
Research Article

Received 1 June 2010, Accepted 23 January 2012 Published online 11 April 2012 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.5352

A simple sample size formula for
analysis of covariance in cluster
randomized trials
Steven Teerenstra,a*† Sandra Eldridge,b Maud Graff,c
Esther de Hoopa and George F. Borma

For cluster randomized trials with a continuous outcome, the sample size is often calculated as if an analysis of
the outcomes at the end of the treatment period (follow-up scores) would be performed. However, often a base-
line measurement of the outcome is available or feasible to obtain. An analysis of covariance (ANCOVA) using
both the baseline and follow-up score of the outcome will then have more power. We calculate the efficiency of
an ANCOVA analysis using the baseline scores compared with an analysis on follow-up scores only. The sample
size for such an ANCOVA analysis is a factor r2 smaller, where r is the correlation of the cluster means between
baseline and follow-up. This correlation can be expressed in clinically interpretable parameters: the correlation
between baseline and follow-up of subjects (subject autocorrelation) and that of clusters (cluster autocorrela-
tion). Because of this, subject matter knowledge can be used to provide (range of) plausible values for these
correlations, when estimates from previous studies are lacking. Depending on how large the subject and cluster
autocorrelations are, analysis of covariance can substantially reduce the number of clusters needed. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. Introduction

Cluster randomized trials are trials in which groups or clusters of individuals, rather than individuals
themselves, are randomized to intervention groups. One reason to randomize complete clusters is that
the intervention can only or is naturally implemented at cluster level (e.g. implementation of protocols
in hospital wards). Another reason may be to reduce the risk of contamination (e.g. when a general prac-
titioner has to coach half of its patients, he or she may easily bring elements of coaching to his or her
control patients). Logistical, financial or ethical reasons may also dictate the choice for a cluster ran-
domized design [1]. Cluster randomized trial are often applied to evaluate nontherapeutic interventions,
including lifestyle modification, educational programmes and innovations in the provision of health care.

Sample size calculations for a continuous outcome in a cluster randomized trial usually proceeds as
follows: first, calculating the sample size as if a t -test on the follow-up scores would be carried out, then
multiply this number of subjects by the design effect (variance inflation factor) Œ1C .n� 1/��, where n
is the number of subjects in a cluster and � the intracluster correlation [1].

Actually, this procedure is applied to an analysis that compares the treatments on the basis of the
follow-up scores at the end of treatment period. More precisely, it is the cluster means at follow-up that
are compared using a t -test or analysis of variance (ANOVA), or mixed model.
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However, often also a measurement of the outcome is taken at baseline (baseline scores). Then another
analysis is possible: the change from baseline scores can be compared between treatment arms. Again,
it is actually the differences of the cluster means at baseline and follow-up that enter the analysis. In this
case, power/precision can be gained because (part of) the variation as a result of clusters and possibly
subjects can be removed [2].

Actually, even more power could be gained when the two analyses methods, that is, comparison of the
follow-up scores and comparison of the change from baseline scores, are combined in a statistically opti-
mal manner. This comes down to an analysis of covariance (ANCOVA), that is, the outcome is analyzed
in a linear regression model that includes treatment arm and baseline outcome [3, 4].

In fact, empirical evidence that the power can be gained by analyzing cluster randomized trials using
ANCOVA is available. Intracluster correlations (ICCs) that account for covariates such as the outcome
at baseline are generally smaller than unadjusted ICC [5, 6], which means that including covariates in
the analysis can explain variance at cluster level.

Although this potential for gain in power is commonly known among statistical experts, it is under-
used in practice when planning cluster randomized trials. The reasons for that include the lack of ICCs
that account for covariates and unfamiliarity with this potential for gain among those that plan cluster
randomized trials.

Our aim is to provide a simple to use and simple to interpret sample size formula for planning a cluster
randomized trial that is analyzed using ANCOVA with the outcome at baseline as a covariate.

