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THE VARIMAX CRITERION FOR ANALYTIC ROTATION IN
FACTOR ANALYSIS*

Henry F. KASER

TUNIVERSITY OF ILLINOIS
An analytic criterion for rotation is defined. The scientific advantage
of analytic criteria over subjective (graphical) rotational procedures is dis-
cussed. Carroll’s criterion and the quartimax criterion are briefly reviewed;
the varimax criterion is outlined in detail and contrasted both logically and
numerically with the quartimax criterion. It is shown that the normal varimax
solution probably coincides closely to the application of the principle of simple
structure. However, it is proposed that the ultimate criterion of a rotational
procedure is factorial invariance, not simple structure—although the two
notions appear to be highly related. The normal varimax criterion is shown
to be a two-dimensional generalization of the classic Spearman case, i.e., it
shows perfect factorial invariance for two pure clusters. An example is
given of the invariance of a normal varimax solution for more than two
factors. The oblique normal varimax criterion is stated. A computational out-

line for the orthogonal normal varimax is appended.

In factor analysis, an analytic criterion for rotation is defined as one
that imposes mathematical conditions beyond the fundamental factor
theorem, such that a factor matrix is uniquely determined. Historically,
the first such criterion was Thurstone’s treatment of the principal axes
problem [10]: from any arbitrary factor matrix he suggested rotating under
the criterion that each factor successively accounts for the maximum variance.
But principal axes have seldom been accepted as psychologically very interest-
ing ({9], p. 139). The rotation problem for psychologically meaningful factors
is usually handled judgmentally. Scientifically, however, this procedure is
not very satisfactory: the ad hoc quality of subjective rotation makes
uniquely determined factors impossible; only factors that are subject to the
uncertainties and controversies besetting any a posteriori reasoning can be
defined. In contrast, an analytic criterion for rotation would allow factor
analysis to become a straightforward methodology stripped of its sub-
jectivity and a proper tool for scientific inquiry.

The Quartimax Criterton

The first analytic criterion for determining psychologically interpretable
factors was presented in 1953 by Carroll [1]. In an attempt to provide a

*Part of the material in this paper is from the writer’s Ph.D. thesis. I am indebted
to my committee, Professors F. T. Tyler, R. C. Tryon, and H. D. Carter, chairman, for
many helpful suggestions and criticisms. Dr. John Caffrey suggested the name varimaz,
and wrote the original IBM 602A computer program for this criterion.

I am salso indebted to the staff of the University of California Computer Center for
help in programming the procedures described in the paper for their IBM 701 electronic
computer. Since their installation is partially supported by a grant from the National
Science Foundation, the assistance of this agency is acknowledged.
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mathematical explication of Thurstone’s simple structure, he suggested that
for a given factor matrix,

@ f=2 2d.dl,

should be a minimum, where j = 1,2, .-+  nare tests, s, t = 1,2, .-+ ,r
are factors, and a;, is the factor loading of the jth test on the sth factor.
It appears that Carroll was motivated in writing (1) primarily by a close
inspection of Thurstone’s five formal rules for simple structure ([12], p. 335),
particularly the requirement that a large loading for one factor be opposite
a small loading for another factor.

In his original paper, Carroll provided two numerical examples of the
application of his method. Without the restriction of orthogonality, these
illustrations gave somewhat equivocal results—while the application of (1)
appears to bring one close to the desired simple structure, the criterion has
an obvious bias in being too strongly influenced by factorially complex tests.

In the light of later developments, Carroll’s criterion should probably
be relegated to the limbo of ‘“near misses’”; however, this does not detract
from the fact that it was the first attempt to break away from an inflexible
devotion to Thurstone’s ambiguous, arbitrary, and mathematically un-
manageable qualitative rules for his intuitively compelling notion of simple
structure.

Almost simultaneously with Carroll’s development, Neuhaus and
Wrigley [7], Saunders [8], and Ferguson [2] proposed what is usually called
the quartimax method for orthogonal simple structure. Neuhaus and Wrigley
suggest that a most easily interpretable factor matrix, in the simple structure
sense, may be found when the variance of all nr squared loadings of the
factor matrix is a maximum, i.e.,

) ¢ = [r Z > (ak)? — (Z > al)*/n*® = maximum.

Saunders’ approach requires that the kurtosis (fourth moment over second
moment squared) of all loadings and their reflections be a maximum,

3) q: = nr E > a?,/(z > a%)? = maximum.

