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Introducing the Multilevel Model 
for Change

When you’re finished changing, you’re finished
—Benjamin Franklin

45

In this chapter, we introduce the multilevel model for change, demon-
strating how it allows us to address within-person and between-person
questions about change simultaneously. Although there are several ways
of writing the statistical model, here we adopt a simple and common
approach that has much substantive appeal. We specify the multilevel
model for change by simultaneously postulating a pair of subsidiary
models—a level-1 submodel that describes how each person changes over
time, and a level-2 model that describes how these changes differ across
people (Bryk & Raudenbush, 1987; Rogosa & Willett, 1985).

We begin, in section 3.1, by briefly reviewing the rationale and purpose
of statistical models in general and the multilevel model for change in
particular. We then introduce the level-1 model for individual change
(section 3.2) and the level-2 model for interindividual heterogeneity in
change (section 3.3). In section 3.4, we provide an initial foray into the
world of estimation, introducing the method of maximum likelihood.
(We discuss other methods of estimation in subsequent chapters.) We
close, in sections 3.5 and 3.6, by illustrating how the resultant parameter
estimates can be interpreted and how key hypotheses can be tested.

We do not intend this chapter to present a complete and general
account of the multilevel model for change. Our goal is to provide a
single “worked” example—from beginning to end—that illustrates all the
steps you must go through when specifying the model, fitting it to data,
and interpreting its results. We proceed in this way because we believe it
is easier to learn about the model by first walking through a simple, but
complete, analysis in a constrained, yet realistic, context. This minimizes
notational and analytic complexity and lets us focus on interpretation and
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understanding. As a result, this chapter is limited to: (1) a linear change
model for individual growth; (2) a time-structured data set in which every-
one shares an identical data collection schedule; (3) an evaluation of the
impact of a single dichotomous time-invariant predictor; and (4) the use
of one piece of dedicated statistical software, HLM. In subsequent chap-
ters, we extend this basic model in many ways, generalizing it to 
situations in which growth is curvilinear or discontinuous; the timing,
spacing, and number of waves of data differ across individuals; interest
centers on the effects of many predictors, both discrete and continuous,
time-invariant and time-varying; distributional assumptions differ; and
other methods of estimation and statistical software are used.

3.1 What Is the Purpose of the Multilevel Model 
for Change?

Even though you have surely fit many types of statistical models in your
data analytic career, experience tells us that when researchers get caught
up in a novel and complex analysis, they often need to be reminded just
what a statistical model is and what it is not. So before presenting the
multilevel model for change itself, we briefly review the purpose of sta-
tistical models.

Statistical models are mathematical representations of population
behavior; they describe salient features of the hypothesized process of
interest among individuals in the target population. When you use a par-
ticular statistical model to analyze a particular set of data, you implicitly
declare that this population model gave rise to these sample data. Statisti-
cal models are not statements about sample behavior; they are statements
about the population process that generated the data.

To provide explicit statements about population processes, statistical
models are expressed using parameters—intercepts, slopes, variances,
and so on—that represent specific population quantities of interest. Were
you to use the following simple linear regression model to represent the
relationship between infant birth weight (in pounds) and neurological
functioning on a single occasion in a cross-sectional data set (with the
usual notation) NEUROi = b0 + b1 (BWGTi - 3) + ei, you would be declar-
ing implicitly that, in the population from which your sample was drawn:
(1) b0 is an unknown intercept parameter that represents the expected
level of neurological functioning for a three-pound newborn; and (2) b1

is an unknown slope parameter that represents the expected difference
in functioning between newborns whose birth weights differ by one
pound. Even an analysis as simple as a one-sample t-test invokes a statis-
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tical model expressed in terms of an unknown population parameter: the
population mean, m. In conducting this test, you use sample data to
evaluate the evidence concerning m’s value: Is m equal to zero (or some
other prespecified value)? Analyses may differ in form and function, but
a statistical model underpins every inference.

In whatever context, having postulated a statistical model, you then fit
the model to sample data and estimate the population parameters’
unknown values. Most methods of estimation provide a measure of 
“goodness-of-fit”—such as an R 2 statistic or a residual variance—that
quantifies the correspondence between the fitted model and sample data.
If the model fits well, you can use the estimated parameter values to draw
conclusions about the direction and magnitude of hypothesized effects
in the population. Were you to fit the simple linear regression model just
specified above, and find that NEUROi = 80 + 5(BWGTi - 3), you would
be able to predict that an average three-pound newborn has a functional
level of 80 and that functional levels are five points higher for each extra
pound at birth. Hypothesis tests and confidence intervals could then be
used to make inferences from the sample back to the population.

The simple regression model above is designed for cross-sectional data.
What kind of statistical model is needed to represent change processes
in longitudinal data? Clearly, we seek a model that embodies two types of
research questions: level-1 questions about within-person change and level-
2 questions about between-person differences in change. If the hypothetical
study of neurological functioning just described were longitudinal, we
might ask: (1) How does each child’s neurological functioning change
over time? and (2) Do children’s trajectories of change vary by birth
weight? The distinction between the within-person and the between-
person questions is more than cosmetic—it provides the core rationale
for specifying a statistical model for change. It suggests that a model for
change must include components at two levels: (1) a level-1 submodel
that describes how individuals change over time; and (2) a level-2 sub-
model that describes how these changes vary across individuals. Taken
together, these two components form what is known as a multilevel sta-
tistical model (Bryk & Raudenbush, 1987; Rogosa & Willett, 1985).

In this chapter, we develop and explain the multilevel model for
change using an example of three waves of data collected by Burchinal
and colleagues (1997). As part of a larger study of the effects of early
intervention on child development, these researchers tracked the cogni-
tive performance of 103 African-American infants born into low-income
families. When the children were 6 months old, approximately half (n =
58) were randomly assigned to participate in an intensive early interven-
tion program designed to enhance their cognitive functioning; the other
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half (n = 45) received no intervention and constituted a control group.
Each child was assessed 12 times between ages 6 and 96 months. Here,
we examine the effects of program participation on changes in cognitive
performance as measured by a nationally normed test administered three
times, at ages 12, 18, and 24 months.

Table 3.1 presents illustrative entries from the person-period data set
for this example. Each child has three records, one per wave of data col-
lection. Each record contains four variables: (1) ID; (2) AGE, the child’s
age (in years) at each assessment (1.0, 1.5, or 2.0); (3) COG, the child’s
cognitive performance score at that age; and (4) PROGRAM, a dichotomy
that describes whether the child participated in the early intervention
program. Because children remained in their group for the duration of
data collection, this predictor is time-invariant. Notice that all eight
empirical growth records in table 3.1 suggest a decline in cognitive per-
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Table 3.1: Excerpts from the person-period data set for the
early intervention study

ID AGE COG PROGRAM

68 1.0 103 1
68 1.5 119 1
68 2.0 96 1
70 1.0 106 1
70 1.5 107 1
70 2.0 96 1
71 1.0 112 1
71 1.5 86 1
71 2.0 73 1
72 1.0 100 1
72 1.5 93 1
72 2.0 87 1
. . . . . . . . . . . .
902 1.0 119 0
902 1.5 93 0
902 2.0 99 0
904 1.0 112 0
904 1.5 98 0
904 2.0 79 0
906 1.0 89 0
906 1.5 66 0
906 2.0 81 0
908 1.0 117 0
908 1.5 90 0
908 2.0 76 0
. . . . . . . . . . . .
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formance over time. As a result, although we might wish that we would
be determining whether program participants experience a faster rate of
growth, it appears that we will actually be determining whether they expe-
rience a slower rate of decline.