2. Methods and results

2.1. Model

The outcome ygtik of subject k.k D 1; ::; n/ in cluster i.i D 1; : : :; I / at time t (baseline t D 0, follow-up
t D 1) in treatment arm g(control g D 0, intervention g D 1) is modelled as [2]

ygtik D �C �g C �t C .��/gt C ci C .c�/i;t C sik C .s�/ik;t (1)

with ci , .c�/i;t, sik, .s�/ik;t, normally distributed with mean 0 and variance �2c , �2c� , �
2
s , �2s� , respectively.

The first four terms are fixed effects, where � is the mean outcome in the control clusters at baseline,
�1 is the difference at baseline between the mean of the intervention and control clusters (�0 D 0/, �1
is the change from baseline to follow-up of the control clusters means .�0 D 0/, and ı D .��/11 is
the difference in change from baseline between intervention and control cluster means (for g ¤ 1 or
t ¤ 1 W .��/gt D 0). In a randomized cluster trial, no differences between treatment groups are expected
at baseline and �1 D 0, so that ı D .��/11 is also the expected difference of the follow-up scores.
The random effects ci , .c�/i;t describe the variation of the clusters, where the first models the variation
between clusters at a fixed time point, while the second the variation of each cluster at different time
points. Similarly, the random effects sik, .s�/ik;t decompose the variation of subjects in a time-invariant
and time-varying part. Following [2], we define

¡c D
�2c

�2c C �
2
c�

and ¡s D
�2s

�2s C �
2
s�

; (2)

which are called the cluster autocorrelation and subject autocorrelation. They describe the (auto) cor-
relation between baseline and follow-up of the cluster specific scores ci C .c�/i;t and of the subject
specific scores sikC .s�/ik;t. Apart from the fixed effects for treatment group and time, these cluster spe-
cific scores are the precise cluster means, that is, without the sampling error because of averaging over
a finite number of subjects in the cluster. (In fact, the observed cluster means (calculated from a finite
number of subjects) approximate these cluster specific values if the cluster size is very large).

Note that ¡s is the correlation between baseline and follow-up of the subject score ygtik , in a fixed
cluster (i.e. conditional on the cluster).

The above model describes cohort designs, cross-sectional designs, and even mixtures of these [2].
If ¡s D 0, then all sik D 0, that is, for each time there are different subjects, which is the case of the
cross-sectional design. If ¡s D 1, then all .s�/ik;t D 0, that is, there is no variation within subjects over
time: all subjects are measured at baseline and follow-up, with identical scores — a special case of the
cohort design. The situation 0 < ¡s < 1 can arise when all subjects are measured twice and have an
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autocorrelation smaller than 1 (cohort), or when part of the subjects are measured twice (with an auto-
correlation 6 1) and the other part is replaced with new subjects at follow-up (mixture of cohort and
cross-sectional).

2.2. Estimators of the treatment effect

The comparison between treatment groups of the follow-up scores is performed via the between-cluster
estimator Oıfollowup D ygD1;tD1;�;� � ygD0;tD1;�;�; where � in the subscript refers to averaging over the
corresponding index (here subjects and clusters within each treatment group). Likewise, the comparison
of the change from baseline scores is expressed by

Oıchange D
�
ygD1;tD1;�;� � ygD1;tD0;�;�

�
�
�
ygD0;tD1;�;;� � ygD0;tD0;�;�

�
:

To arrive at a sample size formula, we will assume that the variances of the random effects (�2c , �2c� ,
�2s , �2s� ) are known, which is a common assumptions at the planning stage.

If a fraction �o and �1 of the clusters are on the control and treatment group, respectively, then these
estimators have variance

var. Oıfollowup/D

�
�2c C �

2
ct C

�2s
n
C
�2s�
n

��
1

�0I
C

1

�1I

�
D � Œ1C .n� 1/�� �

�
1

�0
C

1

�1

�
�
�2

In
; (3)

and

var. Oıchange/D 2

�
�2ct C

�2s�
n

��
1

�0I
C

1

�1I

�
D 2 � .1� r// � Œ1C .n� 1/�� �

�
1

�0
C

1

�1

�
�
�2

In
; (4)

where
�2 D �2c C �

2
c� C �

2
s C �

2
s� is the variance of all subjects over all clusters.

