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Preface to the Second Edition

In the quarter century that has passed since I first addressed power anal-
ysis (Cohen, 1962), and particularly during the decade that has elapsed since
the revised edition of this book (1977), the escalation of the literature on
power analysis has been difficult to keep up with.

In 1962, I published a survey of the articles in a volume of the Journal of
Abnormal and Social Psychology from the perspective of their power to de-
tect operationally defined small, medium, and large effect sizes [a
meta-analysis before the term was coined (Bangert-Drowns, 1986)]. I found
rather poor power, for example, a mean of .48 at the two-tailed .05 level for
medium effect sizes.

Since the publication of the first edition (1969), there have been two or
three dozen power surveys of either particular journals or topical areas, us-
ing its tables and (more or less) the same method. In addition to the
half-dozen cited in the Preface to the Revised Edition in 1977, which were in
the fields of counseling psychology, applied psychology, education, speech
and hearing, and mass communication, there are numerous power surveys in
many fields, for example: in educational research, in general education
(Jones & Brewer, 1972), science education (Pennick & Brewer, 1972; Wooley
& Dawson, 1983), English education (Daly & Hexamer, 1983), physical edu-
cation (Christensen & Christensen, 1977), counselor education (Haase,
1974), social work education (Orme & Tolman, 1986) medical education
(Wooley, 1983a), and educational measurement (Brewer & Owen, 1973).
Power surveys have been done in social work and social intervention re-
search (Crane, 1976; Judd & Kenny, 1981; Orme & Combs-Orme, 1986), in
occupational therapy (Ottenbacher, 1982), abnormal psychology

xi



X PREFACE TO THE SECOND EDITION

(Sedlmeier & Gigerenzer, in press), personnel selection (Katzell & Dyer,
1977), and market research (Sawyer & Ball, 1981). A fairly large number
have been accomplished in medicine: in clinical trials (Freiman, Chalmers,
Smith, & Kuebler, 1977; Reed & Slaichert, 1981), public health (Wooley,
1983b), gerontology (Levenson, 1980), psychiatry (Rothpearl, Mohs, &
Davis, 1981), and Australian medicine (Hall, 1982). Even further afield, a
power survey was done in the field of geography (Bones, 1972). In addition
to these published surveys, there have come to my attention about a dozen
unpublished dissertations, research reports, and papers given at profes-
sional meetings surveying power in psychology, sociology, and criminology.

A corollary to the long neglect of power analysis is a relatively low
awareness of the magnitude of phenomena in the behavioral sciences (Cohen,
1965). The emphasis on testing null hypotheses for statistical significance
(R. A. Fisher’s legacy) focused attention on the statistical significance of a
result and away from the size of the effect being pursued (see Oakes, 1986;
Gigerenzer, 1987; Chapter 11). A direct consequence of the recent attention
to power, the last few years have witnessed a series of surveys of effect sizes:
in social psychology (Cooper & Findlay, 1982), counseling psychology
(Haase, Waechter, & Solomon, 1982), consumer behavior (Peterson,
Albaum, & Beltramini, 1985),and market research (Sawyer & Ball, 1981).

The recent emergence of meta-analysis (Glass, McGaw, & Smith, 1981;
Hedges & Olkin, 1985; Hunter, Schmidt, & Jackson, 1982; Kraemer, 1983)
has been influenced by power analysis in the adoption of its effect size meas-
ures (Bangert-Drowns, 1986), and in turn, has had a most salutary influence
on research progress and power analysis by revealing the level, variability,
and correlates of the effect sizes operating in the areas to which it is applied.

The literature in power-analytic methodology has burgeoned during this
period; pertinent references are given throughout this edition. Among the
many topics here are applied power analysis for: nonstandard conditions
(e.g., non-normality, heterogeneous variance, range restriction), non-
parametric methods, various multiple comparison procedures, alternative
methods of combining probabilities, and alternative stabilizing data trans-
formations. There have been several articles offering simplified one-table
methods of approximate power analysis including my own (1970) (which
provided the basis for a chapter-length treatment in the Welkowitz, Ewen, &
Cohen, 1982, introductory statistics text), Friedman (1982), and Kraemer
(1985). The latter is particularly noteworthy in that it breaks new ground
methodologically and is oriented toward teaching power analysis.

In marked contrast to the scene a decade or two ago, the current editions
of the popular graduate level statistics textbooks oriented to the social and
biological sciences provide at least some room for power analysis, and in-
clude working methods for the most common tests.

On the post-graduate front, as the word about power analysis has
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spread, many “what is it” and “how to do it” articles have appeared in jour-
nals of widely diversified content, ranging from clinical pathology (Arkin,
1981) through applied psychology (Fagley, 1985) to biological community
ecology (Toft & Shea, 1983).

Microcomputer programs for power analysis are provided by Anderson
(1981), Dallal (1987), and Haase (1986). A program that both performs and
teaches power analysis using Monte Carlo simulation is about to be pub-
lished (Borenstein, M. & Cohen, J., 1988).

It would seem that power analysis has arrived.

Yet recently, two independent investigations have come to my attention
that give me pause. Rossi, Rossi, and Cottril (in press), using the methods of
my power survey of the articles in the 1960 volume of the Journal of Abnor-
mal and Social Psychology (Cohen, 1962), performed power surveys of 142
articles in the 1982 volumes of the direct descendents of that journal, the
Journal of Personality and Social Psychology and the Journal of Abnormal
Psychology. When allowance is made for the slightly different (on the aver-
age) operational definitions of small, medium, and large effect sizes of the
1962 paper, there is hardly any change in power; for example, the mean
power at the two-tailed .05 level for medium effect sizes of the 1982 articles
was slightly above 50%, hardly different from the 48% in 1960.

Generally, the power surveys done since 1960 have found power not
much better than I had. Some fields do show better power, but they are those
in which subjects are easily come by, so the sample sizes used are larger than
those in abnormal, personality, and social psychology: in educational re-
search (Pennick & Brewer, 1972; Brewer & Owen, 1973), mass communica-
tion (Chase & Baran, 1976), applied psychology (Chase & Chase, 1975), and
marketing research (Sawyer & Ball, 1981). However, there is no comparison
of power over time in these areas. ’

Sedlmeier and Gigerenzer (in press) also studied the change in power since
my 1962 results, using 54 articles in the 1984 volume of the Journal of
Abnormal Psychology. They, too, found that the average power had not
changed over the past 24-year period. In fact, when the power of the tests
using experimentwise significance criteria (not encountered in my 1962 sur-
vey) were included, the median power for medium effects at the .05 level was
.37. Even more dismaying is the fact that in seven articles, at least one of the
null hypotheses was the research hypotheses, and the nonsignificance of the
result was taken as confirmatory; the median power of these tests to detect
a medium effect at the two-tailed .05 level was .25! In only two of the articles
surveyed was power mentioned, and in none were there any power calcu-
lations. Sedlmeier and Gigerenzer’s conclusion that my 1962 paper (and the
extensive literature detailed above) “had no effect on actual practice” is
consistent with the available evidence.

Yet, I find some solace from the following considerations: First, this may
be a phenomenon on the abnormal-social-personality area and may not gen-
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eralize to all behavioral-social-biological research areas. Second, to my cer-
tain knowledge, many journal editors and regular referees are quite
knowledgable about power and make editorial decisions in accordance with
this knowledge. Third, I am told that some major funding entities require
power analyses in grant applications. (I've even heard an unlikely story to
the effect that in one of them there is a copy of this book in every office!) Fi-
nally, the research surveyed by Rossi et al. (in press) and Sedlmeier and
Gigerenzer (in press), although published in the early 1980’s, was mostly
initiated in the late 1970’s. The first edition of this book was not distributed
until 1970. In the light of the fact that it took over three decades for Student’s
t test to come into general use by behavioral scientists, it is quite possible that
there simply has not been enough time.

Taking all this into account, however, it is clear that power analysis has
not had the impact on behavioral research that I (and other right-thinking
methodologists) had expected. But we are convinced that it is just a matter of
time.

This edition has the same approach and organization as its predecessors,
but has some major changes from the Revised Edition.

1. A chapter has been added for power analysis in set correlation and
multivariate methods (Chapter 10). Set correlation is a realization of the
multivariate general linear model, and incorporates the standard
multivariate methods (e.g., the multivariate analysis of variance and
covariance) as special cases. While the standard methods are explicitly treat-
ed, the generality of set correlation offers a unifying framework and
some new data-analytic possibilities (Cohen, 1982; Cohen & Cohen, 1983;
Appendix 4).

2. A new chapter (Chapter 11) considers some general topics in power
analysis in more integrated form than is possible in the earlier “working”
chapters: effect size, psychometric reliability, and the efficacy of “qualify-
ing” (differencing and partialling) dependent variables.

3. The two sets of working tables used for power and sample size deter-
mination in multiple regression and correlation analysis (Chapter 9) have
been greatly expanded and provide more accurate values for a denser argu-
ment. These tables, derived from the noncentral F distribution, are also used
for power and sample size determination in set correlation and multivariate
methods (Chapter 10).

References have been updated and greatly expanded in keeping with the
burgeoning increase in the literature of power analysis, and the errors in the
previous edition, mostly caught by vigilant readers (to whom I offer my grat-
itude), corrected. I am surprised that I had to discover for myself the most
egregious error of all: this edition does not presume, as did its predecessors,
that all researchers are male.

As in the previous editions, I acknowledge the never ending learning pro-
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cess afforded me by my students and consultees, and the continuing and
unpayable debt of gratitude to my wife Patricia, who read, debated, and
corrected all the new material despire a heavy workload of her own.

In their classic paper“Beliefin theLawof Small Numbers,” Tversky and
Kahneman (1971) demonstrated how flawed are the statistical intuitions not
only of psychologists in general, but even of mathematical psychologists.
Most psychologists of whatever stripe believe that samples, even small sam-
ples, mirror the characteristics of their parent populations. In effect, they
operate on the unstated premise that the law of large numbers holds for
small numbers as well. They also believe that if a result is significant in one
study, even if only barely so, it will most likely be significant in a replication,
even if it has only half the sample size of the original. Tversky and Kahneman
detail the various biases that flow from this “belief in the law of small num-
bers,” and note that even if these biases cannot be easily unlearned, “the ob-
vious precaution is computation. The believer in the law of small numbers
has incorrect intuitions about significance level, power, and confidence in-
tervals. Significance levels are usually computed and reported, but power
and confidence limits are not. Perhaps they should be” (p. 110).

But as we have seen, too many of our colleagues have not responded to
Tversky and Kahneman’s admonition. It is almost as if they would rather
follow W. H. Auden’s proscription:

Thou shalt not sit
With statisticians nor commit
A social science.

They do so at their peril.

September, 1987 South Wellfleet, Massachusetts
Jacob Cohen



Preface to the Revised Edition

The structure, style, and level of this edition remain as in the original,
but three important changes in content have been made:

1. Since the publication of the original edition, multiple regression/
correlation analysis has been expanded into a very general and hence versa-
tile system for data analysis, an approach which is uniquely suited to the
needs of the behavioral sciences (Cohen and Cohen, 1975). A new chapter is
devoted to an exposition of the major features of this data-analytic system
and a detailed treatment of power analysis and sample size determination
(Chapter 9).

2. The effect size index used for chi-square tests on frequencies and
proportions (Chapter 7) has been changed from e to w(=\/5). This change
was made in order to provide a more useful range of values and to make the
operational definitions of “small,” ‘“medium,”” and *‘large”’ effect sizes for
tests of contingency tables and goodness of fit consistent with those for other
statistical tests (particularly those of Chapters 5 and 6). The formulas have
been changed accordingly and the 84 look-up tables for power and sample
size have been recomputed.

3. The original treatment of power analysis and sample size determina-
tion for the factorial design analysis of variance (Chapter 8) was approximate
and faulty, yielding unacceptably large overestimation of power for main
effects and underestimation for interactions. The treatment in this edition is
materially changed and includes a redefinition of effect size for interactions.

Xvii
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The new method gives quite accurate results. Further insight into the analysis
of variance is afforded when illustrative problems solved by the methods of
this chapter are addressed and solved again by the multiple regression/
correlation methods of the new Chapter 9.

Thus, this edition is substantially changed in the areas for which the
original edition was most frequently consulted. In addition, here and there,
some new material has been added (e.g., Section 1.5.5, * Proving”’ the Null
Hypothesis) and some minor changes have been made for updating and
correction.

In the seven years since the original edition was published, it has received
considerable use as a supplementary textbook in intermediate level courses in
applied statistics. It was most gratifying to note that, however slowly, it has
begun to influence research planning and the content of textbooks in applied
statistics. Several authors have used the book to perform power-analytic
surveys of the research literature in different fields of behavioral science,
among them Brewer (1972) in education (but see Cohen, 1973), Katzer and
Sodt (1973) and Chase and Tucker (1975) in communication, Kroll and
Chase (1975) in speech pathology, Chase and Baran (1976) in mass com-
munication, and Chase and Chase (1976) in applied psychology; others are
in preparation. Apart from their inherent value as methodological surveys,
they have served to disseminate the ideas of power analysis to different
audiences with salutary effects on them as both producers and consumers of
research. It is still rare, however, to find power analysis in research planning
presented in the introductory methods section of research reports (Cohen,
1973).

As in the original edition, I must first acknowledge my students and
consultees, from whom I have learned so much, and then my favorite col-
league, Patricia Cohen, a constant source of intellectual excitement and much
more. | am grateful to Patra Lindstrom for the exemplary fashion in which
she performed the exacting chore of 1yping the new tables and manuscript.

NEwW YORK JacoB COHEN
JUNE 1976



Preface to the Original Edition

During my first dozen years of teaching and consulting on applied sta-
tistics with behavioral scientists, I became increasingly impressed with the
importance of statistical power analysis, an importance which was increased
an order of magnitude by its neglect in our textbooks and curricula. The case
for its importance is easily made: What behavioral scientist would view with
equanimity the question of the probability that his investigation would lead
to statistically significant results, i.e., its power? And it was clear to me that
most behavioral scientists not only could not answer this and related ques-
tions, but were even unaware that such questions were answerable. Casual
observation suggested this deficit in training, and a review of a volume of the
Journal of Abnormal and Social Psychology (JASP) (Cohen, 1962), supported
by a small grant from the National Institute of Mental Health (M-5174A),
demonstrated the neglect of power issues and suggested its seriousness.

The reason for this neglect in the applied statistics textbooks became
quickly apparent when I began the JASP review. The necessary materials for
power analysis were quite inaccessible, in two senses: they were scattered
over the periodical and hardcover literature, and, more important, their use
assumed a degree of mathematical sophistication well beyond that of most
behavioral scientists.

For the purpose of the review, I prepared some sketchy power look-up
tables, which proved to be very easily used by the students in my courses at
New York University and by my research consultees. This generated the

Xix
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idea for this book. A five-year NIMH grant provided the support for the
program of research, system building, computation, and writing of which
the present volume is the chief product.

The primary audience for which this book is intended is the behavioral
or biosocial scientist who uses statistical inference. The terms *“ behavioral”
and ‘‘ biosocial” science have no sharply defined reference, but are here
intended in the widest sense and to include the academic sciences of psy-
chology, sociology, branches of biology, political science and anthropology,
economics, and also various ‘““applied” research fields: clinical psychology
and psychiatry, industrial psychology, education, social and welfare work,
and market, political polling, and advertising research. The illustrative prob-
lems, which make up a large portion of this book, have been drawn from
behavioral or biosocial science, so defined.

Since statistical inference is a logical-mathematical discipline whose ap-
plications are not restricted to behavioral science, this book will also be useful
in other fields of application, e.g., agronomy and industrial engineering.

The amount of statistical background assumed in the reader is quite
modest: one or two semesters of applied statistics. Indeed, all that I really
assume is that the reader knows how to proceed to perform a test of statistical
significance. Thus, the level of treatment is quite elementary, a fact which has
occasioned some criticism from my colleagues. 1 have learned repeatedly,
however, that the fypical behavioral scientist approaches applied statistics
with considerable uncertainty -if not actual nervousness), and requires a
verbal-intuitive exposition, rich in redundancy and with many concrete
illustrations. This I have sought to supply. Another feature of the present
treatment which should prove welcome to the reader is the minimization of
required computation. The extensiveness of the tables is a direct consequence
of the fact that most uses will require no computation at all, the necessary
answers being obtained directly by looking up the appropriate table.

The sophisticated applied statistician will find the exposition unnecessarily
prolix and the examples repetitious. He will, however, find the tables useful.
He may also find interesting the systematic treatment of population effect size,
and particularly the proposed conventions or operational definitions of
“small,” *“ medium,” and “large” effect sizes defined across all the statistical
tests. Whatever originality this work contains falls primarily in this area.

This book is designed primarily as a handbook. When so used, the reader
is advised to read Chapter 1 and then the chapter which treats the specific
statistical test in which he is interested. I also suggest that he read all the
relevant illustrative examples, since they are frequently used to carry along
the general exposition.

The book may also be used as a supplementary textbook in intermediate
level courses in applied statistics in behavioral/biosocial science. I have been
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using it in this way. With relatively little guidance, students at this level
quickly learn both the concepts and the use of the tables. I assign the first
chapter early in the semester and the others in tandem with their regular
textbook’s treatment of the various statistical tests. Thus, each statistical test
or research design is presented in close conjunction with power-analytic con-
siderations. This has proved most salutary, particularly in the attention
which must then be given to anticipated population effect sizes.

Pride of place, in acknowledgment, must go to my students and con-
sultees, from whom I have learned much. I am most grateful to the memory
of the late Gordon lerardi, without whose encouragement this work would
not have been undertaken. Patricia Waly and Jack Huber read and construc-
tively criticized portions of the manuscript. I owe an unpayable debt of grati-
tude to Joseph L. Fleiss for a thorough technical critique. Since I did not
follow all his advice, the remaining errors can safely be assumed to be mine.
I cannot sufficiently thank Catherine Henderson, who typed much of the text
and all the tables, and Martha Plimpton, who typed the rest.

As already noted, the program which culminated in this book was sup-
ported by the National Institute of Mental Health of the Public Health Service
under grant number MH-06137, which is duly acknowledged. I am also most
indebted to Abacus Associates, a subsidiary of American Bioculture, Inc.,
for a most generous programming and computing grant which I could draw
upon freely.

NEw YORK JacoB COHEN
JUNE 1969



CHAPTER

The Concepts of Power Analysis

The power of a statistical test is the probability that it will yield statis-
tically significant results. Since statistical significance is so earnestly sought
and devoutly wished for by behavioral scientists, one would think that the
a priori probability of its accomplishment would be routinely determined
and well understood. Quite surprisingly, this is not the case. Instead, if we take
as evidence the research literature, we find evidence that statistical power is
frequenty not understood and, in reports of research where it is clearly rele-
vant, the issue is not addressed.

The purpose of this book is to provide a self-contained comprehensive
treatment of statistical power analysis from an ““applied”” viewpoint. The
purpose of this chapter is to present the basic conceptual framework of
statistical hypothesis testing, giving emphasis to power, followed by the frame-
work within which this book is organized.

1.1 GENERAL INTRODUCTION

When the behavioral scientist has occasion to don the mantle of the
applied statistician, the probability is high that it will be for the purpose of
testing one or more null hypotheses, i.e., “the hypothesis that the phenome-
non to be demonstrated is in fact absent [Fisher, 1949, p. 13].” Not that he
hopes to “prove” this hypothesis. On the contrary, he typically hopes to
“reject’’ this hypothesis and thus “prove” that the phenomenon in question
is in fact present.

Let us acknowledge at the outset the necessarily probabilistic character
of statistical inference, and dispense with the mocking quotation marks
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about words like reject and prove. This may be done by requiring that an
investigator set certain appropriate probability standards for research
results which provide a basis for rejection of the null hypothesis and hence
for the proof of the existence of the phenomenon under test. Results from a
random sample drawn from a population will only approximate the charac-
teristics of the population. Therefore, even if the null hypothesis is, in fact,
true, a given sample result is not expected to mirror this fact exactly. Before
sample data are gathered, therefore, the investigator selects some prudently
small value a (say .01 or .05), so that he may eventually be able to say about
his sample data, “If the null hypothesis is true, the probability of the ob-
tained sample result is no more than a,” i.e. a statistically significant result.
If he can make this statement, since a is small, he said to have rejected the
null hypothesis “with an a significance criterion” or “at the a significance lev-
el.” If, on the other hand, he finds the probability to be greater than a, he
cannot make the above statement and he has failed to reject the null hypoth-
esis, or, equivalently finds it “tenable,” or “accepts” it, all at the a signifi-
cance level. Note that a is set in advance.

We have thus isolated one element of this form of statistical inference,
the standard of proof that the phenomenon exists, or, equivalently, the
standard of disproof of the null hypothesis that states that the phenomenon
does not exist.

Another component of the significance criterion concerns the exact defini-
tion of the nature of the phenomenon’s existence. This depends on the details
of how the phenomenon is manifested and statistically tested, e.g., the
directionality/nondirectionality (‘“one tailed”/*“two tailed’’) of the state-
ment of the alternative to the null hypothesis.! When, for example, the investi-
gator is working in a context of comparing some parameter (e.g., mean,
proportion, correlation coefficient) for two populations A and B, he can
define the existence of the phenomenon in two different ways:

1. The phenomenon is taken to exist if the parameters of A and B differ.
No direction of the difference, such as A larger than B, is specified, so that
departures in either direction from the null hypothesis constitute evidence
against it. Because either tail of the sampling distribution of differences may
contribute to a, this is usually called a two-tailed or two-sided test.

2. The phenomenon is taken to exist only if the parameters of A and B
differ in a direction specified in advance, e.g., A larger than B. In this

1 Some statistical tests, particularly those involving comparisons of more than two
populations, are naturally nondirectional. In what immediately follows, we consider those
tests which contrast two populations, wherein the experimenter ordinarily explicitly
chooses between a directional and nondirectional statement of his alternate hypothesis.
See below, Chapters 7 and 8.
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circumstance, departures from the null hypothesis only in the direction
specified constitute evidence against it. Because only one tail of the sampling
distribution of differences may contribute to a, this is usually called a one-
tailed or one-sided test.

It is convenient to conceive of the significance criterion as embodying both
the probability of falsely rejecting the null hypothesis, a, and the “‘sidedness”
of the definition of the existence of the phenomenon (when relevant). Thus,
the significance criterion on a two-tailed test of the null hypothesis at the .05
significance level, which will be symbolized as a, = .05, says two things:
(a) that the phenomenon whose existence is at issue is understood to be
manifested by any difference between the two populations’ parameter values,
and (b) that the standard of proof is a sample result that would occur less than
59%, of the time if the null hypothesis is true. Similarly, a prior specification
defining the phenomenon under study as that for which the parameter value
for A is larger than that of B (i.e., one-tailed) and the probability of falsely
rejecting the null is set at .10 would be symbolized as a significance criterion of
a, =.10. The combination of the probability and the sidedness of the test
into a single entity, the significance criterion, is convenient because this
combination defines in advance the * critical region,” i.e., the range of values
of the outcome which leads to rejection of the null hypothesis and, perforce,
the range of values which leads to its nonrejection. Thus, when an investi-
gator plans a statistical test at some given significance criterion, say a, = .10,
he has effected a specific division of all the possible results of his study into
those which will lead him to conclude that the phenomenon exists (with
risk a no greater than .10 and a one-sided definition of the phenomenon) and
those which will not make possible that conclusion.? _

The above review of the logic of classical statistical inference reduces to a
null hypothesis and a significance criterion which defines the circumstances
which will lead to its rejection or nonrejection. Observe that the significance
criterion embodies the risk of mistakenly rejecting a null hypothesis. The
entire discussion above is conditional on the truth of the null hypothesis.

But what if, indeed, the phenomenon does exist and the null hypothesis is
Jfalse? This is the usual expectation of the investigator, who has stated the
null hypothesis for tactical purposes so that he may reject it and conclude
that the phenomenon exists. But, of course, the fact that the phenomenon
exists in the population far from guarantees a statistically significant result,

2 The author has elsewhere expressed serious reservations about the use of directional
tests in psychological research in all but relatively limited circumstances (Cohen, 1965).
The bases for these reservations would extend to other regions of behavioral science.
These tests are however of undoubted statistical validity and in common use, so he has
made full provision for them in this work.
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i.e., one which warrants the conclusion that it exists, for this conclusion
depends upon meeting the agreed-upon standard of proof (i.e., significance
criterion). It is at this point that the concept of statistical power must be
considered.

The power of a statistical test of a null hypothesis is the probability that it
will lead to the rejection of the null hypothesis, i.e., the probability that it will
result in the conclusion that the phenomenon exists. Given the characteristics
of a specific statistical test of the null hypothesis and the state of affairs in
the population, the power of the test can be determined. It clearly represents
a vital piece of information about a statistical test applied to research data
(cf. Cohen, 1962). For example, the discovery, during the planning phase of
an investigation, that the power of the eventual statistical test is low should
lead to a revision in the plans. As another example, consider a completed
experiment which led to nonrejection of the null hypothesis. An analysis
which finds that the power was low should lead one to regard the negative
results as ambiguous, since failure to reject the null hypothesis cannot have
much substantive meaning when, even though the phenomenon exists (to
some given degree), the a priori probability of rejecting the null hypothesis was
low. A detailed consideration of the use of power analysis in planning investi-
gations and assessing completed investigations is reserved for later sections.

The power of a statistical test depends upon three parameters: the signi-
ficance criterion, the reliability of the sample results, and the *effect size,”
that is, the degree to which the phenomenon exists.