3.2 The Level-1 Submodel for Individual Change

The level-1 component of the multilevel model, also known as the indi-
vidual growth model, represents the change we expect each member of the
population to experience during the time period under study. In the
current example, the level-1 submodel represents the individual change
in cognitive performance that we hypothesize will occur during each
child’s second year of life.

Whatever level-1 submodel we specify, we must believe that the
observed data could reasonably have come from a population in which
the model is functioning. To align expectations with reality, we usually
precede level-1 submodel specification with visual inspection of the
empirical growth plots (although purists might question the wisdom of
“peeking”). Figure 3.1 presents empirical growth plots of COG vs AGE for
the 8 children whose data appear in table 3.1. We also examined plots
for the 95 other children in the sample but we do not present them here,
to conserve space. The plots reinforce our perception of declining cog-
nitive performance over time. For some, the decline appears smooth and
systematic (subjects 71, 72, 904, 908); for others, it appears scattered and
irregular (subjects 68, 70, 902, 906).

When examining empirical growth plots like these, with an eye toward
ultimate model specification, we ask global questions such as: What type
of population individual growth model might have generated these
sample data? Should it be linear or curvilinear with age? Smooth or
jagged? Continuous or disjoint? As discussed in chapter 2, try and look
beyond inevitable sample zigs and zags because plots of observed data
confound information on true change with the effects of random error.
In these plots, for example, the slight nonlinearity with age for subjects
68, 70, 902, 906, and 908 might be due to the imprecision of the cogni-
tive assessment. Often, and especially when you have few waves of data,
it is difficult to argue for anything except a linear-change individual-
growth model. So when we determine which trajectory to select for 
modeling change, we often err on the side of parsimony and postulate a
simple linear model.1

Adopting an individual growth model in which change is a linear func-
tion of AGE, we write the level-1 submodel as:
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(3.1)

In postulating this submodel, we assert that, in the population from which
this sample was drawn, Yij, the value of COG for child i at time j, is a linear
function of his or her age on that occasion (AGEij). This model assumes
that a straight line adequately represents each person’s true change over
time and that any deviations from linearity observed in sample data result
from random measurement error (eij).

Equation 3.1 uses two subscripts, i and j, to identify individuals and
occasions, respectively. For these data, i runs from 1 through 103 (for the
103 children) and j runs from 1 through 3 (for the three waves of data).
Although everyone in this data set was assessed on the same three occa-
sions (ages 1.0, 1.5, and 2.0), the level-1 submodel in equation 3.1 is not
limited in application to time-structured designs. The identical submodel
could be used for data sets in which the timing and spacing of waves
differs across people.2 For now, we work with this time-structured

Y AGEij i i ij ij= + -( )[ ]+[ ]p p e0 1 1 .
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Figure 3.1. Identifying a suitable functional form for the level-1 submodel. Empirical
growth plots with superimposed OLS trajectories for 8 participants in the early interven-
tion study.
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example; in chapter 5, we extend our presentation to data sets in which
data collection schedules vary across people.

In writing equation 3.1, we use brackets to distinguish two parts of the
submodel: the structural part (in the first set of brackets) and the stochastic
part (in the second). This distinction parallels the classical psychometric
distinction between “true scores” and “measurement error,” but as we
discuss below, its implications are much broader.

3.2.1 The Structural Part of the Level-1 Submodel

The structural part of the level-1 submodel embodies our hypotheses
about the shape of each person’s true trajectory of change over time. Equa-
tion 3.1 stipulates that this trajectory is linear with age and has individ-
ual growth parameters p0i and p1i that characterize its shape for the ith child
in the population. Harkening back to section 2.2.2, these individual
growth parameters are the population parameters that lie beneath the
individual intercepts and slopes obtained when we fit OLS-estimated indi-
vidual change trajectories in our exploratory analyses.

To clarify what the individual growth model says about the population,
examine figure 3.2, which maps the model onto imaginary data for an
arbitrarily selected member of the population, child i. First notice the
intercept. Because we specify the level-1 submodel using the predictor
(AGE-1), the intercept, p0i, represents child i’s true cognitive perform-
ance at age 1. We concretize this interpretation in figure 3.2 by showing
that the child’s hypothesized trajectory intersects the Y axis at p0i. Because
we hypothesize that each child in the population has his or her own 
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Figure 3.2. Understanding the structural
and stochastic features of the level-1 indi-
vidual growth model. Mapping the model
in equation 3.1 onto imaginary data for
child i, an arbitrarily selected member of
the population.

 EBSCOhost - printed on 5/18/2020 2:32 PM via EAST CAROLINA UNIV - JOYNER LIBRARY. All use subject to https://www.ebsco.com/terms-of-use



intercept, this growth parameter includes the subscript i. Child 1’s inter-
cept is p01, child 2’s intercept is p02, and so on.

Notice that equation 3.1 uses a special representation for the predic-
tor, AGE. We used a similar approach in chapter 2, when we subtracted
11 from each adolescent’s age before fitting exploratory OLS change tra-
jectories to the tolerance data. This practice, known as centering, facili-
tates parameter interpretation. By using (AGE-1) as a level-1 predictor,
instead of AGE, the intercept in equation 3.1 represents child i’s true
value of Y at age 1. Had we simply used AGE as a level-1 predictor, with
no centering, p0i would represent child i’s true value of Y at age 0, an age
that precedes the onset of data collection. This representation is less
attractive because: (1) we would be predicting beyond the data’s tempo-
ral limits; and (2) we don’t know whether the trajectory extends back to
birth linearly with age.

As you become adept at positing level-1 submodels, you will find that
it is wise to consider empirical and interpretive issues like these when
chosing the scale of your temporal predictor. In section 5.4, we explore
other temporal representations, including those in which we center time
on its middle and final values. The approach we adopt here—centering
time on the first wave of data collection—is usually a good way to start.
Aligning p0i with the first wave of data collection allows us to interpret its
value using simple nomenclature: it is child i’s true initial status. If p0i is
large, child i has a high true initial status; if p0i is small, child i has low
true initial status. We summarize this interpretation in the first row of the
top panel of table 3.2, which defines all parameters in equation 3.1.

The second parameter in equation 3.1, p1i, represents the slope of the
postulated individual change trajectory. The slope is the most important
parameter in a level-1 linear change submodel because it represents the
rate at which individual i changes over time. Because AGE is clocked in
years, p1i represents child i’s true annual rate of change. We represent this
parameter in figure 3.2 using the right triangle whose hypotenuse is the
child’s hypothesized trajectory. During the single year under study in our
example—as child i goes from age 1 to 2—the trajectory rises by p1i.
Because we hypothesize that each individual in the population has his (or
her) own rate of change, this growth parameter is subscripted by i. Child 1’s
rate of change is p11, child 2’s rate of change is p12, and so on. If p1i is posi-
tive, child i’s true outcome increases over time; if p1i is negative, child i’s
true outcome decreases over time (this latter case prevails in our example).