Because of the randomization, the expected means in control and intervention arm are equal. There-
fore, both estimators have expectation ı, and so has any combination r OıfollowupC.1�r/ Oıchange. The latter
combination has the smallest variance when

r D
�2c C �

2
s =n

�2c C �
2
c� C �

2
s =n C �

2
s� =n

D
n¡

1C .n� 1/¡
¡cC

1� ¡

1C .n� 1/¡
¡s; (5)

where

¡D
�2c C �

2
c�

�2c C �
2
c� C �

2
s C �

2
s�

(6)

is the correlation at one time point in the same cluster between two different subjects, that is, the ICC.
See the Appendix for the derivation of Equations (3)–(6).

The combined estimator reads OıancovaD
�
ygD1;tD1;�;�� rygD1;tD0;�;�

�
�
�
ygD0;tD1;�;�� rygD0;tD0;�;�

�
,

that is, a change from adjusted baseline. It has variance

var
�
Oıancova

	
D


1� r2

�
� Œ1C .n� 1/�� �

�
1

�0
C

1

�1

�
�
�2

In
; (7)

which is smaller than the variance of either Oıfollowup and Oıchange.
The quantity r is a correlation coefficient: from the first identity in (5) it follows that r is the correlation

between a cluster mean at baseline yg;tD0;�;� and at follow-up yg;tD1;�;�. Moreover, the second identity
of (5) shows that r will be between the cluster autocorrelation ¡c and the subject autocorrelation ¡s, so
will be at least larger than the smallest of the two.

In fact, if n� is small (small clusters and/or small intracluster correlation), r will be close to the subject
autocorrelation, while if n� is large (large clusters and/or large intracluster correlation), r will be close
to the cluster autocorrelation.

2.3. Sample size formula

From the above expressions of the variance, we see that the sample size of a cluster randomized trial
analyzed with ANCOVA can be calculated as follows. First calculate the sample size for a cluster ran-
domized trial that is analyzed on the follow-up scores (i.e. multiply the sample size according to a t -test

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2169–2178
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on the follow-up scores with the factor Œ1C .n�1/��). Then multiply this number with the design effect

1� r2

�
. For an analysis of the change from baseline scores, the design effect 2 � .1� r/ should be used

instead of


1� r2

�
.

2.4. Power calculation

The power to detect a treatment effect ı given I clusters of size n is

powerDˆt;I�2

0
B@ ıq

var. Oı/
� t˛=2;I�2

1
CA ;

where Oı is the corresponding estimator (follow-up, change, ANCOVA) and the variance is as given above
and ˆt;n is the cumulative distribution function of the t -distribution with n DOFs.

From the above sample size adjustment factors, a simpler approach to power calculations can be for-
mulated: a cluster trial of



1� r2

�
I clusters analyzed via ANCOVA has the same power as a cluster trial

of I clusters analyzed on the follow-up scores. The same holds for a cluster trial of 2.1 � r/I clusters
analyzed via the change from baseline scores.

2.5. Minimum number of clusters

From the sample size adjustment factor, the minimum number of clusters for the ANCOVA analysis is a
factor r2 smaller than for an analysis of the follow-up scores. Assuming the clusters are infinitely large,
this comes down to 


1� �2c
�
�Iindiv;

where Iindiv D 2


´1�˛=2C ´1�ˇ

�2
�2
ı
ı2 is the sample size of an individually randomized trial ana-

lyzed with a t -test on the follow-up scores. In practice, the number of clusters will need to be larger,
because the cluster size is finite.

2.6. Comparison of the cohort and cross-sectional model

If we decide to switch from the cohort design to the cross-sectional design, then �2 does not change,
because �2 describes the variance of the subjects over all the clusters at a given time point. However, this
variance is differently decomposed in a cross-sectional design. In each cluster, the subjects at baseline are
replaced with new subjects at follow-up. Therefore, the variance at subject level, which is �2�.�2c C�

2
c� /,

has no time independent component, that is, �2s;cross-sec D 0 and conditional on the cluster there is no cor-
relation between subjects at baseline and follow-up �s,cross-sec D 0, because at each time point different
(independent) subjects are present in the cluster.