1.2 SIGNIFICANCE CRITERION

The role of this parameter in testing null hypotheses has already been

given some consideration. As noted above, the significance criterion repre-
sents the standard of proof that the phenomenon exists, or the risk of mis-

takenly rejecting the null hypothesis. As used here, it directly implies the
*“ critical region of rejection’ of the null hypothesis, since it embodies both
the probability of a class of results given that the null hypothesis is true (a), as
well as the definition of the phenomenon’s existence with regard to direction-
ality. For power to be defined, its value must be set in advance.

The significance level, a, has been variously called the error of the first
kind, the Type I error, and the alpha error. Since it is the rate of rejecting a
true null hypothesis, it is taken as a relatively small value. It follows then that
the smaller the value, the more rigorous the standard of null hypothesis
rejection or, equivalently, of proof of the phenomenon’s existence. Assume
that a phenomenon exists in the population to some given degree. Other
things equal, the more stringent the standard for proof, i.e., the lower the
value of a, the poorer the chances are that the sample will provide results
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which meet this standard, i.e., the lower the power. Concretely, if an investi-
gator is prepared to run only a 1% risk of false rejection of the null hypothe-
sis, the probability of his data meeting this standard is lower than would
be the case were he prepared to use the less stringent standard of a 109 risk
of false rejection.

The practice of taking a very small (‘“‘the smaller the better”) then
results in power values being relatively small. However, the complement of
the power (1 — power), here symbolized as b, is also error, called Type Il
or beta error, since it represents the ‘““‘error” rate of failing to reject a false
null hypothesis. Thus it is seen that statistical inference can be viewed as
weighing, in a manner relevant to the substantive issues of an investigation,
these two kinds of errors. An investigator can set the risk of false null hy-
pothesis rejection at a vanishingly small level, say a = .001, but in so doing,
he may reduce the power of his test to .10 (hence beta error probability, b,
is 1 — .10 =.90). Two comments may be made here:

1. The general neglect of issues of statistical power in behavioral
science may well result, in such instances, in the investigator’s failing to
realize that the a =.001 value leads in his situation to power =.10, b= .90
(Cohen, 1962). Presumably, although not necessarily, such a realization
would lead to a revision of experimental plans, including possibly an upward
revision of the a level to increase power.

2. If the investigator proceeds as originally planned, he implies a con-
ception of the relative seriousness of Type I to Type II error (risk of false null
rejection to risk of false null acceptance) of bja =.90/.001 =900 to 1, i.e.,
he implicitly believes that mistakenly rejecting the null hypothesis under the
assumed conditions is 900 times more serious than mistakenly accepting it.
In another situation, with a = .05, power = .80, and hence b =1 — .80 = .20,
the relative seriousness of Type I to Type II error is b/a=.20/.05=4to 1;
thus mistaken rejection of the null hypothesis is considered four times as
serious as mistaken acceptance.

The directionality of the significance criterion (left unspecified in the
above examples) also bears on the power of a statistical test. When the null
hypothesis can be rejected in either direction so that the critical significance
region is in both tails of the sampling distribution of the test statistic (e.g.,
a t ratio), the resulting test will have less power than a test at the same a
level which is directional, provided that the sample result is in the direction
predicted. Since directional tests cannot, by definition, lead to rejecting the
null hypothesis in the direction opposite to that predicted, these tests have
no power to detect such effects. When the experimental results are in the
predicted direction, all other things equal, a test at level a, will have power
equal for all practical purposes to a test at 2a,.



6 1 THE CONCEPTS OF POWER ANALYSIS

Concretely, if an experiment is performed to detect a difference between
the means of populations A and B, say m, and my, in either direction at the
a, = .05 significance criterion, under given conditions, the test will have a
certain power. If, instead, an anticipation of m, greater than my leads to a
test at a, = .05, this test will have power approximately equal to a two-tailed
test with a, = .10, hence greater power than the test at a, = .05, provided that
in fact m, is greater than my. If mg is greater than m,, the test at a;, = .05
has no power, since that conclusion is inadmissible. The temptation to perform
directional tests because of their greater power at the same a level should be
tempered by the realization that they preclude finding results opposite to those
anticipated. There are occasional circumstances where the nature of the
decision is such that the investigator does not need to know about effects in
the opposite direction. For example, he will take a certain course of action if
m, is greater than mg and not otherwise. If otherwise, he does not need to
distinguish between their equality and mg greater than my,. In such infrequent
instances, one-tailed tests are appropriate (Cohen, 1965, pp. 106-111).

In the tables in this book, provision is made for tests at the .01, .05, and
.10 significance levels. Where a statistical test may ordinarily be performed
either nondirectionally or directionally, both a, and a, tables are provided.
Since power for a, =.05 is virtually identical with power for a, =.10, a
single power table suffices. Similarly, tables for a; = .0l provide values for
a, =.02, and tables for a, = .10 values for a, = .20; also, tables for a, = .01
provide values for a, = .005, tables at a, = .05 provide values for a, = .025.

1.3 RELIABILITY OF SAMPLE RESULTS AND SAMPLE SIZE

The reliability (or precision) of a sample value is the closeness with
which it can be expected to approximate the relevant population value. It
is necessarily an estimated value in practice, since the population value is
generally unknown. Depending upon the statistic in question, and the
specific statistical model on which the test is based, reliability may or may not
be directly dependent upon the unit of measurement, the population value, and
the shape of the population distribution. However, it is a/lways dependent
upon the size of the sample.

For example, one conventional means for assessing the reliability of a
statistic is the standard error (SE) of the statistic. If we consider the arithmet-

ic mean of a variable X (;(-), its reliability may be estimated by the standard
error of the mean,

2
SEx = \/s_,
n

where s2 is the usual unbiased estimate (from the random sample) of the
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population variance of X, and n is the number of independent units in (i.e.,
the size of)) the sample.

Concretely, if a sample of n =49 cases yields a variance estimate for 1Q
of 196, then the standard error of the mean is given by

s 196
- = — — == 2,
SEx \/n 49

Thus, sample means based on 49 cases can be expected to have variability
as measured by their own standard deviation of 2 IQ units. Clearly the greater
the degree to which means of different samples vary among themselves, the
less any of them can be relied upon, i.e., the less the reliability of the mean
of the sample in hand. Note that in this instance reliability depends upon the
unit of measurement (1Q) and sample size, but not on the value of the popu-
lation mean or (to any material degree) on the shape of the IQ distribution.

On the other hand, consider the sampling reliability of a product moment
coefficient of correlation, r. Its standard error is

2
I-r,

- Vn-1’

SE,

where

r, = the population value of r, and

n = the number of paired observations in the sample.

Note that the reliability of the sample r depends upon the magnitude of
the (generally unknown) population r, value and n, but not on the units in
which the correlated variables are measured.

Not all statistical tests involve the explicit definition of a standard error
of a sample value, but all do involve the more general conception of sample
reliability. Moreover, and most important, whatever else sample reliability
may be dependent upon, it a/ways depends upon the size of the sample.

The nature of the dependence of reliability upon n is obvious from the
illustrative formulas, and, indeed, intuitively. The larger the sample size,
other things being equal, the smaller the error and the greater the reliability
or precision of the results. The further relationship with power is also
intuitively evident: the greater the precision of the sample results, other things
being equal, the greater the probability of detecting a nonnull state of affairs,
i.e., the more clearly the phenomenon under test can manifest itself against
the background of (experimentally irrelevant) variability. Thus, we can
directly formulate the relationship between sample size and power. As is
intuitively obvious, increases in sample size increase statistical power, the
probability of detecting the phenomenon under test.

Focusing on sample size as an invariant factor in power should not make
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the researcher lose sight of the fact that other research elements potentially
under his control also affect power. Random measurement error, be it due
to psychometric unreliability, observational carelessness, dirty testtubes, or
any other source, because it increases the variability of the observations
beyond their necessary ‘‘ true’’ variability, also reduces the precision of sample
results and thus reduces power. In general, anything which reduces the
variability of observations by the exclusion of sources of variability which
are irrelevant to the assessment of the phenomenon under study will serve to
increase power. Experimental design is an area of inquiry wholly devoted
to the removal of irrelevant sources of variability for the increase of precision
and therefore for the increase of the statistical power of tests of null hypoth-
eses (cf. Cox, 1958).

In this book, provision is made for the accomplishment of power analyses
for the statistical tests associated with the most frequently utilized experimen-
tal designs and their accompanying null hypotheses. Issues such as the effects
of a given level of random measurement error on power are not explicitly
provided for. Sample size, the invariant feature of sample precision, is,
however, a factor in all the power tables. It is used in both of the major kinds
of analysis tables herein provided; in the power tables, sample size is one of
the elements used to determine the power of the test, and in the sample size
tables, it is the dependent variable of the function of the desired level of
power (in both instances under given conditions of significance criterion and
population effect size).

1.4 THE EFFecT SizE

To this point, the phenomenon in the population under statistical test
was considered as either absent (null hypothesis true) or present (null hypoth-
esis false). The absence of the phenomenon implies some specific value for
a population parameter. For example, in a study to determine whether there
is a sex difference in incidence of paranoid schizophrenia, the investigator
may draw a sample of patients bearing that diagnosis from the relevant popu-
lation and determine the proportion of males. The null hypothesis being tested
is that the population proportion of males is .50, a specific value.>** Equiva-
lently, we might say that the size of the “effect’ of sex on the presence of

3 The assumption is made here that .50 is the proportion of males in the population
of interest.

4 For the sake of simplicity, the null hypothesis is treated in this section for the non-
directional form of the significance criterion. For example, a directional (one-tailed) test
here that the male proportion is greater than .50 implies a null hypothesis that it is equal
to or less than .50. The reader may supply his own necessary qualifications of the null
hypothesis for the directional case in each illustration.
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the diagnosis is zero. In another study concerned with the 1Qs of children
born in multiple births, the null hypothesis might be that the multiple birth
population in question has a mean 1Q of 100 (i.e., the general population
mean), again a specific value, or that the size of effect of being part of a
multiple birth on IQ is zero. As yet another example of a one-sample test,
in a study of the construct validity of a neurophysiological measure of intro-
version-extroversion, its product moment r with an accepted questionnaire
measure for a sample of college students is determined. The null hypothesis
here is that the population r is zero, or that the effect size of either on the
other is zero.

In circumstances where two populations are being compared, the null
hypothesis usually takes the form “the difference in the value of the rele-
vant parameters is zero,” a specific value. Thus, in a consumer survey
research to determine whether preference for a particular brand A over its
chief competitor B is related to the income level of the consumer, the null
hypothesis might be: The difference in median family income of brand A
and brand B users is zero, or, equivalently, that the size of the effect of
income on brand preference is zero. Or, in a personnel selection study to
determine which of two screening tests, A or B, is a better predictor of
performance ratings (C), the null hypothesis might take the form: The
difference between population product moment r’s of A with C and B with
C is zero.

Statistical tests involving more than two samples test null hypotheses
that imply the constancy of a parameter over the populations involved. The
literal statement of the null hypothesis depends upon the specific test involved.
For example, the F test of the analysis of variance for k >2 means has as
its null hypothesis the proposition that the variance of a set of population
means is 'zero, a condition that can only obtain when they are equal. Simi-
larly, a test of whether a set of k> 2 population proportions are equal can
be performed by means of the chi-square statistic. The null hypothesis here
is that the variance of the population proportions equals zero (an exact value),
a condition which can only obtain when they are all equal. In both of these
instances we can think of the null hypothesis as the circumstance in which
differences in the independent variable, the k populations, have no effect
(have an effect size of zero) on the means or proportions of the dependent
variable.

Thus, we see that the absence of the phenomenon under study is expressed
by a null hypothesis which specifies an exact value for a population para-
meter, one which is appropriate to the way the phenomenon under study is
manifested. Without intending any necessary implication of causality, it is
convenient to use the phrase ‘“‘effect size” to mean “‘the degree to which
the phenomenon is present in the population,” or *the degree to which the
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null hypothesisis false.”” Whatever the manner of representation of a phenom-
enon in a particular research in the present treatment, the null hypothesis
always means that the effect size is zero.

By the above route, it can now readily be made clear that when the null
hypothesis is false, it is false to some specific degree, i.e., the effect size (ES)
is some specific nonzero value in the population. The larger this value, the
greater the degree to which the phenomenon under study is manifested.
Thus, in terms of the previous illustrations:

1. If the percentage of males in the population of psychiatric patients
bearing a diagnosis of paranoid schizophrenia is 529, and the effect is
measured as a departure from the hypothesized 509, the ES is 29,; if it is
609, the ES is 109, a larger ES.

2. If children of multiple births have a population mean I1Q of 96, the
ES is 4 IQ units (or — 4, depending on directionality of significance criterion);
if it is 92, the ES is 8 (or — 8) IQ units, i.e., a larger ES.

3. If the population product moment r between neurophysiological and
questionnaire measures of introversion-extroversion is .30, the ES is .30; if
th:ris .60, so is the ES, a larger value and a larger departure from the null
hy pothesis, which here isr =0.

4. If the population of consumers preferring brand A has a median
annual income $700 higher than that of brand B, the ES is $700. If the
population median difference and hence the ES is $1000, the effect of income
on brand preference would be larger.

Thus, whether measured in one unit or another, whether expressed as a
difference between two population parameters or the departure of a popu-
lation parameter from a constant or in any other suitable way, the ES can
itself be treated as a parameter which takes the value zero when the null
hypothesis is true and some other specific nonzero value when the null hypo-
thesis is false, and in this way the ES serves as an index of degree of departure
from the null hypothesis.

The reasons that the above dicussion has proceeded in such redundant
detail are twofold. On the one hand, ES is in practice a most important
determinant of power or required sample size or both, and on the other hand,
it is the least familiar of the concepts surrounding statistical inference among
practicing behavior scientists. The reason for the latter, in turn, can be found
in the difference in null hypothesis testing between the procedures of Fisher
(1949) and those of Neyman and Pearson (1928, 1933).

The Fisherian formulation posits the null hypothesis as described above,
i.e., the ES is zero, to which the ‘““alternative” hypothesis is that the ES is
not zero, i.e., any nonzero value. Without further specification, although
null hypotheses may be tested and thereupon either rejected or not rejected,
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no basis for statistical power analysis exists. By contrast, the Neyman-
Pearson formulation posits an exact alternative for the ES, i.e., the exact
size of the effect the experiment is designed to detect. With an exact alterna-
tive hypothesis or specific nonzero ES to be detected, given the other elements
in statistical inference, statistical power analysis may proceed.

Thus, in the previous illustrations, the statements about possible popu-
lation ES values (e.g., **if the population product moment r between neuro-
physiological and questionnaire measures of introversion-extroversion is
.30, the ES is .30") are statements of alternative hypotheses.

The relationship between ES and power should also be intuitively evident.
The larger the ES posited, other things (significance criterion, sample size)
being equal, the greater the power of the test. Similarly, the relationship
between ES and necessary sample size: the larger the ES posited, other
things (significance criterion, desired power) being equal, the smaller the
sample size necessary to detect it.

To this point, the ES has been considered quite abstractly as a parameter
which can take on varying values (including zero in the null case). In any
given statistical test, it must be indexed or measured in some defined unit
appropriate to the data, test, and statistical model employed. In the previous
illustrations, ES was variously expressed as a departure in percent from 50,
a departure in 1Q units from 100, a product moment r, a difference between
two medians in dollars, etc. It is clearly desirable to reduce this diversity of
units as far as possible, consistent with present usage by behavioural scien-
tists. From one point of view, a universal ES index, applicable to all the
various research issues and statistical models used in their appraisal, would be
the ideal. Apart from some formidable mathematical-statistical problems in
the way, even if such an ideal could be achieved, the result would express ES
in terms so unfamiliar to the researcher in behavioral science as to be self-
defeating.

However, some generalization is obviously necessary. One cannot pre-
pare a set of power tables for each new measurement unit with which one
works. That is, the researcher who plans a test for a difference in mean 1Qs
must use the same power tables as another who plans a test for a difference in
mean weights, just as they will use the same tables of t when the research is
performed. t is a “pure’ (dimensionless) number, one free of raw unit, as
are also, for example, correlation coefficients or proportions of variance.
Thus, as will be seen in Chapter 2, the ES index for differences between popu-
lation means is standardized by division by the common within-population
standard deviation (o), i.e., the ES here is not the difference between mean
“raw” scores, but the difference between mean *“z” standard scores (Hays,
1981), or the mean difference expressed in within-population ¢ units. In the F
test for k > 2 population means, the ES also uses such standardized means;
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in testing *‘ main effects” in the analysis of variance the ES is their standard
deviation, o,,, the standard deviation of standardized means (Chapter 8).

Each test for which power tables are provided thus has a metric-free ES
index appropriate to it. A higher order of generalization is frequently pos-
sible. Specifically, several ES indices can be translated into the proportion of
variance (PV) accounted for in the dependent variable. Where this is pos-
sible, it is discussed in the introductory material for the test. Also, each ES
index chosen usually relates to yet other commonly used indices and these are
also described in the same place.

The behavior scientist who comes to statistical power analysis may find
himself grappling with the problem of what ES to posit as an alternate to
the null hypothesis, or, more simply, how to answer the questions *‘ How
large an effect do I expect exists in the population?” He may initially find
it difficult to answer the question even in general terms, i.e., “small” or
‘“large,” let alone in terms of the specific ES index demanded. Being forced
to think in more exact terms than demanded by the Fisherian alternative
(ES is any nonzero value) is likely to prove salutary. He can call upon theory
for some help in answering the question and on his critical assessment of
prior research in the area for further help. When these are supplemented with
the understanding of the ES index provided in the introductory material to
the relevant chapter, he can decide upon the ES value to adopt as an alterna-
tive to the null.

When the above has not provided sufficient guidance, the reader has an
additional recourse. For each statistical test’s ES index, the author proposes,
as a convention, ES values to serve as operational definitions of the qualitative
adjectives “‘small,”” ““medium,” and **large.”” This is an operation fraught with
many dangers: The definitions are arbitrary, such qualitative concepts as
‘“large™ are sometimes understood as absolute, sometimes as relative; and
thus they run a risk of being misunderstood.

In justification, several arguments may be offered. It must first be said that
all conventions are arbitrary. One can only demand of them that they not
be unreasonable. Also, all conventions may be misused and their conven-
tional status thus abused. For example, the .05 significance criterion, although
unofficial, has come to serve as a convention for a (minimum) basis for reject-
ing the null hypothesis in most areas of behavioral and biological science.
Unfortunately, its status as only a convention is frequently ignored; there
are many published instances where a researcher, in an effort at rectitude,
fails to report that a much desired null rejection would be possible at the .06
level but instead treats the problem no differently than he would have had it
been at the .50 level! Still, it is convenient that ‘‘significance” without further
specification can be taken to mean “significance at no more than the .05
level.”
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Although arbitrary, the proposed conventions will be found to be reason-
able by reasonable people. An effort was made in selecting these operational
criteria to use levels of ES which accord with a subjective average of effect
sizes such as are encountered in behavioral science. * Small >’ effect sizes must
not be so small that seeking them amidst the inevitable operation of measure-
ment and experimental bias and lack of fidelity is a bootless task, yet not so
large as to make them fairly perceptible to the naked observational eye.
Many effects sought in personality, social, and clinical-psychological research
are likely to be small effects as here defined, both because of the attenutation
in validity of the measures employed and the subtlety of the issues frequently
involved. In contrast, large effects must not be defined as so large that their
quest by statistical methods is wholly a labor of supererogation, or to use
Tukey’s delightful term * statistical sanctification.” That is, the difference in
size between apples and pineapples is of an order which hardly requires an
approach via statistical analysis. On the other side, it cannot be defined so as
to encroach on a reasonable range of values called medium. Large effects are
frequently at issue in such fields as sociology, economics, and experimental and
physiological psychology, fields characterized by the study of potent variables
or the presence of good experimental control or both.

Since effects are appraised against a background of random variation,
the control of various sources of variation through the use of improved
research designs serves to increase effect sizes as they are defined here. A
simple example of this is a study of sex difference in some defined ability.
Assume that a difference of 4 score points exists between male and female
population means, where each population has a standard deviation of 16.
A research plan which randomly samples the two populations (simple
randomized design or comparison between two independent means) is
operating with an ES of 4/16 = .25. Another research plan might proceed by
comparing means of males and their sisters (comparison of two dependent
means). Now, these populations can also be assumed to have a mean differ-
ence of 4 score points, but because of the removal of the variation between
families afforded by this design (or equivalently when allowance is made for
the brother-sister correlation in the ability), the effective standard deviation
will be reduced to the fraction 4/] —r of 16, say to 12 (when r between

siblings = .44), and the actual ES operating in the situation is 4/12 = .33,
a larger value than for the simple randomized design. Thus, operative effect
sizes may be increased not only by improvement in measurement and experi-
mental technique, but also by improved experimental designs.

Each of the Chapters 2-10 will present in some detail the ES index
appropriate to the test to which the chapter is devoted. Each will be translated
into alternative forms, the operational definitions of *“small,”” “‘medium,” and
“large” will be presented, and examples drawn from various fields will
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illustrate the test. This should serve to clarify the ES index involved and
make the methods and tables useful in research planning and appraisal. Fi-
nally, in Chapter 11, Section 11.1 is devoted to a general consideration of ES
in the behavioral sciences.

1.5 TyPES OF POWER ANALYSIS

Four parameters of statistical inference have been described: power,
significance criterion (@), sample size (n), and effect size (ES). They are so
related that any one of them is a function of the other three, which means
that when any three of them are fixed, the fourth is completely determined.
This relationship makes formally possible four types of power analysis; in
each, one of these parameters is determined as a function of the other three
(Cohen, 1965, pp. 97-101).

1.5.1 POWER As A FUNCTION OF a, ES, AND n. The preceding material
‘has been largely oriented toward the type of analysis in which, given the
specification of a, ES, and n, power is determined. For example, an investi-
gator plans a test of the significance of a product moment r at a, = .05 using
n = 30 cases. The ES he wishes to detect is a population r of .40. Given these
specifications, he finds (by the methods of Section 3.3 in Chapter 3) that power
equals .61. He may then decide to change his specifications to increase power.

Such analyses are usefully performed as part of research planning.
They can also be performed on completed studies to determine the power
which a given statistical test had, as in the power survey of the studies in
a volume of the Journal of Abnormal and Social Psychology (Cohen, 1962).
In each of Chapters 2-10, the power tables (numberd B.3.A., where B is the
chapter number and A indexes the significance criterion) are designed for
this type of analysis. The sections designated B.3 discuss and illustrate the
use of these tables.

1.5.2 n as A FuncTioN oF ES, a, AND POWER. When an investigator
anticipates a certain ES, sets a significance criterion a, and then specifies
the amount of power he desires, the n which is necessary to meet these
specifications can be determined. This (second) type of power analysis must
be at the core of any rational basis for deciding on the sample size to be
used in an investigation (Cohen, 1965, pp. 97-99). For example, an investi-
gator wishes to have power equal to .80 to detect a population r of .40 (the
ES) at a, =.05. By the methods described in Section 3.4 in Chapter 3, he
finds that he must have n = 46 cases to meet these specifications. (A discussion
of the basis for specifying desired power and the use of power=.80 as a
convention will be found in Section 2.4 of Chapter 2.)

This major type of power analysis is discussed and illustrated in the
Sections B.4 (where B indexes the chapter numbers 2-8). Each of these
sections contain sample size tables (numbered B.4.A) from which, given a,
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the ES, and desired power, the n is determined. A slightly different approach
to n determination is employed in Chapters 9 and 10.

1.5.3 ES As A FUNCTION OF a, n, AND POWER. A third type of power
analysis is of less general utility than the first two, but may nevertheless be
quite useful in special circumstances (Cohen, 1970). Here, one finds the ES
which one can expect to detect for given a, n, and with specified power. For
example, an investigator may pose the question, * For a significance test of a
product moment r at a, = .05 with a sample of n = 30, what must the popula-
tion r (the ES) be if power is to be .80, i.e., what is the detectable ES for these
specifications 7’ The answer, obtainable by backward interpolation (in Table
3.3.5) is that the population r must be approximately .48. Were his n equal to
46, the detectable ES would be r = .40.

This form of power analysis may be conventionalized for use in compari-
sons of research results as in literature surveys (Cohen, 1965, p. 100). One
can define, as a convention, a comparative detectable effect size (CDES) as
that ES detectable at a, = .05 with power = .50 for the n used in the statistical
test. So defined, the CDES is an inverse measure of the sensitivity of the
test, expressed in the appropriate ES unit.

" This type of power analysis is not discussed in detail in the ensuing
chapters. However, when readers have become familiar with the use of the
tables, they will find that it can be accomplished for all of the statistical tests
discussed by backward interpolation in the power tables, or when it proves
more convenient, in the sample size tables.

1.5.4 a as A FuncTioN OF n, POWER, AND ES. The last type of power
analysis answers the question, *“ What significance level must I use to detect a
given ES with specified probability (power) for a fixed given n?” Consider
an investigator whose anticipated ES is a population r of .30, who wishes
power to be .75, and who as an n of 50, which she cannot increase. These
specifications determine the significance criterion he must use, which can
be found (by rough interpolation between subtables in Table 3.4.1) to be
about a; =08, or a, = .15).

This type of analysis is very uncommon, at least partly because of the
strength of the significance criterion convention, which makes investigators
loath to consider “‘large™ values of a. We have seen that this frequently
means tolerating (usually without knowing it) large values of b, i.e., low
power. When power issues are brought into consideration, some circum-
stances may dictate unconventionally large a criteria (Cohen, 1965, p. 99ff).

