard functions for 
White and Black youths as a function of 
their abuse status.
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significant. Applying this approach to the juvenile arrest data, 
we fit two models: one that includes 11 time indicators and the 
main effects of ABUSED and BLACK; and a second that adds 
the cross-product ABUSED by BLACK. As the difference in 
deviance statistics between these models is 4.05 (p < .05, 1
d.f.), we conclude that there is a statistically significant 
interaction between ABUSED and BLACK in the prediction of 
the occurrence of juvenile arrest.

As in linear (or logistic) regression, we interpret interaction 
effects by simultaneously considering all the constituent 
parameters, for the cross-product term and its main-effect 
components. The parameter estimates for ABUSED, BLACK, 
and ABUSED × BLACK are 0.3600, 0.2455, and 0.4787, 
respectively. As both predictors are dichotomies, this leads to 
consideration of four prototypical individuals, who represent 
all possible combinations of ABUSED and BLACK:

Prototype ABUSED BLACK Combined 
Parameter 
Estimates

Estimated 
Odds Ratio

White/not 
abused

0 0 0 × 0.3600 + 0 
× 0.2455 + 0 × 
0.4787 = 
0.0000

1.00

White/
abused

1 0 1 × 0.3600 + 0 
× 0.2455 + 0 × 
0.4787 = 
0.3600

1.43

Black/not 
abused

0 1 0 × 0.3600 + 1 
× 0.2455 + 0 × 
0.4787 = 
0.2455

1.28

Black/
abused

1 1 1 × 0.3600 + 1 
× 0.2455 + 1 × 
0.4787 = 
1.0842

2.96

(p.447)  The first prototype—a White youth who was not abused—
is the “baseline group” for whom all substantive predictors are 0. 
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The other prototypes represent different combinations of 
predictors. In the column labeled “Combined Parameter 
Estimates,” we multiply each coefficient—for ABUSED, BLACK, and
ABUSED × BLACK—by the prototypical values and total the result. 
Because both predictors here are 0/1 dichotomies, this calculation 
is simple. With continuous predictors, the prototypes will reflect 
other specific values but the procedure will be the same.
This table illustrates the statistical interaction between abuse 
and race. Among Whites, the odds of first juvenile arrest are 
43% higher if the youth was abused. Among youths who have 
not been abused, the odds of first juvenile arrest are 28% 
higher for Blacks in comparison to Whites. But it is Black 
youths who have been abused who are at especially great risk 
of first juvenile arrest. In comparison to their white peers who 
were not abused, their odds of first arrest are nearly three 
times as high. This super-elevated risk is much greater than 
the sum of each of the separate risks associated with abuse or 
race. In other words, it is the co-occurrence of these 
circumstances—being a Black youth who has been abused—
that augers particularly ill for life chances.

We can also examine fitted hazard (and survivor) functions for 
these prototypes. The bottom panel of figure 12.6 presents the 
fitted hazard functions (on a logit scale for consistency). This 
display reinforces the low risk of first arrest among both Black 
and White youths who have not been abused (as represented 
by the two dashed lines). Whites who have been abused face a 
somewhat elevated risk of arrest in comparison to both 
nonabused groups. But Black youths who have been abused 
are at much greatest risk. Their fitted (logit) hazard function is 
further away from the other functions than it would have been 
if each predictor had only been represented by a main effect.

12.4.2 Nonlinear Effects

Like their “main effects” bias, empirical researchers also 
display a “linear” bias, in that most fitted models reported in 
substantive journals incorporate predictors in a raw 
untransformed state. But why should predictors have only 
linear effects? Shouldn’t a $1000 raise have a bigger effect for 
an employee at the low end of a salary scale than for an 
employee at the high end? Like the additivity assumption, the 
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linearity assumption may indeed hold, yet it is always wise to 
review its tenability as well.

There are two general strategies for exploring the linearity 
assumption. The simplest approach—although somewhat blind
—is to fit additional (p.448)  models, replacing the raw 
predictor with a re-expressed version. Although the additional 
models also invoke a linearity constraint, use of re-expressed 
predictors guarantees that the effects represent nonlinear 
relationships for the raw predictors. The ladder of power 
(section 6.2.1) provides a dizzying array of options. The 
second approach is to categorize each continuous variable into 
a small number of groups, create a series of dummy variables 
representing group membership, and visually examine the
pattern of parameter estimates for consecutive dummies to 
deduce the appropriate functional form. If the pattern is 
linear, retain the predictor in its raw state; if not, explore an 
alternative specification.

As the first approach is straightforward, we illustrate the 
second, using the depression onset data presented in section 
12.3. In addition to the effects of gender (FEMALE) and time-
varying parental divorce (PD), we now examine the effect of a 
third predictor, number of siblings (NSIBS). Stress 
researchers hypothesize that children from larger families are 
less prone to depression, and if this is true, NSIBS should be 
negatively associated with risk.4 To investigate this 
hypothesis, table 12.4 presents the results of fitting three 
discrete-time hazard models to these data, each using a 
different strategy for representing the sib-size effect.

Begin with Model A, which finds the expected negative effect 
of NSIBS. Inverting the estimate’s antilog (e−0.0814) for ease of 
interpretation yields 1.08. For every extra sibling, the 
estimated odds of not experiencing an initial depressive 
episode are 8% higher. This model constrains the effect of sib-
size to be linear. If we use the model to compare two pairs of 
prototypical individuals—two from small families (with one or 
two siblings) and two from large families (with six or seven 
siblings)—the predicted differential in risk of initial depression 
onset associated with one additional sibling will be identical.
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Might the protective benefit of siblings be unequal across the 
family size spectrum? With Model A, we cannot know because 
we constrain the sib-size effect to be linear. To investigate the 
possibility that its effect is not linear, Model B replaces NSIBS
with a system of dummy variables. Creation of the system is 
straightforward, once you identify the categories to use. In 
identifying categories, we suggest you using a small number of 
groups (between four and eight) that are:

• Equally spaced, which helps you use the resultant 
parameter estimates to evaluate linearity.

• Equally sized, which prevents creation of very small 
groups with potentially unstable estimates.

Because NSIBS is highly skewed (ranging from 0 to 26(!), with a 
median of 2), we cannot optimize on both criteria. Were the sample 
small and (p.449)

Table 12.4: Strategies for testing for nonlinear 
effects

Model A Model B Model C

Parameter Estimates and 
Asymptotic Standard 
Errors

ONE −4.3587***−4.5001* −4.4828***

(0.1216) (0.2067) (0.1087)

(AGE-18) 0.0611*** 0.0615*** 0.0614***

(0.0117) (0.0117) (0.0117)

(AGE-18)2 −0.0073***−0.0073***−0.0073***

(0.0012) (0.0012) (0.0012)

(AGE-18)3 0.0002* 0.0002* 0.0002*

(0.0001) (0.0001) (0.0001)

PD j 0.3726* 0.3727* 0.3710*

(0.1624) (0.1625) (0.1623)

FEMALE 0.5587*** 0.5596*** 0.5581***

(0.1095) (0.1095) (0.1095)



Extending the Discrete-Time Hazard Model

Page 55 of 79

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Model A Model B Model C

NSIBS −0.0814***

(0.0223)

1 OR 2 SIBS 0.0209

(0.1976)

3 OR 4 SIBS 0.0108

(0.2100)

5 OR 6 SIBS −0.4942~

(0.2545)

7 OR 8 SIBS −0.7754*

(0.3437)

9 OR MORE SIBS −0.6685~

(0.3441)

BIGFAMILY −0.6108***

(0.1446)

Goodness-of-fit

Deviance 4124.29 4117.98 4118.78

n parameters 7 11 7

AIC 4138.29 4139.98 4132.78

~ p < .10; * p < .05;** p < .01; *** p < .001.

Results of fitting three discrete-time hazard models to the 
age at depression onset data (n = 1393, n events = 387). 
Each model includes the effect of time-varying parental 
divorce (PD), FEMALE, and family size, but the predictors 
used to represent family size differ. Model A uses the 
continuous predictor NSIBS; Model B categorizes NSIBS
into five groups; and Model C splits NSIBS into just two 
groups using the dichotomy BIGFAMILY.

stability an issue, we might emphasize the latter criteria, but since 
the sample is large, we can emphasize the former. Thus, we create 
five predictors: 1 OR 2 SIBS (n = 672), 3 OR 4 SIBS (n = 330), 5 OR 
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6 SIBS (n = 159), 7 OR 8 SIBS (n = 72), and 9 OR MORE SIBS (n = 
62). The omitted “reference” category represents “only” children (n
= 98).

(p.450) We evaluate the linearity assumption by examining the 
pattern of parameter estimates (and accompanying standard 
errors) for the system of dummies. With equally spaced 
predictor categories, a linear effect will lead to successive 
estimates being “equidistant.” The five coefficients in Model B 
(in light of their asymptotic standard errors) are not
equidistant, suggesting nonlinearity. Instead, they fall into two 
broad groups: one for small- to mid-size families—1 TO 2 SIBS
and 3 TO 4 SIBS—and another for large families—5 OR 6 
SIBS, 7 OR 8 SIBS, and 9 OR MORE SIBS. Because only 
children are the omitted group, the minuscule and statistically 
nonsignificant coefficients for the first two predictors (0.0209 
and 0.0108) indicate that we cannot distinguish between 
respondents with no siblings, one or two siblings, or three or 
four siblings. But large families are different. Each of the other 
three coefficients (−0.4942, −0.7754, and −0.6685) has a 
much lower risk. Comparing these coefficients to each other, 
however, we find few differences in magnitude, suggesting 
that they, too, may be combined into a second group.

Notice that we do not emphasize the goodness-of-fit of these 
models, nor do we suggest adopting Model B over A. As often 
happens when we replace a continuous predictor with a 
system of dummies, the difference in deviance (here, 6.31) is 
too small to justify the additional parameters (here four, p > .
20). Yet the coefficients in Model B suggest that Model A may 
be misleading. The effect of family size is not smooth and 
continuous but rather jagged and disjunctive. This suggests 
the need for a new dichotomous predictor, one that contrasts 
small to mid-size families with large ones.

Model C uses this new sib-size predictor, BIGFAMILY, which 
contrasts respondents with five or more siblings (21% of the 
sample) and everyone else. Notice its large and statistically 
significant effect, which enables Model C to have a superior 
AIC statistic. Antilogging its coefficient yields 0.54, which 
indicates that the estimated odds of initial depression onset 
among individuals raised in large families are nearly half as 



Extending the Discrete-Time Hazard Model

Page 57 of 79

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

large as those for peers (of the same gender and parental 
divorce status) raised in small to mid-size families. Large 
families confer a protective benefit, but the effect is
nonlinear. Additional siblings in a small to mid-size family 
(with five or fewer children) confer no benefit, nor do 
additional siblings in large families (with six or more children). 
But there is a difference in risk for these two groups—those 
from large families face nearly half the risk of an initial 
depression onset.

The ability to investigate, and relax, the linearity assumption 
frees investigators from placing inappropriate constraints on 
predictors’ effects. Sometimes you will use continuous 
specifications while other times you will use dichotomies (or 
polytomies). Given that we just moved (p.451)  from a 
continuous to a categorical variable, we conclude with a word 
of caution. We do not advocate routinely categorizing 
continuous variables using procedures like “median splits.” 
Whenever possible, keep continuous predictors continuous. If 
your exploration of nonlinearity suggests few problems, retain 
the continuous specification. If nonlinearity can be 
ameliorated using a smooth polynomial, that, too, is 
preferable. (In this example, neither a quadratic nor cubic sib-
size specification fit nearly as well as BIGFAMILY.) But there 
are times, like these, when an effect is simply not smooth, and 
in these circumstances, judicious categorization, even 
dichotomization, is better than using a model whose 
assumptions are not met.

12.5 The Proportionality Assumption: 
Uncovering Violations and Simple Solutions

All the discrete-time hazard models postulated so far invoke 
another common, but restrictive, assumption: that each 
predictor has an identical effect in every time period under 
study. This constraint, known as the proportionality 
assumption, stipulates that a predictor’s effect does not 
depend on the respondent’s duration in the initial state. In the 
depression onset study, for example, we assume that the effect 
of sib-size is identical in childhood, adolescence, and 
adulthood. In the teacher career study, we assume that the 
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effects of salary are identical for novice and veteran educators 
alike.

Yet is it not possible, even likely, that the effects of some 
predictors will vary over time? The effect of family size might 
be more pronounced during childhood, when individuals live 
at home, than during adulthood, when day-to-day interaction 
with siblings is rare. Or the effect of salary might be more 
pronounced during teachers’ initial years in the classroom, 
when the job is most difficult, rather than during their later 
years, when the comforts of tenure and allure of a pension 
may be reward enough. In these situations, and in many 
others, a time-varying effect seems not just plausible, but 
inevitable.

In this section, we show how to: (1) examine the tenability of 
the proportionality assumption; and (2) relax it, when 
appropriate, by including interactions with time (also known as 
time-dependent or duration-dependent effects). Our primary 
goal is to convince you that violations are an exciting analytic 
opportunity, not a methodological nuisance. After all, why
should a predictor’s effect be constant over time? Shouldn’t 
the effects of some predictors depend on a respondent’s 
duration in the initial state? Too many researchers remain 
tethered to their computer program’s (p.452)  default options, 
which typically constrain predictors’ effects to be time-
invariant and hazard models to be proportional. Although this 
assumption may hold, blind faith is little guarantee. We 
encourage readers to embrace the methods presented in this 
section because detection of a violation is simple and 
correction is simpler still, usually leading to richer and more 
subtle conclusions.

12.5.1 Discrete-Time Hazard Models That Do Not Invoke a 
Proportionality Assumption

There are dozens of ways of violating the proportionality 
assumption. To provide a sense of the range of possibilities, let 
us begin with a simple discrete-time hazard model model with 
one time-invariant predictor:

(12.9)
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As written, one-unit differences in X 1 correspond to identical 
differences in logit hazard—β1—in all J time periods. This implies 
that all population logit hazard profiles are equidistant. In Panel A 
of figure 12.7, we present a pair of population logit hazard 
functions that meets this assumption. (Recall that the term 
“proportionality assumption” stems from the fact that were we to 
plot these functions on an odds scale, the upper would be a
magnification of the lower, making them proportional.)
Now consider the possibility that the effect of X 1 is not this 
consistent over time. In the remaining panels of figure 12.7, 
we present three of the many alternatives ways in which this 
might happen:

• A predictor’s effect may increase over time. The two 
population logit hazard functions in Panel B are relatively 
indistinguishable initially but grow increasingly distinct 
over time. This means that the predictor is unimportant 
initially but becomes more important with age.

• A predictor’s effect may decrease over time. The two 
population logit hazard profiles in Panel C are disparate 
initially but become increasingly similar as time goes on. 
This means that the predictor is important at the beginning 
of time but becomes less critical with age.

• A predictor’s effect may be particularly pronounced in 
some time periods. The population logit hazard profiles in 
Panel D are distinct in some periods and nearly coincident 
in others. This means that the predictor is associated with 
event occurrence in some, but not all, time periods.

(p.453)  
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Figure 12.7.  Population logit hazard 
functions that do, and do not, adhere to a 
proportionality assumption. A: a 
population that adheres to the 
proportionality assumption. B: a 
population in which the effect of the 
predictor increases over time. C: a 
population in which the effect of the 
predictor decreases over time. D: a 
population in which the effect of the 
predictor differs erratically over time.

(p.454)

Notice that 
each of these 

characterizations focuses on the predictor’s effect, not its values. 
This is because both time-invariant and time-varying predictors can 
have time-varying effects.
What kind of population model is required to represent a time-
varying effect adequately? To suggest a suitable model, we 
label the vertical separation between each pair of functions in 
figure 12.7 using a series of parameters, β, one per period: β1

indicates the size of the vertical separation in period 1, β2

Figure 12.7.  Population logit hazard 
functions that do, and do not, adhere to a 
proportionality assumption. A: a 
population that adheres to the 
proportionality assumption. B: a 
population in which the effect of the 
predictor increases over time. C: a 
population in which the effect of the 
predictor decreases over time. D: a 
population in which the effect of the 
predictor differs erratically over time.
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indicates the size in period 2, etc. One population model that 
captures this behavior allows the effect of X 1 to differ from 
period to period:

(12.10)

Because each time dummy (D 1 through D J) is 1 only once, each β 
represents the effect of X 1 in that time period. By allowing the 
effect of X 1 to differ over time, the population logit hazard profiles 
need not be equidistant. Were we to plot these functions on an 
odds scale, the upper would not be a magnification of the lower. We 
therefore say that the model in equation 12.10 is nonproportional.
One way of understanding the nonproportional model in 
equation 12.10 is to decompose it into its J period-by-period 
components:

(12.11)

The time dummies disappear because each takes on the value 1 in 
the time period indicated, 0 otherwise. This specification—which 
highlights the fact that each time period has its own intercept and 
its own shift parameter—helps clarify the link between each β and 
the effect of X 1: β1 represents the effect of X 1 in time period 1, β2

represents its effect in time period 2, and so on.
Another way of understanding this model is to notice its 
equivalence with statistical interaction models. We include an 
interaction by adding a cross-product term (or a set of cross-
products) to a model that already includes the component 
main effects. This is precisely what the model in equation
12.10 does. The main effect of TIME is represented by D 1
through D J and the interaction between X 1 and TIME is 
represented by terms X 1 D 1 through X j D j. Where is the main 
effect of X 1? To see that its presence is implicit, recall that we 
could parameterize the main effect of TIME by either: (1) 
eliminating one time indicator and including a stand-alone 
intercept; or (2) retaining all time indicators and excluding the 
intercept. In writing equation 12.10, we faced a similar choice: 
(1) eliminate one cross-product term and include the main 
effect of X 1 (which would (p.455)  create its explicit presence); 
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or (2) retain all cross-product terms and exclude the main 
effect (which conceals its implied presence). For consistency, 
we adopted the second approach, which places the β’s and the 
α’s on equal interpretive footing (as can be seen in equation
12.11). Each βj indicates the effect of X 1 in time period j, just 
as each αj indicates the value of logit hazard when all 
predictors are 0.

The realization that a nonproportional hazards model can be 
conceptualized as a model that contains an interaction 
between a predictor and TIME has two important 
consequences. First, it yields a useful nomenclature: A main 
effects hazards model adheres to the proportionality 
assumption; an interaction with time hazards model does not. 
Second, it provides a simple strategy for testing the 
proportionality assumption: compare the difference in 
deviance statistics for these two models to a χ2 distribution on
J – 1 degrees of freedom. If the interaction with time model is 
sufficiently superior to the main effects model, we can justify 
the additional parameters, and we adopt the nonproportional 
model in lieu of the original model with the untenable 
assumption.

What happens if the improvement in fit is insufficient? 
Although failure to reject may indicate the assumption’s 
viability, it may also indicate the use of an overly general 
interaction with time model. The specification of equation
12.10 is fine if the predictor’s effect is erratic, but if it differs 
smoothly over time (as in Panels B and C of figure 12.7), it is 
wasteful, requiring too many parameters. We therefore 
routinely follow up this test in two ways:

• By examining the pattern of estimates for the interaction 
with time terms. If they systematically increase or decrease, 
this suggests a smooth interaction with time specification.

• By explicitly testing the goodness-of-fit of more 
parsimonious specifications for the interaction with time. 
Instead of postulating that the predictor’s effect differs over 
time, postulate a specific functional form for the changing 
effect.
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In both cases, we focus on linear and stage-wise patterns, unless 
theory points toward another alternative.
How can we specify a more parsimonious interaction with time 
model? One common option is to postulate that the effect of X
1 changes linearly over time:

(12.12)

In this model, β1 assesses the effect of X 1 in time period c and β2

describes how this effect linearly increases (if β2 is positive) or 
decreases (if β2 is (p.456)  negative) across consecutive time 
periods. By comparing deviance statistics for this model to the 
main effects model in equation 12.9, we test the null hypothesis 
that the effect of X 1 does not differ linearly over time.
Another parsimonious specification postulates that the effect 
of X 1 differs across two (or more) broadly defined epochs. For 
example, we can create a dichotomous variable LATE, whose 
values indicate whether a time period occurs during the later 
(rather than earlier) epoch and write:

(12.13)

This type of model is most useful when the J discrete time periods 
can be grouped into a small number of meaningful eras: pre-
adolescence vs. adolescence, pre-tenure vs. post-tenure, high 
school vs. college.
Parsimonious nonproportional models have strengths and 
weaknesses. On the plus side, the use of just one additional 
predictor yields a more powerful test of proportionality. If the 
time-varying effect is smooth (as in equation 12.12) or phased 
(as in equation 12.13), the model in equation 12.10 is 
unnecessarily general, yielding a test whose power decreases 
as the number of time periods increases. On the down side, 
the increased power accrues only if the functional form 
hypothesized is correct. As this is unknowable, these models 
may be too constrained. It is for this reason that we always 
begin with the general model in equation 12.10. Doing so 
decreases the possibility of adhering to the proportionality 
assumption simply because the alternatives examined were 
too constrained.
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12.5.2 Investigating the Proportionality Assumption in Practice

Having outlined the ways in which the proportionality 
assumption can be violated and corrected, we now show how 
to implement these strategies in practice. We do so using five 
waves of data provided by Graham (1997) who tracked the 
mathematics course-taking history of 3790 high school 
students from tenth grade through the third semester of 
college. Among the 1875 boys and 1915 girls who were 
enrolled in a mathematics class in 10th grade, only 93 men 
and 39 women took a mathematics class in each of the next 
five terms: 11th grade, 12th grade, and the first three 
semesters of college. Suspecting that the groups terminated 
their mathematics careers at different points in time, Graham 
assessed not only whether women were at greater risk of 
“leaving” mathematics but also whether the magnitude of the 
gender differential differed over time. A constant differential 
would imply a stable male/female discrepancy; a (p.457)

varying gender differential would imply that there are periods 
when the gender differential is especially large (or small).

The top left panel of figure 12.8 presents the within-gender 
sample (logit) hazard functions. For both males and females, 
the risk of terminating one’s mathematics career zig-zags over 
time, peaking twice, in 12th grade and at the end of the 
second semester of college. Over and above this pattern, 
females are consistently at greater risk of termination in every 
term under study. Also notice that the magnitude of the 
gender differential varies over time: it is smallest in 11th 
grade and greatest in the third semester of college, taking on 
intermediate values in the terms in between. This last 
observation—unequal distances between sample logit hazard 
functions—suggests that the proportionality assumption may 
not hold.

Table 12.5 presents the results of fitting three models to these 
data: a main effects model (A), the general interaction-with-
time model (B), and a linear interaction-with-time model (C). 
Fitted hazard functions for each—plotted on a logit scale—are 
presented in the remaining panels of figure 12.8. Model A, the 
main effects model, is the most parsimonious and poorest 
fitting. As shown in figure 12.8, this model constrains the main 
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effect of FEMALE to be identical in each time period, yielding 
fitted hazard functions that are equidistant on a logit scale 
(and that would be magnifications and dimunitions of each 
other when plotted on an odds scale). Exponentiating the 
coefficient for FEMALE (e0.3786 = 1.46), we estimate that the 
odds that a woman will end her mathematics career in any 
term are nearly 50% higher than are the odds for a man. By 
postulating that FEMALE has only a main effect, we do not 
allow the odds of termination to differ across terms. Instead, 
we constrain the odds to be identical in 11th grade, 12th 
grade, and each of the first three semesters of college,
whether they are or are not.

Model B, the general interaction with time model, allows the 
gender differential to differ in each term. This model is so 
unconstrained that the differential could even reverse itself 
and be positive in one term and negative in the next. Although 
B fits better than A, a comparison of deviance statistics 
suggests that the improvement is insufficient to justify four 
extra parameters (χ2 = 8.04, 4d.f., p >.05).

Were we to end our investigation here, we would conclude 
that there was insufficient evidence to suggest a violation. But 
examination of the parameter estimates for the interaction 
terms in B suggests that this decision might be premature. 
Notice how the estimates rise over time, beginning at 0.1568 
in 11th grade, rising to 0.4187 in 12th grade, and rising again 
in each of the first three semesters of college, peaking in the 
third semester at 0.6008. (When J is large, a plot of the 
parameter estimates (p.458)
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Figure 12.8.  Sample hazard functions 
and alternative fitted discrete-time 
hazard models that invoke, and relax, the 
proportionality assumption. For the 
mathematics dropout data, the upper left 
panel presents sample hazard functions 
by gender, plotted on a logit scale. The 
remaining three panels present fitted 
models: A: the main effect of FEMALE. B: 
a completely general interaction between
FEMALE and TIME. C: an interaction 
between FEMALE and linear TIME.

(p.459)

Table 12.5: Strategies for testing for interactions 
with time

Model A Model B Model C

Parameter Estimates and 
Asymptotic Standard 
Errors

Figure 12.8.  Sample hazard functions 
and alternative fitted discrete-time 
hazard models that invoke, and relax, the 
proportionality assumption. For the 
mathematics dropout data, the upper left 
panel presents sample hazard functions 
by gender, plotted on a logit scale. The 
remaining three panels present fitted 
models: A: the main effect of FEMALE. B: 
a completely general interaction between
FEMALE and TIME. C: an interaction 
between FEMALE and linear TIME.
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Model A Model B Model C

HS11 −2.1308***−2.0077***−2.0459***

(0.0567) (0.0715) (0.0646)

HS12 −0.9425***−0.9643***−0.9255***

(0.0479) (0.0585) (0.0482)

COLL1 −1.4495***−1.4824***−1.4966***

(0.0634) (0.0847) (0.0665)

COLL2 −0.6176***−0.7100***−0.7178***

(0.0757) (0.1007) (0.0861)

COLL3 −0.7716***−0.8690***−0.9166***

(0.1428) (0.1908) (0.1557)

FEMALE 0.3786*** 0.2275**

(0.0501) (0.0774)

FEMALE × HS11 0.1568

(0.0978)

FEMALE × HS12 0.4187***

(0.0792)

FEMALE × COLL1 0.4407***

(0.1158)

FEMALE × COLL2 0.5707***

(0.1445)

FEMALE × COLL3 0.6008*

(0.2857)

FEMALE × (TIME-1) 0.1198*

(0.0470)

Goodness-of-fit

Deviance 9804.31 9796.27 9797.81

n parameters 6 10 7
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Model A Model B Model C

AIC 9816.31 9816.27 9811.81

~ p < .10;* p < .05;** p < .01; *** p < .001.

Results of fitting three discrete-time hazard models to the 
mathematics career data (n = 3790, n events = 3684). 
Model A includes the main effect of FEMALE; Model B 
includes the completely general interaction between
FEMALE and TIME; Model C allows the effect of FEMALE
to vary linearly over TIME.

over time can be helpful in detecting patterns.) The coefficient for
FEMALE in Model A (0.3786) is a weighted average of these 
estimates. Their systematic increase in Model B points toward a 
different nonproportional model in which the effect of FEMALE is 
allowed to interact with linear TIME.
This is precisely what is done in Model C, which includes the 
main effects of TIME and FEMALE, as well as their interaction. 
Comparing its (p.460)  deviance statistic to Model A, we find a 

difference of 6.50 on 1 d.f. (p = 0.0108). We therefore reject
the proportionality assumption and conclude that the 
interaction with linear time model is preferable to A. Is Model 
C just as good as B? The deviance statistics for these two 
models differ by only 1.54 (3 d.f., p > .25). We therefore 
conclude that a parsimonious specification fits no worse than a 
general one.

How do we interpret the gender differential implied by Model 
C? Because we have centered TIME at 1, the coefficient for
FEMALE (0.2275) estimates the differential in time period 1, 
which here is 11th grade. Antilogging yields 1.26, which leads 
us to estimate that in 11th grade, the odds of ending one’s 
mathematics course-taking career are 26% higher for females. 
Dividing the coefficient by its asymptotic standard error 
(0.0774) yields a test of the null hypothesis of no gender 
differential in 11th grade, which we reject (p = 0.0033). The 
coefficient for the FEMALE by (TIME – 1) interaction assesses 
the period-by-period increment in risk as students progress 
through school. In 12th grade, the estimated odds ratio is 
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e(0.2275+0.1198) = 1.42; in the first semester of college, it rises 
to e(0.2275+2(0.1198)) = 1.60 and by the third semester of 
college, it rises further to e(0.2275+4(0.1198)) = 2.03. These 
results confirm the unsuitability of the main effects model 
(Model A), which constrains these odds ratios to be constant at 
1.46. During high school, the gender differential is smaller 
than this; during college, it is greater. This growing gap is 
clearly illustrated in the fitted hazard functions for Model C 
shown in figure 12.8.

Before leaving this example, reexamine the fitted functions for 
Model B shown in figure 12.8. Because this model allows the 
effect of FEMALE to differ completely over time, the distance 
between functions differs entirely across periods. Now 
compare these fitted functions with the sample functions 
directly above. It is no accident that these two plots are 
identical. Just as fitted hazard functions from a model with no 
substantive predictors reproduce sample hazard functions, 
fitted hazard functions from a general interaction with time 
model reproduce within-group sample hazard functions (for 
categorical predictors). This correspondence provides another 
way of understanding what we do when we examine the 
tenability of the proportionality assumption. The general 
specification does not “smooth” the sample functions in any 
way. The main effects model “smoothes” the functions until 
they are equidistant (in logit hazard space). The parsimonious 
specifications take a middle stance, smoothing the functions to 
an intermediate degree. From this perspective, in examining 
the proportionality assumption, we assess whether, and how, 
the sample hazard functions for each predictor’s effect should 
be smoothed over time.

(p.461) 12.6 The No Unobserved Heterogeneity 
Assumption: No Simple Solution

All the hazard models discussed in this book—both the 
discrete-time models we are discussing now and the 
continuous-time models we will soon introduce—impose an 
additional assumption to which we have alluded: the 
assumption of no unobserved heterogeneity. Every model 
assumes that the population hazard function for individual i
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depends only on his or her predictor values. Any pair of 
individuals who share identical predictor profiles will have 
identical population functions. (We note that this is not the 
first time you have invoked an assumption like this. You 
routinely invoke a similar assumption when you fit any logistic 
regression model, even though it is no more likely to hold!)

Many data sets will not conform to this assumption. As in the 
multilevel model for change (and regular regression for that 
matter), pairs of individuals who share predictor profiles are 
very likely to have different outcomes. Even the most 
prescient among us will be unable to identify every predictor 
associated with each person’s population hazard function. If 
our model omits one or more important predictors, we have
unobserved heterogeneity.

Unobserved heterogeneity can have serious consequences. In 
their classic 1985 paper, Vaupel and Yaskin elegantly 
demonstrate what they call “heterogeneity’s ruses”—the 
ability of unobserved heterogeneity to create the 
misimpression that a hazard function follows a particular 
form, when in fact it may not. Although the types of ruses can 
be elaborate and complex, we can illustrate the basic problem 
using the special educator career data introduced in chapters
9 and 10. As shown in figure 10.1, the sample hazard function 
declines steadily over time. In describing this function in 
section 10.2.1, we wrote: “Novice special educators, or those 
with only a few years of experience, are at greatest risk of 
leaving teaching. Once they gain experience (or perhaps, 
tenure) the risk of leaving declines.”

Because of the possible existence of unobserved 
heterogeneity, this simple compelling conclusion may be 
wrong! To illustrate how this could happen, consider the 
following thought experiment. Suppose that our initial sample 
includes equal proportions of three different types of special 
educators, those at:

• High risk—they may have not wanted to be teachers in 
the first place, but entered the profession because there 
were job opportunities.
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• Medium risk—they wanted to work, but their commitment 
to (p.462)  teaching is lower. As a result, they are 
consistently susceptible to exploring other options (e.g., 
taking another job, returning to school, or quitting to raise 
a family).

• Low risk—they would like to teach until retirement.

Further suppose that for each group, the risk of leaving teaching is
constant over time. This means that the population hazard function 
for each teacher is flat—its level reflects his or her consistent level 
of risk. The only difference between teachers is the level of their 
hazard function: high, medium, or low.
What would the overall hazard function for this heterogeneous 
group of teachers look like if we ignored the fact that they 
came from three disparate groups? (This is what we do if we 
omit the (admittedly unobserved) predictor that distinguishes 
the three groups.) Immediately after hire, the hazard function 
would fall in the middle of the three levels of risk. Over time, 
teachers in the high-risk group would be most likely to leave, 
those in the medium-risk group would be moderately likely to 
leave, while those in the low-risk group would be likely to stay. 
Because of these differential levels of risk, the composition of 
the risk set changes substantially over time—as high-risk 
teachers leave, the risk set becomes composed of greater 
fractions of medium and especially low-risk teachers. The net 
result is that the overall hazard function—evaluated across the 
entire set of teachers—will decline over time, owing to nothing 
more than the changing composition of the risk set.

Unobserved heterogeneity raises a serious interpretive 
problem. If it exists—and you have no way of knowing with 
certainty whether it does—the observed pattern of risk may 
not reflect the true pattern of risk. Fortunately, the effect of 
unobserved heterogeneity is itself consistent: it always leads 
to hazard functions that appear to decline over time. As a 
result, if you find sample hazard functions that increase over 
time, as did those for the age at first intercourse data in 
chapter 11 and the tenure and depression onset data in this 
chapter, you are probably safe. On the other hand, if you find 
sample hazard functions that decrease over time—a common 
pattern when studying employee turnover, recidivism, and 
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other events in which individuals face a high initial risk—
interpretation can be ambiguous. A declining hazard function 
may suggest exactly what we intimated in chapter 10 for the 
special educator data or it may suggest a data set plagued by 
unobserved heterogeneity (Follmann & Goldberg, 1988).

Is it possible to fit a hazard model that accounts for 
unobserved heterogeneity? As you might expect, doing so 
requires that we have either additional data (for example, data 
on repeated events within individuals) (p.463)  or that we 
invoke other—perhaps less tenable—assumptions about the 
distribution of event times or errors (Aalen, 1988; Heckman 
and Singer, 1984; Vaupel, Manton, & Stallard, 1979; Scheike 
& Jensen, 1997; Mare, 1994). As a result, most empirical 
researchers—and we—proceed ahead, if not ignoring the 
problem, at least not addressing it. In the remainder of this 
book, we assume that all heterogeneity is observed and 
attributable to the predictors included in our models.

How problematic is it to turn a blind eye? Xue and Brookmeyer 
(1997) demonstrate that, even in the face of unobserved 
heterogeneity, we can interpret parameters in a discrete-time 
hazard model as population averaged coefficients, which 
describe behavior in a cohort (instead of subject-specific
coefficients, which describe what happens to an individual 
over time). Gail, Wieand, and Piantadosi (1984) also suggest 
that the tests for model parameters remain valid. Of course, if 
you discover a hazard function that declines steadily over 
time, you should at least consider whether your inferences 
about the underlying causes of that decline are credible or 
whether they are undermined by the possibility of unobserved 
heterogeneity. If you would like to go further than this and 
investigate the effects of unobserved heterogeneity, we 
suggest that you begin with the references provided in the 
previous paragraphs.

12.7 Residual Analysis

In this chapter, we have examined the tenability of many 
assumptions inherent in the discrete-time hazard model and 
provided strategies for extending the model when these 
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assumptions are unmet. But before concluding that your 
model is sound, you should ascertain how well it performs for 
individual cases. As in regular regression, we address this 
question by examining residuals.

Residuals compare—usually through subtraction—an 
outcome’s “observed” value to its model-based “expected” 
value. For a discrete-time hazard model, a simple difference 
will not suffice because each person has not a single outcome 
but a set of outcomes—one for each time period when he or 
she was at risk. This suggests the need for a residual defined 
at the person-period level. A further complication is that the 
observed outcome in every time period has a value of either 0 
or 1 while its expected value—the predicted hazard probability
—lies between these extremes. By definition, the model 
underpredicts in any person-period when the event occurs and 
overpredicts in all others. This makes it perhaps unwise to 
define a residual, even at the person-period level, by the 
subtraction of observed and expected values.

(p.464) Statisticians have developed many kinds of residuals 
for assessing the prediction of dichotomous outcomes (Hosmer 
& Lemeshow, 2000; Collett, 1991), some of which can be 
adapted for use in discrete-time hazard modeling. Because a 
full discussion of this topic is beyond scope of this book, here 
we focus on one type of residual—the deviance residual—that 
we find especially useful.

For individual i in time period j, the deviance residual is 
defined as:

(12.14)

where “sign()” indicates that the residual takes the sign (negative 
or positive) of the argument in parentheses. Deviance residuals are 
so named because, when squared, they represent an individual’s 
contribution to the deviance statistic for that time period. The sum 
of the squared deviance residuals across all the records in a 
person-period data set yields the deviance statistic for the specified 
model.5 Most software programs that fit logistic regression models 
can output deviance residuals to the person-period data set.
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The length of equation 12.14 might suggest that deviance 
residuals are a complex function of an individual’s event 
occurrence status and fitted hazard probability. But because 
the event indicator must be either 0 or 1, only one term under 
the square root can be non-zero, which allows us to write:

(12.15)

The absolute value of a deviance residual indicates how well the 
model fits that person’s data for that period. Large absolute values 
identify person-period records whose outcomes are poorly 
predicted. The sign of a deviance residual is determined solely by 
event occurrence: if individual i experiences the event in that 
period, the residual is positive; otherwise it is negative. As a result, 
most deviance residuals are negative, except for those in time 
periods when noncensored individuals experience the target event.
We illustrate how to examine deviance residuals using the 
grade of first sexual intercourse data analyzed in chapter 11. 
In Model D of table 11.3, we expressed the risk of sexual 
initiation as a function of TIME and two predictors: parental 
transitions (PT) and parent antisocial score (PAS). Table 12.6
presents deviance residuals from this fitted model for eight 
boys. Each has as many residuals as he has person-period 
records. Subject (p.465)
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Table 12.6: Deviance residuals from Model D of table 11.3 for 8 boys in the grade at first intercourse data set

Deviance residuals SS deviance

ID PT PAS GRADE CENSOR GR7 GR8 GR9 GR10 GR11 GR12

22 1 −.6496 12 0 −.4117 −.2944 −.5840 −.7176 −.7748 1.4145 3.7133

112 1 −.6609 12 1 −.4111 −.2940 −.5831 −.7166 −.7737 −.9563 2.6220

166 1 2.7814 11 0 −.6615 −.4807 −.9108 −1.0903 1.1914 — 4.1064

89 0 −.0752 11 0 −.3248 −.2314 −.4645 −.5752 1.8624 — 4.1740

102 1 .6049 8 0 −.4913 2.3695 — — — — 5.8558

87 1 2.6779 7 0 1.8176 — — — — — 3.3038

67 1 2.2747 12 0 −.6180 −.4477 −.8559 −1.0294 −1.1007 1.0430 4.6741

212 0 −.9618 12 1 −.2857 −.2032 −.4098 −.5090 −.5524 −.6958 1.3393
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(p.466)  22, who had intercourse for the first time in 12th grade, 
has six residuals, one for each of grades 7 through 12. Boys 112 
and 212 also have six residuals because they, too, were followed 
through 12th grade (when they were censored). The other boys in 
the table have fewer residuals because each initiated intercourse in 
an earlier grade. As expected, deviance residuals are negative in all 
the time periods before event occurrence and remain negative in 
the final period for boys who have not yet had sex. The deviance 
residual is positive only if, and when, the event occurs.
Unlike regular residuals, with deviance residuals we do not 
examine their distribution nor plot them versus predicted 
outcome or observed predictor values. We eschew such 
displays because they will manifest uninformative 
deterministic patterns. Instead, we examine deviance 
residuals on a case-by-case basis, generally through the use of
index plots—sequential plots by ID. The top panel of figure
12.9 presents an index plot of the deviance residuals for Model 
D. Most of the residuals are negative, except for those records 
in which the target event occurs. When examining index plots 
like these, look for extreme observations—person-period 
records with extraordinarily large residuals. Large residuals 
suggest person-period records with poor model fit. Although 
this plot includes five extreme residuals—identified using ID
numbers—none is so far away that it seems especially 
problematic.

Index plots of deviance residuals can be unsatisfying because 
they do not jointly consider the quality of model fit across each 
person’s multiple records. One way of addressing this concern 
is to aggregate each person’s residuals into a single summary. 
Rather than summing their (absolute) values, we square and 
then sum. Although this strategy has no formal statistical 
justification, it has the salutary effect of yielding an individual-
level summary of model fit measured in a meaningful metric: 
the individual’s contribution to the deviance statistic.

We display the sum of squared deviance residuals for each 
individual in Model D in the final column of table 12.6 and the 
bottom panel of figure 12.9. If we sum these values across all 
180 boys, they would total 629.15, the deviance statistic for 
the model. Notice that although both plots in figure 12.9
identify the same problematic cases, the cases are more 
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Figure 12.9.  Index plots of deviance 
residuals for the grade at first 
intercourse data. The top panel presents 
residuals computed at the person-period 
level. The bottom panel presents 
residuals aggregated to the person level.

prominent in the bottom panel. Collapsing across each 
person’s multiple records is a powerful tool for identifying 
individuals whose outcomes are poorly predicted. In this data 
set, for example, examination of the records for the five 
identified cases reveals that these boys initiated intercourse 
very early (grades 7 or 8) despite their low risk (attributable to 
their parental transition status and/or antisocial score). 
Indeed, if we delve into the data for the 20 boys with the 
highest sum of squared deviance residuals, we find that 18 
(90.0%) had initiated intercourse in (p.467)

ninth grade or 
earlier. Among 
the remaining 
160, in 
contrast, only 
27 (16.9%) had 
done so. In this 
way, 
examination of 
the sum of the 
squared 
deviance 
residuals 
suggests that 
Model D may 
not be very 
effective at 
predicting 
early initiation 
of sexual 
intercourse. 
This suggests 
that it would 
be prudent to 
search for 
additional 
variables that 
might be 
better 
predictors of 
early initiation 
risk.

Figure 12.9.  Index plots of deviance 
residuals for the grade at first 
intercourse data. The top panel presents 
residuals computed at the person-period 
level. The bottom panel presents 
residuals aggregated to the person level.
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Notes:

(1.) You might wonder whether all the comparisons in table
12.2 are really nested. Certainly, the constant model is nested 
within all other models as it includes only a single intercept, 
and all others include at least that intercept (for the 
polynomial specifications), or multiple intercepts, one per time 
period (for the general specification). So, too, each less 
complex polynomial is nested within all subsequent 
polynomials because the former can be obtained by setting 
higher order parameters in the latter to 0. But is each model 
also nested within the general specification? Although perhaps 
not obvious, each is indeed nested. Remember from section 
11.6 that one model is nested within another if we can obtain 
the former by placing constraints on parameters in the latter. 
The constraints need not be setting parameters to 0. Because
TIME takes on only J distinct values, each polynomial can be 
obtained by setting the multiple intercepts in the general 
specification to particular values (or multiples).

(2.) Be sure to take care when interpreting these observed 
proportions. Unlike the proportions examined in chapters 9
and 10, which could be interpreted as sample values of hazard, 
these proportions do not admit of such interpretations. This is 
because the denominators for consecutive proportions do not 
differ only because of event occurrence and censoring (as they 
do when computing a sample hazard function over time). Each 
denominator can include a totally distinct group of individuals, 
and the same person can appear in the denominator for both 
groups (albeit in different time periods).

(3.) Notice, too, that we do not suggest that the effect of the 
time-varying predictor is to change the risk of event 
occurrence as the predictor itself changes. All this parameter 
does is contrast individuals with different values of the 
predictor in each time period. Within each given time period, a 
time-varying predictor is time-invariant. As a result, we do not 
relate changes in time-varying predictors to changes in hazard; 
instead, we relate differences in the values of time-varying 
predictors to differences in the values of hazard.
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(4.) We note that although the sib-size is time-varying, the 
data do not include information on the timing of each sibling’s 
birth. In the analyses presented here, we therefore treat this 
predictor as time-invariant.

(5.) This correspondence can be confirmed by comparing 
equation 12.14 with the log-likelihood in equation 11.13. 
Notice that the term underneath the square root in equation
12.14 is identical (except for the factor of–2) to the elements of 
the log-likelihood, with fitted hazard probabilities substituted 
for true hazard probabilities.
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This chapter presents strategies for describing continuous 
time event data. Section 13.1 identifies salient properties of 
continuous-time data and redefines the survivor and hazard 
functions as required. Section 13.2 estimates these functions 
using a pair of simple strategies—called the discrete-time and 
actuarial methods—that require the continuous event times to 
be grouped into intervals. Section 13.3 introduces a superior 
approach—the Kaplan–Meier method—that does not require 
the artificial grouping of data but that yields estimates of only 
the survivor, not the hazard, function. The remainder of the 
chapter offers solutions to the core conundrum embedded in 
continuous-time event data: the inability to estimate the 
hazard function well.
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Time has no divisions to mark its passing.

—Thomas Mann

Researchers can often record event occurrence using a fine-
grained time metric. When studying relapse among recently 
treated alcoholics, for example, Cooney and colleagues (1991) 
used life history calendars to determine—to the nearest day—
whether and, if so, when former drinkers began drinking 
again. When studying the reactions of frustrated motorists, 
Diekmann and colleagues (1996) used on-site observation to 
determine—to the nearest hundredth of a second—whether 
and, if so, when drivers blocked at a green light started to 
honk their car horns. We say that measurements like these 
have been obtained in what we think of as continuous time.

In this chapter, we present strategies for describing 
continuous-time event data. Although survivor and hazard 
functions continue to form the cornerstone of our work, the 
change in the time scale from discrete to continuous demands 
that we revise our fundamental definitions and modify 
estimation strategies. In section 13.1, we identify salient 
properties of continuous-time data and redefine the survivor 
and hazard functions as required. In section 13.2, we estimate 
these functions using a pair of simple strategies—called the
discrete-time and actuarial methods—that require the 
continuous event times to be grouped into intervals. In section 
13.3, we introduce a superior approach—the Kaplan-Meier 
method—that does not require the artificial grouping of data 
but that yields estimates of only the survivor, not the hazard, 
function.