Therefore, the correlation rcross-sec in the cross-sectional design can be expressed in terms of the
correlation in the cohort design r as

rcross-sec D
n�

1C .n� 1/�
�cC 0D r �

1� �

1C .n� 1/�
�s 6 r

where ¡s is the subject autocorrelation that would be observed in the cohort design.
The ratio of the sample size for the cross-sectional design compared with that of the cohort design is

var
�
Oıcross-sec
ancova

	
var

�
Oıcohort
ancova

	 D


1� r2cross

�
.1� r2/

D
.1� rcross/

.1� r/
�
.1C rcross/

.1C r/

D

�
1C .1� ¡/

¡s

Œ1C .n� 1/¡� � Œ1� r�

� �
1� .1� ¡/

¡s

Œ1C .n� 1/¡� � Œ1C r�

�
; (8)

which expresses that the cross-sectional design requires more sample size than the cohort design (first
equality). However, if the cluster size is large (n� large) and/or the subject autocorrelation ¡s small, then
the loss in efficiency will be small (last equality).
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For an analysis of the change of baseline scores, the efficiency of the cross-sectional design to that of
the cohort design is

var
�
Oıcross-sec
change

	
var

�
Oıcohort
change

	 D 2 .1� rcross/

2 .1� r/
D

�
1C .1� �/

�s

Œ1C .n� 1/�� � Œ1� r�

�
:

2.7. Influence of variability in the estimates of the ICC , rc , rs

In the planning stage, plausible values of the intercluster correlation, and subject and cluster autocor-
relation are assumed to calculate the sample size. In the analysis stage, these correlations will have to
be estimated from the data. To assess the influence of the variability in the estimates of these corre-
lations on the sample size, we performed a simulation study. One thousand datasets were generated
according to model (1) with the fixed treatment effect ı D 0, 0.2, 0.4, a fixed time effect equal to 2,
and variances �2c , �2c� , �

2
s , �2s� derived from (2) and (6) using �2 D 1 and various preset values of rs,

rc, �. The number of subjects was ns D 20. The total number of clusters to achieve 80% power at a
significance level of 0.05 was estimated by first calculating the uncorrected total number of subjects per
treatment group using normal percentiles, that is, 4.´1�˛=2C´1�“/2�2=ı2, then multiplying this by the
design factor .1� r2/Œ1C .n� 1/�� to correct for the cluster ANCOVA design and dividing this by n to
obtain the total number of clusters k. A small sample correction was then performed by multiplying k
by .kC1/=.k�1/ (see p. 118 in [7]) and the result was rounded up to the nearest even integer, to obtain
equal sized intervention and control groups.

In each simulated dataset, cluster means at every time point were calculated and the treatment effect
was tested using an ANCOVA analysis. Empirical type I error was estimated as the rejection rate for
ı D 0, empirical power was estimated as the rejection rate for ı D 0:2 (small effect), and ı D 0:4

(moderate effect).
For rs D 0:8, rc D 0:3, �D 0:05, the empirical type I error and empirical power were 0.053 and 0.765

for ı D 0:2, while it was 0.047 and 0.792 for ı D 0:4. Ranging �D 0:01, 0.05, 0.10; rs D 0:8; rc D 0:3,
0.5; ı D 0:2, 0.4 yielded similar results; the type I error did not exceed 0.061 and the power was at most
0.057 lower than predicted. Thus, the influence of the variability in the estimates is rather limited.