In specifying a level-1 submodel that attempts to describe everyone (all
the i’s) in the population, we implicitly assume that all the true individ-
ual change trajectories have a common algebraic form. But we do not
assume that everyone has the same exact trajectory. Because each person
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Table 3.2: Definition and interpretation of parameters in the multilevel model 
for change

Symbol Definition Illustrative interpretation

Level-1 Model (See Equation 3.1)
Individual p0i Intercept of the true change Individual i’s true value of 
growth trajectory for individual i in COG at age 1 (i.e., his true 
parameters the population. initial status).

p1i Slope of the true change Individual i’s yearly rate of 
trajectory for individual i in change in true COG (i.e., his 
the population. true annual rate of change).

Variance s 2
e Level-1 residual variance Summarizes the net (vertical) 

component across all occasions of scatter of the observed data 
measurement, for individual around individual i’s 
i in the population. hypothesized change trajectory.

Level-2 Model (See Equation 3.3)
Fixed effects g00 Population average of the Population average true initial 

level-1 intercepts, p0i, for status for nonparticipants.
individuals with a level-2 
predictor value of 0.

g01 Population average difference Difference in population 
in level-1 intercept, p0i, for a average true initial status 
1-unit difference in the level-2 between participants and
predictor. nonparticipants.

g10 Population average of the Population average annual 
level-1 slopes, p1i, for rate of true change for 
individuals with a level-2 nonparticipants.
predictor value of 0.

g11 Population average difference Difference in population 
in level-1 slope, p1i, for a average annual rate of true 
1-unit difference in the level-2 change between participants 
predictor. and non-participants.

Variance s 2
0 Level-2 residual variance in Population residual variance 

components true intercept, p0i, across all of true initial status, controlling 
individuals in the population. for program participation.

s 2
1 Level-2 residual variance in true Population residual variance 

slope, p1i, across all individuals of true rate of change, 
in the population. controlling for program 

participation.

s01 Level-2 residual covariance Population residual covariance
between true intercept, p0i, between true initial status and 
and true slope, p1i, across all true annual rate of change, 
individuals in the population. controlling for program 

participation.
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has his or her own individual growth parameters (intercepts and slopes),
different people can have their own distinct change trajectories.

Positing a level-1 submodel allows us to distinguish the trajectories of
different people using just their individual growth parameters. This leap
is the cornerstone of individual growth modeling because it means that
we can study interindividual differences in change by studying interindi-
vidual variation in the growth parameters. Imagine a population in which
each member dips into a well of possible individual growth parameter
values and selects a pair—a personal intercept and a slope. These values
then determine his or her true change trajectory. Statistically, we say that
each person has drawn his or her individual growth parameter values
from an underlying bivariate distribution of intercepts and slopes.
Because each individual draws his or her coefficients from an unknown
random distribution of parameters, statisticians often call the multilevel
model for change a random coefficients model.

3.2.2 The Stochastic Part of the Level-1 Submodel

The stochastic part of the level-1 submodel appears in the second set of
brackets on the right-hand side of equation 3.1. Composed of just one
term, the stochastic part represents the effect of random error, eij, asso-
ciated with the measurement of individual i on occasion j. The level-1
errors appear in figure 3.2 as ei1, ei2 and ei3. Each person’s true change tra-
jectory is determined by the structural component of the submodel. But
each person’s observed change trajectory also reflects the measurement
errors. Our level-1 submodel accounts for these perturbations—the dif-
ferences between the true and observed trajectories—by including
random errors: ei1 for individual i’s first measurement occasion, ei2 for
individual i’s second measurement occasion, and so on.

Psychometricians consider random errors a natural consequence of
measurement fallibility and the vicissitudes of data collection. We think
it wise to be less specific, labeling the eij as level-1 residuals. For these data,
each residual represents that part of child i’s value of COG at time j not
predicted by his or her age. We adopt this vaguer interpretation because
we know that we can reduce the magnitude of the level-1 residuals by
introducing selected time-varying predictors other than AGE into the
level-1 submodel (as we show in section 5.3). This suggests that the sto-
chastic part of the level-1 submodel is not just measurement error.

Regardless of how you conceptualize the level-1 errors, one thing is
incontrovertible: they are unobserved. In ultimately fitting the level-1 sub-
model to data, we must invoke assumptions about the distribution of the
level-1 residuals, from occasion to occasion and from person to person.
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Traditional OLS regression invokes “classical” assumptions: that resi-
duals are independently and identically distributed, with homoscedastic
variance across occasions and individuals. This implies that, regardless of
individual and occasion, each error is drawn independently from an
underlying distribution with zero mean and an unknown residual vari-
ance. Often, we also stipulate the form of the underlying distribution,
usually claiming normality. When we do, we can embody our assumptions
about the level-1 residuals, eij, by writing:

(3.2)

where the symbol ~ means “is distributed as,” N stands for a normal dis-
tribution, and the first element in parentheses identifies the distribution’s
mean (here, 0) and the second element identifies its variance (here, s 2

e).
As documented in table 3.2, the residual variance parameter s 2

e captures
the scatter of the level-1 residuals around each person’s true change 
trajectory.

Of course, classical assumptions like these may be less credible in lon-
gitudinal data. When individuals change, their level-1 error structure may
be more complex. Each person’s level-1 residuals may be autocorrelated
and heteroscedastic over time, not independent as equation 3.2 stipu-
lates. Because the same person is measured on several occasions, any
unexplained person-specific time-invariant effect in the residuals will
create a correlation across occasions. So, too, the outcome may have a
different precision (and reliability) for individuals at different times,
perhaps being more suitable at some occasions than at others. When this
happens, the error variance may differ over time and the level-1 residu-
als will be heteroscedastic over occasions within person. How does the
multilevel model for change account for these possibilities? Although 
this is an important question, we cannot address it fully without further
technical work. We therefore delay addressing the issues of residual auto-
correlation and heteroscedasticity until chapter 4, where we show, in
section 4.2, how the full multilevel model for change accommodates auto-
matically for certain kinds of complex error structure. Later, in chapter
8, we go further and demonstrate how using covariance structure analy-
sis to conduct analyses of change lets you hypothesize, implement, and
evaluate other alternative error structures.

3.2.3 Relating the Level-1 Submodel to the OLS
Exploratory Methods of Chapter 2

The exploratory OLS-fitted trajectories of section 2.2.2 may now make
more sense. Although they are not fully efficient because they do not

e s eij N~ , ,0 2( )

 EBSCOhost - printed on 5/18/2020 2:32 PM via EAST CAROLINA UNIV - JOYNER LIBRARY. All use subject to https://www.ebsco.com/terms-of-use



56 Applied Longitudinal Data Analysis

properly exploit all the information present in longitudinal data, they do
provide invaluable insights into the functioning of the hypothesized indi-
vidual growth model. The top panel of figure 3.3 presents the results of
using OLS methods to fit the level-1 submodel in equation 3.1 to the data
for all 103 children (regressing COG on (AGE-1), separately by ID). The
bottom panel presents stem and leaf displays for three summary statistics
from these models: the fitted intercepts, the fitted slopes, and the esti-
mated residual variances.

For most children, cognitive performance declines over time. For
some, the decline is rapid; for others, less so. Few children show any
improvement. Each fitted intercept estimates that child’s true initial
status; each fitted slope estimates that child’s true annual rate of change
during the second year of life. The fitted intercepts are centered near
110; the fitted slopes are centered near -10. This suggests that at age 1,
the average child has a true cognitive level slightly above the national
norm (of 100 for this test). Over time, however, most children decline
(we estimate that only 7 improve).