While Ferguson, basing his rationale on certain parallels with information
theory, calls simply for

@ gs = E > af, = maximum.

All these investigators are concerned with attaining a factor matrix
with a maximum tendency to have both small and large loadings. While
less obviously related to Thurstone’s rules than Carroll’s criterion, the
emphasis on small loadings coincides with Thurstone’s requirements of
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zero loadings. For orthogonal factors, criteria (2), (3), and (4) are equivalent
because of the invariance of the sum of the communalities, >, ., a. .
(This term, as well as other constants, disappear when differentiated in the
caleulus problem involved in finding the required critical point.)

Indeed, it turns out that they are also equivalent to Carroll’s criterion
in the orthogonal case. Minimizing (1) is equivalent to maximizing (4)
since the squared communality of a test is

constant = (> a2)® = >.ai, + 2D al.al.,

8<t

and the sum of squared communalities over all tests is

constant = 2, X .ai, + 22 ;tﬁaa?t
i 8 i s

= Q3+2f-

Thus, since the quartimax criterion plus twice Carroll’s criterion is a con-
stant, maximizing g¢; is equivalent to minimizing f.

Neuhaus and Wrigley realized that none of these criteria can be real-
istically applied without the aid of an electronic computer—the calculations
involved are too extensive for a desk calculator or punched card mechanical
computers. Consequently, they programmed the quartimax method for the
Iliac* and provided a rather extensive numerical investigation of the empirical
properties of the quartimax method.

Their results were perhaps more encouraging than Carroll’s. Under
the restriction of orthogonality Carroll’s criterion (or the equivalent quartimax
method) does not show nearly so obvious a bias as does Carroll’s criterion
when the restriction of orthogonality is removed. However, as an explicatiqn
of orthogonal simple structure, the quartimax method does have a systematic
bias which will be more fully examined in the next section.

The Varimazx Criterion

From the outset, the above methods consider all nr loadings simul-
taneously. In every case, however, these criteria may be applied separately
to each row of the factor matrix and summed over rows for the final criterion
because of the invariance of the communalities. Ior example, Neuhaus and
Wrigley could have defined the simplicity, say, of the factorial composition
of the jth test as the variance of the squared loadings for this test,

(5) ¢ =Ir 22 @) — (; a;)’)/r

*The Illiac is the University of Illinois electronic computer. Subsequently, the quar ti-
max eriterion has been programmed for the CRC-102A (Neuhaus), and the IBM 701
(Kaiser). The varimax criterion described in the next two sections has been programm ed
for SWAC at UCLA (Comrey), the IBM 701 (Kaiser), Illiac (Dickman), and the IBM
650 (Vandenberg).
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To obtain the total criterion for the entire factor matrix, (5) could then be
summed over all tests to give

(6) ¢* = 224l X @) — (X &)
Maximizing ¢* is equivalent to maximizing ¢, , again because constant terms
vanish when differentiated.

Equation (6) perhaps provides some insight into the quartimax
criterion—its aim is to simplify the description of each row, or test, of the
factor matrix. It is unconcerned with simplifying the columus, or factors, of
the factor matrix (probably the most fundamental of all requirements for
simple structure). The implication of this is that the quartimax criterion
will often give a general factor. Under requirement (5) there is no reason
why a large loading for each test may not occur on the same factor. In practice,
this tendency for the quartimax ecriterion to yield a general factor is most

pronounced when the unrotated factor matrix has

a pronounced general
factor.

From the simple structure viewpoint, an immediate modification of the

quartimax criterion is apparent. Let us define the simplicity of a factor as
the variance of its squared loadings,

(7) =l X (@) — (22 ai)’l/m’.

And for the criterion for all factors, define the maximum simplicity of a
factor matrix as the maximization of

® v = Xt = Xl @) (2 ),

the variance of squared loadings by columns rather than by rows.

Since a factor is a vectlor of correlation coefficients, the most interpret-
able factor is one based upon correlation coefficients which are maximally
interpretable. Those correlations which satisfy this condition are patently
obvious: correlations of = 1, which indicate a functional relationship, and
correlations of zero, which indicate no linear relationship. On the other hand,
middle-sized correlations are the most difficult to understand. Thus, it is
seen why v* in (7) could be maximized for the maximum interpretability or
simplicity of a factor, and more generally, why the interpretability of an
entire factor matrix could be considered best when (8) is & maximum.