3. Example

The two-step procedure in Section 2.4 can be used to calculate the sample size of a cluster random-
ized trial with pretest–posttest design. Consider, for example, the Community occupational Therapy
in Dementia (CoTiD) trial that compares two implementation strategies of occupational therapy for
dementia patients and their caregivers (Netherlands Organization for Health Research and Development
ZonMw, grant 80-82315-98-090010). One primary outcome measure is adherence of the occupational
therapists to the COTiD program. Assuming a moderate effect size es D ı=� D 0:5 [8], then a sample
size of 62 per arm results, which is uncorrected for clustering (significance level 0.05, power 0.80). Two
occupational therapists (Dsubjects) are expected per health care institute (Dcluster) with an institute-
ICC of � D 0:05, which means that the design effect because of clustering is Œ1C .n� 1/�� D 1:05.
The consistency of an occupational therapist is likely to be strong, that is, a high therapist autocorrela-
tion ¡s D 0:7, while the agreement of the therapists in one institute may be smaller, that is, an institute
autocorrelation ¡c D 0:5. This means that the design effect because of the pretest–posttest is 1 � r2 D
0:54, that is, 46% reduction. Therefore, the sample size is 35 subjects or 17 clusters per arm.

4. Sample size comparison with other designs

Below, we will compare our sample size formula for the cluster randomized pretest–posttest design with
sample size formulas of other designs. Two comparisons are most important: that to the individually
randomized pretest–posttest design (see Section 4.1), which shows that our formula is a generalization
of the ANCOVA sample size for individually randomized trials. Second, that to other sample size for-
mulas for ANCOVA of the cluster randomized pretest–posttest design, which illustrates the differences
between our formula and existing ones for this design (see Section 4.3).

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2169–2178
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4.1. Individually randomized pretest–posttest designs

Our sample size formula generalizes the sample size formula in [9] for ANCOVA of individually
randomized trials. Actually, for cluster size nD 1

r D ¡¡cC .1� ¡/¡s D
�2c C �

2
s

�2c C �
2
s C �

2
ct C �

2
st

:

where �2c C�
2
s is the time-invariant subject variance and �2ct C�

2
st is the time varying variance at subject

level in model (1) for n D 1. Indeed, no nesting of subjects within clusters is present, which can be
phrased as �2s D �2st D 0. Thus, for n D 1, r is the correlation between baseline and follow-up for a
subject and our sample size formula comes down to that in [9].

Another approach to analyze the pretest–posttest design is to consider the follow up measurement and
the baseline measurement as repeated measures, under the restriction of equal baseline means because
of the randomization (constrained longitudinal data model). Lu et al. calculated the sample size for
constrained longitudinal data models with one or more post-baseline measurements under a monotone
missing data pattern of the post-baseline measurements [10]. Their variance formula for the pretest–
posttest design gives the same sample size calculation as in [9] in the absence of missing data .nj1 D n/.
In the presence of missing post-baseline measurements, their effective sample size consists of only those
patients that have complete data at baseline and follow up.

4.2. Cluster randomized pretest–posttest designs: change from baseline analysis

Feldman and McKinlay developed the sample size for change from baseline analysis in terms of the
variances at cluster and subject level (Equation (19) in [2]). Therefore, they did not express it using a
sample size adjustment factor (design effect) or the autocorrelation r between cluster means. By com-
paring (4) to (7), we see that a change from baseline analysis is a factor 2=.1C r/ less efficient than
an analysis of covariance. In another parametrization, Preisser et al. arrived at the same formula for a
change from baseline analysis for the pretest–posttest cross-sectional design (see formula (7) and the
comments following on p. 1247 in [11]).

4.3. Cluster randomized pretest–posttest designs: analysis of covariance

The sample size requirements of an ANCOVA of cluster randomized trials were also investigated by
Bloom et al. [4] (see their Equation (4)), by Raudenbush [3] (see his Equation (12)), and by Moerbeek
[12] (see her Equation (7)). Their approach is more general in that they consider an arbitrary covariate,
not per se a baseline measurement of the outcome. Common to their approaches is that they express
the sample size in terms of the variance at cluster and at subject level. The influence of adjusting for
covariate(s) is then described as a reduction of these two variances. Bloom et al. [4] express these
reductions using R2c and R2i , the proportion of variance explained by the covariate(s) at cluster level
and individual level, respectively. To describe these reductions, Moerbeek [12] uses ¡W and ¡B, the
within-cluster and between-cluster residual correlations between the posttest outcome and the covariate
as defined in [13], while Raudenbush [3] directly starts from the unexplained variances that remain at
cluster and subject level after adjusting.