The stem-and-leaf displays in the bottom left panel of figure 3.3 reveal
great heterogeneity in fitted intercept and slope across children in the
sample and suggest that not all children have identical trajectories of
change. Of course, you must be cautious when interpreting the interindi-
vidual heterogeneity in change trajectories evident in figure 3.3. The
between-person variation in the estimated change trajectories that you
observe is necessarily inflated over the underlying interindividual vari-
ability in the unknown true change trajectories because the fitted trajec-
tories, having been estimated from observed data, are fallible
representations of true change. The actual variability in underlying true
change will always be somewhat less than what you observe in exploratory
analysis, with the magnitude of the difference depending on the quality
of your outcome measurement and the efficacy of your hypothesized indi-
vidual growth model.

The skewed distribution of residual variances in the bottom right
panel of figure 3.3 suggests great variation in the quality of the OLS
summaries across children (we expect the distribution of these statistics
to be skewed, as they are “squared” quantities and are therefore bounded
by zero below). When the residual variance is near 0, as it is for many
children, the fitted trajectories are reasonable summaries of the observed
data for those children. When the residual variance is larger, as it often
is here, the fitted trajectories are poorer summaries: the observed values
of COG are further away from the fitted lines, making the magnitude of
the estimated level-1 residuals, and therefore the residual variance, large.
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3.3 The Level-2 Submodel for Systematic Interindividual
Differences in Change

The level-2 submodel codifies the relationship between interindividual
differences in the change trajectories and time-invariant characteris-
tics of the individual. The ability to formulate this relationship using a
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Figure 3.3. Observed variation in fitted OLS trajectories. Fitted OLS trajectories for par-
ticipants in the early intervention study as well as stem and leaf displays for fitted initial
status, fitted rate of change, residual variance.
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level-2 submodel stems from the realization that adoption of a common
level-1 submodel forces people to differ only in the values of their indi-
vidual growth parameters. When we use a level-1 linear change model,
people can differ only in their intercepts and slopes. This allows us to
recast vague questions about the relationship between “change” and pre-
dictors as specific questions about the relationship between the individ-
ual growth parameters and predictors.

Like all statistical models, the level-2 submodel describes hypothesized
population processes, not sample behavior. But insights gleaned from
sample data can often provide valuable insight into model formulation.
In this spirit, examine the top panel of figure 3.4, which separately plots
fitted OLS trajectories according to the child’s program participation
(program participants in the right panel, nonparticipants in the left).
The average change trajectory for each group is shown in bold. Program
participants tend to have higher scores at age 1 and decline less precip-
itously over time. This suggests that their intercepts are higher but their
slopes are shallower. Also note the substantial interindividual hetero-
geneity within groups. Not all participants have higher intercepts than
nonparticipants; not all nonparticipants have steeper slopes. Our level-2
model must simultaneously account for both the general patterns (here,
the between-group differences in intercepts and slopes) and interindi-
vidual heterogeneity in patterns within groups.

What kind population model might have given rise to these patterns?
The preceding discussion suggests four specific features for the level-2
submodel. First, its outcomes must be the individual growth parameters
(here, p0i and p1i from equation 3.1). As in regular regression, where we
model the population distribution of a random variable by making it an
outcome, here, where we model the population distribution of the indi-
vidual growth parameters, they, too, must be the outcomes. Second, the
level-2 submodel must be written in separate parts, one for each level-1
growth parameter. When we use a linear change individual growth model
at level-1 (as in equation 3.1), we need two level-2 submodels: one for the
intercept, p0i, another for the slope, p1i. Third, each part must specify a
relationship between an individual growth parameter and the predictor
(here, PROGRAM). As you move across the panels in the top of figure
3.4, the value of the predictor, PROGRAM, shifts from 0 to 1. This sug-
gests that each level-2 model should ascribe differences in either p0i or
p1i to PROGRAM just as in a regular regression model. Fourth, each model
must allow individuals who share common predictor values to vary in
their individual change trajectories. This means that each level-2 
submodel must allow for stochastic variation in the individual growth
parameters.
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Average population trajectory,
(            ) (            ) (AGE-1)g00 g01+ (            )g10 g11++

Average population trajectory,
(AGE-1)g00 g10+

Figure 3.4. Understanding the structural and stochastic features of the level-2 submodel
for inter-individual differences in change. Top panel presents fitted OLS trajectories sep-
arately by levels of the predictor PROGRAM. Bottom panel maps the model in equation
3.3 onto imaginary data for an arbitrary child i and the average population trajectory.
The shaded portion in each of the lower panels is designed to suggest the existence of
many distinct population trajectories for different children.
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These considerations lead us to postulate the following level-2 sub-
model for these data:

(3.3)

Like all level-2 submodels, equation 3.3 has more than one component,
each resembling a regular regression model. Taken together, the two
components treat the intercept (p0i) and the slope (p1i) of an individual’s
growth trajectory as level-2 outcomes that may be associated with the 
predictor, PROGRAM. Each component also has its own residual—here,
z0i and z1i—that permits the level-1 parameters (the p’s) of one person
to differ stochastically from those of others.

Although not yet apparent, the two components of this level-2 sub-
model have seven population parameters: the four regression parameters
(the g’s) shown in equation 3.3 and three residual variance/covariance
parameters we will soon define. All are estimated when we fit the multi-
level model for change to data. We list, label, and define these parame-
ters in the second section of table 3.2 and illustrate their action in the
bottom panel of figure 3.4. We discuss their interpretation below.

3.3.1 Structural Components of the Level-2 Submodel

The structural parts of the level-2 submodel contain four level-2 param-
eters—g00, g01, g10, and g11—known collectively as the fixed effects. The fixed
effects capture systematic interindividual differences in change trajectory
according to values of the level-2 predictor(s). In equation 3.3, two of the
fixed effects, g00 and g10, are level-2 intercepts; two, g01 and g11, are level-2
slopes. As in regular regression, the slopes are of greater interest because
they represent the effect of predictors (here, the effect of PROGRAM)
on the individual growth parameters. You can interpret the level-2 param-
eters much as you do regular regression coefficients, except that you must
remember that they describe variation in “outcomes” that are themselves
level-1 individual growth parameters.

The easiest way to unravel the meaning of the level-2 fixed effects is to
identify a prototypical individual distinguished by particular predictor
values, substitute those values into the level-2 submodel, and examine the
consequences. To derive the postulated level-2 submodel for a prototypical
nonparticipant, for example, we set PROGRAM to 0 in both parts of equa-
tion 3.3 to find: when PROGRAM = 0, p0i = g00 + z0i and p1i = g10 + z1i. This
model hypothesizes that, in the population of nonparticipants, the values
of initial status and annual rate of change, p0i and p1i, are centered around
the level-2 parameters g00, and g10. g00 represents the average true initial
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Introducing the Multilevel Model for Change 61

status (cognitive score at age 1); g10 represents the average true annual rate
of change. By fitting the multilevel model for change to data and estimat-
ing these parameters, we address the question: What is the average true 
trajectory of change in the population for children who did not receive 
the early intervention program? The lower left panel of figure 3.5 depicts
this average population trajectory. Its intercept is g00; its slope is g10.