In the remainder of the chapter, we offer solutions to the core 
conundrum embedded in continuous-time event data: our 
inability to estimate the hazard function well. This conundrum 
is a concern as it leads some (p.469)  researchers to conclude 

that they should not even try to ascertain the pattern of risk 
over time. In section 13.4, we offer one possible solution by 
introducing a close mathematical relative of the hazard 
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function that is easy to estimate in continuous time: the
cumulative hazard function. As its name implies, this function 
“cumulates” hazard over time, assessing the total amount of 
risk faced by participants between the beginning of time and 
each observed event time. In section 13.5, we offer a second 
solution that uses the cumulative hazard function to generate
approximate values of the hazard function by a method known 
as kernel smoothing. We conclude, in section 13.6, by applying 
these new strategies to data from four empirical studies. This 
sets the stage for chapter 14, in which we specify and fit 
statistical models for testing the effects of predictors on event 
occurrence in continuous time.

13.1 A Framework for Characterizing the 
Distribution of Continuous-Time Event Data

Variables measured with greater precision contain more 
information than those measured with less precision. Ordinal 
scales are more informative than nominal scales; interval 
scales are better still. These familiar principles apply equally 
in the study of event occurrence. When possible—and 
appropriate, given the way in which events unfold over time—
we recommend that you record event occurrence using the 
finest metric possible. Finer distinctions, as long as they can 
be made reliably, lead to more subtle interpretations and more 
powerful analyses.

Unfortunately, a switch from discrete- to continuous-time 
survival analysis is not as trivial as you might hope. In discrete 
time, the definition of the hazard function is intuitive, its 
values are easily estimated, and simple graphic displays can 
illuminate its behavior. In continuous time, although the 
survivor function is easily defined and estimated, the hazard 
function is not. As explained below, we must revise its 
definition and develop new methods for its estimation and 
exploration.

13.1.1 Salient Features of Continuous-Time Event Occurrence Data

We begin by contemplating what it means to assess event 
occurrence using a truly continuous metric. For the moment, 
set aside the realities of data collection and imagine that, for 
every noncensored individual, you could identify the precise



Describing Continuous-Time Event Occurrence Data

Page 4 of 50

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

instant when the target event occurs: Joseph Wright was 
arrested at 9:20 A.M on the 32nd day after his release from

(p.470)  prison. Jane Kendall took her first drink at 6:19 P.M 
on the 129th day after her discharge from an alcohol 
treatment program.

What would the distribution of a sample of such event times 
look like? We find it helpful to visualize a time line with 
explicit demarcations that denote every possible instant when 
the event could occur. Our initial demarcations might be 
weeks, days, hours, or even minutes, but if time is truly 
continuous, we need not stop there. Each minute can be 
divided into seconds and each second can be subdivided into 
10ths, 100ths, and 1000ths of seconds. Each 1000th of a 
second can be divided into nanoseconds and each of these can 
be subdivided further still. Ultimately, we must conclude that 
there exist an infinite number of possible instants when the 
target event can occur. Every data collection period—finite 
though it may be—contains an infinite number of such 
instants.

Because continuous time is infinitely divisible, the distribution 
of event times displays two highly salient properties:

• The probability of observing any particular event time is 
infinitesimally small. In continuous time, the probability 
that an event will occur at any specific instant approaches 
0. The probability may not reach 0, but as time’s divisions 
become finer and finer, it becomes smaller and smaller.

• The probability that two or more individuals will share the 
same event time is also infinitesimally small. If the 
probability of event occurrence at each instant is 
infinitesimally small, the probability of co-occurrence (a 
“tie”) must be smaller still.

These two properties stand in stark contrast with what we have 
come to expect in discrete time. In the latter case, if events can 
occur only in a small number of time periods, and some events do
occur, we expect the probability of event occurrence in at least 
some periods to be non-zero and ties to be pervasive.
Distributional properties like these can be inferred only by 
invoking statistical theory. We cannot illustrate them with data 
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because they describe expectations in the limit, not sample 
behavior. Real data require measurement and measurement 
lead to rounding—into weeks, days, or some other unit. 
Rounding alters these expectations because it increases the 
probability of observing each rounded event time as well as 
the probability of observing a tie. In the extreme, if we round 
continuous event times using a very coarse metric, we return 
to the world of discrete time! The important feature of 
continuous time is that we can invoke the assumption—that 
may, or may not, hold in practice—that these distributional 
properties hold because time is infinitely divisible.

(p.471)
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Table 13.1: Known and censored (*) event times for 57 motorists blocked by another automobile (reaction times 
are recorded to the nearest hundredth of a second)

1.41 2.12 2.54 2.83 3.14 3.56 4.18 4.71* 6.03 12.29

1.41* 2.19 2.56 2.88 3.17 3.57 4.30* 4.96 6.21* 13.18

1.51 2.36* 2.62 2.89 3.21 3.58 4.44 5.12* 6.30 17.15*

1.67 2.48 2.68 2.92 3.22 3.78 4.51 5.39 6.60*

1.68 2.50 2.76* 2.98 3.24 4.01* 4.52 5.73 7.20

1.86 2.53 2.78* 3.05* 3.46* 4.10 4.63* 5.88* 9.59
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To concretize these inherently unobservable ideas, examine 
table 13.1, which presents the data from Diekmann and 
colleagues’ (1996) horn-honking study. At a busy intersection 
in Munich, Germany, the researchers recorded the reaction 
times—to the nearest hundredth of a second—of 57 motorists 
purposefully blocked at a green light by a Volkswagen Jetta. 
Forty-three motorists honked their horns; 14 did not. An 
asterisk (*) identifies the censored event times.

Because time was recorded using such a fine metric, the 
distribution of event times in table 13.1 almost manifests both 
of the distributional properties outlined above. The probability 
of observing any specific event time must be infinitesimally 
small because we observe only 56 of the infinite number of 
distinct times when an event could occur. There is only one 
tie, at 1.41, the earliest recorded event time. Although this tie 
may have resulted from a measurement “floor”—the recording 
device may not have been able to assess a honk before 1.41 
seconds—we need not invoke this argument to rationalize the 
tie’s appearance. Real data sets will include ties even if theory 
states that events cannot co-occur. The explanation is that had 
a finer metric been used—say, 1000ths of seconds—we could 
distinguish between these values. Such is the nature of 
continuous time: there always exists a finer division of time 
that renders co-occurrence impossible.

As we introduce methods for describing continuous-time event 
data, we will invoke these distributional properties often, 
using them to explain why and how we modify discrete-time 
analytic strategies for the new continuous-time context. 
Although data sets rarely manifest both properties exactly, the 
possibility that they could provides impetus for revision. If it 
appears peculiar that such a seemingly minor change could 
create a need to overhaul an entire methodological 
framework, perhaps an analogy will help. Just as we use 
different models and estimation strategies when analyzing 
continuous and dichotomous noncensored outcomes (e.g., 
linear vs. logistic regression), so, too, do we need different 
methods when analyzing continuous and discrete censored 
event occurrence data. As you begin (p.472)  to understand 
continuous-time survival analysis, knowledge of discrete-time 
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survival analysis will facilitate your learning transition, just as 
knowledge of linear regression undoubtedly provided you with 
a solid foundation when it came to learning more sophisticated 
analytic methods.

13.1.2 The Survivor Function

Let us begin with the survivor function, for its definition 
remains similar across the time metrics. The fundamental 
difference in the definition across the two worlds is the 
obvious respecification of the random variable used to 
represent time, which now must be continuous. Now we let T
be a continuous random variable whose values T i indicate the 
precise instant when individual i experiences the target event. 
Although it is common to represent the potential values of T
using just the lower case letter t, here, to maintain parallelism 
with the discrete-time specification, we add the subscript j, to 
write t j In continuous time, then, t j clocks the infinite number 
of possible instants when the target event could occur. For a 
motorist who honks 2.98 seconds after the light turns green, T
i = 2.98; for a motorist who honks after 7.20 seconds, T i = 
7.20.

Respecification of T allows us to retain the basic structure of 
the survivor function’s definition. In continuous time, the 
survival probability for individual i at time t j is the probability 
that his or her event time, T i, will exceed t j:

(13.1) 
Individual i’s set of survival probabilities over time—S(t ij)—is still 
known as his or her survivor function. When we do not distinguish 
individuals on the basis of predictors, we remove the subscript i, 
letting S(t j) represent the survivor function for a randomly selected 
member of the population. As expected, the initial value for the 
continuous-time survivor function at time t0 is 1.

Because the definition in equation 13.1 is essentially identical 
to its discrete-time counterpart in equation 10.3, we need no 
new strategies for interpretation. We therefore turn to the 
hazard function, which does not retain the same definition or
meaning as the metric for time changes from discrete to 
continuous.
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13.1.3 The Hazard Function

The hazard function assesses the risk—at a particular moment
—that an individual who has not yet done so will experience 
the target event. In discrete time, the moments are time 
periods, which allows us to (p.473)  express hazard as a 
conditional probability. In continuous time, the moments are 
the infinite number of infinitesimally small instants of time 
that exist within any finite time period, a change that requires 
us to alter our definition.

Why must we change the definition of hazard? The problem is 
that the concept of probability falls apart for a continuous 
random variable like T. The failure has nothing to do with 
either survival analysis or censoring. Rather, it is a 
consequence of the fact that if there exist an infinite number 
of instants when an event can occur, the probability that an 
event does occur at any particular instant must approach 0 as 
the units of time get finer. At the limit, in truly continuous 
time (unbridled by the practicalities of measurement), the 
probability that T takes on any specific value t j has to be 0. 
This means that we can no longer define hazard as a 
(conditional) probability because it would be 0 at all values of t
j. If we did not modify our definition of hazard, we would be 
left with the meaningless statement that all continuous-time 
hazard functions are constant at 0, regardless of the event 
under study or the risk of event occurrence over time.

To develop a sensible definition of hazard in continuous time, 
we must resolve a basic dilemma: hazard should quantify risk 
at particular instants, but mathematically, we can quantify risk 
only by cumulating together instants to form intervals. 
Statisticians resolve this dilemma by recognizing that instants 
and intervals can be thought of as one and the same if the 
intervals are so small that we can think of them as instants. 
Although this may seem like semantic hair-splitting, the 
argument rests on a simple realization: when we divide a finite 
period of time into smaller and smaller units, we inevitably 
create a corresponding series of intervals.

To see how intervals and instants are related, once again let 
us divide a finite time period—say, one year—into increasingly 
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smaller units. Each year contains 365 one-day intervals (366 in 
a leap year), but if we divide each day into hours, we have 365 
× 24 = 8,760 one-hour intervals. Dividing each of these into 
minutes, we have 365 × 24 × 60 = 525,600 one-minute 
intervals, which ultimately lead to 365 × 24 × 60 × 60 = 
31,536,000 one-second intervals. As we use finer and finer 
units (tenths of seconds, nanoseconds, and beyond), we 
eventually find that this finite time period includes an infinite
number of intervals, each so narrow that it appears to be an
instant. In essence, then, instants and intervals are one and 
the same if the width of the interval approaches, but never 
quite reaches, 0.

Mathematicians codify this argument by letting the symbol Δt
(“delta t”) represent the vanishing width of each of these 
infinitesimally small intervals. This allows us to write the jth 
time interval as [t j, t j + Δt), where the opening bracket 
indicates that the instant t j falls just inside the interval and the 
closing parenthesis indicates that the next instant, t j + Δt, 
falls (p.474)  just outside. To assess individual i’s hazard at 
time t j, we are inclined at first to compute the probability that 
his or her event time, T i, falls in the jth interval (conditional 
on survival until the start of the interval) as the interval’s 
width Δt) approaches, but does not reach, 0:

where the opening phrase “limit as Δt → 0” indicates that we 
evaluate the conditional probability in the brackets as the interval 
width moves closer and closer to 0. At its core, notice the 
parallelism between this definition and that for discrete-time 
hazard in equation 10.1.
But moving from instants to intervals creates a problem. The 
magnitude of this conditional probability depends upon the 
interval’s (small and diminishing) width. The probability in a 
one-second interval will differ from the probability in a one-
nanosecond interval. Hazard’s definition must account for the 
interval’s width, a goal achieved logically by division. Dividing 
this conditional probability by the interval width, Δt, we define 
individual i’s continuous-time hazard at time t j to be:
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(13.2)

As before, the collection of individual i’s values of hazard over time
—h(t ij)—is his or her hazard function. And when we do not 
distinguish individuals on the basis of predictors, we write the 
hazard function for a randomly selected member of the population 
as h(t j).
Because the definitions of hazard differ in continuous and 
discrete time, their interpretations differ as well. Most 
important, continuous-time hazard is not a probability. 
Instead, it is a rate, assessing the conditional probability of 
event occurrence per unit of time. No matter how tempted you 
might be to use the nomenclature of probability to describe 
rates, in continuous time, please resist the urge. Rates and 
probabilities are not the same, and so the interpretive 
language is not interchangeable.

Although the concept of a rate may seem unfamiliar, rates are 
a common part of everyday life. When you say that it takes one 
hour to travel 60 miles, you are saying that your rate of travel
is 60 miles per hour. When you say that your annual salary is 
$60,000, you are saying that your rate of pay is 60,000 dollars
per year. A crucial feature of rates is that they must be 
attached to a denominator with an explicit unit of 
measurement. A distance of 60 or a salary of 60,000 is 
meaningless unless attached to the appropriate unit of time. 
How else would you know whether the 60 miles were traveled 
in an hour, a minute, or a day or whether the $60,000 (p.475)

were earned per year, per month or per week. Similarly, 
changing the unit of time allows identical rates to be stated in 
different ways. Sixty miles per hour is identical to one mile per 
minute. Sixty thousand dollars per year is identical to 5000 
dollars per month. When describing any rate—including a 
hazard rate—we must always specify the units in which time is 
measured.

One way of developing an intuition about continuous-time 
hazard rates is to think about them as providing information 
about the expected number of events that occur in a finite 
period of time. If an event is repeatable—for example, getting 
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a parking ticket—and hazard is constant, we can apply this 
logic to an individual’s cumulative experience. If you have a 
monthly hazard rate of 0.10 for getting a parking ticket, for 
example, you can anticipate 0.10 tickets per month. But since 
you face the same monthly hazard of 0.10 January through 
December, we can multiply your monthly hazard rate by 12 to 
compute an annual hazard rate of 1.2. This tells you that you 
can expect to receive 1.2 parking tickets per year. For 
nonrepeatable events, we use the same logic but instead of 
associating the cumulative experience with an individual, we 
associate it with a hypothetical population of individuals who 
share a common hazard function. If the constant monthly 
hazard of menarche among seventh-grade girls is .04, for 
example, each month we expect 4% of the remaining 
premenarcheal girls to menstruate.

An important difference between continuous-time hazard rates 
and discrete-time hazard probabilities is that rates are not 
bounded from above. Although neither can be negative, rates 
can easily exceed 1.0. You may not have noticed, but we 
introduced a rate greater than 1 in the previous paragraph 
when we stated that a monthly hazard rate of .10 is identical 
to an annual hazard rate of 1.2. The possibility that 
continuous-time hazard rate can exceed 1 has serious 
consequences because it requires that we revise the statistical 
models that incorporate the effects of predictors. We cannot 
posit a model in terms of logit hazard (as in discrete time) 
because that transformation is defined only for values of 
hazard between 0 and 1. As a result, when we specify 
continuous-time hazard models in chapter 14, our specification 
will focus on the logarithm of hazard, a transformation that is
defined for all values of hazard greater than 0.

13.2 Grouped Methods for Estimating 
Continuous-Time Survivor and Hazard Functions

In principle, in continuous time, we would like to estimate a 
value for the survivor and hazard functions at every possible 
instant when an event (p.476)  could occur. In practice, we 
can do so only if we are willing to adopt constraining 
parametric assumptions about the distribution of event times. 
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To support this approach, statisticians have identified dozens 
of different distributions—Weibull, Gompertz, gamma, and log-
logistic, to name a few—that event times might follow, and in 
some fields—industrial product testing, for example—
parametric estimation is the dominant mode of analysis (see, 
e.g., Lawless, 1982).

In many other fields, including most of the social, behavioral, 
and medical sciences, nonparametric methods are more 
popular. The fundamental advantage of nonparametric 
methods is that we need not make constraining assumptions 
about the distribution of event times. This flexibility is 
important because: (1) few researchers have a sound basis for 
preferring one distribution over another; and (2) adopting an
incorrect assumption can lead to erroneous conclusions. With 
a nonparametric approach, you essentially trade the possibility
of a minor increase in efficiency if a particular assumption 
holds for the guarantee of doing nearly as well for most data 
sets, regardless of its tenability.

For decades, in a kind of mathematical irony, statisticians 
obtained nonparametric estimates of the continuous-time 
survivor and hazard functions by grouping event times into a 
small number of intervals, constructing a life table, and 
applying the discrete-time strategies of chapter 10 (with some 
minor revisions noted below). In this section, we describe two 
of the most popular of these grouped strategies: the discrete-
time method (section 13.2.1) and the actuarial method (section 
13.2.2). Before beginning, understand that we present these 
grouped methods first not because they are superior to the 
ungrouped Kaplan-Meier method of section 13.3—for they are 
not—but because they are easily understood, simply 
computed, and, as a result, widely used.

13.2.1 Constructing a Grouped Life Table

Grouped estimation strategies begin with a life table that 
partitions continuous time into a manageable number of 
contiguous intervals. When choosing a partition, you should 
seek one that is: (1) substantively meaningful; (2) coarse 
enough to yield stable estimates; and (3) fine enough to reveal 
discernible patterns. Although intervals of width 1 are 
intuitive and simple, other options may be preferable for 
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certain time metrics. If time is measured in months, for 
example, quarterly (3-month), semiannual (6-month), or yearly 
(12-month) intervals have appeal. If time is measured in 
weeks, monthly intervals might be better. All intervals need 
not be the same width, and it may be prudent to use wider 
intervals at later times to obtain risk sets of adequate size. If 
you use the life table (p.477)
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Table 13.2: Life table for the horn-honking data with discrete-time and actuarial estimates of the hazard and 
survivor functions (n = 57, n events = 42)

Discrete-time 
estimatesa

Actuarial 
estimatesa

Time 
interval

n at 
risk

n
events

n
censored

(t) Ŝ(t) ĥ(t) Ŝ(t) ĥ(t)

1.0000 — 1.0000 —

[1,2) 57 5 1 0.0877 0.9123 0.0877 0.9115 0.0926

(.
0375)

(.
0375)

(.
0378)

(.
0414)

[2, 3) 51 14 3 0.2745 0.6619 0.2745 0.6537 0.3294

(.
0632)

(.
0625)

(.
0643)

(.
0868)

[3, 4) 34 9 2 0.2647 0.4867 0.2647 0.4754 0.3158

(.
0683)

(.
0757)

(.
0690)

(.
1039)

[4, 5) 23 6 4 0.2609 0.3597 0.2609 0.3396 0.3333

(.
0673)

(.
0916)

(.
0680)

(.
1342)

[5, 6) 13 2 2 0.1538 0.3044 0.1538 0.2830 0.1818
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Discrete-time 
estimatesa

Actuarial 
estimatesa

Time 
interval

n at 
risk

n
events

n
censored

(t) Ŝ(t) ĥ(t) Ŝ(t) ĥ(t)

(.
0674)

(.
1001)

(.
0674)

(.
1280)

[6, 7) 9 2 2 0.2222 0.2368 0.2222 0.2122 0.2857

(.
0673)

(.
1386)

(.
0666)

(.
2000)

[7, 8) 5 1 0 0.2000 0.1894 0.2000 0.1698 0.2222

(.
0685)

(.
1789)

(.
0654)

(.
2208)

[8, 18) 4 3 1 0.7500 0.0473 0.0750 0.0243 0.1500

(.
0444)

(.
1317)

(.
0331)

(.
0573)

a Each cell presents parameter estimates and standard errors.
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routine in a computer package, consider overriding the default 
partition as it may not be optimal for your particular situation.
Table 13.2 presents a grouped life table for the horn-honking 
data of table 13.1. The table divides the 18-second observation 
period into eight intervals: the first seven are 1-second long; 
the last is 10 seconds long. We collapse the data from seconds 
8 through 18 because only four motorists were at risk by the 
beginning of the 8th second. The opening bracket and closing 
parenthesis indicates that each interval includes the initial 
time and excludes the terminal time. As in discrete-time, we 
refer to interval [t j, t j+1) as the jth interval.

13.2.2 The Discrete-Time Method

The discrete-time estimator of the continuous-time survivor 
function is obtained by applying the discrete-time principles of 
section 10.2.2 to the data in the grouped life table. Although 
the computational algorithm is identical, the nomenclature 
changes as a consequence of hazard’s redefinition.

(p.478) To explain how the discrete-time method works, we 
introduce a new quantity, p(t j), the conditional probability that 
a member of the risk set at the beginning of interval j will 
experience the target event during that interval. In discrete 
time, we labeled this quantity “hazard,” but now we use the 
neutral term “conditional probability” to distinguish it from a 
continuous time hazard rate. Letting n at risk j represent the 
number of individuals at risk at the beginning of interval j and
n events j indicate the number of individuals who experience 
the event during that interval, we estimate p(t j) to be:

(13.3) 
Sample estimates for the horn-honking data appear in the fifth 
column of table 13.2. Although we need these conditional 
probabilities to estimate the survivor and hazard functions, we 
rarely interpret them directly as their magnitude depends upon 
their associated interval’s width.
As in chapter 10, we obtain the discrete-time estimator of the 
survivor function at time t j (that is, the probability of surviving 
past interval t j) by multiplying the successive probabilities of 
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surviving through each interval, from the 1st to the jth. Each 
of these probabilities, in turn, is just the complement of the 
conditional probability of event occurrence during the interval. 
We therefore write the discrete-time estimator of the 
continuous-time survivor function for the jth interval as:

(13.4)

Owing to the definition of the survivor function in equation 13.1, we 
associate the survival probability for the jth interval with the 
instant at the end of the interval (that is, with the instant just 
before t j+1).
Discrete-time estimates of the continuous-time survivor 
function for the horn-honking data appear in the sixth column 
of table 13.2; a plot appears in the upper left hand panel of 
figure 13.1. Because the first-second survival probability of 
0.9123 is relatively high—given the lower values that follow—
we conclude that motorists give the blocking car a “grace 
period,” an initial moment to move. The immediate steep 
decline in survivorship that follows—to 0.6619, 0.4867, and 
0.3597 by the end of the fourth second—suggests that this 
reprieve is short-lived. Using equation 10.6 to linearly 
interpolate between the event times at the ends of the relevant 
intervals, we estimate the median time to horn-honk to be 3.92 
seconds!

We can also estimate the continuous-time hazard function 
using the grouped data, but because hazard is now a rate, not 
a probability, we need (p.479)
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Figure 13.1.  Grouped estimates of the 
survivor and hazard functions for the 
horn-honking data computed using two 
methods.

a modified 
approach. 
Equation 13.2
defines the 
hazard rate as 
the limit of the 
conditional 
probability of 
event 
occurrence in 
a (vanishingly 
small) interval 
divided by the 
interval’s 
width. A logical 
estimator is 
thus the ratio 
of the 
conditional 
probability of 
event 
occurrence in 
an interval to 
the interval’s 
width. Letting
width j denote 
the width of 
interval j (i.e., t
j+1 – t j), the 
discrete-time 
estimator of 
the continuous-time hazard rate is:

(13.5) 
(p.480)  When intervals are of width 1 (like the first eight in table

13.2), hazard is identical to the conditional probability of event 
occurrence. Otherwise, hazard is the conditional probability 
divided by the interval’s width, or the “average probability” of 
event occurrence per unit of time. Estimates for the horn-honking 
data appear in the seventh column of table 13.2; a plot appears in 
the lower left hand panel of figure 13.1. As presaged by the 
estimated survivor function, hazard is low in the first second, rises 

Figure 13.1.  Grouped estimates of the 
survivor and hazard functions for the 
horn-honking data computed using two 
methods.
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dramatically in the second second, remains high through the fourth 
second, when it begins to decline.
Because we calculate discrete-time estimates using the 
methods of chapter 10, it makes sense that we compute their 
standard errors using identical methods as well (equations
10.7 and 10.8). As a result, the standard errors—shown in 
table 13.2—manifest properties similar to those discussed in 
chapter 10. Most important, the larger the risk set, the smaller 
the standard error. Because the risk set is largest at t 0 and 
diminishes over time, standard errors generally increase. In 
the horn-honking data, where the initial sample is small and 
events occur in quick succession, almost all estimates have 
relatively large standard errors, which then grow over time.

13.2.3 The Actuarial Method

The actuarial method—often referred to as the life-table 
method—uses a strategy similar to the discrete-time method. 
The fundamental difference concerns assumptions about the 
distribution of event occurrence and censoring in each 
interval. The discrete-time method ignores this issue, 
assuming that all events and censoring occur at the interval’s
endpoint. The actuarial method, in contrast, assumes that 
each interval’s events and censoring are distributed equally 
throughout the interval. Invoking this actuarial assumption is 
tantamount to assuming that events and censoring occur at 
random during the interval. This leads us toward an estimate 
based on information presumed to be available at the 
interval’s midpoint.

A simple way of demonstrating how the actuarial assumption 
works is to redefine what it means to be “at risk.” Redefinition 
changes the size of each interval’s risk set, thereby changing 
the magnitude of the resulting estimates. Depending on the 
function to be estimated, a different redefinition is used.

For the survivor function, we ask: What does it mean to be “at 
risk of surviving” past the end of an interval? Because a 
censored individual is no longer “at risk of surviving” once 
censoring occurs, we redefine each interval’s risk set to 
account for the censoring we assume to occur equally (p.481)

throughout. This implies that half the censored individuals 
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would no longer be at risk half-way through, so we redefine 
the number of individuals “at risk of surviving past interval j ”

to be:

The actuarial estimate of the survivor function is obtained by 
substituting n’ at risk j for n at risk j in the discrete-time formulas 
just presented in section 13.2.2 (equations 13.3 and 13.4).
Actuarial estimates of the survivor function for the horn-
honking data appear in the eighth column of table 13.2; a plot 
appears in the upper right hand panel of figure 13.1. We plot 
the actuarial estimates as a step function associating each 
survival probability with its entire time interval. This practice 
is standard, even though estimates are based on data assumed 
to be available at each interval’s midpoint. This makes the 
actuarial estimate appear choppier than the discrete-time 
estimate, although the actual values—tabulated in table 13.2—
are similar. In fact, because n’ at risk j cannot exceed n at risk
j, the actuarial estimate of the survivor function is “more 
conservative” as it will never exceed the discrete-time 
estimate.

The decision to associate each actuarial estimate of the 
survivor function with an entire interval has an unusual impact 
on the estimation of median lifetimes. If we linearly interpolate 
between the event times at the ends of the relevant intervals, 
we find a median of 3.86 seconds. Yet statisticians rarely 
suggest interpolation for the same reason as they plot the 
estimates as a step function. Even though the survival 
probabilities are estimated using data assumed to be available 
at each interval’s midpoint, the resultant values are associated 
with every moment in the interval, including the last (as in 
figure 13.1). This suggests that the estimated median lifetime 
is simply the event time at the end of the interval when the 
sample survivor function first hits (or dips below) .50. For the 
horn-honking data, in which the survival probability is 0.6547 
at the end of the third interval and 0.4754 at the end of the 
fourth, this yields an estimate of 4 seconds. Although 
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admittedly coarser than the interpolated value of 3.86, many 
empirical researchers prefer the noninterpolated value 
because it is more conservative.

To estimate the hazard function using the actuarial approach, 
we again redefine what it means to be “at risk.” Now, 
however, we ask about the “risk of event occurrence” during
the interval, not the “risk of survival” past the interval. This 
change of definition suggests that each interval’s risk set 
should be diminished not just by censoring but also by event

(p.482)  occurrence, because either eliminates the possibility 
of subsequent event occurrence. Because categorization 
continues to prevent us from knowing precisely when people 
leave the risk set, we assume that exits are scattered at 
random throughout the interval. This implies that half these 
individuals are no longer at risk of event occurrence halfway 
through, so we redefine the number of individuals “at risk of 
event occurrence” in interval j to be:

The actuarial estimator of the continuous-time hazard function is 
then obtained by substituting n" at risk j for n at risk j in discrete-
time formulas of section 13.2.2 (equations 13.3 and 13.5).
Actuarial estimates of the hazard function for the horn-
honking data appear in the last column of table 13.2; a plot 
appears in the lower right hand panel of figure 13.1. We plot 
these estimates as a step function, each step indicating the 
hazard rate for the entire interval. Once again, this gives the 
plot a choppier appearance than the discrete-time estimate, 
although the pattern of risk over time is, of course, very 
similar. In fact, because n" at risk j cannot exceed n at risk j, 
the actuarial estimate of hazard will always exceed the 
discrete-time estimate, unless both are 0 and the issue is 
moot.

Because actuarial estimates use modified risk set definitions, 
we must compute their standard errors using modified 
versions of the formulas introduced in chapter 10. The 
appropriate formulas, developed by Gehan (1969), are 
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implemented in all software packages that offer actuarial 
estimates. Results for the horn-honking data appear below 
their associated parameter estimates in table 13.2. Because 
these standard errors closely mirror those for the discrete-
time estimates—except that they are typically larger—we omit 
discussion of their behavior.

We now raise the obvious question: Which grouped method is 
superior? Although neither is as good as the Kaplan-Meier 
approach we introduce next, each has advantages. Discrete-
time estimates are easier to interpret, especially when all 
intervals are of width 1 (because then they are identical to the 
conditional probability of event occurrence). Actuarial 
estimates adjust (albeit simplistically) for the computational 
categorization of time and are “more conservative” in that 
they underestimate survivorship and overestimate risk. In 
practice, the absolute difference between the two is usually 
small, and the relative difference in their values over time—
which reflects the shape of each function—is smaller still 
(aside from visual differences attributable to plotting 
conventions). (p.483)  Your choice is largely a matter of 
convenience, dictated usually by the options in your statistical 
package. For the kinds of broad-brush insights these methods 
provide, either will suffice.

13.3 The Kaplan-Meier Method of Estimating the 
Continuous-Time Survivor Function

A fundamental problem with grouped estimation methods is 
that they artificially categorize what is now, by definition, a 
continuous variable. Different categorizations yield different 
estimates, and for truly continuous data, categorization makes 
little sense. Shouldn’t it be possible to use the observed data—
the actual event times—to describe the distribution of event 
occurrence? This compelling idea underlies the Kaplan-Meier 
method, named for the statisticians who demonstrated (in 
1958) that the intuitive approach—also known as the product-
limit method—has maximum likelihood properties as well. 
Below, we explain how this approach works and why it is 
preferable.
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The Kaplan-Meier method is a simple extension of the 
discrete-time method with a fundamental change: instead of 
rounding event times to construct the intervals, capitalize on 
the raw event times and construct intervals so that each 
contains just one observed event time (as shown in table
13.3). Each Kaplan-Meier interval begins at one observed 
event time and ends just before the next. In the horn-honking 
study, the first three event times of 1.41, 1.51, and 1.67 lead 
to two intervals: [1.41, 1.51) and [1.51, 1.67). By convention, 
we also construct an initial interval, here [0, 1.41), which 
begins at t 0 and ends immediately before the first event. The 
final interval begins at the last event time (here 13.18) and 
ends at either this time (if there are no larger censored values) 
or infinity if the largest event time is censored (as it is here). If 
an individual is censored at an observed event time—like the 
person censored at 1.41—we “break the tie” by assuming that 
the event preceded censoring. This places the tied censored 
case within the observed event time’s interval. Tied observed 
times are similarly placed in their common interval.

The Kaplan-Meier estimate of the survivor function is obtained 
by applying the discrete-time estimator of section 13.2.2 to the 
data in these intervals. All statistical packages include a 
routine for computing and plotting the estimates. Numerically, 
the process is simple: first compute the conditional probability 
of event occurrence (column 7) and then successively multiply 
the complements of these probabilities together to obtain the 
Kaplan-Meier estimate of the survivor function (column 8). 
Because the Kaplan-Meier estimator of the survivor function is 
identical (p.484)
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Table 13.3: Kaplan-Meier (product limit) estimates for the horn-honking data (n = 57; n events = 42)

Interval [Start End) n at 
risk

n 
events

n 
censored

(t) Ŝ(t) se[Ŝ(t)] Width ĥKM(t)

0 0.00 1.41 57 0 0 — 1.0000 — —

1 1.41 1.51 57 1 1 0.0175 0.9825 0.0174 0.10 0.1750

2 1.51 1.67 55 1 0 0.0182 0.9646 0.0246 0.16 0.1138

3 1.67 1.68 54 1 0 0.0185 0.9467 0.0299 0.01 1.8500

4 1.68 1.86 53 1 0 0.0189 0.9289 0.0343 0.18 0.1050

5 1.86 2.12 52 1 0 0.0192 0.9110 0.0380 0.26 0.0738

6 2.12 2.19 51 1 0 0.0196 0.8931 0.0412 0.07 0.2800

7 2.19 2.48 50 1 1 0.0200 0.8753 0.0441 0.29 0.0690

8 2.48 2.50 48 1 0 0.0208 0.8570 0.0468 0.02 1.0400

9 2.50 2.53 47 1 0 0.0213 0.8388 0.0492 0.03 0.7100

10 2.53 2.54 46 1 0 0.0217 0.8206 0.0514 0.01 2.1700

11 2.54 2.56 45 1 0 0.0222 0.8023 0.0534 0.02 1.1100

12 2.56 2.62 44 1 0 0.0227 0.7841 0.0552 0.06 0.3783

13 2.62 2.68 43 1 0 0.0233 0.7659 0.0569 0.06 0.3883

14 2.68 2.83 42 1 2 0.0238 0.7476 0.0584 0.15 0.1587
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Interval [Start End) n at 
risk

n 
events

n 
censored

(t) Ŝ(t) se[Ŝ(t)] Width ĥKM(t)

15 2.83 2.88 39 1 0 0.0256 0.7285 0.0599 0.05 0.5120

16 2.88 2.89 38 1 0 0.0263 0.7093 0.0614 0.01 2.6300

17 2.89 2.92 37 1 0 0.0270 0.6901 0.0626 0.03 0.9000

18 2.92 2.98 36 1 0 0.0278 0.6710 0.0637 0.06 0.4633

19 2.98 3.14 35 1 1 0.0286 0.6518 0.0647 0.16 0.1788

…

27 3.57 3.58 26 1 0 0.0384 0.5121 0.0692 0.01 3.8400

28 3.58 3.78 25 1 0 0.0400 0.4916 0.0694 0.20 0.2000

…

35 4.96 5.39 14 1 1 0.0714 0.3349 0.0683 0.43 0.1660

36 5.39 5.73 12 1 0 0.0833 0.3070 0.0681 0.34 0.2450

37 5.73 6.03 11 1 1 0.0909 0.2791 0.0674 0.30 0.3030

38 6.03 6.30 9 1 1 0.1111 0.2481 0.0666 0.27 0.4115

39 6.30 7.20 7 1 1 0.1429 0.2126 0.0659 0.90 0.1588

40 7.20 9.59 5 1 0 0.2000 0.1701 0.0650 2.39 0.0837

41 9.59 12.29 4 1 0 0.2500 0.1276 0.0611 2.70 0.0926
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Interval [Start End) n at 
risk

n 
events

n 
censored

(t) Ŝ(t) se[Ŝ(t)] Width ĥKM(t)

42 12.29 13.18 3 1 0 0.3333 0.0851 0.0535 0.89 0.3745

43 13.18 ∞ 2 1 1 0.5000 0.0425 0.0403 — —
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Figure 13.2.  Kaplan-Meier estimates of 
the continuous time survivor function for 
the horn-honking data. The top panel 
presents the estimates themselves; the 
bottom panel compares these estimates 
to the discrete-time and actuarial 
estimates plotted in figure 13.1.

(p.485)  to the 
discrete-time 
estimator of 
chapter 10, its 
standard 
errors (column 
9) are 
estimated 
using the same 
formula 
(equation
10.8).
The top panel 
of figure 13.2
plots the 
Kaplan-Meier 
estimate of 
the survivor 
function for 
the horn-
honking data. 
As for 
actuarial 
estimates, we 
plot Kaplan-
Meier 
estimates as a 
step function 
that 
associates the

(p.486)

estimated survival probability with the entire interval. If the 
largest event time is censored, as it is here (17.15), we extend 
the step for the last estimate out to that largest censored 
value. When event occurrence is recorded using a truly 
continuous metric, ties will be rare, and the resulting plot will 
appear relatively smooth, at least when event occurrence is 
common. As the risk set diminishes, or when event occurrence 
is rare, the plotted survivor function will appear more jagged. 
Ironically, then, our plots of the estimated continuous-time 
survivor function appear somewhat discrete while those of the 
estimated discrete-time survivor function appear somewhat 

Figure 13.2.  Kaplan-Meier estimates of 
the continuous time survivor function for 
the horn-honking data. The top panel 
presents the estimates themselves; the 
bottom panel compares these estimates 
to the discrete-time and actuarial 
estimates plotted in figure 13.1.
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continuous. Although it is possible to use a step function for 
plotting in discrete time as well, doing so would make it more 
difficult to discern the function’s general shape and to 
compare functions across groups.

Having estimated the survivor function, it is easy to estimate 
the median lifetime. The standard approach, implemented in 
software packages, is to identify the first observed event time 
when the value of the estimated survivor function either 
precisely hits, or dips below, 0.50. Examining table 13.3, we 
find that the estimated median time to horn-honk is 3.58 
seconds, because the estimated survival probability is 0.5121 
in the [3.57, 3.58) interval and .4916 in the [3.58, 3.78) 
interval.

An alternative, albeit less common, approach to median 
lifetime estimation is offered by Miller (1981), Lee (1992), and 
others. Arguing that the median lifetime must be earlier than 
the value conventionally identified whenever the estimated 
survival probability is not precisely 0.5 at an observed event 
time, they suggest linear interpolation between the two 
bracketing event times. For the horn-honking data, we apply 
the linear interpolation formula of equation 10.6 to find:

In this data set, of course, interpolation yields little apparent gain 
because the observed event times bracketing the estimated 
survival probability of 0.50 are so close anyway. In other data sets, 
however, interpolated estimates can be valuable—especially when 
comparing subsamples—if the distance between observed event 
times in that temporal vicinity is greater.
How does the Kaplan-Meier estimate of the survivor function 
compare to those obtained using discrete-time and actuarial 
methods? To facilitate comparison, the lower panel of figure
13.2 displays all three estimates for the horn-honking data. 
Because it updates most frequently—every time an event 
occurs—the Kaplan-Meier estimate is the most refined. 
Actuarial (p.487)  estimates are generally the smallest because 
they diminish the risk set in an attempt to account for the 
distribution of censoring. Discrete-time estimates periodically 
coincide with the Kaplan-Meier estimates—especially when an 
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event occurs near the end of a pre-specified coarse interval—
but they ignore potentially meaningful detail about the 
distribution of event occurrence within intervals. Perhaps the 
only drawback of the Kaplan-Meier method is that when 
plotted for subgroups—as a precursor to statistical modeling—
the “drops” occur at different times reflecting the observed 
event times within each subgroup. Although varying drop 
locations can make visual comparison trickier, this is a trivial 
criticism of a maximum likelihood estimate that provides great 
resolution with few assumptions. The conclusion: Kaplan-
Meier estimates are unquestionably the best of the three.

If Kaplan-Meier estimates are so superior, why did we bother 
with the discrete-time and actuarial methods? Unfortunately, 
the answer is simple: there is no Kaplan-Meier estimator of 
hazard. This increases the appeal of the grouped methods—
coarse as they are—for they provide estimates of hazard, 
albeit categorized and crude. And because it is wise to 
examine “parallel” estimates computed using the same
approach, you may wish to examine survivor functions 
estimated using discrete-time or actuarial methods knowing 
full well that they are inferior to the Kaplan-Meier approach.

Although there is no Kaplan-Meier estimate of hazard, 
consider what happens when we apply the discrete-time 
estimator of hazard in equation 13.5 to the data in the fine 
Kaplan-Meier intervals. Using the subscript KM to denote 
these estimates, we have:

The resulting Kaplan-Meier “type” hazard estimates appear in the 
last column of table 13.3. Because the risk set diminishes steadily 
while the number of events in each interval remains constant at 1 
(unless there are observed ties), the numerator of this equation—

the —inevitably rises.1 Dividing by the interval width (in 
the penultimate column) “averages” these increasing values across 
their respective intervals. But because the interval width varies 
widely (and is itself a function of the distribution of event times), 
the resulting estimates vary from one interval to the next. Their 



Describing Continuous-Time Event Occurrence Data

Page 31 of 50

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

values are usually so erratic that pattern identification is near 
impossible. As a result, few software packages offer these 
estimates, although they do form the basis of other descriptive 
methods, as we now explain.

(p.488) 13.4 The Cumulative Hazard Function

The inability to estimate the continuous-time hazard function 
well represents a major analytic stumbling block for survival 
analyses of continuous-time data. From discrete time, you 
know how meaningful the hazard function is and why it is 
essential to examine its behavior graphically over time. 
Without knowledge of its shape, overall and by levels of 
predictors, model fitting can become a “black box,” 
disconnected from data. Although grouped estimates of hazard 
can be helpful, they are too coarse to provide the necessary 
insights; Kaplan-Meier type estimates of hazard are simply too 
erratic to be meaningful.

This is where the cumulative hazard function comes in. 
Denoted by H(t ij), the cumulative hazard function assesses, at 
each point in time, the total amount of accumulated risk that 
individual i has faced from the beginning of time until the 
present. More formally, at time t j, individual i’s value of 
cumulative hazard is defined as:

(13.6) 
where the phrase “cumulation between t 0 and t j” indicates that 
cumulative hazard totals the infinite number of specific values of
h(t ij) that exist between t 0 and t j.2 Unlike the hazard function, 
which is difficult to estimate well in continuous time, the 
cumulative hazard function can be estimated simply using nothing 
more than byproducts of the Kaplan-Meier method.
Because H(t ij) literally cumulates hazard, examination of its 
changing level over time tells us about the shape of the 
underlying hazard function. Although cumulation prevents it 
from describing the unique risk at each particular instant—
that, after all, is what the hazard function assesses—
comparison of its changing levels allows us to deduce this 
information. Below, we show how to use the cumulative 
hazard function to learn about the shape of the underlying 
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Figure 13.3.  Population hazard functions 
and cumulative hazard functions 
reflecting four different profiles of risk 
over time. Panel A: constant hazard. 
Panel B: increasing hazard. Panel C: 
decreasing hazard. Panel D: 
nonmonotonic hazard.

hazard function. If you are wondering why we introduce this 
important new function only now, so late in the book, the 
answer is simple: we first need it in the context of continuous-
time event data, where we cannot estimate hazard well.

13.4.1 Understanding the Meaning of Cumulative Hazard

Many people find the concept of cumulative hazard elusive 
because it is measured in a metric difficult to quantify. We can 
make general statements—if individual i has been relatively 
risk free, H(t ij) will be “low”; (p.489)

if individual i
has faced great 
and persistent 
risk, H(t ij) will 
be “high”—but 
we cannot say 
exactly which 
values are 
“high” and 
which are 
“low.” 
Cumulative 
hazard is not a 
probability 
(even in 
discrete time) 
nor is it a rate. 
Because a 
value of 
cumulative 
hazard has 
little meaning 
on its own, we rarely tabulate the function, preferring to explore its 
behavior graphically over time.
In subsequent sections, we examine estimated cumulative 
hazard functions from various studies in continuous time, 
distilling what they tell us about the hazard function and its 
behavior over time. In preparation for this work, in this 
section, we examine hypothetical cumulative hazard functions
obtained by invoking different assumptions about the 
distribution of event occurrence over time (see the bottom row 
of figure 13.3). Although sample functions will never be as 

Figure 13.3.  Population hazard functions 
and cumulative hazard functions 
reflecting four different profiles of risk 
over time. Panel A: constant hazard. 
Panel B: increasing hazard. Panel C: 
decreasing hazard. Panel D: 
nonmonotonic hazard.
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smooth, idealized representations like these allow us to 
accompany each cumulative hazard function with a related 
graph that we cannot obtain from real data: the associated 
hazard function (in the top row). Working in an idealized arena 
like this allows us to concretize the link between cumulative 
hazard and hazard so that when we move on to sample data, 
we will have a (p.490)  foundation for drawing conclusions 
about hazard on the basis of cumulative hazard alone.

By definition, the cumulative hazard function begins at 0 and
increases over time—sometimes rapidly, sometimes slowly. 
Only during those rare periods—never even shown in figure
13.3—when an individual faces no further risk (i.e., when h(t ij) 
= 0), will H(t ij) remain constant (at its previous level). This 
seemingly inevitable rise in cumulative hazard often causes 
some people to conclude (incorrectly) that all cumulative 
hazard functions “look alike” and that it is difficult to draw 
conclusions about the underlying hazard function from this 
aggregated summary. As we show below, however, nothing 
could be further from the truth.

To deduce the shape of the underlying hazard function, study 
how the rate of increase in the cumulative hazard function
changes over time. Each change in its rate of increase reflects 
a corresponding change in the level of the hazard function 
itself. To see this correspondence, examine Panel A, where the 
relationship between hazard and cumulative hazard is 
clearest. Because h(t ij) is constant, H(t ij) increases linearly, as 
the same fixed amount of risk—the constant value of hazard—
is added to the prior cumulative level in each successive 
instant. Now imagine working backwards, from cumulative 
hazard to hazard, for this is what you must do during data 
analysis. To work in this direction, you must “guesstimate” the
rate of increase in H(t ij) at different points in time. We find it 
helpful to superimpose line segments on the plot (as we do in 
figure 13.3) that summarize the function’s rate of increase 
during different periods. Because the cumulative hazard 
function in Panel A is linear, each line segment has an 
identical slope, which tells us that the rate of increase in H(t ij) 
is identical regardless of t—it remains unchanged. If the rate 
of increase in cumulative hazard is constant over time, the 
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hazard function must be constant as well, as it is in the upper 
graph.

Next examine Panel B, where the hazard function increases 
linearly over time. At each successive instant, the cumulative 
hazard function increases more rapidly—it accelerates—
because a larger amount of risk is added to the prior 
cumulated level. Acceleration can be deduced from the 
increasing slopes of the three line segments drawn on the 
graph tangent to H(t ij) at three points in time. The slope of 
each segment assesses the rate of increase in H(t ij) at the 
moment when the segment touches the curve. Because each 
segment’s slope is increasingly steep, the rate of increase in
H(t ij) is increasing over time. If the rate of increase in 
cumulative hazard is increasing, the hazard function must be 
increasing as well.