The difference between the sample size formulas in [3,4,12] and that in Section 2.3 is mainly a matter
of parametrization. First, because the sample size formulas in [3,4,12] describe the effect of including a
covariate by changes of the variance of cluster and subject level separately, while Section 2.3 describes a
change of the total variance (see (7)). Second, because the definitions of the parameters used in the sam-
ple size formulas differ. After appropriate translations of the parametrizations, they would be expected to
produce similar sample sizes, because all use the same analysis model (including the baseline outcome
as covariate) and equivalent estimation methods (maximum likelihood estimators vs minimum variance
estimators in balanced designs).

Because their formulas are expressed as a sum of the reduced variances at cluster level and at subject
level, they do not arrive at a multiplicative form, that is, an unadjusted sample size times a design effect.
Consequently, they need direct specification of the variances at subject and cluster level, which makes
their formulation less easy to discuss for input with trialists and applied researchers.
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4.4. Cluster randomized posttest designs

Because the posttest is the simplest cluster randomized design, many aspects influencing the sample size
of the posttest design have been investigated, including:

(a) What interpretation of the estimate is intended: population-averaged or cluster-specific [11]
(b) The type of randomization: completely randomized , matched or stratified [1, 14]
(c) How the clustering of the outcome is parametrized: via the intracluster correlation [1] or coefficient

of variation [15] or variance components [16].
(d) How uncertainty in the ICC is dealt with [17, 18]
(e) How variation of the cluster sizes is accounted for [19, 20].

Each of these aspects for example the uncertainty in the ICC is a subject for further research in case of
the analysis of covariance for the pretest–posttest design. However, because the pretest–posttest design
has more measurements than the posttest-only design, it would be expected that for example the sam-
ple size for ANCOVA accounting for uncertainty in the ICC would still be less than that of the posttest
accounting for uncertainty in the ICC. The same would be expected when accounting for any of the other
aspects above.

5. Discussion

The sample size formula we derived shows that (compared with an analysis of the follow-up scores) an
analysis of covariance using the baseline outcome as covariate reduces the sample size by a factor r2,
where r is the autocorrelation of a cluster mean between baseline and follow-up. The correlation r will
lie between the cluster autocorrelation ¡c and the subject auto correlation ¡s. In particular, r will be at
least as large as the smaller of ¡c and ¡s. Thus, if both are at least 0.3, 0.5, or 0.7, then the reduction
in sample size will be at least around 10%, 25% or 50%, respectively. Such magnitudes are in line with
empirically found reductions [4].

The correlation r of a cluster mean between baseline and follow-up will be more towards the cluster
autocorrelation ¡c when clusters are large and more towards the subject autocorrelation ¡s when they
are small. Intuitively, this can be understood as follows. If the clusters are small, the design effect of a
cluster randomized trial .1C.n�1/�/) is small and the sample will (statistically) behave more like indi-
viduals, so that the correlation of subjects between baseline and follow-up predominates. If the clusters
are large, the design effect is large, that is, the sample will behave more like separate clusters and the
association/connection of individual subjects (within a cluster) at baseline and follow-up is washed out.

For an analysis of change from baseline scores, the sample size differs by a factor 2.1� r/ from that
of an analysis of follow-up scores. Therefore, analyzing the change from baseline scores will only be
more efficient, when r > 0:5. Even then, however, analysis of covariance is more efficient.

The cohort design is more efficient than the cross-sectional design in case of complete follow-
up. However, practical considerations may still favour the cross-sectional design. Substantial loss to
follow-up may necessitate costs for oversampling and/or aggressive follow-up, which may outweigh the
efficiency gain. Moreover, for large cluster size and/or small subject autocorrelation and/or large intra-
cluster correlation, the efficiency gain of the cohort design over the cross-sectional design is small as can
be seen from formula (8).