This type of power analysis is not, as such, further discussed in Chapters
2-10, although it is indirectly considered in some of the examples. When the
reader has become familiar with the tables, it can be accomplished for all
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the statistical tests discussed in this book by interpolation between subtables
of the sample size tables (B.4.A), or when more convenient, between power
tables (B.3.A), within the range provided for a, i.e., a,: .01-.20, and a, :
.005-.10.

In summary, four types of power analysis have been described. This book
is designed primarily to facilitate two of these, the solutions for power and
for sample size. It is also possible, but with less ease, to accomplish the other
two, solution for ES and for a, by means of backward interpolation in the
tables.

1.5.5 “ProOVING” THE NuLL HyPOTHESIS. Research reports in the
literature are frequently flawed by conclusions that state or imply that the
null hypothesis is true. For example, following the finding that the difference
between two sample means is not statistically significant, instead of properly
concluding from this failure to reject the null hypothesis that the data do
not warrant the conclusion that the population means differ, the writer
concludes, at least implicitly, that there is no difference. The latter conclusion
is always strictly invalid, and is functionally invalid as well unless power is
high. The high frequency of occurrence of this invalid interpretation can be
laid squarely at the doorstep of the general neglect of attention to statistical
power in the training of behavioral scientists.

What is really intended by the invalid affirmation of a null hypothesis is not
that the population ES is literally zero, but rather that it is negligible, or
trivial. This proposition may be validly asserted under certain circumstances.
Consider the following: for a given hypothesis test, one defines a numerical
value i (for iota) for the ES, where i is so small that it is appropriate in the
context to consider it negligible (trivial, inconsequential). Power (1 — b) is
then set at a high value, so that b is relatively small. When, additionally, a is
specified, n can be found. Now, if the research is performed with this n and it
results in nonsignificance, it is proper to conclude that the population ES is
no more than i, i.e., that it is negligible; this conclusion can be offered as
significant at the b level specified. In much research, “no”’ effect (difference,
correlation) functionally means one that is negligible; * proof” by statistical
induction is probabilistic. Thus, in using the same logic as that with which we
reject the null hypothesis with risk equal to a, the null hypothesis can be
accepted in preference to that which holds that ES = i with risk equal to b.
Since i is negligible, the conclusion that the population ES is not as large as i
is equivalent to concluding that there is “ no”’ (nontrivial) effect. This comes
fairly close and is functionally equivalent to affirming the null hypothesis
with a controlled error rate (b), which, as noted above, is what is actually
intended when null hypotheses are incorrectly affirmed (Cohen, 1965, pp.
100-101; Cohen, 1970). (See Illustrative Examples 2.9, 3.5, 6.8, and 9.24.)
(Also, see Fowler, 1985.)



1.7 PLAN OF CHAPTERS 2-9 17

This statistically valid basis for extracting positive conclusions from ‘‘nega-
tive findings’’ may not be of much practical help to most investigators. If, for
example, one considers a population r = .10 as negligigle (hence, i), and plans
a test of the null hypothesis (at a, = .05) for power = .95 (b = .05) to detect
i, one discovers that the n required is 1294; for power = .90 (b = .10), the
required n = 1047; and for power = .80 (b = .20), n = 783 (Table 3.4.1).
For the much more liberal specification of r = .20 as i, the test (at a, = .05)
for power = .95 (b = .05) requires n = 319; for power = .90 (b = .10) requires
n = 259, and even for power = .80 (b = .20), the required n = 194 (Table
3.4.1). Thus, relatively large sample sizes are necessary to establish the negli-
gibility of an ES. But if nothing else, this procedure at least makes explicit what
it takes to say or imply from a failure to reject the null hypothesis that there is
no (nontrivial) correlation or difference between A and B.

1.6 SIGNIFICANCE TESTING

Although the major thrust of this work is power analysis, a simple rela-
tionship between power and significance made it relatively simple in the
computation of the power tables to provide an aid to significance testing
which users of this handbook may find convenient. Generally, we can define
the effect size in the sample (ESs) using sample statistics in the same way as
we define it for the population, and a statistically significant ESg is one which
exceeds an appropriate criterion value. For most of the power tables, these
criterion values for significance of the sample ES (for the given a significance
criterion and n) are provided in the second column of the power tables under
the symbol for the ES for that test with subscript ¢ (for criterion), e.g.,
d_ for the t test on means.

1.7 PLAN OF CHAPTERS 2-10

Each of the succeeding chapters presents a different statistical test. They
are similarly organized, as follows:

Section 1. The test is introduced and its uses described.
Section 2. The ES index is described and discussed in detail.

Section 3. The characteristics of the power tables and the method of
their use are described and illustrated with examples.

Section 4. The characteristics of the sample size tables and the method
of their use are described and illustrated with examples.

Section 5. In Chapters 2-6 and 8, the use of the power tables for signifi-
cance tests is described and illustrated with examples.



CHAPTER 2

The t Test for Means

2.1 INTRODUCTION AND USE

The arithmetic mean is by far the most frequently used measure of
location by behavioral scientists, and hypotheses about means the most
frequently tested. The tables have been designed to render very simple the
procedure for power analysis in the case where two samples, each of n cases,
have been randomly and independently drawn from normal populations,
and the investigator wishes to test the null hypothesis that their respective
population means areequal, H,: m, — mg = 0 (Hays, 1973, p. 408f; Edwards,
1972, p. 86), referred to below as Case 0. The test is the t test for independent
means. The tables can also be used to analyze power for (a) the t test on means
of two independent samples when n, # ng (Case 1), (b) an approximate t test
on the means of independent samples when o, # og (Case 2), (¢) a one-sample
t test of the null hypothesis that a population mean equals some specified
value, Hy:m = ¢ (Case 3) (Hays, 1981, p. 279), and (d) the t test on the means
of dependent samples, i.e., paired values (Case 4) (Hays, 1981, pp. 296-298;
Edwards, 1972, p. 247f). These latter four applications will be discussed below.
following consideration of the (Case 0) t test for independent means drawn
from equally varying populations and based on equal size samples. Finally,
the tables can also be used for significance testing, as detailed in Section 2.5.

In the formal development of the t distribution for the difference between
two independent means, the assumption is made that the populations sampled
are normally distributed and that they are of homogeneous (i.e., equal)
variance. Moderate departures from these assumptions, however, have
generally negligible effects on the validity of both Type I and Type II error
calculations. This is particularly true for nondirectional tests and as sample
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sizes increase above 20 or 30 cases. The only noteworthy exception to the
above is under the condition of substantially unequal variances together
with substantially unequal sample sizes (whether small or large). Summaries
of the evidence in regard to the ““robustness” of the t (and F) test is provided
by Scheffé (1959, Chapter 10), and in less technical terms, by Cohen (1965,
pp. 114-116). See also Boneau (1960, 1962).

2.2 THEe EFrecT SizE INDEX: d

As noted above (Section 1.4), we need a “pure’’ number, one free of our
original measurement unit, with which to index what can be alternately
called the degree of departure from the null hypothesis of the alternate
hypothesis, or the ES (effect size) we wish to detect. This is accomplished by
standardizing the raw effect size as expressed in the measurement unit of
the dependent variable by dividing it by the (common) standard deviation
of the measures in their respective populations, the latter also in the original
measurement unit. For the two independent samples case, this is simply
@.2.1) d="Ta"Ms

g
for the directional (one-tailed) case, and

(2.22) d= Ma—ms

(o4
for the nondirectional (two-tailed) case,

where  d = ES index for t tests of means in standard unit,
m,, mg = population means expressed in raw (original measurement)
unit, and
o = the standard deviation of either population (since they are
assumed equal).

The use of d is not only a necessity demanded by the practical require-
ments of table making, but proves salutary in those areas of the behavioral
sciences where raw units are used which are quite arbitrary or lack meaning
outside the investigation in which they are used, or both. Consider, for ex-
ample, the question whether religious groups A and B differ in their favor-
ableness toward the United Nations. The latter may well be indexed by an
ad hoc attitude scale which yields a score expressed in points, such that
the more points the more favorable the attitude. The absolute size of a
point is a consequence of arbitrariness in the decisions made by the investi-
gator, and/or in the scale construction method, and/or in the writing or selec-
tion of the items. If the A population has a mean of 280 and the B popula-
tion a mean of 270, the question “How large is the effect?’” can only be
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answered with “ten points,” a generally unsatisfactory answer in the ab-
sence of a basis for answering the necessarily following question, ** Well,
how large is a point?”

d provides an answer to such questions by expressing score distances in
units of variability. If, in the above situation, the common within-popula-
tion standard deviation is ¢ = 100 scale points,
m,—mg 280-270 10

d=

o 100 100

i.e., the means differ by a tenth of a standard deviation. Since both numera-
tor and denominator are expressed in scale units, these ‘‘cancel out,” and
d is a pure number (here a ratio), freed of dependence upon any specific
unit of measurement.

On the other hand, consider the circumstance when ¢ =35 rather than
100. Now,

10
=—=2.0,
5

i.e., the means differ by two standard deviations. This is obviously a much
larger difference than isd=.1.

But how large are each of these differences, and how much larger is the
second than the first? There are various ways the values of d may be under-
stood.

2.2.1 d As PerRCENT NONOVERLAP: THE U MEASURES. If we maintain
the assumption that the populations being compared are normal and with
equal variability, and conceive them further as equally numerous, it is possible
to define measures of nonoverlap (U) associated with d which are intuitively
compelling and meaningful. As examples:

1. Whend =0, and therefore either population distribution is perfectly
superimposed on the other, there is 1009, overlap or 09 nonoverlap,
hence U, =0. In such a circumstance, the highest 509, of population B
exceeds the lowest 509 of population A. We designate as U, (50%; in this
example), a second percentage measure of nonoverlap, the percentage in
the B population that exceeds the same percentage in the A population.
Finally, as third measure of nonoverlap, U;, we take the percentage of the
A population which the upper half of the cases of the B population exceeds.
Whend =0,U, =50.0%.

2. Whend =.1 as in the above example, the distribution of the popula-
tion with the larger mean, B, is almost superimposed on A, but with some
slight excess, i.e., some nonoverlap. U, here equals 7.7%;, that is, 7.7% of
the area covered by both populations combined is not overlapped. For U,,
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the value is 52.0%, i.e., the highest 52.0% of the B population exceeds
the lowest 52.09 of the A population. For U,, the value is 54.0%, i.e., the
upper 509 of population B exceeds 54.09 of the values in the A popula-
tion.

3. When we posited the smaller o (=5), we found d =2.0. U, then
equals 81.19%;, the amount of combined area not shared by the two popula-
tion distributions. In this case, the highest 84.19, of the B population
exceeds the lowest 84.19 of the A population, thus U, =84.19%,. Finally,

the upper half of the B population exceeds 97.79; of the A population, so
that U; =97.7%.

Table 2.2.1

Equivalents of d

2
d U' Il2 l.l3 r r
0 0.0% 50.0% 50,0% .000 .000
o1 7.7 52,0 54,0 .050 .002
.2 .7 54,0 57.9 .100 .010
.3 21.3 56.0 61.8 148 .022
M 27.4 57.9 65.5 196 .038
.5 33.0 59.9 69.1 243 .059
.6 38.2 61.8 72.6 .287 .083
7 b3.0 63.7 75.8 .330 .109
.8 b7.4 65.5 78.8 524 .138
.9 51.6 67.4 81.6 A0 .168
1.0 554 69.1 84,1 Ny .200
1.1 58.9 70.9 86.4 482 .232
1.2 62.2 72.6 88.5 NS .265
1.3 65.3 7.2 90.3 «5ks .297
1.4 68.1 75.8 91.9 57 .329
1.5 70.7 77.3 93.3 .600 .360
1.6 3.1 78.8 9k, 5 .625 .390
1.7 75.4 80.2 95.5 648 NAT)
1.8 77.4 81.6 96.4 .669 8
1.9 79.4 82.9 97.1 .689 Y
2.0 81.1 84,1 97.7 .707 .500
2.2 84.3 86.4 98.6 .740 .5u8
2.h 87.0 88.5 99.2 .768 .590
2.6 89.3 90.3 99.5 793 .628
2.8 91.2 9.9 99.7 81k .662
3.0 92,8 93.3 99.9 .832 .692
3.2 9k, 2 9.5 99.9 .8u8 <719
3.4 95.3 95.5 * .862 703
3.6 96.3 96.4 * .874 .76k
3.8 97.0 97.1 * .885 .783
k.o 97.7 97.7 * .89 .800

* Grester than 99.95
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The reader is free to use whichever of these U measures he finds most
meaningful to him in the context of his application. They are simply related
to d and each other through the cumulative normal distribution. If d is
taken as a deviate in the unit normal curve and P as the percentage of the
area (population of cases) falling below a given normal deviate, then

(2.2.3) uU,-P,,
2.2.4) U,=Py
2 P‘/2 - l 2U2 - l
2.2.5 U, = =
( ) 1 Pd/z Uz

Table 2.2.1 presents U,, U,, and U, for values of d=.1 (.1) 2.0 (.2)
4.0. Its use will be illustrated after we have considered two other bases for
the understanding of d.

2.2.2 d IN TERMS OF CORRELATION AND PROPORTION OF VARIANCE.
Membership in the A or in the B population may be considered to be a
simple dichotomy or a two point scale. Scoring it, for example, 0 for member-
ship in A and 1 for membership in B (the values assigned are immaterial),
one can express the relationship between population membership and any
other variable as a Pearson product-moment correlation coefficient (r).
Each member in the two populations may be characterized by a pair of
variables, the “score” on population membership (X) and the value of the
other variable (Y), and the r between X and Y can then be found by any of
the usual computing formulas for r (Hays, 1973, p. 631f; Cohen & Cohen,
1975, pp. 32-35), or more readily as the point biserial r (Cohen & Cohen,
1975, p. 35ff). Investigators may prefer to think of effect sizes for mean
differences in terms of r’s, rather than d’s, and they are related by

d
(2.2.6) r V& ia
Formula (2.2.6) is appropriately used when the A and B populations are
such that they can be conceived as equally numerous. This will usually be
the case when A and B represent some experimental manipulation (e.g., the
presence or absence of a stimulus, or two different sets of instructions),
or some abstract property (e.g., high versus low anxiety level, or native
versus foreign speaker), as well as when the dichotomy represents real and
equally numerous populations, as is the case (at least approximately) with
males and females. The case of equally numerous populations is the usual
one. This is the case assumed for the values of r given in Table 2.2.1.
When, however, the populations are concrete and unequal collections of
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cases, the inequality should figure in the assessment of the degree of relation-
ship (e.g., finally diagnosed schizophrenics versus others on a diagnostic
psychological test). The more general formula for r should then be used:
d
r= —————
Vd?+(1/pq)’
where p = proportion of A’s in combined A and B populations, and
q=1-—p (i.e., proportion of B’s).

[The reader will note that when p=q=.5, formula (2.2.7) reduces to
formula (2.2.6).]

Once a difference between population means of A and B can be expressed
asr, it can also and usually most usefully be expressed as r2, the proportion
of the total variance (PV) of Y in the combined A and B populations as-
sociated with or accounted for by population membership (X =0 or .1).

Table 2.2.1 present values of both r and r? equivalent to d for the case
where equally numerous populations are assumed. If the means of two
equally numerous populations on a variable Y differ by d = 1.0, then popu-
lation membership relates to Y with r = .447, and r? = .200 of the combined
population variance in Y is associated with A versus B membership (X).

(22.7)

2.2.3 ““SMALL,” “MEDIUM,” AND “LARGE” d VALUES. When working
with a variable Y which has been well studied, the selection of an effect size
expressed in d offers no particular difficulty. On the one hand, estimates of
the within-population o are readily at hand and the number of raw points
difference between A and B population means to be detected (or to serve as
an alternate hypothesis to the null) arise naturally out of the content of
the inquiry. Thus, a psychologist studying the effects of treatment in phenyl-
pyruvic mental deficiency will likely have an estimate of the o of IQ in such a
population (e.g., o = 12.5) and be able to posit an interest in detecting a mean
difference between treated and untreated cases of, say, 10 IQ points. Thus,
he goes directly to d =10/12.5 = .8. Similarly, an anthropologist studying
social class differences in height in a preliterate culture would have an esti-
mated o of height, for example, 2.5 in., and would posit the mean difference he
was seeking to detect between two social class populations, say 2 in. He, too,
could then find his difference expressed as d = 2/2.5, which (also) equals .8.

But consider now the frequently arising circumstance where the variable
Y is a new measure for which previously collected data or experience are
sparse or even nonexistent. Take, for example, an especially constructed
test of learning ability appropriate for use with phenylpyruvic mental
deficients. The investigator may well be satisfied with the relevance of the
test to his purpose, yet may have no idea of either what the o is or how
many points of difference on Y between means of treated and untreated
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populations he can expect. Thus, he has neither the numerator (m, — mg)
nor the denominator (o) needed to compute d.

It is precisely at this point in the apparent dilemma that the utility of
the d concept comes to the fore. It is not necessary to compute d from a
posited difference between means and an estimated standard deviation; one
can posit d directly. Thus, if the investigator thinks that the effect of his
treatment method on learning ability in phenylpyruvia is small, he might
posit a d value such as .2 or .3. If he anticipates it to be large, he might posit
d as .8 or 1.0. If he expects it to be medium (or simply seeks to straddle
the fence on the issue), he might select some such value asd = .5.

The terms *“small,” “medium,” and *‘large” are relative, not only to
each other, but to the area of behavioral science or even more particularly
to the specific content and research method being employed in any given
investigation (see Sections 1.4 and 11.1). In the face of this relativity, there is
a certain risk inherent in offering conventional operational definitions for
these terms for use in power analysis in as diverse a field of inquiry as be-
havioral science. This risk is nevertheless accepted in the belief that more
is to be gained than lost by supplying a common conventional frame of
reference which is recommended for use only when no better basis for esti-
mating the ES index is available.

SMALL EFFECT SIZE: d=.2. In new areas of research inquiry, effect
sizes are likely to be small (when they are not zero!). This is because the
phenomena under study are typically not under good experimental or
measurement control or both. When phenomena are studied which cannot
be brought into the laboratory, the influence of uncontrollable extraneous
variables (‘‘noise’’) makes the size of the effect small relative to these (makes
the ““signal”’ difficult to detect).

The implication of d =.2 as the operational definition of a small differ-
ence between means can be seen in Table 2.2.1. When d =.2, normally
distributed populations of equal size and variability have only 14.79, of
their combined area which is not overlapped (U,). If B is the population
with the larger mean and A the other, the highest 54 % of the B population
exceeds the lowest 549 of the A population (U,). Our third measure of
nonoverlap (U;) indicates that 57.99 of the A population is exceeded by
the mean (or equivalently the upper half) of the B population.

From the point of view of correlation and maintaining the idea of equally
numerous populations, d =.2 means that the (point biserial) r between
population membership (A vs. B) and the dependent variable Y is .100,
and r? is accordingly .010. The latter can be interpreted as meaning that
population membership accounts for 19 of the variance of Y in the com-
bined A and B populations.

The above sounds indeed small (but see Section 11.2). Yet it is the order of
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magnitude of the difference in mean IQ between twins and nontwins, the lat-
ter being the larger (Husén, 1959). It is also approximately the size of the dif-
ference in mean height between 15- and 16-year-old girls (i.e., .5 in. where the
g is about 2.1). Other examples of small effect sizes are adult sex differences
on the Information and Picture Completion Subtests of the Wechsler Adult
Intelligence Scale, favoring men, while a difference favoring women on the
Digit Symbol Test which is twice as large (Wechsler, 1958, p. 147).

MEDIUM EFFECT SIZE: d =.5. A medium effect size is conceived as
one large enough to be visible to the naked eye. That is, in the course of
normal experience, one would become aware of an average difference in
IQ between clerical and semiskilled workers or between members of pro-
fessional and managerial occupational groups (Super, 1949, p. 98).

In terms of measures of nonoverlap (Table 2.2.1), ad =.5 indicates that
33.09% (=U,) of the combined area covered by two normal equal-sized
equally varying populations is not overlapped; that (where mg >m,) 59.9%,
(=U,) of the B population exceeds 59.99, of the A population; finally,
that the upper half of the B population exceeds 69.1%; (=U;) of the A
population.

In terms of correlation, d =.5 means a point biserial r between popula-
tion membership (A vs. B) and a dependent variable Y of .243. Thus, .059
(=r?) of the Y variance is “accounted for” by population membership.

Expressed in the above terms, the reader may feel that the effect size desig-
nated medium is too small. That is, an amount not quite equal to 6% of
variance may well not seem large enough to be called medium. Butd =.5
is the magnitude of the difference in height between 14- and 18-year-old
girls (about 1 in. where o = 2). As noted above, it represents the difference in
mean [Q between clerical and semiskilled workers and between professionals
and managers (about 8 points where o =15). It is also the difference in
means on the World War 1l General Classification Test for enlisted men
who had been teachers versus those who had been general clerks (Harrell
and Harrell, 1945, pp. 231-232). Depending on his frame of reference, the
reader may consider such differences either small or large. We are thus
reminded of the arbitrariness of this assignment of quantitative operational
definitions to qualitative adjectives. See Section 11.2.

LARGE EFFECT SIZE: d =.8. When our two populations are so separ-
ated as to make d =.8, almost half (U, =47.49%) of their areas are not
overlapped. U, = 65.5%,, i.e., the highest 65.5% of the B population exceeds
the lowest 65.59%, of the A population. As a third measure, the mean or
upper half of the B population exceeds the lower 78.89, (=U;) of the A
population.

The point biserial r here equals .371, and r? thus equals .138.

Behavioral scientists who work with correlation coefficients (such as, for
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example, educational psychologists) do not ordinarily consider an r of .371
as large. Nor, in that frame of reference, does the writer. Note however that
it is the .8 separation between means which is being designated as large,
not the implied point biserial r. Such a separation, for example, is represented
by the mean IQ difference estimated between holders of the Ph.D. degree
and typical college freshmen, or between college graduates and persons with
only a 50-50 chance of passing in an academic high school curriculum
(Cronbach, 1960, p. 174). These seem like grossly perceptible and therefore
large differences, as does the mean difference in height between 13- and 18-
year-old girls, which is of the same size (d = .8).

2.3 Power TABLES

The power tables are used when, in addition to the significance criterion
and ES, the sample size is also specified; the tables then yield power values.
Their major use will then be post hoc, i.e., to find the power of a test after
the experiment has been performed. They can, of course, also be used in
experimental planning by varying n (or ES or a or all these) to see the conse-
quences to power of such alternatives.

2.3.1 CasE 0: g, =0g, n, = ng. The power tables are designed to yield
power values for the t test for the difference between the means of two
independent samples of equal size drawn from normal populations having
equal variances (Case 0). They are described for such use below, and in a
later section for other conditions (Cases 1-4). Tables list values for a, d,
and n:

1. Significance Criterion, a. There are tables for the following values of
a: a; =.01, a, = .05, a, =.10; a, = .01, a, =.05, a, =.10, where the sub-
scripts refer to one- and two-tailed tests. Since power at a, is to an adequate
approximation equal to power at a, = 2a, for power greater than (say) .10,
one can also use the tables for power at a, = .02 (from the table for a, = .01),
a,=.20 (from a; =.10), a; =.005 (from a, =.01), and a, =.025 (from
a, =.05).

2. Effect Size, ES. It will be recalled that in formula (2.2.1) the index d
was defined for one-tailed tests as
LY
o
where the alternate hypothesis specifies that mg >m,, and o is the common
within-population standard deviation (i.e., o, = o5 = 0).