Similar strategies can be used with any cumulative hazard 
function. To illustrate, focus on Panel C, but this time, begin 
with cumulative hazard. (p.491)  The diminishing slopes of the 
three line segments tangent to the curve indicate that the rate 
of increase is decreasing over time. If the rate of increase is 
decreasing, hazard must be decreasing as well, and this is 
precisely what we see in the upper panel, where h(t ij) falls to 
a lower asymptote. H(t ij) increases less rapidly because, in 
each successive instant, a smaller amount of risk is added to 
the prior cumulative level.

In Panel D, where hazard first rises and then falls, we infer the 
directional change through the changing rate of increase in 
cumulative hazard. When h(t ij) rises slowly, the rate of 
increase in H(t ij) is small; when h(t ij) accelerates, the rate of 
increase in H(t ij) is rapid; when h(t ij) finally falls, the rate of 
increase in H(t ij) finally diminishes. Whenever the rates of 
increase in a cumulative hazard function change in magnitude 
over time, we infer that the hazard function reaches either a 
peak (or a trough).

13.4.2 Estimating the Cumulative Hazard Function

There are two simple ways to estimate the cumulative hazard 
function: (1) the Nelson-Aalen method, which is based on 
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Kaplan-Meier–type hazard estimates; and (2) the negative log 
survivor function method, which is based on Kaplan-Meier 
survivor function estimates. Although the latter method is 
more widely implemented in software, the former is more 
intuitive and for this reason, we begin there. Before doing so, 
however, notice that we do not work with either discrete-time 
or actuarial estimates for both are too coarse to yield 
adequate resolution.

The idea behind the Nelson-Aalen method is simple: if H(t ij) 
cumulates together all the “hazard” that exists at all possible 
instants between t 0 and t j, a reasonable estimate would total 
all the estimated hazard that exists between these points in 
time. This is where the Kaplan-Meier–type hazard estimates of 
section 13.3 come in. Each estimates the value of hazard at an 
“average instant” during its associated interval. To compute 
the total amount of hazard that exists during all instants in 
interval j, simply multiply the hazard estimate by its interval’s 
width:

The Nelson-Aalen estimator of cumulative hazard simply sums up 
these interval-specific estimates:
(13.7)

Equation 13.7 reinforces the graphical interpretation of cumulative 
hazard introduced in section 13.3.1. We estimate its value at time t
j by (p.492)  “summing up” the area under the associated hazard 
function from the beginning of time until the present.
The second method of estimation exploits a well-known 
mathematical relationship between the cumulative hazard and 
survivor functions. Because derivation of this relationship 
requires calculus, we simply assert the correspondence:

(13.8) 
Equation 13.8 tells us that the population cumulative hazard 
function is identical to the negative log of the population survivor 
function. This identity provides a simple alternative strategy for 



Describing Continuous-Time Event Occurrence Data

Page 36 of 50

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

estimating the cumulative hazard function: apply equation 13.8 to 
the Kaplan-Meier estimate of the survivor function:

For obvious reasons, the results are labeled Kaplan-Meier 
estimates, negative log survivor function estimates, or simply the 
“negative log survivor function.”
Nelson-Aalen and negative log survivor function estimates of 
the cumulative hazard function for the horn-honking data 
appear in figure 13.4. Because both estimate the same 
population function, it should come as no surprise that their 
values are similar. In general, the estimates will be most 
similar during early event times, when the risk set is large. As 
event occurrence decreases the risk set’s size (to a small level 
if the original sample is small and hazard is high), the 
estimates will diverge. Because censoring takes a greater toll 
on the Nelson-Aalen estimates, the negative log survivor 
function estimates are more popular for descriptive analysis 
(although we use the Nelson-Aalen estimates in chapter 14
after fitting statistical models to continuous-time event 
occurrence data).

Regardless of estimation method, sample cumulative hazard 
functions suffer from a well-known visual problem apparent in 
figure 13.4: they tempt you into focusing on estimates in the 
upper right tail that are usually very unstable. Unless event 
occurrence is rare and many people remain at risk, later 
cumulative hazard estimates are based on small risk sets. You 
should therefore focus primarily on earlier sample estimates, 
de-emphasizing later values.

Jagged sample cumulative hazard functions are more difficult 
to interpret than were the smooth hypothetical functions in 
figure 13.3. To identify shifts in the underlying slope, look past 
the inevitable jigs and jags, and seek out the “big picture.” As 
before, we suggest that you draw line segments at several 
different points in time to “guesstimate” the (potentially 
differing) rates of increase during selected periods of time.

(p.493)
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Figure 13.4.  Sample cumulative hazard 
functions for the horn-honking data. The 
top panel presents both the negative log 
survivor function and Nelson-Aalen 
estimates. The bottom panel displays the 
estimated functions using faint lines and 
their approximate slopes using heavier 
line segments.

But because 
sample 
functions are 
not smooth, do 
not draw lines 
tangent at only 
two or three 
points in time. 
Instead, try to 
identify the 
“average” 
slope during 
several 
temporal 
periods.
We apply this 
approach in 
the bottom 
panel of 
figure 13.4, 
where we plot 
the two 
estimates of 
cumulative 
hazard using 
faint lines and 
we 
“guesstimate” 
three slopes 
using heavier 
lines. 
Comparing 
the varying 
slopes of these line segments, we find that the rate of increase 
in cumulative hazard is slowest between 1.5 and 2.5 seconds, 
fastest between 2.5 (p.494)  and 5.0 seconds, and somewhat 
slower again between 5.0 and 8.0 seconds. This suggests that 
hazard is initially low, increases until the fifth second, and 
then decreases again (a description consonant with that based 
upon the discrete-time and actuarial estimates examined 
earlier). We ignore the pronounced jumps after the eighth 
second as too few people remain at risk.

Figure 13.4.  Sample cumulative hazard 
functions for the horn-honking data. The 
top panel presents both the negative log 
survivor function and Nelson-Aalen 
estimates. The bottom panel displays the 
estimated functions using faint lines and 
their approximate slopes using heavier 
line segments.
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The cumulative hazard function provides a vital link between 
the hazard function—which we cannot estimate well in 
continuous time—and the survivor function, whose doubly 
bounded nature makes it insensitive to changes in hazard. We 
can clarify further the close nature of this link by invoking the 
simple mathematical principle that states that if two 
continuous functions are related by an identity, like H(t ij) and 
−loge S(t ij) in equation 13.8, the identity can be reexpressed 
using the rates of change of the corresponding functions. This 
tells us that the rate of change in H(t ij) must be identical to 
the rate of change in −loge S(t ij). But the rate of change in 
cumulative hazard—the object of study in figures 13.3 and 
13.4—is simply the hazard function itself! We may therefore 
restate equation 13.8 as:

(13.9) 
In other words, the hazard function assesses the rate of change not
in the survivor function—as many people erroneously believe—but 
in the negated logarithm of the survivor function. This identity 
reinforces the utility of examining the negative log survivor 
function (in addition to the survivor function) for it is this 
transformation that is so closely related to hazard.

13.5 Kernel-Smoothed Estimates of the Hazard 
Function

A recurrent theme of this chapter is the difficulty of estimating 
well the continuous-time hazard function. Although the 
cumulative hazard function is informative, statisticians have 
devoted considerable energy to developing other methods for 
discerning the shape of the hazard function. In this section, we 
introduce one approach—known as kernel smoothing—which 
is becoming increasingly popular as it effectively converts any 
set of erratic point estimates into a smoother, well-behaved 
functional form (for a nontechnical description of kernel 
smoothing, see Fox, 1998).

The idea behind kernel smoothing is simple. At each of many 
distinct points in time, estimate a function’s average value by 
aggregating together all the point estimates available within 
the focal time’s temporal vicinity. (p.495)  Conceptually, 
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kernel-smoothed estimates are a type of moving average. They 
do not identify precise values of hazard at each point in time 
but rather approximate values based on the estimates nearby. 
Even though each smoothed value only approximates the 
underlying true value, a plot over time can help reveal the 
underlying function’s shape.

Kernel smoothing requires a set of point estimates to smooth. 
For the hazard function, one way of obtaining these point 
estimates is by computing successive differences in the 
estimated cumulative hazard function from each observed 
event time until the next. Each difference acts as a pseudo-
slope, a measure of the local rate of change in cumulative 
hazard during that period. Either Nelson-Aalen estimates or 
negative log survivor function estimates of cumulative hazard 
can be used; here, we use the latter.

Because each estimate of hazard is based on just two data 
points, its values are erratic. It is therefore unwise to let any 
individual value represent the sole estimate of hazard at that 
time. The logic of kernel smoothing is to aggregate together all 
the estimates that fall within a given temporal window on 
either side of a focal time and let the aggregated value 
estimate the average value of hazard in that temporal vicinity. 
To compute a smoothed value of hazard for the fifth second of 
the horn-honking data, for example, we aggregate all the point 
estimates of hazard near second 5. The definition of “near”—
known as the bandwidth—is up to you. If you define “near” as 
±1 second, you will aggregate together all point estimates 
between seconds 4 and 6. If you define “near” more 
expansively, as ±2 seconds, you will aggregate all point 
estimates between seconds 3 and 7.

Figure 13.5 presents kernel smoothed estimates of the hazard 
function for the horn-honking data obtained using bandwidths 
of 1, 2 and 3 seconds.3 When examining kernel-smoothed 
estimates, be sure to explore a range of bandwidths, as we do 
here. Comparing results obtained using different bandwidths 
helps strike a balance between smoothness and precision. The 
use of Kernel smoothing is an art based on scientific 
principles. No bandwidth is “right,” revealing the “true” shape 
of the underlying hazard function. Kernel-smoothed functions 
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do not even estimate this population function, but rather its
average value within the chosen bandwidth.

One hallmark of kernel smoothing is that as the bandwidth 
increases, the shape of the function becomes smoother. In 
figure 13.5, for example, the smoothed function obtained using 
a bandwidth of 3 (in the bottom panel) is almost linear, 
dropping steadily from its peak of .30 to a plateau of .10 
around the ninth second. The smoothed function obtained 
using a bandwidth of 1 (in the top panel) is more erratic, 
displaying four local (p.496)
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Figure 13.5.  Kernel-smoothed hazard 
functions for the horn-honking data using 
three different bandwidths. Top panel: 1-
second bandwidth. Middle panel: 2-
second bandwidth. Bottom panel: 3-
second bandwidth.

peaks (near 
seconds 3, 6, 9, 
and 12) and 
two periods of 
no measurable 
risk. The 
function in the 
middle, 
obtained using 
a bandwidth of 
2, represents a 
compromise 
between these 
extremes. This 
display leads 
us to conclude 
that the hazard 
of a horn-honk 
drops steadily 
between 
seconds 3 and 
7, after which 
time it levels 
off.
Widening the 
bandwidth to 
achieve a 
smoother 
appearance 
has two costs. 
First, each 
smoothed 
value does 
not estimate 
the population value of hazard at that point in time but rather 
the average of hazard in the temporal vicinity. Widening the 
bandwidth therefore weakens the link (p.497)  between each 
smoothed value and each specific point in time. To illustrate, 
consider what the smoothed value of hazard at second 6 
represents. If we use a bandwidth of 1, it represents the 
“average” population value of hazard between seconds 5 and 
7. But if we use a bandwidth of 2, it represents the “average” 
population value of hazard between seconds 4 and 8. 

Figure 13.5.  Kernel-smoothed hazard 
functions for the horn-honking data using 
three different bandwidths. Top panel: 1-
second bandwidth. Middle panel: 2-
second bandwidth. Bottom panel: 3-
second bandwidth.
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Increasing the bandwidth causes the resultant value to 
estimate the “average” population value of hazard across a 
much wider span. This produces a smoother function, but 
blurs the meaning of its individual values. As the bandwidth 
widens, the discrepancy between the estimated and true 
values increase; in other words, widening the bandwidth 
increases the bias.

A second cost of widening the bandwidth is that it narrows the 
temporal region the smoothed function describes. In the upper 
panel, with a bandwidth of 1, the smoothed function runs from 
seconds 2 to 12, while in the bottom panel, with a bandwidth 
of 3, it runs from only seconds 4 to 10. Narrowing results from 
the fact that computation of the smoothed value requires 
equal amounts of time on both sides of the focal time.4 So the
earliest time that we can compute a smoothed value is one 
bandwidth later than the minimum observed event time, while 
the latest time that we can compute a smoothed value is one 
bandwidth earlier than the maximum observed event time. 
When the range of observed event times is limited, as it is 
here, the effect can be devastating. The temporal narrowing 
that results from using a wider bandwidth is also problematic 
in data sets in which it is important to ascertain values of 
hazard at early event times. Previous analyses of the horn-
honking data, for example, have suggested that motorists give 
the blocked car a grace period, an initial moment in which to 
move. After this time, hazard skyrockets as motorists express 
their frustration. Yet we cannot discern these hypothesized 
phenomena in figure 13.5 for they occur too early. Lack of 
information about hazard at the extremes should never lead 
you to conclude that its value is 0 or that you can extrapolate 
values from the estimates you have. To discern the value of 
hazard at the beginning of time, you must simultaneously 
examine the sample cumulative hazard function as well, as we 
now discuss.
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13.6 Developing an Intuition about Continuous-
Time Survivor, Cumulative Hazard, and Kernel-
Smoothed Hazard Functions

To describe the distribution of event times recorded in a 
continuous metric, we recommend that you simultaneously 
examine: (p.498)

• The Kaplan-Meier estimate of the survivor function.

• The negative log survivor function estimate, or Nelson-
Aalen estimate, of the cumulative hazard function.

• The kernel-smoothed estimate of the hazard function.

Although statistical packages can automatically produce the first 
two displays, you may need to obtain the kernel-smoothed 
estimates on your own. Although this obviously requires extra 
effort, we believe this effort is repaid by the additional insights that 
this display provides.
We now describe how to examine such displays, using data 
from four studies. Because no small set of examples can 
manifest all the possible patterns you might encounter in 
practice, our goal is to develop your intuition about how the 
functions behave and interrelate. This presentation is similar 
to that of section 10.3 (in discrete time). But here, we assume 
you are comfortable with survivor and hazard functions, 
allowing us to focus upon the new methods of this chapter.

Let us begin by describing briefly the four data sets 
summarized in figure 13.6. Panel A presents data from Cooney 
et al (1991), who tracked 89 recently treated alcoholics for 
two years to assess whether and, if so, when they first had a 
“heavy drinking” day. Panel B presents data from Zorn and 
Van Winkle (2000), who used archival data to assess the 
tenure (in years) of the 107 justices appointed to the U.S. 
Supreme Court between 1789 and 1980. Panel C presents 
data from Sorenson, Rutter, and Aneshensel (1991), who 
asked 2974 adults, ages 18 to 94, to recall whether and, if so, 
at what age (in years) they first experienced a depressive 
episode. Panel D presents data from Singer et al. (1998), who 
used administrative records to track, for up to 33 months, the 
length of employment (in days) of 2074 health care workers 
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hired by community and migrant health centers. Kaplan-Meier 
estimates of the survivor function appear in the top row, 
negative log survivor function estimates of cumulative hazard 
appear in the middle row, and kernel-smoothed hazard 
functions appear in the bottom row. We do not present 
grouped estimates of the survivor or hazard functions for 
although they are simple to construct and easy to interpret, 
they are too coarse to provide the insights we seek.

Unlike discrete time, where we generally begin with the 
hazard function, in continuous time, we generally begin with 
the survivor function. We do so because it is the easiest to 
examine, in the sense that we: (1) can interpret its absolute 
level (which is difficult to do with cumulative hazard); and (2) 
have a value for all observed event times (which the smoothed 
hazard function cannot provide). We then use the smoothed

(p.499)



Describing Continuous-Time Event Occurrence Data

Page 45 of 50

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

Figure 13.6.  Sample survivor, cumulative 
hazard, and kernel-smoothed hazard 
functions for four different data sets. 
Panel A: time to first “heavy drinking 
day” among 89 recently treated 
alcoholics. Panel B: time to retirement or 
death among 107 U.S. Supreme Court 
Justices. Panel C: age at first depressive 
episode among 2974 adults. Panel D: 
employment duration among 2074 health 
care workers.

and cumulative 
hazard 
functions to 
identify 
periods of 
greater and 
lesser risk.
The four 
sample 
survivor 
functions in 
figure 13.6
display very 
disparate 
shapes. The 
first two—for 
the alcohol 
relapse study 
(Panel A) and 
the judicial 
career study 
(Panel B)—
both drop 
quite low 
(albeit at very 
different 
paces). Because relapse is common among newly abstinent 
alcoholics, the estimated median lifetime is a mere 21.57 
weeks (151 days) and the final estimated survival probability 
is only .2149 at 100.86 weeks (706 days). Event occurrence is 
also common in the judicial study because all justices must 
eventually retire or die. Its sample survivor function actually 
reaches 0 (something few do) and the estimated median 
lifetime is 16 years. Because event occurrence is less common 
in the other two studies, their sample survivor functions never 
even reach the halfway (p.500)  point (rendering median 
lifetime estimation impossible). For the depression onset data 
in Panel C, the lowest estimated survival probability is .9159 
at 54 years, while for the health care employment data of 
Panel D, it is .5709 at 138.57 weeks (970 days).

Figure 13.6.  Sample survivor, cumulative 
hazard, and kernel-smoothed hazard 
functions for four different data sets. 
Panel A: time to first “heavy drinking 
day” among 89 recently treated 
alcoholics. Panel B: time to retirement or 
death among 107 U.S. Supreme Court 
Justices. Panel C: age at first depressive 
episode among 2974 adults. Panel D: 
employment duration among 2074 health 
care workers.
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These varying levels of survivorship have the expected 
relationship to hazard: a survivor function will be low only if 
the hazard is high during at least some of the time. But beyond 
this general statement, we cannot link the varying patterns of 
survivorship in figure 13.6 to specific levels of hazard because 
the studies clock time using different metrics. A link to hazard 
levels requires identical time metrics, which we have only for 
Panels A and D and Panels B and C, respectively. Comparing 
Panels B and C, where time is clocked in years, we see that 
hazard is generally higher for the judicial data (where the 
survivor function reaches 0) than for the depression data 
(where the survivor function never even reaches .90). 
Similarly, comparing Panels A and D, where time is clocked in 
weeks, we see that hazard is generally higher for the alcohol 
relapse data (where the survivor function nears 0) than for the 
health care employment data (where the survivor function 
never even reaches .50).

The need to attend to the metric for time is reinforced by the 
realization that we can only compare hazard rates across 
studies that use an identical time metric. Because a hazard 
rate assesses risk per unit time, a change of time metric 
produces a corresponding change of interpretation. If we clock 
time in days instead of weeks, the absolute levels of hazard in 
Panels A and D will drop because the risk of event occurrence
per day (a smaller unit) must be lower. Similarly, if we clock 
time in months instead of weeks, the absolute levels of hazard 
will rise because the risk of event occurrence per month (a 
larger unit) must be higher.

This discussion highlights an important practical point: the 
metric for analysis can differ from the metric of data 
collection. Although both the alcohol relapse and health-care 
employment studies measured event occurrence in days, for 
example, we analyze their data using time clocked in weeks. 
This yields more meaningful statements because it is easier to 
understand a weekly hazard rate of relapse of .03 than a daily 
rate of .03/7 = .0043. Some might even argue that a more 
aggregated unit, like months, would be better still. If you 
convert finely measured event times into more aggregated 
units, be sure not to round the result. This discards potentially 
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important information and increases the number of ties. (Lest 
you think that fractional values are difficult to handle, 
remember that the horn-honking study measured the timing of 
events to the nearest hundredth of a second.)

We now attempt to describe the shape of the underlying 
hazard functions. Because we have no direct estimates, we 
examine changes over time (p.501)  in both the absolute levels 
of smoothed hazard and the rate of increase in cumulative 
hazard. We typically begin with the smoothed hazard function 
because it directly depicts the changing level of risk. But 
because it cannot describe risk until one bandwidth later than 
the earliest observed event time, we also examine the 
changing slopes of the cumulative hazard function to gather 
information at these times. Unfortunately, the instability of the 
later values of cumulative hazard makes it difficult to learn 
much about risk at that end. For data sets with stable values—
those with larger terminal risk sets such as the depression 
onset and health-care employment studies—we examine this 
end-stage behavior as well.

Begin with the alcohol relapse data shown in Panel A. The 
fairly regular decline in the smoothed hazard function 
suggests that the risk of relapse drops steadily after week 12. 
But what about the early weeks, just after release? To learn 
about this era, compare the cumulative hazard function’s early 
and later rates of increase. Because the slope is shallower 
between weeks 0 and 12 than it is between weeks 12 and 18, 
we conclude that the risk of relapse is lower immediately after 
release than it is months later. This suggests that the former 
alcoholics go through a “safe” period—an initial phase when 
the risk of relapse is low. Safe periods are common in studies 
of relapse as newly committed individuals—be they former 
drinkers, smokers, or drug users—are able to abstain. As the 
novelty, support, and commitment diminish, the risk of relapse 
climbs, as in Panel A. This illustrates the importance of 
examining the cumulative hazard function. Had we examined 
only the smoothed hazard function, we would not have 
uncovered this phenomenon.

Next turn to the judicial data of Panel B, where the smoothed 
hazard function suggests that after 10 years of service, the 
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risk of leaving office rises over time. Once again, this function 
cannot describe what happens during the early years, making 
the plateau between years 5 and 10 difficult to interpret. The 
cumulative hazard function, once again, provides the needed 
perspective. Comparing the rates of change in cumulative 
hazard before and after year 10, we see an approximately 
linear rise during the early years that is much less sharp than 
that of the later years. We conclude that hazard is low and 
relatively constant for approximately the first 10 years on the 
bench and then climbs steadily over time.

Panel C displays a common pattern for depression onset data. 
As in a similar study by Wheaton and colleagues (displayed in 
figure 12.5), risk peaks between ages 15 and 30. Before and 
after, hazard is low. Reinforcing this statement is the behavior 
of the cumulative hazard function. Its rates of change are 
fairly steady during the early and later phases of life, 
suggesting that the risk of onset is low during childhood and 
middle adulthood, peaking during adolescence and young 
adulthood.

(p.502) Finally, examine the undulating smoothed hazard 
function in Panel D. This function differs dramatically from the 
others in that it peaks several times. If you examine when 
these peaks occur, you will notice they correspond to 
“anniversaries,” approximately one year, 18 months, and two 
years after hire. A health-care worker is at much greater risk 
of leaving near these anniversaries. For some, the departure 
may result from the end of a contract; for others, it may reflect 
a “review process” initiated at these pre-specified times by 
either the worker or a supervisor. As the researchers could not 
distinguish voluntary and involuntary departures, nor did they 
have access to data about contractual obligations, we cannot 
know what causes these anniversary effects, yet their 
presence is of great interest. To describe the levels of risk 
immediately after hire, we turn to the cumulative hazard 
function. Its early shallow slope in comparison to its later 
steeper rise suggests that most employees give their job an 
initial chance.

We end with a word of caution about kernel smoothing. 
Although it can provide invaluable insight into the profile of 
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risk over time, remember that its smoothed values do not 
actually estimate the population hazard function. The 
discrepancy between the smoothed hazard function and the 
unobservable full hazard function can be illustrated by 
examining the displays for the alcohol relapse data in Panel A. 
Notice that: (1) the cumulative hazard function plateaus 
around 52 weeks because no one relapsed for nearly one 
additional year; but (2) the smoothed hazard function 
decreases steadily during much of this time (between 52 and 
68 weeks). Despite no events during the period, the smoothed 
hazard function drops because it uses values estimated at 
earlier and later times. The smoother provides insight into the 
profile of hazard over time, but its absolute values do not 
estimate the specific values.

Notes:

(1.) The steady rise in conditional probabilities does not 
indicate that the underlying hazard function is rising (as some 
people erroneously conclude). Rather, it tells us that we lack 
sufficient data—for the infinite number of unobserved times 
between every pair of observed events—for the estimates to 
describe the underlying hazard function’s shape.

(2.) In discrete time, we can define H(t ij) by summing the j
individual values of h(t ij). In continuous time, summation no 
longer works because there are an infinite number of specific 
hazard values between t 0 and t j For this reason, we adopt the 
“cumulation” phrase included in equation 13.6. Readers 
familiar with calculus will note that we may write this 
definition as: H(t ij) = ∫h(t ij)dt.

(3.) Only one statistical package (Egret) currently includes 
built-in routines for kernel-smoothing hazard functions. To 
facilitate their computation, we have written a SAS macro 
(based upon Allison, 1995) and STATA ado file (based upon 
McKnight, 1995) that computes and plots kernel smoothed 
estimates. Readers interested in learning more about kernel 
smoothing hazard functions should consult the seminal paper 
by Ramlau-Hansen (1983) or the excellent discussion in Klein 
and Moeschberger (1997).



Describing Continuous-Time Event Occurrence Data

Page 50 of 50

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

(4.) Asymmetric kernel smoothers can address this problem. 
See Klein and Moeschberger (1997) for details.
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This chapter describes the conceptual underpinnings of the 
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examines the results of model fitting, showing how to interpret 
parameters, test hypotheses, evaluate goodness-of-fit, and 
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—C. S. Lewis

Having explored whether and, if so, when events occur in 
continuous time, as usual, we now examine whether variation 
in the risk of event occurrence varies systematically with 
predictors. In doing so, we focus exclusively on the most 
popular of possible methods: Cox regression analysis (often 
labeled the proportional hazards model).

Our goal in this chapter is to describe the conceptual 
underpinnings of the Cox regression model and to 
demonstrate how to fit it to data. Like the discrete-time hazard 
model, the Cox model expresses a transformation of hazard as 
a linear function of predictors, but the presence of a 
continuous-time metric demands that we change the way we 
posit the model, estimate parameters, interpret results, and 
communicate findings. We begin, in section 14.1, by 
developing the Cox model specification itself, demonstrating 
why it is a sensible representation. In section 14.2, we 
describe—conceptually and computationally—how the model is 
fit. In section 14.3, we examine the results of model fitting, 
showing how to interpret parameters, test hypotheses, 
evaluate goodness-of-fit, and summarize effects. We close, in 
section 14.4, by presenting strategies for displaying results 
graphically. Then, in chapter 15, we extend the basic model, 
relaxing its assumptions and demonstrating how to 
incorporate time-varying predictors into the specification.

14.1 Toward a Statistical Model for Continuous-
Time Hazard
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We represent the population relationship between continuous-
time hazard and predictors in much the same way as we 
represent the (p.504)  population relationship between 
discrete-time hazard and predictors. But because continuous-
time hazard is a rate, not a probability, we treat its logarithm, 
not its logit, as the dependent variable. As you might expect 
from our earlier presentation, the new continuous-time model 
expresses log hazard as the sum of two components:

• A baseline function, the value of log hazard when the 
values of all predictors are 0.

• A weighted linear combination of predictors, whose 
parameters assess the shift in log hazard associated with 
unit differences in the corresponding predictor.

Owing to its origins in D. R. Cox’s 1972 seminal paper, “Regression 
models and life tables,” this representation is often known as the
Cox regression model.
In this section, we introduce the Cox regression model and 
demonstrate why it offers a sensible strategy for analyzing 
continuous-time event occurrence data. Our presentation uses 
data collected by Henning and Frueh (1996), who tracked the 
criminal histories of 194 inmates released from a medium 
security prison to determine—to the nearest day—whether 
and, if so, when, the former inmates were re-arrested. During 
the period of data collection, which ranged from one day to 
three years, 106 former inmates (54.6%) were re-incarcerated. 
To develop the Cox regression model in a simple context, we 
first focus on the effect of a single dichotomous predictor,
PERSONAL, which identifies the 61 former inmates (31.4%) 
with a history of person-related crimes (those who had more 
than one previous conviction for offenses such as simple 
assault, aggravated assault, or kidnapping). In later sections, 
we incorporate other predictors into the model, both 
categorical and continuous.

14.1.1 Plots of Within-Group Sample Functions

Plots of sample functions computed separately within groups 
distinguished by predictor values remain invaluable 
exploratory tools. Although it is easy to plot discrete-time and 
actuarial estimates, these displays are usually too coarse to be 
helpful. As explained in section 13.6, we therefore recommend 
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Figure 14.1.  Estimated survivor 
functions, cumulative hazard functions, 
and kernel-smoothed hazard functions for 
the recidivism data, by PERSONAL, an 
indicator of whether the former inmate 
had committed more than one person-
related offense prior to his focal 
incarceration.

that you plot: (1) Kaplan-Meier estimates of the survivor 
function; (2) negative log survivor estimates of the cumulative 
hazard function; and (3) kernel-smoothed estimates of the 
hazard function.

Figure 14.1 presents such plots for the recidivism data. Faint 
and bold lines represent groups of former inmates with and 
without a history of committing personal crime. Although 
event occurrence was recorded in (p.505)

days, we mark 
the time axis in 
months. To 
express the 
event times in 
days on a 
monthly scale, 
we divided 
each time by 
the length of 
an “average” 
month (365.25 
÷ 12), 
retaining 
fractional 
components. 
We believe 
that changing 
the time scale 
makes the 
metric more 
meaningful, 
but no 
temporal 
precision is 
lost because 
we have not 
rounded.
As in discrete 
time, we 
examine plots 
of within-
group sample 
functions

Figure 14.1.  Estimated survivor 
functions, cumulative hazard functions, 
and kernel-smoothed hazard functions for 
the recidivism data, by PERSONAL, an 
indicator of whether the former inmate 
had committed more than one person-
related offense prior to his focal 
incarceration.
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(p.506)  to learn about: (1) the shape of each group’s hazard 
function; and (2) whether and how its level, or shape, differs 
across groups. Although kernel-smoothed hazard functions 
provide some insight, we focus primarily on survivor and 
cumulative hazard functions because they describe the 
distribution of event occurrence across the full range of event 
times. We can compute kernel-smoothed hazard estimates 
only during the middle of each group’s event time distribution: 
one bandwidth later than the first observed event time and 
one bandwidth earlier than the last. In figure 14.1, for 
example, the first kernel-smoothed estimate appears at eight 
months, after 30 to 40% of the former inmates have already 
been re-arrested.

As recommended in section 13.6, we begin with the subsample 
survivor functions, which here drop well below .50 during the 
period of observation, indicating a high rate of recidivism in 
both groups. The growing separation of the functions with the 
passage of time highlights the importance of the predictor,
PERSONAL. Estimated median lifetimes confirm the 
impressive magnitude of this effect. On average, an offender 
with a history of committing personal crime was arrested 13.1 
months after release, whereas an offender without this history 
was arrested over four months later (17.3 months after 
release). Although recidivism is common in both groups, those 
with a history of person-related offenses are clearly at greater 
risk of re-arrest.

We next examine how the rate of increase in cumulative 
hazard changes over time to assess when the underlying 
hazard functions rise or fall. (When examining the middle 
range of event times, we also examine the kernel-smoothed 
hazard estimates.) Both cumulative hazard functions are 
approximately linear immediately after release, but each soon 
accelerates, beginning at somewhat different times. This 
suggests that each underlying hazard function is initially 
steady and then rises. For offenders with a history of 
committing personal crimes (the top function), acceleration 
occurs early, two to four months after release. For offenders 
without this history, acceleration occurs somewhat later, four 
to eight months after release. The subsequent deceleration of 
both cumulative hazard functions suggests that members of 
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each group who survive these high-risk periods then face a 
lower risk. Although former inmates with a history of personal 
crime may face a second high risk period 12 to 15 months 
after release, so few people are still at risk that we do not 
emphasize this apparent acceleration.

Finally, we compare the level of cumulative hazard across the 
groups to evaluate just how different the underlying hazard 
functions are. Beyond the minor differences in the location of 
each group’s initial acceleration, their levels of cumulative 
hazard differ markedly. The cumulative hazard (p.507)

function for those with a history of personal crime is 
consistently higher; the two functions never cross and the 
distance between them widens. A similar differential in risk is 
apparent in the kernel-smoothed hazard estimates, although 
we can see the discrepancy only in the middle range of event 
times. This suggests, once again, that the predictor
PERSONAL is related to the risk of recidivism.

14.1.2 What Type of Statistical Model Do These Graphs Suggest?

It is difficult to move directly from the sub-sample graphs in 
figure 14.1 to an appropriate statistical model for hazard in 
the population because we even lack a full picture of hazard’s 
values over time in the sample. We therefore take a different 
route, working first with the cumulative hazard functions in 
the middle panel. After developing a model that seems 
reasonable for cumulative hazard, in the next section we 
transform the entire model into an equivalent form expressed 
in terms of raw hazard. Although seemingly circuitous, we 
take this path because it reinforces the link between the 
sample functions we introduced for descriptive analyses and 
the statistical models we soon fit.

To specify an appropriate statistical model for cumulative 
hazard, we must first attend to its semi-bounded nature: 
bounded from below by 0, but without bound above. The 
transformations used in discrete time—logit and clog-log—are 
not appropriate here because they are undefined for quantities 
greater than 1. The logarithmic transformation, in contrast, 
lends itself nicely to the task for it is defined for any positive 
value. Taking logarithms of cumulative hazard yields a new 
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unbounded function, the log cumulative hazard function, 
which can vary fully between –∞ and +∞. Because many 
software packages label the cumulative hazard function the 
“negative log survivor function,” you often find its 
logarithmically transformed version labeled the “log negative 
log survivor function,” the “log-log survivor function,” or “log(-
log(S(t)).”

The top panel of figure 14.2 displays log cumulative hazard 
functions for the recidivism data. Don’t be alarmed by the 
negative numbers; log cumulative hazard is negative 
whenever cumulative hazard is less than 1. Comparing this 
graph and its raw version in figure 14.1 (middle panel) shows 
how taking logarithms expands the vertical distance between 
small values and compresses the vertical distance between 
large values. Because cumulative hazard is smallest 
immediately after release and grows over time, transformation 
further distinguishes initial values and renders later values 
more similar. This makes it easier to discern early between-
group differences (which are more precise) and it diminishes 
differences in (p.508)
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Figure 14.2.  Developing the 
hypothesized Cox regression model. Top 
panel presents estimated log cumulative 
hazard functions for the predictor
PERSONAL in the recidivism data. Middle 
panel presents estimated log cumulative 
hazard values as explicit points and 
hypothesized log cumulative hazard 
functions as smooth curves. Bottom panel 
is identical to middle panel except for a 
change of scale.

later values 
(which are 
generally more 
erratic). As an 
added benefit, 
transformation 
often stabilizes 
the distance 
between the 
functions over 
time, as it does 
here. So, not 
only does 
taking 
logarithms 
solve the 
bound-edness 
problem, it has 
other salutary 
effects as well.
Now examine 
the top panel 
of figure 14.2
and ask: What 
kind of 
statistical

(p.509)

model would 
provide a 
reasonable 

representation of the population relationship between log 
cumulative hazard and its predictors (here, just PERSONAL)? 
As in discrete time, a dual partition makes sense, one that 
expresses the entire log cumulative hazard function as the 
sum of a baseline (log cumulative hazard) function and a 
weighted linear combination of predictors. And for the 
predictor PERSONAL, at least, the relative distance between 

Figure 14.2.  Developing the 
hypothesized Cox regression model. Top 
panel presents estimated log cumulative 
hazard functions for the predictor
PERSONAL in the recidivism data. Middle 
panel presents estimated log cumulative 
hazard values as explicit points and 
hypothesized log cumulative hazard 
functions as smooth curves. Bottom panel 
is identical to middle panel except for a 
change of scale.
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the sample log cumulative hazard functions is relatively 
constant over time, suggesting the soundness of associating a 
constant shift—say β 1—per unit difference in its values.

The real dilemma is the specification of the baseline. For this 
data set—and most others—a straight line won’t do. Although 
it is tempting to say that we need “a curve,” it is impossible to 
select, a priori, an appropriate curve from the thousands of 
possible options. Different data sets will yield log cumulative 
hazard functions with different shapes, and a curve suitable 
for one is unlikely to be suitable for another. In discrete time, 
we resolved this dilemma by specifying a completely general
baseline function, using a series of dummy variables as 
predictors. In continuous time, a completely general baseline 
also makes sense, but we cannot use a finite set of dummy 
variables to specify its shape because we have an infinite
number of instants when the event could occur. Cox resolved 
this dilemma by postulating the existence of a completely 
general baseline, a function whose shape is entirely 
unconstrained. This baseline can take on any shape necessary 
to describe the distribution of event occurrence in the 
population adequately. Unlike the discrete-time hazard model, 
however, we do not offer any specification for its shape, 
indicating only that it has some shape and is a continuous 
function. Although this vague characterization may seem 
problematic for parameter estimation, we will soon 
demonstrate in section 14.2 that it is anything but.

Letting log H 0(t j) represent the completely general baseline 
log cumulative hazard function, and using the same kind of 
logic that we employed when setting up our earlier discrete-
time hazard models, we can write a Cox regression model for 
the recidivism data as:

where we add the subscript i to the variable PERSONAL to indicate 
that the predictor takes on the appropriate value for each 
individual. We use the subscript 0 to identify the baseline function 
because it represents the value of the outcome (here log 
cumulative hazard) when all predictors in the model (here, just
PERSONAL) are set to 0.
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One way of understanding what a Cox regression model 
stipulates about the population relationship between event 
occurrence and predictors is to substitute in the predictor’s 
two values: (p.510)

For offenders without a history of person-related crime, the model 
postulates that their log cumulative hazard function is represented 
by the completely general baseline, log H 0(t j). For offenders with a 
history, the model postulates the existence of another log 
cumulative hazard function, log H 0(t j) + β 1. This second function 
is just a vertically shifted version of the first, where β 1, the 
parameter associated with the predictor, PERSONAL, measures the 
size of the vertical displacement.
Another way of understanding this model is to map its 
algebraic representation onto a graph of the sample log 
cumulative hazard functions. We take this approach in the 
middle panel of figure 14.2, where we use +’s and •’s to 
denote estimated subsample values. (Eliminating the line 
segments linking the estimates streamlines the display.) Each 
superimposed curve represents the hypothesized value of that 
group’s population log cumulative hazard function. As 
hypothesized functions, we do not expect either to perfectly 
coincide with the sample values (although they will be similar 
if the model fits well). The lower curve is the hypothesized 
baseline, log H 0(t j), the value of log cumulative hazard when
PERSONAL = 0. The upper curve is identical to this function 
but shifted vertically by the constant amount, β 1.

The vertical distance between the functions assesses the 
magnitude of the predictor’s effect. In postulating that this 
distance is always β 1, we stipulate that its effect is constant 
over time. The effect of the predictor does not depend on how 
long the offender has been out of prison. The model stipulates 
that its effect is identical for men who left prison yesterday 
and those who have been arrest-free for years.

Having written a Cox model in terms of log cumulative hazard, 
it is easy to re-express the model in terms of raw cumulative 
hazard. Taking the antilog of both sides, we have:
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Notice what happens when we transform the model. The right side, 
which previously was a linear function, now includes both 
multiplication and exponentiation—it is nonlinear. To explore what 
this nonlinear representation means in practice, we apply the same 
two strategies used to explore the model in its original form: (1) 
substituting in different values of the predictor; and (2) 
superimposing the resultant hypothesized functions on a graph of 
sample estimates.
Substituting in the two values for the predictor PERSONAL we 
have: (p.511)

For offenders with no history of personal crime, the hypothesized 
cumulative hazard function is still the completely general baseline,
H 0(t j). But for offenders who do have a history of person-related 
crime, their hypothesized cumulative hazard function is

, which is not a linearly shifted version of the baseline. 
This second function is the product of the baseline and the antilog 
of the parameter estimate. This means that the two postulated 
cumulative hazard functions are not equidistant.
The varying gap between the two postulated cumulative 
hazard functions can be seen clearly in the bottom panel of 
figure 14.2. This graph is identical to that in the middle panel, 
except for a change of scale for the Y axis—from log 
cumulative hazard to raw cumulative hazard. Transformation 
converts the constant vertical distances between the functions 
in the middle graph into increasing vertical distances in lower 
graph. The cumulative hazard functions are anything but 
equidistant: in fact, the upper is a magnification of the lower. 
The magnitude of the vertical distance between the two, at 
any given moment, t j, is:

This vertical distance depends not only on β1 but also on the value 
of the baseline cumulative hazard function at that time, H 0(t j). In 
the scale of cumulative hazard, then, the shift associated with unit 
differences in a predictor is relative to the baseline hazard function 
at that point in time—it is not absolute.
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Despite the varying vertical distance between the two 
postulated cumulative hazard functions, we still say that the 
effect of the predictor PERSONAL is constant over time. One 
reason for retaining this terminology is semantic: the effect of 
the predictor in the transformed model must be identical to 
the effect in the original model because the two models are 
the same. To move from one to the other, we have simply 
transformed both sides. The underlying model has not 
changed.

Beyond this semantic justification, it is important to 
understand how a predictor’s effect can be constant over time 
if the vertical distance between hypothesized functions varies. 
To resolve this paradox, remember that there is more than one 
way for a predictor to have a time-constant effect. One way is 
for the absolute difference between two functions to be 
identical over time (as in the middle panel of figure 14.2). 
Another way is for the ratio of two functions—their relative
distance—to be identical over time. Computing the ratio of the 
two postulated cumulative hazard functions for this model, we 
have: (p.512)

The baseline cumulative hazard function, H 0(t j), cancels out of 
both numerator and denominator, leaving the antilog of the 

coefficient for PERSONAL, . Because this ratio does not 
depend upon the baseline cumulative hazard function—or any other 
function of time, for that matter—it is appropriate to say that the 
effect of the predictor is constant over time.
In essence, then, the fundamental difference between the two 
representations of the Cox model surrounds the metric in 

which we interpret the time-constant effect: (1)  measures 
the effect of the predictor on raw cumulative hazard; (2) β1

measures the effect of the predictor on log cumulative hazard. 
In both cases, the effect of the predictor is assumed to be 
time-constant; all that changes is the reference function used 
to interpret the effect.
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We close this section by extending these simple models to the 
general case of multiple predictors, both continuous and 
categorical. Letting X 1 through X P represent P generic 
predictors, we may write the general Cox regression model as:

(14.1) 
where we add the subscript j to each substantive predictor so that 
they may, if necessary, take on time-varying values. Similarly, we 
may write the Cox model in terms of log cumulative hazard as:
(14.2)

When we invoke these more general representations in the context 
of other data sets, remember that all the properties just articulated 
for the recidivism data apply to these situations as well.

14.1.3 A Hazard Function Representation for the Cox Model

The cumulative hazard formulation of the Cox model is not the 
only representation possible. Mathematical identities allow us 
to express this model in terms of hazard directly. Because a 
detailed explanation of the re-expression requires the use of 
calculus, in this section we illustrate graphically what happens 
when the model is transformed.

The left side of figure 14.3 presents a pair of hypothesized 
population cumulative hazard functions displayed on a log 
scale (top row) and raw scale (bottom row). Unlike the 
hypothesized functions in the middle (p.513)
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Figure 14.3.  Hypothesized Cox 
regression model expressed in terms of 
cumulative hazard and raw hazard. Left 
panel is on a cumulative hazard scale (log 
and raw). Right panel is on a hazard scale 
(log and raw).

panel of figure
14.2, these are 
totally smooth. 
This regularity 
is no accident. 
As discussed in 
section 13.4.1, 
we can express 
a cumulative 
hazard 
function in 
terms of its 
corresponding 
hazard 
function only if 
both result 
from identical 
population 
assumptions 
about the 
distribution of 
event 
occurrence 
over time. 
These 
cumulative 
hazard 
functions are
idealized (p.514)

representations of what these functions might look like if the 
distribution of event occurrence in a population conforms perfectly 
to a set of parametric assumptions. Working in this idealized arena 
allows us to construct a plot unattainable from real data: the 
hazard functions upon which the cumulative hazard functions are 
based. These are displayed on the right side of figure 14.3, using 
both a log scale (top row) and raw scale (bottom row).
In addition to reflecting specific assumptions about the 
distribution of event occurrence in the population, each graph 
on the left side of figure 14.3 was constructed so as to 
perfectly conform to the assumptions of the Cox model: the log 
cumulative hazard functions are separated by a constant
absolute amount, β 1; the raw cumulative hazard functions are 

separated by a constant relative amount, .

Figure 14.3.  Hypothesized Cox 
regression model expressed in terms of 
cumulative hazard and raw hazard. Left 
panel is on a cumulative hazard scale (log 
and raw). Right panel is on a hazard scale 
(log and raw).
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Now compare the vertical distances between the hypothesized 
hazard functions on the right side of figure 14.3 to the vertical 
distances between the cumulative hazard functions on the left 
side. When doing so, notice that although the scale for the raw 
functions in the bottom row differs (if it didn’t, we could not 
provide adequate graphical resolution), the scale for the log 
functions is identical. Close comparison of the two sets of plots 
shows that: (1) both log functions are separated by a constant
absolute amount, β1; and, (2) both raw functions are separated 

by a constant relative amount, . In other words, we find 
identical distances between each pair of functions whether 
they assess cumulative hazard or hazard!

These equivalencies suggest that the Cox model takes on an 
identical form, regardless of whether the outcome (and 
baseline) functions represent cumulative hazard or hazard. 
More formally, if we designate h 0(t j) the baseline hazard 
function, we may rewrite the Cox model in equation 14.1 by 
substituting h(t ij) for H(t ij):

(14.3) 
Taking the antilog of both sides, we can also write this model as:
(14.4)

Comparing equations 14.3 and 14.4 with equations 14.1 and 14.2
reveals that the two sets of models are identical, except for the 
substitution of hazard for cumulative hazard. This direct 
equivalence may not be intuitive, but it certainly is invaluable.
The representations in equations 14.3 and 14.4 allow us to 
articulate the assumptions of the Cox model using the metric 
of hazard (not cumulative hazard as we did before). For 
simplicity, let us consider a model with just one substantive 
predictor. In this context, the Cox model assumes: (p.515)

1. For each value of the predictor, there is a postulated 
log hazard function. If the predictor is dichotomous, we 
postulate two log hazard functions. If the predictor is 
continuous, we postulate that there are as many log 
hazard functions as there are values of the predictor. (If 
the model includes two or more predictors, we 
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postulate that there are as many log hazard functions 
as there are combinations of predictor levels.)
2. Each of these log hazard functions has an identical 
shape, although we don’t place any constraints on the 
specification of that shape. The shape of each log 
hazard function is constrained to be the same across all 
predictor values. Within this constraint, the function 
can take on any form necessary to adequately describe 
the distribution of event occurrence in the population.
3. The distance between each of these log hazard 
functions is identical at every possible instant. 
Regardless of the common shape of the postulated log 
hazard functions, the difference in their level is 
constant over time. We do not allow the gap to be 
smaller during some periods of time and larger during 
others. This means that the effect of the predictor on 
log hazard is constant over time.