Criterion (8) is the original raw varimax criterion [4]. In the original
proposal of this criterion, it was shown to be mathematically equivalent,
n the orthogonal case, to minimizing

(9) c* = 2 {n Z alal, —

<t

(3 at) (X a)/n),

L.e., minimizing the covariance of pairs of columns of squared loadings and
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summing over all possible pairs of cc_)lumns for th’e crl.tterl.onl. gr)ltiﬁ;: t(ﬁi
then bears the analogous relitionshlg to Sﬁ:ﬁiﬁ (cg)l erior
i i ] uartimax . ‘

Vag(‘)‘;;‘*j (ci:;:?:lic?c?oflgs) ggtiiet;nt q?lz?rtimax and varimax orthogonal ,SOIllltlyOnS
ca;l be illustrated numerically. In Tab}e 1 solgtmns forv 'g};)uritootl;z st ltleaetx S}l:e
variable box problem ({12], pp. 373-375) are given. It ;u ) eCture fhat the
quartimax solution [7] could hardly be called a simp {3 5 le(lr ue .Concemed
a large general factor, and the second factor seems only vaguel;

Table 1

~ 1 N I ™. a
- ab ! Froblemn
Thurstone's 1ll-Yariable Cox Ir b 1

Subjective Zuartimax Raw Varimax
(oblique}

Test X Y z X ¥ Z X ¥ VA
90 05 o7 £9 65 05 91 19 16
) oh 8 o1 83 L7 00 05 93 25
- 03 05 79 L2 =08 79 1 17 8
, : 62 63 =0C 99 11 -OL &L 7L 20
V- =05 s 57 71 =ko  S6 02 65 75
; 82 37 =01 92 L1 03 8L 51 22
7'? 35 76 jod 96 =18 03 37 86 28
V 2v + 2y S3 71 =09 10 00 =07 s, 82 12
(32 + 2 )z g2 71 -08 99 =01 =07 53 81 1
(2 » 22)7 52 -07 & 59 38 68 0 09 77
xvT L2 L3 L3 88 oL LS L3 58 65

2Decimal points omitted.

with dimensions of boxes. On the other hapd, the raw \javmngl SOl:Elrio(i

closely parallels Thurstone’s original subjective solution, given the re

ti {f orthogonality. . Y ‘

o ;)n Tablf 2 are solutions for Holzinger and Harman’s 24 sy cholc‘;%lcgl

tests ([3], pp. 220-233). Both the quartimax [7] and the raw varimax me ](S)u‘C

se;n; to’duplicate the subjectively rotated simple struc‘;lure paﬁﬁ:x‘ilrllié b
i i ibuti f the factors are pernaps m -

the respective variance contributions o 0 > more fnteres

i i i i he Y_; a2, for the subjective so

ing. It is seen that the dispersion of t ;ai, :

is %eSS than the corresponding figures for the two analytic ‘methods. Iln oetlhzz

words, Holzinger and Harman have made the factors a little more lev
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Table 2

Holzinger and Harman's Twenty-four Psychological Tests?®

Subjective Quartimax Raw Varimax Normal V
NOYTTAL Arimax
Test A B C D A B C D A B Cc D A = C
z )
1 10 32 62 20 37
1 19 6 o7 n 20 6 1
2 o 15 ls% b 2 07 38 ol 7o b ow R
} BE¥gy yaEa Zana kg
i B85 1 3 27 08 52 ol R
5 Bl on oL 8 1 -0 ol 78 21 12 o6 % %
103 00 06 S 5 on
6 oo a2 8 8 10 13 1 15 23
I 2% 7 u 65 07 0L -10 8k 15 10 00 - o5
6 20 20 -0l 60 2 D 3%
lg ;g -gg _ig iﬁ gg -c7>g =02 10 8l oi i:zL f? . f; %i
10 @ % 2 a2 1 17 71 -08 17 ER
62 0 23 o
1 22 83 06 FR
13 %ﬁ g gi 03 16 69 19 -0 06 70 23 Si @ 505 n
1 s a0 35 57 32 -08 2 59 3% -0l FERREA
FooREBE it rEaR -l oo
15 17 1 ; oA
A I
N L ‘ 20 23 0 R
bopzzz zxph 85340 502
20 31 18 L6 29 TR Box
31 2 39
20 Aol 5209 3 1L 2 12 13 = 350011 17 2
21 ol o»oa 35 38 38 1 23 b0 L0 20 N o0 %
2 3o b 3 ok 30 2 L 06 37 32 PR
2 55 19 LL o9 L R
i 2 39 L6 1 R B 13 10 20 T KoL o
. i Loih 2
Tajg 33 292 268 2% 559 2L2 196 1h2 L3 260 26L 186 S 2uL 308 236

%Decimal points omitted.