Table 2.3.1

2

Power of t test of m;, = m, ata, = .01

THE t TEST FOR MEANS

d

" d 10 .20 .30 .40 .50 .60 .70 .80 1.00 1,20 1.40
8 1,31 02 03 O 05 08 12 b 19 30 43 57
9 1.22 02 03 o+ 06 09 13 16 22 35 L9 63

10 1.1 02 03 o 07 10 1 18 25 k0o 55 70

n 1.08 02 03 05 07 11 15 21 28 ks 61 76

12 1.02 02 03 05 08 12 17 23 31 4y 66 8

13 .98 02 0 05 o8 13 19 26 3 s3 71 85

W 9 02 0 06 09 b 20 28 38 57 75 88

15 90 02 O 06 10 15 22 3N M 6 79 90

16 .87 02 o 06 10 16 24 3 s 64 82 92

17 B 02 O 07 11 18 26 36 47 68 85 94

18 81 02 o+ 07 12 19 27 38 4 n 8 95

19 79 02 o 07 13 20 29 40 51 M 89 96

20 77 02 oh 08 13 21 30 W2 su 76 9 97

21 75 02 05 08 b 22 32 4 56 79 93 98

22 73 02 05 08 15 23 W k6 59 81 94 98

23 1 02 05 09 15 24 36 48 61 8 95 99

24 J0 02 05 09 16 25 37 50 64 8 95 99

25 .68 02 05 10 17 27 39 53 66 8 9% 9

26 67 02 05 10 17 28 W1 5 68 8 97 99

27 .65 02 05 10 18 29 42 57 70 90 97 *

28 6 02 05 11 19 30 M 59 72 91 98

29 63 02 06 11 19 3 46 60 7 92 98

30 62 03 06 11 20 32 48 62 75 93 99

3N 61 03 06 12 21 W 50 6k 77 9 99

32 60 03 06 12 22 35 51 66 79 9% 99

33 .59 03 06 13 22 36 52 67 8 95 99

34 .58 03 06 13 23 37 53 69 8 95 99

35 .57 03 07 13 24 38 55 70 83 96

36 .56 03 07 b 25 ko 56 72 8k 96

37 .56 03 07 b 26 Wk 8 73 8 97

38 .55 03 07 15 26 W2 60 75 8 97

39 .Sk 03 07 15 27 43 61 76 87 98

4o .53 03 07 15 28 ks 62 78 88 98

h2 .52 03 08 16 30 47 & 8 90 98

bh .51 03 08 17 31 49 67 82 9 99

46 M9 03 08 18 33 st 69 8 93 9

L8 48 03 08 19 34 83 n 85 9l 9
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Table 2.3.1 (continued)

29

d

n 4 Jd0 .20 .30 .40 .50 .60 .70 .80 1.00 1.20 1.40
50 A7 03 09 20 36 55 I 87 95 99 *
52 M6 03 09 21 37 57 75 88 95 *
sk s ok 10 21 39 59 77 90 96
56 M5 05 10 22 ko 6 79 9 97
58 . 05 10 23 Wk 6 8 92 97
60 M43 05 N 2h 43 6 82 93 98
64 M2 05 11 26 ks 68 85 94 98
68 L0 05 12 27 W9 0N 87 9% 9
72 39 o5 12 29 52 4 8 97 9
76 .38 05 13 3N ss 76 9N 97 99
80 37 05 W 33 57 18 92 98 *
84 .36 06 15 34 60 81 9l 99
88 35 06 16 36 62 83 95 99
92 .35 06 16 38 64 85 96 99
96 34 06 17 39 66 8 9% 99
100 33 06 18 41 69 8 97 o+
120 30 07 21 49 77 93 99

140 .28 07 25 57 84 96 *

160 26 07 29 63 89 98

180 .25 08 33 69 93 99

200 .23 09 37 75 95 *

250 .21 n 4 84 98

300 A9 13 55 9N 99

350 .18 16 61 95 *

400 A6 18 69 97

450 A6 20 75 98

500 A5 22 80 99

600 43 27 87 =

700 J2 32 92

800 N2 37 95

900 J1 k2 97

1000 10 L6 98

* Power values below this point are greater than .995.
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Table 2.3.2

Power of t test of m, = m, ata, = .05

d

d. .10 .20 .30 .o .50 .60 .70 .80 1.00 1.20 1.40
8 .88 07 10 13 19 25 N 38 W6 & %8s
9 .82 07 M 15 20 27 3l W 50 66 79 88
10 .78 08 " 16 22 29 36 bs 53 70 8 9
n J 08 12 17 23 N 39 W8 57 74 86 9b
12 .70 08 12 18 25 33 W 51 6 77 89 96
13 .67 08 13 18 26 3k W sS4 63 80 9 97
W b4 08 13 19 27 36 k6 57 66 83 93 98
15 .62 08 13 20 28 38 48 59 69 85 9% 98
16 .60 09 b 2t 30 &4 5 62 72 8 95 99
17 .58 09 14 22 31 42 53 6L 74 89 96 99
18 56 09 15 22 32 L3 55 66 76 90 97 99
19 .55 09 15 23 33 bs 57 €8 78 92 98 *
20 .53 09 15 24 3 L6 59 70 80 93 98
21 52 09 16 25 36 48 60 72 82 9 99
22 .51 09 16 26 37 s0 62 M 83 95 99
23 50 10 16 26 38 51 6 76 8 96 99
2L U8 10 17 27 39 53 66 77 86 96 99
25 M7 10 17 28 40 sk 67 79 88 97 99
26 M6 10 18 28 W 55 69 80 8 97 *
27 M6 10 18 29 W2 57 70 82 90 98
28 s 10 18 30 43 58 72 83 90 98
29 b 10 19 30 U4 59 73 8 9 98
30 A3 10 19 N b6 61 M 8 92 99
N A2 10 19 32 &7 62 716 8 93 99
32 A2 " 20 33 48 63 77 87 93 99
33 A 1} 20 33 49 6h 78 88 9% 99
34 L0 M 20 3 50 66 19 8 95 99
35 L0 M 21 3 s0 67 8 8 95 99
36 g9 N 21 35 5 68 8 90 96 99
37 39 N 21 36 52 69 8 9 9% *
38 .38 n 22 36 83 70 8 9 96
39 .38 " 22 37 sk n 84 92 97
40 .37 1n 22 38 55 72 84 93 97
b2 .36 12 23 39 57 M 86 9k 98
by .35 12 26 4o 59 75 87 95 98
hé .35 12 24 Y] 60 77 89 95 99
48 Ak 12 25 43 62 79 90 96 99
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Table 2.3.2 (continued)
d
n ‘c Jd0 .20 30 L0 .50 .60 .70 .80 1,00 1,20 1,40
50 33 12 26 W 63 80 9N 97 9 = * *
52 .33 13 26 Ls 65 8t 92 97 99
[ .32 13 27 (13 66 83 93 98 99
56 3 13 28 47 68 84 93 98 99
58 3 13 28 49 69 85 9k 98 &
60 30 13 29 50 70 8 95 98
6h .29 1L 30 52 n 88 96 99
68 .28 1h n 5h 75 90 97 99
72 .28 15 33 s6 177 9N 97 9
76 27 15 3 s8 79 92 98 «
80 .26 15 35 60 1) 93 98
84 .26 16 36 61 82 oly 99
88 .25 16 37 63 84 95 99
92 L2417 38 65 85 9% 99
9% 24 17 O 66 B 96 99
100 .23 17 3] 68 88 97 *
120 .21 19 46 75 93 9
140 .20 21 51 80 95 99
160 A8 23 56 8 97 *
180 17 24 60 88 98
200 A6 26 64 91 99
250 .15 30 72 96 *
300 .13 34 79 98
350 .12 37 84 9
400 Jd2 M 88 &
450 A1 w9
500 10 47 9
600 Jd0 53 97
700 .09 59 98
800 .08 6h 99
900 .08 68
1000 .07 72

* Power values below this point are greater than .995,
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Table 2.3.3

Power of t test of m; =m, ata, =.10

d

n d. .10 .20 .30 M0 50 .60 .70 .80 1.00 1.20 1.40
8 .67 13 18 26 30 37 W 53 60 7h 85 92
9 .63 h 19 25 32 39 47 56 64 78 88 9l
10 .59 1 19 26 34 42 50 59 67 81 9 96
1" 57 1LY 20 27 35 [ 53 62 70 8 93 97
12 S 15 2 28 37 46 56 65 73 87 o4 98
13 52 15 21 29 38 LB 58 68 76 89 96 99
1 .50 15 22 30 4o 50 61 70 79 90 97 99
15 M8 15 23 31 k2 52 63 72 81 92 97 99
16 M6 16 23 32 43 sk 65 75 83 93 98 *
17 M5 16 24 33 Ly 56 67 76 84 9% 98

18 ok 16 24 34 Lé 58 69 78 86 95 99

19 M2 16 25 35 47 59 70 80 87 99
20 A 16 25 36 48 6 72 82 89 97 99

21 M0 17 26 37 s0o 62 W 8 90 97 99

22 39 17 26 38 51 6k 75 8L 9 98 *

23 .38 17 27 39 52 65 124 86 92 98

24 .38 17 27 Lo 53 67 78 87 93 98

25 37 17 28 W 55 68 79 88 o9 99

26 36 18 28 41 56 69 80 8 9 99

27 35 18 29 42 57 70 82 90 95 99

28 35 18 29 43 58 72 83 91 95 99

29 3 18 30 W 59 73 8 91 99

30 33 18 30 45 60 74 8 92 96 99

3 33 19 3 W5 6 7% 8 93 97 &

32 32 19 31 W6 62 76 8 93 97

33 32 19 32 47 63 77 8 94 97

34 -3 19 32 L8 64 78 88 ob 98

35 31 19 33 u8 65 79 89 95 98

36 <30 19 33 L9 66 80 89 95 98

37 .30 20 33 50 66 80 90 96 98

38 .30 20 34 51 67 81 9 96 99

39 29 20 3 51 68 8 91 96 99

4o 29 20 35 52 69 8 92 97 9

b2 .28 20 35 53 70 84 93 97 99

(1 28 21 36 55 72 85 9 99

46 27 21 37 86 73 86 94 98 9

L8 .26 21 38 57 75 88 95 98 *
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3

Table 2.3.3 (continued)
d

n d 0 .20 .30 .0 .50 .60 .70 .80 1,00 1,20 1.40
50 26 22 39 58 76 89 9% 99 * * * *
52 .25 22 39 59 77 90 96 99
sh .25 22 4o 61 78 90 97 99
56 L 22 W 62 80 91 97 99
58 L2 23 L2 63 8 92 97 99
60 .24 23 b2 6h 82 93 98 99
64 23 2 W 66 83 o9b 98 *
68 .22 2L 4s 68 85 95 99
72 .2 25 47 70 87 96 99
76 .21 25 %] n 88 96 99
80 .20 26 49 73 89 97 99
8h .20 26 51 74 90 97 *
88 A9 27 52 6 9 98
92 .19 27 53 77 92 98
9% .19 28 s4 79 93 99
100 .18 29 55 80 9% 99
120 JA7 0N 60 85 96 *
140 JA5 33 65 89 98
160 A 35 69 92 99
180 RN 37 sl 9 99
200 .13 39 76 96 *
250 RE by 83 98
300 0 4 88 99
350 .10 52 91 *
400 .09 55 ol
450 .09 59 9
500 .08 62 97
600 .07 67 99
700 .07 72 99
800 .06 76 *
900 .06 80
1000 .06 83

* Power values below this point are greater than .995.
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Table 2.3.4

Power of t test of m;, = m, ata, = .01

de .10 .20 .30 .40 .50 .60 .70 .80 1.00 1.20 1.koO

1.49 01 02 02 03 05 07 09 12 21 33 Ls
1,38 01 02 02 o4 05 08 n 15 25 39 54

1.28 o 02 03 ok 06 09 12 17 29 45 61
1.21 o1 02 03 ok 07 10 14 20 33 50 67
1.15 01 02 03 05 07 n 16 22 38 55 72
1.10 01 02 03 05 08 12 18 25 42 61 77
1,05 01 02 03 06 09 1L} 20 27 L6 65 81

1.01 01 02 ok 06 10 15 22 30 50 70 85
<97 o1 02 ol 07 n 16 24 33 sh 73 88
N 01 02 ol 07 12 18 26 35 57 77 90
91 01 02 oh 08 12 19 28 38 61 80 92
.88 01 02 05 08 13 21 30 W 64 83 9%

.86 01 02 05 09 1 22 32 W 67 8s
.83 01 03 05 09 15 24 3 b6 70 87
.81 01 03 05 10 16 25 36 W9 n 89

.78 o1 03 06 n 18 28 Lo [ 78 92

*8888 BELRYR

3
.70 02 03 07 w23 36 50 65 87 97

.68 02 oOh 08 15 25 39 sk 68 8 98
66 02 o4 08 15 26 LO 56 70 9 98
<65 02 ok 08 16 27 42 57 72 92 98
S 02 O 08 17 28 W43 59 M 92 99
.63 02 O 09 17 30 45 61 7% 93 99
62 02 O4 09 18 31 L6 62 77 9 9
62 02 o4 09 18 32 4B &4 78 95 99
«61 02 o+ 10 19 33 L9 66 80 95 99
.60 02 o 10 20 50 67 81 96 *
59 02 o+ 10 20 35 52 68 82 96
.58 02 05 1 2 37 s N 8 97
.56 02 05 12 23 39 57 74 86 98
.55 02 05 12 24 W 60 76 88 98
S 02 05 13 26 W43 62 78 90 99
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Table 2.3.4 (continued)

d

n d, .10 .20 .30 .4o .50 .60 .70 .80 1.00 1,20 1,40
50 .53 02 06 14 27 ks 6 8 91 99 * *
52 .51 02 06 1% 28 L7 67 82 92 99
sk .50 02 06 15 30 49 69 8 93 99
56 .50 02 06 16 3 51 7" 8 ob *
58 RT) 02 06 16 32 53 3 87 95
60 M8 02 o7 17 3l 55 75 88 96
64 M6 02 07 18 36 58 78 91 97
68 M5 02 08 20 39 62 81 93 98
72 A4 02 08 20 42 65 8 94 98
76 b2 03 09 23 uy 68 86 95 99
80 n 03 09 2 47 7N 88 96 99
84 L0 03 10 26 S50 M 90 97 99
88 39 03 10 27 52 76 91 98 *
92 .38 03 n 29 sh 78 93 98
96 .38 03 1 30 57 80 9% 99
100 .37 03 12 32 59 82 95 99
120 34 Ok 15 39 69 90 98 *
140 3 o 18 47 77 9% 99
160 .29 05 21 sh 8 97 *
180 .27 05 25 60 88 98
200 .26 06 29 66 92 99
250 .23 07 36 718 97 *
300 .21 09 45 86 99
350 .20 10 53 92 *
Loo .18 12 60 95
1] A7 W 66 97
500 16 16 72 98
600 15 20 81 *
700 a8 24 88
800 A3 28 92
900 42 33 95
1000 2 37 97

* Power values below this point are greater than .995.



Table 2.3.5

Power of t testof m; = m, ata, =.05

2 THE t TEST FOR MEANS

d

n d. 10 .20 .30 .40 .50 .60 .70 .80 1,00 1,20 1,40
8 1.07 05 07 09 n 15 20 25 %N b6 60 73
9 1.00 05 07 09 12 16 22 28 35 51 65 79
10 .94 06 07 10 13 18 24 3 39 5% n 84
n .89 06 07 10 1 20 26 34 43 61 76 87
12 .85 06 08 1 15 2 28 37 W6 65 80 90
13 .81 06 08 1 16 23 N 4o 50 69 83 93
1) .78 06 08 12 17 25 33 W3 53 72 8 94
15 .75 06 08 12 18 26 35 4§ 56 75 88 96
16 .72 06 08 13 19 28 37 48 59 718 90 97
17 .70 06 09 13 20 29 39 s 62 80 92 98
18 .68 06 09 W 21 3 (] 53 6l 83 9k 98
19 66 06 09 15 22 32 M3 55 67 8 95 99
20 4 06 09 15 23 33 L5 58 69 8 96 9
21 62 06 10 16 24 35 W 60 N 88 97 9
22 .61 06 10 16 25 36 4y 62 73 9 97 99
23 .59 06 10 17 26 38 81 I [ 91 98 *
24 .58 06 10 17 27 39 53 66 717 92 93

25 .57 06 N 18 28 W 55 68 79 93 99

26 .56 06 N 19 29 42 6 69 80 9% 99

27 .55 06 " 19 30 43 58 n 82 95 99

28 .54 07 1 20 N L5 59 73 83 96 99

29 .53 07 12 20 32 L5 61 74 85 96 99

30 .52 07 12 21 33 47 63 76 86 97 *

N .51 07 12 21 3 49 64 124 87 97

32 .50 07 12 22 35 S0 65 18 88 98

33 A9 07 13 22 36 51 67 80 89 98

34 48 07 13 23 37 53 68 81 90 98

35 48 07 13 23 38 s 70 8 9 98

36 A7 07 13 b 39 55 n 83 92 99

37 RT3 07 1L} 25 39 56 72 8l 92 99

38 L6 07 W 25 ko 57 713 85 93 99

39 R 07 |1 26 [} 58 74 86 9l 99

4o R 07 b 26 L2 60 75 87 9% 99

42 L3 07 15 27 Lb 62 7 89 95 99

Ly A2 07 15 28 W45 64 79 90 96 *

W6 M 03 16 30 u8 66 81 9 97

48 b1 08 16 3 L9 68 8 92 97
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Table 2.3.5 (continued)

d

n d 10 .20 .30 Lo .50 .60 .70 .80 1.00 1.20 1.40
50 40 08 17 32 s0 70 84 93 98 * * *
52 .39 03 17 34 51 n 86 9% 98
[ .38 08 18 34 53 73 87 95 98
56 .37 08 18 35 55 74 88 96 99
58 .37 08 19 36 57 76 89 96 99
60 .36 08 19 37 58 77 90 97 99
64 35 09 20 39 61 80 92 98 99
68 .34 09 21 ] 64 82 93 98 *
72 33 09 22 43 66 8 94 99
76 32 09 23 45 69 8 95 99
80 .3 10 24 47 M 88 96 99
84 30 10 25 49 73 90 97 99
88 30 10 26 81 % 9 98 *
92 .29 10 27 52 77 92 98
96, .29 1 28 sk 79 93 99
100 .28 n 29 56 80 94 99
120 .26 12 34 6L 87 97 *
140 W24 13 38 N 92 99
160 .22 w3 76 95 99
180 .21 16 47 8 97 *
200 20 17 5 85 98
250 A8 20 6 92 99
300 A8 23 69 96 *
350 A5 26 75 98
400 A 29 81 99
450 A3 32 85 99
500 .12 35 88 *
600 N 4y 93
700 0 W5 96
800 .10 52 98
900 .09 56 99
1000 .09 6 99

* Power values below this point are greater than .995.
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Power of t test of m;, = m, ata, =.10

d

n d. .10 .20 .30 M0 .50 .60 .70 .80 1.00 1.20 1.40
8 .88 n 12 15 20 25 N 38 b6 61 74 85
9 .82 n 13 16 21 27 3 b2 s0 6 79 89
10 .78 N 13 17 22 29 37 45 53 70 83 92
n g 0N 13 18 26 31 39 W8 57 4 B6 94
12 70 M 14 19 25 33 L 5 60 77 89 96
13 .67 n 14 19 26 34 Wy 54 63 80 91 97
1w 64 M W 20 27 36 k6 57 66 83 93 98
15 62 N 15 21 29 38 W49 59 69 85 94 98
16 60 N 15 2 30 O S5 62 72 8 95 99
17 .58 n 15 22 3 42 53 6h 74 89 9% 99
18 56 N 16 23 32 W3 5 66 76 90 97 99
19 55 M 16 24 33 L5 57 68 18 92 98 *
20 .53 12 16 24 35 47 59 70 80 93 98

21 52 12 17 25 36 L8 61 72 82 9% 99

22 .51 12 17 26 37 50 62 4 8 95 99

23 «50 12 17 26 38 51 64 76 85 9% 99

24 M8 12 18 27 39 53 66 77 8 9% 99
25 M7 12 18 28 L0 sk 67 79 88 97 9

26 M6 12 18 29 W 55 69 80 8 97 *

27 M6 12 19 29 42 57 70 8 90 98

28 M5 12 19 30 W 58 72 8 90 98

29 A4 12 19 31 45 59 73 84 9 98

30 M43 12 20 3 w6 6l % 8 92 9

3 M2 13 20 32 47 62 76 8 93 99

32 M2 13 20 33 48 63 77 87 93 99

33 n 13 2) 33 L9 64 78 88 94 99

34 Lo 13 21 34 50 66 79 89 95 99

35 40 13 21 35 51 67 80 89 95 99

36 39 13 22 35 52 68 8 90 96 99

37 <39 13 22 36 52 69 82 9 96 *

38 38 13 22 37 53 70 8 9 96

39 .38 13 23 37 54 n -] 92 97

4o .37 13 23 38 55 72 84 93 97

L' .36 13 24 39 57 74 86 9% 98

Ly <35 |1 24 Lo 58 75 87 95 98

L6 .35 % 25 [} 60 77 89 95 99

L8 .34 11 25 L3 62 79 90 96 99
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Table 2.3.6 (continued)
d
n d. .10 .20 .30 .40 .50 .60 .70 .80 1.00 1.20 1.40
50 33 Wb 26 w4y 63 80 91 97 99 & * *
52 33 w27 45 65 81 92 97 99
sk .32 W 27 4 66 83 93 98 99
56 3 15 28 47 68 84 93 98 99
58 .31 15 29 49 69 85 94 98
60 .30 15 29 50 70 86 95 98
&4 29 15 30 52 73 8 96 99
68 .28 16 32 s4 75 90 97 99
72 .28 16 33 56 77 9N 97 99
76 27 16 3 58 79 92 98 *
80 26 17 3% 60 & 93 98
84 26 17 36 61 82 9 98
88 .25 17 37 63 B4 95 99
92 260 18 39 65 8 96 99
95 24 18 L0 66 87 9% 99
100 23 18 W1 68 B8 97 99
120 .21 20 46 75 93 99 *
140 200 22 51 80 95 99
160 18 23 56 8 97 *
180 A7 25 60 88 98
200 A6 26 64 91 99
250 Jd5 30 72 96 *
300 .13 34 79 98
350 Jd2 37 8 9
Loo .12 ] 88 *
450 A1 W 9
500 0 47 93
600 0 5397
700 .09 59 98
800 .08 64 99
900 .03 68 *
1000 .07 72

* Power values below this point are greater than .995.
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For two-tailed tests [formula (2.2.2)],

m, —
d=l_‘\__m°|,

(4

where the alternate hypothesis specifies only thatm, # mg.

Provision is made ford = .10 (.10) .80 (.20) 1.40. Conventional definitions
of ES have been offered above, as follows:

small: d= .20,
medium: d= .50,
large: d=.80.

3. Sample Size, n. This is the size of each of the two samples being
compared. Provision is made for n=8 (1) 40 (2) 60 (4) 100 (20) 200 (50)
500 (100) 1000.

The values in the body of the table are the power of the test times 100,
i.e., the percentage of tests carried out under the given conditions which will
result in the rejection of the null hypothesis. The values are rounded to the
nearest unit, and they are generally accurate to within + 1 as tabled (i.e.,
to within .01).

Illustrative Examples

2.1 An experimental psychologist designs a study to appraise the effect
of opportunity to explore a maze without reward on subsequent maze
learning in rats. Random samples of 30 cases each are drawn from the
available supply and assigned to an experimental (E) group which is given
an exploratory period and a control (C) group, which is not. Following
this, the 60 rats are tested and the number of trials needed to reach a cri-
terion of two successive errorless runs is determined. The (nondirectional)
null hypothesis is [mg — mc| = 0. She anticipates that the ES would be
such that the highest 60% of one population would exceed the lowest 60% of
the other, i.e., U, = 60% (Section 2.2). Referring to Table 2.2.1, she finds
that U, = 59.99 is equivalent to our conventional definition of a medium
effect: d =.50. That is, the alternative hypothesis is that the population
means differ by half a within-population standard deviation. The significance
criterion is a, = .05. What is the power of the test? Summarizing the speci-
fications,

a,=.05, d=.50, ng=nc=n=230.

In Table 2.3.5 (for a, =.05), for column d =.50 and row n = 30, power
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equals .47. Thus, for the given sample sizes and using the a, = .05 signifi-
cance criterion, the investigator does not quite have a fifty-fifty chance of
detecting d = .50.

The choice of d need not have proceeded by asserting the expectation
that the ES was “medium” and using the conventional d = .5 value. Experi-
ence with the subjects and the maze in question or reference to the literature
may have provided the experimenter with an estimate of the within-
population standard deviation of trials scores, o (say 2.8), and theory or
intuition may have suggested a specific value for the experimental effect,
|mc — mg| (=2 trials, let us say). She would then use the explicit formula
2.2.2),

d= — = =—=71.

m,—m,| 2
o 2.8

In this case, in Table 2.3.5 with n=30 as before but now with
d =.70, power is found to be .76 (or by linear interpolation for d =.71,
power =.77).

It can also be argued that, given a theory, the psychologist would probably
predict the direction of the difference, say m¢c > mg (i.e., the animals profit
from their exploratory experience) and that therefore a directional test
should be used. In this case, Table 2.3.2 for a, =.05 would be used, with
the results

for *“medium” d = .50: n =30, power = .61,
for explicit d (from (2.2.1)) =.71: n =30, power = .86.

As described above (Chapter 1, Section 1.2), power is greater for direc-
tional tests than nondirectional tests, other things equal, provided that the
experimental results are in the anticipated direction. Experimenters are in an
embarassing position when they obtain large experimental effects in the un-
anticipated direction (Cohen, 1965, pp. 106-111).

This example was chosen, in part, to point out that the frequently selec-
ted sample size of 30 does not provide adequate power at the conventional
a, = .05 against a medium ES, which is frequently as large as can reasonably
be expected. Only when a large (d =.80) ES can be anticipated, for n = 30
at a, = .05, is-power as high as most investigators would wish, in this in-
stance .86 (from Table 2.3.5). When a small (d =.20) ES is anticipated, for
n =30, a, =.05, power is only .12 (Table 2.3.5)—probably not worth the
effort involved in performing the experiment.

2.2 A psychiatric investigator, in pursuing certain endocrinological
factors implicated in schizophrenia, performs an experiment in which urine
samples of 500 schizophrenics and 500 comparable normals are analyzed
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for a certain relevant metabolic product which is approximately normally
distributed with homogeneous variability. Since the implicated endocrino-
logical factor is only indirectly related to the metabolic product in the urine
and perhaps for other reasons, he anticipates only a small ES, specifically
that d = .20. He selects the conservative significance criterion of a, = .01.
What is the power of his t test? Summarizing the specifications:

az = .Ol, d = .20, ns = nN = 500.

In Table 2.3.4 (for a, =.01), for column d =.20, row n = 500, power
=.72.