In chapter 15, we relax some of these assumptions, specifying more 
general models. For this chapter, however, we assume that these 
assumptions hold.
The hazard function formulations in equations 14.3 and 14.4
are the most popular ways of representing the Cox model. 
Their appeal undoubtedly stems from the fact that they are 
stated in the most intuitively appealing metric in which we can 
work: hazard. Yet we cannot overstate the importance of their 
equivalence with the cumulative hazard representation, which 
allows us to:

• Directly interpret parameters from the Cox model in 
terms of a predictor’s effect on hazard. This allows us to 
make statements in a meaningful metric, even though we 
have no estimate of the hazard function itself.

• Use sample cumulative hazard functions as our visual 
window on the effects of predictors. When we examine the 
vertical distances between sample log cumulative hazard 
functions (as in the top panel of figure 14.2), we are 
assessing the very distances that we would observe were 
we able to plot the sample log hazard functions themselves 
(which we cannot).
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(p.516)  This allows us to (1) move effortlessly between the 
cumulative hazard metric for exploratory work (the one that is 
more easily implemented) and the hazard metric for interpretation 
(the one that is more intuitively meaningful); and (2) circumvent 
our inability to estimate hazard well because our data analytic tools 
provide us with the very same graphical information that we would 
have, were we able to examine the underlying hazard functions 
directly.
We close this section by discussing why Cox’s model is often 
labeled the proportional hazards model. As shown in the right 
side of figure 14.3, a constant vertical distance in the log 
hazard scale converts to a constant ratio (a constant multiple) 
in the hazard scale. (This scale conversion is identical to that 
discussed in section 14.1.2 in the context of cumulative 
hazard.) Whenever the ratio of two functions is constant over 
time, we say that the two functions are proportional. Since the 
Cox model assumes that the population hazard functions are 
proportional, the phrase “proportional hazards model” has 
become a common way of referencing this specification.

Despite its popularity, we do not routinely use the term 
“proportional hazards model” to refer to Cox’s model. 
Although we currently invoke a proportional hazards 
assumption, we show (in chapter 15) that it is easy to relax 
this assumption and fit Cox models in which the hazard 
functions are not proportional. If we referred to the Cox model 
as the “proportional hazards model,” we would soon find 
ourselves fitting “non-proportional proportional hazards 
models”! We therefore use the more neutral term “Cox 
regression model” throughout, even though we recognize, and 
remind you, that the term “proportional hazards model” is 
more widespread in use.

14.2 Fitting the Cox Regression Model to Data

Postulating a statistical model is easy; fitting it to data can be 
hard. Cox’s landmark 1972 paper is remarkable because it 
offered both a compelling model and an ingenious new method 
of estimation. Originally labeled conditional maximum 
likelihood estimation, Cox (1975) expanded the method into a 
broader class known as partial maximum likelihood estimation. 
Although partial maximum likelihood estimation is not without 
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limitations—most notably, it does not provide direct estimates 
of the baseline functions—its estimates share many of the 
asymptotic properties associated with other ML estimates: 
consistency, efficiency, and normality.

Below, we describe what happens when the partial maximum 
likelihood estimation method is used to fit a Cox regression 
model to data. In (p.517)  section 14.2.1, we provide an 
overview of the mathematics of the method—we expect that 
most readers will skip this subsection on first reading. In 
section 14.2.2, we identify three important practical 
consequences of using the method that all empirical 
researchers need to understand. Please be sure to read this 
latter subsection even if you skip over the mathematical 
details.

14.2.1 The Partial Likelihood Method of Estimation

Like full ML estimation, partial ML estimation uses a two-step 
process in which we (1) construct a partial likelihood function
—an equation that expresses the probability of observing the 
sample data as a function of the unknown parameters; and (2) 
numerically examine the relative performance of alternative 
estimates of the unknown parameters until those values that 
maximize the partial likelihood are found. The fundamental 
difference between the full and partial ML methods is that we 
construct a full likelihood function by asking: What is the 
probability that individual i experiences his or her observed 
event time? Whereas, we construct a partial likelihood 
function by “conditioning” on the observed event times and 
asking: Given that someone experienced an event at time t j
what is the probability that it was individual i?

This conditional argument has an important effect on the 
partial likelihood function: only those individuals who actually 
experience the target event contribute an explicit term. This 
means that the likelihood function will include only as many 
explicit terms as there are individuals with observed event 
times. This contrasts markedly with what happens under full 
ML, in which every person contributes an explicit term, 
regardless of whether his or her event time is observed or 
censored.



Fitting Cox Regression Models

Page 19 of 51

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

The first step in constructing the partial likelihood is to 
evaluate each person’s contribution: the conditional 
probability that individual i experiences the event at time t j, 
given that someone still at risk does. We compute this 
probability by dividing individual i’s hazard at time t j by the 
sum of all the contemporaneous hazards faced by everyone 
(including individual i) at risk at that time:

(14.5)

where  identifies the time (t j) when individual i experiences the 
target event. Someone who faces a high hazard when he or she 
experiences the (p.518)  event will contribute a large term; 
someone who faces a low hazard will contribute a small term. 
Notice that even though continuous-time hazard is not a 
probability, the ratio of an individual’s hazard at a given time to the 
total amount of contemporaneous hazard is.
Because each individual’s contribution to the partial likelihood 
is computed when he or she experiences the event, only 
individuals with non-censored event times have an explicit 
term. This is not to say that these people contribute only to 
this one term, or that censored individuals never contribute at 
all. Both contribute indirectly through their participation in the 
denominator of the explicit contributions for any non-censored 
individual whose event time is less than (or equal to) their 
observed (or censored) event time. The person with the 12th 
earliest observed event time has one explicit contribution, 
when he or she experiences the event, and 11 implicit 
contributions, in the partial likelihoods of each of the 11 
individuals with earlier observed event times. The person with 
an event time censored between the 11th and 12th observed 
event times will similarly affect the contributions of the 11 
people who previously experienced the event.

To construct the partial likelihood, we multiply together all the 
individual contributions:
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Like all likelihood functions, this one is the product of probabilities. 
It expresses the probability of observing the data actually observed 
(the event times) as a function of unknown population parameters. 
In its present form, the unknown parameters are the population 
values of hazard at each observed event time among the individuals 
who experienced the event and those still in the risk set.
Where do the unknown parameters of interest—the baseline 
hazard function and the β’s—come in? Reflection on the model 
in equation 14.4 reveals their presence through the expression 
for the population values of hazard. To make their appearance 
explicit, let us substitute equation 14.4 into the partial 
likelihood to write:

(14.6)

(p.519)  Both the baseline hazard function h 0(t j) and the β’s have 
appeared, demonstrating that the partial likelihood can be written 
solely using a combination of predictors and unknown parameters.
The elegance of Cox’s approach becomes apparent when we 
notice that every term in equation 14.6 includes h 0(t j), the 
unknown baseline hazard. Dividing throughout by h 0(t j) we 
have:

(14.7)
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All traces of the baseline hazard function have disappeared. 
Invoking the proportionality assumption allows us to use the partial 
likelihood method to fit the model without specifying anything
about the shape of the baseline hazard. The fact that the baseline 
postulated is totally vague poses no problem because we do not 
even bother to estimate it. (And because we can extend this 
approach to non-proportional hazard models—using strategies 
discussed in chapter 15—we can actually use this method in an 
even wider array of situations.)
As with all ML methods, the next step is to simplify the 
estimation task by taking logarithms:

(14.8)

Using iterative numerical methods, a computer can then obtain 
those estimated β’s that maximize this function.

14.2.2 Three Important Practical Consequences of Using Cox’s 
Method

Taken together, the Cox regression model and the method of 
partial likelihood constitute an elegant statistical feat and 
provide a powerful strategy for examining the effects of 
predictors on continuous time hazard. But Cox’s approach has 
some hidden features that have practical implications for data 
analysis. Although knowledge of the mathematical 
underpinnings of the method helps identify the source of these 
implications, you need no such knowledge to understand their
consequences. Below, we (p.520)  outline three important 
consequences of the Cox regression model that all empirical 
researchers should understand: (1) that the shape of the 
baseline hazard function is irrelevant; (2) that the precise 
event times are irrelevant, too (only their order counts); and 
(3) that ties can create analytic difficulties.

The Shape of the Baseline Hazard Function Is Irrelevant

When we postulated the Cox regression model in section 14.1, 
we discussed the concept of a completely general baseline 
hazard function-one that was as complex as was necessary for 
describing the distribution of risk in the population. At the 
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time, it seemed that the use of a completely general baseline 
hazard function might pose problems for analysis, in that it is 
difficult to imagine how we could estimate such a function 
without exhausting most of the degrees of freedom available in 
any data set. In practice, however, when we fit a Cox model to 
data, we evaluate only the predictors’ effects—we do not 
investigate the shape of the baseline hazard function at all 
because Cox’s method of partial likelihood invokes a 
conditioning argument that eliminates it entirely from 
consideration. (For those who read the mathematical 
presentation in the previous section, notice that h 0(t j) does 
not appear in the partial log-likelihood function in equation
14.8.)

The intentional irrelevance of the baseline hazard function in a 
Cox regression analysis is the raison d’être of Cox’s approach. 
One important implication is that we need not stipulate
anything about the baseline hazard function when we fit a Cox 
model because we never even consider its level or its shape. 
We can fit a Cox regression model regardless of whether the 
baseline hazard function is high or low, flat or peaked, 
undulating or steady. We can fit a Cox model even if the 
baseline has 100 irregularly spaced peaks! No function is too 
simple or too complex. All we need assume is that the effect of 
predictors on the unknown baseline hazard function is 
identical on every observed occasion of measurement. If we 
are willing to invoke this proportionality assumption—a small 
price to pay, it seems, as it often holds—we can fit a Cox 
regression model by the method of partial likelihood and 
ignore the shape of the baseline hazard function with 
impunity.

This flexibility has made the Cox model the most popular 
method for analyzing continuous time-event occurrence data. 
Other methods—and there are many—invoke parametric 
assumptions about the shape of the baseline hazard function 
that may, or may not, be met in practice. When Cox proposed 
his new model and method in 1972, critics suggested that it 
might be inferior to parametric methods. This concern (p.521)

was largely laid to rest when Efron (1977) demonstrated that 
the method is nearly as efficient even if the underlying hazard 
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function has a known identifiable shape, and is far more 
efficient if it does not. With this positive evaluation, empirical 
use of Cox regression analysis mushroomed. In fields such as 
medicine, it is the most popular statistical method in use 
today.

The irrelevance of the baseline hazard function in Cox 
regression analysis does have one unfortunate consequence: a 
fitted model does not provide predicted values of hazard. To 
offset this shortcoming, the best we can do is use 
nonparametric strategies to “recover” survivor and cumulative 
hazard functions (using techniques described in section 14.4). 
So, although Cox’s method provides a strategy for evaluating 
the effects of predictors on the hazard function—effects that 
are the primary interest of most researchers—it does not 
provide a way of estimating the hazard function itself. Most 
empirical researchers find this problem a small price to pay.

The Precise Event Times Are Irrelevant: Only Their Rank Order 
Matters

Unlike most methods for the statistical modeling of continuous 
random variables, Cox’s method does not use the precise 
values of the event times to compute parameter estimates, 
standard errors, or goodness-of-fit statistics. Instead, it uses 
the values of each person’s predictors at each observed event 
time. The observed event times play a role only through their
relative ranking. To estimate parameters, we compare a 
weighted linear combination of each person’s predictor values 
to a similar weighted linear combination among everyone still 
in the risk set when that person experiences the target event. 
(Those who read the mathematical explanation in section 
14.2.1 can confirm this observation by noticing that the partial 
log likelihood function in equation 14.8 does not include the 
observed event times.)

The consequences of this observation can be startling. The 
actual event times—the very data that you have taken great 
pains to gather in as precisely a fashion as possible—are 
irrelevant. You need only know the rank order of the event 
times: Who came first, who came second, and where the 
censored observations fall in between. You would obtain 
identical parameter estimates, standard errors, and goodness-
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of-fit statistics whether you analyzed time assessed in days, 
weeks, months, or years. You could even add, or subtract, a 
constant to each event time! You would even obtain identical 
results were you to increase some event times and decrease
others, as long as you do not alter their ranking! To convince

(p.522)  yourself of this unusual property, we suggest that you 
try these manipulations in an actual data set.

Because Cox’s method depends only on the ranks of the 
observed event times, not their actual values, you might 
conclude that the model is nonparametric. This is not strictly 
true because the model does indeed make several parametric 
assumptions. It assumes, for example, that the effect of each 
predictor on hazard is identical over time. It also assumes that 
the shift in log hazard corresponding to unit differences in 
each predictor is identical across the full predictor range. 
Because the model invokes assumptions about the functional 
form that links predictors to (log) hazard, the nonparametric
label is overstated. The more accurate term that statisticians 
prefer to use to describe the model is semi-parametric.

Ties Can Create Analytic Difficulties

The Cox regression model has one serious Achilles’ heel—its 
sensitivity to ties. Even though the actual event times are 
unimportant to model fitting, their ranked values must be 
extremely precise lest imprecision lead to duplicates. In 
section 12.1, we showed that truly continuous data should 
contain no observed ties. But we also asserted that most data 
sets do contain ties, often because of rounding. In the 
recidivism data, for example, where event occurrence was 
recorded to the nearest day, one event time is shared by 28 
people (everyone censored at three years), ten event times are 
shared by 2 individuals, and one event time is shared by 3 
people. If time were measured using a truly continuous metric
—an assumption inherent in the partial likelihood method—
observed ties would not exist.

Because ties are inevitable in real data, statisticians have 
developed several modifications to Cox’s basic approach. For 
instance, if a censored time happens to coincide with an 
observed time, we assume that the event precedes the 
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censoring. (This is identical to assumptions made when 
constructing a Kaplan-Meier estimate of the survivor 
function.) This places the censored individual in the observed 
individual’s risk set (making it possible to evaluate that 
person’s contribution to the partial likelihood).

What if two or more individuals share an observed event time? 
In the recidivism data, two people were arrested on each of 
five different days: 9, 77, 178, 207, and 528 days after release. 
Although the precise time of arrest surely differed within 
pairs, only the day was recorded, thereby creating the ties.

Of the various available methods for dealing with ties, the 
most compelling approach is the exact method (Peto, 1972; 
Kalbfleisch & Prentice, (p.523)  1980). Under this approach, 
we calculate each tied observation’s contribution to the partial 
likelihood by evaluating its value under all possible underlying 
orderings that might exist. If two people are tied, this requires 
two additional calculations, but as the number of people tied 
at any specific event time increases, the number of 
calculations escalates exponentially, making this 
computationally intensive method impractical for everyday 
use.

Improvements in computation will eventually eliminate such 
pragmatic concerns, but until then, most statistical packages 
implement one of two approximations to the exact solution:

• Breslow (1974)–Peto (1972) approximation. Instead of 
considering all possible underlying orderings that might 
exist, assume that the observed ties occurred sequentially.

• Efron (1977) approximation. Consider all possible 
underlying orderings that might exist, but use a numeric
approximation to simplify the computations.

There is also a third approach (due to Kalbfleisch & Prentice,
1973), but owing to its poor performance in comparison to these 
alternatives, we do not consider it here.
How should you handle the ties that appear in your data? 
When more powerful computers and sophisticated software 
eliminate the need for approximations, the exact approach will 
be the method of choice. Even today, if the number of ties is 
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small—and, more important, if the number of cases tied at 
each time is smaller still—you should consider the exact 
method if it is available in your software package and you find 
it to be computationally feasible. Otherwise, simulation studies 
suggest that Efron’s approximation is superior to Breslow’s 
and Peto’s (Hertz-Picciotto & Rockhill, 1997). For this reason, 
we use Efron’s approximation for all the models fitted in this 
chapter and the next. In addition, remember that if your data 
contain many ties—if, for example, there are more tied than
unique event times—none of these continuous time strategies 
works well. When this happens, we recommend—as does Cox 
himself—the discrete-time methods of chapters 11 and 12.

14.3 Interpreting the Results of Fitting the Cox 
Regression Model to Data

Most statistical packages include a routine for fitting the Cox 
regression model to continuous-time event history data. 
Although packages differ in many ways—their strategies for 
handling ties, the availability of (p.524)  residual diagnostics, 
the ease with which time-varying predictors can be included, 
and the ability to recover baseline functions—they are 
essentially identical when it comes to fitting the basic models 
with time-invariant predictors discussed in this chapter. The 
differences that do exist surround the choice—and form—of 
statistics displayed in the post-analysis output. Regardless of 
the particular package you choose, you should be able to 
obtain all summary statistics described in this section through 
simple numeric manipulation.

Table 14.1 presents the results of fitting four Cox regression 
models to the recidivism data. These analyses investigate the 
effects of PERSONAL and two other predictors: PROPERTY, a 
dummy variable indicating whether the former inmate was 
previously convicted for a property-related offense; and AGE, 
which assesses the impact of the former inmate’s age (in 
years) at the time of release. For reasons described in section 
14.3.4, we center age around its sample mean (30.7) and so 
predictor AGE represents the difference in age upon release 
between each individual and the average inmate under study. 
Models A, B, and C contain each predictor individually; Model 
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D includes all three simultaneously. Below, we discuss 
strategies for: interpreting parameter estimates (section 
14.3.1); evaluating model goodness-of-fit (section 14.3.2); 
testing statistical hypotheses (section 14.3.3); and using risk 
scores to communicate the effects of several predictors 
simultaneously (section 14.3.4).

14.3.1 Interpreting Parameter Estimates

When we fit a Cox regression model to data, we obtain 
parameter estimates that assess and summarize predictors’ 
effects. We do not obtain parameter estimates that describe 
the baseline hazard function because, as discussed in section 
14.2.2, this function is ignored entirely when the model is 
fitted by the partial likelihood method. Although we can 
ultimately recover an estimate of the baseline function using 
nonparametric methods described in section 14.4, most 
empirical researchers focus on the numeric summaries of 
predictors’ effects, as we do here.

Corresponding to the two representations of the Cox model in 
equations 14.3 and 14.4, each parameter estimate can be 
interpreted in two interrelated ways:

• Each raw coefficient describes the effect of a one-unit 
difference in the associated predictor on log hazard.

• The antilog of each raw coefficient, e(coefficient), describes 
the effect of a one-unit difference in the associated 
predictor on raw hazard.

(p.525)

Table 14.1: Results of fitting four Cox regression 
models to the recidivism data (n = 194, n events
= 106)

Model A Model B Model C Model D

Parameter 
Estimates and 
Asymptotic 
Standard Errors

PERSONAL 0.4790* 0.5691**

(0.2025) (0.2052)
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Model A Model B Model C Model D

PROPERTY 1.1946*** 0.9358**

(0.3493) (0.3509)

AGE −0.0681***−0.0667***

(0.0156) (0.0168)

Hazard Ratios and 
Their Asymptotic 
Standard Errors

PERSONAL 1.6144*** 1.7659***

(0.3268) (0.3624)

PROPERTY 3.3022*** 2.5482**

(1.1535) (0.8941)

AGE 0.9342***0.9355***

(0.0146) (0.0157)

Goodness-of-fit

LL −492.04 −486.60 −483.22 −475.22

−2LL 984.08 973.20 966.43 950.44

LR statistic 5.32 16.20 22.97 38.96

n parameters 1 1 1 3

P 0.0210 <0.0001 <0.0001 <0.0001

AIC 986.08 975.20 968.44 956.44

BIC 988.74 977.86 971.09 964.43

Likelihood-ratio 
Hypothesis Tests

H0: ΒPERSONAL = 0 5.32* (1) 7.28(1)**

H0: Β PROPERTY = 0 16.20(1)*** 9.15(1)***

H0:ΒAGE = 0 22.97***
(1)

18.32(1)***

Wald Hypothesis 
Tests
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Model A Model B Model C Model D

H0: ΒPERSONAL = 0 5.59* (1) 7.69(1)**

H0: ΒPROPERTY= 0 11.70(1)*** 7.11(1)**

H0: ΒAGE = 0 19.00***
(1)

15.81(1)***

~ p < .10; * p < .05; ** p < .01; *** p < .001.

Note: Efron method for ties.

Because the former approach is simpler, we begin with it. We then 
examine the latter approach, which allows us to express parameter 
estimates as hazard ratios.
Each raw parameter estimate assesses the estimated vertical 
separation—on a log hazard scale—associated with a one-unit 
difference in the associated predictor (controlling for all other 
predictors in the (p.526)  model). For a 0/1 dichotomy like
PERSONAL, the coefficient of 0.4790 in Model A indicates that 
the log hazard function for individuals with a history of 
person-related offenses is 0.4790 units higher than that for 
individuals with no such history. For a continuous predictor 
like AGE, the coefficient of –0.0681 in Model C indicates that 
for every one-year increment in age at release, the estimated 
log hazard function is 0.0681 units lower.

Many researchers find it difficult to develop an intuition about 
such vertical separations in log hazard space because they 
lack good estimates of hazard itself, on either a raw or 
logarithmic scale. This is where the equivalence between the 
raw and cumulative hazard representations of the Cox model 
becomes useful. The vertical distances just ascribed to log 
hazard can be ascribed just as easily to log cumulative hazard. 
This means that we can relate these estimated vertical 
distances to the observed vertical distances on the sample log 
cumulative hazard function plots, as shown, for example, in 
the top panel of figure 14.2. The parameter estimate for
PERSONAL in Model A indicates that we estimate the average 
vertical distance between the associated population log 
cumulative hazard functions to be 0.4790.
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As in discrete-time hazard modeling, it is also common to 
interpret parameter estimates by taking their antilog. For the 
Cox model, antilogged coefficients—shown in the second panel 
of table 14.1—are known as hazard ratios—the ratio of hazard 
functions that correspond to unit differences in the value of 
the associated predictor. This kind of transformation is so 
helpful that most statistical packages output the hazard ratios 
alongside the Cox regression coefficients, and some even 
output hazard ratios instead of the coefficients. Automatic re-
expression is helpful, but it means that you must read 
documentation and pay careful attention to output labeling, 
making sure that you know the metric in which results are 
displayed. If the raw coefficients have already been 
transformed into hazard ratios (erroneously labeled “risk 
ratios” by some statistical packages), you must again take 
their logarithm to obtain the graphical interpretation just 
discussed.

To understand why antilogged coefficients can be interpreted 
as hazard ratios, return to the Cox model in equation 14.3 and 
consider its representation for a single generic time-invariant 
predictor X:

Now consider what this model tells us about the population hazard 
functions for two individuals with different values of X. Let one 
person have a value of c, and the other have a value of c + 1. We 
use generic values of X, rather than specific values so that 
interpretation can apply equally, (p.527)  regardless of c, for both 
continuous and categorical predictors. Substituting these predictor 
values into the Cox model we have:

If we take the ratio of these two hazard functions, both h 0(t j) and 
e(βc) cancel out, leaving the coefficient’s antilog, e(β).
This algebraic exercise tells us that e(β) is the hypothesized 
constant hazard ratio for any one-unit difference in the 
predictor, X. Because this hazard ratio is solely a function of β
—neither the predictor, nor time, appears—it measures the 
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effect of the predictor regardless of: (1) c, the initial value of 
the predictor chosen as a point of comparison; and (2) the 
moment in time when the comparison is made.

Hazard ratios are easiest to interpret when they are very large 
or very small. The large hazard ratio of 3.30 for PROPERTY in 
Model B, for example, tells us that the estimated hazard of 
recidivism among offenders with a history of property offenses 
is three times that of those for whom PROPERTY = 0. If a 
hazard ratio is very small, much closer to 0 than to 1, we can 
adopt a similar interpretation by taking its reciprocal (that is, 
by computing 1/hazard ratio). This changes the reference 
group for the comparative statement, converting the very 
small hazard ratio into a very large one (as described in detail 
in sections 11.4.2 in the context of discrete time). If a hazard 
ratio is 0.25, for example, this tells us that the estimated 
hazard function for one group is four times (1/0.25) that for 
the other.

Hazard ratios can be linguistically awkward when they are 
near 1, as often happens for continuous predictors (because a 
one-unit difference in a predictor with a wide numeric range is 
likely to enjoy only a small effect). In Model C, for example, 
the hazard ratio for AGE (0.9342) indicates that with each 
extra year in age at release, the estimated hazard of 
recidivism is .93 times that for subjects one year younger. 
Another way to interpret this relative difference is to convert 
it into a statement about the percentage difference in hazard 
associated with a one-unit difference in the value of the 
predictor. We obtain this interpretation by subtracting the 
hazard ratio from 1 and multiplying by 100 (that is, by 
computing 100*(hazard ratio – 1)). Applying this strategy to 
the hazard ratio for AGE in Model C, we have 100(.9342 – 1) = 
–6.58%. This tells us that the hazard of recidivism is 6.6% 
lower for each additional year of age upon release.1

As this discussion suggests, we can interpret the effects of 
predictors in Cox regression models using strategies similar to 
those used in discrete time. Yet there is one fundamental way 
in which the Cox model differs. (p.528)  Because we do not 

estimate the baseline hazard function, we can make only
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comparative, not absolute, statements about hazard. We can 
say that the hazard for one group is three times that of 
another, but we cannot say how high, or low, either function 
is. Even a large hazard ratio (like 3.30, for PROPERTY) could 
potentially be making statements about a small value of 
hazard because it only multiplies the risk of event occurrence 
from an infinitesimal level to a minuscule one.

In essence, then, Cox’s regression model and the method of 
partial likelihood invoke a compromise: we trade our ability to 
estimate the actual values of the baseline hazard function for 
the ability to estimate the effects of predictors on the baseline 
hazard function. Some investigators equate this tradeoff with 
a decision to treat the baseline hazard function as a 
“nuisance” parameter—a feature that is present but discarded 
as nonessential. Knowing how informative knowledge of the 
baseline hazard function can be, it is difficult for us to accept 
the notion that it is simply a “nuisance.” Yet we are willing to 
accept this tradeoff for it allows us to model the effects of 
predictors without invoking potentially inappropriate and 
constraining parametric assumptions. (In addition, using data-
analytic strategies presented in section 14.4, we can recover 
post-model-fitting nonparametric estimates of the baseline 
hazard function, thereby ultimately providing a reassuring 
sense of the overall level of risk.)

14.3.2 Evaluating Goodness-of-Fit

Because the Cox regression model is fit using a maximum 
likelihood method, the log-likelihood statistic continues to 
provide the basis for assessing model fit. Even though the 
partial log likelihood in equation 13.8 is not a “true” likelihood, 
Cox (1975) demonstrated that it is reasonable to treat it as if it 
were. The sample log likelihood statistic (LL) is obtained by 
substituting the estimated parameters from the Cox model 
into the partial log-likelihood function and it can be 
interpreted in much the same way as the LL for the discrete 
time hazard model.2

The first row of the third panel of table 14.1 presents LL 
statistics for the four Cox regression models fit to the 
recidivism data. Notice that the LL statistics increase (become 
less negative) across the four models, suggesting that each 
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model fits better than the previous one and that Model D, 
which includes all three predictors simultaneously, fits the 
best. In the next row of the table, we multiply the log-
likelihood statistic by –2, but notice that we label the result 
−2LL, not deviance (as we have done before). We use this 
more modest label because “deviance” refers to a comparison 
with a “fully saturated” model that reproduces the sample

(p.529)  data perfectly. When we use the method of partial 
likelihood, there is no fully saturated model that reproduces 
the sample data perfectly because the method of estimation 
does not use the actual event times. Since there exists no set 
of parameters that can reproduce the sample data perfectly, 
there is no deviance statistic for the Cox regression model.

Despite the lack of a deviance statistic, however, we can still 
use differences in the −2LL statistics to conduct likelihood 
ratio tests that compare alternative nested models as is our 
usual practice. (This makes sense because the common fully 
saturated model that would appear—were we able to compute 
deviance statistics—would simply cancel out, leaving the −2LL 
statistics.) As you would expect, we typically compare −2LL 
statistics for a given Cox model to either the null model with
no substantive predictors (that is, one that contains just the 
baseline hazard function) or to simpler models that exclude 
one or more predictors whose contribution we would like to 
evaluate. The first tests the null hypothesis that all parameters 
in the current model are 0; the second tests the null 
hypothesis that all the focal parameters are 0. As usual, a 
difference in −2LL statistics between nested models has a χ 2

distribution with as many degrees of freedom as there are 
additional parameters. By judiciously fitting nested models, 
you can test the individual and joint contribution of any 
number (or type) of predictors.

In broad outline, the strategies for comparing −2LL statistics 
for the Cox regression model are identical to those for 
comparing deviance statistics for the discrete-time hazard 
model. Yet there is one important exception: the fitting of the 
null model. In discrete time, we can explicitly fit this model (as 
in Model A of table 11.3). In continuous time, we fit this model 
only implicitly because it does not include any explicit 
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predictors or parameters. All statistical packages provide the 
necessary LL (or −2LL) statistic, either routinely as part of 
model fitting or as an option that the user may specify. (It is 
usually the initial value of the LL statistic (or −2LL statistic) 
before any iterations have occurred.) For the recidivism data, 
the LL statistic for the null model is –494.701, yielding a −2LL 
statistic of 989.402.

The difference between the −2LL statistic for the null model 
and that for each of the four models in table 14.1 is presented 
in the third row of the third panel. This difference is often 
labeled a likelihood ratio (LR) statistic because the difference 
between two −2LLs is identical numerically to –2 times the 
logarithm of the ratio of the two likelihoods. To determine 
whether a current model represents an improvement over the 
null, we compare its likelihood ratio statistic to a χ 2

distribution with degrees of freedom equal to the number of 
parameters in the model (because the null model, with no 
predictors, has 0 parameters). (p.530)  The small p-values 
associated with each of these tests (shown in the next row of 
table 14.1) allow us to reject the individual null hypotheses 
that each parameter in Models A through C is separately 0 and 
the simultaneous null hypothesis that all three parameters in 
Model D are jointly 0.

Differences in −2LL statistics between nested models can also 
be used to test hypotheses about individual parameters (or 
subsets of parameters). As Models A through C include a 
single predictor, the only test possible is numerically identical 
to those just discussed. For Model D, though, we can compare 
its −2LL statistic to that of three nested models, each of which 
includes only two of the three predictors. By systematically
excluding the focal predictor and comparing the −2LL statistic 
for that model and Model D, we obtain a statistical test on the 
effect of that predictor, controlling statistically for the 
presence of the others. Although we do not present the results 
of fitting these additional models, the fourth panel of table
14.1 presents the tests that follow from these comparisons, 
labeled likelihood ratio tests. Notice that each test also has a 
corresponding low p-value, indicating that the effect of each 
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predictor is statistically significant, even on control for the 
other two.

If you wish to compare the goodness-of-fit of alternative 
models that are not nested, then AIC and BIC statistics 
continue to provide a useful guide. The last two rows of the 
third panel of table 14.1 present these statistics for each 
model. As in discrete-time survival analysis, we—and most 
software packages—use the number of observed events, (here, 
106), to represent the sample size when computing BIC. As we 
have already seen, these information criteria suggest that 
each model in the table fits better than the last, and that 
Model D fits better still. Because we can use formal hypothesis 
tests for comparing these nested models, we do not belabor 
these comparisons here. When comparing nonnested models, 
however, AIC and BIC statistics can be very useful.

14.3.3 Drawing Inferences Using Asymptotic Standard Errors

We recommend testing statistical hypotheses about the effects 
of predictors by comparing −2LL statistics for nested models. 
On occasion, however, you may want to use asymptotic 
standard errors to conduct Wald hypothesis tests—based on 
the ratio of a parameter estimate to its asymptotic standard 
error—both because these tests are printed out routinely by 
computer packages and because the asymptotic standard 
errors upon which they are based can be used to construct 
asymptotic confidence intervals.

(p.531) The Cox regression routines available in all statistical 
packages provide asymptotic standard errors for each of the 
parameters, Wald hypothesis tests (in the form of either χ 2 or
z statistics), and associated p-values. In the top panel of table
14.1, we present asymptotic standard errors in parentheses; in 
the bottom panel, we present Wald tests computed as χ 2

statistics. (As discussed in section 11.7.1, z-statistics would be 
the square root of the accompanying χ 2 statistics.)

When sample sizes are large, the Wald and likelihood ratio 
tests will suggest similar conclusions (because the two are 
asymptotically equivalent). When sample sizes are modest—as 
they are here (n = 194)—they may not agree completely. Here, 
we find that while the results for PERSONAL are similar (5.59 
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vs. 5.32 in Model A; 7.69 vs. 7.28 in Model D), those of
PROPERTY and AGE are not. The χ 2 statistics for the effect of
PROPERTY, for example, are 11.70 versus 16.20 in Model B 
and 7.11 versus 9.15 in Model D, while those for the effect of
AGE are 19.00 versus 22.97 in Model C and 15.81 versus 
18.32 in Model D. Although these discrepancies do not lead to 
completely different conclusions, it is easy to imagine that 
discrepancies of even this magnitude could change 
conclusions somewhere. Because tests based on −2LL 
statistics are superior in small samples (when the tests are 
most likely to diverge), we recommend using likelihood ratio 
tests whenever possible.

Asymptotic standard errors serve an important role, however, 
because they provide a strategy for constructing asymptotic 
confidence intervals (ACIs) for parameter estimates. As you 
might expect, we construct a 95% ACI for the raw coefficients 
in the Cox regression model by computing:

(14.9) 
For example, the 95% ACI for ΒPERSONAL in Model A is 0.4790 ± 
1.96(0.2025) = (0.0821, 0.8759), while the 95% ACI for ΒPROPERTY

in Model B is 1.1946 ± 1.96(0.3493) = (0.5100, 1.8792). We 
construct asymptotic confidence intervals for hazard ratios by 
antilogging these ACI limits:

(14.10) 
For example, the 95% ACI for the hazard ratio for PERSONAL in 
Model A is (e(0.0821), e(0.8759)) = (1.09, 2.40), while the 95% for the 
hazard ratio for PROPERTY in Model B is (e(0.5100), e(1.8792)) = 
(1.66, 6.55).
How do you form an asymptotic confidence interval if a one-
unit difference in a predictor is not substantively meaningful? 
All you need do is follow the two-step process outlined above, 
working with a c-unit increment in the predictor. To form a 
95% ACI for a coefficient associated with a c-unit increment in 
a predictor, simply multiply both terms in (p.532)  equation

14.9 by c. For example, a 95% ACI for a ten-year increment in 
the predictor AGE in Model C is 10(–0.0667) ± 1.96(10) 
(0.0168) = (–0.9963, –0.3377). You can then apply equation
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14.10, antilogging these limits, to find the ACI for the hazard 
ratio, which here is (0.37, 0.71).

Notice that the asymptotic confidence interval for a hazard 
ratio is not symmetric around its point estimate. Although 
initially unsettling, asymmetry has no effect on the interval’s 
interpretation or utility. Notice, too, that we do not compute 
an ACI for a hazard ratio using its own asymptotic standard 
error (as presented, for example, in the second panel of table
14.1). Adding and subtracting 1.96 times the hazard ratio’s 
asymptotic standard error from the hazard ratio does not yield
a 95% asymptotic confidence interval. To construct the 
appropriate interval—which must be asymmetric—you must 
antilog the symmetric limits for the raw coefficient itself as 
shown in equation 14.10. This realization reinforces the need 
for care when retrieving coefficients from computer output. Be 
sure you know which coefficients and asymptotic standard 
errors your package presents—raw regression parameters or 
their associated hazard ratios. Incorrect interpretations will 
result from incorrect labels.

14.3.4 Summarizing Findings Using Risk Scores

Another strategy for communicating the results of fitting a Cox 
regression model is to use the concept of a risk score. Instead 
of summarizing the effect of a single predictor, risk scores 
summarize the effects of several predictors simultaneously. 
Risk scores are therefore especially attractive when you have 
fitted complex models with multiple predictors whose findings 
may not be easily explained.

To understand how to compute and interpret risk scores, 
examine the Cox model in equation 14.4 and consider how you 
might compare the risk of event occurrence for each individual 
in the sample to that of the “baseline individual”—the person 
who has value 0 for every predictor in the model. With time-
invariant predictors, the hazard function for individual i is

. The hazard function for the 
baseline individual is just h 0(t j), regardless of the number and 
type of predictors. Dividing the former function by the latter 
and substituting in parameter estimates for population values, 
the baseline hazard function cancels out, leaving:
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(14.11) 
Each individual’s risk score compares the level of his or her fitted 
hazard function to that of the baseline hazard function.
Risk scores are measured in relative, not absolute, terms. The 
risk score for individual i does not assess that person’s
absolute level of hazard, but (p.533)  rather his or her relative

level in comparison to that of the baseline hazard function. 
When contemplating the use of risk scores in an empirical 
analysis, it is therefore essential to think carefully about who 
the baseline hazard function represents. All Cox regression 
models possess a baseline hazard function, as a mathematical 
necessity, even if 0 is not a viable value for every predictor. 
Desire for a baseline hazard function that is substantively 
meaningful was the motivation for our decision to center 
predictor AGE by subtracting its sample mean. (Because 0 is a 
valid value for the other predictors, we felt that no further 
rescaling was necessary for them.) But, centering AGE
ensured that the baseline hazard function for Model D was 
substantively plausible and conceptually appealing: it 
represents the hazard function for a former inmate with no 
history of personal or property offenses who was of “average” 
age upon release.

Because risk scores do not depend on an individual’s event 
time, they can be calculated for every member of the sample, 
censored or not. Using Model D of table 14.1, table 14.2
presents predictor values and risk scores for eight former 
inmates in the recidivism study. Like hazard ratios, risk scores 
are positive. The higher the risk score, the higher the 
individual’s predicted level of risk. Individuals who face no 
elevated risk will have risk scores of approximately 1 (inmates 
22 and 8). Individuals who face greater comparative risk will 
have risk scores greater than 1 (inmates 187, 26 and 5). 
Individuals who face lower comparative risk will have risk 
scores less than 1 (inmates 130, 106 and 33).

We chose the eight individuals in table 14.2 to illustrate how 
risk scores of varying size can be interpreted to advantage. 
The risk score for the first entry in the table (inmate 22, who 
has a risk score of 0.98) indicates that his predicted hazard 
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function is virtually identical to that of the baseline. This 
makes sense as this former inmate was of average age upon
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Table 14.2: Risk scores estimated from Model D of table 14.1 for selected individuals in the recidivism study

ID PERSONAL PROPERTY CENTERED AGE Risk score DAY MONTHS CENSOR

22 0 0 0.258 0.98 52 1.7084 1

8 1 1 22.451 1.01 19 0.6242 1

187 1 0 −7.200 2.86 1065 36.0000 1

26 0 1 −7.302 4.15 72 2.3655 0

5 1 1 −7.165 7.26 9 0.2957 0

130 0 1 22.391 0.57 486 15.9671 1

106 0 0 16.203 0.34 356 11.6961 0

33 1 0 27.061 0.29 85 2.7926 1
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(p.534)  release with no history of either personal or property 
crime. But the second entry in the table, inmate 8, illustrates that 
this predictor profile is not the only way of attaining a risk score of 
1. He also has a risk score of approximately 1 (1.01) despite his 
history of both personal and property crime. He attained this 
relatively low value because he was 22.45 years older than the 
average former inmate upon release (age 53). His age 
counterbalances his criminal history, placing him at identical risk 
as someone of average age with a less problematic record.
Each of the next three individuals have comparatively higher 
risk scores. Youth is one source of their increased risk (all 
were approximately 24 upon release, seven years younger 
than the average sample member). But their history of 
personal and property crime also plays a role. Inmate 187, 
who committed more than one person-related crime, is nearly 
three times more likely than a baseline individual to be 
rearrested. Despite this relatively high risk, he managed to 
remain arrest-free for three years. Inmates 26 and 5 were not 
so fortunate. The model predicts that each faces a greater risk 
of recidivism—inmate 5 was over seven times as likely as an 
individual at baseline to be rearrested—and both returned to 
jail within three months of release.

The remaining three individuals are at lower risk of recidivism 
in comparison to an individual at baseline. One reason for 
their lower risk is their “advanced” age upon release—all were 
in their late 40s or 50s. Once again, age mitigates criminal 
history, as the risk score for even inmate 130, who has a 
history of property crime, is nearly half that of the baseline. 
For two of these people—inmates 130 and 33—this lower 
predicted risk is born out by the fact that neither had been 
arrested by the end of data collection (they are both 
censored). But inmate 106, who had no history of personal or 
property crime, was rearrested just before his one-year 
anniversary (despite the model’s prediction of very low risk).

Risk scores are invaluable for demonstrating that there is 
more than one way to attain a given level of risk. Each 
predictor’s effect operates in the context of the others; some 
people who may appear to have a high risk because of the 
values of one or two predictors can attain lower levels of risk 
because of other factors. Other individuals who appear to have 
low levels of risk may attain higher levels because of other 
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factors. Although each predictor has the controlled effect 
summarized by its single associated parameter, it is the
combination of predictor values in association with the 
combination of parameter estimates that determines each 
person’s overall level of risk. Few predictors have such large 
effects that they dominate all others. In essence, then, risk 
scores illustrate the inevitable push and pull of all 
countervailing effects.

(p.535) Although risk scores are valuable summaries of 

analytic results, they are not immutable characteristics of 
individuals. Risk scores are a joint consequence of an 
individual’s predictor values and a particular fitted model. If 
we fit another model to the recidivism data using just two of 
these three predictors, the risk scores would change. Risk 
scores are model dependent even though predictor values are 
not. We find it helpful to think of risk scores as predicted, or 
fitted, values based on a particular model and sample. But 
because the baseline hazard function is ignored in the 
calculation of risk scores, the predicted (or fitted) values are 
measured in relative, not absolute, terms.

If you want to use risk scores to communicate your findings, 
take the time to create a useful and substantively plausible 
baseline. The strategy we use here—centering continuous 
predictors on their sample mean and leaving dichotomous 
predictors alone—is just one approach. You can also center all
predictors on their sample means. If we had adopted this 
strategy for Model D, for instance, the baseline hazard 
function would represent the risks for an “average” former 
inmate: someone released at an “average” age with an 
“average” history of personal crime and an “average” history 
of property crime. Although this “average’ individual cannot 
exist, he can provide a valuable artifice for presentation. For 
further ideas, we suggest you read the discussion of centering 
in section 4.5.4. Our point is simple: by suitable construction 
of predictors, the interpretation of the baseline hazard 
function is entirely up to you, dictated by the kinds of 
descriptive statements you would like to make.
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14.4 Nonparametric Strategies for Displaying 
the Results of Model Fitting

Throughout this chapter, we have stated repeatedly that Cox 
regression analysis provides no information about the shape of 
the baseline hazard function. Given that we never estimate the 
hazard function well in continuous time, this limitation seems 
unremarkable. But what about the cumulative hazard 
function? Can we discern its shape from a fitted model? If so, 
might we be able to recapture a fitted survivor function and 
perhaps even deduce the shape of the hazard function?

Soon after the publication of Cox’s 1972 paper, statisticians 
began addressing these challenging questions. Reasoning that 
risk scores offer valuable information, Kalbfleisch and Prentice 
(1973, 1980) and Breslow (1974) developed nonparametric
methods for recovering the baseline cumulative hazard 
function from a model fit using time-invariant predictors. 
These recovery methods do not produce predicted functions in 
the (p.536)  classical sense; in other words, they do not yield

model-based estimates of the underlying population functions. 
Instead, they yield nonparametric estimates of these functions 
based on the risk scores of sample members.

Derivation of these algebraically complex and computationally 
intensive methods is beyond the scope of this book. Our goal is 
to demystify the process, explaining how you can recover 
baselines—even though we have ignored them entirely during 
the process of model fitting—and put the recovered values to 
good use. In section 14.4.1, we describe conceptually how the 
methods work and examine their values from Model D for the 
recidivism data. In section 14.4.2, we use these baselines for a 
second purpose: to obtain fitted functions at selected predictor 
values.

14.4.1 Recovered Baseline Functions

The recovery methods are creative extensions of the principles 
of Kaplan-Meier estimation. As described in section 13.3, we 
obtain Kaplan-Meier estimates by: (1) dividing continuous time 
into intervals; (2) computing the conditional probability of 
event occurrence in each interval; (3) multiplying the 
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complements of these conditional probabilities together to 
estimate the survivor function; and (4) computing the negative 
log of the survivor function to estimate the cumulative hazard 
function. Central to this approach, then, are the conditional 
probabilities of event occurrence. If we can estimate them, we 
can compute the other summaries.

The key task for baseline recovery is estimation of these 
conditional probabilities for the model’s baseline group—those 
individuals who take on the value 0 for every predictor in the 
model. You might think it logical to start the process by 
computing a risk score for each person under the assumption 
that he had the value 0 for every predictor in the model. But if 
we do this, all the risk scores would be 1 (since every 
parameter would be multiplied by 0, and taking the antilog of 
0 yields 1). This strategy effectively eliminates information 
about predictors from the calculation, making it an unwise 
choice. Instead, we invoke the opposite logic: begin with each 
person’s observed risk score because this compares his level of 
risk to that of the baseline individual. In essence, risk scores 
provide an alternative metric for assessing the size of the risk 
set, scaled in the metric of risk scores, not people. This allows 
us to estimate the conditional probability of event occurrence 
using the concept of the “amount of remaining risk,” as we 
now explain.