:Vven in th.elr (.3011’?ribution to variance than the analytic criteria. Of the
Ixo an.alytllc criteria, the raw varimax solution has given a solution which is
zsozelfelsrllﬂ’ihollf ;}fspe((:it. to Holzinger and Harman's. It is also noteworthy tha£
wo e contri}iii iolnffser;a;cii Zhe la;"gsl Ioadhtl}gfsdof the factors with the larger
; ‘ analytic methods are larger than the lar
%Z?;I;lgfsa ;?sr Sth:resnlljj;l; fs}ftorsghand silrlnilarly, the small loadings for t}%z
: an the sma loadings for the smaller factors.
ggiz.lilge‘r and }.Iarm.an’s subjective ,?olution does not show this systef:s:i‘c
,H efr it.)lum.on gives a more equitable patterning of factor loadings.
eade t(z)watrzsﬁ};lzs mfay} be rerpoved i§ in'dicated in the next section. This
o X n o .tle varimax crlte.non, which appears to have more
portant characteristics than merely satisfying the rules of simple structure

Factorial Invariance: Normal Varimaz

quargcmfin;z 0{e‘z;;l(q).nablye to a.ttribute the sysléematic bias seen in both the
examplos (4] o m;.‘fu: solutlons. of the Holmnger—Harman data and other
o e ner‘g'ent weights which implicitly are attached to the

y their communalities. When one deals with fourth-power functions
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of factor loadings, a test with communality 0.6, for example, would tend to
influence the rotations four times as much as a test whose communality was
0.3. Thus, while the most obvious weights have been applied to the tests,
namely the square roots of their communalities, after the fact it seems that
there is probably a better set of weights—weights which would tend to
equalize to a greater extent the relative influence of each test during rotation.

There seems no rational basis for choosing among different weighting
schemes. Let us then make the agnostic confession of ignorance which pervades
any form of correlational analysis. For the purposes of rotation, weight
the tests equally, in the sense that the lengths of the common parts of the
test vectors have equal length. (The author is indebted to Dr. D. R. Saunders
for this suggestion.) The varimax criterion could then be rewritten as

(10) v = 3 (Il X (@/R) — [ @ /R,

3

where A2 is the communality of the jth test. In contrast to (7) and (8), where
the variance of the squared correlations of the tests with a factor is maximized,
the variance of the squared correlations of the common parts of the tests
(the reflections of the tests onto the common-factor space) with a factor is
now being maximized. [Note from (10) that we are not advocating a permanent
weighting of the tests by a weight inversely as the square root of their com-
munalities. During rotation this weighting extends the common part of
each test vector to unit length, but after rotation each of these vectors is
shortened to its proper length by reweighting directly as the square root of
the test’s communality.]
As will be seen in Table 2, under this modification the varimax eriterion
(the normal varimax, since rotation is with respect to normalized common
parts of tests) has effectively removed the small but disturbing bias in the
raw varimax solution of Holzinger and Harman’s example. It also has been
shown in a number of other examples [6] that the normal varimax does not
seem to deviate systematically from what may be considered the best
orthogonal simple structure.®
Thus far, however, merely a numerical-intuitive basis for a weighting
procedure which leads to “prettier” results has been provided. Such a basis
is quite unsatisfactory theoretically. Indeed, this sort of ad hoe thinking
could conceivably lead to a different set of judgmentally determined weights
for any particular example—a situation as scientifically reprehensible as
the subjective graphical methods.
There is a more fundamental rationale for attempting to establish the
normal varimax criterion (10) as a mathematical definition for the rotation

*Professor Andrew Comrey has apparently reached the same conclusion in an exten-
sive application of the normal varimax criterion to interitem correlation matrices of the
MMPI (personal communication). A further example, available from the writer, is the
normal varimax solution of Thurstone’s classic PMA study[11] (dittoed).
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problem. Consider the situation illustrated in Fig. 1. There are two clusters
of tests, each of which is pure in the sense that the reflections of the test
vectors of the cluster onto the two-dimensional, common-factor space are
collinear. (While these clusters are drawn less than 90° apart, the following

argument is perfectly general.)