We repeat this process for program participants by setting PROGRAM
to 1: in this case, p0i = (g00 + g01) + z0i and p1i = (g10 + g11) + z1i. In the pop-
ulation of program participants, the values of initial status and annual
rate of change, p0i and p1i, are centered around (g00 + g01) and (g10 + g11).
Comparing these centers to those for nonparticipants illustrates that the
level-2 parameters g01 and g11 capture the effects of PROGRAM. g01 repre-
sents the hypothesized difference in average true initial status between
groups; g11 represents the hypothesized difference in average true annual
rate of change. This allows us to think of the level-2 slopes, g01 and g11, as
“shifts” associated with program participation. The lower right panel of
figure 3.4 depicts these shifts. If g01 and g11 are non-zero, the average 
population trajectories in the two groups differ; if they are both 0, they
do not. These two level-2 slope parameters therefore address the ques-
tion: What is the difference in the average trajectory of true change asso-
ciated with program participation?

3.3.2 Stochastic Components of the Level-2 Submodel

Each part of the level-2 submodel contains a residual that allows the 
value of each person’s growth parameters to be scattered around the 
relevant population averages. These residuals, z0i and z1i in equation 3.3,
represent those portions of the level-2 outcomes—the individual growth
parameters—that remain “unexplained” by the level-2 predictor(s). As is
true for most residuals, we are interested less in their specific values than
in their population variances and covariance, which we label s 2

0, s 2
1, and

s01. You should know that labeling conventions for these population 
variances vary considerably across authors and statistical packages. For
example, Raudenbush and Bryk (2002) label them t00, t11, and t01, while
Goldstein (1995) labels them s 2

u0, s 2
u1, and su01.

If child i is a member of the population of nonparticipants, PROGRAM
takes on the value 0 and the level-2 residuals in equation 3.3 represent
deviations between his or her true initial status and annual rate of change
from the population average intercept and slope for nonparticipants (g00

and g10). We display a trajectory for this prototypical child in the lower
left panel of figure 3.4. The trajectory begins at a true initial status of 
(g00 + z0i) and has a (declining) true annual rate of change of (g10 + z1i).
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Trajectories for other children can be constructed similarly by combin-
ing parameters g00 and g10 with other child-specific residuals. The shaded
area in this panel is designed to suggest the existence of many different
true trajectories, one for each nonparticipant in the population (if they
could be fully enumerated). Similarly, if child i is a member of the pop-
ulation of participants, PROGRAM takes on the value 1 and the level-2
residuals in equation 3.3 represent deviations between his true initial
status and annual rate of change and the population average intercept
and slope for participants (g00 + g01) and (g10 + g11). To illustrate the het-
erogeneity in change for this group, the lower right panel of figure 3.4
also includes a shaded area.

Because the level-2 residuals represent deviations between the indi-
vidual growth parameters and their respective population averages, their
variances, s 2

0 and s 2
1, summarize the population variation in true indi-

vidual intercept and slope around these averages. Because they describe
those portions of the intercepts and slopes left over after accounting for
the effect(s) of the model’s predictor(s), they are actually conditional
residual variances. Conditional on the presence of the model’s predic-
tors, s 2

0 represents the population residual variance in true initial status
and s 2

1 represents the population residual variance in true annual rate of
change. These variance parameters allow us to address the question: How
much heterogeneity in true change remains after accounting for the
effects of program participation?

When we posit a level-2 submodel, we also allow for a possible associa-
tion between individual initial status and individual rates of change. 
Children who begin at a higher level may have higher (or lower) rates of
change. To account for this possibility, we permit the level-2 residuals to
be correlated. Since z0i and z1i represent the deviations of the individual
growth parameters from their population averages, their population
covariance summarizes the association between true individual intercepts
and slopes. Again because of their conditional nature, the population
covariance of the level-2 residuals, s01, summarizes the magnitude and
direction of the association between true initial status and true annual
rate of change, controlling for program participation. This parameter
allows us to address the question: Controlling for program participation,
are true initial status and true rate of change related?

To fit the multilevel model for change to data, we must make some
assumptions about the level-2 residuals ( just as we did for the level-1 
residuals in equation 3.2). But because we have two level-2 residuals, we
describe their underlying behavior using a bivariate distribution. The stan-
dard assumption is that the two level-2 residuals, z0i and z1i, are bivariate
normal with mean 0, unknown variances, s 2

0, and s 2
1, and unknown
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covariance, s01. We can express these assumptions compactly using matrix
notation by writing:

(3.4)

Matrix notation greatly simplifies the way in which we codify the model’s
assumptions. In broad outline, we interpret equation 3.4 in the same way
we interpret the assumptions about the level-1 residuals in equation 3.2.
The first matrix on the right of the equals sign in parentheses specifies
the bivariate distribution’s mean vector; here, we assume it to be 0 for
each residual (as usual). The second matrix specifies the bivariate distri-
bution’s variance-covariance matrix, also known as the level-2 error covari-
ance matrix because it captures the covariation among the level-2 residuals
(or errors). Two variances, s 2

0 and s 2
1, appear along the diagonal, the

covariance, s01, appears on the off-diagonal. Because the covariance
between z0i and z1i is the same as the covariance between z1i and z0i, the
off-diagonal elements are identical—that is, s01 = s10. The complete set
of residual variances and covariances—both the level-2 error variance-
covariance matrix and the level-1 residual variance, s 2

e—is known col-
lectively as the model’s variance components.

3.4 Fitting the Multilevel Model for Change to Data

Until the widespread availability of software for fitting multilevel models,
researchers used ad hoc strategies like those presented in chapter 2 to
analyze longitudinal data: they fitted individual growth trajectories in 
separate within-person OLS-regression analyses and then they regressed
the individual growth parameter estimates obtained on selected level-2
predictors (Willett, 1989). But as previously discussed, this approach has
at least two flaws: (1) it ignores information about the individual growth
parameter estimates’ precision, even though we know that it varies (as
seen in the varying residual variances in the bottom panel of figure 3.3);
and (2) it replaces true individual growth parameters—the real outcomes
in a level-2 submodel—with their fallible estimates. The level-2 sub-
models do not describe the relationship between the parameter estimates
and predictors, but between the parameters’ true values and predictors.

Beginning in the 1980s, several teams of statisticians began developing
specialized software for fitting the multilevel model for change to data. By
the early 1990s, four major packages were widely used: HLM (Bryk, 
Raudenbush, & Congdon, 1988), MLn (Rasbash & Woodhouse, 1995),
GENMOD (Mason, Anderson, & Hayat, 1988), and VARCL (Longford, 1993).
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Although the latter two are no longer supported, HLM (Raudenbush, Bryk,
Cheong, & Congdon, 2001, available from http://www.ssicentral.com)
and MLwiN (Goldstein, 1998, available from http://multilevel.ioe.ac.uk)
continue to be modified, expanded, and upgraded regularly to handle an
increasing variety of multilevel models. Several multipurpose software
packages have also added multilevel routines, including SAS PROC
MIXED and PROC NLMIXED (SAS Institute, 2001, http://www.sas.com),
the STATA “xt” routines, such as xtreg (Stata, 2001, http://www.stata.com),
and SPLUS’ NLME library (Pinheiro & Bates, 2001, available from
http://cm.bell-labs.com/cm/ms/departments/sia/project/nlme/). So,
too, teams of statisticians continue to develop new specialty programs
including BUGS (Gilks, Richardson, & Spiegelhalter, 1996, available from
http://www.mrcbsu.cam.ac.uk/bugs) and MIXREG (Hedeker & Gibbons,
1996; available from http://www.uic.edu/~hedeker).