Were he to be satisfied with the less stringent a, =.05 significance
criterion, he would find (from Table 2.3.5) power equal to .88. Note that
rather large samples are required to detect small effects (at least as we have
conventionally defined them). Ordinarily, the investigator seeking to detect
a small effect will hardly be able to afford the luxury of a stringent signifi-
cance criterion such as a =.01. He may well want to consider increasing his
Type I (a) error risk to perhaps .10 in order to keep the magnitude of his
Type II (b) error risk from becoming so large as to make the experiment
uninformative in the likely event of a nonsignificant difference. Naturally,
the increase in a is made before, not after, the data are collected.

2.3.2 CasE 1: n, #ng, o, =0p. The power tables will yield useful
approximate values when, from the two normal equally varying populations,
samples of different sizes are drawn. In such cases, compute the harmonic
mean of n, and ng,

2n, ng
n,+ng

@2.3.1) n’

and in the n column of the table, find n'.

Power values found under these conditions will be underestimates.! How-
ever, within the values for n available in the table when n,/ng is between .5
and 2.0, the true value will generally be within .01 of the tabled value.
Further, once n’ is large (say greater than 25), even far greater discrepancies
between n, and ng will result in trivially small underestimates.?

The fact that n, is not equal to ng will not effect the validity of the interpre-
tation of d in terms of the U and r measures of Section 2.2, provided we
continue to conceive of the populations as equally numerous, although the
samples are of unequal n.

1 This is because the table is treating the t test for n as based on df =2n’ — 2, when
there are actually df =n, +ng —2, a larger value.

2 This is because of the speed with which the t distribution with df > 50 approaches
that with df = oo, i.e., the normal distribution.
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Illustrative Example

2.3 In a psychological service center, cases are assigned by an essen-
tially random process to different psychotherapeutic techniques, a *“ standard ™
technique (A) and one featuring some innovation (B). After a period of
time, 90 cases have been treated by Method A and 60 cases by Method B.
The investigators wish to determine whether the new method (B) is better
than the old (A), using final staff conference consensus ratings of improve-
ment as the criterion. They posits an ES such that, with the B population
higher, about 409, (=U,) of the area covered by both population distri-
butions would not overlap (see Chapter 2, Section 2.2). From Table 2.2.1,
he finds thatU, = 38.2 %, is equivalent tod = .6. The statement of the problem
implies a directional test, since presumably they are indifferent to the possi-
bility that B is worse than A. (Recall that the null hypothesis here is m, <
mg, thus that B worse than A is indistinguishable from B = A.) Accord-
ingly, they use a one-tailed test, with, say the a, = .05 significance criterion.
Thus, the specifications are

a,=.05 d=6U,=382%), n,=90+#60=ng
With unequal n, he finds [from (2.3.1)]

_2mnp _ 2(90) (60) _ 10800
T ng+ng 90+60 150

’

(Note that n’, the harmonic mean, is smaller than the arithmetic mean,
which is (90 4+ 60)/2 = 75.)

In Table 2.3.2 (for a, = .05), column d = .6, row n = 72, he finds power
equal to .97 (a trivially small underestimate).

Note that had they performed a nondirectional test which would have
permitted the conclusion that B was worse than A, power (Table 2.3.5 for a,
= .05) would have been .94. Power is less, but at this level not much less;
they might consider the possibility of reaching the conclusion that B is worse
than A worth the small loss of power.

2.3.3. CASE 2: o, #0p, n, = ng. For normal populations of unequal
variance, the formula for t does not follow the tabled values for t, that is,
this condition constitutes a ““failure of the assumptions™ (or more properly
conditions) under which t is generated. However, there is ample evidence
for the robustness of the t test despite moderate failure of this assumption
provided that sample sizes are about equal (Scheffé, 1959; Cohen, 1965).
Approximations to the true power values which are adequate for most
purposes are available by using the tables in the ordinary way.

It should be kept in mind that when o, # op, the definition of d will be
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slightly modified. Since there is no longer a common within-population o,
d is defined as above (formulas (2.2.1) and (2.2.2)), but instead of o in the
denominator, the formula requires the root mean square of o, and og,
that is, the square root of the mean of the two variances:

(2.3.2) o = \/"_A_;'_"_B )

The unequal variability need not affect the conception of d developed
in Section 2.2. Given that there is a difference between o, and oy, we merely
are using a kind of average within-population standard deviation to standar-
dize the difference between means. It is not the arithmetic mean of o,
and og, but, as noted, the root mean square. (However, unless o, and oy
differ markedly, o’ will not differ greatly from the arithmetic mean of o,
and og.)

‘In interpreting d for this case, the U (percent nonoverlap) measures can
no longer be generally defined and the Table 2.2.1 U columns will not obtain.
However, interpreting d in terms of r and r? proceeds completely unaffected
by o, # oy, and the conventional definitions of small, medium, and large d
can also continue to be used.

Note that if o, 7 og and it is also the case thatn, #ng, the nominal values
for t and power at a given significance criterion, a, may differ greatly from
the true values (Scheffé, 1959; Cohen, 1965, p. 115). Under these conditions
(o4 # o and n, #ng, simultaneously), the values in Tables 2.3 may be greatly
in error.

INlustrative Example

2.4 A labor economist plans a sample survey of men and women
workers in a given occupation to determine whether their mean weekly
wages differ. He proceeds to do a t test,® using random samples of 100 cases
in each group and a nondirectional significance criterion of a, =.01. He
deems it quite possible that the wage variability differs between the two
populations, i.e., o, # 0. He may arrive at the ES =d he is interested in de-
tecting in any of the following ways:

1. Explicit d. He may plan for allowing that the difference between
means, |m, —mg], is $2.00 a week, and that the “average” variability of
the two populations is $4.00. Note that this value is not the standard devia-
tion of either the population of men workers or that of women workers,

3 Departure from normality of the population distributions should not materially
affect the validity of the t test and power estimate for samples of this size.
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but the root mean square of their respective population standard deviations,
o’ (formula (2.3.2)). He then finds d by formula (2.2.2), at $2.00/$4.00 = .5.

2. Direct Use of d. From the experience with the d concept, he may
directly posit d =.5, or arrive at that value as a convention. Although the
unit he is using is ¢’ and not o, this need not substantially alter his concep-
tion of d.

3. Correlation and Proportion of Variance. If he finds it conceptually
convenient to work in correlational terms, he may conceive of the ES he
seeks to detect as a degree of (point biserial) correlation between sex and
weekly wage as r ~ .25, or as the amount of wage variance associated with
sex asr? = .06. In Table 2.2.1, he finds that r = .243 and r? = .059 are equiva-
lent tod =.5. The fact that o, # oy does not at all affect the validity of the
correlational interpretation of a mean difference. Note, however, that under
these conditions the U measures no longer apply.

Thus, by any of the above routes, we have the specifications:
32=.01, d=.5, I'IA=I'IB= ]00.

In Table 2.3.4, for column d = .5, row n = 100, he finds power equal to
.82. If he is prepared to work with the less stringent a, = .05, he would find
from Table 2.3.5 power equal to .94. On the other hand, if he is prepared to
restrict his test to detecting a wage difference favoring men workers and
not the opposite, he would use the a; = .01 level and from Table 2.3.1 find
power = .88.

2.3.4 Case 3: ONE SAMPLE OF n OBSERVATIONS. Up to this point we
have considered the most frequent application of the t test, i.e., to cases
involving the difference between two sample means where we test the hypoth-
esis that two population means are equal or, equivalently, that their differ-
ence is zero. The t test can also be used with a single sample of observations
to test the hypothesis that the population mean equals some specified value,
H,: m =c. The value specified is relevant to some theory under considera-
tion. As an example, consider an anthropological field study of a preliterate
group in which a random sample of n children is tested by means of a
“culture-fair” intelligence test which yields an IQ whose mean, as standar-
dized in Western culture, is 100. The null hypothesis then is that the popula-
tion mean for the preliterate children is 100. As another example, consider
an attitude scale so constructed that a neutral position is represented by a
value of 6 (as in Thurstone equal-appearing interval scaling). For a single
sample of n subjects, one can test the null hypothesis that the population
from whence they are drawn is, on the average, neutral, i.e., H,: m =6.
Rejection with a sample mean greater than 6 yields the conclusion that the
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population is on the average ‘“‘favorable’” toward the social object, and
with less than 6 that the population is on the average “unfavorable.”
For the one-sample case (Case 3), we define

m-—c

(2.3.3) d, =

(4

as the ES index. Conceptually there has been no change: d;’ is the differ-
ence between the (alternate) population mean (m) and the mean specified by
the null hypothesis (c), standardized by the population standard deviation
(o). Since c is conceived as the mean of a normal population whose standard
deviation is also o, i.e., the population specified by the null hypothesis, the
interpretation of d;’ proceeds exactly as described in Section 2.2 with regard
to Table 2.2.1 and the operational definition of small, medium, and large
effects.

However, the tables cannot be used as for the Case 0 two-sample test
for two reasons:

1. In the statistical test for Case 0, there are two sample means, each
of n cases, each contributing sampling error to the observed sample difference
between means, while in the one-sample test, there is only one sample mean
based on n cases, the value ¢ being a hypothetical population parameter
and thus without sampling error.

2. The power tables were computed on the basis that n is the size of
each of two samples and that therefore the t test would be based on 2(n — 1)
degrees of freedom. In the one-sample case, t is perforce based on only n — 1
degrees of freedom.

Thus, if one simply used the power tables directly for d;” and n for the
one-sample case, one would be presuming (a) twice as much sampling error
with consequently less power and (b) twice the number of degrees of freedom
with consequently more power than the values on which the tables’ prepara-
tion was predicated. These are not, however, equal influences; unless the
sample size is small (say less than 25 or 30), the effect of the underestimation
of the degrees of freedom is negligible. On the other hand, the doubling of
the sampling error would have a substantial effect for all values of n. How-
ever, the latter is readily compensated for. For the one-sample case, use
the power tables with n and

(2.34) d=d,Vv2.

Multiplying d;’ by \/ 2 (approximately 1.4) compensates for the tables’
assumption of double the error variance. The other problem resulting from
the use of n is that the tabled value for power presumes that the degrees of
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freedom are 2(n — 1), when actually there are only n — 1 degrees of freedom.
However, since t approximates the limiting normal distribution fairly well
even when its degrees of freedom are as few as 25 or 30, power values based
on double the actual degrees of freedom will not be materially overestimated
except in very small samples.

Seeking values for d =d;’V'2 raises the troublesome problem of numbers
intermediate between the ones tabled. However, linear interpolation between
power values will, except in rare instances, provide approximate power
values which will differ from the true ones by no more than one or two units.

The value of dy’ (nor d) may be arrived at (or interpreted) through the
equivalences with the U and r statistics (Section 2.2 and Table 2.2.1). It
requires the further conceptualization that ¢ [the “null” value of the popu-
lation mean, formula (2.3.3)] is the mean of a normal population whose
o and size are equal to that of the population being sampled.

In summary, for Case 3, one defines d;" as above and interprets it exactly
as described in Section 2.2, but values for power are sought in the power tables
by means of d =d;’V'2. The resulting value is, except for very small samples,
a very slight overestimate.

Illustrative Example

2.5 It can be taken as known because of extensive record keeping over
a long period, that under standard conditions a given strain of laboratory
rats has a mean weight gain of 70 grams from birth to 90 days. To test the
implications of a developmental theory, an experiment is performed in which
a sample of 60 animals is reared from birth in total darkness. The investigator
is interested in whether, under these experimental conditions, the mean
weight gain of a population of animals departs from the standard population
mean of 70 in either direction, even slightly. Thus, the null hypothesis he
tests is Hy: m =c = 70. The investigator accepts d;" = .20 [formula (2.3.3)]
as a conventional operational definition of a slight departure. He uses the
relatively lenient significance criterion of a, =.10.

In order to allow for the fact that we have only one sample mean contri-
buting to error, rather than the two which the construction of the tables
presumes, the tables must be considered not ford,’, but using formula (2.3.4),

for d =d3'\/2 =.20 (1.4)=.28. Thus, the specifications for estimating
power are
a,=.10, d=.28, n=60.

In Table 2.3.6. (for a, = .10), for row b =60, he finds power in columns
d=.20 and d =.30 to be .29 and .50, respectively. Linear interpolation
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between these values yields approximate power at d = .28 of .8(.50 — .29)
+ .29 = .46.

2.3.5 CASE 4: ONE SAMPLE OF n DIFFERENCES BETWEEN PAIRED OBSER-
VATIONS. Although the general one-sample case as described in Case 3
above does not occur with much frequency in behavioral science applications,
a special form of it appears quite often. Data are frequently gathered in
X, Y pairs which are matched in some relevant way so that there are n pairs
of X, Y observations. The t test of the my — my difference proceeds with the
paired differences, X —Y =Z. Since my — my = My _y, = Mz, the null
hypothesis that my — my =0, or equivalently that my = my, is identical
to the null hypothesis that mz = 0. This in turn means that the one-sample
formula for d,’ (2.3.3) has ¢ =0 and becomes
(2.3.5) d; ="2

oz

The Z subscript is used to emphasize the fact that our raw score unit
is no longer X or Y, but Z. If the investigator is content to work with oy
as the standardizing unit, he can proceed to do so as described for Case 3,
usingd;’, and looking in the power tables ford =dz’'V'2 [formula (2.3.4) for
FAR

Note, however, that the t test predicated here is the one described in
textbooks as being for matched, dependent, or correlated means. If one were
to compute the product moment r between the X and Y values for each pair
in the population, the result would in general be a nonzero value. Indeed,
since matching is an experimental design technique used to remove irrelevant
sources of variance (see above, section 1.3), in practice such an r will be posi-
tive and material, say at least greater than + .30. In contrast, with indepen-
dent samples such as have been described in previous sections of this chapter,
the random pairing of X and Y values implied would perforce yield a popu-
lation r of zero.

Now, the o, of the denominator in formula (2.3.4), and hence the unit in
which the ES index dz’ for the difference in matched pairs is expressed, is
given by

(2.3.6) 0z=0x.y= Vox + oy’ —2roxay.

Note that as r (the population between X and Y as paired) increases,
oz decreases. In the case of matched pairs here being considered, on the
assumption of equal variance, i.e., ox? = ay? = o?,

(2.3.7) oz =0x_y=V202=2rc? =oV2(1-r).

Thus, the relative size of the standardizing unit for the d;’ of Case 4
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(dependent) to the d of Case 0 (independent) is oV'2(1 —r)/o = V2(1 —r).
In other words, a given difference between population means for matched
(dependent) samples is standardized by a value which is V2(1 —r) as large
as would be the case were they independent. Alternatively (and equivalently),
the dz’ value used as an ES index for means from matched samples, when
expressed in the same terms as for independent samples, namely o, the

common within-population standard deviation, is 1//2(1 —r) larger than
the d value for the same raw score difference in independent samples.

Although one can treat the matched pairs in Case 3 form, the standard-
izing unit, oz, will vary in size inversely with the size of r, as shown in formula
(2.3.7.). When no estimate of r can be made, one has no choice but simply
to apply the Case 3 procedure to the one sample of paired differences Z,
keeping in mind that the d;’ unit is oz. With an estimate of r available, a
preferable procedure is to use as the ES index
(2.3.8) d,/ = x~ My

g

Note that this is identically the same index as the d of formulas (2.2.1)
and (2.2.2), the difference between means standardized by the within-
population o. As was the case for dy’, all the interpretive material (e.g.,
U, r, r?) of Section 2.2 holds. However, for correct power values, the value
located in the power tables is not d,’, but rather

d,’
3. d=
2.3.9) Wi

As in Case 3, this procedure leads to an overestimate of power which
is trivial for all but small samples, since the tables assume 2(n — 1) degrees
of freedom where only n — 1 are actually available.

The advantages of matching can now be made readily apparent. Con-
sider an investigation which is to concern itself with the question of a sex
difference in some aptitude variable. Assume that elementary school boys
and girls each have population ¢ = 16, and one wishes to detect a difference
in raw population means of 8 points, using samples of n =40 subjects.
Assume the test is to be performed at the two-tailed .05 level (a, = .05).
The relevant power table is 2.3.5.

Case 0. Since the plan is to work with independent samples of 40 boys
and 40 girls, we use n =40 and
g ma=ms 8 _

c 1

[=,)

to find power = .60.
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Case 4. Instead of independent samples of boys and girls, the investi-
gator plans to draw 40 brother-sister pairs to detect the 8 point difference.
There is the same ES, namely,

,_|m,—m,|_ 8
dy =TT o=,

However, he estimates the r between brothers and sisters on this apti-
tude variable as .6 and in Table 2.3.5 for n =40 and

_d 5 _ 5
Vi-r V1-.60 .6325
he finds power =~ .93. Thus, given the same 8 point or .5 standardized
difference between means to detect, the use of the matched pairs design with
an estimated matching r of .60 has resulted in power of .93 instead of only

.60.
Note that if r were .40 instead of .60, he would look for the value

5 s
T ViI-.40 7746

d

.79,

.65,

and find power = .81 (by linear interpolation), a lesser increase because the
matching r is smaller. See Section 11.4 for a general treatment of the relative
power of difference and regressed difference scores.

Illustrative Examples

2.6 An educational researcher has developed two different programed
tests for teaching elementary algebra. From a high school grade, he selects
50 pairs of pupils so that the two members of each pair have 1Qs within 3
points of each other. He randomly assigns the members of each pair to the
A and B programs, and following instruction, tests all subjects on a common
algebra achievement test. He wishes to detect a difference [formula (2.3.8)]

m,—my

d4l = .4,

[+
a small to medium value, using the a, = .05 significance criterion. It would
not be correct to look for the value in the power table d,’ = .40, because
this value does not take into account the advantageous effect of matching.
The appropriate ES for this situation is [formula (2.3.9)]:

d,’ 4

d= =— .
Vi-r Vi-r
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r is the population correlation between 1Q-matched pairs in algebra
achievement. It is also the population r between 1Q and algebra achieve-
ment.* From past educational research, or from the sample data (if this
power analysis is being performed post hoc), he can estimate the population
r as .55. Thus,

ae 4 4
T W1—.55 .6708

.60.

If he were lacking a basis for estimating r, the investigator would have
reached the same result if he had postulated that the ES he was seeking to
detect in terms of paired differences in the achievement test, A—B=2Z
units, was [from formula (2.3.5)] d;’' = .42, so that, in Case 3 fashion, he

would use the power tables for d = .42V'2 ~ .60 [formula (2.3.4)).
Thus, in either instance, summarizing his specifications:

a,=.05 d=.60, n=50.

From Table 2.3.5, column d = .60, row n = 50, he finds power = .84.

Note that had the same problem been undertaken with independent
random samples of 50 cases with the same ES, namely d = .40, power would
be only .50 (Table 2.3.5). The effect of matching with an r of .55 makes the
effective d equal to .60 with a resultant large increase in power (from .50 to
.84).

2.7 Many behavioral science researchers use the ‘“own-control” prin-
ciple, i.e., each subject is observed under two conditions, X and Y, and
the experimental issue is the existence of a difference between my and my.
Thus, X, Y constitute the paired observations and the significance test is a
straightforward instance of Case 4. Sometimes Y and X represent * before”
and ““after” some intervening experimental manipulation whose effect on
a dependent variable is to be scrutinized. (In their failure to control for other
concomitants of time, such studies may be misleading.)

Consider a study to appraise the efficacy of prescribing a program of diet
and exercises to a group of overweight male students. The researcher gets
from each subject his ““ before’” weight X, prescribes the program, and checks
the ““after” weight Y 60 days later. The study employs a sample of 80 sub-
jects. The researcher wishes to know the power of a test at a, = .01 to detect
a mean loss (Z= X —Y) of 4 |Ib where the estimate of the population

=12 Ib. Thus [from formula (2.3.8)}, d," =4/12 =.33. He may estimate

4 Strictly speaking, this is true only if matching on IQ had been perfect. The postulated
matching (within 3 points) approaches closely enough to make the equation of the two
r’s substantially accurate.
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that under these circumstances the population r of before with after weight
would be in the vicinity of .80. Thus, his effective d [from formula (2.3.9)]
is

.33 33

d = ————— = = .74.
V1-.80 4472

Alternatively, he might have avoided the need to estimate r and reasoned
that, considering the distribution of weight loss Z, he wanted to detect a
mean loss of about .5 of the standard deviation of weight Josses, i.e. [formula
(2.3.5)]

dz, = 'lz =.J.
oz

To find the effective d, .5V 2= .71, or, in this instance, about the same
value (.74) found from the approach via formula (2.3.9).

Summarizing the specifications:

a, =.0l, d=.74, n = 60.

In Table 2.3.1 (for a, =.01), in the row n =60, columns d =.70 and
.80, we find respectively power of .93 and .98 between which linear interpola-
tion gives power of approximately .95. Thus, the researcher is almost certain
of detecting a mean loss of 4 Ib at the a, = .01 level, with n = 60.

Note how a relatively small d," of .33 becomes a d for table entry of
.74 which yields a high power value because of the effectiveness of *‘own-
control” matching. Such large matching r’s are not infrequent in own-
control designs in behavioral science.

2.4 SAMPLE SizE TABLES

The tables in this section use values for the significance criterion, the
ES to be detected, and the desired power to determine the sample size. They
would therefore be of primary utility in the planning of experiments to provide
a basis for the decision as to how many sampling units (n) are to be used.
Although decisions about sample size in behavioral science are frequently
made by appeal to tradition or precedent, ready availability of data, or
intuition (Cohen, 1965, p. 97ff), unless Type II error rate considerations
contribute to the decision, they can hardly be rational.

24.1 Case 0: o, =05, N, =ng. As was done in Section 2.3 for the
power tables, the use of the sample size tables is first described for the
conditions for which they were optimally designed, Case 0, where they yield
the sample size, n, for each of two independent samples drawn from normal
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populations having equal variances. Their use in other cases is described
later. Tables are used for a, d, and the desired power;

1. Significance Criterion, a. The same values of a are provided as for
the power tables. For each of the following a levels, a table is provided:
a, =.0l (a;=.02), a; =.05 (a,=.10), a; =.10 (a,=.20), a,=.01 (a; =
.005), and a, = .05 (a, =.025).

2. Effect Size, d. This value is defined and interpreted as above [formu-
las (2.2.1, 2.2.2)] and used as in the power tables. The same provision is

made: .10 (.10) .80 (.20) 1.40.
To find n for a value of d not provided, an adequate approximation is
given by substituting in the following:

Mo

~ 100d?

where n 4 is the necessary sample size for the given a and desired power at
d = .10, and d is the nontabulated ES. Round the result to the nearest integer.’

+1

(2.4.1) n

3. Desired Power. The sample size tables list desired values of .25, .50,
.60, 2/3, .70 (.05), .95, .99.

Some comment about the selection of the above values is in order. The
.25 value is given only to help provide a frame of reference in sample size
determination; it seems very unlikely that a behavioral scientist would nor-
mally desire only one chance in four of rejecting a null hypothesis. The values
are about equally spaced between .50 and .99. An exception to this equality
of power interval is the provision of power of 2/3. This was made so as to
give the sample size at which the odds are two to one that a given d would
be detected.

Entries for desired power values of .99, .95, and .90 are offered. This
makes possible the setting of Type Il error risk equal to the conventional
Type I, or a, risks of .01, .05, and .10. There are conceivable research cir-
cumstances where, given an alternate-hypothetical value of d, the investigator
may wish to equalize his Type I (a) and Type II (b =1 — power) risks.
The tables will accommodate this demand and provide the n values to
accomplish this aim at conventional a levels.