The “amount of remaining risk” at the beginning of any 
interval is the sum of the risk scores among everyone still at 
risk. For Model D of the recidivism data, the amount of 
remaining risk at t 0 is 626.778—the sum of the observed risk 
scores among all 194 individuals. As people leave the (p.537)

risk set, either because of event occurrence or censoring, the 
amount of remaining risk diminishes. After the second 
interval, when the risk set drops to 193, the total amount of 
remaining risk drops to 621.742, because the one individual 
arrested (on day 2) has a risk score of 5.036. After the third 
interval, when the risk set drops to 192, the total amount of 
remaining risk drops to 616.612, because the one individual 
arrested (on day 4) has a risk score of 5.130. After the fourth 
interval, the total amount of remaining risk drops to 610.561. 
After the fifth interval, the amount of remaining risk drops 
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more precipitously, to 597.869, because the two people 
arrested on day 9 have a combined risk of 12.692. After day 
882 (the last observed event time), when the risk set falls to 
31, the total level of remaining risk hits its floor, 90.702, the 
sum of the risk scores among the 31 individuals censored at 
the end of data collection. In any data set, the last observed 
event time is the last moment for which we can recover a 
baseline function.

Both recovery methods use the total amount of remaining risk 
to compute baseline conditional probabilities. The methods 
differ not in their underlying assumptions, but rather in the 
approximations invoked to increase computational feasibility. 
The simpler Breslow method substitutes the amount of 
remaining risk for the size of the risk set in the denominator of 
the standard formula for conditional probability estimation in 
equation 13.3. The more elaborate Kalbfleish-Prentice method 
(1973, 1980) goes further and alters the numerator to account 
for the amount of risk faced by those individuals who 
experience the target event in the interval. When there are 
ties, this computationally intensive method requires numeric 
iteration. Because the methods are asymptotically equivalent 
and virtually identical in practice, you are free to use either. 
For display purposes in what follows, we use the Kalbfleisch 
and Prentice method (sometimes labeled the product limit 
method in software packages).

The left panel of figure 14.4 presents baseline survivor, 
cumulative hazard, and kernel-smoothed hazard functions for 
Model D of table 14.1. To interpret these functions, you must 
first identify precisely who the baseline represents. Baselines 
are not necessarily “averages”; this interpretation accrues 
only if every predictor in a model—including dichotomies—is 
centered on its sample mean (which is not the case for Model 
D). Instead, an individual who takes on the value 0 for every 
predictor in Model D is someone of average age upon release 
from prison with no history of either personal or property 
crime. Because only AGE is centered, this baseline is someone 
at much lower risk (owing to lack of a history of personal or 
property crime). Reflecting this low risk, the baseline survivor 
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Figure 14.4.  Recovered baseline survivor 
function, cumulative hazard function, and 
kernel-smoothed hazard function for 
Model D of table 14.1. The baseline in the 
left panel is a former inmate of average 
age upon release who had no history of 
either property or personal crime. The 
baseline in the right panel is a former 
inmate of average age upon release who 
had an “average” history of both property 
and personal crime.

function drops to only 0.6694 at 29 months. (Notice that
(p.538)

(p.539)  the 
fitted baseline 
stops at this 
moment, which 
is the last 
observed event 
time.) In fact, 
we predict 
recidivism to 
be so rare for 
this group that 
we cannot 
even estimate 
a median 
lifetime. This 
stands in stark 
contrast to the 
sample 
functions in 
figure 14.1
according to 
values of the 
predictor,
PERSONAL. 
Both groups in 
that display 
are at greater 
risk, even the 
group with no 
history of 
personal 
crime. If you 
think this is 
illogical—that 
the baseline 
should fall 
between the 
sample functions—remember that this baseline has no history of 
personal crime and no history of property crime. Such an individual 
is at much lower risk of recidivism than either group in figure 14.1.
If you want recovered baselines for an “average” individual, 
the easiest thing to do is to center all predictors—including 

Figure 14.4.  Recovered baseline survivor 
function, cumulative hazard function, and 
kernel-smoothed hazard function for 
Model D of table 14.1. The baseline in the 
left panel is a former inmate of average 
age upon release who had no history of 
either property or personal crime. The 
baseline in the right panel is a former 
inmate of average age upon release who 
had an “average” history of both property 
and personal crime.
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dichotomies—before model fitting. Some software packages 
suggest that you routinely center all predictors because doing 
so improves numerical accuracy. Unlike the multilevel model 
for change, where centering affects parameter interpretation, 
centering has virtually no impact on the proportional hazards 
model. All statistics in table 14.1—parameter estimates, 
standard errors, and goodness-of-fit statistics—will be 
identical whether or not you center. (To confirm this result, try 
fitting identical models with raw and centered predictors.) 
What does change when you center is: (1) everyone’s risk 
scores; and (2) the meaning of the baseline individual. The risk 
scores change not because the parameter estimates change 
(they remain the same) but rather because the predictor 
values change—they are now centered on the sample means. 
This changes the baselines, allowing recovered functions to 
represent model predictions for an “average” individual.

The right panel of figure 14.4 illustrates what happens if we 
use Model D to recover an “average” baseline for the 
recidivism data. We obtained these functions by fitting a 
model identical to Model D in table 14.1 with one important 
change: in addition to centering AGE at its sample mean, we 
also centered PERSONAL and PROPERTY on their sample 
means (0.3144 and 0.8144, respectively). This allows us to 
interpret the recovered baselines on the right side of figure
14.4 as predicted functions for an “average” former inmate
after adjusting statistically for the predictors AGE, PERSONAL
and PROPERTY. In contrast to the recovered baselines in the 
left panel, these fall near the middle of the sample functions in 
figure 14.1. We expect this behavior because these recovered 
baselines represent the model’s expectation for an average 
individual.

The ability to recover baseline functions increases the Cox 
model’s interpretability. Without recovered functions, you may 
find yourself fitting model after model, getting further 
removed from your data. We suggest that you examine 
recovered baselines periodically to clarify the (p.540)  link 
between the functions you examine during exploratory 
analysis and the results of model fitting. This link can be 
further clarified if you use the recovered baselines to go one 
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step further and compute predicted functions at interesting 
combinations of predictor values, as we now explain.

14.4.2 Predicted Survivor and Cumulative Hazard Functions

Having recovered the baseline survivor and cumulative hazard 
functions, it is simple to use these to display fitted models not 
just for “baseline” individuals but also for prototypical 
individuals who enjoy any combination of predictor values. To 
see how this works, imagine using equation 14.11 to compute 
a risk score that reflects predictor values for a prototypical 
individual. To recover a cumulative function for this prototype, 
simply substitute that risk score into equation 14.3 to find:

(14.12) 
The recovered fitted cumulative hazard function for each 
prototypical individual is just that risk score multiple of the 
baseline cumulative hazard function.
To recover a survivor function for a prototypical individual, we 
need an extra step that exploits the mathematical identity 
between cumulative hazard and the negative log survivor 
function in equation 13.8. Because of this identity, we can 
substitute the negative log survivor function into both the left 
and right hand sides of equation 14.12 to write:

Canceling the two negative signs, we take the antilog of both sides 
to find:

(14.13) 
The recovered survivor function for any combination of predictor 
values is just a risk score power of the baseline survivor function. 
You can then obtain the remaining functions from these values.
All statistical packages include some provision for computing 
fitted cumulative hazard and survivor functions corresponding 
to user-specified predictor values. If your package limits you 
to recovered baseline functions, you can calculate functions 
for prototypical individuals using equations 14.12 and 14.13. 
The major conceptual task in this process is the selection of 
the prototypical people (a topic discussed at length in section 
4.5.3 in the context of the multilevel model for change). If you 
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Figure 14.5.  Recovered survivor and 
cumulative hazard functions, for Model D 
of table 14.1, obtained by setting AGE to 
its sample mean and varying the values of 
PERSONAL and PROPERTY.

use the sample means for each predictor, you obtain the
adjusted baseline (p.541)

functions 
presented in 
the right side 
of figure 14.4. 
More often, we 
select 
substantively 
interesting 
combinations 
of predictors—
prototypical 
individuals 
whose 
behavior we 
would like to 
describe. We 
computed the 
functions in 
figure 14.5 by 
combining 
these 
strategies: AGE
is set to its 
sample mean 
and we display 
results for all 
possible 
combinations 
of PROPERTY
and
PERSONAL.

(p.542) Coupled with the numerical results in table 14.1, 

figure 14.5 provides compelling evidence about the large (and 
statistically significant) effects of a former inmate’s criminal 
history on risk of recidivism. Controlling statistically for age at 
release, former inmates who committed no more than one 
personal crime and no property crime face the lowest risk of 
re-arrest. A history of either type of crime bodes poorly for 
remaining arrest-free, although the effect of property crime 
alone (hazard ratio of 2.55) is much larger than the effect of 
personal crime alone (hazard ratio of 1.77). Those with a 

Figure 14.5.  Recovered survivor and 
cumulative hazard functions, for Model D 
of table 14.1, obtained by setting AGE to 
its sample mean and varying the values of 
PERSONAL and PROPERTY.
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history of both types of offenses are at especially great risk of 
recidivism. Controlling statistically for their age at release, 
their risk is 4.50 times (e(0.5691+0.9358) = 4.50) the risk of 
someone with no history of either crime.

We close by drawing your attention to the bottom panel of 
figure 14.5, where we display the predicted cumulative hazard 
functions on a logarithmic scale. We display these functions 
instead of the kernel-smoothed hazard functions to highlight 
an important feature of the Cox model we want to re-
emphasize: under the proportional hazards assumption, the 
predicted cumulative hazard functions will be equidistant 
when plotted on a logarithmic scale. Equidistance is an
assumption of the model, not a statement about reality. In 
postulating the model, we assume that unit differences in the 
value of each predictor, controlling for all other predictors in 
the model, have the same effect at all points in time—here, 
regardless of whether the former inmate was just released 
from prison or whether he had been out for many months. 
Although this proportional hazards assumption is often 
tenable, you should always evaluate its appropriateness. We 
offer strategies for doing so in the next chapter.

Notes:

(1.) A similar strategy can be used for other increments. To 
estimate the percentage difference in hazard associated with a
c-unit difference in a predictor, compute 100(hazard ratioc

−1). A 10-year increase in the age of release, for example, is 
associated with a change of 100(.934210−1) = −49.4%—a 
halving of—the hazard of recidivism.

(2.) If there are no ties, we calculate LL using equation 14.8. If 
there are ties, we calculate LL using a revised partial log-
likelihood function that reflects the method used to handle the 
ties. The log-likelihood statistics in table 14.1 were computed 
using Efron’s method for handling ties; if a different method is 
used, the obtained log-likelihood statistics will differ.
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This chapter begins by describing how to include time-varying 
predictors in the Cox regression model. It then introduces two 
methods for relaxing the proportionality assumption. Section 
15.2 presents the stratified Cox regression model, which 
stipulates that while the effects of each predictor are identical 
across strata, the baseline hazard functions can differ. Section 
15.3 presents an alternative strategy that closely mirrors the 
approach used in discrete time: the inclusion of interactions 
with time as predictors in the model. Section 15.4 introduces a 
range of regression diagnostics useful for examining the 
underlying assumptions of the Cox model. Section 15.5 
discusses what to do when modeling “competing risks”—
multiple events that compete to terminate an individual's 
lifetime. Section 15.6 concludes by describing what to do 
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when you have not observed the beginning of time for 
everyone in your sample and there are so-called late entrants 
to the risk set.

Keywords:   time-varying predictors, Cox regression models, hazard models 
time, baseline hazard, discrete time

Time is nature’s way of keeping everything from 
happening at once.

—Woody Allen

Were the Cox regression model applicable only to time-
invariant predictors with time-constant effects, it might not 
enjoy the popularity that it does today. But just as we can 
extend a linear regression model in a variety of ways, so, too, 
can we extend the Cox regression model. Some extensions—
for example, the inclusion of nonlinear effects and statistical 
interactions—are identical to extensions we can make to any 
statistical model. Rather than discuss familiar topics like 
these, we devote this chapter to a set of novel extensions.

We begin, in section 15.1, by describing how to include time-
varying predictors in the Cox regression model. Although our 
approach resembles the one we used in discrete-time hazard 
modeling, the data demands in continuous time complicate 
model fitting. We then introduce two methods for relaxing the 
proportionality assumption. In section 15.2, we present the 
stratified Cox regression model, which stipulates that while 
the effects of each predictor are identical across strata, the 
baseline hazard functions can differ. In section 15.3, we 
present an alternative strategy that closely mirrors the 
approach used in discrete time: the inclusion of interactions 
with time as predictors in the model. In section 15.4, we 
introduce a range of regression diagnostics useful for 
examining the underlying assumptions of the Cox model. In 
section 15.5, we discuss what you should do when modeling 
“competing risks”—multiple events that compete to terminate 
an individual’s lifetime. We close, in section 15.6, by 
describing what to do when you have not observed the 
beginning of time for everyone in your sample and there are 
so-called late entrants to the risk set.
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(p.544) 15.1 Time-Varying Predictors

In principle, you need no additional special strategies to 
include time-varying predictors in a Cox regression model. The 
representations in section 14.1 (see equations 14.1 through
14.4) allow for this possibility in that every predictor already 
includes a subscript j indexing time. When we fit the model to 
data in chapter 14, we restricted attention to time-invariant 
predictors so that we could better describe parameter 
interpretation in a simple context. Now, we reintroduce the 
possibility that some predictors may vary over time.

Using equation 14.3, for example, we can specify a Cox 
regression model with one time-invariant predictor (X 1) and 
one time-varying predictor (X 2j) as:

(15.1) 
In writing this model, we postulate that individual i’s hazard at time
t j is the product of the baseline hazard function at that time and 
individual i’s contemporaneous true risk score [e(β 1 X 1i+β 2 X 2ij)]. 
Taking logarithms of both sides, we have:

(15.2) 
This representation demonstrates the indigenous similarity 
between a Cox model that contains time-varying predictors and a 
discrete-time hazard model with time-varying predictors (as shown, 
for example, in equation 12.5).
Given how straightforward this appears, you might question 
the need for this section. We have already discussed 
interpretive difficulties that time-varying predictors raise, 
specifically the problems of reciprocal causation and rate- and 
state-dependence (see section 5.3.4 and section 12.3.3). We 
have also discussed how to fit the model, as if every predictor 
in section 14.2.1 did in fact include a subscript j. In equation
14.7, for example, individual i’s contribution to the partial 
likelihood is the ratio of his or her true risk score at his or her 
moment of event occurrence [e(β 

1
 X 1ij+…+β P X Pij)] to the sum of 

the contemporaneous true risk scores among everyone still at 
risk.

Yet time-varying predictors do pose a problem: they present 
an enormous—sometimes insurmountable—data requirement. 
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For each time-varying predictor, you must know its value, for 
everyone still at risk, at every moment when someone 
experiences the target event. If your data set includes 100 
unique event times, you need to know the time-varying 
predictor’s values—for everyone still at risk—at each of those 
100 moments. If your data set includes 1000 unique event 
times, you need to know its values at (p.545)  each of those

1000 moments! Although it may seem novel, we have seen this 
data requirement before. In discrete time, however, it was 
unremarkable because: (1) the number of unique event times 
was small; and (2) event occurrence and predictors are usually 
assessed using an identical temporal schedule.

The practical consequences of this data requirement can be 
formidable. Even if resources allow you to assess event times 
precisely, it can be prohibitively expensive—if not logistically 
impossible—to measure the value of all time-varying 
predictors at every observed event time. Researchers typically 
gather predictor data on a subset of occasions that may—or 
more often, may not—coincide with event occurrence. (Few of 
us are so prescient that we can tie data collection to unknown 
event times!) Even noncensored individuals rarely provide the 
data you desire most: their predictor values at their moment of 
transition. And if data collection is retrospective, information 
about temporal variation in time-varying predictors may be 
unobtainable. Perhaps the only relief in this bleak situation is 
that you need not know the predictor values at every moment 
when an event could occur but only at those moments when 
events do occur.

Examining the effects of time-varying predictors, therefore, 
requires advance planning and subsequent creativity. 
Research design is crucial in this regard, but once the data are 
in, your task is analytic. The complexity of the task depends on 
the information needed to construct a full predictor history. 
Below, we discuss what happens under an increasingly 
complex set of circumstances. In section 15.1.1, we discuss 
the handling of nonreversible dichotomies, variables whose 
values indicate a unidirectional transition (e.g., from never 
married to married). In section 15.1.2, we discuss potentially 
reversible dichotomies (e.g., from employed to unemployed 
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and back) and continuous predictors that can change at will. 
Under these circumstances, you can rarely generate temporal 
histories that are as fine as you might like, which often leads 
to imputation, the topic of section 15.1.3.

15.1.1 Nonreversible Dichotomies

Time-varying predictors that describe an individual’s 
nonreversible status—for example, high school student versus 
graduate—are the simplest to deal with because you can 
construct someone’s entire predictor history using just one 
piece of information: his or her date of “transition.” Before this 
date, the individual occupies state A; after, the individual 
occupies state B. Not everyone must experience the transition, 
but no one can “go backwards” and revert again to state A.

(p.546) We illustrate strategies for examining the effects of 
time-varying predictors that are nonreversible dichotomies 
using data from Burton et al. (1996), who studied the 
precursors of cocaine initiation among a random sample of 
Americans interviewed twice, 11 years apart (in 1974 and 
1985). Among the 1658 White men studied, 382 (23.0%) 
reported using cocaine for the first time between ages 17 and 
41. Each also provided a detailed drug-use history—with ages 
of initiation—which allowed the researchers to determine that 
while at risk of initiating cocaine use: (1) 61.4% previously 
used marijuana; (2) 9.5% previously sold marijuana; (3) 32.6% 
previously used one or more other drugs (including 
amphetamines, psychedelics, depressants, opiates, or heroin); 
and (4) 17.0% previously used two or more other drugs. These 
data allowed us to construct six drug-use history variables:

• Two time-invariant predictors—EARLYMJ and EARLYOD—
that indicate whether the respondent initiated marijuana 
use (7.2% of the sample) or other drug use (3.7%) so early 
that he could be classified as a previous user at t 0 (age 17).

• Four time-varying predictors—USEDMJ j, SOLDMJ j,
USEDOD j, and MOREOD j—which identify, at each age t j, 
whether the respondent had previously used marijuana, 
sold marijuana, used another drug, or used two or more 
other drugs.
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To account for the well-known societal changes that occurred 
during the era under study (1961 to 1985), we also include a time-
invariant predictor BIRTHYR as a control variable.
Each drug-use predictor assesses an individual’s prior status. 
We use this approach because contemporaneous drug-use 
status—perhaps the more “obvious” variable—is an internal
time-varying predictor. As discussed in section 12.3.3, internal 
time-varying predictors raise interpretive dilemmas because of 
the possibility of state dependence (if someone’s decision to 
use another drug depends upon his cocaine-use status) and 
rate dependence (if someone’s decision to use another drug 
depends upon his hazard of cocaine use). Both concerns are 
valid. Cocaine users may be more likely to sell marijuana (to 
make money to support their habit) and men at greater risk of 
using cocaine may be more likely to use other drugs as well. 
Were we to find an association between contemporaneous use 
of other drugs and the hazard of cocaine initiation, it would be 
difficult to argue the other drug led to cocaine use. A critic 
could reasonably argue that the causal arrow was reversed 
(or, at best, its direction unclear).

To avoid this dilemma, we, like the original researchers, lag
the values of all time-varying predictors so that they describe 
an individual’s status (p.547)  in the immediately prior year. 
We use a one-year lag because this is the shortest possible 
increment when time is assessed in whole years. 
Computationally, individual i’s value of each time-varying 
predictor at age t j reflects his drug use status at age t j-1. For 
a man who started using marijuana at age 21, for example,
USEDMJ j takes on the value 0 at all times up to and including
age 21, switching to 1 at age 22 and beyond. If a man started 
selling marijuana at age 25, SOLDMJ j takes on the value 0 at 
all times up to and including age 25, switching to 1 at age 26 
and beyond. Lagging makes it difficult to argue that an 
individual’s initiation of cocaine use in one year influenced his 
decision to use marijuana (or another drug) in a previous 
year.1

All Cox regression routines available in standard statistical 
packages have facilities for fitting a model with time-varying 
predictors. The routines differ markedly, however, in how they 
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are implemented. Broadly speaking, there are two distinct 
approaches:

• The single record method, in which each person has one 
line of data and you write computer code to indicate which 
variables contain the appropriate values of the time-varying 
predictor at each point in time; and,

• The counting process method, in which you construct a 
person-period data set with the time periods chosen so that 
all time-varying predictors are constant within each record. 
Unlike other person-period data sets, the discretization 
need not be constant across cases. Each individual’s 
discretization is determined by his or her pattern of 
temporal variation in the time-varying predictors.

Some statistical packages allow you to use either approach; others 
offer just one. For time-varying predictors that change only once, 
the single record method is easier. For time-varying predictors that 
change periodically, the counting process method may be easier. 
Once you become comfortable with either method, the distinction is 
relatively unimportant because the analytic results are identical. As 
a practical matter, then, the choice is yours (constrained, in part, 
by your statistical package).
Table 15.1 presents the results of fitting four Cox regression 
models to the cocaine initiation data. Let us begin with Model 
A, which includes only the three time-invariant predictors. The 
three large statistically significant effects indicate that the risk 
of cocaine initiation is higher among men who: (1) were born 
later; (2) used marijuana at an early age; and (3) used other 
drugs at an early age. Holding constant the effects of early 
drug use, we estimate that the hazard of cocaine initiation is 
100(e(0.1551) − 1) = 16.8% higher for each year later the 
respondent was (p.548)

Table 15.1: Including the effects of time-varying 
predictors in a Cox regression model

Model A Model B Model C Model D

Parameter Estimates, Asymptotic Standard Errors, and 
Deviance-Based Hypothesis Tests

BIRTHYR 0.1551*** 0.1074*** 0.0849*** 0.0835***
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Model A Model B Model C Model D

(0.0199) (0.0215) (0.0218) (0.0226)

Marijuana use        

EARLYMJ 1.2171***     0.0753

(0.1640)     (0.1709)

USEDMJ j   2.5518*** 2.4592*** 2.4525***

  (0.2810) (0.2836) (0.2843)

SOLDMJ j     0.6899*** 0.6789***

    (0.1226) (0.1250)

Other drug 
use

       

EARLYOD 0.7912***     −0.0803

(0.1962)     (0.2033)

USEDOD j   1.8539*** 1.2511*** 1.2543***

  (0.1292) (0.1566) (0.1572)

MOREOD j     0.7604*** 0.7638***

    (0.1307) (0.1322)

Goodness-of-fit        

−2LL 5277.228 4669.096 4580.537 4580.311

AIC 5283.228 4675.096 4590.537 4594.311

Δ−2LL 247.830***55.962*** 88.559*** 0.226 
(ns)

(df) (3) (3) (2) (2)

Comparison Null Null Model B Model C

~p < .10; * p < .05; ** p < .01; *** p < .001.

These are the results of fitting four Cox models to the 
cocaine initiation data (n = 1658, n events = 382). Each 
model includes the respondent’s birth year as a predictor as 
well as a combination of time-varying predictors assessing 
his drug use history. Model A includes time-invariant 
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predictors assessing drug use prior to age 17. Model B 
includes time-varying predictors assessing whether the 
respondent used marijuana or other drugs, while Model C 
includes additional time-varying predictors assessing 
whether the respondent sold marijuana or other drugs. 
Model D simultaneously assesses the effects of all drug use 
predictors.

Note: Efron method for ties. −2LL for null model is 
5525.059.

born. Holding constant this cohort effect, we estimate that the 
hazard of cocaine use among men who were early marijuana users 
is e(1.2171) = 3.38 times the hazard for men who were not users, and 
among men who were early users of other drugs is e(0.7912) = 2.21 
times the hazard for men who were not.
In Model B, we replace the two time-invariant measures of 
drug use with their time-varying cousins USEDMJ j and
USEDOD j. Once again, the risk of cocaine initiation is higher 
among men who: (1) were born later; (2) previously used 
marijuana; and (3) previously used other drugs. But (p.549)  in 

contrast to Model A, which assesses the effect of early drug 
use, Model B assesses the effect of previous drug use 
regardless of age of initiation. These redefined predictors yield 
a model with larger parameter estimates and a smaller AIC. 
(We do not compare −2LL statistics because A is not nested 
within B.) Holding constant the cohort effect, we now estimate 
that the hazard of cocaine initiation is e(2.5518) = 12.83 times 
the hazard for men who had not, among men who previously 
used marijuana and among men who previously used other 
drugs the hazard of cocaine use is e(1.8539) = 6.38 times the 
hazard for men who had not. Few empirical researchers find 
hazard ratios this large, emphasizing not only the statistical 
significance of these findings but their practical significance 
as well.

Do time-varying predictors always yield larger effects and 
better fitting models? Although this is often true—indeed, this 
hope motivates most researchers who investigate the effects 
of time-varying predictors—superior performance is not 
guaranteed, but depends on the substantive mechanisms 
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underlying the life histories. If early experiences are more 
important precursors of event occurrence, time-invariant 
predictors will be superior. One appealing feature of this data 
set is that we can examine this question empirically because 
the values of the time-varying drug use predictors at the 
beginning of time are identical to their time-invariant values 
(i.e., at time t 0, EARLYMJ = USEDMJ j and EARLYOD =
USEDOD j). As the parameter estimates for Model B are over 
twice as large as those in Model A, the time-varying predictors 
appear superior. To address this question fully, however, we 
should include both sets of predictors in a single model. We 
will take this step in one moment, after adding the two further 
drug use predictors to the model.

In Model C, we add SOLDMJ j and MOREOD j to Model B. Each 
variable is interesting in its own right, but combined with the 
two other drug use predictors they are even more informative. 
This is because each new predictor can take on the value 1 
only if its corresponding initial use predictor is also 1. Each 
pair of predictors—(USEDMJ j, SOLDMJ j) and (USEDOD j,
MOREOD j)—therefore represents an ordinal variable that 
contrasts no drug use with two escalating levels. The large 
and statistically significant effects of these new predictors 
coupled with the persistent effects of USEDMJ j and USEDOD j

suggest that escalating use is indeed associated with an 
increased risk of cocaine initiation. Controlling for birth cohort 
and the previous use of marijuana and one other drug, the 
hazard of cocaine initiation among men who also sold 
marijuana or who used a second other drug is twice (e(0.6899)

= 1.99; e(0.7604) = 2.14) the hazard for men who had not. And 
lest you think that none of these effects is really “that large,” 
antilog the sum of the four parameter estimates in Model C

(p.550)  (i.e., compute e(2.4592+0.6899+1.2511+0.7604) = e(5.1606)

= 174.27) to see that the estimated hazard of cocaine 
initiation among men who previously used and sold marijuana 
and who also used two or more other drugs is 174 times the 
hazard for men who had not. (This is likely one of the largest 
hazard ratios you will ever encounter!)

With Model D, we ask: Do the time-varying predictors capture 
everything important about an individual’s drug history or is 
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early drug use of consequence in its own right? Comparison 
with Model C shows that neither EARLYMJ nor EARLYOD is 
statistically significant once all four time-varying predictors 
are included. Both parameter estimates are indistinguishable 
from 0 and the difference in −2LL statistics is trivial. For 
these data at least, we are drawn to a model with the time-
varying predictors.

Let us now examine the effects of BIRTHYR as the time-
varying drug-use predictors are added. Between Model A and 
C, its estimate halves—from 0.1551 to 0.0849—a precipitous 
drop especially when considered in light of its uncontrolled 
estimate (0.2026, not shown). This is but one illustration of a 
phenomenon often observed when adding time-varying 
predictors to statistical models: the magnitude of the 
parameter estimates for the time-invariant predictors 
diminish. Substitution effects like these arise when the values 
of the time-varying predictors themselves change in response 
to the time-invariant predictors. In this data set, men in later 
cohorts are not only more likely to try cocaine (as seen by the 
persistent effect of BIRTHYR), they are also more likely to try 
the “predictor” drugs—marijuana, opiates, and the like. When 
we add the time-varying drug-use predictors to the model, the 
effect of BIRTHYR diminishes because some of the effect 
previously attributed to cohort is now attributed to drug 
history. Although substitution effects can appear in any model 
with correlated predictors, a special feature of longitudinal 
analysis is that the values of the time-varying predictors 
themselves can change in response to the other predictors.

Substitution effects can even occur in settings less prone to 
inferential problems, like randomized trials. Consider an 
experiment evaluating the risk of stroke among individuals 
randomized to one of two drugs, each designed to lower blood 
pressure. If the experimental drug is more effective than the 
standard at lowering the risk of stroke, an uncontrolled 
comparison would yield a statistically significant treatment 
effect. But if we include a time-varying predictor assessing 
blood pressure, the treatment effect might disappear. Why? If 
all of the treatment effect operates through its regulation of 
blood pressure, there may be no additional variation in stroke 
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risk to explain once blood pressure is taken into account. If so, 
the blood pressure effect masks (or mediates) the treatment 
effect. (p.551)  It is not that the treatment has no effect—it 
does—it is that the blood pressure effect substitutes for the 
treatment effect.

We conclude this subsection by highlighting a purposeful 
omission: a complete lack of graphical displays. For example, 
we did not examine sample survivor and cumulative hazard 
functions by levels of the predictors. Although we could—and 
did—examine these functions for the full sample, subgroup 
plots are virtually impossible to construct for time-varying 
predictors. The best we can usually do is examine estimates 
for subgroups who have (1) constant values; or (2) specific 
patterns of temporal variation. The first approach is 
unsatisfying unless a constant pattern is common in the 
sample and the second approach is unsatisfying because it 
does not reflect the statistical model that was fit (which links 
event occurrence to contemporaneous predictor values). 
Notice, too, that we have we not displayed fitted survivor or 
cumulative hazard functions. The difficulty here is that when a 
model includes time-varying predictors, derivation of fitted 
values requires numerical integration routines not widely 
available in most statistical computer packages. The result is 
that when including time-varying predictors, we must 
generally content ourselves with numeric summaries.

15.1.2 Complex Patterns of Temporal Variation

Many time-varying predictors display more complex patterns 
of temporal variation than the nonreversible dichotomies 
discussed above. When studying readmission patterns among 
adolescents released from inpatient psychiatric facilities, for 
example, Foster (1999) examined the effectiveness of four 
forms of after-care: outpatient therapy, case management, 
placement in an intermediate care facility, and placement in a 
residential treatment center. Among the 204 adolescents, 59 
(28.9%) were readmitted within the year; this demanded that 
Foster collect data on after-care services on each of the 45 
unique days of readmission. Using administrative records, he 
compiled day-by-day treatment histories for each teen, which 
supported the construction of four time-varying predictors. 
Foster was then able to document the ineffectiveness of after-
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care in reducing the risk of readmission, after controlling for 
an adolescent’s family background and mental health history.

Few researchers are able to gather data on time-varying 
predictors at such a fine level of temporal precision. 
Predictors are commonly assessed using a schedule coarser 
than that used to assess event occurrence. Event histories 
might be recorded in days, but the values of time-varying 
predictors are assessed once a week. Events might be 
recorded weekly, but time-varying predictors are assessed 
once a month. When the data (p.552)  collection for time-
varying predictors is not temporally aligned with event times, 
you cannot analyze their effects directly because you do not 
know their values at every moment that an event occurs.

There are three ways of dealing with this type of information 
shortfall:

• Round the event times so that they reflect the periodicity 
of the time-varying predictors. In their study of U.S. 
Supreme Court justices’ careers, Zorn and VanWinkle 
(2000) assessed event occurrence (retirement or death) in 
years, even though they could have done so in weeks or 
months. Doing so enabled them to use time-varying 
predictors summarizing the justices’ annual productivity 
level and the match between the justice’s political party and 
the president’s.

• Impute predictor values for the intermediate event times. 
In their four-year study of employment duration, Dickter, 
Roznowski, and Harrison (1996) had weekly data on job 
turnover, but annual assessments of regional 
unemployment. Their analyses used the most recent value 
of each time-varying predictor, carrying forward its value to 
each of the next 52 weeks.

• Use only time-invariant predictors constructed from 
baseline data. In their two-year study of relapse to alcohol 
use, Cooney and colleagues (1991) measured event 
occurrence to the nearest day but sociopathy levels at three 
points in time—0, 6, and 18 months after release. But with 
only two follow-up assessments, they ultimately analyzed 
only the effects of the predictor’s initial values rather than 
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extrapolating the two time-varying values over long periods 
of time.

None of these strategies is uniformly preferable. None has any 
formal justification. To make an informed choice, consider your 
analytic purposes and the biases that each strategy may introduce. 
We find it helpful to ask four related questions:

• How precise are the event times anyway? If they are 
based on retrospective recall gathered on the same 
temporal schedule as the time-varying predictors, they may 
not be as precise as you think.

• Would rounding increase the number of ties? If most 
event times remain unique, rounding sacrifices little 
because Cox regression depends only on the rank order of 
the event times.

• Is imputation feasible and reasonable? You can treat this 
dilemma as a missing-data problem (Little & Rubin, 1987). 
Is there a defensible imputation strategy?

(p.553)

• What, precisely, are you trying to accomplish? Which 
strategy would be more convincing to your audience? 
Analyses conducted using time-invariant baseline data 
impervious to issues of rate-and state-dependence may be 
more credible than analyses conducted using imputed time-
varying values or rounded event times.

If you decide to use time-invariant versions of time-varying 
predictors, no additional steps are necessary: you simply fit a 
regular Cox regression model. If you decide to discretize event 
times into a very small number of periods, you can fit a discrete-
time hazard model. And if discretization is not that coarse, but it 
does allow you to construct a complete predictor history for each 
individual, you can apply the methods just described in section 
15.1.1. But if you decide to try imputation, your analyses will be 
more complex because then you must select an imputation 
strategy. It is this topic that we discuss next.

15.1.3 Imputation Strategies for Time-Varying Predictors

We discuss imputation strategies for time-varying predictors 
using data from Hall et al. (1990), who followed 104 newly 
abstinent cocaine users for up to 12 weeks to determine 
whether and, if so, when the former addicts began using 
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cocaine again. Everyone completed an intake interview during 
their last week of treatment and follow-up interviews every 
week thereafter so that the researchers could gather data on a 
wide range of predictors that might be associated with 
relapse. We focus here on two of them: (1) NEEDLE, a time-
invariant predictor that identifies the 35 individuals (33.7%) 
who used cocaine intravenously; and (2) MOOD j, a time-
varying predictor assessing the respondent’s positive mood 
score using a standardized questionnaire. A total of 62 
participants (59.4%) began using cocaine within 12 weeks 
after release, some as soon as the next day, others after weeks 
of abstinence.2

The presence of 38 unique event times requires that we 
generate predictor histories that provide near daily 
information. But follow-up interviews were conducted only 
once a week. Before imputing the required predictor values, 
we must craft a suitable strategy. Of the dozens of approaches 
possible, the three below—cited with brief justifications—are 
the most popular:

• Use the most recent assessment. Carry forward each
MOOD assessment until the next one is available because 
this corresponds most closely to the approach that someone 
tracking the respondent’s behavior would use.

(p.554)

• Compute a moving average based on the most recent and 
several past assessments. If the time-specific MOOD scores 
are just selected realizations of an underlying continuous 
process, the last value may not be the most meaningful. A 
more stable estimate of the underlying value may be 
obtained by averaging the most recent value with several 
previous ones.

• Interpolate between adjacent assessments. Imputed 
values depend on both past and future MOOD scores. 
Interpolating between adjacent assessments will provide 
more accurate values than those based solely on measures 
gathered in the past.

These are but three alternatives; we could create many more. 
However, we suggest that you resist the temptation to design 
sophisticated imputation algorithms, because: (1) all are ad hoc; (2) 
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difficulties can arise when imputing values at the beginning of 
time, as there are rarely adequate prior data; (3) difficulties can 
arise when imputing values at the end of time, as event occurrence 
often terminates data collection; (4) difficulties can arise when 
some assessments are missing, creating a need for further 
imputation; and (5) the need to lag can complicate implementation. 
The more “creative” your imputation strategy, the easier it is for a 
critic to argue that your results are an artifact of your approach!
The challenge, then, is to come up with a feasible and credible 
strategy. In many ways, carrying forward past values nicely 
achieves this balance. Not only is it intuitively appealing—we 
update the predictor only when we get new data—it protects 
against state- and rate-dependence as well. This approach is 
especially attractive for categorical time-varying predictors 
because all other strategies yield (impossible) fractional 
values. On the down side, the resultant predictor histories 
behave erratically, changing in staccato bursts. Moving 
averages can soften this pattern, dampening the amplitude of 
the shifts. This retains the advantages of the last value 
approach and ameliorates some of the disadvantages. But if 
you find interpolation tempting, we caution that its use is 
controversial. Allison (1995) strongly questions whether it is
ever appropriate to use later data to impute earlier values. 
Altman and de Stavola (1994) argue that interpolation can be 
appropriate if your goal is to describe the event history 
process, not to identify factors that could be identified a priori
as potentially causal.

In practice, you may want to explore several options, compare 
results, and note how the findings change. We illustrate this 
strategy in table 15.2, which presents three Cox regression 
models fitted to the cocaine relapse data. Each includes the 
time-invariant predictor NEEDLE and a different variable 
representing the predictor for mood. Model A uses
BASEMOOD, (p.555)

Table 15.2: Comparing alternative imputation 
strategies for time-varying predictors

Model A Model B Model C

Parameter Estimates, Asymptotic Standard Errors, and 
Deviance-Based Hypothesis Tests
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Model A Model B Model C

NEEDLE 1.0207** 1.0796*** 1.1208***

(0.3141) (0.3157) (0.3170)

Positive mood score      

BASEMOOD −0.0037    

(0.0147)    

WEEKMOOD j   −0.0349*  

  (0.0139)  

DAYMOOD j     −0.0544***

    (0.0149)

Goodness-of-fit      

−2LL 515.680 509.576 502.664

Δ −2LL from model that 
includes only NEEDLE

.065 
(ns)

6.169* 13.081***

~p < .10; * p < .05; ** p < .01; *** p < .001.

These are the results of fitting three Cox regression models 
to the cocaine use data (n = 104, n events = 62). Each 
model includes the respondent’s mode of administration 
(NEEDLE) as well as a predictor describing his or her 
positive mood score. Model A includes BASEMOOD, the 
value at baseline; Model B includes WEEKMOOD, the value 
in the immediately prior week; Model C includes
DAYMOOD, a linearly interpolated estimate of his or her 
mood on the immediately prior day.

Note: −2LL for null model is 528.186; −2LL for model with 
only predictor NEEDLE is 515.745. Efron method for ties.

a time-invariant predictor assessing the respondent’s mood score 
just before release from treatment. Model B uses WEEKMOOD j, a 
time-varying predictor assessing the respondent’s mood score in 
the immediately prior week. This predictor lags the weekly mood 
data by one week—associating, for example, the baseline mood 
data with all days in the first week and the first week’s mood data 
with all days in the second week. Model C uses DAYMOOD j, a time-
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varying predictor assessing a respondent’s mood score on the 
immediately prior day. We constructed DAYMOOD j by linearly 
interpolating between adjacent weekly values to yield daily values, 
and then assigning to each given day the mood value we imputed 
for the immediate prior day.
In comparing these models, first notice that the findings for
NEEDLE remain virtually unchanged throughout. If our goal 
was to describe the effects of this variable, our conclusions 
would be unaffected by our selected version of the mood 
predictor, suggesting that the time-invariant BASEMOOD, 
which happens to provide the most conservative estimate, may 
be best. But if research interest focuses on the relationship 
between (p.556)  mood and relapse, this option is unsatisfying 

because BASEMOOD is not statistically significant. The 
inability to detect an effect tells us nothing about the effect of 
mood were its values allowed to vary. The specification of the 
mood predictor in Model B, using the previous week’s data, is
associated with risk of relapse. And the effect of mood is even 
greater when we use time-varying values imputed to the 
previous day (Model C).

Which predictor specification would we recommend? Although 
there is no single answer, the strong finding for DAYMOOD j

argues persuasively for interpolation. But it raises issues of 
state- and rate-dependence because its values in any 
particular week depend upon future values (actually 
contemporaneous values, given that DAYMOOD j is lagged by 
one week). A critic would argue that the larger impact of this 
predictor may be due to temporal circularity. WEEKMOOD j is 
less susceptible to this problem, suggesting that its more 
conservative estimate may represent a good compromise. As 
this discussion makes clear, however, time-varying predictors 
can increase the predictive power of a model but often at a 
cost. Some difficulties can be resolved through design, but 
others will remain under even watchful vigilance. The ability 
to update predictor values is an attractive option, but data are 
not enough. Identification of links between data and outcomes 
demands careful research design, variable construction, and 
model parameterization. For further discussion of the use of 
time-varying predictors in Cox regression, we recommend that 
you consult the helpful papers by Altman and de Stavola 
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Figure 15.1.  When is a stratified Cox 
regression model appropriate? 
Hypothesized (log) hazard functions, 
within two sites, by treatment status.

(1994), Aydemir, Aydemir, and Dirschedl (1999), and Fisher 
and Lin (1999).

15.2 Nonproportional Hazards Models via 
Stratification

A Cox regression model invokes a proportionality assumption, 
that the hazard function for each individual in the population 
is a constant multiple of a common baseline function. Although 
this assumption often holds, you may encounter data sets in 
which it does not. If exploratory analyses, theory, or 
regression diagnostics (discussed in section 15.4) suggest that 
subgroups of individuals have different baseline hazard 
functions, you have two options: (1) fit a stratified model, 
which posits explicitly the existence of the multiple baseline 
hazard functions; or (2) fit a model that includes an interaction 
with time as a predictor, to represent the time-varying effect. 
Below, we describe former approach; in section 15.3, we 
describe the latter.

We illustrate the rationale underlying the stratified model 
solution using a simple hypothetical example. Imagine a 
randomized experiment that compares the effectiveness of two 
programs designed to reduce (p.557)

recidivism 
among inmates 
released from 
minimum 
security 
prison: (1) a 
standard 
program, 
comprising the 
current 
vocational, 
educational, 
and social 
services; and 
(2) an 
innovative 
program, 
comprising 
enhanced services. To increase generalizability and sample size, 
you conduct the study at two prisons. Although implementation is 

Figure 15.1.  When is a stratified Cox 
regression model appropriate? 
Hypothesized (log) hazard functions, 
within two sites, by treatment status.
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identical across sites, the inmates come from different geographic 
areas and they return to different areas upon release. The 
underlying pattern of recidivism may therefore differ across 
prisons.
Figure 15.1 presents (admittedly idealized) population (log) 
hazard functions for the treatment and control groups at each 
site. We have drawn these functions so that they illustrate the 
two statistical properties essential for proper use of a 
stratified model. Using the generic term “strata” to refer to 
sites, we see that:

• Each stratum has its own baseline (log) hazard function. 
At site 1, hazard is initially high and then drops steadily 
toward an asymptote; at site 2, hazard is initially low, rises 
to a peak, and then drops back toward a different 
asymptote.

• The predictor’s effect is identical across strata. Although 
the baseline hazard functions differ, treatment lowers the 
log hazard of recidivism at each site by a constant amount,
β 1, at all points in time.

Because the baseline (log) hazard functions differ across sites, it is 
inappropriate to fit a Cox regression model to the data pooled 
across sites. Doing so would knowingly violate the proportionality 
assumption. Including a dummy variable for site does not resolve 
the violation because, as (p.558)  shown in figure 15.1, the 
baseline (log) hazard functions differ across strata. Men from site 1
—regardless of group—are at greatest risk of recidivism soon after 
release. Many men from site 2 forestall this initial risk, but soon, 
they, too, succumb. Including a statistical interaction between site 
and treatment as a predictor will not resolve the violation either 
because these predictors do not interact. It is not the effect of 
treatment that differs across sites (it is constant), but rather it is 
the baseline hazard functions themselves.
The stratified Cox regression model is designed for this type of 
situation. Instead of positing the existence of a single 
population baseline hazard function, it posits the existence of
multiple baseline hazard functions, one per stratum. Using the 
subscript s to denote stratum, we can extend equation 14.4, 
for example, by writing:

(15.3)
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Adding subscript s to the baseline log hazard function allows each 
stratum to possess its own baseline hazard function. Omitting 
subscript s in the remainder of the model constrains the effect of 
each predictor to be identical across strata.
Most survival analysis routines can fit stratified Cox 
regression models. Computationally, the algorithm is simple. 
Instead of computing individual i’s contribution to the partial 
likelihood by taking the ratio of his or her risk score at the 
moment of event occurrence to the sum of the 
contemporaneous risk scores among everyone still at risk (as 
in equation 14.5), revise the denominator so that it sums 
contemporaneous risk scores among those people still at risk 
in individual i’s stratum. To compute the total partial 
likelihood across the full sample, multiply together these s
stratum-specific partial likelihoods. This two-step process 
ensures that we compare individual i only to members of his or 
her own stratum, but that we constrain the parameters 
representing the effects of predictors—the β’s—to be identical 
across strata.

We illustrate the use of a stratified Cox regression model by 
returning to the cocaine initiation study introduced in section 
15.1. There, we saw that birth year and previous drug use 
were statistically significant predictors of the risk of cocaine 
initiation. Suspecting that the shape of the hazard function 
might differ by the respondent’s residence, we examined 
sample (log) cumulative hazard functions for two groups of 
men: those who lived in urban and suburban areas (n = 1316) 
and those who lived in rural areas (n = 342). We display these 
sample functions in figure 15.2, where we use smooth curves, 
not step functions, to join the point estimates. We find that it 
is often easier to identify potential differences in shape if we 
use smooth curves instead of step functions in exploratory

(p.559)
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Figure 15.2.  Sample log cumulative 
hazard functions for the cocaine initiation 
data by geographic region.

graphs like 
these. Here we 
find that the 
log cumulative 
hazard 
functions are 
nearly 
coincident 
when the men 
are young 
(between ages 
17 and 22) and 
diverge 
thereafter. The 
varying 
vertical 
separation of 
the log 
cumulative 
hazard functions suggests a violation of the proportionality 
assumption, and the inappropriateness of the basic Cox model.
Table 15.3 presents the results of fitting four models to these 
data, each using the five predictors highlighted at the end of 
section 15.1.1: BIRTHYR, USEDMJ j, SOLDMJ j, USEDOD j,
MOREOD j. The first column presents the fitted unstratified 
model, which is identical to Model C in table 15.1. Although 
figure 15.2 suggests the unsuitability of this model, we present 
it here for comparison. The second column documents what 
happens when we fit a model stratified by RURAL to allow for 
the existence of two (unknown) baseline hazard functions. 
Comparing parameter estimates and standard errors for these 
two models, we see that stratification has little effect in this 
case. Both the unstratified and stratified models lead to 
identical conclusions, making the stratified model an 
attractive option that addresses the potential proportionality 
violation.

