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Abstract. Effect Sizes (ES) are an increasingly important index used to quantify the degree of
practical significance of study results. This paper gives an introduction to the computation and
interpretation of effect sizes from the perspective of the consumer of the research literature. The
key points made are:

1. ES is a useful indicator of the practical (clinical) importance of research results that can be
operationally defined from being “negligible” to “moderate”, to “important”.

2. The ES has two advantages over statistical significance testing: (a) it is independent of the size
of the sample; (b) it is a scale-free index. Therefore, ES can be uniformly interpreted in different
studies regardless of the sample size and the original scales of the variables.

3. Calculations of the ES are illustrated by using examples of comparisons between two means,
correlation coefficients, chi-square tests and two proportions, along with appropriate formulas.

4. Operational definitions for the ESs are given, along with numerical examples for the purpose of
illustration.
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I. Estimates of Effect Sizes

Effect size can be considered an index of the extent to which the research hypoth-
esis is true, or the degree to which the findings have practical significance in the
study population. In other words, effect size is an index that quantifies the degree

� Based on our experiences in teaching statistics and research methodology to medical and other
health professions students, we believe that the first step in evolving to a practitioner of research
is to become an informed consumer of research. A better-informed individual can accept or reject
the research findings with a better critical view. In this article, we will describe, in a non-technical
language, the procedures for calculating the effect size estimate and determining the practical (clin-
ical) significance of research findings as opposed to the regularly reported statistical significance
of findings. The conceptual and technical details in this article are not certainly sufficient for the
practitioners of research, but may help the consumers of research to better understand and hopefully
enable them to critically evaluate the research findings.
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to which the study results should be considered negligible, or important, regardless
of the size of the study sample.

For the purpose of operational definitions of the magnitudes of treatment differ-
ences (usually one or more experimental groups compared to a control group), or
group differences in non-experimental designs, and for comparability of findings in
different studies (e.g., meta analyses) it is desirable to have a “scale-free” effect size
index. Estimates of effect sizes are calculated as standardized differences to serve
that purpose. Therefore, effect size estimates can be used to compare treatment
effects for different variables in the same study, or for the same or different vari-
ables across different studies, regardless of the study sample size and the original
scales of the variables. These are important characteristics of any estimate of effect
size that also have important implications in meta-analytic studies.

Because of these two important advantages of the effect size estimates (inde-
pendent of sample size, and scale-free characteristic), some professional research
journals recently began to recommend, and some require, that the authors report
the effect size estimates of the findings in their submitted articles. In the latest
publication manual of the American Psychological Association (APA, 2001), for
instance, authors are encouraged to report effect size values in any empirical study.

Effect size estimates can be calculated for many different statistical indices. We
have chosen the following three topics because of their frequent use in medical
education research: mean differences (t-test), measures of association (correlation
coefficient, chi-square), and the difference between two proportions.

1. EFFECT SIZE ESTIMATE FOR MEAN DIFFERENCES

In this section, we will discuss effect size estimates for the differences between two
means. We shall use ES to represent effect size estimate from this point forward.
The typical inferential statistical method used to examine the statistical signifi-
cance of the difference between two means is the t-test. Three different cases are
discussed below.

a. Comparing Two Independent Samples

Comparisons of the means for two independent groups, such as an experimental
and control groups, are commonly reported in the literature. Calculation of the ES
in this case is simply the difference between the means of experimental (Me) and
control (Mc) groups divided by the standard deviation for the control group (σc).

ES = |Me − Mc|/σc

This ES is sometimes referred to as the “Glass’s effect”. We should point out
that there is a dispute among experts about the appropriate denominator in the
formula used in experimental designs (see Morris and DeShon, 2002).1

One point deserves attention. For the sake of simplicity, we report the absolute
value of the ES throughout this article, without making any distinction between
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directional/non-directional hypotheses (one-tail/two-tail tests). Researchers should
take the algebraic sign of the ES into consideration when the direction of
group differences is a consideration (one-tailed test). However, the direction of
a hypothesis does not influence the magnitude of the ES.

The aforementioned formula is applicable in situations in which experimental
and control groups are used. In situations employing quasi-experimental and
ex post facto designs, the means for two groups are usually compared without
necessarily assigning experimental or control groups status to the groups (e.g.,
men compared to women, generalists compared to specialists, etc.) In such cases,
a minor modification to the previous formula should be made in the denominator.
The pooled within group standard deviation (σpooled) should be used instead of the
σ for the control group.