S The +1 in the formula is optimal for tests at a, =.05 (a, =.025). Slightly greater
accuracy is obtained if constants other than 1 are added at other a levels, as follows:
+1.5 at a, =.01 (a, =.005) and a, = .01 (a; =.02),
+ .7 ata; =.05 (a; =.10), and
+ 4ata, =.10 (a, =.20).
These constants are empirical and were determined by averaging discrepancies over the
range power >.70, .20 <d <1.00.
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Table 2.4.1
n to detect d by t test
8 = .01 (s, =.02)
d

Power .10 .20 30 M40 .50 .60 .70 .80 1.00 1,20 1.40
.25 s47 138 62 36 24 17 13 10 7 5 [
.50 1083 272 122 69 4s 3 2 18 12 9 7
R 1332 336 19 85 55 38 29 22 15 " 8
2/3 1552 382 170 97 62 LW 33 25 17 12 9
.70 1627 4bo8 182 103 66 by 35 27 18 13 10
.75 1803 bs2 202 14 74 52 3 30 20 W n
.80 2009 503 224 127 82 57 42 33 2 15 12
.85 2263 567 253 143 92 64 48 37 24 17 13
.90 2605 652 290 164 105 74 56 L2 27 20 1§
95 3155 790 352 198 128 89 66 51 33 23 18
.99 4330 1084 482 272 175 122 90 69 45 3 23

8, = .05 “2 =z ,10)
d_

Power .10 .20 30 W0 .50 .60 .70 .80 1.00 1.20 1.40
.25 189 48 21 12 8 6 5 4 3 2 2
.50 542 136 61 35 22 16 12 9 6 5 M
.60 721 181 81 46 30 21 15 12 8 6 s
2/3 862 216 96 55 35 25 18w 9 7 5
.70 942 236 105 60 38 27 20 15 10 7 6
.75 1076 270 120 68 by N 23 18 1 8 6
.80 1237 310 138 78 50 35 26 20 13 9 7
.85 1438 360 160 9 58 W\ 30 23 15 1N 8
.90 173 429 191 108 69 48 36 27 18 13 10
«95 2165 sh2 2 136 87 61 Ls 35 22 16 12
.99 3155 789 351 198 127 88 65 50 32 23 17

8 = .10 (‘2 = ,20)
d

Power .10 «20 30 W0 .50 .60 .70 .80 1.00 1.20 1.40
.25 7 19 9 5 3 3 2 2 2 2 2
.50 329 82 37 21 1 10 7 5 4 3 2
.60 wn 18 53 30 19 1w 10 8 5 4 3
2/3 586 Y] 65 37 24 17 12 10 3 4 3
.70 653 163 73 ) 27 19 W n 7 5 4
.75 766 192 85 48 3 22 16 13 8 3 4
.80 902 226 100 57 36 26 19 b 10 7 5
.85 1075 269 120 67 43 30 2 17 8 6
90 1314 329 146 82 53 37 27 21 1% 10 7
.95 1713 428 191 107 69 48 35 27 18 12 9
.99 2604 651 290 163 104 73 53 W 26 18
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Table 2.4.1 {continued)

2= .01 (o| = ,005)
d
Power .10 .20 30 L0 .50 .60 .70 .80 1.00 1.20 1.40
25 725 183 82 4y 3N 22 17 13 9 7 6
«50 1329 333 49 85 55 39 29 22 15 N 9
.60 1603 402 180 102 66 L6 3 27 18 13 10
2/3 1810 sk 203 NS Th 52 39 30 20 W 1
.70 1924 482 215 122 79 55 nw 32 2 15 12
.75 2108 528 236 134 86 - 60 ks 35 23 17 13
.80 2338 586 259 148 95 67 49 38 25 18 W
.85 2611 65k 292 165 106 74 [1] 43 28 20 15
.90 2978 746 332 188 120 84 62 48 N 2 1
<95 3564 892 398 224 1t 101 M 57 37 26 20
.99 4808 1203 536 302 19 136 100 77 S0 35 26

= .05 (01 = .025)

Power 40 .20 .30 .0 .50 .60 .70 .80 1,00 1.20 1.40
.25 332 8 38 2 10 8 6 5 & 3
.50 769 193 8 b9 32 22 17 13 9 7 5
.60 981 2u6 1o 62 Lo 28 21 16 n 8 (3
2/3 14 287 128 3 'Y 33 24 19 12 9 7
.70 1233 310 138 78 50 35 26 20 13 10 7
75 1389 3u8 185 88 57 Lo 29 23 15 n 8
.80 151 393 175 99 6 ks 33 26 17 12 9
.85 1797 Lso 201 n3 73 51 38 29 19 1L 10
«90 2102 526 234 132 85 59 L 34 22 16 12
.95 2600 651 290 163 105 73 sh k2 27 19 1
K] 3675 920 ko9 231 W8 103 76 58 38 27 20

However, in the judgment of the author, for most behavioral science
research (although admitting of many exceptions), power values as large as
.90-.99 would demand sample sizes so large as to exceed an investigator’s
resources. Even when, with much effort or at much cost, these large n’s can
be attained, they are probably inefficient, given the nature of statistical
inference and the sociology of science.

Why not seek power approaching 1.00, or equivalently, b risks close to
zero? Why not use the simple principle, *the smaller the Type Il error, the
better”’? For reasons that parallel the rejection of this principle as an opera-
tional principle for setting a levels. Other things equal, if a is made vanishingly
small, power becomes quite small. Similarly, if b is made very small (desired
power very large), other things being equal, required sample sizes become
very large. The behavioral scientist must set desired power values as well
as desired a significance criteria on the basis of the consideration of the
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seriousness of the consequences of the two kinds of errors and the cost of
obtaining data. He cannot literally place a dollar value on the “cost” of
each kind of error, as can the industrial quality control engineer who uses
exactly the same formal statistical inferential procedures. He can, however,
approximate this approach by subjectively weighing the gravity of these
two possibilities and the cost of generating data (but see Overall & Dalal,
1965).

The view offered here is that more often than not, the behavioral scientist
will decide that Type I errors, which result in false positive claims, are more
serious and therefore to be more stringently guarded against than Type Il
errors, which result in false negative claims. The notion that failure to find is
less serious than finding something that is not there accords with the conven-
tional scientific view.

It is proposed here as a convention that, when the investigator has no
other basis for setting the desired power value, the value .80 be used. This
means that b is set at .20. This arbitrary but reasonable value is offered for
several reasons (Cohen, 1965, pp. 98-99). The chief among them takes into
consideration the implicit convention for a of .05. The b of .20 is chosen
with the idea that the general relative seriousness of these two kinds of
errors is of the order of .20/.05, i.e., that Type I errors are of the order of
four times as serious as Type Il errors. This .80 desired power convention
is offered with the hope that it will be ignored whenever an investigator

can find a basis in his substantive concerns in his specific research investi-
gation to choose a value ad hoc.

Returning to the Case 0 use of the n tables and summarizing, the investi-
gator finds (a) the table for the significance criterion (a) he is using, and
looks for (b) the standardized difference between the population means
(d) along the horizontal stub and (c) the desired power along the vertical
stub. These determine n, the necessary size of each sample to detect d at the
a significance criterion with the desired power.

Illustrative Examples

2.8 Reconsider example 2.1 for the Case 0 use of the power tables in
which an experimental psychologist is studying the effect of opportunity
to explore a maze on subsequent maze-learning in rats. As described there,
initially she wished to detect an ES of d = .50 at a, = .05. Her plan to use n
= 30 animals in each of her E and C groups resulted in a power estimate of
.47. She will likely consider this value too low. Now let us assume that
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she wishes power to be .80 and wants to know the sample size necessary to
accomplish this. The specifications thus are

a, =.05, d =.50, power = .80.

In Table 2.4.1 for a, = .05, column d = .50, row power =.80,n (=n¢ =
ng equals 64. She will need two samples of 64 animals each to have an .80
probability of detecting d = .50 at a, = .05. Thus, under these conditions,
she will have to slightly more than double the planned n of 30 per group to
go from power of .47 to power of .80.

If, on the other hand, she had reason to anticipate a higher d, say of .80
(our conventional definition of a large ES), which she wished to detect with
the same power at the same a level, then

a, =.05, d = .80, power = .80.

In the same Table 2.4.1 for a, = .05, columnd = .80, row power = .80,
she finds n = 26 animals per group.

Alternatively, if she had reason to expect d = .20 (our conventional
definition of a small ES), for the same significance criterion and desired
power, the specifications are:

a,=.05, d=.20, power = .80.

Again in Table 2.4.1 for a, = .05, column d =.20, the same row power
= .80, n is 393 for each group.

This example illustrates dramatically the importance of putting oneself
in the position to estimate ES in experimental planning. Depending on
whether one positsd = .20 or .80, for representative conditions (i.e., a, = .05,
power = .80), one needs two samples of 26 or 393 animals for the Case 0
design. It seems fairly apparent that experimental planning can hardly pro-
ceed in the absence of a prior rendering of judgment about the size of the
effect one wishes to detect.

The researcher can, of course, reduce the n demanded by making his
specifications less stringent with regard to either the significance level or
the desired power (or both), if these are tolerable alternatives.

Thus, to take an extreme case with regard to the significance criterion, he
can both increase his a risk to .10 and further define ‘the existence of the
phenomenon™ in directional terms, i.e., predict that my < m.. Keeping the
other specifications for the original problem, he has:

a, =.10, d=.50, power = .80.

In Table 2.4.1 for a, =.10, for column d =.50, row power = .80, he
finds n (=nc=ng) =36, compared with n =64 for a, =.05 (same d and
power).
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Or, he can increase his b risk and settle for a 2:1 chance of detecting
his assumed d = .50, i.e.,

a,=.05, d=.50, power = 2/3.

In Table 2.4.1 for a, =.05, for column d = .40, row power = 2/3, he
finds n (= nc= ng) =47, again compared with n =64 for power =.80
(same a and d).

If he relaxes both a and desired power as above simultaneously, the
specifications are now

a, =.10, d = .50, power = 2/3.

In Table 2.4.1 for a; =.10, for column d =.50 and row power = 2/3,
he finds n ( = n¢ = ng) = 24 compared with 64 for more stringent a and power
(for the same d).

Experimental planning will frequently involve the study of the n demanded
by various combinations of levels of a, desired power, and possiblyd, with a
final choice being determined by the specific circumstances of a given research
(for illustration, see example 3.4 in the next chapter). If no acceptable com-
bination yields an n within the resources of the investigator, the feasibility
of more powerful designs (e.g., Case 4 for matched pairs) should be con-
sidered.

2.9 Consider again the circumstances of the investigation of an endo-
crinological factor in schizophrenia, presented above in example 2.2. The
design calls for a test of the significance of the difference between independent
means of hospitalized schizophrenics and normal controls, and the investi-
gator has large resources of patients and laboratory facilities. He anticipates
a relatively small ES, namely d = .20, and wants to decide the necessary n
for the research. He is prepared to use as a significance criterion a, = .05,
but in this instance wishes that his b (Type II) risk be of the same magnitude.
That is, he wishes to incur no greater risk that he will fail to detect a hypo-
thetical d = .20 than the risk that he will mistakenly conclude that a differ-
ence exists when d = 0. His specifications thus are

a,=.05, d=.20, power=1-b=1-.05=.95.

In Table 2.4.1 for a, =.05, column d =.20, row power =.95, he finds
n(=n, =ng) =651.

This example lends itself to illustrating the procedure of “proving” the
null hypothesis (Section 1.5.5). Assume that this experiment is now carried
out with n = 651 and that the investigator is prepared to consider d less than
.20 to be negligible, hence i = d = .20. If the t test on the sample data yields
a nonsignificant result, he can conclude that the population difference is
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negligible with a Type II risk of b no larger than .05 since were d .20 or larg-
er, the probability of detecting it would have been at least .95.

242 Casel: n, # ng,o0, =0g. Caselisnotcommon when the sample
size tables are used in experimental planning, since normally the planning
will presume the selection of samples of equal size. Equal-sized samples
are desirable, since it is demonstrable that with a given number of cases
available for division into two samples for experimentation, equal division
yields greater power than does unequal division.

There are, however, situations in which the size of one of the two samples
is fixed in advance by circumstances. Perhaps the resources to apply to a
given experimental treatment are limited to some fixed number, or perhaps
no more than a given number can be withheld for use as control subjects.
In such instances, the fixed sample size (ng) will in general be different
from the other sample, whose size is at the experimenter’s discretion (ny).
The tables entries, as in Case 0, are a, d, and desired power, and n is sought.
To find ny, substitute the fixed n (ng) and the n read from the table in

. _ ngn
(2.42) T

where ng = the fixed sample size,
n = the value read from the table, and
ny = the necessary sample size for the other sample.
When ng < in, a zero or negative denominator results, and the problem
is insoluble for the given specifications. One must either increase ng (usually
not possible) or change desired power, a, or d so as to decrease n.

INustrative Example

2.10 An educational psychologist plans research which will compare
the effectiveness of a computer-based program for teaching reading to
illiterates with a standard lecture method. He wishes to detect a d =.30
(i.e., between “‘slight” and ‘“moderate”) and is only interested in testing
whether the computer-based method (C) yields higher criterion scores than
the standard method (S), i.e.,, a directional (one-tailed) test. He sets his
significance criterion at .05 (=a,) and wishes power to be .75. That is,
if the C method is superior to the S method by d = .30, he is prepared to
run a risk of .25 (=b) of failing to get significant results, compared to the .05
risk he runs of concluding C’s superiority when the means are equal. Now,
if there were no restrictions of time or equipment availability, this would
be a Case 0 problem with the specifications
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a, =.05, d=.30, power =.75.

In Table 2.4.1 for a, = .05, column d = .30, row power =.75, he would
find n = (nc =ng) = 120, i.e., samples of 120 cases are needed in each group.

But now consider the real possibility that limitations in time and avail-
ability of equipment make it impossible for him to have more than 80 subjects
in the computer group, while he is relatively unrestricted in regard to the
sample size for the standard group. Given the fixed ng of 80, how many
cases does he need in the standard group (ny) to meet the same specifications?

In formula (2.4.2), withng = 80 and n = 120 (from Table 2.4.1 ata, = .05),
he finds

oo _(80)120) _
U7 280) =120

Thus, the specifications for a, d, and power would be met with a fixed
sample size of 80 in the C group, if he has 240 subjects in the standard
group.

243 CasE 2: o,#0g, n,=ng. The n tables are used in Case 2 in
exactly the same way as in Case 0. The inequality of population ¢ values
results only in a standardization of the difference in population means by
the root mean square of the population variances [formula (2.3.2)] instead
of the common population standard deviation. This has no effect on the
use of the n tables. Only d is affected, and only in its interpretation via U
measures; its interpretation in terms of r and r? remain unaffected. See the
discussion of the use of the power tables for Case 2, Section 2.3.3.

240.

Illustrative Example

2.11 A clinical psychologist plans a study of the orienting reflex in
which she will compare means of process paranoid schizophrenics (S) and
employee controls (C). On the basis of past findings, she expects that the S
group will show greater variability than the C group, but it is a mean differ-
ence she wishes to detect the a, = .05 level with power of .90.

In considering setting her ES, she may proceed in either of the following
ways (among others):

1. She may hypothesize that the ES of S vs. C population membership
is such that it accounts for about 10% of the variance of the combined pop-
ulations. She notes from Table 2.2.1 that when ar®> = .109,d = .7. Note that
the fact that the within-population variances of S and C are assumed to dif-
fer does not affect the validity of the r? interpretation. Her specifications
then are
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a, =.05, d=.7, power = .90.

In Table 2.4.1 for a, = .05, columnd = .7, row power = .90, she findsn
(=ng = n¢) = 44 cases.

2. She may she the value of d = .70 (or any other), not on the basis of
its  equivalent, but directly. That is, she may hypothesize that the standard-
ized difference between the population means is .70. Since she is assuming
that o2 # o2, the standardizing unit cannot be the common within-popula-
tion standard deviation, but is instead the square root of the mean of the

two variances, i.e., V(052 + o.2)/2 [formula (2.3.2)].

2.4.4 Case 3: ONE SAMPLE OF n OBSERVATIONS. In using the n tables
for the one-sample t test, the only departure from Case 0 is that which was
discussed in connection with the power tables for Case 3, i.e., the appro-
priate value of d for table entry. The reader is referred to Section 2.3.4. for
the relevant discussion of the details. Briefly, if one is testing, with a single
sample, the null hypothesis that the population mean has some specified
value, Hy:m = ¢, and scales the ES in the usual way as a standardized
difference, namely [formula (2.3.3)]

one uses the n tables for the value of d = d;’\/2. The size of n will be
underestimated, but only to a trivial degree, unless it is quite small (e.g.,
less than 10 or 15), when prudence might dictate using n + 1, instead of n
cases.

Illustrative Example

2.12 A political scientist plans to appraise the status of the attitude
toward the United Nations of the urban population of a new African repub-
lic. He will use an orally administered Thurstone Attitude Scale which has
the property that a neutral response is scaled 6 (on an 11-point scale). His
null hypothesis, then, is Hy: m = 6. Since he wishes to be able to conclude
that the average is either “pro” or “anti,” he plans a nondirectional test
and wishes to use a stringent significance criterion, namely a, =.01. He
also seeks the assurance of relatively high power, .90. Furthermore, he wants
to be in a position to conclude that the population in question is, on the
average, only trivially different from neutral if, when the data are in, he
does not find t to be significant. He defines such a trivial difference (i) as one
no greater than a departure of .10 of the population mean from 6 (=¢),
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expressed in population standard deviation units. But this .10 value is d;’
[formula (2.3.3)], the Case 3 ES measure, notd. To findd, d;’ must be multi-

plied by V2 [formula (2.3.4)]. The result is d =.10V'2 = .1414. The specifi-
cations are
a,=.01, d=.1414, power=.90.
In Table 2.4.1 for a, =.01, his d value is not tabled. Following the
procedure of Section 2.4.1, formula (2.4.1), he finds row power =.90 and

column d = .10, in order to find n_,, = 2978. He then substitutes this value
and d = .1414 in formula (2.4.1) to find

2978
100(.1414)?

Thus, he will need to draw a random sample of 1490 urban dwellers to
assure with .90 probability the detection at the a, = .01 level of a .10 stan-
dard deviation departure of the population m from neutrality (a value of 6).
If he should find, when the sample data are analyzed, that t is not significant,
he may conclude with Type II error risk b = 1 —.90 = .10 that the departure
from neutrality in the population is negligible (Section 1.5.5).

+ 1 =1490.

2.4.5 CAaSE 4: ONE SAMPLE OF n DIFFERENCES BETWEEN PAIRED OBSERVA-
TIONS. Here, again, the considzration involved in using the n tables are
exactly the same as for the power tables and involve the determination of
d. The issues are discussed in detail in Section 2.3.5, to which the reader
is referred. See also Section 11.2 for a more general treatment.

Summarizing for convenience, if the investigator has no basis for esti-
mating the population matching r between the X, Y pairs, he has no recourse
but to work with their difference, Z (=X —Y) in the fashion of Case 3.
That is, he indexes the effect size as [formula (2.3.5)]

with the standard deviation of the difference scores as the unit in which the

the mean difference is expressed, and enters the n tables with d =dz'V/2,
using formula (2.4.1) for “interpolation” when necessary.

If the investigator has a basis for estimating the matching r, he can
define [formula (2.3.8)]

My—m
d4l =2 ’
(<4

which is exactly the same index as the d of independent samples (2.2.1) and
(2.2.2), and use the n tables with [formula (2.3.9)] for
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The n read from the tables [or the tables plus formula (2.4.1)] is the
necessary number of pairs to detect d;’ or d,’ (for which we enter with d)
at the a significance criterion with the desired power. The Case 4 n (as was
true for the Case 3 n) is, in principle, an underestimate, but unless n is
quite small, the degree of underestimation is so small that it can be ignored.

Ilustrative Examples

2.13 In a child development study of maternal attitude toward children
with cerebral palsy, data are to be gathered in the following way. Each mother
to be selected has a child with cerebral palsy (P) and at least one other child
within 3 years of age who is free of the disease (C). The mothers are to
complete a series of attitude scales for each of their two children separately.
For each scale, a comparison is planned betweenm, and m.. Each mother’s
attitude toward her P child is *“controlled” by her attitude toward her C
child. The plan is to use a, = .05 as the significance criterion and power of
.80. A conventional definition of a medium effect size, d,’ = .50, is posited
for each scale. Note that d,’ is simply the mp, — m( difference, standardized
by the common within-population standard deviation [or, if op # oc, their
root mean square, ¢’, formula (2.3.2)]. What sample size of mothers is neces-
sary for these specifications?

For table entry, we require d from formula (2.3.9) and hence an estimate
of r, the population correlation between attitude scale scores toward P and
those toward C of such mothers, i.e., the within mother between child pairs
r. The investigator, drawing on relevant evidence from the research literature
and on the judgment that all sources of individual differences in attitude
between mothers (e.g., differences in education, personality factors, response
style) are contributing to this correlation, estimates r (probably conserva-
tively) as .40. Thusd = .50/\/ (1 — .40) = .50/.7746 = .645. The specifications
are

a, =.05, d = .645, power = .80.

As will generally be the case in Case 4 applications, the necessary d
value is not tabulated and formula (2.4.1) is used. In Table 2.4.1 fora, = .05,
one finds for row power =.80 in column d =.10, the n ,, value of 1571,
and substitutes it together with d in formula (2.4.1):

1571

n=m5—)z+l=38.8.
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Thus, a sample of 39 mothers is required. Note that if the research design
had involved comparisons of the means of independent samples of P mothers
with comparable C mothers (or equivalently if r were zero), 64 mothers of
each type would have been needed (for the specifications a, = .05, power =
.80, d = .50).

2.14 A neuropsychologist plans an investigation of the effect of leg
amputation on various aspects of sensory threshold and discrimination
above the amputation (A). He plans to control each A observation by
measurement of the amputee subject on the same area on the contralateral
side (C). He specifies a two-tailed test with Type I error risk of .02 (=a,)
and Type II error risk of .10 (=b, hence, power =.90). In specifying the
ES, he may reason along either of the following lines:

1. He considers the distribution of the differences between the paired
measures, A — C =Z. He anticipates that the mean Z value for the popula-
tion is of the order of .35 of a standard deviation of such differences (mid-
way between operationally defined small and medium ES), i.e., dz' = mg/
oz =.35 [formula (2.3.5)]. For table entry, he requires [formula (2.3.4)]

d=d;'V 2 =.35(1.414) = .495. His specifications thus are
a, =.02, d = 495, power = .90.

In Table 2.4.1 for a; = .0l (a, =.02) at row power = .90, if he is con-
tent to use d = .50, he finds® n = 105. This is the number of amputee subjects
(i.e., pairs of observations) he needs.

2. Alternately, he may prefer to work with the standard deviation of
the separate measures, ¢ ( = o, = o) as unit,” and conceive his ES as [formula
(2.3.8)]d,’ = m, — m¢/o = .35(say). He must also posit a value of the popula-
tion correlation coefficient between measures on the two limbs, r. In consider-
ing how to estimate this r, he may have information from normal (N)
subjects that estimates this value for them as ry =.70. It seems reasonable
to him that the effect of amputation may well be to reduce this correlation
to a value in the range .40-.60, for his sample. To find the values of d, he
substitutes in formula (2.3.9):

forr=.40, d=.35V(1—.40)= 452,
forr=.60, d=.35/V/(l-.60)=.553.

¢ Otherwise, he uses formula (2.4.1), for which he reads out of the table n ;o = 2605
and, substituting it and d = .495, finds n = 107 (or 108, see footnote 5).

7 If there is reason to believe that o, # oc (for example, o, > o¢ is not unlikely), we
revert to a Case 2 definition, and use [formula (2.3.2)] ¢’ = V(02 + 03)/2 in place of o in
the definition of d,’, with no effect on what follqws.
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Summarizing these specifications:

452
=553

These d values will require the use of formula (2.4.1). In Table 2.4.1 for
a, =.01 (a,=.02), for row power=.90, and column d=.10, he finds
n_,o = 2605, and substituting

ford = .452 (i.e.,r =.40),n =129,
ford = .553 (i.e., r = .60), n = 86.

Note how critical is the effect on n of the value of r posited. Since n
varies inversely with d2, and d? varies inversely with 1—r, the increase in
the required n from a smaller correlation rg to a larger oner, will require an
increase by a factor of (1 —rg)/(1 —ry), in the case above, (1 — .40)/(1 — .60)
=1.50, i.e., a 509, increase in n.

This may suggest that the route to d by means of d,’ (which is equivalent
to the Case O definition of d), because of its critical dependence on r, is
less desirable than the previous alternative, which only requires the setting
of ES in terms of dz, and avoids the necessity of positing a value for r. This
would, however, be a mistaken conclusion, since the decision about ES in
terms of d;’ carries with it an implicit value of r, as can be seen from the
relationship [formula (2.3.7)] oz = oV'2(1 —r) [where o is either the com-
mon population standard deviation or ¢’ from formula (2.3.2)]. Thus, if
one proceeds to d from dz” in order to avoid the estimation of r, which is
necessary to proceed to d from d,’, one has implicitly posited (by simple
algebra)

(2.3.10) Cor=1-3 (;-"—:)"
z

Thus, if the investigator would want to setd,’ at (let us say, for concrete-
ness) .4, but because he has no idea of r, instead elects to setdz’ at .6, he has
in effect unwittingly assumed r to be

1- g(%)z =.78,

i.e., a definite value. The point being emphasized is that r is inevitably a
part of the d value, and one can estimate it either explicitly or implicitly.
There are circumstances where the paired differences, Z, represent a
‘““natural” basis of study with which the investigator has some familiarity.
In such cases he more readily expresses the ES as dz’, and the fact that an
r is implicit in his value of d is only of academic interest. But, as we have
seen, the use of Z to evade the estimation of r does not succeed; a definite

a, =.02, d power = .90.
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value for r is merely being posited implicitly, rather than explicitly. It appears
obviously preferable that the researcher at least know, by means of formula
(2.3.10), what r is being implicitly posited when he uses dz’, or employ the
usually more natural approach viad,’ and come to terms with the problem of
explicitly estimating r for formula (2.3.9).

2.15 An experimenter in a psychology laboratory is organizing a study
to compare the effects of two reinforcement schedules on trials to response
acquisition, using white rats. The design she will employ will utilize pairs
of animals both of which come from the same litter and are free of obvious
defects; she will randomly assign one to the A group and the other to the B
group. She will consider the phenomenon she is interested in to be the super-
iority of the B over the A schedule, that is, more trials for A than B, and
moreover wants to keep her Type I risk quite small. She then chooses
a; =.01. The ES anticipated is moderate, as indexed by d,/ = .50. On the ba-
sis of past work, she estimates the between litter-mates learning abil-
ity correlation as r = .65. Her effective d, therefore, is [formula (2.3.9)]
.50/1/(1 — .65) = .845. Finally, she wishes to have a probability of .95 of
detecting this (assumed) large effect. Thus, summarzing,

a,=.01, d=.845, power = .95.
Recourse must be taken to formula (2.4.1). In Table 2.4.1 for a, = .01,
row power =.95,n_,, = 3155 and in formula (2.4.1)
3155
100(.845)2
Thus, 45 litter pairs will be needed.

+ 1=45.

2.5 THE USE oF THE TABLES FOR SIGNIFICANCE TESTING

2.5.1 GENERAL INTRODUCTION. As noted above in Section 1.5, provi-
sion has been made in the power tables to facilitate significance testing.
Here, our focus shifts from research planning to the appraisal of research
results, and from the consideration of the alternate-hypothetical state of
affairs in the population to the palpable characteristics of the sample and
their bearing on the null hypothesis.