As this list suggests, you have a wide and growing array of model fitting
options in the investigation of change. We ourselves have no vested inter-
est in any particular software program and do not promote any one above
the others. All have their strengths, and we use many of them in our
research and in this book. At their core, each program does the same
job: it fits the multilevel model for change to data and provides para-
meter estimates, measures of precision, diagnostics, and so on. There is
also some evidence that all the different packages produce the same, or
similar, answers to a given problem (Kreft & de Leeuw, 1990). So, in one
sense, it does not matter which program you choose. But the packages
do differ in many important ways including the “look and feel” of their
interfaces, their ways of entering and preprocessing data, their model
specification process, their estimation methods, their strategies for
hypothesis testing, and the provision of diagnostics. These differences
may lead you to decide that one piece of software is especially con-
venient for your work.

For now, we focus on one particular method of estimation—maximum
likelihood—as implemented in one program, HLM (Raudenbush, Bryk,
Cheong, & Congdon, 2001). In subsequent chapters, we describe other
methods of estimation and we apply other statistical software, allowing us
to provide advice and compare the competing approaches and packages.

3.4.1 The Advantages of Maximum 
Likelihood Estimation

The method of maximum likelihood (ML) is currently the most popular
approach to statistical estimation. Its popularity results, in part, from its
excellent performance in large random samples from well-defined target
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populations. As sample size increases, ML estimates have three desirable
properties: (1) they are asymptotically unbiased (consistent)—they converge
on the unknown true values of population parameters; (2) they are asymp-
totically normally distributed—their sampling distributions are approxi-
mately normal with known variance; and (3) they are asymptotically
efficient—their standard errors are smaller than those derived by other
methods. Another advantage is that any function of ML estimates is also
an ML estimate. This means that predicted growth trajectories (con-
structed from ML estimates of initial status and rates of change) are ML
estimates of the true trajectories. All else being equal, statisticians prefer
estimates that are consistent and efficient, that make use of well-
established normal theory, and that can generate decent estimates of
more complex quantities. Hence the appeal of ML methods.

Notice that the attractive properties of ML estimates are asymptotic. This
means that in practice—in any actual analysis of a real sample—the 
properties hold only approximately. In large samples, they are likely to hold;
in small samples, they may not.3 To enjoy these advantages, you need a
relatively large sample, and the question, how large is large, has no simple
answer. Although 10 is certainly small and 100,000 is certainly large, no
one can say definitively how large is large enough. In cross-sectional work,
Long (1997), for example, recommends a minimum of 100 individuals
and he labels sample sizes of 500 “adequate.” For a general multilevel
model, Snijders and Bosker (1999) consider samples of 30 or more large.
Although “rules of thumb” like these provide broad guidelines, we tend
to distrust them. The answer to the question “How large?” differs by
context, by the particularities of different types of ML estimation, by 
features of the data, and by the requirements of the tests conducted.
Instead we simply offer practical advice: if you use ML methods in “small”
samples, treat p-values and confidence intervals circumspectly.

Derivation of computational formulas for ML estimation is beyond our
scope or intent here. Below, we offer a heuristic explanation of what
happens when you use ML methods to fit a multilevel model for change.
Our goal is to lay the conceptual foundation for future chapters by
explaining why ML estimates make sense and why they have such useful
properties. Readers interested in mathematical details should consult
Raudenbush and Bryk (2002), Goldstein (1995), or Longford (1993).

3.4.2 Using Maximum Likelihood Methods to 
Fit a Multilevel Model

Conceptually, maximum likelihood estimates are those guesses for the
values of the unknown population parameters that maximize the 
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probability of observing a particular sample of data. In the early inter-
vention study, they are those estimates of the fixed effects and variance
components that make it most likely we would have observed the specific 
patterns of change found for these 103 children.

To derive an ML estimate for a population parameter, a statistician
must first construct a likelihood function—an expression that describes the
probability of observing the sample data as a function of the model’s
unknown parameters. Then, he, she, or more accurately, a computer,
numerically examines the relative performance of potentially competing
estimates until those that maximize the likelihood function are found.
The likelihood function for the early intervention data is a function of
the probability that we would observe the particular temporal pattern of
COG values found in the person-period data set. We seek estimates of the
fixed effects and variance components whose values maximize the prob-
ability of observing this specific pattern.

All likelihood functions are expressed as the product of probabilities
(or probability densities). For cross-sectional data, each sample member
usually contributes just one term, related to the probability that that
person has his or her observed data. But because longitudinal data consist
of several observations, one per measurement occasion, each person con-
tributes several terms to the likelihood function, which contains as many
terms as there are records in the person-period data set.

The particular term that each person contributes on each occasion
depends on the specification and assumptions of the hypothesized
model. The multilevel model contains structural parts (as shown in, for
example, in equations 3.1 and 3.3) and stochastic parts (whose behavior
is described in equations 3.2 and 3.4). The structural portion describes
the true outcome value for person i on occasion j for his or her partic-
ular predictor values. It depends on the unknown values of the fixed
effects. The stochastic portion—the level-1 and level-2 residuals—intro-
duce an element of randomness into the proceedings, scattering the
observations for person i on occasion j from the structurally specified
value.

To derive a maximum likelihood estimate, we must also make assump-
tions about the distribution of the residuals. We have already stated
assumptions in equation 3.2 for the level-1 residual, eij, and in equation
3.4 for the two-level-2 residuals, z0i and z1i. Each is assumed to be 
normally distributed with mean 0; eij has unknown variance, s 2

e; z0i and
z1i have unknown variances, s 2

0 and s 2
1, and covariance, s01. We also

assume that the level-2 residuals are independent of the level-1 residual
and that all residuals are independent of the model’s predictors.

Given a model and its underlying assumptions, a statistician can write
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a mathematical expression for the distribution, or probability density, of the
outcome. This expression has a mean determined by the model’s struc-
tural parts and a variance determined by its stochastic parts. As a proba-
bility density function, it also describes the likelihood that a person with
particular values of the predictors—only PROGRAM in equation 3.3—
could have particular outcome values using a set of unknown fixed effects
and variance components whose values we would like to estimate. That
is, it also contains the actual data values observed for that person on that
occasion.

It is a short step from here to the full sample likelihood, which 
we reach by exploiting the well-known multiplicative property of inde-
pendent probabilities. If you toss one coin, there is a probability of .5 that
it will turn up heads. If you independently toss two coins, the prob-
ability that each will turn up heads is still .5. But taken together, the pro-
bability that you will obtain two heads is only .25 (.5 ¥ .5). If you 
independently toss three coins, the probability of three heads declines to
0.125 (.5 ¥ .5 ¥ .5). Statisticians use this principle to create a full sample
likelihood from the separate person-period likelihoods just developed.
First they write down the value of the probability density of the outcome
for each person in the data set on every occasion, thereby describing the
likelihood that he or she obtained his or her particular value of the
outcome on that occasion. Then they multiply these terms together, 
yielding an expression for the likelihood of simultaneously observing all
the data in the person-period data set. Because each person-period like-
lihood is a function of the data and the unknown parameters, so is their
product the full sample likelihood.