I
/

Ficure 1

Case for which a normal varimax solution is i i
ution 18 invariant under changes in the siti
of the test battery. g composition

0 ;t is shown below that the angle of rotation in a plane which maximizes
is

2n Zu,-v,- - Eu,- Zvj]

(1D ¢ = Larctan 3 ——

n ]Z (u; — v;) — [(Zu,) - (Z Ui)2] ’
where I 1

U; = (aj1/hj)2 - ((1,-2/}2,-)2,
and

v; = 2(an/h)@;2/h;).

. Letn, (n4 > 1) be the number of tests in the first cluster and ng (ng > 1)
e the number of tests in the second cluster (n = ny + np). It is readily
apparent that all tests of the first cluster have the same values for u; and v; .
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Let these values be w4 and v, . Similarly let the values for the second cluster
be up and v . In this case (11) reduces to

2nAnB(uA1)A + UV — UgVp — UB”A)
2 2 2 2 *
nanpluy + ug — V4 — Vg — Quaup + 20405)

(12) ¢ = } arctan

A most important result is shown in (12). The n4np term may be
cancelled, indicating that the angle of rotation does not depend on the
number of tests in each cluster, i.e., for the case tllustrated in Fig. 1, the normal
rarimaz solution is tnvariant under changes in the composttion of the test battery.

This invariance property would seem to be of greater significance than
the numerical tendencies of the normal varimax solution to define math-
ematically the doctrine of simple structure. Although factor analysis seems
to have many purposes, fundamentally it is addressed to the following
problem. Given an (infinite) domain of psychological content, infer the
internal structure of this domain on the basis of a sample of n tests drawn
from the domain. The possibility of success in such inferences is obviously
dependent upon the extent which a factor derived from a particular battery
or sample of tests approximates the corresponding unobservable factor in
the infinite domain. If a factor is invariant under changing samples of tests,
i.e., shows factorial invariance ([12], pp. 360-361), there is evidence that
inferences regarding domain factors are correct.

The normal varimax solution, according to the above result, allows such
inferences; regardless of the sampling of tests, for the problem shown in Fig.
1 it is possible to infer precisely the domain normal varimax factors. This is
not true for either the quartimax or raw varimax solutions since the angle of
rotation iz a function of n, and ng .

Note that domain normal varimax factors are not said to be more
meaningful than domain factors according to some different criterion; it is
suggested that observed normal varimax factors will have a greater likelihood
of portraying the corresponding domain factors.

Although one often gets the impression that simple structure is the
ultimate criterion of a rotational procedure, it is suggested here that the
ultimate criterion is factorial invariance. The normal varimax solution was
originally devised solely for the purpose of satisfying the simple structure
criteria. But the fact that it shows mathematically this sort of invariance
suggests that Thurstone’s reasoning was basically directed toward factorial
invariance. The principle of simple structure may probably be considered
incidental to the more fundamental concept of factorial invariance. This
viewpoint renders meaningless the arguments concerning “psychological
reality” of general factors, bipolar factors, simple structure factors, ete.

Admittedly, the result (12) is for a special case. The correlations among
the variables within each of the two pure clusters must form a perfect
Spearman matrix, and the reduced correlation matrix as a whole must be
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of rank two. Normal varimax does however give invariant results for two
such Spearman clusters simultaneously, and consequently the normal varimax
criterion is a two-dimensional generalization of the classic Spearman case.
Obviously, the next step would be a generalization along the same lines to
the r-dimensional case; thus far, however, work on this problem suggests
virtually insuperable mathematical difficulties.