Accordingly, we redefine our ES index, d, so that its elements are sample
results, rather than population parameters, and call it d,. For all tests of
the difference between means of independent samples,

X, —Xp

s ’

% It has been shown by Hedges (1981) and Kraemer (1983), in the context of the use of d, in
meta-analysis that the absolute value of d, is positively biased by a factor of approximately (4dt
— 1)/(4dt — 4), which is of little consequence except for small samples. However, because the
relationships with t given below are purely algebraic, this in no way affects its use in significance
testing.

2.5.1)% d,=
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where YA and i,, = the two sample means, and
s = the usual pooled within sample estimate of the popu-
lation standard deviation,

that is,

252 . \/ TKa = X0 + 3K~ Xp)?
e n,+ng—2

Note that we have defined s quite generally so that it will hold for all
cases involving two independent samples, whether or not sample sizes are
equal.

Formula (2.5.1) should be interpreted literally for a directional (one-
tailed) test and as an absolute difference [i.e., without sign, as in formula
(2.2.2)] for the nondirectional (two-tailed) test.

Thus, d, is the standardized mean difference for the sample. It is simply
related to the t statistic by

@.5.3) d=t \/m
n\Ng

(2.5.4) t=d, | a0
ﬂA + ﬂa

The value of d, necessary for significance is called d., i.e., the criterion
value of d,. The second column of each of the power tables 2.3, headedd ,
carries these values as a function of n. Using these values, the investigator
need not compute t; the standardized difference between his sample means,
d,, is compared with the tabled d. values for his sample size. If the obtained
d, value equals or exceeds d., his results are significant at the a value for
that table; otherwise, they are not significant.

The advantages of using this approach are twofold:

1. The value s is approximately the mean of the separate sample stan-
dard deviations. The latter are almost always computed, and often known
approximately even prior to computation, so that the sample d, can be
approximated at a glance once the sample means are determined. If such an
approximate value of d, is materially different from the tabulated d_ value,
the significance decision can be made without any computation. Thus, the
d, values can be used for a quick check on the significance of results.

2. A second advantage lies in the convenience of having the d. values
for many values of n. Most t tables provide criterion values of t for relatively
few values for degrees of freedom; each power table provides d values for
68 entries of n between 8 and 1000.

In general, these advantages are probably not great. They are judged,
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however, to be useful with sufficient frequency to warrant the inclusion of
the d. values in the power tables.

The d, concept has virtues which should be noted quite apart from its use
in significance testing. In general, the equivalents of d in terms of non-
overlap (U), correlation (r), and proportion of variance accounted for (r?),
described for the population in Section 2.2, also hold for the sample, subject
to the restrictions described there and in section 2.3. One simply uses Table
2.2.1 withd_ as d. The U measures will hold only to the extent to which the
samples approach the conditions of normal distribution, equal variability,
and equal sample size, on which these measures are predicated. The (point
biserial) r and r? equivalents, on the other hand, have no such restrictions.
Further, their systematic use as an accompaniment to significance testing
will frequently prove illuminating and has been advocated as a routine pro-
cedure (Cohen, 1965, pp. 101-104). Finally, formula (2.5.4) makes quite
explicit the fact that a significance decision (from t) is a function both of the
sample effect size (how much) and n, the amount of evidence brought to
bear on the null hypothesis. Behavioral scientists too often use evidence in
regard to significance (e.g., t values) as arbiters with which to judge the size
of the effect or degree of relationship (e.g., as estimates of d values and their
equivalents). The formula starkly exposes this error.

2.5.2 SIGNIFICANCE TESTING IN CASE 0. In Case O, the use of the d,
values in the power tables 2.3 is quite straightforward. The investigator
computes (or estimates) his sample d. value and enters the appropriate
power table for his a, in the row for his n (=n, =ng), and checks to see
whether his d, equals or exceeds the tabled d. value. Whether significant or
not, he may then wish to express his d. in terms of one or more of the U
indices, r, or r, using Table 2.2.1, or for greater accuracy, formulas (2.2.3)-
(2.2.6).

Illustrative Example

2.16 Consider the conditions stated initially for example 2.1. Whatever
the details of his expected ES (given there asd = .50), the experiment has been
run at a, =.05 with two independent experimental and control samples of
30 cases each. He computes his sample result as a standardized difference
between means [d,, formula (2.5.1)] and finds that it equals .46. His specifica-
tions are simply

a,=.05 n=30, d,=.46.
In Table 2.3.5 for a, =.05 and n =30, d_=.52. Since his d, value is
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smaller than d, his observed difference is not significant at a, =.05.
(He learns incidentally that with samples of 30 cases, it takes a difference
between means of about half a standard deviation to reach significance at
a, =.05.)

He may go on to refer to Table 2.2.1 [or, for greater accuracy, formula
(2.2.6)] from which he learns that the point biserial r between E versus C
group membership and number of trials to learning is about .22 which,
in turn, means that about .05 (=r?) of the total among rat variance in
trials is associated with group membership, in his sample.

If, for the purpose of reporting in the literature, he wants the t value,
it is very readily found for Case 0, where formula (2.5.4) simplifies (since
ng =Nc=n) to

n
(2.5.5) =d, \/5

which is here
t=.464/15=1.78.

This example can be used as an illustration of approximate *‘at-a-glance”
significance decisions. Assume, instead, that he finds the following sample
means and standard deviations (n = 30, a, = .05 criterion):

xE = 10-8, xC = 12.1,
sg= 3.8, sc= 4.24.

One notes at a glance that s is approximately 4 and the difference between
means, 1.3. The latter is only about a third of s, hence d; ~ .33, clearly less
than the d_ = .52 for the specified conditions.

2.5.3 SIGNIFICANCE TESTING IN CASE 1, n, # ng. The inequality of the
sample sizes in a t test for independent means provides no new problems
in the use of d.. Formula (2.5.2) for s, the standardizing unit for the sample
mean difference, is written for the (more general) case which provides for
differing values of n, and ng. In entering the tables, the value of n to be used
is the harmonic mean of n, and ng, which we have already described above
when Case 1 was first discussed in Section 2.3.2 [formula (2.3.1)):

' 2nAnB
T na+ng
The tabulated d_ value for Case 1 is an overestimate, but a very slight

one unless n’ is both absolutely small (say less than 20) and much smaller
than (n, + ng)/2 (see Section 2.3.2).
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Ilustrative Example

2.17 Reconsider the conditions of example 2.3. Assume that the experi-
ment has been performed, and the psychologists are appraising the results of
their directional hypothesis at a, = .05 that the new psychotherapeutic tech-
nique B (ng = 60) yields a higher mean criterion rating than the standard
technique A (n, = 90). Using the sample means (which differ in the pre-
dicted direction) and s, they find d, = .32 [formula (2.5.1)].They also com-
pute [formula (2.3.1)]

L 2000)60) _
~ 90+ 60
Their specifications thus are

a, =05 n=72 d=.32

S

In Table 2.3.2 for a, = .05 at o’ = 72, d. = .28. The d, value of .32 ex-
ceeds the criterion value, so they conclude that the mean for the new method
is significantly higher than that of the old (at a, = .05) on the rating criteri-
on.

If they had instead computed t, they would have found it to equal 1.92. If
they then wanted to have a d; value (for example, to express their results in
terms of a U value,or r, or r%), they can find it from formula (2.5.3):

72.

d =192

Or, alternatively, if they first compute d, and requires the t value, they
can find it from formula (2.5.4).

2.5.4 SIGNIFICANCE TESTING IN CASE 2: o, # oy, N, = ng. Case 2 speci-
fies that the standard deviations of the two populations are not equal. It
is included here to stress two facts. One is that the sample standard devia-
tions are virtually never equal but that this does not matter in the relation-
ships discussed above in Section 2.5.1. The other is that even if the population
standard deviations are judged to be unequal (for example, on the basis of
a variance ratio test), the relationship between d, and t nevertheless holds,
since it is purely algebraic, and further, that the interpretation of d, in terms
of r and r? continues to hold (but not in terms of the U indices).

An issue not to be confused with that of the t-d.-r relationships is the
question of the validity of the t test under conditions of population variance
heterogeneity. As discussed above in Section 2.3.3, provided that the sample
sizes are approximately equal, the validity of the t test is hardly affected by
any but relatively extreme population variance discrepancies. Thus, the
d, values will remain approximately valid under nonextreme Case 2 con-
ditions.
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Illustrative Example

2.18 Consider again the wage survey by the labor economist of example
2.4. When the survey of men and women workers’ (n = 100) weekly wages
is completed, he proceeds to compare their means at the prespecified a, = .01
level. His expected population difference o, # oy is reflected in the sample,
where one variance is about twice the other (a highly significant difference
with n’s of 100). He nevertheless proceeds to determine the d, value as (say)
.40. His specifications are:

a,=.0l, n=100, d,=.40.

In Table 2.3.4. (for a, =.01) with n =100, he finds d.=.37. He con-
cludes, at a, = .01, that there is a sex difference in mean wages in the popu-
lation sampled, since d, exceeds d.. Since the effect of o, # oy on the validity
of the test is trivial for large and equal samples (Scheffé, 1959, p. 340)
his conclusion is valid.

Note, incidentally, that the d, turned out to be smaller than the d value
he had posited in planning the experiment (see example 2.4). His smaller d,
is nevertheless significant because of the large power he had had against
the ES of d = .50, namely .82. A good reason to seek high power is, of course,
the real possibility that the d,, when found, will prove materially smaller than
the d expected in the planning. This leaves a margin for error, either judg-
mental or sampling, in the setting of d.

2.5.5 SIGNIFICANCE TESTING IN CASE 3: ONE SAMPLE OF n OBSERVATIONS.
For those circumstances in which the null hypothesis takes the form: A
single sample of n observations comes from a normal population whose mean
is €, one must take into account the construction of the Tables 2.3, including
thed, values. The reader is reminded that the latter proceeded on the assump-
tion of two-sample tests, with, therefore, the sampling error variance of two
means. Thus, it is necessary in one-sample tests to adjust the tabulated d,
value. This proceeds very simply: To find the proper criterion value for
one-sample tests, d.’, one finds:

(2.5.6) d/=d./j or .707d,.

This value is an underestimate, but a very slight one unless n is less than
30 (see Section 2.3.4).

As for the observed d, value for Case 3, we follow the principle expressed
in Section 2.5.1 and merely define d; as we defined d;’ with sample values
substituted for the population values of formula (2.3.3):
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(2.5.7) d =

The prime is used to indicate that a one-sample test is involved. The
relationship between d, and t as given in formulas (2.5.3) and (2.5.4) must
be revised for one-sample tests, as follows:

2.5.8) d't= \/1,
n
2.5.9) t=d, vn.

The first of these formulae may be useful when a t has been computed and
a standardized sample ES index is desired; the second is of use when the t
value is needed (e.g., for reporting results in an article).

Formula (2.5.9) [as well as formulas (2.5.4) and (2.5.5)] makes patent the
dependence of the significance decision on both effect size in the sample
(d,’) and the amount of evidence provided by the sample (n).

Illustrative Example

2.19 In example 2.5, an experimenter was planning a test on the effect
of rearing rats in total darkness on their weight gain from birth to 90 days.
The test is of the departure, in either direction, from an established standard
value of 70 ( = c). The sample used was of 60 cases, and the test was planned
and performed at a, =.10. He finds the sample mean gain to be X = 68.8
and the standard deviation to be s =8.1. From formula (2.5.7), he finds
d.’ =(-).15. His specifications are:

a,=.10, n=60, d, =.15.

In Table 2.3.6 for a, =.10, n =60, he finds d. = .30. Since this is a one-

sample test, he goes on to find d,’ = .30V i =.21. Comparing his observed
d,’ with the criterion d.’, he concludes that the sample mean departure from
70 is not significant at a, =.10.

2.5.6 SIGNIFICANCE TESTING IN CASE 4: ONE SAMPLE OF n DIFFERENCES
BETWEEN PAIRED OBSERVATIONS. The significance test of the difference
between means of paired observations is a special case of the one-sample
test (Case 3) where ¢ = 0 (see discussion in Section 2.3.5). That is, the compu-
tations proceed by taking the X, Y pairs, of which there are n, and finding the
differences, X — Y = Z. The result is a single sample of n Z observations.
From this point one proceeds as in Case 3, the null hypothesis being



2.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 73

that the population mean of these Z values is 0. Once the sample data
are being analyzed, the issue of the population (or sample) r between X
and Y, discussed in the power and sample size sections on Case 4 (Sections
2.3.5. and 2.4.5), plays no role in the computations of significance.

For case 4, we define d,’ as in formula (2.5.6), calling the variable Z
instead of X and treating c as 0, i.e.,

(2.5.10) d/=

»|N|

where s is the sample standard deviation of the Z values.

Note that this is the exact sample analog of formula (2.3.5).

Also as in Case 3, we must make the adjustment of the tables d. value,
to allow for sampling error variance of only one mean, (here, a mean differ-
ence) instead of the two on which the tables are based. This requires multi-
plying d,’ by V' ; [formula (2.5.6)] to find the Case 4 criterion, d_’.

As in Case 3, the relationship between d,’ and t as given in formulas
(2.5.8) and (2.5.9) hold for Case 4. Thus, one can simply translate ad,’ value
into-t, if the latter value is required, or a t value into d,’, if one wants to
express the size of the mean difference in the sample in standardized terms,
that is, in terms of the standard deviation of the differences.

Finally, and again as in Case 3, the d_.’ value is slightly underestimated,
but to a degree which can be safely ignored unless n is small.

Illustrative Example

2.20 In example 2.6, an educational researcher was planning an experi-
mental comparison of two programed texts in algebra by assigning the
members of 50 IQ-matched pairs at random to the two texts, and, following
instruction, testing their achievement. Assume that the experiment has
been performed and the data marshalled for the significance test, to be per-
formed at a, = .05, as specified in the plans.

The test is of the significance of the departure of the mean difference,
Z = (X -Y), from zero, which is equivalent to a test of X —Y = 0. He finds
Z=-2.78, s (of the Z’s)=8.22, and entering these in formula (2.5.10),
d,’ = (—).34. (Since the test is nondirectional, the negative sign does not

enter, other than to indicate the X is less than Y) His specifications are:
a,=.05, n=50, d/=.34

In Table 2.3.5 for a, =.05, n=50, he finds d_ = .40. Since this is a
one-sample test, he needs to find d,’ = .40V} = .28. Comparing his observed
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d,’ value of .34 with the criteriond_’ value of .28, he concludes that his depar-
ture from no difference of 2.78 (in favour of the X program) is significant at
a, = .05. If a value of t is required, it can be found from formula (2.5.9)

ast =.34V/50 = 2.40.



CHAPTER 3

The Significance of a Product Moment r,

3.1 INTRODUCTION AND USE

Behavioral scientists generally, and particularly psychologists with sub-
stantive interests in individual differences in personality, attitude, and
ability, frequently take recourse to correlational anlysis as an investigative
tool in both pure and applied studies. By far the most frequently used statis-
tical method of expression of the relationship between two variables is
the Pearson product-moment correlation coefficient, r.

r is an index of linear relationship, the slope of the best-fitting straight
line for a bivariate (X, Y) distribution where the X and Y variables have
each been standardized to the same variability. Its limits are — 1.00 to
+ 1.00. The purpose of this handbook precludes the use of space for a
detailed consideration of the interpretations and assumptions of r. For this,
the reader is referred to a general textbook, such as Cohen & Cohen (1983),
Hays (1981), or Blalock (1972).

When used as a purely descriptive measure of degree of linear relation-
ship between two variables, no assumptions need be made with regard to
the shape of the marginal population distribution of X and Y, nor of the
distribution of Y for any given value of X (or vice versa), nor of equal varia-
bility of Y for different values of X (homoscedasticity). However, when
significance tests come to be employed, assumptions of normality and
homoscedasticity are formally invoked. Despite this, it should be noted
that, as in the case of the t test with means, moderate assumption failure
here, particularly with large n, will not seriously affect the validity of signifi-
cance tests, nor of the power estimates associated with them.

75
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In this chapter we consider inference from a single correlation coefficient,
r,, obtained from a sample of n pairs (X, Y) of observations. There is only one
population parameter involved, namely r, the population correlation co-
efficient. It is possible to test the null hypothesis that the population r equals
any value c (discussed in Chapter 4). In most instances, however, the behav-
ioral scientist is interested in whether there is any (linear) relationship
between two variables, and this translates into the null hypothesis, Hq:
r=0. Thus, in common statistical parlance, a significant r, is one which
leads to a rejection of the null hypothesis that the population r is zero. It
is around this null hypothesis that this chapter and its tables are oriented.
(For the test on a difference between two r’s, see Chapter 4.)

The significance test of r, may proceed by means of the t distribution,
as follows:

rvn-2
Vi-r?
where n is the number of (X, Y) pairs in the sample, and the appropriate
t distribution is that for n — 2 degrees of freedom.! As in tests on means,

the t criterion for rejection depends on the a (significance) level and the
directionality of the test:

G.11) t=

1. If either a positive or a negative value of r, is considered (a priori)
evidence against the null hypothesis, the test is nondirectional, i.e., two
tailed.

2. If the sign of r, is specified in advance, that is, if only positive (or
only negative) correlation is deemed relevant for rejecting the null hypoth-
esis, the test is directional, i.e., one tailed.

A word about regression coefficients. When one variable of the X, Y
pair, conventionally Y, can be looked upon as dependent upon X, one may
speak of the regression of Y on X. The slope of the best-fitting line for pre-
dicting Y from X, when each is in its original (‘*‘raw’’) unit of measurement,
is called the regression coefficient, Byx. Byyx is simply the unstandardized
slope of Y on X and can be written simply as a function of r and the two
standard deviations, oy and oy:

(3.12) Byy=r2X .
Ox

! In the power tables, minimum values of r, necessary for significance, given a and n,
are provided in the criterion r (r.) column. This obviates the necessity in most instances
of computing t from formula (3.1.1) and interpolating for df in t tables. See Section 3.5
which describes this procedure in detail.
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thus

o
(3.1.3) r=Byy —=.
oy
Byx, being the slope of the regression line, indicates how many units

of change in Y are produced by a unit change in X, where the units are the
‘“raw >’ values of the respective variables. In problems where such dependencies

can be assumed, and where the units in which X and Y are measured are
inherently meaningful (e.g., dollars, population densities), regression coeffi-
cients are often preferred to correlation coefficients. Also, regression coeffi-
cients remain constant under changes in the variability of X, while correlation
coefficients do not.

A test of the significance of B, i.e., that it departs from zero in the popu-
lation, is automatically provided from the test of r. A glance at formula
(3.1.2) shows that B is zero if and only ifr is zero.? The researcher accustomed
to regression formulations in the two-variable case where X, Y pairs are
sampled need only translate his problem (including the effect size) into corre-
lation terms and proceed. (Tests on partial regression coefficients are discussed
in Chapter 9.)

3.2 THE EfFFect SizZE: r

The ES index offers no difficulty here (but see Section 11.1). The require-
ments for an ES index include that it be a pure (dimensionless) number, one
not dependent on the units of the measurement scale(s). The population cor-
relation co-efficient, r, serves this purpose.

Thus, a general formulation of the power estimation problem is: One
is going to test the significance (Hy: r =0) of a sample r, value at the a
significance criterion with n pairs of observations; if the population r is
some specified value (thus, the ES), what is the power of the test (the proba-
bility of rejecting the null hypothesis)? Tables 3.3 would be used to find the
power value.

Similarly, a general formulation of the sample size estimation problem
is: One plans to test the significance (H,: r =0) of a sample r, value at the
a significance criterion and wishes to detect some specified population r
(this being the ES); he then specifies the desired power (probability of
rejecting the null hypothesis). How many pairs of observations, n, would
be necessary? Table 3.4 would be used to find the value of n.

2 The reader may object that B is zero when oy is zero whatever the value of r. How-
ever, when oy is zero, r is indeterminate, that is, it is not meaningful to talk of correlation
when one of the variables does not vary.
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3.2.1 r as PV aND THE Size oF CORRELATIONAL EFFECTs. One concept-
ually useful way to approach an understanding of r is to consider r? (as
already noted in Chapter 2).> The square of the correlation coefficient is
the proportion of variance (PV) in either of the two variables which may be
predicted by (or accounted for, or attributed to) the variance of the other,
using a straight-line relationship (Cohen & Cohen, 1983). Concretely, given
an r of .50 between IQ and course grades, r?> = .25, so that 25% of the
variance in course grades for the members of this population may be attributed
to differences among them in IQ. (Of course, the attribution of causality is a
logical or scientific issue, and not one of statistical inference, as such.) Note,
incidentally, that the descriptive use of r? (as that of r) is not dependent on
assumptions of normality or homoscedasticity.

Measures of proportion of variance are usually more immediately
comprehensible than other indices in that, being relative amounts, they
come closer to the behavioral scientist’s verbal formulations of relative magni-
tude of association. They have the additional virtue of providing a common
basis for the expression of different measures of relationships, e.g., standar-
dized difference between means (d), variation among means (correlation
ratio), as well asr.

The only difficulty arising from the use of PV measures lies in the fact that
in many, perhaps most, of the areas of behavioral science, they turn out to
be so small! For example, workers in personality-social psychology, both
pure and applied (i.e., clinical, educational, personnel), normally encounter
correlation coefficients above the .50-.60 range only when the correlations
are measurement reliability coefficients. In PV terms, this effective upper
limit implies something of the order of one-quarter or one-third of variance
accounted for. The fact is that the state of development of much of behavioral
science is such that not very much variance in the dependent variable is
predictable. This is essentially merely another way of stating the obvious:
that the behavioral sciences collectively are not as far advanced as the
physical sciences. In the latter, we can frequently account for upwards of
999 of dependent variable variance, for example, in classical mechanics.*
Thus, when we consider r = .50 a large ES (see below), the implication that
.25 of the variance accounted for is a large proportion must be understood
relatively, not absolutely.

3 Another possibly useful way to understand r is as a proportion of common elements
between variables. The implicit model for this interpretation is not compelling for most be-
havioral science applications (behavioral genetics may be one exception). See Ozer (1985) for a
contrary view and “Effect Size” in Chapter 11 for further discussion of rand 2.

* This is one way to understand the reason for the fact that applied statistical analysis
flourishes in the biological and social sciences and has only limited specialized applications
in pure physical science.
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The question, “relative to what?” is not answerable concretely. The
frame of reference is the writer’s subjective averaging of PVs from his
reading of the research literature in behavioral science. Since no one reads
a stratified random probability sample of the behavioral science literature
(whose definition alone would be no mean task), this average may be biased
in a “soft” direction, i.e., towards personality-social psychology, sociology,
and cultural anthropology and away from experimental and physiological
psychology.

The preceding serves as an introduction to operational definitions of
“small,” “medium,” and ‘““large” ES as expressed in terms of r, offered as
a convention. The same diffidence is felt here as in Section 2.2 (and other
such sections in later chapters). A reader who finds that what is here defined
as “large” is too small (or too large) to meet what his area of behavioral
science would consider appropriate standards is urged to make more suit-
able operational definitions. What are offered below are definitions for use
when no others suggest themselves, or as conventions.

SMALL EFFECT SIZE: r=.10. An r of .10 in a population is indeed
small. The implied PV is r?=.0l, and there seems little question but
that relationships of that order in X, Y pairs in a population would
not be perceptible on the basis of casual observation. But is it too
small?

It probably is not. First of all, it is comparable to the definition of a
small ES for a mean difference (Chapter 2), which was d =.2, implying
point biserial r = .10 (for populations of equal size). More important than
this, however, is the writer’s conviction that many relationships pursued in
““soft” behavioral science are of this order of magnitude. Thurstone once
said that in psychology we measure men by their shadows. As the behavioral
scientist moves from his theoretical constructs, among which there are hypo-
thetically strong relationships, to their operational realizations in measure-
ment and subject manipulation, very much *“noise” (measurement unrelia-
bility, lack of fidelity to the construct) is likely to accompany the variables.
(See Section 11.3 for a discussion of psychometric reliability and power anal-
ysis.) This, in turn, will attenuate the correlation in the population between
the constructs as measured. Thus, if two constructs in theory (hence perfectly
measured) can be expected to correlate .25, and the actual measurement
of each is correlated .63 with its respective pure construct, the observed
correlation between the two fallible measures of the construct would
be reduced to .25 (.63) (.63) =.10. Since the above values are not un-
realistic, it follows that often (perhaps more often than we expect), we are
indeed seeking to reject null hypotheses about r, when r is some value
near .10.

We can offer no exemplification with known instances of population r’s
of the order of .10, by the very nature of the problem. In fields where
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correlation coefficients are used, one rarely if ever encounters low r,’s on
samples large enough to yield standard errors small enough to distinguish
them from r’s of zero.

MEDIUM EFFECT SIZE: r=.30. When r=.30, r’=PV =.09, so that
our definition of a medium effect in linear correlation implies that 9%
of the variance of the dependent variable is attributable to the independent
variable. It is shown later that this level of ES is comparable to that of medium
ES in differences between two means.

Many of the correlation coefficients encountered in behavioral science
are of this order of magnitude, and, indeed, this degree of relationship
would be perceptible to the naked eye of a reasonably sensitive observer.
If we appeal to fields which use psychological tests, we find, for example,
that Guilford and Fruchter write that “the validity coefficient (r with criteri-
on) of a single test may be expected in the range from .00 to .60, with most
indices in the lower half of that range [1978, p. 87].”