ES = |Mgroup1 − Mgroup2|/σPooled

Where, σpooled is the standard deviation that can be calculated directly from the
combined data for both groups, or by using the following formulas: σpool =

√
[(n1

– 1)σ 2
1 + (n2 – 1)σ 2

2 ] / (n1 + n2 – 2); and in the case of equal sample size in the two
groups: σpooled =

√
(σ 2

1 + σ 2
2 ) / 2; where σ 2

1 and σ 2
2 are variances for group 1 and

group 2, respectively, and n1 and n2 are the sample sizes of the respective groups.
This index is sometimes referred to as “Cohen’s d”.

Effect sizes can range from negative to positive infinity, but in practice, usually
stay within +/–1. To help interpret ES values, Cohen (1987) has classified ES values
into three different categories of “small”, “medium”, and “large”, and operationally
defines the typical magnitude of the ES in each of these categories for different
statistics. In the case of comparing two means (Cohen, 1987, p. 40), Cohen’s
operational definitions are:

ES ∼= 0.20 (SMALL, negligible practical importance)
ES ∼= 0.50 (MEDIUM, moderate practical importance)
ES ∼= 0.80 (LARGE, crucial practical importance)

In clinical research, “clinical” instead of “practical” importance is usually used
(see Numerical Example #1).

b. Comparing Matched Samples or Repeated Measures

In this case the means being compared are from: paired (matched) groups; or,
the means are from two measurements taken from the same group (e.g., repeated
measures such as a pre-test post-test design). Although for the sake of simplicity
we recommend to use the baseline (pre-test) σ in the denominator of the formula, it
should be mentioned that different approaches have been suggested in calculating
the denominator in repeated measure designs (see Dunlap, Cortina, Vaslow and
Burke, 1996).2 ES is calculated by the same formula used for independent samples
(see Numerical Example #2).
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c. Comparing the Mean of a Sample with that of Its Respective Population

The case of comparing a sample mean with the population mean is not frequently
reported in the literature. Generally in this case we want to know if the sample can
be considered to come from the given population, although there are times when
the desire is to test whether the population mean is equal to a hypothetical value.
To compare the mean for a sample (Ms) with the population mean (Mpop). ES is
calculated by the following formula:

ES = |Ms − Mpop|/σpop

Where σpop is the population standard deviation (see Numerical Example #3).

2. EFFECT SIZE ESTIMATE FOR MEASURES OF ASSOCIATION

In this section we discuss the calculation of the ES for the index of association
between continuous measures (product moment, or Pearson correlation coefficient,
r), and for the index of association between discrete measures (chi-square, χ2).

a. Effect Size Estimate for Pearson Correlation Coefficient

The Pearson correlation coefficient, r, is one of the most frequently reported statis-
tics in research. Fortunately, r is a scale-free statistic. It is a standardized index
because r2 is the proportion of common variance (or overlap) between the variables
being correlated regardless of the size of the sample and the original scales of the
correlated variables. For example, suppose that the magnitude of the correlation
between two variables is 0.60 (e.g., scores of Step 1 of the United States Medical
Licensing Examinations [USMLE], and scores on Biological Sciences Sections of
the Medical College Admission Test [MCAT]). The proportion of shared variance
(overlap) between the two variables is 36% (r2 = 0.602 = 0.36). This conclusion
will be true regardless of the sample size and the original scales of the two vari-
ables Therefore, the magnitude of the correlation coefficient is itself an effect size
estimate. According to Cohen (1987, pp. 79–80), the operational definitions of the
ES for correlation coefficients are as follows:

ES = r ∼= 0.10 (SMALL, negligible practical importance)
ES = r ∼= 0.30 (MEDIUM, moderate practical importance)
ES = r ∼= 0.50 (LARGE, crucial practical importance)

b. Effect Size Estimate for Comparing Two Correlations

Calculation of the ES for the difference between two correlations is not as straight-
forward and simple as that for the mean difference. The reason is that the variance
of the correlation is dependent on the value of the correlation. The implication
of this dependence is that the same magnitude of difference between two correla-
tions cannot always be considered equal on the correlation scale. For example, the



A VISITOR’S GUIDE TO EFFECT SIZES 245

difference between r = 0.75, and r = 0.95 is 0.20, which is equal in magnitude to
the difference between r = 0.30 and r = 0.50. But the statistical power to detect the
difference between r = 0.75 and r = 0.95 is higher than that between r = 0.30 and r =
0.50, despite the fact that the difference between the two correlations that are being
compared is the same. The solution to this issue is to transform the correlations
to values on a new scale with equal interval characteristics. The transformation,
called the Fisher Z transformation (Z), has the following form:

Z = 0.50 loge[(1 + r)/(1 − r)]
(loge is the natural logarithm or logarithm to base e. Tables are available for
the transformation of correlation coefficients to their corresponding Z values. For
example, an abridged version of such tables can be found in Cohen (1987, p. 112,
Table 4.2.2); a more detailed table can be found in Owen (1962, pp. 511–512,
Table 19.2).