To investigate numerically the tendency of the criterion to give factorially
Invariant solutions for r larger than two, again consider Holzinger and
Harman’s empirical data. Taking their centroid loadings, the first five tests
were rotated then the first six, ete., systematically until the analysiz of
all 24 tests was reached, as in Table 2. The results of this application of the
normal varimax criterion are given in Table 3. There, the normal varimax
loadings for the four factors as a function of the changing number of tests
are given,

Note that factors A4 and C are essentially invariant from the outset;
the loading changes, while somewhat systematic, are negligible—24 appears
to be essentially infinite. On the other hand, factors B and D show more
movement before they become stable. The reason for this is readily apparent.
Forboth B and D, this movement oceurs only while they are underdetermined,
Le., only while they contain no appreciable loadings. However, once they
pick up a test or two with high loadings, their ambiguous definition abruptly
stops, and they settle down to exhibit a degree of invariance similar to the

Table 3A

Normal Varimax Loading Changes for Holzinger and Harman's Factor & (n =35, 6, .

s

Test 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
1 19 19 18 19 18 16 16 16 16 16 15 16 15 16 16 15 1T 13 1L 1
2 12 12 12 13 12 12 12 12 12 11 11 1 11 12 11 i1 11 1 10 10
3 15 1 15 16 16 17 17 17 17 16 16 16 16 17 17 16 1% 13 15 15
L a 22 2 2 2 24 2 2 2 A 2 24 2 A 2 20 25 23 20 20
5 978 78 79 18 76 75 76 76 76 75 75 75 76 76 75 1: 5 75 15
6 w1 18 77 16 77 77 76 75 75 75 75 15 75 3z 75 75 15
7 83 84 83 8 82 82 82 82 82 82 8 83 82 8 2 282 Bi
8 59 58 55 55 L5 55 55 55 55 65 g5 g 55 2 3§ 5
9 82 83 82 83 83 8 80 80 8 8 B8 8 3 3 8 B
10 18 15 17 17 16 16 16 15 16 16 16 1< 15 16 15
11 19 212 21 19 18 18 18 18 18 18 1@ 13 18 17
12 03 02 03 03 03 03 03 03 03 o0 23 O2 Og
13 1 19 19 20 20 20 20 15 13 5 18 1
1L 23 21 22 2o 22 22 22 22 22 22 22
15 11 12 11 12 12 12 12 1z 12 12
16 09 09 10 09 09 95: o3 09 08
17 13 1 1 ik o1 ozh W 1k
18 o1 o1 o0 03 w oo 0
19 13 013 1: 13 13 13
20 3503 35 3 3%
21 1012 16 18
22 35 36 36
23 35 35
2k 3
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Table

Keral Varimax Loading Changes for Holzinger

33

and Harman's Factor b

197

(n =5, 6y eees 2u)?

‘:1

7 17 22 23 2
5 4 7 8 9 10 11 12 13 1w 15 16 17 17 1% 20 21
Test 5 < —
g 19 19 19 19
: 19 21 20 20 19 19 19 1 4
L PRl e ieoue sy e dyyd
2 SRS _ o 0 i ;g
0% o 05 08 08 09 09 O
B Tt S-{ e L o2 05 07 09 09 09 ©9 09 OB 08 09 09 %8 09
Lo 9 25 o5 21 21 20 20 20 20 2
; 08 R on 08 08 03 09 09 09
I R R % W 12 13 11 1 10 09 ; 03 09 % 10
g Rl SR ¢ 1c 16 16 16 16 15 15 15 1S 16 1
-03 =03 -08 12 1 1615 1 1 80
{ 25 26 26 26 ) 5 25 2
oo B 00 -00 -0L =01 =00
: 05 03 02 o0l 0 o
9 % % 69 69 69 69 70
72 71T 70 10
: IREEE R EEEERE RN
1 o4 ; 4 59 59 59 59 59
3 57 59 59 59 59 59 59 AR,
19 16 15 15 1 15
i EEEEEEEEEN
Y 12 10 09 03 08 09 09 09 °
1 19 17 17 17 w7 1 17 l6
1 26 25 25 26 26 26 2
10 1, 1 1k 15 15 15
09 1o 10 10 1
19 37 38 37 38
2 o, o4 OL
z 20 2
§§ LL
2L
apecimal points omitted.
Table 3¢ )
i = wees 2L}
i 4 arimax Loading Cranges for Holzinger and itarman's Factor C (n =5, 6, s
licrmal Varir z Cn
n
. 3 2 2L
e 7. 8 9 10 m 12 13 1 15 16 17 18 19 20 22 23
Test S 5 . , -
0 70 69 68 68 &5 67 61 67 ié i; E; Sg 6 6
3 i ‘7’0 : Z’O ZS L5 L bk Ll bl B L3 L3 hf Si it P8 4
: AR o ) e R T o
) F 2 < 5
: 2 §§ ;i gg 23 gg gg gi n o oa gg gflJ gg %g gg gg 3(1) 2 2
: - ! o 23 23 23 22 a 2 5 2
g B Y9 19 19 19 19 18 18 19 12
: TS hhyiEiIZaBEE R g d
‘ 22 2 0 2 2
3 >3 Zi ?ﬁ -gi -05 =06 -06 =06 =07 =07 <07 -g; 8; 88 P
o o 26 "3 11 11 oy o9 0oy 08 0T 07 or o1 9B o
" 55 23 23 23 23 23 23 23 23 2 2 8 n
3 5 S S N TS S 1 RO i Ry I n n oo
13 o6 05 o, 05 03 02 03 03 o L
x 15 14 15 13 12 13 13 ﬁ L L
Y 2 L2 W Lo kol e
: sgpgdeens
2 A
ig ’ 22 23 23 23 2k 2
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Table 3D
Normal Varimax Loading Changes for Folzinzer and farman's Factor J (s = Sy 5y eeey .00
2