Of course, the stratified Cox model also has assumptions. Most 
notably, the stratified model is appropriate only if the 
predictors’ effects are identical across strata—that is, if 
stratifier and predictors do not interact. For this data set, this 
implies that the effects of birth cohort and drug use (p.560)

Figure 15.2.  Sample log cumulative 
hazard functions for the cocaine initiation 
data by geographic region.
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Table 15.3: Fitting a stratified Cox regression 
model

Unstratified 
(Model C)

Stratified 
by RURAL

NON-
RURAL
(n=1316)

RURAL
(n=342)

Parameter Estimates, Asymptotic Standard Errors, and 
Deviance-Based Hypothesis Tests

BIRTHYR 0.0849*** 0.0854*** 0.0813*** 0.1098~

(0.0218) (0.0219) (0.0236) (0.0584)

Marijuana 
use

       

USEDMJ j 2.4592*** 2.4579*** 2.4370*** 2.5180***

(0.2836) (0.2837) (0.3155) (0.6488)

SOLDMJ j 0.6899*** 0.6847*** 0.7151*** 0.4542

(0.1226) (0.1228) (0.1313) (0.3530)

Other 
drug use

       

USEDOD j 1.2511*** 1.2529*** 1.2727*** 1.1456**

(0.1566) (0.1567) (0.1716) (0.3843)

MOREODj 0.7604*** 0.7468*** 0.6925*** 1.1050**

(0.1307) (0.1323) (0.1410) (0.3523)

Goodness-
of-fit

       

−2LL 4580.537 4271.899 3809.358 460.957

~p < .10; * p < .05; * p < .01; *** p < .001.

These are the results of fitting four Cox regression models 
to the cocaine initiation data (n = 1658, n events = 382). 
Each model includes the five predictors in Model C of table
15.1. The unstratified model reproduces that model for 
comparison purposes. The second column presents the 
results of fitting the identical model stratified by RURAL. 
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The remaining columns present the results of fitting the 
identical model separately for the two levels of RURAL.

Note: All models fit using Efron’s method for handling ties.

must be identical for men from rural areas and men from 
elsewhere. One way of evaluating this assumption is to examine the 
results of fitting separate Cox models to the data in each stratum. 
By comparing the results within each stratum to each other, and to 
those of the stratified model, we can evaluate the tenability of this 
noninteraction assumption.
The final two columns of table 15.3 present separate within-
strata results for the cocaine initiation data. The effects of
BIRTHYR, USEDMJ j and USEDOD j are similar across groups, 
but the effects of the secondary drug variables—SOLDMJ j and
MOREOD j—are not. Moreover, the direction of the difference 
between estimates is inconsistent: the effect of SOLDMJ j is 
larger in the nonrural areas (indeed, it is not statistically 
significant in the rural areas), whereas the effect of MOREOD j

is larger in the rural areas (although it is statistically 
significant in the nonrural areas). This suggests that the sale 
of marijuana may be a precursor to cocaine initiation only in 
urban and suburban areas and that the magnitude of the risk 
associated with additional use of other drugs may be larger in 
rural areas. These (p.561)  differentials suggest the possibility 
of statistical interactions between RURAL and SOLDMJ j and 
between RURAL and MOREOD j, each of which would 
represent a violation of the noninteraction assumption 
required for the stratified model.

How can you determine whether the observed variation in 
parameter estimates across strata is great enough to confirm 
a violation of the stratification assumption? Visual examination 
is insufficient because the standard errors for parameter 
estimates differ across strata. And within-strata estimates are 
typically less precise than full sample estimates because they 
are computed on smaller samples. Fortunately, it is easy to 
conduct a formal test of the null hypothesis that within-strata 
parameters are identical across strata, and identical to their 
counterparts in the stratified model itself.3 You simply 
compare the −2LL statistic for the stratified model to the sum 
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of the −2LL statistics for separate models fitted within each 
stratum. In our example, we compute the relevant test statistic 
by subtracting the sum (3809.358 + 460.957) from 4271.899, 
which yields 1.584. If the model includes p predictors and s
strata, under the null hypothesis that the set of parameters is 
identical across the s strata this test statistic is distributed as χ
2 on (s − 1)p degrees of freedom (here, (2 – 1)5 = 5 d.f.). 
Because the resulting test statistic is so small here, we 
conclude that variation in the set of parameter values across 
strata is inconsequential and hence that the stratified model is 
suitable. (Had we rejected the null hypothesis, we would have 
concluded that the stratified model was unsuitable, and we 
would have presented Cox regression models fitted within 
each stratum separately.)

Having conducted a formal test comparing the fits of the 
stratified model and the sum of the separate within-stratum 
models, you might wonder whether there is a similar test of 
the need for stratification that could be conducted by 
comparing the fits of the unstratified and stratified models. 
Unfortunately, such a test is not appropriate. The −2LL 
statistic for the stratified model will always be smaller than 
that of the unstratified model simply because we postulate the 
existence of multiple baselines. Because the multiple baselines 
drop out of the stratified partial likelihoods, we do not 
estimate their values, and hence we cannot formally evaluate 
whether the resultant improvement in fit is statistically 
significant.

How, then, should you determine whether stratification is 
necessary? The paramount criterion is the tenability of the 
proportionality assumption. If it is violated, you must address 
it, either by implementing the stratified model (or by including 
an interaction with time as a predictor in the model, as we will 
soon discuss). If it is not clear whether the (p.562)  assumption 
is violated, Kalbfleisch and Prentice (1980) suggest that you 
have little to lose by choosing the stratified model because this 
choice generally has little effect on the efficiency of 
estimation. Choosing the stratified model has computational 
advantages as well, in that: (1) it decreases the number of 
observed ties (as tied individuals are inevitably spread across 
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strata); and, (2) it decreases computational time (as each 
individual is compared only to members of the same stratum). 
In large data sets with many ties, these advantages can be 
considerable.

But the stratified model solution has a potentially profound 
cost: because you do not model the effect of the stratifier, you 
cannot describe its effect explicitly in your findings! The 
stratifier is a “hidden” variable, incorporated into the model 
but with its effect not explicitly modeled. Proponents of 
stratification argue that the inability to comment on the effect 
of the stratifier is no loss. They reason that if the shape of the 
baseline hazard functions differs across strata, it is 
inappropriate to make global statements about the stratifier’s 
effect anyway because it varies over time. Others argue, and 
we share their view, that the inability to describe the 
stratifier’s effect is a high price to pay to resolve a model 
violation that can be addressed through other mechanisms (as 
we show in section 15.3). And because choosing a stratified 
model requires grouping, you must weigh its benefits against 
the potential information loss that can result from 
categorization. From this perspective, then, choosing a 
stratified model is useful primarily when: (1) the stratifier is a 
“nuisance” variable, of no analytic interest; or (2) the baseline 
hazard functions in the different strata are so distinct that you 
cannot model their differences explicitly and easily. As full 
discussion of this issue involves contrasting the stratified 
model solution with an alternative approach—the inclusion of 
interactions with time as predictors in the model—it is to this 
topic that we now turn.

15.3 Nonproportional Hazards Models via 
Interactions with Time

Many researchers treat violations of the proportionality 
assumption as an analytic nuisance. The argument for the 
stratified model solution introduced in section 15.2 reflects 
this position in that it offers a strategy for addressing the 
violation that precludes saying anything about the predictor’s 
effect. In discrete-time hazard modeling, we argued that 
violations of the proportionality assumption are often 
substantively interesting. To support this view, in section 12.5, 
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we reframed a concern about a model violation into a positive 
statement that the predictor’s (p.563)  effect varying over 
time. In this section, we extend these principles by 
postulating, fitting, and interpreting Cox regression models in 
which the effects of predictors are permitted to vary over 
time.

15.3.1 Alternative Representations of Interactions with Time

To include an interaction with time as a predictor in a Cox 
regression model, you must first create a time-varying 
variable, or set of time-varying variables, that represent the 
interaction. As we show below, the representation of the 
interaction can be continuous (if you hypothesize that the 
effect of the predictor varies smoothly with time) or 
categorical (if you hypothesize that the effect of the predictor 
differs in a piecewise fashion with time).

Using equation 14.4 as a starting point, we can specify a Cox 
regression model in which the effect of a single time-invariant 
predictor X varies linearly over time as:

(15.4)

In this model, β 1 represents the vertical displacement in log hazard 
associated with a one-unit difference in X at time c and β 2 indicates 
how much this vertical displacement is increased (if β 2 is positive) 
or decreased (if β 2 is negative) with each one-unit increase in time. 
Subtracting the constant c from the value of TIME facilitates 
interpretation. Common choices for c are: (1) the “beginning of 
time,” so that e(β 1) is the hazard ratio when the clock “starts;” and 
(2) the estimated median lifetime, so that e(β 1) is the hazard ratio at 
the “average” event time. Another popular option is to associate β 2

with the interaction of X and the logarithm of TIME:

However, in making this choice, you must be careful to select a 
value for the constant c that prevents the occurrence of undesirable 
infinities (recall that the log of zero is negative infinity).
To allow a predictor’s effect to vary piecewise across epochs, 
you need a different model. The basic idea in this approach is 
to divide continuous time into k contiguous epochs, each 
represented by one of k time-indicators, D 1 – D k. If time is 
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measured in days, the epochs might be weeks; if time is 
measured in months, the epochs might be years. All epochs 
need not be the same length—it is more important to equalize 
the number of events per epoch—but taken together they must 
cover all observed event times. We can then posit a model 
such as: (p.564)

(15.5)

In this model, β 1 is the difference in log hazard associated with a 
one-unit difference in X during the first epoch, β 2 is the difference 
in log hazard associated with a one-unit difference in X during the 
second epoch, and so on. Although a piecewise specification like 
this typically uses more parameters than one that is smooth, its 
virtue is that it places no constraints on the functional form of the 
time-varying effect.
Notice the resemblance between these models and their 
discrete-time equivalents in equations 12.12 and 12.10. The 
primary difference is that here we use: (1) a log, not a logit, 
transformation of hazard; and (2) a smooth, not discrete, 
baseline. Those portions of each model that specify the 
predictor’s time-varying effect are identical across metrics. In 
essence, then, we specify time-varying effects in Cox models 
using strategies similar to those used in discrete-time.

15.3.2 Fitting “Interactions with Time” Models to Continuous-Time 
Data

To fit an interaction with time model to continuous-time data, 
you must first construct the time-varying variable (s) that 
represent the interaction. Most data sets already include 
everything you need: the value of the predictor (which is fixed 
if it is time-invariant, or which you already had to cope with if 
it is time-varying) and TIME (which is known at every 
observed event time). Statistical packages that use the single 
record method for handling time-varying predictors are the 
most flexible in that they can accommodate any type of time-
varying effect. All you need do is write computer code that 
creates the interaction variables, be they smooth, piecewise, 
or a combination thereof.

Statistical packages that exclusively use the counting process 
method are less flexible in that you must construct the person-
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period data set so that it appropriately includes the new 
variables that represent the interaction with time. Because all 
time-varying predictors—including these new interaction 
terms—must be constant within a record, the data set’s 
periods must reflect the type of time-varying effect you would 
like to explore. This complicates data set construction in that 
individual i’s discretization of time depends not only upon the 
observed pattern of temporal variation for any time-varying 
predictors (as discussed in section 15.1) but also on your 
chosen specification for the time-varying effects. Researchers 
working with such programs may therefore find themselves 
drawn to piecewise specifications (like equation 15.5) so that 
their data set’s periods can correspond to epochs. If you would 
like to allow the (p.565)  effect of a predictor to vary smoothly 

over time (as in equation 15.4), you will need to construct a 
data set that includes many separate periods. At the extreme, 
to represent a perfectly smooth interaction with time, you 
need a person-period record for each unique event time!

We demonstrate strategies for exploring interactions between 
predictors and time using data from Foster (2000). As part of a 
larger evaluation of the effects of an innovative system of 
delivering mental health services to children and adolescents 
with emotional and behavioral problems, Foster studied 
whether and, if so, when 174 individuals admitted to a 
psychiatric hospital were discharged. One half (n = 88) had 
traditional coverage (TREAT = 0), which required 
authorization for long-term inpatient care, provided outpatient 
care on a co-payment basis, and did not reimburse services 
provided in intermediate settings. The other half (n = 86) had 
an innovative plan (TREAT = 1), which offered coordinated 
mental health services at no cost, regardless of setting 
(inpatient, outpatient, or in between). Foster’s primary 
research question was whether provision of comprehensive 
services, regardless of setting, reduced the length of inpatient 
stays.

To address this question, Foster initially fit a Cox regression 
model that included the single dichotomy TREAT. As shown in 
Model A of table 15.4, this variable has no main effect. 
Suspecting that its effect might vary over time, Foster 
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investigated whether the treatment effect depended on how 
long the child had been hospitalized. The sample log 
cumulative hazard functions in the top panel of figure 15.3
confirm this suspicion. During the first few weeks after 
admission, children covered by the innovative plan are much 
more likely to be discharged. Over time, this differential 
diminishes, so that by day 32, the functions cross, indicating 
that an equal fraction of each group remains. Eventually, the 
risk of discharge is somewhat higher among those in the 
traditional plan (most likely because long-term hospitalization 
for this group must be authorized by a utilization coordinator).

The graph in the top panel of figure 15.3 depicts a classic 
“interaction with time.” It is not that the treatment has no 
effect; it is that its effect varies over time. Fitting a Cox 
regression model that constrains its effect to be constant is 
both inappropriate (because the proportionality assumption is 
violated) and unsuccessful (because no effect is found). 
Stratification will not help because the violation concerns
TREAT, the predictor of greatest interest. This leads us to 
specify Cox regression models in which the effect of TREAT is 
permitted to vary over time.

We begin graphically, by plotting—in the bottom panel of 
figure 15.3—the difference in sample log cumulative hazard 
functions for the two groups. We constructed this graph by 
subtracting, at each point in time, the (p.566)

Table 15.4: Fitting a nonproportional hazards 
Cox regression model

Model A Model B Model C Model D

Parameter Estimates, Asymptotic Standard Errors and 
Deviance-Based Hypothesis Tests

TREAT 0.1457 0.7061* 2.5335***

(0.1542) (0.2924) (0.7603)

TREAT ×
(TIME-1)

−0.0208*

(0.0092)
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Model A Model B Model C Model D

TREAT1 1.5711*

(0.6406)

TREAT2 0.5678

(0.4929)

TREAT3 0.8497

(0.3621)

TREAT4 −0.3499

(0.3641)

TREAT5 −0.7660~

(0.4161)

TREAT6+ −0.0993

(0.3111)

TREAT × 
L2(TIME)

−0.5301**

(0.1619)

Goodness-of-fit

−2LL 1436.628 1431.374 1417.730 1423.062

n parameters 1 2 6 2

AIC 1438.628 1435.374 1429.730 1427.062

~p < .10; * p < .05; ** p < .01; *** p < .001.

These are the results of fitting four Cox regression models 
to the length of hospital stay data (n = 174, n events = 172). 
Model A includes the main effect of treatment (TREAT). 
Model B allows the effect of treatment to vary linearly over 
time. Model C allows the effect of treatment to differ week 
by week. Model D allows the effect of treatment to vary 
linearly with the logarithm (to base 2) of time.

Note: −2LL for null model is 1437.520. Efron’s method for 
handling ties.
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Figure 15.3.  Sample log cumulative 
hazard functions and the difference in log 
cumulative hazard functions for the 
inpatient length of stay data, by 
treatment group.

sample log cumulative hazard function for the comparison and 
treated groups. We recommend that you construct such graphs 
when evaluating the proportionality assumption for time-invariant 
predictors. Although easier to construct if the predictors are 
categorical, you can construct a similar graph for continuous 
predictors via judicious categorization. (Another useful strategy is a 
plot of Schoenfeld residuals, as described in section 15.4.3.)
To understand why this graph is so useful, remember what 
each parameter in the Cox model represents: the difference in 
log (cumulative) hazard corresponding to unit differences in 
the value of the predictor. (p.567)

Under the 
proportionality 
assumption, 
this difference 
should be 
identical at 
every point in 
time. If the 
model is 
appropriately 
specified, this 
diagnostic 
graph will be 
flat. Although 
it may “wiggle” 
owing to 
sampling 
variation, we 
should not find 
any consistent 
trend over 
time. If the 
graph is not 
flat, the 
proportionality 
assumption is 
violated. The 
shape of this 
function will 
reflect the 
predictor’s 
time-varying effect. Ascertaining which algebraic function best 
describes its shape usually suggests a (p.568)  parameterization 
for the interaction with time. A steady equal-increment decline 

Figure 15.3.  Sample log cumulative 
hazard functions and the difference in log 
cumulative hazard functions for the 
inpatient length of stay data, by 
treatment group.
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suggests an interaction with linear time. A stepwise shift in broad 
epochs suggests a piecewise specification. Here, the steep decline 
that we observe during the first few weeks, dropping to a lower 
asymptote, suggests a logarithmic specification.
Rather than move immediately to the logarithmic 
specification, let us proceed incrementally by examining three 
possible models, each with a different specification for the 
interaction with time:

• Model B postulates that the effect of TREAT varies 
linearly over time. Although we suspect that this model will 
not be ideal, many people find it easiest to routinely explore 
this specification first. To facilitate interpretation, we 
subtract 1 from TIME, so that the main effect of TREAT
represents the treatment effect on the first day of 
hospitalization.

• Model C postulates that the effect of TREAT differs 
piecewise across periods. We defined six weekly time 
periods. The first represents days 1–7, the intermediate 
periods are 8–14, 15–21, 22–28, and 29–35 days; the last 
represents day 36 on. The decision to collapse together the 
data after day 35 was based on the graphs in figure 15.3, 
the declining number of events during the later days, and 
an examination of the parameter estimates from a finer 
classification.

• Model D postulates that the effect of TREAT varies 
linearly with the logarithm of time. To facilitate 
interpretation, we take logs to the base 2, so that the 
interaction term represents the change in the treatment 
effect as length of stay doubles. We do not center time on 
the first day of hospitalization, in order to avoid an infinite 
value for the logarithm of time on this day.

Although we could easily theorize the existence of other 
parameterizations, for these data we restrict ourselves to these 
three for they span a suitable range of alternatives.
Let us begin with the linear specification in Model B. We begin 
here not because this model is best but rather because we 
often use this specification as an initial screen for interactions 
with time. Here, the significant difference in fit from Model A 
(χ2 = 5.254, 1 d.f., p < .05) demonstrates that, in this data set 
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at least, we have uncovered cause for concern. As popular and 
easy as this screen is, however, we caution that it can miss 
many violations of the proportionality assumption. (We discuss 
still other ways of identifying these violations in section 
15.4.3.)

The piecewise specification in Model C provides a better fit. 
Comparison (p.569)  with the main effects model (A) reveals a 

statistically significant difference in fit between models (χ2 = 
18.898, 5 d.f., p < .01) and although we cannot directly 
compare its −2LL statistic to that for Model B, comparison of 
AIC statistics between models B and C suggests the 
superiority of the latter model. Examining parameter 
estimates, we can quantify how the effect of TREAT diminishes 
over time. In weeks 1, 2, and 3, the estimated hazard ratios 
are e(1.5711) = 4.81, e(0.5678) = 1.76, and e(0.8497) = 2.34. By 
week 6 and beyond, the treatment effect has all but 
disappeared (e−(0.0993) = 0.91).

This brings us to Model D, a parsimonious representation that 
fits better than the main effects model (χ2 = 13.56, 1 d.f., p < .
001) and has the lowest AIC statistic of all the models 
displayed. Equally important, it allows us to go beyond the 
general statement that the effect of TREAT “varies over time” 
to a characterization of how it varies.4 Because the log of 1 is 
0, antilogging the coefficient for TREAT in Model D—
computing e(2.5335) = 12.60—yields the estimated hazard ratio 
on day 1. By taking logarithms to the base 2, the parameter 
for log(TIME) indicates the drop in log hazard associated with 
a doubling of length of stay as it goes from 1 to 2, 2 to 4, 4 to 
8, and so on. As length of stay doubles, the estimated log 
hazard for TREAT declines by 0.5301. By substitution, you can 
estimate a hazard ratio for any given day. For day 8, we have 
e(2.5335+log

2
(8)×(−.5301)) = 2.56 For day 32, e(2.5335+log

2
(32)×(−.

5301)) =0.89. Logarithmic specification of time in interactions 
with time are especially useful when the observed event times 
vary widely (because the transformation draws in the upper 
tail of the event time distribution).

Does the parameterization in Model D fully characterize the 
interaction with time? In discrete time, we could answer this 
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question by comparing its fit with that of a fully interactive 
model (in which the predictor’s effect was allowed to differ in 
each discrete time period). In continuous time, no such fully 
interactive model exists. All we can fit are smooth 
representations, which are parsimonious but constrained, and 
epoch-to-epoch representations, which are unconstrained but 
not parsimonious. There is no model in which the effect of a 
predictor can be permitted to differ at every observed event 
time. To select among models, then, we must rely on a 
combination of common sense and model checking. For this 
data set, we have a strong preference for Model D.

We now return to the question first raised at the end of section 
15.2: given two distinct strategies for handling violations of 
the proportionality assumption—choosing a stratified model 
and fitting an interaction with time model—which is 
preferable? Although there are no definitive rules, we offer the 
following principles to guide you: (p.570)

• If the predictor that violates the proportionality 
assumption is not of explicit research interest, and it is 
either discrete or can be categorized with little loss of 
information, adopting a stratified Cox regression model is a 
simple low-cost strategy.

• If the predictor that violates the proportionality 
assumption is of explicit research interest, you should adopt 
the “interaction with time” strategy because fitting a 
stratified model will prevent you from learning precisely 
what it is you want to know.

Note, too, that most computer programs can stratify the Cox model 
only by time-invariant predictors. If the “offending” predictor is
continuous, time-varying, or both, you may have little choice.
We close this section by returning to a paradox in 
nomenclature mentioned briefly in section 14.1. Many people 
refer to the Cox regression model as a proportional hazards
model. But as we have just seen, the Cox model need not 
invoke a proportional hazards assumption. Indeed, we could 
label the Cox regression models in this section as 
“nonproportional proportional hazards models.” Before 
expressing alarm at this terminology, remember that linear 
regression models can include nonlinear effects. So although 
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the proportional hazards label is useful, it should not be 
interpreted literally or narrowly. The Cox regression model is 
equally well suited to data sets in which the proportionality 
assumption does not hold.

15.4 Regression Diagnostics

Practicing data analysts know the value of residuals and 
influence statistics. Diagnostics akin to these are especially 
useful in Cox regression analysis. We make this assertion not 
because the model is excessively sensitive to violations but 
because the strategies available for exploratory analysis are so 
coarse and limited. When fitting a multilevel model for change, 
you can examine empirical growth trajectories to detect 
individuals with unusual temporal patterns of change (outliers) 
or with extreme predictor values (high leverage cases), or just 
to investigate interesting transformations of the data. In 
survival analysis, you do not plot data points, but rather
summary statistics—the sample survivor and cumulative 
hazard functions—computed at some group level. To estimate 
these, you collapse your data twice: once across individuals, 
which precludes any insight into the behavior of specific 
cases; and a second time across predictor values, which limits 
your insight into event occurrence at specific levels of the 
predictor.5 When fitting Cox models, the associated (p.571)

regression diagnostics allow you to learn things about your 
data that are unobservable by other means.

Yet the Cox regression model poses a thorny statistical 
problem: How should diagnostics be defined? In linear 
regression analysis, for example, individual i’s residual is

, the difference between the observed and predicted 
outcome values. To extend this same idea to the Cox model, 
we need to: (1) choose a quantity to focus upon (e.g., the event 
time, the cumulative hazard function, or something else?); and 
(2) develop a strategy for dealing evenhandedly with 
censoring. These dilemmas have led statisticians to create 
many different diagnostics, each with a specific purpose in 
mind. In the sections below, we focus on four diagnostics that 
we find particularly useful: martingale residuals (section 
15.4.1), deviance residuals (section 15.4.2), Schoenfeld 
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residuals (section 15.4.3), and score residuals (section 15.4.4). 
We conclude, in section 15.4.5, with an overview of how to use 
these diagnostics efficiently.

15.4.1 Martingale Residuals

Martingale residuals are helpful in Cox regression analysis for 
selecting a particular functional form to be used for a 
continuous predictor. Their name derives from extensions of 
the Cox model rooted in martingale theory, an advanced 
branch of probability theory. Developed for situations in which 
individuals can experience a target event more than once, 
martingale theory allows you to model the hazard function for 
repeatable events (Anderson, Borgan, Gill, & Keiding, 1993; 
Fleming & Harrington, 1991). Martingale residuals assess the 
quality of a model’s predictions by comparing, for each 
individual, the number of events actually experienced to the 
number of events predicted to happen:

(15.6)

This definition yields a residual measured in a familiar metric—the 
discrepancy between observed and expected values—expressed in 
terms of the number of events. Like residuals from linear 
regression analysis, martingale residuals sum to 0 across 
individuals and in large samples, are approximately uncorrelated.
In a Cox regression model—in which each person can 
experience either only one, or no, event—martingale residuals 
assess the relative magnitude of an individual’s event time in 
comparison to what we would predict on the basis of the fitted 
model. To understand how we can make this statement, let us 
examine equation 15.6 and identify the conditions that 
produce positive and negative values for the residual. For to 
be positive, individual i must have experienced “more events” 
than (p.572)  expected on the basis of his or her predictor 
values and the estimated parameters. This means that he or 
she must have experienced the event, and that it must have 
happened before it was expected—it must have occurred “too 
soon.” For to be negative, individual i must have experienced 
“fewer events” than expected. This can only happen if he or 
she: (1) experienced no event (i.e., the event time was 
censored); or (2) experienced the event, but later than 
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expected. Either way, the event occurred “too late.” As a 
result, positive residuals indicate that the event time is earlier 
than expected—that the model “over predicts.” Negative 
residuals indicate that the event time is later than expected—
that the model “underpredicts.”

There are two ways of using martingale residuals to discern 
the appropriate functional form for a continuous predictor.

• Plot martingale residuals versus an omitted predictor. You 
construct these displays before including the predictor of 
interest in the model. The fitted model for which you 
estimate the residuals can: (a) already include other 
predictors, so that the martingale residuals then suggest a 
functional form for the new predictor after statistically 
controlling for the existing predictors; or (b) include no 
predictors, so that the residuals suggest a functional form 
in the absence of statistical controls.

• Plot martingale residuals versus an included predictor. 
You construct these displays after including the predictor of 
interest in the model, to determine whether the chosen 
functional form is appropriate. If no pattern emerges in the 
plot, you can conclude that the chosen form is fine; if a 
pattern emerges, the form chosen is probably 
inappropriate.

As martingale residual plots are more difficult to interpret than 
regular scatterplots, we suggest that you superimpose a smoothed 
nonparametric summary of the residual/predictor relationship in 
the plot, such as a lowess smooth or a cubic spline.
We illustrate these strategies in figure 15.4, which plots 
martingale residuals from two fitted Cox models for the 
recidivism data of chapter 14. Recall that the data set included 
three predictors: PROPERTY and PERSONAL, describing the 
former inmate’s criminal history, and AGE, assessing the 
difference in years between this individual’s age at release 
and the “average” former inmate in the sample. In the top 
panel, we plot martingale residuals from a null model versus
AGE. In the bottom panel, we plot the martingale residuals for 
a model that includes AGE, PERSONAL, and PROPERTY versus 
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Figure 15.4.  Martingale residuals for the 
recidivism data. The top panel displays 
residuals from a null model (with no 
predictors) vs. the continuous predictor
AGE. The bottom panel displays residuals 
from a model with three predictors 
(Model D of table 14.1) vs. the included 
predictor AGE. A • identifies individuals 
with observed event times; a + identifies 
individuals with censored event times. 
The trend lines are lowess smooths.

AGE (Model D of table 14.1). In both panels, the • symbol 
identifies individuals with observed event times; the (p.573)

+ symbol 
identifies 
individuals 
with censored 
event times. 
The 
superimposed 
trend lines are 
lowess 
smooths, 
computed 
across all 
observations in 
the sample.
These 
displays 
exhibit some 
patterns 
common to all 
martingale 
residual plots 
and other 
patterns 
specific to 
this particular 
data set. We 
begin with 
three general 
observations:

(p.574)

•
Martingale 
residuals 
have a 
maximum 
of 1 and are skewed toward negative values. This is a 
consequence of their definition in equation 15.6, which 
subtracts from either 0 or 1, a quantity that must be 
positive.

Figure 15.4.  Martingale residuals for the 
recidivism data. The top panel displays 
residuals from a null model (with no 
predictors) vs. the continuous predictor
AGE. The bottom panel displays residuals 
from a model with three predictors 
(Model D of table 14.1) vs. the included 
predictor AGE. A • identifies individuals 
with observed event times; a + identifies 
individuals with censored event times. 
The trend lines are lowess smooths.
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• Individuals with observed event times have larger 
martingale residuals, on average, than those with censored 
event times. This, too, is a consequence of the definition in 
equation 15.6, and makes it difficult to use martingale 
residuals to identify poorly predicted cases.

• If many people are censored at a single late event time, 
their martingale residuals will display predetermined 
patterns. For a null model, they will concentrate at a single 
negative value (here, a value of −1.1). For a model that 
contains predictors, the martingale residuals will form 
bands that reflect their particular combination of predictor 
values (as shown in the bottom panel of figure 15.4.

Taken together, these properties highlight the need for care when 
interpreting martingale residual plots, because some patterns (like 
the line of +’s in the top panel or the swath of +’s in the bottom 
panel) are just a consequence of the residual’s definition.
How, then, should you interpret these plots? We recommend 
that you concentrate on the trend revealed by a superimposed 
smooth. The approximately linear negative trend with AGE in 
the top panel, for example, suggests the appropriateness of 
adding linear AGE as a predictor in the Cox regression model. 
A jagged or a nonlinear pattern would suggest an alternative 
representation. The virtually nonexistent trend with AGE in the 
bottom panel confirms the appropriateness of this decision.

Martingale residuals are a powerful data analytic tool for 
detecting candidate predictors and selecting an appropriate 
functional form when examining continuous predictors for 
potential inclusion in a Cox model. Unlike model-based 
strategies (described in section 12.4.2 in discrete time), you 
need not categorize a predictor nor compare “shot-in-the-
dark” representations. Because they provide such direct 
information, it is good data analytic practice to compute 
martingale residuals for a null model and add their values to 
your basic data set. This allows you to plot their values versus 
each potential predictor to help discern an appropriate 
functional form for that predictor. If the relationship is 
approximately linear, you can feel comfortable analyzing the 
effect of the predictor in its raw state. If the relationship you 
detect is non-linear, you can quickly transform the predictor 
as appropriate.6



Extending the Cox Regression Model

Page 41 of 82

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

(p.575) 15.4.2 Deviance Residuals

Deviance residuals are helpful for identifying individuals 
whose outcome is poorly predicted. Although you might hope 
that we could use martingale residuals for this purpose—
eliminating the need for another diagnostic—their inherent 
skewness makes them ill-suited to the task. Without 
documenting their complex algebraic computation, which all 
the major statistical packages implement, suffice it to say that 
deviance residuals are a transformation of martingale 
residuals designed to symmetrize their distribution around 0. 
Under light censoring (say, less than 25%), their distribution 
will be approximately normal. Under heavier censoring (more 
than approximately 40%), their distribution will still be 
approximately symmetric, but the normal approximation will 
be less accurate because there will be a larger proportion of 
small values (Therneau & Grambsch, 2000).

You interpret deviance residuals in ways similar to the 
martingale residuals upon which they are based. A positive 
residual suggests the event occurred earlier than expected; a 
negative residual suggests the event occurred later than 
expected (or not at all). Large deviance residuals of either sign
identify potential outliers. You can identify individuals whose 
outcomes are predicted poorly using one of two strategies:

• Examine the distribution of the deviance residuals. If 
censoring is light and the model appropriate, approximately 
5% will be greater than ±2. An excessive percentage of 
large values suggests a problem, and individuals with very 
large values (say, >±2.5 or 3.0) warrant scrutiny.

• Plot the deviance residuals versus risk scores. A risk score 
summarizes the information contained across all predictors 
in a model for each individual. If the model is appropriate, 
the deviance residuals should be unrelated to the risk 
scores (indicating that the model predicts equally well at all 
levels of risk). Concentrations of deviance residuals at 
particular levels of risk suggest a poor fit at these levels.

Because the second plot is useful only if risk scores are continuous, 
you should construct this display only for models that include 
either: (1) one or more continuous predictors; or (2) at least several 
categorical predictors. For other models, simply examine the 
residuals’ distribution.
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Figure 15.5.  Deviance residuals for the 
recidivism data. The top panel displays 
their univariate distribution; the bottom 
panel plots them vs. risk scores from a 
model with three predictors (Model D of 
table 14.1). A • identifies individuals with 
observed event times; a + identifies 
individuals with censored event times.

We illustrate these strategies in figure 15.5, which presents 
deviance residuals from a Cox regression model containing all 
three predictors for the recidivism data. In the top panel, we 
present a univariate (p.576)

(p.577)  (stem-
and-leaf) 
display of the 
residuals; in 
the bottom 
panel, we plot 
the deviance 
residuals

 versus the 
risk scores 
(once again 
using symbol • 
for cases with 
observed and 
+ for cases 
with censored 
event times). 
To facilitate 
inspection, the 
risk score plot 
includes a 
horizontal 
reference line 
at 0.
In a 
moderately 
censored data 
set like this—
in which 88 of 
the 194 cases 
(45.4%) 
remained 
arrest-free—
we do not find the approximate normality that the deviance 
transformation is designed to achieve. Instead, the stem-and-
leaf display contains larger concentrations of deviance 
residuals near +1 and −0.5. But when examining the 
distribution of the deviance residuals, we are not trying to 

Figure 15.5.  Deviance residuals for the 
recidivism data. The top panel displays 
their univariate distribution; the bottom 
panel plots them vs. risk scores from a 
model with three predictors (Model D of 
table 14.1). A • identifies individuals with 
observed event times; a + identifies 
individuals with censored event times.
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determine whether its shape is approximately normal. The 
purpose of the plots is to identify “extreme” values. So in a 
stem-and-leaf display, we focus on ascertaining how many 
individuals have deviance residuals greater than ±2. As only 
11 former inmates meet this criterion (5.6% of the full 
sample), leading us to conclude that the fraction of poorly 
predicted cases is within expected limits.

Plots of deviance residuals versus risk scores are tricky to 
interpret because our eye is inevitably drawn to an irrelevant 
predetermined pattern: the concentration of individuals with 
observed event times (the •’s) in the upper half and the fan 
spread of individuals with censored event times (the +’s) in 
the lower half. These patterns result directly from the 
residual’s definition. Of greater interest is whether the poorly 
predicted cases are concentrated at particular levels of risk. In 

figure 15.5, we see that some the larger values of  appear at 
the highest levels of risk (risk scores around 2.0). This does 
not suggest that the model predicts poorly for everyone at 
high-risk, for the plot includes many high-risk individuals 
whose outcomes are precisely predicted (with points on, or 
near, the line of 0). What it does suggest is that most of the 
poorly predicted cases for this model are former inmates who 
face a high risk of recidivism.

What should you do if your data set includes individuals with 
extreme deviance residuals? As when identifying potential 
outliers after fitting any statistical model, the first thing you 
should look for are: (1) transcription errors; and (2) omitted 
predictors that might help explain the poor predictions. You 
can also set aside the cases and refit the model. If the results 
remain unchanged, retaining the extreme observations causes 
little harm. If the results do differ substantially, further 
analyses are needed to ensure that the small number of highly 
deviant cases does not unduly influence the findings. In no 
case would we set the problematic cases aside without 
considerable investigation, as the resulting improvement in fit 
is unlikely to be justifiable.

(p.578) 15.4.3 Schoenfeld Residuals

Schoenfeld residuals (also known as partial residuals) are 
useful for identifying violations of the proportionality 
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assumption. Unlike martingale and deviance residuals, which 
compare the observed and expected number of events, 
Schoenfeld residuals compare observed and expected
predictor values. If a Cox model includes more than one 
predictor, there is a set of Schoenfeld residuals for each.

To concretize this definition, let us first explain what we mean 
by the “expected value” of a predictor. In general, the term 
“expected value” refers not just to predicted values but also to 
“average” values—here, the “average” value of the predictor 
at individual i’s event time. To compute a Schoenfeld residual 
for a predictor, X, we compare individual i’s value of X to the 
“average” value of X among everyone still in the risk set when
i experiences the event. Although we could also compute this 
average as a simple sample mean, Schoenfeld (1982) showed 
that it is more useful to weight each person’s value of X by his 
or her risk score. For each predictor X, then, we define the 
Schoenfeld residual for individual i as:

(15.7) 
where the second term on the right side of the equation refers to 
the expected value of X among everyone in the risk set when 
individual i experiences the target event. Because Schoenfeld 
residuals compare predictor values at observed event times, they 
are defined only for individuals who actually experience the event. 
Censored individuals contribute to the computations when they fall 
in an observed person’s risk set, but they do not have Schoenfeld 
residuals of their own.
The simplicity of the definition in equation 15.7 makes it easy 
to interpret Schoenfeld residuals. Positive values identify 
individuals whose predictor values are greater than those of 
their peers at risk at their event time; negative values identify 
individuals whose predictor values are smaller than those of 
their peers at their event time. Schoenfeld residuals, 
therefore, assess the relative magnitude of an individual’s 
predictor value in comparison to what we expect given his or 
her event time. For samples that are sufficiently large, 
Schoenfeld residuals for each predictor will sum to 0 across 
individuals and will be approximately uncorrelated.
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The most important property of Schoenfeld residuals is their 
behavior under the proportionality assumption. If the 
assumption holds, the Schoenfeld residuals will be unrelated 
to time. This means that for each predictor in a model, a plot 
of Schoenfeld residuals versus observed event times should 
reveal no consistent trend. If the Schoenfeld residuals tend to 
increase (or decrease), this suggests that the effect of the 
predictor is (p.579)  not constant over time—as the 
proportionality assumption suggests—but rather that it 
increases (or decreases) over time.

To discern whether Schoenfeld residuals are related to time, 
you can:

• Plot the Schoenfeld residuals versus time and 
superimpose a smooth summary. If the proportionality 
assumption holds, no nonhorizontal trend should appear. 
Any discernible trend suggests a model violation 
(Schoenfeld, 1982).

• Compute the simple correlation between Schoenfeld 
residuals and time. If the correlation is zero and not 
statistically significant, then the validity of the 
proportionality assumption is confirmed. A statistically 
significant non-zero correlation suggests the opposite 
(Harrell, 2001).

Because the Cox model is semi-parametric, based on not the actual 
event times but their ranking, we usually implement these 
approaches using the rank of the event times (computed across the 
full sample, including observed and censored cases). If either 
analysis suggests a violation of the proportionality assumption, you 
can follow up by testing explicitly for interactions with time.
We illustrate these strategies in figure 15.6, which presents 
Schoenfeld residuals from Model D for the recidivism data 
versus ranked event time. The top and middle panels display 
residuals for the two dichotomous predictors, PERSONAL and
PROPERTY; the bottom panel displays residuals for the 
continuous predictor, AGE. As Schoenfeld residuals are 
defined only for individuals with observed event times, we 
need no plotting symbols to distinguish observations. To 
facilitate pattern detection, each plot displays a lowess smooth 
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and the sample bivariate correlation of the Schoenfeld 
residuals with ranked event times.

Schoenfeld residuals for dichotomous predictors will always 
appear in two bands, one for each predictor value. When 
interpreting these displays, we therefore rely heavily on the 
summary information in the lowess smooth and the 
correlation. For PERSONAL, the potential importance of the 
slight downward trend is mitigated by the small statistically 
nonsignificant correlation coefficient (r = −0.09). The plot for
PROPERTY is difficult to interpret because only 9 of the 106 
former inmates with observed event times had no property 
crime history. This proportion is so small that the lowess 
smooth is flat. This suggests no consistent trend over time, a 
conclusion supported by the small statistically nonsignificant 
correlation (r = −0.07). For both dichotomous predictors, 
then, we have no evidence of a proportionality violation.

Plots of Schoenfeld residuals for continuous predictors are 
easier to interpret. In the bottom panel for AGE, we find a 
distinct upward trend, (p.580)
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Figure 15.6.  Schoenfeld residuals for the 
recidivism data vs. ranked event times. 
The top panel is for PERSONAL; the 
middle panel is for PROPERTY; the 
bottom panel is for AGE. The trend lines 
are lowess smooths.

(p.581)

suggesting 
that the 
proportionality 
assumption 
may not be met 
for this 
predictor. The 
statistically 
significant non-
zero 
correlation (r
= .28, p = .
0039) 
associated with 
this plot 
reinforces this 
suspicion. If 
you find a 
similar pattern 
in any 
Schoenfeld 
residual plot, 
you should fit a 
Cox regression 
model that 
incorporates 
an interaction 
between the 
predictor and 
time, using the 
trend in the 
residual plot to 
inform the 
interaction’s parameterization. Here, the steady rise with ranked 
time suggests a smooth specification. Had a step-function emerged, 
an epoch-by-epoch representation would have been explored. When 
we include an interaction between linear time and AGE in the Cox 
model, we find that the interaction is indeed non-zero and 
statistically significant (χ2. = 7.52, 1 d.f., p < .01). This tells us that 
the proportionality assumption does not hold for AGE (after 
controlling for PERSONAL and PROPERTY). The effect of inmate 
age upon recidivism—which we have described previously as large 
and negative—diminishes over time.

Figure 15.6.  Schoenfeld residuals for the 
recidivism data vs. ranked event times. 
The top panel is for PERSONAL; the 
middle panel is for PROPERTY; the 
bottom panel is for AGE. The trend lines 
are lowess smooths.
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Schoenfeld residuals are a powerful tool for examining the 
tenability of the proportionality assumption, especially for 
continuous predictors. For dichotomous predictors, you can 
often spot a model violation by examining plots of differences 
in log cumulative hazard functions by levels of the predictor. 
For continuous predictors, construction of these plots requires 
categorization. Schoenfeld residuals are invaluable in this 
latter case because you need not categorize nor specify a 
parametric form for the interaction up-front. Another 
advantage of Schoenfeld residuals is that they provide a 
graphical vehicle for exploring proportionality when there are 
other predictors in the model.

15.4.4 Score Residuals

Score residuals are helpful for identifying individuals who 
exert a great influence on model fit as a consequence of their 
combined predictor values. Although you might hope that we 
could use the Schoenfeld residuals for this purpose—
eliminating the need for yet another diagnostic—the fact that 
Schoenfeld residuals are defined only for individuals with 
observed event times limits their utility for this purpose. So, 
too, although you might wish to assess influence by comparing 
parameter estimates computed with, and without, each 
observation, the iterative nature of the partial likelihood 
method of estimation makes this computationally intensive 
approach less attractive. Although some statistical packages 
include an option for computing the changes in parameter 
estimates that result from the systematic deletion of each 
individual case, they more commonly include an 
approximation to this quantity known as the score residual.

Like Schoenfeld residuals, there is one set of score residuals 
for each (p.582)  predictor in a model. Without delving into the 

details, suffice it to say that for each predictor, for individual i, 
the score residual is a function of the approximate change in 
the parameter estimate that would result if individual i were 
deleted from the sample. A positive score residual indicates 
that the parameter estimate would increase; a negative score 
residual indicates that the parameter estimate would 
decrease. But when interpreting their values, be sure not to 
take their magnitude too literally. Score residual values do not
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actually assess the changes in parameter estimates that would 
result from the deletion of the case.

Because score residuals are a type of case deletion diagnostic, 
we examine their behavior using methods that we use for all 
such diagnostics (Cook & Weisberg, 1982). Of the many 
possible alternatives, we recommend two simple approaches:

• Examine the distribution of the score residuals. 
Excessively large values identify individuals who exert a 
great influence on the fit.

• Plot the score residuals versus ranked event times. This 
plot should help discern whether high-influence cases are 
concentrated at specific event times.

When examining these displays, remember that the primary 
purpose is to identify extreme values so that you may determine 
whether model fit is unduly affected by high influence cases.
In figure 15.7, we use the second of these strategies to present 
plots of score residuals for the three-predictor Cox regression 
model fitted to the recidivism data (once again using a • for 
observed event times and a + for censored event times). To 
facilitate visual examination, the plots include a reference line 
drawn horizontally at 0. Examination of the three plots shows 
that each includes a small number of individuals with large 
score residuals. In the bottom of the top panel, we find eight 
individuals with large score residuals for PERSONAL. In the 
lower right corner of the middle panel, we find several 
individuals with large score residuals for PROPERTY. In the 
upper portion of the bottom panel, we find a handful of 
individuals with large score residuals for AGE. All these cases 
warrant closer examination.

15.4.5 Using Regression Diagnostics as an Integral Part of Data 
Analysis

No Cox regression model-building task is complete without a 
thorough examination of regression diagnostics. To encourage 
their use and interpretation, table 15.5 presents a brief 
overview of each. We offer this rubric in the hope that the 
potentially dizzying array of diagnostics does not (p.583)
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Figure 15.7.  Score residuals for the 
recidivism data vs. ranked event times. 
The top panel display is for PERSONAL; 
the middle panel is for PROPERTY; the 
bottom panel is for AGE. A • identifies 
individuals with observed event times; a 
+ identifies individuals with censored 
event times.