For calculating the effect size estimate between r1 and r2, the following formula
is used:

ES = Z1 − Z2

Operational definitions of the ES for differences between two correlations, as
suggested by Cohen (1987, pp. 115–116) are as follow:

ES ∼= 0.10 (SMALL, negligible practical importance)
ES ∼= 0.30 (MEDIUM, moderate practical importance)
ES ∼= 0.50 (LARGE, crucial practical importance)

(see Numerical Example #4).

c. Effect Size Estimate for Chi-Square

The statistical significance of the association between discrete variables can be
tested by the chi-square (χ2) test. The coefficient of contingency, or C, is a widely
used measure of association between discrete measures in contingency tables that
can be derived from χ2. C is, calculated by the following formula:

C = √
χ2/(χ2 + N)

Where N is the total number of observations in the contingency table from which
the χ2 is calculated. The ES, can be calculated by using the contingency coefficient
or directly from the χ2 value (for 2×2 contingency table) in the following formulas:

ES = √
C2/(1 − C2)

ES = √
χ2/N for 2×2 contingency tables

Operational definitions for interpreting the ES of χ2, as suggested by Cohen (1987,
pp. 224–225) are as follow:
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ES ∼= 0.10 (SMALL, negligible practical importance)
ES ∼= 0.30 (MEDIUM, moderate practical importance)
ES ∼= 0.50 (LARGE, crucial practical importance)

(see Numerical Example #5).

3. EFFECT SIZE ESTIMATE FOR PROPORTIONS

In determining the ES for comparing two proportions we must transform the pro-
portion, P, to a new value, called phi (φ) because, like correlation coefficients, the
variance of a proportion [P(1 – P)] is dependent upon the value of the proportion.
The implication of this dependence is that while the difference between proportions
0.10 and 0.25 (0.15) is the same as that between 0.80 and 0.95, the statistical power
to detect these differences between the first pair and the second pair is different in
spite of identical differences in proportions. The nonlinear transformation of P to
φ adjusts for the non-equal unit of detectability of the proportions. The following
formula is used to transform P to the corresponding φ:

φ = 2(arcsin
√

P)

Here, arcsin
√

P is the inverse trigonometric function of sin
√

p[sin−1 √
P ]. Tables

are available for transforming P to φ values. (See Cohen, 1987, p. 183, Table 6.2.2
for an abridged version, and for a more detailed table in Owen (1962, pp. 296–303,
Table 9.9).

The ES for the difference between two proportions (P1 and P2), can be
determined by calculating the difference between their corresponding φs:

ES = |φ1 − φ2|
Operational definitions of the magnitude of ES for differences between two pro-
portions, according to Cohen (1987, pp. 184–185) are as follow:

ES ∼= 0.20 (SMALL, negligible practical importance)
ES ∼= 0.50 (MEDIUM, moderate practical importance)
ES ∼= 0.80 (LARGE, crucial practical importance)

(see Numerical Example #6).

Notes
1 For example, Hedges (1982) suggests that instead of using the standard deviation of the control
group, pooled within-groups standard deviation should be used in the denominator.
2 For example, in calculating effect size in pretest-posttest designs, Cohen (1987) suggests that
the standard deviation of pre-posttest score differences be used in the denominator. Morris (2000)
recommend using the standard deviation of the pretest (baseline) scores for that purpose. In pre-
posttest designs involving an experimental and a control group, Gibbons, Hedeker and Davis (1993)
suggest to use the standard deviation of the pretest-posttest score differences of the experimental
group in the formula; Hedges (1981) recommend that the effect size in these designs can be calculated
by posttest means difference between the experimental and control groups, divided by the pooled
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posttest standard deviation (also see Morris and DeShon, 2002). For estimating the clinical signifi-
cance changes resulting from psychotherapy, Jacobson and Truax (1991) recommend calculating the
mean of pre-therapy-post-therapy score differences divided by the standard error of the differences
between the two test scores. They call this effect size as an index of reliable change (RC).