In addition to the ICC , a sample size calculation for an ANCOVA (and the change from baseline
analysis) needs the subject and cluster autocorrelation as input. These can be obtained from previous
studies, either indirectly from published variance components or directly from published autocorrelations
[2]. In many cases, such results have not been made available. Because cluster and subject autocorre-
lations have an (clinically) interpretable meaning, a range of plausible values can then be obtained in
consultation with clinical experts. The subject autocorrelation is expected high, if the measurement is
reproducible. Also, the cluster autocorrelation can be high. Consider for example that the clusters are
therapy groups. If the style of the therapist and/or the interaction of subjects within the therapy group
has a substantial effect on the subjects’ outcomes, then the cluster autocorrelation will be high. This has
also been empirically confirmed. For example, Feldman and McKinlay [2] in their Table IV find that
the cluster autocorrelation for total cholesterol is high, suggesting that the management by the general
practitioner is of important influence.

Another argument for high cluster autocorrelations is provided by Bloom et al. [4]. They argued
that correlations of aggregates at cluster level may be at least as high as correlations at subject level

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2169–2178
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(note 4 in [4]), partly because they are expected to be more reliable (p. 31 and note 4). This had also
been empirically observed by Klar and Darlington [21, p. 2354].

When the autocorrelations are based on expert judgement, it is sensible to investigate how sensitive
the power is to the assumed autocorrelations by varying �s and �c over a range of plausible values. This
holds likewise when the autocorrelations are based on previous studies.

The sample size requirements of an ANCOVA of cluster randomized trials were also investigated by
Bloom et al. [4], by Raudenbush [3] and by Moerbeek [12]. Their approach is more general in that they
consider an arbitrary covariate, not per se a baseline measurement of the outcome, but they do not arrive
at a design effect (sample size multiplier) and they need direct specification of the variances at subject
and cluster level, which makes their formulation less accessible to trialists and applied researchers.

Our parametrization of sample size formula has several advantages. The sample size formula takes
a simple multiplicative form: first calculate the sample size for a cluster randomized trial as usual and
then multiply this number by the design factor (1–r2/ for the ANCOVA. Second, the efficiency gain of
ANCOVA can be directly recognized as r2.

Furthermore, the autocorrelation of cluster means r is expressed in terms of Pearson correlations
(the ICC , the subject autocorrelation, and the cluster autocorrelation), which have an interpretable
meaning to clinical experts. Therefore, if no prior estimates are available, consultation with clinical
experts can motivate (a range of) plausible values.

Finally, the (relatively simple) expression of r in terms of �, �c, �s and n gives insights on how the
gain in efficiency r2 depends on those factors.

Lastly, one caveat is in order, when applying our formula. The ICC used is the unadjusted ICC: if
the ICC already accounts for the outcome at baseline, the usual sample size applies: Œ1C .n� 1/�adj�N

with �adj the adjusted ICC and N the sample size according to a t -test on the follow-up scores. Con-
versely, if such adjusted ICCs are not known, our sample size formula gives a way to input subject
matter knowledge to still estimate the reduction in sample size using ANCOVA with baseline scores.

Appendix

If I0 D �0I; I1 D �1I are the number of clusters in the control and intervention group respectively,
then

Oıfollowup D ygD1;tD1;�;� � ygD0;tD1;�;� D ıC
1

I1

I0CI1X
iDIoC1

"
ci C .c�/i;tD1C

1

n

nX
kD1

.sik C .s�/i;tD1/

#

�
1

I0

I0X
iD1

"
ci C .c�/i;tD1C

1

n

nX
kD1

.sik C .s�/i;tD1/

#

and

Oıchange D
�
ygD1;tD1;�;� � ygD1;tD0;�;�

�
�
�
ygD0;tD1;�;� � ygD0;tD0;�;�

�
D ı

C
1

I1

I0CI1X
iDIoC1

(
.c�/i;tD1 � .c�/i;tD0C

1

n

nX
kD1

Œ.s�/i;tD1 � .s�/i;tD0�

)

�
1

I0

I0X
iD1

(
.c�/i;tD1 � .c�/i;tD0C

1

n

nX
kD1

Œ.s�/i;tD1 � .s�/i;tD0�

)

(Because of the randomization, the means in control and intervention arm at baseline have the
same expectation).