(p.584)

Table 15.5: Regression diagnostics useful in Cox 
regression analysis—definition, interpretation, 
and uses of residuals

Figure 15.7.  Score residuals for the 
recidivism data vs. ranked event times. 
The top panel display is for PERSONAL; 
the middle panel is for PROPERTY; the 
bottom panel is for AGE. A • identifies 
individuals with observed event times; a 
+ identifies individuals with censored 
event times.
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Martingale 
residual

Deviance 
residual

Schoenfeld 
residual

Score 
residual

Definition Difference 
between the 
observed and 
expected 
“number of 
events” for 
individual i

Martingale 
residual 
“standardized” 
to be an 
approximately 
standard 
Normal 
deviate

Difference 
between the 
value of X for 
individual i
and the 
weighted 
average of X
among 
everyone still 
at risk at i’s 
event time

Difference in 
parameter 
estimate for
X were 
individual i
removed 
from the 
sample

Best at 
detecting

The 
functional 
form for a 
continuous 
predictor

Cases not 
predicted well 
by the model

Violations of 
the 
proportionality 
assumption

Influential 
and high 
leverage 
cases

Number of 
diagnostics 
per individual

1 1 One per 
predictor in 
model, but 
only for 
individuals 
with observed 
event times

One per 
predictor in 
model, 
regardless of 
whether 
individual i is 
censored

Interpretation 
of a large 
positive value

i experienced 
the event 
“too 
soon” (earlier 
than 
expected)

i experienced 
the event “too 
soon” (earlier 
than expected)

i has a 
relatively high 
value of X (a 
higher 
predictor 
value than his 
event time 
suggests)

Parameter 
estimate 
would 
increase 
without i
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Martingale 
residual

Deviance 
residual

Schoenfeld 
residual

Score 
residual

Interpretation 
of a large 
negative 
value

i experienced 
the event 
“too 
late” (later 
than 
expected)

i experienced 
the event “too 
late” (later 
than expected)

i has a 
relatively low 
value of X (a 
lower 
predictor 
value than his 
event time 
suggests)

Parameter 
estimate 
would 
decrease 
without i

Two most 
important 
things to do 
with the 
diagnostics 
(and what to 
look for)

Plot vs. 
omitted X to 
identify 
appropriate 
functional 
form. An 
added 
“smooth” is 
especially 
helpful

Examine 
distribution. 
Check cases 
with extremely 
large values

Plot vs. ranked 
event time and 
add a 
“smooth” 
summary. No 
pattern should 
emerge

Examine 
distribution. 
Large values 
identify 
potentially 
influential 
cases

Plot vs.
included X. If 
functional 
form is 
correct, no 
discernible 
pattern 
should 
emerge

Plot vs. risk 
score. Should 
predict 
equally well at 
all risk levels

Compute 
simple 
correlations 
with ranked 
event time. 
The 
correlations 
should be 
statistically 
non-significant

Plot vs. 
ranked event 
times. 
Influential 
observations 
should not 
be 
concentrated 
at particular 
event times

Useful for 
categorical 
predictors?

Not 
especially

Can be, if 
there are 
other 
predictors in 
the model

Yes, but plots 
are somewhat 
more difficult 
to interpret

Yes

(p.585) (p.586)  deter you from using them. We have found that 
once you become comfortable with these strategies, you can 
quickly learn how to exploit the insights they offer and improve the 
quality of your analyses.
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For each potential predictor, we recommend that you initially 
explore its functional form and its behavior under the 
proportionality assumption. For continuous predictors, you 
can examine: (1) martingale residuals from a null model; and 
(2) Schoenfeld residuals from a model that includes the 
predictor in the chosen functional form. For categorical 
predictors, the issue of functional form is moot, but the 
proportionality assumption should be examined both using 
Schoenfeld residuals and the graphical and model-based 
approaches of section 15.3. Deviance and score residuals may 
be helpful at this stage to identify potential outliers and high-
leverage cases, but given limited time, we usually emphasize 
the other diagnostics.

After identifying a small number of potential “final” models, 
we recommend that you examine the behavior of all four types 
of residuals. If your exploratory analyses have been thorough 
(and if statistical control does not substantially alter your 
conclusions), you can likely devote these latter analyses to 
confirming that the model fit behaves as expected and that no 
individual cases (or set of cases) unduly affects your findings. 
The hope is that if your initial and periodic residual screenings 
were successful, you will not encounter any rude surprises at 
the end.

15.5 Competing Risks

In a standard survival analysis, all sample members begin in 
one state (employed, virgin, well) and we investigate whether 
and, if so, when a single target event occurs (unemployment, 
sexual intercourse, depression). In a competing-risks survival 
analysis, all sample members also begin in one state but we 
study whether and, if so, when one of several events occurs. 
Students may leave school either by graduating or by dropping 
out. Employees can leave an employer by quitting, by being 
laid off, or by being fired. Cardiac patients can die of a heart 
attack, of noncardiac diseases, or in an accident. Because only 
one of these events can occur first, statisticians say that the 
multiple events compete to end an individual’s lifetime.

In this section, we demonstrate how to describe (section 
15.5.1) and model (section 15.5.2) competing-risks data. 
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Although our presentation is framed in terms of continuous-
time event occurrence, these strategies can be extended into 
discrete time by conducting similar analyses using discrete-
time methods. To illustrate the general approach, we analyze 
the (p.587)
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Table 15.6: Structure of a competing-risks survival analysis data set: career histories for three of the 109 justices 
who served on the U.S. Supreme Court between 1789 and 1999

Justice YEARIN YEARLEFT HOW LEFT TENURE DEAD RETIRE LEAVE

John Jay 1789 1795 retired 6 0 1 1

John Marshall 1801 1835 died 34 1 0 1

Clarence Thomas 1991 — — 8 0 0 0
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length of time on the U.S. Supreme Court among the 109 justices 
appointed between 1789 and 1994. By 1999, when data collection 
ended, 100 had left the bench; 9 were still in office. When we first 
introduced these data in section 13.6, we did not discriminate 
between the two ways a justice’s career could end: death (n = 47) 
or retirement (n = 53). Now, we distinguish sharply between these 
competing events and examine the effects of two predictors on risk: 
YEAR, the year the justice took office and AGE, the age of the 
justice at that time.

15.5.1 Describing Competing Risks Data

The major difference between a competing-risks data set and a 
standard survival analysis data set is that it includes additional 
variables identifying the particular competing event that 
terminated each individual’s lifetime. Table 15.6 illustrates the 
structure for three justices in the Supreme Court data set: (a) 
John Jay, who retired after 6 years; (b) John Marshall, who 
died after 34 years; and (c) Clarence Thomas, who was still in 
office when data collection ended in 1999, 8 years after 
appointment. The event time, TENURE, and the two event-
type indicators, DEAD and RETIRE, contain the necessary 
data. For comparison, the data set also includes a global event 
indicator, LEAVE, which collapses the occurrence of both 
competing events together.

Even though interest lies in the competing risks, we usually 
begin by examining the distribution of event occurrence 
regardless of type. Here, we analyze variables TENURE and
LEAVE, noting that 0, not 1, identifies censored cases. Panel B 
of figure 13.6 presents the sample functions, so we do not 
reproduce them here. As discussed in section 13.6, the risk of 
leaving office is low during the first 10 years and then rises 
steadily over time. The estimated median career duration is 16 
years.

We now consider the reality that death and retirement are 
hardly equivalent ways of ending a career. Not only might the 
distributions of risk (p.588)  differ, so, too, might the 
predictors. We begin to investigate these possibilities by 
examining the event-specific hazard rate. Like the overall 
hazard rate defined in equation 13.2, the event-specific hazard 
rate assesses the instantaneous risk of experiencing that 
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event, given that an individual is at risk of doing so. In a 
competing-risks context, however, sample members can leave 
the risk set not just by experiencing the target event or by 
censoring but also by experiencing a competing event. Justices 
who die in office are no longer at risk of retiring. Justices who 
retire are no longer at risk of dying in office. The event-
specific risk set at each observed event time includes people 
who are not yet censored and people who have not yet 
experienced any competing event. Conceptually, then, the 
occurrence of a competing event acts like a form of censoring
—it removes an individual from the risk set for all other 
events.

This logic yields a simple strategy for estimating the event-
specific hazard rate: for each competing event, analyze the 
event times as you would in a standard survival analysis, but 
redefine the censoring indicator so that it identifies both:

• The fully censored—everyone who did not experience any
event during data collection.

• The event censored—those who experienced a competing 
event before this target event.

This strategy allows us to use a single event time variable (here,
TENURE) to analyze all competing risks. The only thing that 
changes across the multiple analyses is the censoring indicator. For 
the event of retirement, we censor 56 justices—the 9 still in office 
and the 47 who died. For the event of death, we censor 62 justices
—the 9 still in office and the 53 who retired. Notice that our data 
set already includes the necessary censoring indicators in the guise 
of the event indicators, DEATH and RETIRE. Notice our reverse 
coding for these variables: 0, not 1, identifies the censored cases 
(as it did for LEAVE).
Use of multiple censoring indicators makes it easy to estimate 
sample survivor, cumulative hazard, and kernel-smoothed 
hazard functions for each event. Figure 15.8 presents the 
results for the Supreme Court data, where bold lines represent 
the event of death and faint lines represent the event of 
retirement. All major statistical packages can produce plots 
like these, although you must merge together output files 
containing event-specific estimates to obtain the overlaid 
displays shown here.
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Figure 15.8.  Preliminary analyses for 
competing risks survival analysis. For the 
U.S. Supreme Court data, sample 
survivor functions, cumulative hazard 
functions, and kernel-smoothed hazard 
functions for the two competing events: 
death and retirement.

Let us begin with the sample cumulative hazard and kernel-
smoothed hazard functions, for they are easiest to interpret. 
During the first five years on the bench, both cumulative 
hazard functions are low and flat, (p.589)

indicating the 
rarity of either 
death or 
retirement. 
During the 
next ten years, 
both hazard 
functions rise 
steadily, 
although 
neither 
smoothed 
value ever 
exceeds .04. 
Between years 
15 and 25, the 
two profiles of 
risk diverge: 
the hazard of 
retirement 
increases while 
the hazard of 
death 
decreases (or 
remains 
steady). After 
25 years, only 
24 justices 
remain, 
rendering later 
sample 
estimates for 
both events 
imprecise. It 
appears, however, that the risk of retirement abates while the risk 
of death rises, (p.590)  making death, not retirement, the more 
likely cause of departure among longer term justices.
To understand why survivor functions are difficult to interpret 
in the context of competing risks, remember that these 
functions assess the probability that an individual will 

Figure 15.8.  Preliminary analyses for 
competing risks survival analysis. For the 
U.S. Supreme Court data, sample 
survivor functions, cumulative hazard 
functions, and kernel-smoothed hazard 
functions for the two competing events: 
death and retirement.
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“survive”—will not experience an event. When multiple events 
compete, the nonoccurrence of one event does not imply 
nonoccurrence of all others—it only refers to the 
nonoccurrence of this specific event. Someone who does not 
experience this event may well have experienced another, so 
the event-specific survivor function does not assess the overall 
probability of survival. Instead, it describes the probability 
that people survive given that they have not previously 
experienced this, or any other, competing event. This 
convoluted interpretation has led Pepe and Mori (1993) to 
suggest that event-specific survivor functions never be 
estimated when multiple events compete. Certainly, we cannot 
use them to estimate a median lifetime, and hence the 
importance of the global survivor function estimated without 
regard to event type. If you decide to examine these event-
specific functions, be sure interpret them with a grain of salt.

By now, you may be wondering whether it is even “legitimate” 
to analyze competing-risks data by redefining the censoring 
indicators. Are the redefined risk sets representative of 
everyone who would have been at risk had a competing event 
not occurred? In practice, we can never know what would 
have happened to sample members had a competing event not 
occurred. Would Thurgood Marshall, who died two years after 
retirement, had lived for decades had he remained on the 
Court? Would Benjamin Cardozo, who died in office, have lived 
for many years had he retired? These questions speak directly 
to the fundamental assumption of the competing risks method:
that the occurrence of one event tells us nothing about the 
risk of occurrence of all others. Contingent on all predictors in 
a model (which we will soon add), the occurrence of each 
competing event must be noninformative for all others.

We first encountered the concept of noninformativeness in 
section 9.3.2, in which we introduced the concept of 
censoring. A noninformative censoring mechanism operates 
independent of event occurrence and the risk of event 
occurrence. When censoring is due to design, the assumption 
seems reasonable. When censoring is due to a competing 
event, the assumption needs critical evaluation. Because there 
is no formal test, you must evaluate its tenability in context. 
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Ask yourself what would have happened to those people who 
experienced the competing event had they not done so. Would 
their subsequent risk of all other events be identical, on 
average, to their peers who did not experience the competing 
event? If so, the competing events are noninformative.

(p.591) To illustrate how you might evaluate this assumption, 
consider the event of accidental death when studying human 
lifetimes. For postsurgical survival, accidental deaths are 
likely noninformative for disease-related deaths because we 
have no reason to believe: (1) that people at greater risk of 
postsurgical complications are more (or less) likely to die 
accidentally; or (2) that people who die from accidental deaths 
would follow a different hazard function for disease-related 
deaths had they lived. But the same argument does not apply 
to a study of psychiatric patients. Because some types of 
accidental death (e.g., a drowning, an overdose) may be 
suicides, we could not blindly accept the noninformativeness 
assumption in this context.

All is not lost if competing events appear informative. Recall 
that the noninformative assumption must hold conditional on 
predictors. We can often identify predictors that allow us to 
treat the competing risks “as if” they were noninformative. 
Although we rarely have the predictors we might like, proxies 
may offer decent alternatives. When analyzing deaths due to 
heart disease and lung cancer, for example, we would include 
predictors assessing exercise, diet, and smoking history. We 
invoke a similar argument for the Supreme Court data. 
Although death is likely noninformative for retirement (as it is 
usually beyond an individual’s control), retirement may not be 
noninformative for death. This would happen if some justices 
choose to retire because of poor health (because of their 
increased risk of death). Lacking health data, we use two 
proxies—age and year of nomination. Although imperfect, it 
seems reasonable to expect that younger justices, and more 
recent justices, will enjoy better health. If true, the retirement 
decision of a justice of a given age and era will operate 
independently of his or her risk of death.

The importance of the noninformativeness assumption cannot 
be overstated. When met, it is what allows us to analyze 
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competing-risks data using standard survival analysis 
methods. It also has a practical consequence that allows you 
to target resources. If the competing events are 
noninformative, you need not analyze every competing event. 
It is perfectly legitimate to study whatever subset of events 
you find interesting. When studying student careers, for 
example, you might focus on graduation; when studying 
employee careers, you might focus on quitting. As long as the 
nonmodeled competing events are noninformative for the 
modeled competing events, each analysis will be valid.

We conclude this section by noting that the competing risks 
method is not appropriate when studying all types of multiple 
events. The method is appropriate only if everyone is 
simultaneously at risk of every possible outcome. The event 
process should not involve a sequential mechanism in which 
people are first at risk of an initial event, whose occurrence 
sets (p.592)  in motion the selection among a set of 
alternatives. For example, consider a study of whether and, if 
so, when newly licensed drivers purchase their first motor 
vehicle. The beginning of time is the date of licensure; the 
event occurs when the vehicle is bought. Would it be 
reasonable to frame this process as a competing-risks 
problem, where sedan, sport utility vehicle, minivan, and truck 
represent “competing” alternatives? Although these vehicles 
compete for a driver’s dollars, the event-occurrence process is 
probably not one of competing risks. Instead, it is likely 
sequential: an individual decides to purchase a vehicle and 
then selects a particular type. Researchers modeling 
sequential processes should refer to Hachen (1988).

15.5.2 Statistical Models for Competing Risks Data

Armed with an event-time variable and multiple censoring 
indicators, model fitting is easy. All you do is fit the same 
model to the same data set several times, once for each 
censoring indicator. Under the assumption of 
noninformativeness, the likelihood functions for each event 
are separable, so you can estimate parameters using separate, 
but parallel, analyses. Although you may be tempted to include 
a different set of predictors in the multiple models, we caution 
against this approach. Use of identical predictors increases 
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the tenability of the noninformativeness assumption and 
facilitates comparison of estimates, as we describe below.

Table 15.7 presents results for the Supreme Court data. In 
addition to the two event-specific fitted models, the table also 
includes a third

Table 15.7: Conducting a competing-risks 
survival analysis

Model A 
Death only

Model B 
Retirement 
only

Model C 
Retirement or 
death

Parameter Estimates, Asymptotic Standard Errors, and 
Deviance-Based Hypothesis Tests

AGE AT 0.0671** 0.1061*** 0.0861***

NOMINATION (0.0239) (0.0258) (0.0177)

YEAR −0.0116*** 0.0007 −0.0052**

NOMINATED (0.0029) (0.0026) (0.0019)

Goodness-of-
fit

−2LL 331.447 373.497 711.765

~p< .10;* p< .05; ** p < .01;*** p < .001.

These are the results of fitting three Cox regression models 
to the Supreme Court Justice data (n = 109, n retirements = 
53, n deaths = 47). Model A is for the event of death only; 
Model B is for the event of retirement only; Model C is for 
the combined events of retirement or death.

Note: Efron’s method for handling ties.

(p.593)  “global” model that does not distinguish between event 

type. Each model includes the same two predictors, AGE and YEAR, 
which together allow us to address research questions about 
secular changes in the risk of termination over time and the role 
that age at nomination plays in this process.
Let us first examine the event-specific models, comparing the 
absolute magnitude of their individual coefficients and their 
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statistical significance as well. For AGE, the coefficient in the 
death model is 0.06711, while it is much higher (.10611) in the 
retirement model. Expressed as hazard ratios, we find that if 
we compare two justices whose ages differ by one year, the 
older justice faces a risk of death that is 6.9% higher and a 
risk of retirement that is 11.1% higher. If these hazard ratios 
appear small, remember that they represent the predicted
annual elevation in risk associated with one year of age. 
Following the approach outlined in section 14.3.1, we can get 
a better sense of their magnitude by computing hazard ratios 
for justices separated by a greater age distance, say ten years. 
Computing 100(hazard ratio10−1), we find that, in any given 
year, the justice who is ten years older is nearly twice as likely 
to die (a 95.6% increase in the risk of death) and three times 
as likely to retire (a 190% increase in the risk of retirement). 
The effect of age is not only statistically significant, it is 
practically significant as well. Older justices are at much 
greater risk of dying and they face an even greater risk of 
retiring.

Have the risks of dying or retiring changed over time? The 
data set includes appointees whose tenures cover a span of 
over two hundred years. Examining the model predicting 
death, we see clear evidence of a declining risk. Taking the 
antilog of the coefficient for YEAR, the hazard ratio is .9885. 
Because secular changes have a long gestational period, it is 
easier to interpret the magnitude of this effect using a larger 
temporal gap, of say 10, 50, or even 100 years. Comparing two 
justices of the same age a century apart, we find that the 
hazard of death for the recent appointee is 68.7% lower than 
that of his predecessor 100 years ago.

Having fit separate, but parallel, models, we now raise the 
obvious question: Are the effects of the same predictors 
different across the competing events—that is, are the 
coefficients for each predictor identical across the set of 
event-types (here, just two)? We can address this question by 
testing either:

• The compound null hypothesis that all coefficients 
associated with each predictor are identical across event-
types
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• The targeted null hypothesis that one specific set of 
coefficients is identical across event-types

Let us discuss each type of test in turn.
(p.594) We begin by testing the compound null hypothesis 

that every coefficient in one event-specific model is identical 
to its counterpart(s) in all other event-specific model(s). 
Because the likelihood functions for the event-specific models 
are separable, we can test this null hypothesis by comparing 
the sum of the goodness-of-fit statistics for the separate 
models to that of the global model that does not distinguish 
between event types. Under the null hypothesis that the set of 
coefficients is identical across event types, this difference in 
−2LL statistics is distributed as χ 2 on p(k−1) degrees of 
freedom, where p is the number of predictors and k is the 
number of competing event-types. For the models in table 15.7
we compute:

which exceeds the 0.05 critical value of 5.99 for χ2 distribution on 
2(2 –1) = 2 degrees of freedom. We reject the null hypothesis that 
each predictor has identical coefficients across the events of death 
and retirement. Death and retirement are not equivalent ways of 
leaving office.
Having established that some parameters differ across 
models, we next test the set of targeted null hypotheses that 
assess whether the population parameter for each predictor is 
identical across event types. We can compute a separate test 
statistic for every predictor in the set of competing-risks 
models. In the general case of k event types, we must test this 
null hypothesis using a generalized Wald statistic (Long,
1997). In the common situation of only two event types (as 
here), the Wald test statistic simplifies to:
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Conducting this test for AGE, we obtain an observed test statistic of 
1.23 and we fail to reject the null hypothesis that the coefficient on
AGE in the model for death is identical to the coefficient on AGE
in the model for retirement. Conducting this test for YEAR, 
however, we obtain an observed test statistic of 9.97, which 
exceeds the 0.01 critical value of 6.63 for a χ 2

distribution on one degree of freedom. We conclude that the effect 
of YEAR differs across the two events. Combined with the non-
significance of the coefficient for YEAR in the retirement model, we 
conclude that justices of any era were equally likely to step down, 
but that the risk of dying in office has declined.

(p.595) As this discussion demonstrates, it is simple to 
implement a competing-risks survival analysis. Once the 
appropriate censoring indicators have been constructed, all 
you need to do is fit an identical Cox model several times. Yet 
competing risks analyses are not without problem. Although 
implementation is easy, establishing the validity of the 
noninformativeness assumption is hard. There is no test for 
evaluating its tenability, and sample data cannot be used to 
martial an argument. It is therefore impossible to know for 
certain that the assumption has been met. Seeking shelter 
from criticism, some researchers choose never to distinguish 
between competing events, analyzing only the global event 
indicator (like LEAVE). But, this may mask important 
differences across event types, making it an unattractive 
option. We therefore end this discussion on a pragmatic note. 
If you think you may be studying a set of competing risks, be 
sure to act as your own devil’s advocate before data collection, 
or at least before data analysis. If you can anticipate potential 
criticisms, you may be able to collect data on a set of 
predictors whose inclusion might facilitate a conditional 
noninformativeness argument.

15.6 Late Entry into the Risk Set

A fundamental tenet of research design, articulated in chapter
9, is that you should try to track each person’s event history 
from a single common starting point, designated t 0. If your 
definition of t 0 provides immediate access to participants, 
tracking is easy. You might follow hospitalized patients from 
their day of admission or newborn babies from their day of 
birth. Although t 0 need not be 0—in the cocaine initiation 
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study of section 15.1.1, for example, it was age 17—it should 
represent the same “point in time” for each study participant. 
This ensures that everyone remains the same “age” 
throughout, so event times assess event occurrence in a 
meaningful and comparable metric.

In some studies, you may find yourself unable to track 
everyone from a single common starting point. This is a 
familiar predicament when studying stock samples—age-
heterogenous groups of people who already occupy the initial 
state when data collection begins (Lancaster, 1990). Although 
this design may seem unusual, it is more common than you 
might think. Suppose you conducted a ten-year prospective 
study of depression onset among a group of individuals who 
had never been depressed. If the participants vary in initial 
age, the ten-year period of data collection does not cover the 
same ten-year period of risk. The data for people who are 
initially 30 describe what happens between ages 30 to 39 
while the data for people who are initially 40 describe what 
happens (p.596)  between ages 40 to 49. Even though each 
person is tracked during the same chronological period (the 
same ten years), their “time at risk,” which should be clocked 
in the metric of age, differs. To model depression onset 
appropriately, you need a second random variable, ENTRY, 
which assesses the time—here, the participant’s age—when he 
or she is first observed as being at risk of event occurrence. 
Statisticians refer to this random variable as an individual’s
late, or delayed, entry time.

In this section, we describe how to fit Cox regression models 
to data when some individuals have late entry times. In section 
15.6.1, we present the basic strategy; in section 15.6.2, we 
show how this strategy can be profitably applied to research 
contexts in which the late entrants may be less apparent. In 
doing so, we demonstrate how the possibility of late entry is 
related to another analytic issue that arises when fitting Cox 
models: the choice of an appropriate metric for time.

15.6.1 Fitting a Cox Model with Late Entrants

We illustrate how to fit Cox regression models to data sets 
with late entrants by examining how Singer et al. (1998) 
tracked the careers of physicians working in community and 
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migrant health centers (CMHCs) to fulfill medical school loan 
obligations. Although the researchers originally wanted to 
track a random sample of physicians hired since the loan 
forgiveness program began, poor national record-keeping 
systems rendered this impossible. Even within individual 
centers, unreliable record-keeping systems made it impossible 
to reconstruct the careers of physicians who left long ago 
retrospectively. Reasoning that center directors could reliably 
provide the names and dates of hire (and departure) if they 
were asked to focus on physicians working during a recent 
brief measurement window, the researchers ended up using a 
stock sample design.

The top panel of figure 15.9 illustrates how their sampling plan 
worked. Designating the period, January 1, 1990–September 
30, 1992, as the measurement window, the researchers asked 
each director to list every physician who worked during that 
period. Center records were then used to identify the dates of 
hire for these 812 physicians (and the dates of departure for 
the 396 who left before the measurement window closed). In 
the figure, a diamond indicates the date of departure and an 
arrowhead indicates the last known date of employment (the 
last day of data collection) for physicians who were still 
employed. A solid line identifies that portion of the career that 
occurred during the measurement window; a dashed line 
identifies that portion that occurred earlier. Physicians hired 
the day the window opened (January 1, 1990) (p.597)
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Figure 15.9.  Understanding the 
consequences of late entry into the risk 
set. Hypothetical career histories for 8 
individuals in the physician career study.

(p.598)  were 
tracked until 
they left the 
center (A) or 
were censored 
(B). Physicians 
hired after the 
window 
opened were 
also tracked 
until they left 
the center (C) 
or were 
censored (D). 
Physicians 
working during 
the 
measurement 
window who 
were hired
before it 
opened were 
tracked from 
their date of 
hire until they 
left (E and G) 
or were 
censored (F). 
Colleagues 
who were 
hired and left
before the 
window 
opened were 
excluded from 
the sample (H).
To analyze these data, we must compute entry and event times 
by repositioning each physician’s trajectory on a new time 
axis, one that begins at t 0, the day of hire. The bottom panel of 
figure 15.9 illustrates this process where the resulting event 
times, EVENT i, are displayed above each event or censoring 
symbol. The panel also presents sample values for the random 
variable, ENTRY i, which identifies the day—expressed in the 
metric of “days since hire”—when the physician first entered 

Figure 15.9.  Understanding the 
consequences of late entry into the risk 
set. Hypothetical career histories for 8 
individuals in the physician career study.



Extending the Cox Regression Model

Page 69 of 82

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

the measurement window (the late, or delayed, entry time). 
The data set collects this information together:

PHYSICIAN ENTRY EVENT CENSOR

A 0 180 0

B 0 1000 1

C 0 455 0

D 0 635 1

E 366 455 0

F 366 1370 1

G 731 1430 0

For physicians A, B, C, and D, who were hired on or after January 
1, 1990, ENTRY is 0: they entered the measurement window the 
day they were hired. For everyone else, ENTRY identifies the point 
they were at in their career when the measurement window 
opened. This corresponds to the day when their trajectory switched 
from a dashed to a solid line. For physicians E and F, who were 
hired on January 1, 1989, ENTRY is 366: they entered the window 
on the first day of their second year. For physician G, who was 
hired on January 1, 1988, ENTRY is 731: she entered the window 
on the first day of her third year. Notice that we display a 
trajectory for physician H only for illustration; no corresponding 
record appears in the data set. Because this physician was hired, 
and left, before data collection began, we do not know either his 
event times or entry times (nor those of his colleagues who had 
also already left).
Even though each individual now has an event time and a 
censoring (p.599)  indicator we still cannot use a standard 
approach to fitting a Cox model. It is not that a statistical 
package will not compute parameter estimates, standard 
errors, and goodness-of-fit statistics for some specified model
—unfortunately, it will—it is that the results will be incorrect! 
To understand the problem, examine the bottom panel of 
figure 15.9 and ask: Who should be included in the risk set for 
each observed event time? To concretize the question, focus 
on day 180, the first event time shown. Physicians A, B, C, and 
D are clearly “at risk” because we have monitored their 
careers from t 0 to this day. But are physicians E, F, and G also 
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“at risk?” Even though they survived past this day, they are 
not members of the day 180 risk set because: (1) we did not 
observe their careers on this day; and (2) we lack comparative 
data on their peers hired at the same time (like H), who left 
before data collection began. Physicians E, F, and G are not 
representative of all physicians hired on January 1, 1988 (or 
1989), who were still working on day 180. They are the 
“longer lived” physicians—the ones who persisted long enough 
to be present when data collection began. Because physician 
H and his unobserved colleagues cannot be included in the 
day 180 risk set—as we have no data for them—we should not 
include E, F, or G, either.

One way of addressing this concern is to limit analyses to the 
290 physicians who began their careers during the 
measurement window. Although not invalid, this approach is 
unattractive for at least three reasons: (1) it focuses 
exclusively on early event times—here, the first 2.75 years of a 
physician’s career—which may not be those of greatest risk or 
substantive interest; (2) it increases the proportion of 
censored cases—here, to 80.3%—because individuals hired 
later have had less time to leave; and (3) it sets aside valuable 
data—here, for the 522 physicians already employed on 1 
January 1990. Taken together, these factors decrease 
statistical power. In this data set, power is so reduced that we 
cannot find a single statistically significant predictor of event 
occurrence (although we will soon show that there are some).

How, then, can we simultaneously analyze the data for all 
sampled individuals? If we are willing to make a strong, but 
often reasonable, assumption—that the entry and event times 
are conditionally independent—we can use the following 
common sense approach:

• Restrict the risk set at each observed event time to those 
individuals actually observed at that moment.

• Compute individual i’s contribution to the likelihood at 
that moment by comparing his or her true risk score [e(β

1
 X

1ij+β
2

 X 2ij+…+β
P

 X Pij)] to the sum of the contemporaneous true 
risk scores among this revised risk set.
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(p.600)  From a computational perspective, this means that at time
t j individual i is a member of the risk set if, and only if, he or she 
satisfies the inequality:

In other words, to be in the risk set at time t j individual i must have 
entered the measurement window, but he or she must not have 
already experienced the target event.
Any Cox regression routine that can handle time-varying 
predictors can handle late entrants. Just as the packages differ 
markedly in the way time-varying predictors are specified, so, 
too, do they differ markedly in how the delayed entrants must 
be identified. Easiest to work with are those statistical 
packages that use the counting process notation. (Notice that 
this differs from our preference in section 15.1 when 
specifying time-varying predictors.) All you need do is ensure 
that each record for each person includes an entry time, exit 
time, and censoring indicator (as shown above). If you identify 
these variables appropriately, the package will adjust the risk 
set accordingly. You need not create additional data records, 
as when modeling time-varying predictors, because under the 
counting process system, the computer automatically screens 
each data record using the inequality above.

If the only way of including time-varying predictors is through 
computer code, you can still include late entrants in your 
model, but you must do so by “manually” manipulating the risk 
set at each observed event time. Although this may seem 
onerous, it is easy to do using a simple “trick”: using the 
delayed-entry variable ENTRY, create a time varying predictor 
that is missing during any earlier event time. Whenever the 
predictor’s value is missing, the computer will remove 
individual i from the risk set; whenever the predictor’s value is 
not missing, individual i will appear. If your statistical model 
already includes a time-varying predictor, you can implement 
this strategy for that predictor. If your model is limited to 
time-invariant predictors, you must create a “phantom” time-
varying predictor that sets the missing values.

Model A in table 15.8 presents results for the physician career 
data using the late entrants approach. The model includes 
three predictors: PARTTIME, a dummy variable identifying the 
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64 physicians who did not work full time; AGE, a continuous 
variable indicating the physician’s age at hire; and AGE by
YEAR, which represents the two-way interaction between AGE
and time. (We include this latter term because preliminary 
analyses showed that the effect of AGE diminished over time. 
To facilitate its interpretation, we rescaled the time metric 
from days into years by dividing each event time and entry 
time by 365.25. This allows the (p.601)

Table 15.8: Accounting for late entry into the 
risk set

Model A 
(Appropriate 
late entrants 
model)

Model B (The 
“pure” sample—
those hired 
during the 
measurement 
window)

Model C 
(Incorrect 
model—
ignoring the 
presence of 
late 
entrants)

Parameter Estimates, Asymptotic Standard Errors, and 
Deviance-Based Hypothesis Tests

PARTTIME −1.3473*** −0.1705 −1.3394***

(0.2764) (0.5208) (0.2765)

AGE 0.0478* 0.0398 0.0977***

(0.0242) (0.0455) (0.0192)

AGE 
×YEAR

−0.0287** −0.0039 −0.0370***

(0.0091) (0.0446) (0.0078)

Goodness-
of-fit

−2LL 4214.515 558.391 4482.988

−2LL for 
null model

4264.335 560.760 4539.431

Difference 
in −2LL

49.820 2.369 56.443
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Model A 
(Appropriate 
late entrants 
model)

Model B (The 
“pure” sample—
those hired 
during the 
measurement 
window)

Model C 
(Incorrect 
model—
ignoring the 
presence of 
late 
entrants)

n
parameters

3 3 3

~p < .10; * p < .05; ** p < .01; *** p < .001.

These are the results of fitting three Cox regression models 
to the physician career data (n = 812, n events = 396). 
Model A appropriately includes the late entrants. Model B 
is fit to only those physicians hired during the measurement 
window (n = 290, n events = 57). Model C is an incorrect 
model, shown for pedagogic purposes only—it ignores the 
presence of late entrants.

Note: Efron’s method for handling ties.

interaction term to represent the decrement in the effect of AGE
with each passing year, not day). We find that the estimated hazard 
of leaving a CMHC among physicians who work part time is one 
fourth of that for other physicians (e−(1.3473) = 0.26). Immediately 
after hire, the older the physician, the greater the hazard of 
departure. For each extra year, the initial hazard is 100(e(0.0478) − 
1) = 4.9% higher. By year 2, however, the age effect has 
disappeared (the estimated hazard ratio at this time is 
e(0.0478)−0.0287(2) = 0.99). And by year 4, the effect of AGE has 
reversed itself: older physicians are less likely to leave.
Table 15.8 also presents the results of fitting two other models 
to these data: (1) B, which focuses on the 290 people hired 
during the data collection window; and, (2) C, which analyzes 
the full data set without identifying the 522 physicians who 
entered the risk set late. We present these results not because 
we recommend either approach but to demonstrate how 
misleading they can be. As suggested earlier, restricting 
attention to physicians hired during the measurement window 
diminishes power so completely that we fail to find any 
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statistically significant effects. We are (p.602)  clearly better 
served by including the 522 physicians hired before the 
measurement window opened. Yet, as we do in Model A, this is 
true only if we include them appropriately. If we do not adjust 
for late entry, the effect of AGE erroneously appears to be 
twice as large! Were we to have fit this model, we would have 
erroneously concluded that for each extra year of age, the 
initial hazard of leaving is 100(e(0.0977) − 1) = 10.3% higher. 
When some sample members enter the risk set late, you must 
appropriately account for their behavior lest you reach 
incorrect inclusions.

15.6.2 Using Late Entrants to Introduce Alternative Metrics for 
Clocking Time

The ability to include data from late entrants has important 
practical implications for analysis. Not only can you use this 
approach when you know, by design, that your sample 
includes individuals whose time at risk varies, you can use 
them when you decide, after data collection has ended, that 
the original metric for time may not be the best metric for 
analysis. As we show below, late entry methods can be used 
even when you thought you tracked everyone from a single 
common starting point, but you later decide that the t 0 you 
once thought “obvious” may not be the best.

To understand how you might find yourself in this situation, 
imagine designing a new study of physician careers, one that 
tracks every doctor from his or her first day of work. Most 
researchers would prefer this design to the stock sample 
approach of the previous section because it seemingly 
eliminates all late entrants. But late entrants disappear only if 
the best metric for time is the number of “days since hire.” 
What if it was more appropriate to measure time using the 
metric of physician age. Perhaps a person’s age, not his or her 
tenure on the job, is the more important predictor of the stay-
or-leave decision. In this case, every physician in this new 
study is now a late entrant, even though each was tracked 
from hire.

Once you recognize that event occurrence can be clocked 
using more than one time metric, you may find alternative 
time metrics wherever you look. Should the efficacy of kidney 
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transplantation be evaluated by clocking survival from an 
individual’s date of eligibility for transplant or from his or her 
date of surgery? Should employee retirement decisions be 
modeled as a function of date of hire (as we did in section 15.1 
for the Supreme Court justices) or is age more appropriate? 
Should the clock for evaluating a teen pregnancy prevention 
program begin at the girl’s date of program entry, her date of 
birth (which leads to her age), or her date of menarche (when 
she is first at risk of getting pregnant)?

(p.603) The existence of alternative metrics for time would be 
of little consequence if a switch had little analytic impact. But 
your conclusions can differ markedly depending on the metric 
for time. We demonstrate this impact using data from Ha, 
Kimpo, and Sackett (1997), who studied whether and, if so, 
when monkeys attain the classic Piagetian stage known as 
object recognition. According to Piaget, an infant’s 
relationship with his or her external world progresses in an 
orderly fashion over time, beginning with object recognition 
(the infant is aware that visible objects exist) through object 
permanence (the infant knows that an object exists even if it is 
completely out of sight). As part of a larger study, Ha and 
colleagues assessed how long it took 123 monkeys to 
successfully demonstrate object recognition by completing 
what is known as a plain reach task. (In this task, the infant 
monkey must reach out and pick up a familiar object; here, a 
small rubber toy, rubbed with grape juice, that he or she had 
previously sucked). At the beginning of the study, the monkeys 
ranged in age from 11 to 38 days. After 37 days, all but one 
monkey had attained the milestone. Some did so in just 1 day; 
others took as long as 33 days.
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Table 15.9 presents the results of fitting three Cox regression 
models to these data. Each includes the same three predictors: 
FEMALE; BIRTH WEIGHT, the decile equivalent of the 
monkey’s birth weight in comparison to colony-wide sex-
specific standards; and INITIAL AGE, the monkey’s age at 
initial testing. The models differ, however, in the metric used 
to assess event occurrence:

• Model A uses session number, where time is measured as 
the number of days between initial testing and successful 
task completion (or censoring).

• Model B uses AGE in days, where time is measured as the 
monkey’s age (in days) upon successful task completion (or 
censoring).

• Model C uses AGE in days, but adjusts for late entry, so 
that each monkey is included in the risk set for a given age
only if he or she was at risk of event occurrence at that age. 
The late entry time is coded as the monkey’s age on the 
initial day of testing (INITIAL AGE).

Before delving into specific findings, notice that the effects of
FEMALE and BIRTH WEIGHT are virtually identical across models. 
Regardless of measurement metric, male and female monkeys are 
equally likely to master the plain reach task, and bigger monkeys 
are more likely than smaller monkeys to reach criterion earlier.
What is most fascinating about these three models is the way 
in which the effect of INITIAL AGE varies, from significantly 
positive in Model A, to (p.604)

Table 15.9: Empirically comparing alternative 
metrics for clocking TIME in Cox regression 
analysis

Model A 
(Session 
number)

Model B (AGE
in days, no late 
entry)

Model C (AGE
in days, with 
late entry)

Parameter Estimates, Asymptotic Standard Errors, and 
Deviance-Based Hypothesis Tests

FEMALE 0.3720 0.2908 0.3118

(0.1902) (0.1888) (0.1879)
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Model A 
(Session 
number)

Model B (AGE
in days, no late 
entry)

Model C (AGE
in days, with 
late entry)

BIRTH 
WEIGHT

0.1163*** 0.1021*** 0.1025***

(0.0280) (0.0277) (0.0277)

INITIAL 
AGE

0.1064** −0.0939** −0.0189

(0.0339) (0.0301) (0.0349)

Goodness-
of-fit

−2LL 919.898 915.073 896.822

−2LL for 
null model

944.449 944.449 914.654

difference 
in −2LL

24.551*** 29.376*** 17.8327***

n
parameters

3 3 3

~p < .10;* p < .05; ** p < .01; *** p < .001.

These are results of fitting three Cox models to the 
Piagetian task data (n = 123, n events = 122).

Model A clocks time using session number. Model B clocks 
time using age, but does not account for late entry into the 
risk set. Model C clocks time using age, but does 
appropriately account for late entry.

Note: Efron’s method for handling ties.

significantly negative in Model B, to nonsignificant in Model C. To 
understand why this happens, and what this says about the effects 
of age, we must carefully determine what the parameters in each 
model represent.
Let us begin with Model A, which is based on the time metric 
that most researchers would initially adopt: number of testing 
sessions. This metric is appealing because monkeys are 
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eligible to complete the plain reach task only after testing 
begins. The positive coefficient for INITIAL AGE tells us that 
monkeys who are initially older reach criterion earlier than 
those who are initially younger, a commonsense finding that 
conforms to Piagetian theory. The intuitive appeal of this 
model increases when we realize that we would obtain the 
identical parameter estimate if we substituted the time-
varying predictor AGE AT TESTING for the time-invariant 
predictor INITIAL AGE. As a result, we can interpret the effect 
of INITIAL AGE in Model A by saying that older monkeys reach 
criterion earlier than younger monkeys.

But if age is such an important factor, might it be as 
appropriate—or more appropriate—to model task attainment 
as a function of the monkey’s age, not the number of testing 
sessions? After all, Piaget argued (p.605)  that task attainment 
is inherently developmental: infants reach the stage of object 
recognition (and ultimately object permanence) as they 
mature. Training may have an effect—you can teach a child (or 
monkey) particular skills—but Piaget believed that regardless 
of training, all infants would progress through these stages in 
an orderly fashion. This suggests that age, not session 
number, might be a better metric for time.

We initially explore this possibility in Model B, which uses the 
monkey’s age when he or she reached criterion (or censoring) 
as the outcome. Although the effects of FEMALE and BIRTH 
WEIGHT are virtually identical, the sign on the coefficient for
INITIAL AGE is reversed! This model suggests that older 
monkeys have a lower hazard of reaching criterion. Before you 
rationalize this counterintuitive finding, remember that this 
analysis—and hence this finding—has a fundamental flaw: it 
does not correct for late entry into the risk set. We cannot 
change the metric for time (from session number to age) 
without simultaneously changing the way in which we specify 
event occurrence. We obtain a negative coefficient here 
because the older monkeys have less opportunity to reach 
criterion early (as they are not even tested during the earlier 
portions of their lives). The negative coefficient is an artifact; 
it does not present unbiased information about the 
relationship between age and task attainment.
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Let us therefore move to Model C, in which we record event 
occurrence in terms of age, but we adjust for late entry into 
the risk set. Although the effect of BIRTH WEIGHT
continues to be statistically significant, the effect of INITIAL 
AGE disappears. Before you conclude that age and task 
mastery are unrelated, remember what happens when we 
adopt this new metric for time. The effect of the monkey’s age 
is now absorbed entirely into the baseline hazard function. 
Absorption prevents age from exerting any additional effect on 
the risk of task attainment; whatever effect it has appears in 
the baseline hazard function. By adopting this metric, we 
trade the ability to comment on age trends for the certainty 
that we have controlled fully for all of its possible effects. This 
ensures that Model C will provide the cleanest estimates of all 
other predictors’ effects.

Which of the three models is best? Although Model B is 
flawed, both A and C are “correct.” The difference lies in the 
research questions they address. If you want to focus on the 
developmental aspects of task mastery, Model C may be 
preferable because each monkey’s task attainment is 
compared to peers of an identical age. If you want to focus on 
the training aspects of task mastery, Model A may be 
preferable because each monkey’s task attainment is 
compared to peers with an identical training level (measured 
in days). And although you might be tempted to choose

(p.606)  a model based on the associated −2LL statistics, you 
cannot do so because their null models differ, making numeric 
comparison inappropriate.

Although both models are valid, we have three reasons for 
preferring Model C (or rather a revised version of Model C 
without the two nonsignificant predictors, FEMALE and
INITIAL AGE). The first reason is substantive, not statistical. 
Piagetian theory is inherently developmental; if infants master 
tasks at particular ages, it simply makes sense to use age as 
the metric for measuring task attainment. The second 
argument builds upon the BIRTH WEIGHT effect. Ha and 
colleagues suggest that BIRTH WEIGHT assesses the 
monkey’s maturity at birth; it is a proxy for gestational age. 
This, too, suggests that age, not session number, is the key 
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issue. (It also suggests that we might want to track time using 
a third metric, time from conception, if we had the data.) The 
third argument focuses on what it means to control for
INITIAL AGE in Model A. If we did not include this predictor, 
older monkeys would have an “unfair advantage.” The hope is 
that this predictor places all monkeys on a level playing field, 
allowing the model to evenhandedly assess other predictors’ 
effects. But will the effect of age be entirely removed just by 
including its main effect? Further analyses, not shown, reveal 
that INITIAL AGE in Model A interacts with time. Its effect is 
largest at initial testing and disappears entirely by day 16. 
Although we could include this interaction as well, Model C 
achieves the same goal of controlling statistically for age, and 
it does it with certainty and far less effort. In Model C, all
effects of age are eliminated, providing what we believe is the 
clearest vehicle for evaluating other predictors’ effects. Model 
A is perfectly valid (as long as the assumptions are met), but 
Model C will always do a better job of controlling for the 
effects of age. This makes Model C preferable if the goal is to 
remove the effects of age and evaluate the effects of other 
predictors.

Not all studies lend themselves to the consideration of 
alternative time metrics. Researchers wishing to explore this 
possibility must be prescient enough to collect the data that 
will permit them to explore the other metrics. In the primate 
study, for example, hindsight suggests that assessing 
gestational age would have been prudent, allowing us to 
explore that third metric for time. For now, we simply remind 
you that the most “obvious” metric for time may not be the 
best. When possible, and more important, when theory 
suggests its appropriateness, you may want to explore 
alternative metrics.

Notes:

(1.) What would have happened if we did not lag the time-
varying predictors? In most data sets, as here, we would find 
even larger effects. Lagging protects against drawing 
unwarranted inferences that result from simultaneity. Of the 
1018 men who used marijuana while at risk of initiating 
cocaine use, 367 (36.1%) eventually used cocaine; of the 640 



Extending the Cox Regression Model

Page 81 of 82

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

who did not previously use marijuana while at risk of initiating 
cocaine use, only 15 (2.3%) used cocaine. The lagged estimate 
of marijuana’s effect is conservative (albeit large) because all 
but 2 of these 15 actually did use marijuana, but they first did 
so in the same year as their cocaine initiation. By lagging the 
predictors, we do not “credit” these individuals with marijuana 
use, rendering our estimates of the effect of marijuana more 
conservative.