Numerical Examples

Numerical Example #1: A medical school faculty wanted to test if students in an “active” learning
program (Group 1: students were encouraged to find answers to the issues by independent study)
could perform differently than their classmates in another program (Group 2: answers to the
issues were given directly to students by their expert instructors). The students were randomly
assigned into the two groups at the beginning of the second year of medical school. Scores of
the two groups on a standardized measure of knowledge in basic medical sciences (Step 1 of the
United States Medical Licensing Examination, USMLE) taken at the end of the second year were
compared. The following results were obtained:

MGroup1 = 211, σGroup1 = 16.9

MGroup2 = 196, σGroup2 = 14.3

The difference between the two groups is statistically significant (t = 2.14, p < 0.05). Is this
difference practically important?

ES = |211 − 196|/√(16.92 + 14.32)/2

= 15/
√

(285.6 + 204.5)/2

= 15/
√

409.1/2

= 15/
√

245.1

= 15/15.7

= 0.96.

An effect size of this magnitude (0.96), according to the aforementioned operational definitions,
should be considered to be practically important to a large degree. Therefore, active learning could
increase students’ performance on a standardized examination to a degree that can be considered
of crucial practical importance.

Numerical Example #2: A group of medical students were shown a short video on how a patient
and her family react to terminal illness. Students were given an empathy test before and after
viewing the video. The following statistics were calculated:

Mpre−test = 19.8

Mpost−test = 20.9

σp = 1.9 (standard deviation of the pre-test scores)

The difference is statistically significant (t = 2.4, p < 0.05).

ES = |19.8 − 20.9|/1.9 = |0.58|

With and ES of this magnitude we may conclude that viewing the video increased the empathy
scores of the students to a degree considered of medium practical importance.
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Numerical Example #3: The Dean of a medical school wanted to know if there was a practically
important difference between the average score of 197 on Step 2 of the USMLE obtained by
students in his medical school compared to the national average on this examination (assuming
that the national average = 200, and standard deviation of the examination at national level is 20).
The difference is statistically significant (p < 0.05)

ES = |197 − 200|/20 = |0.15|

This is a small ES, and therefore the difference on Step 2 scores between students in this partic-
ular medical school and all candidates nationally Although statistically significant, but is not of
practical importance.

Numerical Example #4: A psychologist wants to test the hypothesis that “birds of the same feather
fly together for a longer time”. She randomly selects a group of happily married husbands and
wives, and another group of divorced couples matched for relevant variables (e.g., age, education,
number of children, etc.). Couples in both groups complete a scale of attitude toward premarital
sex, marriage and the family. The correlations calculated for scores of husbands and wives are
0.65 for the happily married couples and 0.20 for the divorced couples. The difference between the
two correlations is satistically significant (p < 0.05). Is the difference of practical importance?

Z for group 1 = 0.50 loge[(1 + 0.65)/(1 − 0.65)] = 0.50 loge(4.71) = 0.50(1.55) = 0.78

Z for group 2 = 0.50 loge[(1 + 0.20)/(1 − 0.20)] = 0.50 loge(1.50) = 0.50(0.40) = 0.20

Therefore, ES = 0.78 − 0.20 = 0.58

An ES of this magnitude (> 0.50), as operationally defined before, is of Crucial practical
importance.

Numerical Example #5: The association between board certification status (certified, not certified)
and practice specialty (generalists, medical subspecialists, surgical subspecialists, hospital-based
specialties) was statistically significant by chi-square test (χ2 = 8.1, p < 0.05; total N = 800).
Is this association practically important?

C = √
8.1/(8.1 + 800) = √

8.1/(8.1 + 800) = √
0.01 = 0.10

ES = √
0.102/(1 − 0.102) = √

0.01/(1 − 0.01) = √
0.01/0.99 = √

0.01 = 0.10,

or ES = √
8.1/800 = 0.10

Based on the aforementioned operational definitions, while the association is statistically
significant, it barely meets the criterion of being of practical importance.

Numerical Example #6: Dean of a medical school proudly reported to the Dean of another
medical school in town that his school attracted 45 percent of female applicants from the state,
significantly higher than 37 percent attracted to the other medical school across the rive. The Dean
of the second medical school asked his research staff to find out if such a claim had any practical
merit. The ES calculated for the two proportions by the research staff:

φ45% = 2(arcsin
√

0.45) = 2(arcsin 0.67) = 2(0.74) = 1.48

φ37% = 2(arcsin
√

0.37) = 2(arcsin 0.61) = 2(0.65) = 1.30

ES = φ45% − φ37% = 14.8 − 1.30 = 0.18

The research staff reorpted to their Dean that the effect size estimated of this magnitude was
negligible. The Dean of the second medical school sent a short not with the statistical evidence to
his counterpart, and suggested that he “cools off” a bit on his claim!
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