To find ML estimates of the unknown population parameters, we iden-
tify those values of the unknown parameters that maximize this product
of probabilities. Conceptually, imagine a computer trying out billions of
alternative estimates, multiplying them together as specified in the
sample likelihood function to yield a numeric value for the likelihood,
and comparing those numeric values across all of the billions of tries until
those estimates that yield the maximum value of the likelihood function
are found. These would be the maximum likelihood estimates for this
particular problem.

Of course, an enormous numerical search like this is daunting, even
with fast computers. Calculus can facilitate the search, but it cannot elim-
inate the difficulty of working with the products of probability densities
that make up the sample likelihood function. To facilitate the search, stat-
isticians use a simple strategy: instead of finding those values of the
unknown parameters that maximize the likelihood function, they find
those that maximize its logarithm. Working with this new function, known
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as the log-likelihood function, sacrifices nothing because the values that
maximize it also maximize the raw likelihood function. The transforma-
tion to logarithms simplifies the intensive numerical calculations involved
because (1) the logarithm of a product is a sum of the separate loga-
rithms, and (2) the logarithm of a term raised to a power is the power
multiplied by the logarithm of the term. And so, since the sample likeli-
hood contains both multiplicative and exponentiated terms, the loga-
rithmic transformation moves the numerical maximization into a more
tractable sphere, computationally speaking.

Although simpler than maximizing the likelihood function itself, max-
imizing the log-likelihood function also involves iteration. All software
programs that provide ML estimates for the multilevel model for change
use an iterative procedure. To begin, the program generates reasonable
“starting” values for all model parameters, usually by applying something
like the OLS methods we just rejected in chapter 2! In successive itera-
tions, the program gradually refines these estimates as it searches for the
log-likelihood function’s maximum. When this search converges—and
the difference between successive estimates is trivially small—the result-
ant estimates are output. If the algorithm does not converge (and this
happens more often than you might like), you must repeat the search
allowing more iterations or you must improve your model specification.
(We discuss these issues in section 5.2.2.)

Once the ML estimates are found, it is relatively easy for a computer
to estimate their associated sampling variation in the form of asymptotic
standard errors (ase). We use the adjective “asymptotic” because, as noted
earlier, ML standard errors are accurate only in large samples. Like 
any standard error, the ase measures the precision with which an 
estimate has been obtained—the smaller the ase, the more precise the
estimate.

We now use maximum likelihood methods to fit the multilevel model
in equations 3.1 and 3.3 to the early intervention data. Table 3.3 presents
results obtained using the HLM software.4 We first discuss the estimated
fixed effects in the first four rows; in section 3.6, we discuss the estimated
variance components shown in the next four rows.

3.5 Examining Estimated Fixed Effects

Empirical researchers usually conduct hypothesis tests before scrutiniz-
ing parameter estimates to determine whether an estimate warrants
inspection. If an estimate is consistent with a null hypothesis of no 
population effect, it is unwise to interpret its direction or magnitude.
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Although we agree that it is wise to test hypotheses before interpreting
parameters, here we reverse this sequence for pedagogic reasons, 
discussing interpretation in section 3.5.1 and testing in section 3.5.2.
Experience convinces us that when learning a new statistical method, it
is easier to understand what you are doing if you interpret parameters
first and conduct tests second. This sequence emphasizes conceptual
understanding over up-or-down decisions about “statistical significance”
and ensures that you understand the hypotheses you test.

3.5.1 Interpreting Estimated Fixed Effects

The fixed effects parameters of the level-2 submodel—the g ’s of equa-
tion 3.3—quantify the effects of predictors on the individual change tra-
jectories. In our example, they quantify the relationship between the
individual growth parameters and program participation. We interpret
these estimates much as we do any regression coefficient, with one key
difference: the level-2 “outcomes” that these fixed effects describe are the
level-1 individual growth parameters themselves.

Until you are comfortable directly interpreting the output from 
software programs, we strongly recommend that you take the time to 
actually write down the structural portion of the fitted model before
attempting to interpret the fixed effects. Although some software 
programs facilitate the linkage between model and estimates through
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Table 3.3: Results of fitting a multilevel model for change to the early intervention data 
(n = 103)

Parameter Estimate ase z

Fixed Effects
Initial status, p0i Intercept g00 107.84*** 2.04 52.97

PROGRAM g01 6.85* 2.71 2.53
Rate of change, p1i Intercept g10 -21.13*** 1.89 -11.18

PROGRAM g11 5.27* 2.52 2.09

Variance Components
Level 1: Within-person, eij s 2

e 74.24*** 10.34 7.17
Level 2: In initial status, z0i s 2

0 124.64*** 27.38 4.55
In rate of change, z1i s 2

1 12.29 30.50 0.40
Covariance between z0i and z1i s01 -36.41 22.74 -1.60

~p < .10; *p < .05; **p < .01; ***p < .001.
This model predicts cognitive functioning between ages 1 and 2 years as a function of (AGE-1) (at level-1)
and PROGRAM (at level-2).

Note: Full ML, HLM.
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structured displays (e.g., MlwiN), others (e.g., SAS PROC MIXED) use
somewhat esoteric conventions for labeling output. Substituting estimates
ĝ in table 3.3 into the level-2 submodel in equation 3.3, we have:

(3.5)

The first part of the fitted submodel describes the effects of PROGRAM
on initial status; the second part describes its effects on the annual rates
of change.

Begin with the first part of the fitted submodel, for initial status. In the
population from which this sample was drawn, we estimate the true initial
status (COG at age 1) for the average nonparticipant to be 107.84; for the
average participant, we estimate that it is 6.85 points higher (114.69). The
means of both groups are higher than national norms (100 for this test).
The age 1 performance of participants is 6.85 points higher than that of
nonparticipants. Before concluding that this differential in initial status
casts doubt on the randomization mechanism, remember that the inter-
vention started before the first wave of data collection, when the children
were already 6 months old. This modest seven-point elevation in initial
status may reflect early treatment gains attained between ages 6 months
and 1 year.

Next, examine the second part of the fitted submodel, for the annual
rate of change. In the population from which this sample was drawn, we
estimate the true annual rate of change for the average nonparticipant
to be -21.13; for the average participant, we estimate it to be 5.27 points
higher (-15.86). The average nonparticipant dropped over 20 points
during the second year of life; the average participant dropped over 15.
The cognitive functioning of both groups of children declines over time.
As we suspected when we initially examined these data, the intervention
slows the rate of decline.

Another way of interpreting fixed effects is to plot fitted trajectories for
prototypical individuals. Even in a simple analysis like this, which involves
just one dichotomous predictor, we find it invaluable to inspect prototyp-
ical trajectories visually. For this particular multilevel model, only two pro-
totypes are possible: a program participant (PROGRAM = 1) and a
nonparticipant (PROGRAM = 0). Substituting these values into equation
3.5 yields the estimated initial status and annual growth rates for each:

When

When

PROGRAM

PROGRAM

i

i

i

i

=
= + ( ) =
= - + ( ) = -

=
= + ( ) =
= - + ( ) = -

0
107 84 6 85 0 107 84

21 13 5 27 0 21 13

1
107 84 6 85 1 114 69

21 13 5 27 1 15 86

0

1

0

1

:
ˆ . . .
ˆ . . . .