(2.) In the authors’ analyses, relapse was measured in weeks, 
which enabled them to construct a complete predictor history 
for each individual. To use these same data to illustrate 
imputation strategies, we jittered (Cleveland, 1994) the event 
times, converting the weekly relapse information into days. To 
jitter, we simply add some random “error” to a variable’s 
values, effectively converting the event times from discrete to 
continuous. The traditional use of jittering is in the 
construction of graphic displays. We do not recommend this 
approach in routine analytic use. We have taken this liberty 
here simply so that we could use these data to illustrate the 
use of imputation techniques.

(3.) This test has another application: It can serve as a routine 
screen for uncovering interactions between predictors. The 
idea is simple. To test whether a set of predictors interacts 
with a focal predictor, make the focal predictor a stratifier and 
test whether the set of within-strata estimates are identical 
across strata. This approach should not replace the targeted 
approach of including relevant cross-products (as explained in 
section 12.4.1 in the context of discrete time) but it does 
provide a simple strategy that is easy to implement.

(4.) Had we not been drawn toward the logarithmic 
specification for the interaction with time from the graph in 
figure 15.3, we could have used the parameter estimates from 
the piecewise specification itself to point toward a similar 
conclusion. In Model C, we see an immediate drop in 
parameter estimates followed by a leveling off. This pattern 
also suggests a logarithmic specification that allows hazard 
ratios to diminish rapidly during the first few weeks after 
admission, but constrains the decreases to stabilize over time.
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(5.) A number of case-specific graphical exploratory methods 
have been proposed (Goldman, 1992; Gentleman & Crowley,
1991; Schmueli & Cohen, 1999), but few have yet to “catch 
on” and none are currently implemented in today’s statistical 
computer packages.

(6.) This idea can be extended to the detection of statistical 
interactions. If you suspect that the effect of one predictor 
may vary by levels of another, divide your sample by levels of 
one predictor and create separate martingale residual plots 
(vs. the other predictor) for each subgroup. If the smoothers in 
each display differ in form, direction or level, you know that an 
interaction is possible.
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(p.627) Index
accelerated cohort design, 139
ACIs. See asymptotic confidence intervals
actuarial

assumption, 480
method, 480–83

AIC. See Akaike Information Criterion
Akaike Information Criterion (AIC), 121–122

comparing error covariance structures using, 257–265
comparing non-nested models using, 121–122, 146, 401–402,
416, 530

ancilliary time-varying predictor, 177, 178
anticipatory effects, 442
ase. See asymptotic standard error
assumptions, in

continuous-time survival analysis
Cox regression model, 514–515
proportionality assumption, 516, 556
stratified Cox model, 559

discrete-time hazard model
basic specification, 367–368
linear additivity assumption, 443–451
no unobserved heterogeneity assumption, 461–463
proportional hazards assumption, 421
proportional odds assumption, 377, 451–460
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with time-varying predictors, 427–434, 451–460
multilevel model for change

checking assumptions, 127–132
on error covariance matrix, 246–266
of error normality, 128–132
on level-1 error, 54–55, 151, 284–285, 297
on level-2 error, 61–63, 151, 286–287

asymptote(s)
in logistic curve, 226–229, 239

asymptotic confidence interval (ACI), in
discrete-time hazard modeling, 404–406
Cox regression model, 531–532

asymptotic standard error (ase), for parameter estimates from
multilevel model for change, 68–69
discrete-time hazard model, 402–406
Cox regression model, 530–532

asymptotic properties of ML estimate
efficiency, 65, 516
normal distribution, 65, 516
unbiasedness, 65, 516

autocorrelation, of
composite residual, 84–85, 86, 256
level-1 residual, in CSA Y-measurement model, 284–285
residual in unconditional growth model, 101

autoregressive error covariance matrix, 257, 259, 261–262
(p.628) average change (growth) trajectory

plotting, 34–35, 132–137
testing, in the population, 123

average of the curves, 35, 225
average pattern of change, 36
bandwidth, 495–497
baseline function, in

Cox regression model, 504
in cumulative hazard formulation of model, 509–512
in hazard formulation of model, 514–516
recovering baseline functions from fitted models, 535–
542
shape is left undefined, 520–521, 528, 558

discrete-time hazard model, 368–369
general temporal specification, 370–374, 387–388
nature of the “baseline” group, 375, 388–91

Bayesian Information Criterion (BIC), 121–122
comparing error covariance structures, 257–265
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comparing non-nested models using, 121–122, 146, 401–402,
416, 530

beginning of time, 310, 311–313, 319, 320, 328, 326
between-person change. See interindividual differences in change
BIC. See Bayesian Information Criterion
block diagonal error covariance structure, 249–256
borrowing strength, 136
boundary constraint, 152–155
bounded nature of discrete-time hazard probability, 362–365
Breslow-Peto approximation, 537
BUGS, 64
case deletion diagnostic, 582
CDD. See covariate-dependent dropout censoring, 315–324

and actuarial assumption, 480–483
and competing-risks survival analysis, 588
effect of, 321–324
occurrence of, 316–318
types of

informative, 318–319
left, 319–321
non-informative, 318–319, 590–591
right, 319–321

See also continuous-time event occurrence; continuous-time 
hazard rate; discrete-time event occurrence; discrete-time 
hazard probability

censoring indicator in person-level dataset, 352–353, 380
centering. See recentering
change

exploring data on, 16–44
creating a longitudinal dataset, 17–23
descriptive analyses of

individual change, 23–33
inter-individual differences in change, 33–41

important features of study of, 9–15
types of question about, 7–9, 35–37

individual change, 8, 16, 23–33, 47
interindividual differences in, 8, 16–17, 47, 54, 57–63

when to study, 4–7
See also discontinuous individual change; individual change;
individual growth model(s); inter-individual differences in 
change; latent growth modeling; linear individual change;
multilevel model for change; nonlinear individual change;
person-period dataset
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change trajectory. See change
clog-log. See complementary log-log
cognitive growth, 226
competing-risks survival analysis and censoring, 588

describing competing risks data, 587–592
statistical models for, 592–595
testing hypotheses in, 593–594

complementary log-log link, 420–422
alternative specification of discrete-time hazard model, 419–
426

(p.629)

graphical comparison with logit link, 423
comparing fitted discrete-time hazard models with logit and 
clog-log links, 423–426
and proportionality assumptions, 421

composite residual, in the multilevel model for change, 84–85, 151,
247

correlations among, 84–85, 101, 254–256
covariances among, 254–256
covariance matrix of, 248–256
heteroscedasticity of, 84, 249–254
testing alternative covariance structures for, 256–265
variance of, 251–254

composite specification of the multilevel model for change, 75, 80–
85, 151, 162–167, 246–247

composite residual in, 84–85, 151, 247–255
cross-level interactions in, 81–83
with an included time-varying predictor, 171–173
stochastic component of, 83–85, 247
structural component of, 81–83, 247

compound symmetric error covariance matrix, 255–256, 257, 258,
260–261
concave quadratic change trajectory, 216
conditional maximum likelihood estimation, 516
conditional probability, 478

density function, 330
conditional residual variance, 62, 108
confidence interval. See asymptotic confidence interval (ACI)
constraint

boundary, 152–155
on fitted models, 117–119, 398–401
linear, 122–126

construct
in CSA structural model, 277–80, 293–94
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in CSA X-measurement model, 270–274, 291–295, 296
in CSA Y-measurement model, 275–277, 283–287
endogenous, 269–270, 275–277, 277–280, 283–287, 296–297
exogenous, 269–270, 270–275, 277–280, 292–295, 296–297
intervening effects, 301
relation to indicators in CSA model, 267–268
See also covariance structure analysis; latent growth modeling

contextual time-varying predictor, 177, 178–179
continuous outcome, 12–15
continuous time, 310–311, 313–315, 468
continuous-time event occurrence

framework for characterizing distribution of event occurrence,
469–475
intuition about, 497–502

continuous-time hazard rate, 474–475
estimation in grouped life-table by

actuarial method, 480–483
discrete-time method, 478–480

continuous-time hazard function, 497–502
estimation by

actuarial method, 480–483
discrete-time method, 478–480
kernel-smoothing, 494–502, 504–506, 538

See also Cox regression model
continuous-time hazard model. See Cox regression model
continuous-time survivor function, 472, 497–502

comparing grouped life-table and Kaplan-Meier estimates,
486–487
estimation in grouped life table by

actuarial method, 480–493
discrete-time method, 477–480

estimation by Kaplan-Meier (product-limit) method, 483–487
associated median lifetime, 486

contrast matrix, 124
convergence, 87, 126, 153–156
correlation of change and initial status, 290
counting process method, for fitting Cox regression model, 547
covariance structure analysis (CSA), 266–280 (p.630)

and latent growth modeling, 280–295
and cross-domain analysis of change, 295–299, 301–302
CSA statistical models

structural, 277–280
X-measurement, 270–275
Y-measurement, 275–277
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See also latent growth modeling
covariate-dependent dropout (CDD), 157, 158
Cox regression model(s), 503–507

assumptions in, 514–515
completely general baseline function in, 504, 509–512, 514–
516
extending basic model

competing risks survival analysis, 586–595
including time-varying predictors, 544–556
late entry into risk set, 595–606
non-proportional hazards models, 556–562, 562–570
residual analysis, 570–586

fitting models
comparing goodness-of-fit of fitted models, 528–530
displaying results of model fitting, 535–542
fitting, with time-varying predictors, 547
inferences using ase’s, 530–532
interpreting parameter estimates, 524–528
partial ML estimation, 516–535
summarizing findings, using risk scores, 532–535

fundamental model
as nonparametric statistical model, 522, 535–542
specified in terms of cumulative hazard, 507–512
specified in terms of hazard, 512–516

practical consequences of using
ranks of event times, 521–522
sensitivity to ties, 522–523
shape of baseline function, 520–521

cross-domain analysis of change, 295–299, 301–302
cross-level interaction, 81–83
CSA. See covariance structure analysis
cumulative hazard function, 488–491

developing an intuition about, 497–502
estimating, by

Negative log survivor (Kaplan-Meier) method, 492,
492–494
Nelson-Aalen method, 491–492, 492–494

graphing, 505–512, 538, 565–567
link to continuous-time hazard rate, 494
predicted, 540–542
shape from fitted model, 535
See also Cox regression model

curvature, 215, 216, 409–415
curve of the averages, 35, 225
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data
collection of, 12, 139–146, 317, 500
complexity of longitudinal, 105–106
exploring longitudinal data on change, 16–44
multiple waves of, 9–10
See also person-level data set; person-period dataset

data analysis
describing event occurrence data, in

continuous-time, 468–502
discrete-time, 325–356

and multilevel model for change, 75–137
with regression diagnostics, 582–586
strategies for model building, 104–116

decomposition, 168
defined time-varying predictor, 177–178
delta-deviance statistic, 118, 220–223, 399–401

See also deviance statistic;
deviance residual, in

discrete-time hazard model, 464–467
Cox regression model, 575–577

deviance statistic
comparing models using differences in, 117–120, 398–401,
415–417
using in tests for

higher-order terms in polynomial growth model, 220–
223
single parameters, 119, 399–400

(p.631)

multiple parameters, 119, 400–401
relationship with

information criteria, 120–122
LL statistic, 116–117, 397–398

See also hypothesis testing
diagonal error covariance matrix, 247–249
dichotomous substantive predictor, 388–389
dichotomizing event time, 323
differences in change across people. See inter-individual 
differences in change
direction of change, 20
discontinuous individual change

alternative growth models for, 191–208
discontinuities

at common points in time, 207–208
in elevation, 194–195, 196, 198–201
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at multiple points in time, 206–207
in slope, 195–201

and effect of time-varying predictors, 164–167
discrete time, 313–315
discrete-time event occurrence

describing data on, 325–356
distribution of, 330–339, 345
and life table, 326–329, 351–356
and risk set, 329
using hazard function to develop intuition about, 339–343

discrete-time hazard function(s), 330–333
benefit of plotting on raw, odds, and logit scales, 378
estimate of

computed in person-period dataset, 354–356, 381
obtained by life-table method, 326–330, 331–332, 354–
356, 381
recovered from fitted hazard model, 391–397

identifying periods of high and low risk, using, 339–343
inspecting sample estimate of, 332–333, 339–343
plotting within-groups

consequences for discrete-time hazard model, 362–369
relative elevation and shape, 358–362, 367–369

relationship to survivor function, 335–337, 343–345
shape of, 339–343
See also discrete-time hazard model(s)

discrete-time hazard model(s)
assumptions in

linear additivity, 443–451
no unobserved heterogeneity, 461–463
proportionality assumptions, 377, 378, 451–460

comparing, using deviance, AIC and BIC statistics, 397–402,
415–417
displaying prototypical fitted functions for, 391–397
extending basic model, 407–467
fitting, by logistic regression in person-period dataset, 378–
381, 383, 384–386
interpreting parameter estimates from fitted model, for

continuous predictors, 389–390
dichotomous predictors, 388–389
polytomous predictors, 390–391
time indicators, 387–388

ML estimation of model parameters, 381–384
model specification
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alternative specifications for main effect of time, 408–
419
exploring, 365–369
formal specification of basic model, 369–378
as logistic regression model, 376–378
using complementary log-log link, 378, 419–426

parameters in, 371–376, 404–406, 417–419
and predictors

time-indicators, 370–372, 408–409
time-invariant, 372–376
time-varying, 369, 371, 408–419, 426–442

residual analysis for, 463–467
statistical inference in, using

ACIs, 404–406
ase’s (Wald χ2 statistic), 402–406

(p.632) discrete-time hazard probability, 330–331

bounded nature, 362–365
estimates of

computed in person-period dataset, 354–356, 381
obtained by life-table method, 326–330, 331–332, 354–
356, 381
recovered from fitted hazard model, 387–391

relationship to survival probability, 335–337
standard error of, 348–350

discrete-time method for estimating continuous-time survivor/
hazard functions, 477–480
discrete-time survival probability, 334

relationship to hazard function, 335–337
sample ML estimate of, 334–337
standard error of, 350–351

discrete-time survivor function, 334–337
as context for evaluating magnitude of hazard, 343–345
estimates of

recovered from fitted hazard model, 391–397
sample ML estimate of, 334–337

and median lifetime, 333, 337–339, 340, 345–348
plotted within-group, 358–362
shape of, 340, 343–345, 361–362

duration-dependent effect, 451
dynamic consistency, 224–225, 230
elevation, 92–93, 190–191, 193–195, 196, 198–201, 215
empirical Bayes estimates of individual growth parameters, 132–
137
empirical growth plot, 24–25, 49–50, 77
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for checking level-1 assumptions, 128, 218
for determining a suitable polynomial change trajectory, 217–
220
examples of, 25, 27, 32, 50, 77, 136, 143, 212, 218, 227
for finding appropriate data-transformations, 210–213
summarizing with a smooth trajectory, using

nonparametric smooth, 25–28, 218
OLS-estimated smooth, 28–33

See also change; individual change
empirical growth record, 16, 19–22, 25–33

See also person-period dataset
empirical strategy for modeling nonlinear change, 189–190
end of time, 343
endogeneity. See reciprocal causation
EQS statistical software, 280
equatability over time, 13–15
error covariance structure, in the multilevel model for change

alternative representations
autocorrelated, 249, 254–256
autoregressive, 257, 259, 261–262
block diagonal, 249–256
compound symmetric, 255–256, 257, 258, 260–261
heterogeneous autoregressive, 257, 259, 262–263
heterogeneous compound symmetric, 257, 258, 261
Toeplitz, 257, 259, 263, 264–265
unstructured, 257–260, 265

assumption of homogeneity across people, 250–251
in composite model, 84–85, 246–256, 265
in CSA sub-models

structural model, 279–280, 287, 293–294
X-measurement model, 273–274, 297
Y-measurement model, 277, 284–285, 301

and GLS estimation, 86
heteroscedastic, 249, 251–254
at level-1, 55, 78, 92, 97, 144, 228, 244, 284–285, 297
at level-2, 63, 80, 92, 97, 144, 230, 245, 287, 293–294
postulating and testing alternative structures, 256–265, 301
See also multilevel model for change

estimation methods
generalized least-squares (GLS), 85–87, 90–92
iterative generalized least squares (IGLS), 87, 90–92

(p.633)

Kaplan-Meier method of, 483–487, 491, 498, 504, 536
kernel-smoothed, 494–502, 504–506
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maximum likelihood (ML), 65–69, 87–92, 116, 381–384, 387,
516–519
negative log survivor function method, 491, 492, 498, 504
Nelson-Aalen method, 491–492, 498
partial maximum likelihood, 516–519

event indicator
in person-period dataset, 352–354, 380
in ML estimation for discrete-time hazard model, 381–383

event occurrence, 310–311
and censoring, 315–324
in continuous vs. discrete-time, 313
framework for investigating, 305–324
framing research questions about, 309–315
identifying “beginning of time,” 311–313
and person-level and person-period datasets, 351–354
specifying metric for time, 313–315
“whether” and “when” test, 306–309
See also continuous-time event occurrence; discrete-time event 
occurrence

event time, 312, 351–354
excluding censored cases, 322
exogeneity, 269, 270, 273–75, 292, 298, 302
exploratory analyses of change, 16–44

in relation to level-1 sub-model for change, 55–57
role in checking assumptions at levels 1 & 2, 128

exponential growth trajectory, 233, 234, 235, 237–238
extreme observations, 466
fallibility of measurement, 268–269, 271–272
FIGLS. See full iterative generalized least-squares (FIGLS) 
estimation
final model, 105, 106, 109–110, 114
final status, 52, 186–188
first-order differential equation, 239
fitted continuous-time survivor (and other) functions

recovered baseline function, 536–540
predicted survivor/cumulative hazard functions using risk 
scores, 540–542
See also prototypical fitted functions

fitted discrete-time hazard (and survivor) functions
under alternative specifications of main effect of time, 414
cautions, when interpreting, 396–397
displaying, for interpretation of models, with

time-invariant predictors, 391–397, 434–440
time-varying predictors, 431–433, 434–440
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See also prototypical fitted functions
fitted hazard ratio, 524–528
fitted individual growth trajectory

and effect of time-varying predictor, 166–167
and latent growth modeling, 287–290, 295
re-expressed, after transformation of the outcome, 208–209
See also prototypical fitted functions

fixed effects, in multilevel model for change, 53, 60–61
hypothesis tests for

multiple parameters, 122–126, 295, 298
single parameter, 71–72, 93, 99, 107–10, 150, 162, 166,
287, 294, 299

interpreting estimates of, 70–71, 93, 99, 107–10, 150, 162, 166,
287, 294–295, 298–299
See also multilevel model for change; hypothesis testing

FML. See full maximum likelihood estimation
full estimation

iterative GLS (FIGLS), 221
ML (FML), 69, 75, 87–90, 118, 145, 149, 154, 163, 175, 184,
203, 205, 289
See also estimation methods

(p.634) functional form

checking, in the multilevel model for change, 128
and dynamic consistency, 225

general covariance structure model, 266–280
general linear hypothesis test, 123–126, 220–223

See also hypothesis testing
generalized least squares (GLS) estimation, 75, 85–87, 90–92, 118,
247, 280

See also estimation methods
GENMOD statistical software, 64
GLS. See generalized least squares estimation
goodness-of-fit, 47, 90, 240, 287, 295, 425, 528–530
graphing, 110, 358–369, 377, 391–397, 504–513, 565–567
grouped methods, for estimating continuous-time survivor/hazard 
functions

constructing a grouped life table, 476–477
estimating the functions, 477–483
See also continuous-time hazard function; continuous-time 
survivor function; cumulative hazard function

growth trajectory. See individual growth trajectory
hazard function(s),

continuous-time. See continuous-time hazard function;
cumulative hazard function
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discrete-time. See discrete-time hazard function
hazard rate. See continuous-time hazard
hazard ratio, 424–425, 525–528
heterogeneity, 369, 461–463
heterogeneous autoregressive error covariance matrix, 257, 259,
262–263
heterogeneous compound symmetric error covariance matrix, 257,
258, 261
heteroscedasticity of the residuals, in

composite multilevel model for change, 84–85, 86, 249–254,
284–285, 297
unconditional growth model, 101

higher-order polynomial change trajectory, 216–217
HLM statistical software, 64, 69, 91, 114, 153–155, 168, 230
homogeneity of error covariance structure assumption, 250–251
homoscedasticity assumption

on residuals, in multilevel model for change, 132, 133, 249,
254, 284–285, 297, 301

hyperbolic growth trajectory, 233, 234–236, 241–242
hypothetical cumulative hazard functions, 489
hypothesis testing

comparing Cox regression models using differences in –2LL 
statistic, 528–530, 593–594
comparing multilevel models for change and discrete-time 
hazard models using differences in deviance (likelihood-ratio 
test), 117–120, 201–206, 220–223, 257–263, 398–399, 400–401,
415–417

general linear hypothesis tests, 122–126, 404
single parameter tests

discrete-time hazard model, 403–404
competing risks model, 594
Cox regression model, 530–532
on fixed and random effects, in multilevel model for change,
71–74, 220–223
on parameters in discrete-time hazard model, using deviance,
399–400
using Wald statistic, on parameters in

IGLS. See iterative generalized least squares
ignorable non-response, 157
imputing

event time, 313–314
(p.635)

values of time-varying predictor, 551–556
index plots, of residuals in discrete-time hazard models, 466
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indicators
and constructs, in covariance structure analysis, 267–270
in CSA submodels

X-measurement model, 270–274, 291–295
Y-measurement model, 275–277, 283–284

of time predictor, 387–388
individual change

exploratory analysis of, 23–33, 50, 76–77, 143, 212, 217–220,
225–228
framing questions about, 4, 8, 16, 238–242
See also change; discontinuous individual change; individual 
growth model(s); individual growth parameter(s); linear 
individual change; multilevel model for change; nonlinear 
individual change

individual growth model(s)
for discontinuous change. See discontinuous individual change
for linear change. See linear individual change
for nonlinear change. See nonlinear individual change
represented in CSA measurement models, 281, 283–285, 296–
297, 300–301
and substantive theory, 238–242
and variably spaced waves of data, 144
See also discontinuous individual change; linear individual 
change; multilevel model for change; nonlinear individual 
change

individual growth parameters
and dynamic consistency, 224–225
intercept, 51–52, 97, 114–116, 187
in latent growth vector, 283–284, 285–286, 293–294, 296–297,
300
model-based estimates of, 132–137
in models for individual change, 51, 53, 132, 134–137, 187,
283–285
OLS estimates of, 28–44, 54
rate of change, 52, 97
See also discontinuous individual change; linear individual 
change; nonlinear individual change

informative censoring, 318–319
initial status, 52, 114, 176, 181, 187–188, 216, 234–238, 290
instantaneous rate of change, 215, 216
intercept, 36, 54, 62, 97–99, 114–116, 181, 183–185, 215–216, 234–
238, 375
inter-individual differences in change

components of level-2 model for
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stochastic component, 61–63
structural component, 60–61

and CSA structural model, 281, 285–295, 298
exploratory analyses of, 16–17, 33–41, 55–57, 59, 79
framing questions about, 4, 8, 35–37
See also multilevel model for change

internal time-varying predictor, 177, 179, 546
intra-class correlation coefficient, in

unconditional means model, 96
unconditional growth model, 100–101

inverse polynomial growth trajectory, 233, 234, 235, 236–237
inverse quadratic function, 234, 236
inverse transformation, 376
iterative generalized least squares (IGLS) estimation, 75, 87, 90–92,
118
Kalbfleish-Prentice method, 537
Kaplan-Meier (product-limit) method, 483–487, 491, 498, 504, 536
kernel smoothing, 494–502, 504–506, 538
Kolmogorov-Snirnov test, 128
ladder of powers, 210–211, 448
lagged predictors, 441–442, 546–547
late entry into risk set, 320, 595–598

and alternative metrics for clocking time, 602–606
computing entry and exit times for, 598–600

(p.636)

fitting Cox regression model for, 600–602
latent growth curve analysis. See latent growth modeling
latent growth modeling, 266, 280–295

and cross-domain analysis of change, 295–299, 301–302
extensions of, 299–302

latent growth vector, 285–286, 297, 300–301
relation to time-invariant predictors of change, 293–294

learning theory
autocatalytic principle, 238–241
habit strength, 241
Thurstone’s learning equation, 241–242

left-censoring, 319–321
level-1 change. See change; individual change; individual growth 
model; latent growth modeling; multilevel model for change
level-2 change. See inter-individual differences in change; latent 
growth modeling; multilevel model for change
life table, use in

continuous-time, with grouped methods, 476–477
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discrete-time, direct from person-period dataset, 354–356
summarizing discrete-time event data, 325–329

likelihood function, 66
for discrete-time hazard model, 381–383
in FML versus RML estimation, 87–89
See also log-likelihood function

likelihood-ratio statistic, 529
likelihood-ratio test, 117, 398–399, 525, 530
linear additivity assumption, and

interactions among substantive predictors, 443–447
presence of non-linear predictor effects, 447–451

linear bias, 447
linear individual change

exploratory analysis of, 28–33, 55–57
level-1 model for,

model specification, 49–51, 77–78, 142–144, 162, 168,
183, 214–215, 244, 283–284, 296–297, 300
structural and stochastic components of, 51–55

See also change; discontinuous individual change; individual 
growth model(s); multilevel model for change; nonlinear 
individual change

linear in the parameters, 35, 223, 224
link function, 371
LISREL statistical software, 280, 289
LL. See log-likelihood statistic
loading matrices in CSA models

X-measurement model, 273, 291, 297
Y-measurement model, 276, 283–284, 299–301

log cumulative hazard function, 507, 515, 565–566
logistic individual growth trajectory, 225–232, 238, 239
logit (log-odds)

choosing between logit and clog-log link, 425–429
re-expression as probability and odds, 376
as useful transformation of discrete-time hazard, 363–369, 378,
387–391, 392

log-likelihood function, 68
in discrete-time hazard model, 383
See also likelihood function; log-likelihood statistic

log-likelihood statistic (LL)
in Cox regression model, 528–530
and competing risks survival analysis, 593–594
and deviance statistic, 116–117, 397–398
and information criteria, 121, 401–402
See also AIC; BIC; deviance statistic
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log-log survivor function, 507
log odds of event occurrence. See logit
lower asymptote, of logistic curve, 226, 228–229, 239
magnification/diminution, of hazard function, 377, 452

(p.637) MAR. See missing at random

martingale residuals, 571–574
maximum likelihood (ML) estimation

advantages of, 65–66
and covariance structure analysis, 280
and deviance statistic, 116–117
in discrete-time hazard model, 381–384
full vs. restricted, 87–90
using, to fit models to data, 66–69
measurement equatability over time, 13–15
See also estimation methods; likelihood function; log-likelihood 
function; log-likelihood statistic

mean vectors in CSA sub-models
structural model, 279, 293–294, 298
X-measurement model, 272–273, 274, 291–292, 297
Y-measurement model, 276

measurement error, 10, 239–240, 268–269, 271–272, 273–274, 283–
285, 291, 297
measurement models, 269–277, 283–297
measurement occasions

and accelerated cohort design, 139–140
and person-period dataset, 140–142
varying numbers of, 146–159, 299–300
variably spaced, 139–146, 300

median lifetime, 333, 337–339
estimates of

continuous-time (product-limit), 486
recovered from fitted discrete-time hazard models,
391–396
sample discrete-time ML, 337–339, 340

strengths and limitations of, 345–348
median split, 451
metric for time, 10–12, 13, 310, 313–315, 602–606

See also time
missing data, 156–159

covariate-dependent dropout (CCD), 157–159
missing at random (MAR), 157–159

completely at random (MCAR), 157–159
mixed models, 3
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MIXREG statistical software, 64
MLwiN statistical software, 64, 70, 80, 90, 91, 94–95, 114, 153–155,
220, 221, 230
model-based estimates of individual growth parameters, 132–137
monotonic hazard functions, 341–342
MPLUS statistical software, 280
multilevel model for change

allowing impact of time-varying predictor to differ over time,
171–173
checking assumptions in, 127–132
composite specification of, 80–81, 151, 162–164, 171–173

composite residual, 84–85
structural component, 81–83
stochastic component, 83–85

and covariance structure analysis, 266–302
and discontinuous individual change, 190–208
estimation methods

GLS estimation, 85–87
ML estimation, 63–65, 66–69, 87–90
Model-based estimates of individual growth 
parameters, 132–137
practical advice about, 90–92

error covariance structure of, 243–265
fitting to data

comparing fitted models, 116–122
displaying prototypical fitted change trajectories, 111–
113
examining fixed effects, 69–72, 122–126
examining variance components, 72–74, 126
fitting taxonomies of models, 92–111, 104–110, 201–
206
goodness-of-fit, 102–104
interpretation of parameters in, 53, 106–111
level-1 model and OLS exploratory methods, 55–57
unconditional growth model, 97–101, 144, 151, 162,
168–169, 285–290
unconditional means model, 92–97

including a time-varying predictor in model, 159–171
(p.638)

and latent growth modeling, 280–302
and nonlinear individual change, 208–222, 233–242
and polynomial functions of time, 213–223, 300
standard multilevel specification, 46–49, 98, 243–257



(p.627) Index

Page 19 of 30

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: 
Appalachian State University; date: 27 July 2016

level-1 model for individual change, 49–56, 76–78,
144, 151, 162, 168–169, 183, 187
level-2 model for inter-individual differences in change,
57–63, 78–80, 144, 151, 162, 168–169, 183, 187
stochastic and structural components of sub-models,
51–55, 60–63

and variably spaced waves of data, 144–146
multiple intercepts, 375
multiple spells, 311
multiple waves of data, 9–10

See also person-period dataset
multivariate format. See person-level data set
multivariate normal distribution, 248–251
multivariate regression analysis, 266
negative exponential growth, 234, 235, 237–238, 241
negative log survivor function, 491, 492, 498, 504, 507
Nelson-Aalen method, 491–492, 498
nested models, 117–120, 397–402
“no change” trajectory, 215
nonconvergence, 155–156
noninformative censoring, 318–319, 591–591
nonlinear individual change, 189–190

change that is non-linear in the parameters
exponential, 233, 234, 235, 237–238
hyperbolic, 233–236, 241–242
inverse polynomial, 233, 234, 235, 236–237
logistic, 225–232, 234, 239
negative exponential, 234, 235, 236–237, 241

polynomial function of time, 213–222, 300
and substantive theory, 238–242
transforming the outcome, 208–242
See also discontinuous individual change

nonlinear predictor effect, detecting, 447–451
non-linear in the parameters, defined, 224–225
nonmonotonic hazard function, 341, 342
non-nested models, comparing w/IC statistics, 120–122
nonoccurrence, 324, 325, 335, 423
nonparametric approach, 26–28, 34, 35
nonproportional Cox regression model

including interaction with time, as predictor in
alternative specifications for interaction with time,
562–564
fitting models containing interaction with time, 564–
570
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stratified Cox model, 556–570
See also Cox regression model; proportional hazards 
assumption

normal distribution
of residuals in multilevel model for change, 128–132, 285, 294

normal probability plot, 130
normal score, 130
no unobserved heterogeneity assumption, 461–463
observed change trajectory, 54

See also change; empirical growth plot; individual change
observed heterogeneity, 369
occasions of measurement. See measurement occasions
odds of event occurrence, 363–365, 377–378

re-espression as logits and probabilities, 376–377
See also logit

odds ratio, 388–391, 404–406
OLS. See ordinary least squares (OLS) regression
omnibus tests, 126

See also hypothesis testing
(p.639) ordinary least squares (OLS) regression analysis, 247–248

assumptions of, 247–249
contrasted with GLS, 86
exploratory within-person OLS analyses of change, 29–32, 36,
41–43, 64

and level-1 model for change, 55–57
and model-based estimates of individual growth 
parameters, 135–137
precision/reliability of OLS-estimated rates of change,
41–44

exploratory between-person OLS analyses of change, 39–41, 79
and level-2 model for change, 58–59

outcome
change in, 296
equatability of, over time, 13–14
“explained” variation in, 102–104
precision of, 14–15
and relation to predictors, 128, 267, 269
reliability, estimates of, 289–290
transforming, to model nonlinear change, 208–213
validity, 14–15

parameter vector, 124, 284–285
parameter matrices in CSA submodels

structural model, 278–279, 285–287, 293–294, 298
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X-measurement model, 291–293, 297
Y-measurement model, 284–285

parametric approach, 26
partial likelihood function, 517–519
partial log-likelihood function, 519
partial maximum likelihood estimation, 516–519
partial residual. See Schoenfeld residual
partial residual variance, 108, 110
partitioning outcome variability

in unconditional means model for change, 93–96
path analysis, 266
path diagram, 267–270

examples, 268, 288
pattern mixture models, 159
percentage difference, 148, 287, 527
period indicator, 352–353, 380
person-level data set, 17–22, 281–283

computing summary statistics in, 114
examples of, 18, 244, 282, 353, 380
See also person-period dataset

person-period data set, 16–18, 22–23, 351–354
adding predictors to, 23, 48, 160–162, 182, 379–381
construction of a life table, 354–356
examples of, 18, 48, 141, 147, 161, 182, 192, 353, 380
and residual analysis, 463–467
and variably spaced measurement occasions, 140–142

person-specific mean, 93
polynomial function of time, for representing hazard function

as alternative to general time specification, 408–409
criteria for comparing alternative time specifications, 415–417
interpreting parameters of, 417–419
taxonomy of temporal specifications

constant hazard, 411–412
linear, 411, 412–415
quadratic, 411, 412–415
cubic, 411, 412–415, 428–430, 432, 434–440
higher-order functions of time, 411, 413
logarithm of time, 410

See also polynomial function of time, for representing 
individual change

polynomial function of time, for representing individual change,
213–223, 233

and CSA Y-measurement model, 300
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selecting a polynomial function, 217–220
taxonomy of temporal specifications

higher-order polynomial change, 216–217,
linear change, 215
no change, 215, 300
quadratic change, 215–216, 300

testing higher-order terms in polynomial change, 220–223
See also polynomial function of time, for representing hazard 
function

(p.640) polytomous substantive predictor, 390–391

population averaged coefficient, 463
precision, of

model-based estimates of individual growth parameters, 136–
137
OLS-estimated rate of change, 16, 41–42
outcome, 14–15, 41–44, 137, 264
See also reliability

predictor(s)
adding to person-period data set, 23, 48, 160–162, 379–381
lagged, 441–442
prototypical values of, 111–112, 394
recentering to improve interpretation, 29, 50–51, 77, 113–116,
173–177, 181–188
See also substantive predictors; time-invariant predictor; time-
varying predictor

probit link, 420
problems in analyzing unbalanced data on change, 151–156
product-limit method. See Kaplan-Meier method
proportional hazards assumption, in

discrete-time hazard model with clog-log link, 378, 421
Cox regression model, 516, 556
See also assumptions

proportional hazards model. See Cox regression model
proportional odds assumption

in discrete-time hazard model with logit link, 377
magnification/diminution of baseline function, 377, 452
solving violations of, by including interactions with time, 451–
460
See also assumptions

proportional reduction in residual variance, 103
proportionality assumptions, in discrete-time hazard model with

logit link, 377, 451–460
clog-log link, 378, 421
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See also assumptions; proportional odds assumption;
proportional hazards assumption

prototypical fitted functions
continuous-time survivor (and other) functions, 537–540, 540–
542

See also fitted continuous-time hazard (and survivor) 
functions

discrete-time hazard (and other) functions, 393, 395, 414, 432,
437, 445, 458

See also fitted discrete-time hazard (and survivor) 
functions

growth trajectories, 60–61, 99, 110–113, 132–137, 150, 167,
196, 290

See also fitted individual growth trajectories
pseudo-R 2 statistic

computed from estimated variance components, 102–104
summarizing total outcome variability explained, 102–103

quadratic
change trajectory, 215–216
discrete-time hazard function, 417–419
inverse, 233, 234, 235, 236

question predictor, 106, 444
See also predictor; time-invariant predictor; time-varying 
predictor

random coefficients model, 3, 54
random effects, 83, 90, 93, 243
rank order, 20, 280, 521–522
rate dependence, 440–442
rational strategy, for modeling nonlinear change, 190
recentering, to improve interpretation

predictors, 113–116, 173–177, 271
time, 29, 50–52, 77, 181–188, 283, 412, 563

reciprocal causation, 177–181, 269, 275–277, 301–32, 440
rectangular hyperbola, 234
reliability, 42

of OLS-estimated rates of change, 17, 43–44
of outcome on each occasion of measurement, 14–15, 289–290
See also precision

residuals, in Cox regression model,
deviance residual, 575–577, 584–585

(p.641)

martingale residual, 571–574, 584–585
Schoenfeld residual, 578–581, 584–585
Score residual, 581–582, 583, 584–585
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residuals, in discrete-time hazard model
deviance residual, 463–464
inspecting index plots, 466–467
sum of squared deviance residual, 466

residuals, in multilevel model for change
assumptions on

checking assumptions, 127, 128–132
homoscedasticity, 84–85, 86, 249, 297
independence, 249

autocorrelated, 84–85, 86, 256
composite, 84, 247–256
in CSA submodels,

structural model, 286–287, 292–294, 298
X-measurement model, 291–292, 297
Y-measurement model, 283–285

and deviance, 575–577
in multilevel model for change

at level-1, 50, 54–55, 61–63, 283–285, 296–297
at level-2, 50, 54–55, 61–63, 286–287, 293–294, 298

and restricted ML estimation, 89, 118
standardized, 132

residual variation, 103–104
restricted estimation

iterative generalized least squares (RIGLS), 91, 118
maximum likelihood (RML), 75, 87–90, 118, 246
See also full estimation; estimation methods

right-censoring, 319–321
RIGLS. See restricted iterative generalized least squares estimation
risk. See hazard
risk scores

and predicted survivor and cumulative hazard functions, 540–
542
summarizing Cox regression findings with, 532–536

risk set, 329
late entrants into, 320, 595–606
size of, and precision of estimated hazard, 349, 482

RML. See restricted maximum likelihood estimation
rule of the bulge, 210–211
sampling variation, 41, 348–351

See also asymptotic standard error, standard error
saturated model, 117, 398, 528–530
SAS statistical software

PROC MIXED, 64, 70, 80, 90, 91, 114, 118, 144, 145, 148, 149,
153–155, 163, 175, 184, 203, 205, 246, 257, 258–259, 265
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PROC NLMIXED, 64, 230, 231
scaling, 271, 273
Schoenfeld residual, 578–581
score residual, 581–582, 583
selection models, 159
shrinkage estimator, 136
single record method, for fitting Cox regression model, 547
slope, 36, 52, 54, 62, 97–99, 183, 190–191, 193–201, 215
smooth trajectory, 25–35, 37–39
spacing of waves of data

equal, 12
unequal, 139–146

spell, single vs. multiple, 311
SPLUS statistical software, 64
standard error

asymptotic, for parameter estimate from
Cox regression model, 530–532
discrete-time hazard model, 402–406
multilevel model for change, 68–69

of estimated discrete-time hazard and survival probabilities,
348–351
of OLS-estimated rate of change, 41

standardized residuals, 132
starting values, 86, 155
STATA statistical software, 17, 64, 91, 230
state dependence, 440–442
stationary points, 216, 409–415
statistical model(s), 46–47

in competing risks survival analysis, 592–595
for continuous-time hazard, 503–516, 556–562

(p.642)

in covariance structure analysis, 266–280
in discrete-time hazard modeling, 365–369
in latent growth modeling, 281–302
for modeling change, 49–63, 80–85
See also specific models

stochastic process, 178
stock sample, 320, 595
straight line change, 29, 208, 283

See also change; linear individual change
structural equation modeling. See covariance structure analysis
structural model, in CSA, 270, 277–280

and inter-individual differences in change, 281, 285–295, 298–
299
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See also latent growth modeling
substantive predictor, 97, 100

adding to person-period data set, 160–162, 379–381
dichotomous, 388–389
and event occurrence data, 354
interactions between, 443–447
See also predictor; time-invariant predictor; time-varying 
predictor

substitution effect, 550
sum of squared deviance residual, 465, 466–467
survival analysis

contrast between discrete- and continuous-time, 315
framing a research question for, 309–315
impact of censoring, 315
when to conduct, 306–309

survivor function
continuous-time. See continuous-time survivor function
discrete-time. See discrete-time

survivor function
target event. See continuous-time event occurrence; discrete-time 
event occurrence
taxonomy of fitted models, 92–110, 201–206, 385–386
ties,

problems with, 314–315, 522–523
Breslow-Peto approximation, 523
Efron approximation, 523

time
completely general specification for, 369–376, 408–409
discrete vs. continuous, 313–315
identifying beginning of, 311–313
indicators of, 22, 370–372, 380, 387–388
interactions with, 171–173, 562–570
main effect of, 370–374, 408–419
metric for, 10–12, 13, 310, 313–315, 602–606
polynomial functions of, 213–223, 409–415, 417–419
recentering, 181–188, 283, 412
See also continuous time; time-varying predictors

time-dependent effects, 451
time-invariant predictor

in Cox regression model, 504, 507–512, 514–516, 523–528,
530–535, 536–542, 552, 556–562, 586–595
in CSA submodels

structural model, 293–295
X-measurement model, 281, 291–293
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in discrete-time hazard model, 369–378, 380, 384–396, 422–
425, 436, 443–451, 452–460
exploratory analyses with, 37–41, 57–59, 78–79, 358–369, 503–
507
in multilevel model for change, 57–61, 69–72, 78–83, 98, 104–
116, 122–126, 148–151, 181–188, 194–206, 223, 230–232, 245–
247
in person-level dataset, 18–22, 244
in person-period dataset, 18, 22–23, 48, 147–148, 160–162,
182, 191–193, 379–381
See also predictor; substantive predictor;

time-varying predictor
time-1 centering, 176, 181, 283
time-structured data, 12, 50, 139, 281–283
time-unstructured data, 12, 139
time-varying patterns, 164, 551–553
time-varying predictor, 21–22, 159–160, 177–178

adding to person-period dataset, 160–162, 379–381
(p.643)

allowing effects to vary over time, 171–173
coding of, 180
in Cox regression model

data requirements, 544–545
nonreversible dichotomies, 545–551
imputation strategies for values of, 552–556
interactions with time, as time-varying predictors, 563–
564

in CSA X-measurement model, 296–297
in discrete-time hazard model, 369–372, 379–381, 408–419,
426–442
including main effect of, 160–171
interpreting and displaying effects of, 434–440
lagged predictor values, 441–442, 546–447
and latent growth model, 295–299
in multilevel model for change, 168–169
rate- and state-dependence, 440–442
reciprocal causation, 177–181, 440
types of

ancillary, 178
contextual, 178–179
internal, 179, 546

and variance components, 170–171
See also predictor; substantive predictor; time-invariant 
predictor
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Titanic, rearranging deck chairs on, 264
Toeplitz error covariance matrix, 257, 259, 263–265
total study duration, 186
trajectory of change. See change; individual change; individual 
growth model; individual growth trajectory; linear individual 
change; nonlinear individual change; discontinuous individual 
change
transformation(s)

and bounded nature of hazard, 362–365
exploring predictor functional form with dummy specification,
448
ladder of transformations and rule of the bulge, 210–213, 448
transforming the outcome to model nonlinear change, 208–213

types of transformation
complementary log-log, 378
inverse, 376

log-odds (logit), 365
odds, 363–365
square root, 76, 209

two-wave studies of change, 10
unbalanced longitudinal dataset

problems that arise, when analyzing, 151–156
modeling change in, 146–159

unbiasedness
and informative censoring, 319
versus precision, 137

unconditional growth model, 75, 92, 97–101, 162–163, 230, 285–290
See also multilevel model for change

unconditional means model, 75, 92–97
See also multilevel model for change

univariate format. See person-period data set
unobserved heterogeneity, assumption of no, 461–463
unstructured error covariance matrix, 257–258, 260
upper asymptote, of logistic growth curve, 226, 228–229, 239
VARCL statistical software, 64
variably spaced measurement occasions, 139–146, 300
variance of composite residuals, 84, 101
variance components, in multilevel model for change, 53, 63, 69,
93–96

in CSA submodels
structural model, 286–287, 294–295
X-measurement model, 293, 297
Y-measurement model, 284–285

effect of time-varying predictors, 170–171
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estimation problems, in unbalanced data, 151–152
fixing to zero, 168–170
interpreting, 72–73, 97–100, 107–109, 110, 289–290, 295, 299

(p.644)

pseudo-R 2 statistics computed from, 100, 103–4, 294–295, 299
single parameter tests for, 73–74, 96, 100, 107–109, 110
in unconditional growth model, 97, 99, 286–287
in unconditional means model, 93–96
See also multilevel model for change

variance-covariance matrix
of level-1 residuals, in CSA

X-measurement model, 297
Y-measurement model, 285

of level-2 residuals, in CSA structural model, 287, 294, 298
varying numbers of measurement occasions, 146–159
Wald statistic, for

comparing nested discrete-time hazard models, 403–404
testing composite hypotheses on fixed effects, 122–126
testing equivalence of parameters across competing risks, 594
tests on parameters in Cox regression model, 525, 530–532
See also hypothesis testing

“whether” and “when” test, 306–309
Wilks-Shapiro test, 128
within-group continuous-time sample survivor (and hazard) 
functions, 504–507
within-group discrete-time sample hazard (and survivor) functions,
358–362
within-individual change. See change; individual change; individual 
growth model
within-person centering, 176
X-measurement model, in CSA, 270–275

cross-domain analysis of change, 296–297
latent growth vector, 297
predictors of change, 281, 291–297
See also covariance structure analysis; latent growth modeling

Y-measurement model, in CSA, 275–277
cross-domain analyses of change, 296, 301–302
latent growth vector, 285
measurement error in outcome, 283–285
mapping of individual change trajectory, 281, 283–285
See also covariance structure analysis; latent growth modeling
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