From these expressions it follows that

var. Oıposttest/D

�
�2c C �

2
ct C

�2s
n
C
�2s�
n

��
1

�oI
C

1

�1I

�
;

var. Oıchange/D 2

�
�2ct C

�2s�
n

��
1

�oI
C

1

�1I

�2176
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and

cov ar
�
Oıfollowup; Oıchange

	
D var

0
@ 1

I1

I0CI1X
iDIoC1

"
.c�/i;tD1C

1

n

nX
kD1

.s�/i;tD1

#

�
1

I0

I0X
iD1

"
.c�/i;tD1C

1

n

nX
kD1

.s�/i;tD1

#1A
D

�
�2c� C

�2s�
n

��
1

�oI
C

1

�1I

�
:

Denote

˛ D

�
�2c� C

�2s�
n

��
1

�oI
C

1

�1I

�
; “D

�
�2c C

�2s
n

��
1

�oI
C

1

�1I

�
:

(The part that varies within clusters between time points, the part that varies between clusters at a fixed
time point).

Then

˛C “D

�
1

�oI
C

1

�1I

�
�

�
�2c C �

2
c� C

�2s
n
C
�2s�
n

�
D

�
1

�oI
C

1

�1I

�
�
1

n
� Œ1C .n� 1/¡� � �2

In terms of

r D
ˇ

˛C ˇ

we have

var. Oıposttest/D ˛C ˇ D

�
1

�oI
C

1

�1I

�
�
1

n
� Œ1C .n� 1/�� � �2

var. Oıchange/D 2˛ D 2.1� r/.˛C ˇ/D 2.1� r/

�
1

�oI
C

1

�1I

�
�
1

n
� Œ1C .n� 1/�� � �2

cov ar
�
Oıposttest; Oıchange

	
D ˛ D .1� r/.˛C ˇ/D .1� r/

�
1

�oI
C

1

�1I

�
�
1

n
� Œ1C .n� 1/�� � �2:

The estimator x Oıchange C ´ Oıposttest with x C ´ D 1, has minimum variance (use Lagrange multipliers)
for x D r , ´D 1� r , where r D ˇ

˛Cˇ
.

Proof
var.x OıchangeC´ Oıposttest/D x

2 .2˛/C´2 .˛C ˇ/C2x´ .˛/, and the Lagrange multiplier equations read:

0D 	C
@Var.xX C ´Z/

@x
D 	C 2x .2˛/C 2´ .˛/ (1)

0D 	C
@Var.xX C ´Z/

@´
D 	C 2´ .˛C ˇ/C 2x .˛/ (2)

Subtracting (1) from (2) gives

0D 2´ .ˇ/C 2x.�˛/; that is;
x

´
D
ˇ

˛
:

Because xC ´D 1, we have x D ˇ
˛Cˇ

and ´D ˛
˛Cˇ

. �
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The variance of this minimum variance estimator is:
(using the relation between r; ˛; ˇ)

var.x OıchangeC ´ Oıposttest/D r
22˛C 2r.1� r/˛C .1� r/2 .˛C ˇ/D .1� r/.1C r/.˛C ˇ/

D


1� r2

�
� Œ1C .n� 1/�� �

�
1

�0
C

1

�1

�
�
�2

In
:

Using

�2c D ¡c¡�
2; �2ct D .1� ¡c/¡�

2; �2s D ¡s.1� ¡/�
2; �2st D .1� ¡s/.1� ¡/�

2

the correlation r can be rewritten as

r D
�2c C �

2
s = n

�2c C �
2
c� C �

2
s = nC �

2
s� = n

D
¡c¡C ¡s.1� ¡/=n

¡c¡C .1� ¡c/¡C ¡s.1� ¡/=nC .1� ¡s/.1� ¡/=n

D
¡c¡C ¡s.1� ¡/=n

¡C 1=n� ¡=n
D

n¡

n¡C .1� ¡/
¡cC

1� ¡

n¡C .1� ¡/
¡s:
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