:
ˆ . . .
ˆ . . . .

p
p
p
p

ˆ . .
ˆ . .

p
p

0

1

107 84 6 85

21 13 5 27
i i

i i

PROGRAM

PROGRAM

= +
= - +
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We use these estimates to plot the fitted individual change trajectories in
figure 3.5. These plots reinforce the numeric conclusions just articulated.
In comparison to nonparticipants, the average participant has a higher
score at age 1 and a slower annual rate of decline.

3.5.2 Single Parameter Tests for the Fixed Effects

As in regular regression, you can conduct a hypothesis test on each fixed
effect (each g) using a single parameter test. Although you can equate
the parameter value to any pre-specified value in your hypothesis test,
most commonly you examine the null hypothesis that, controlling for all
other predictors in the model, the population value of the parameter is
0, H0 :g = 0, against the two-sided alternative that it is not, H1 :g π 0. When
you use ML methods, this test’s properties are known only asymptotically
(for exceptions, see note 3). You test this hypothesis for each fixed effect
by computing the familiar z-statistic:

(3.7)

Most multilevel modeling programs provide z-statistics; if not, you can
easily compute them by hand. However, care is needed because there is
much looseness and inconsistency in output labels; terms like z-statistic,
z-ratio, quasi-t-statistic, t-statistic, and t-ratio, which are not the same, are

z
ase

=
( )
ˆ

ˆ
.

g
g
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Figure 3.5. Displaying the results of a fitted multi-
level model for change. Prototypical trajectories for
an average program participant and nonparticipant
in the early intervention data.
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used interchangeably. In HLM, the package we used here, this statistic is
labeled a “t-ratio.” Most programs also output either an associated p -value
or confidence interval to facilitate testing.5

Table 3.3 presents z-statistics (column 6) and approximate p -values (as
superscripts in column 4) for testing hypotheses about the fixed effects.
We reject all four null hypotheses, suggesting that each parameter plays
a role in the story of the program’s effect on children’s cognitive devel-
opment. In rejecting (at the .001 level) the null hypotheses for the two
level-2 intercepts, g00 and g10, we conclude that the average nonpartici-
pant had a non-zero cognitive score at age 1 (hardly surprising!) which
declined over time. In rejecting (at the .05 level) the null hypotheses for
the two level-2 slopes, g01 and g11, we conclude that differences between
program participants and nonparticipants—in both initial status and
annual rates of change—are statistically significant.

3.6 Examining Estimated Variance Components

Estimated variance and covariance components are trickier to interpret
as their numeric values have little absolute meaning and there are no
graphic aids to fall back on. Interpretation for a single fitted model is
especially difficult as you lack benchmarks for evaluating the compo-
nents’ magnitudes. This increases the utility of hypothesis testing, for at
least the tests provide some benchmark (against the null value of 0) for
comparison.

3.6.1 Interpreting Estimated Variance Components

Variance components assess the amount of outcome variability left—at
either level-1 or level-2—after fitting the multilevel model. The level-1
residual variance, s 2

e, summarizes the population variability in an average
person’s outcome values around his or her own true change trajectory.
Its estimate for these data is 74.24, a number that is difficult to evaluate
in absolute terms. In chapter 4, we provide strategies making relative
comparisons to residual variances in other models.

The level-2 variance components summarize the between-person vari-
ability in change trajectories that remains after controlling for predictors
(here, PROGRAM). Using the matrix notation of equation 3.4, we write:

Because hypothesis tests, discussed below, reveal that only one of these
elements, s 2

0, is significantly different from 0, it is the only parameter we

124 64 36 41

36 41 12 29

. .

. .
.

-
-

È
ÎÍ

˘
˚̇
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discuss here. But because we have no point of comparison, it is difficult
to say whether its value, 124.64, is small or large. All we can say is that it
quantifies the amount of residual variation in true initial status remain-
ing after we control for program participation.

3.6.2 Single Parameter Tests for the 
Variance Components

Tests for variance components evaluate whether there is any remaining
residual outcome variation that could potentially be explained by other
predictors. The level of the particular variance component—either level-
1 or level-2—dictates the type of predictor that might be added. In
general, all the tests are similar in that they assess the evidence concern-
ing the null hypothesis that the parameter’s population value is 0, H0 :s 2

= 0, against the alternative that it is not, H1 :s 2 π 0.
There are two very different methods for conducting these hypothesis

tests. In this chapter, we offer the simpler approach—the single parameter
test. Some programs provide this test as a z-statistic—the ratio of the esti-
mated variance component to its asymptotic standard error. Others offer
the identical test by squaring the z-statistic and labeling it a c2 statistic on
one degree of freedom. The appeal of a single parameter hypothesis test
is simple. Even if you fit just one statistical model, as we have here, you
can garner some insight into the variance components’ relative values—
at least in comparison to 0.

Unfortunately, statisticians disagree as to the nature, form, and effec-
tiveness of these tests. Miller (1986), Raudenbush and Bryk (2002), and
others have long questioned their utility because of their sensitivity to
departures from normality. Longford (1999) describes their sensitivity 
to sample size and imbalance (unequal numbers of observations per
person) and argues that they are so misleading that they should be aban-
doned completely. Because they can be useful for quick, albeit imprecise,
assessment, we suggest you examine them only with extreme caution. In
section 4.6, we present a superior method for testing hypotheses about
variance components, an approach whose use we normally recommend.

Table 3.3 presents single-parameter hypothesis tests for the model’s
four variance/covariance components. The first three test the null
hypothesis that the population variance of the level-1 residuals, s 2

e, is 0,
that the population variance of the level-2 residuals for initial status, s 2

0,
is 0 and that the population variance of the level-2 residuals for the
annual rate of change, s 2

1, is 0. The last tests whether the covariance
between the level-2 residuals for initial status and annual rates of change,
s01, is 0, indicating whether true initial status and true annual rate of
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change are correlated, after participation in the intervention program is
accounted for.

For these data, we reject only two of these null hypotheses (each at the
.001 level). The test for the level-1 residual, on s 2

e, suggests the existence
of additional outcome variation at level-1, which may be predictable. To
explain some of this remaining within-person variation, we might add
suitable time-varying predictors such as the number of books in the
child’s home or the amount of parent-child interaction to the level-1 
submodel.

The test for the level-2 residual for initial status, on s 2
0, suggests the 

existence of additional variation in true initial status, p0i, after account-
ing for the effects of program participation. This again suggests the need
for additional predictors, but because this is a level-2 variance component
(describing residual variation in true initial status), we would consider
adding both time-invariant and time-varying predictors to the multilevel
model.

We cannot reject the null hypotheses for the two remaining variance
components. Failure to reject the null hypothesis for s 2

1 indicates that
PROGRAM explains all the potentially predictable variation between
children in their true annual rates of change. Failure to reject the null
hypothesis for s01 indicates that the intercepts and slopes of the individ-
ual true change trajectories are uncorrelated—that there is no associa-
tion between true initial status and true annual rates of change (once the
effects of PROGRAM are removed). As we discuss in subsequent chapters,
the results of these two tests might lead us to drop the second level-2
residual, z1i, from our model, for neither its variance nor covariance with
z0i, is significantly different from 0.
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