Test 5 & 7 8 9 10 11 12 13 1L 15 16 17 18 19 20 ol ad 23 24
1 01 -00 00 01 =07 01 o1 0l 02 03 13 1l 15 17 19 14 e 717 17
2 oL o1 02 01 99 02 02 02 J1 G o8} 09 09 10 11 11 iz 2 10 10
3 =00 01 Cl1 =090 05 =00 01 =06 =01 02 [o53) o7 07 o8 09 03 o 5 03 08
L =03 =03 03 0L -01 -0L ~03 -0L -0L 01 05 06 06 07 09 0331 l7 23 o7 07
5 =00 ~06 =03 =02 -09 06 -06 <05 =05 07 12 12 1k L1151l — L. L3
6 06 0% Q% 0% 05 ofi 0t 05 17 2l 21 22 21 22 22 27 S %2 2
7 =06 =0& 06 =10 10 -09 <10 03 o7 07 0% a3 09 09 - i 93 08
8 0L -lL -07 <08 07 .07 ok 10 e 12 12 14 13 4 ] 2 12
9 it 11 12 2 1 22 25 24 27 25 26 26 o 25 25
10 =00 =07 =00 02 15 19 19 23 2L 25 25 ° . 2L 2L
11 Gr 12 15 27 31 32 3% 5 37 37 T 31 36
12 -ih =11 -0 05 cs ¢y 11 13 2 Lt = 1 n
13 ~17 =05 00 01 ok 07 08 o5 . o o7 06
1k L7 L2 L9 50 50 50 50 o2 i 0 50
15 L9 L 50 50 S0 5o i 350 50
16 L2 ke W bs o LL LL e TR TK]
17 6l 6L L 6L uL L Gl [N
18 s 55 53 - H oL 5L
19 L Lo Lo 3 39 39
20 26 e S 25 2%
21 27 E) 26 26
22 Jo 36 36
23 22 22
2l 3k

2Decimal points omitted.

other two factors, which had high loadings from the beginning. For » = 24,
there appear to he good approximations to the domain normal varimax
factors,

The Oblique Case

If the restriction of orthogonality is relaxed, it is impossible to apply
directly the quartimax ecriterion (4) or the normal varimax eriterion (10).
This is because interfactor relationships are not considered when the criteria
are in this form, and when applied all factors will collapse into the same
factor—that one factor which best meets the criterion. However, Carroll's
version of the quartimax ecriterion explicitly considers interfactor relation-
ships and an oblique solution is attainable. As suggested by 9, if
13) e = 2 {ln X (ah/k)@ /1) ~ (X b /i)Y a2 /hd] )

L] ) i 7
it may be shown that in the orthogonal case v = — 2¢. This alternative form
of the normal varimax may then be used to obtain oblique factors. The
mathematical problem of minimizing (13) is exactly analogous to Kaiser’s
[5] treatment for Carroll’s criterion. Computationally, the (iterative) solution
mvolves finding the latent vector associated with the smallest latent root of
a constantly changing symmetric matrix of order r.
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Computational Appendex

To compute an orthogonal normal Varimajx solution, the fog9wx'111%
procedure is suggested. The first step is to normalize th(? rows of t.h('a ar 1’omri1
reference factor matrix (e.g., principal axes or centroids) .by dividing eac !
element by &, . Rotation to the direction of the 1}ormal varimax factors may
then be earried out with respect to these normalized logdmgs. . |

The criterion (10) will be applied to two facto'rs a? a time, Ij‘or this purpose,
the following notation for an orthogonal rotation is convenient.