When one considers correlations among tests of diverse abilities, average
r’s run rather higher than .30. However, for example, for adolescents,
correlations among representative tests of creativity average to almost
exactly .30, and creativity tests have an average r with 1Q of just below .30
(Getzels & Jackson, 1962, p. 20). In another area, scores on the two major
variables of personality self-description, neuroticism (or trait anxiety) and
extraversion correlate about — .30 in college students and in psychiatric
populations (Jensen, 1965). In still another area, about 409, of the correla-
tion coefficients among the nine clinical scales of the Minnesota Multiphasic
Personality Inventory which are reported in the literature are in the .25-.35
range. Broadly speaking, it seems justifiable to identify as a medium ES in
correlation, a value at the midpoint of the range of correlations between
discriminably different psychological variables.

LARGE EFFECT SIZE: r =.50. The definition of a large correlational ES
as r =.50 leads to r? =.25 of the variance of either variable being asso-
ciated linearly with variance in the other. Its comparability with the defini-
tion of large ES in mean differences (d =.8) will be demonstrated below.
Here, we may simply note that it falls around the upper end of the range of
(nonreliability) r’s one encounters in those fields of behavioral science which
use them extensively, e.g., differential, personality-social, personnel, educa-
tional, clinical, and counseling psychology. Thus, Ghiselli writing in an
applied psychology framework states *“‘the practical upper limit of predic-
tive effectiveness . . . [is] . . . a validity coefficient of the order of .50 [1964,
p. 61).” Guilford’s figure, as noted above, is similar. We appeal to the mental-
personality-social measurement field for our criterion because of its very
heavy use of linear correlation, both historically and contemporaneously.
One can, of course, find higher values of r in behavioral science. Reliability
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coefficients of tests, particularly of the equivalence variety, will generally
run much higher. Also, if effects in highly controlled ““hard” psychology
(e.g., psychophysics) are studied by means of r’s, they would frequently be
distinctly higher than .50. But they are not generally so studied. It seems
reasonable that the frame of reference used for conventional definitions of
correlational ES should arise from the fields which most heavily use corre-
lations.

The example which comes most readily to mind of this .50 level of corre-
lation is from educational psychology, which gave birth to many of the
concepts and technology of correlation methods in behavioral science (e.g.,
Galton, Spearman). Correlations between 1Qs or total scores from other
comprehensive aptitude batteries correlate with school grades at values
which cluster around .50. In contrast, when one looks at near-maximum
correlation coefficients of personality measures with comparable real-life
criteria, the values one encounters fall at the order of a medium ES, i.e.,
r=_.30.

Thus, when a investigator anticipates a degree of correlation between
two different variables ‘“about as high as they come,” this would by our
definition be a large effect, r = .50.

3.2.2 CoMPARABILITY OF ES For r wiTH d. It is patently desirable that
effect sizes given a qualitative label, e.g., “ medium,” when studied by means
of one design or parameter, be comparable to effects given the same label
when studied by another. An attempt has been made for the opera-
tionally defined small, medium, and large ES to be comparable across the
different ES parameters necessitated by the variety of tests discussed in this
book.

Strict comparability, defined in exact mathematical terms, poses numerous
difficulties. First, several alternative definitions are possible. Consider PV,
which seems a likely candidate. When a variable is measured on an ordered
equal-interval scale, so that the variance concept is meaningful, we can express
ES in terms of proportion of variance, as was done above and in Chapter 2.
But when the dependent variable is a nominal scale, we can no longer define
variance and PV but would need to move to its generalization, multivariance
or generalized variance, and enter the world of set correlation. (We do, in
fact, do so in Chapter 10, but the going is rough.) Or, we would need to
invoke from information theory the even more general (and much less less
familiar) concept of amount of information or uncertainty. If we decide
to forego nominal scale comparability and try to use PV as a “strictly” com-
parable base for ES for interval scales, we encounter two further difficulties.
One is that we would need to specify alternate models which would lead to
varying PV’s. For example, in Section 2.2 we defined the populations as dis-
tinct “points” and therefore, the relevant r as the point biserial r (r;). So con-
ceived, PV = rpz. But if our model is changed so that the populations are ad-
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jacent along a scale so that when combined they define a normal distribution
(e.g., an adult male population defined by a median cut into “tall” and
“short” men), the correlation with height of some dependent variable would
be given by the biserial r(r,)) (Cohen & Cohen, 1983, pp. 66-67), so that PV
= r,2. But since r, is greater than r,, their squares and hence their PVs would
differ. Thus, the “same” difference between means would, depending on the
nature of the model assumption, lead to different proportions of variance.

A further problem would arise in that, having somehow defined strictly
comparable ES in PV terms, when the latter were then translated into more
familiar measures, awkward values which are not convenient multiples would
result. Thus, if a medium PV were defined as .10, this would lead tod = .667
(under the conditions defined in Section 2.2) and r = .316.

We are prepared to be content with less formal bases for comparability
than purely mathematical ones, utilizing the *“ state of the science’ in relevant
areas of behavioral science, as we have done above. But we wish to be guided
in our operational definitions by quantitative considerations, here specifically
correlational comparability.

In Section 2.2, the d criteria for small, medium, and large ES were stated
and translated into point biserial r (r,) and r 2. The use of r, assumes that
population membership(X)is two-valued and *“ point* in character. The t test
for r, which concerns us in this chapter, presumes normal distributions on
both X and Y. Comparability in PV would demand that the biserial r (r,),
for which a normal distribution is assumed to underlie the X dichotomy,
should be the basis of comparison. With populations of equal size (i.e.,
forming the dichotomy at the median),

(3.2.1) r,=1.253r,.

Thus, if we translate the d criteria to r, (Table 2.2.1) and then, by means
of formula (3.2.1) to r,, and compare the latter with the ES criteria set
forth above for r, we find the following:

ES d r, X 1253 =r, r
Small .20 .100 125 .10
Medium .50 243 .304 .30
Large .80 371 .465 .50

Comparing the r, equivalent to the r criteria of the present chapter,
we find what are judged to be reasonably close values for small and large ES
and almost exact equality at the very important medium ES level. Thus, the
terms ‘“‘small,” “medium,” and “large” mean about the same thing in
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correlation terms as we go from consideration of mean differences to con-
sideration of r’s.

3.3 PowerR TABLES

The tables in this section yield power values when, in addition to the
significance criterion and ES =r, the sample size is specified. Thus, these
power tables will find their greatest use in determining the power of a test
of the significance of a sample r,, after the data are gathered and the test
is made. They can also be used in experimental planning by varying n, or
ES (=r), or a to determine the consequence which such alternatives have
on power.

Specifically, the power tables yield power values for the t test of Hy:
r =0, i.e., for the test of the significance of a product moment r,, determined
on a sample of n pairs of observations X, Y at the a significance criterion.
The tables give values for a, r, and n:

1. Significance Criterion, a. Tables are provided for the following val-
ues of a: a;=.0l, a, =.05, a, =.10; a,=.01, a,=.05, a,=.10, the
subscripts referring to one- and two-tailed tests. Since power at a, is to an
adequate approximation equal to power at a, =2a, for power greater than
.10, one can determine power at a, = .02 (from the a, = .01 table), a, = .20
(from a, =.10), a, =.005 (from a, =.01), and a, =.025 (from a, = .05).

2. Effect Size, ES. The ES index here is simply r, the population product-
moment correlation coefficient. In directional (one-tailed) tests (a,), r is
understood as either positive or negative, depending on the direction posited
in the alternate hypotheses, e.g., H,: r = — .30. In nondirectional (two-
tailed) tests, r is understood as absolute, e.g., ““given a level of population
r = .30, whether positive or negative. . . .”

Provision is made for r =.10 (.10) .90. Conventional definitions of ES

have been offered above, as follows:
small: r=.10,
medium: r = .30,
large: r=.50.

3. Sample Size, n. This is the number of pairs of observations X, Y
in the sample. Provision is made for n = 8 (1) 40 (2) 60 (4) 100 (20) 200 (50)
500 (100) 1000.

The values in the body of the table are the power of the test times 100,
i.e., the percentage of tests carried out under the given conditions which
will result in the rejection of the null hypothesis, Hy: r =0. The values are
rounded to the nearest unit and are accurate to within + 1 as tabled (i.e.,
to within .01).
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Table 3.3.1

n 'c .10 20 030 o“o -50 060 <70 oeo <90
8 789 02 03 05 o08 13 22 37 60 88
9 750 02 03 06 10 16 27 b 69 93
10 ns 02 03 0 n 19 32 52 76 96
n 685 02 O+ 07 13 22 37 8 8 98
12 658 02 oh 08 1h 25 ['¥ ] 6h 86 99
13 634 02 05 09 16 28 L6 69 90 99
W 612 02 05 10 18 3 51 M 92 *
15 592 02 05 10 20 3 55 78 o4

16 574 02 06 n 22 38 59 8 96
17 558 03 06 12 23 W 63 84 97

18 543 03 06 13 256 43 66 86 98
19 529 03 06 14 27 46 69 89 98
20 516 03 07 15 29 49 72 9 99
21 503 03 07 16 3 2 715 92 9
22 492 03 07 17 32 & 77 94 99
23 482 03 08 18 3 5 79 95 *

24 472 03 08 18 36 59 81 95

25 462 03 08 19 37 61 83 96

26 453 03 09 20 39 63 8 97

27 Lis 03 09 21 ] 65 87 98

28 437 03 09 22 43I 67 88 o8

29 430 03 10 23 4 69 89 98

30 423 03 10 20 4 n 9 99

31 hé o N 25 43 73 92 99

32 409 ol n 26 49 75 93 99

33 403 o 1 27 s 7 93 99

3 397 oh 12 28 52 78 9 99

35 392 ok 12 29 sk 79 95 *

36 386 oh 12 30 55 80 95

37 381 ol 13 30 56 82 96

38 376 oh 13 3 58 83 96

39 n ol 13 32 59 8k 97

Lo 367 o 14 33 6 8 97

42 358 o 15 35 63 87 98

bl 350 05 15 37 66 89 98

46 342 05 16 39 68 90 99

48 335 05 17 W 70 92 99
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Table 3.3.1 (continued)

n r. d0 .20 .30 Lo .50 .60 .70 .80 .90
50 328 05 18 42 72 93 99 * * *
52 322 05 18 by 74 9% 99
sh 316 05 19 46 76 95 *
56 310 06 20 48 78 96
58 305 06 21 49 80 96
60 300 06 21 51 81 97
6l 290 06 23 s4 84 98
68 282 06 25 57 87 98
72 274 07 26 60 89 99
76 266 07 28 63 90 99
80 260 07 29 66 92 99
8k 253 08 3 68 93 *
88 248 08 33 70 94

92 242 08 34 73 95

96 237 09 36 715 96

100 232 09 37 76 97

120 212 n ks 8 99

140 196 12 52 90 *

160 184 111 59 9%

180 173 16 65 96

200 164 18 70 98

250 147 23 81 99

300 134 28 88 *

350 124 32 93

400 16 37 96

bso 110 42 98

500 104 173 99

600 095 55 *

700 088 63

800 082 69

900 078 75

1000 o074 80

* Power values below this point are greater than .995.
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Power of t test of r =0 at a, =.05

1

o

n l'c ° .20 030 ol'o .50 '60 070 oao 090
8 621 08 12 18 26 37 52 68 8s 97
9 582 08 13 20 29 42 57 M 90 9
10 sh9 08 W 22 32 46 62 79 93 99
) 521 09 15 23 35 50 67 83 95 *
12 497 09 15 25 38 s4 N 87 97

13 L6 09 16 26 L0 S7 M 8 98

1 458 10 17 28 43 60 78 9 98
15 b 10 18 30 45 63 8 93 99
16 426 10 19 31 L8 66 83 95 99
17 L2 10 19 33 50 69 8 96 *

18 400 n 20 3w 52 N 87 97

19 389 n 21 3% s 713 8 97

20 378 1" 2 37 s 15 90 98

21 369 n 22 39 58 77 92 98

22 360 n 23 40 60 79 93 99

23 352 12 24 L3 62 81 ol 99

24 344 12 24 42 64 8 95 99

25 337 12 25 L 65 B8 95 99

26 330 12 26 us 67 8 97 *

27 323 13 26 L6 68 86 96

28 37 13 27 47 70 88 97

29 n 13 28 W9 n 89 97

30 306 13 28 5 72 90 98

n 301 13 29 51 74 90 98

32 296 w 30 52 75 9N 98

33 291 W 30 8§ 76 92 9

34 287 W AN s 77 93 9

35 283 1 32 5 718 93 99

36 279 W 32 56 719 9% 9

37 275 15 33 57 80 95 99

38 m 15 33 8 8 95 99

39 267 15 3% 59 82 95 *

Lo 264 15 35 60 8 96

b2 257 16 36 62 8 97

[ 251 16 37 6l 86 97

46 246 16 38 66 88 98

48 240 17 39 67 8 98
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Table 3.3.2 (continued)
r

n re d0 .20 .30 .40 .50 .60 .70 .80 .90
50 235 17 W1 69 90 98 * * * *
52 231 17 &2 7 9 99
[ 226 18 43 72 92 9
56 222 18 11} 73 93 99
58 218 19 4s 75 9l 99
60 214 19 U6 76 9% 99
[N 207 20 48 79 95 *
68 201 20 50 8 96
72 195 21 52 8 97
76 190 22 s4 8 98
80 185 22 56 8 98
84 181 23 58 88 99
88 176 24 59 8 99
92 173 4 6 9 99
96 169 25 63 9N 99
100 165 26 64 92 99
120 151 29 N 96 *
140 140 32 77 98
160 130 35 8 9
180 123 38 86 99
200 nz L 89 *
250 104 47 9%
300 095 s 97
350 088 59 98
400 082 64 99
Lso 078 68 *
500 074 72
600 067 79
700 062 84
800 058 88
900 055 9
1000 052 9%

* Power values below this point are greater than .995.
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Table 3.3.3

re .20 .30 .40 .50 .60 .70 .80 .90
8 507 15 22 30 W 53 67 8 92 9
9 Ly2 15 23 32 L4 58 72 8 95 99
10 443 16 24 34 47 61 76 88 97 *
" L) 16 25 36 5 65 79 91 98
12 398 17 26 38 53 68 83 93 99
13 380 17 27 Lo 55 n 85 95 99
14 365 17 28 42 58 74 87 96 99
15 351 18 29 L& 60 76 8 97 *

16 338 18 30 uLs 62 79 90 98

17 327 19 3 47 64 81 92 98

18 Ny 19 32 L9 66 8 93 98

19 308 19 33 50 68 84 9% 99

20 299 20 3 52 70 8 95 99

21 291 20 35 53 72 8 9% 9

22 284 20 36 s« 73 88 97 99

23 277 21 36 5 15 8 97 *

2k 27 21 37 57 76 90 98

25 265 21 38 58 78 91 98

26 260 22 39 59 719 92 98

27 255 22 Lo 6 80 93 99

28 250 22 4o 62 8 9 99

29 245 23 W 63 82 9% 99

30 2l 23 L2 64 83 95 99

N 237 23 43 65 84 95 99

32 233 23 L3 66 85 96 99

33 229 2k [ 67 86 96 99

34 225 F ) Ls 68 87 97 *

35 222 b 45 69 88 97

36 219 24 u6 70 88 97

37 216 25 4 N 89 98

38 213 25 48 72 90 98

39 210 25 48 73 90 98

40 207 25 49 MW 9 98

42 202 26 SO0 75 92 99

L) 197 26 51 7 9B 9

46 192 27 3 18 %% 99

48 188 27 sb 79 94 99
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Table 3.3.3 (continued)
r
n 0'c 10 ,20 .30 .40 .50 .60
50 184 28 55 81 95 99 *
52 181 28 56 82 96 *
L) 177 29 57 83 96
56 174 29 58 84 97
58 m 30 59 85 97
60 168 30 60 86 97
64 162 N 62 88 98
68 157 32 6l 89 98
72 153 33 66 90 99
76 149 34 68 92 99
80 145 35 70 93 99
84 1] 36 n 9% *
88 138 36 73 95
92 135 37 74 95
96 132 38 75 96
100 129 39 76 96
120 118 42 82 98
140 109 46 86 99
160 102 49 90 *
180 096 52 92
200 091 55 9l
250 081 62 97
300 o74 67 99
350 069 72 99
L4oo 064 76 *
Lso 061 80
500 057 83
600 052 88
700 ou8 91
800 ohs ol
900 043 96
1000 ol1 97

* Power values below this point are greater than .995.
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Table 3.3.4

n re .10 .20 .30 .40 .50 .60 .70 .80 .90
8 834 o1 02 03 0S 08 |1 26 47 80
9 798 o1 02 0 06 10 18 32 s 88
10 765 o1 02 ok 07 12 22 k0o 65 93
n 735 (1] 02 o 08 15 27 W6 13 9
12 708 ot 02 o5 09 17 AN 2 19 97
13 684 (] 03 05 10 20 35 58 B4 99
1% 661 o1 03 06 12 22 40 64 8 9
15 641 ol 03 06 13 25 Ly 68 90 *
16 623 o 03 07 W& 28 48 73 93

17 606 o1 03 08 16 30 52 77 95

18 590 o1 oh 08 17 33 56 8 9

19 575 02 ol 09 19 36 59 83 97
20 561 02 ol 09 20 38 62 85 98

21 sh9 02 o+ 10 21 ] 66 88 98

22 537 02 o+ N 23 43 68 90 99

23 526 02 O 12 25 4 n 91 99
24 515 02 05 12 26 L9 4 93 99
25 505 02 05 13 28 51 76 94 *

26 L96 62 05 14 30 53 78 95

27 487 02 06 "W 31 [1] 80 96

28 479 02 06 15 33 57 82 96

29 mn 02 05 16 3% 60 8 97

30 463 02 06 17 36 62 8 98

31 456 02 07 17 37 6L 87 98

32 49 02 07 18 39 66 88 98

33 Lh42 02 07 19 4o 67 89 99

34 436 02 07 20 42 69 90 99

35 430 02 08 20 43 n 9 99

36 424 02 08 21 s 72 92 99

37 Wy 02 08 22 47 W 93 9

38 13 02 08 23 LB 76 94 *

39 Lo8 02 09 2k 49 77 95

Lo 4o3 02 09 25 50 78 95

b2 393 03 09 26 53 8 96

Ly 384 03 10 28 56 8 97

L6 376 03 " 29 58 8 98

48 368 03 n 3 61 87 98
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Table 3.3.4 (continued)
r

n re A0 .20 .30 .40 .50 .60
50 361 03 12 33 63 89 99
52 354 03 12 34 66 90 99
sh 348 03 13 36 68 9 99
56 3 03 14 38 70 93 99
58 336 03 1L 39 72 9% *
60 330 03 15 1) Th 94
64 320 ol 16 L4y 77 96
68 310 o4 17 47 80 97
72 302 ol 19 50 83 98
76 29 ol 20 53 85 98
80 286 ol 21 56 87 99
8L 280 05 23 59 89 99
88 273 05 24 61 91 99
92 267 05 25 6L 92 *
96 262 05 27 66 9
100 256 06 29 69 95
120 234 07 35 78 98
140 217 08 42 85 99
160 203 09 49 90 *
180 192 " 55 94
200 182 12 61 96
250 163 16 73 99
300 149 20 82 *
350 138 2L 89
Loo 129 28 93
450 121 32 96
500 15 37 97
600 105 4s 99
700 097 53 *
800 091 60
900 085 67
1000 081 72

* Power values below this point are greater than .995.
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Table 3.3.5

Power of t test of r =0 ata, =.05

s
]
L]
-
=3

.20 .30 M40 .50 .60 .70 .80 .90

8 707 06 07 n 16 25 37 [ 75 ol
9 666 06 08 12 19 29 L3 62 82 97
10 632 0% 08 13 21 33 49 68 87 98
" 602 06 09 b 23 36 sk 73 91 99
12 576 06 09 16 26 4o 58 718 93 99
13 553 06 10 17 28 Ly 63 82 95 *
W 532 06 10 18 30 47 66 8 96
15 514 06 11 19 32 50 70 8 98
16 497 07 n 21 35 53 73 90 98
17 482 o7 12 22 37 5 76 92 99
18 468 07 12 23 39 59 79 ) 99
19 456 .07 13 24 )] 62 81 95 99
20 Ll 07 & 25 L3 64 83 96 *
21 433 07 W 27 L5 66 85 96
22 423 07 15 28 47 69 8 97
23 53 07 15 29 W9 71 89 98
2L Lok 07 16 30 51 73 90 98
25 396 08 16 31 53 75 9 99
26 388 08 17 33 s 76 92 9
27 381 08 17 56 78 93 99
28 374 o8 18 35 58 80 94 99
29 367 08 18 36 59 81 95 99
30 361 08 19 37 61 83 95 *
3 355 08 19 38 62 84
32 349 08 20 39 64 B8 97
33 344 09 20 4o 65 86 97
339 09 21 42 67 87 97
35 33 09 21 43 68 88 98
36 329 09 22 L 69 8 98
37 325 09 22 4 70 90 98
38 320 09 23 46 72 91 99
39 316 09 23 47 73 91 99
Lo 312 09 2 48 M 92 99
42 304 10 25 5 76 93 9
Ly 297 10 26 5 78 94 99
46 291 10 27 54 80 95 *
48 285 10 28 55 82 96
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Table 3.3.5 (continued)
r
n rc .10 .20 .30 .40 .50 .60
50 279 n 29 57 83 97 *
52 273 1" 30 59 85 97
sh 268 1" 31 61 86 98
56 263 11 32 62 87 98
58 259 12 33 64 89 98
60 25h 12 34 65 90 99
6h 246 12 36 68 9 99
68 239 13 38 n 93 99
72 232 13 39 73 9% *
76 226 W n 76 95
80 220 1h 43 78 96
84 218 15 bs 80 97
88 210 15 47 82 98
92 205 16 48 83 98
96 201 16 50 85 98
100 197 17 52 86 99
120 179 19 59 92 *
140 166 22 66 95
160 155 24 72 97
180 1hé 27 77 98
200 139 29 81 99
250 124 35 89 *
300 13 [} ob
350 105 46 97
4oo 098 52 98
450 092 56 99
500 088 61 99
600 080 69 *
700 o074 76
800 069 81
900 065 85
1000 062 89

* Power values below this point are greater than .995.
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Table 3.3.6

n re 10 .20 .30 40 .50 .60 .70 .80 .90
8 621 n W 19 27 38 52 68 8 97
9 582 n 15 21 30 42 57 W 90 99
10 549 " 15 22 33 W6 62 79 93 99
1}] 521 12 16 24 35 50 67 8 95 *
12 L97 12 17 25 38 54 n 87 97

13 L76 12 17 27 W 57 74 89 98

1 458 12 18 28 43 60 78 9t 98
15 44 12 19 30 45 63 8 93 99

16 426 12 19 3 48 66 83 95 99
17 b2 13 20 33 50 69 85 96 *

18 Loo 13 21 3 52 7N 87 97

19 389 13 22 36 sk« 73 8 97

20 378 13 22 37 S6 75 90 98

21 369 13 23 39 58 77 92 98

22 360 13 2 Lo 60 79 93 99

23 352 w28 62 81 9% 99

2 344 11 25 42 64 83 95 99

25 337 W 26 Wy 65 B 95 99

26 330 W 26 L5 67 85 96 *

27 323 W 27 L6 68 8 96

28 317 11 27 L7 70 88 97

29 n 15 28 4 7N 89 97

30 306 15 29 50 72 90 98

31 301 15 29 51 ™ 90 98

32 296 15 30 52 75 9 98

33 291 15 3 53 76 92 9

34 287 15 3 s 77 93 99

35 283 16 32 55 78 93 99

36 279 16 32 5 79 9% 99

37 275 16 33 57 80 95 99

38 271 16 34 58 81 95 99

39 267 16 3 59 82 95 *

4o 264 16 35 60 83 96

42 257 17 36 62 8 97

bl 251 17 37 64 86 97

46 246 17 38 66 88 98

48 240 18 39 67 8 98
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Table 3.3.6 (continued)
,.

n re 10 .20 .30 Lo .50 .60
50 235 18 M 69 90 98 *
52 231 18 42 n 91 99
sh 226 19 43 72 92 9
56 222 19 u4 73 93 99
58 218 19 45 75 9% 99
60 214 20 4é 76 9l 99
64 207 20 48 79 95 *
68 201 21 50 81
72 195 22 52 83 97
76 190 22 [ 85 98
80 185 23 56 86 98
84 18 24 58 88 99
88 176 24 59 89 99
92 173 25 61 90 99
96 169 26 63 9 99
100 165 27 64 92 99
120 151 29 n 96 *
140 140 32 77 98
160 130 35 82 99
180 123 38 86 99
200 17 Y] 89 *
250 104 LYSE )
300 095 sh 97
350 088 59 98
Loo 082 6 99
4so 078 68 *
500 074 72
600 067 79
700 062 84
800 058 88
900 055 91
1000 052 9%

* Power values below this point are greater than .995.
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Illustrative Examples

3.1 A personality psychologist has performed an experiment in which
he obtained paired measures on a sample of 50 subjects. One of these variables
is a questionnaire score on extraversion, the other a neurophysiological
measure which his theory posits should relate to the former. His hypothesis
is formulated as nondirectional and he selects a, = .05 as his significance cri-
terion. Although his theory dictates a strong relationship, unreliability and
lack of high construct validity of his measures (e.g., social desirability
variance in his questionnaire measure) lead him to expect only a medium ES,
hence he posits r =.30 (PV =r? =.09). Wha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>