T Y .[cosqﬁ —sin¢j|= X, Y
2y Yo | LSIN @ cos ¢ X, Y,

X, Y,

’

Lo Yn
where z; and y;, the present normalized loadings, are constants, and X ,f
and Y, ., the desired normalized loadings, are functions of ¢, the angle o

rotation.

It is immediately seen that
(14) X; =, cos¢ + y;sin ¢,
(15) Y, = —ux;sin ¢ + y; cos .
Thus,
(16) dX,/d¢ = Y,
(17) dY;/d¢ = —X,.

According to (10), in this plane, N
(18) e, =n 2 (X - (XX +n Z(Y2)2~(Z?/)
should be a maximum. Differentiating (18) with respect to ¢, using (16) and
(17), and setting the derivative equal to zero,
(19) n Y, XY(X* - Y% — XY Y (X*—-Y) =0.

To solve (19) for ¢ in terms of ; and y; , substitu“ce fche V_al'ues of X; anc{
Y, from (14) and (15), consult a table of trigonometric identities, and, after
a good deal of algebraic manipulation,

(20 ¢ = % arctan
P — )@y — 2@ — v 2 (2x)] _
e C - - [ @)l
{2 [ —y) = Qey’l} — {[2 = — y)
If u, = 22 — y?and v; = 2x;y;, (20) reduces to the form.(ll) above. _
]Of clourse,’ (11) or (20) is only a necessary condi.tl‘on for a maximum.
By taking the second derivative of (18) sufficient conditions for a maximum
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may be found. These are summarized below.

sign of numerator

+ —
|| e
sign of z Bt
denominator
-+221° —221°
to +45° to —45°

The sign of numerator and denominator refer to the right-hand member
of (20); the values in the cells refer to ¢.

These single-plane rotations are made on factors 1 with 2, 1with3, --- 1
with7, 2 with 3, --- | 2 withr, ... , (r — 1) with r, 1 with 2, --- iteratively
until 7(r — 1)/2 successive rotations of ¢ = 0 are obtained, i.e., until the
process converges. (It was shown [6] that » in (10) cannot be greater than
(r ~ 1)/r, and since each successive application of (20) can result only in
a non-decrease of », this iterative procedure must converge.) After con-
vergence, each normalized test vector is restored to its proper length by
multiplying by #; .

Since this article was accepted for publication, the author has prepared
a detailed outline for coding an electronic computer program for the varimax
criterion. This (dittoed) paper is available from the writer.
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POWER FUNCTION CHARTS FOR SPECIFICA:I‘ION OF
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cification of sample size is an important aspeet of the planning
of eveTrgee)s(ngiment. When th% investigator intends to use the ’cechmquegfof
analysis of variance in the study of treatments effects, he should, 1I}hs_pﬁc1 yﬁ
ing sample size, take into consideration the power of the F tests w 1(; Wld
be made. The charts presented in this paper make possible a simple an
direct estimate of the sample size required for F tests of specified power.

A primary consideration in the design of any experiment is the specifica-
tion of the number of subjects to be selected from the various trea‘Pm‘ent
populations. This number should be such that the important stat%st}cal
tests will be reasonably sensitive in detecting false null hypotheses. Statlst%cal
theory provides the basis for designing such tests; in many ps_ycholc?glcal
and educational experiments sufficient preliminary informatlon'ls avallable
to permit an application of this theory. The purpose .of tbis paper is to provide
power function charts which will simplify the application of the theo.ry and
thus facilitate the specification of sample size in experiments employing the
techniques of analysis of variance. . .

The power of the statistical test in any experlme]}ta.l setup—that is,
the probability of rejecting the null hypothesis when it is false—depends
on the level of significance « at which the test is made, the number of obser:
vations or subjects 7 on which data are available, and the degree of falsity ¢
of the hypothesis under test. The latter factor is defined as the square root
of the ratio of the variance of the treatment population means to the variance
for error within the treatment populations. Symbolically,

For every F test at a given level of significance in any givel‘l (.iesiglﬁl, the
power P against any specified alternative to the null hypothesis is uniquely
determined by the value of n. Conversely, for every test the{‘e exists a Vailue
of n which will result in a test of specified power against a specified alternative.
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