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A Framework for Investigating
Change over Time

Change is inevitable. Change is constant,
—Benjamin Disraeli

Change is pervasive in everyday life. Infants crawl and walk, children
learn to read and write, the elderly become frail and forgetful. Bevond
these natural changes, targeted interventions can also cause change: cho-
lesterol levels may decline with new medication; test scores might rise
after coaching. By measuring and charting changes like these—both nat-
uralistic and experimentally induced—we uncover the temporal nature
of development.

The investigation of change has fascinated empirical researchers for
generations. Yet it is only since the 1980s, when methodologists devel-
oped a class of appropriate statistical models—known variously as indi-
vidual growth models, random coefficient models, multilevel models, mixed models,
and hierarchical linear models—that researchers have been able to study
change well. Until then, the technical literature on the measurement of
change was awash with broken promises, erroneous half-truths, and
name-calling. The 1960s and 1970s were especially rancorous, with most
methodologists offering little hope, insisting that researchers should not
even attempt to measure change because it could not be done well
(Bereiter, 1963; Linn & Slinde, 1977). For instance, in their paper, “How
should we measure change? Or should we?,” Cronbach and Furby (1970)
tried to end the debate forever, advising researchers interested in the
study of change to “frame their questions in other ways.”

Today we know that it is possible to measure change, and to do it well,
if you have longitudinal data (Rogosa, Brandt, & Zimowski, 1982; Willett,
1989). Cross-sectional data—so easy to collect and so widely available—
will not suffice. In this chapter, we describe why longitudinal data are nec-
essary for studying change. We begin, in section 1.1, by introducing three
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longitudinal studies of change. In section 1.2, we distinguish between the
two types of question these examples address, questions about: (1) within-
individual change—How does each person change over time?—and (2)
interindividual differences in change—What predicts differences among
people in their changes? This distinction provides an appealing heuris-
tic for framing research questions and underpins the statistical models
we ultimately present. We conclude, in section 1.3, by identifying three
requisite methodological features of any study of change: the availability of
(1) multiple waves of data; (2) a substantively meaningful metric for time;
and (3) an outcome that changes systematically.

1.1 When Might You Study Change over Time?

Many studies lend themselves to the measurement of change. The
research design can be experimental or observational. Data can be col-
lected prospectively or retrospectively. Time can be measured in a variety
of units—months, years, semesters, sessions, and so on. The data collec-
tion schedule can be fixed (everyone has the same periodicity) or flex-
ible (each person has a unique schedule). Because the phrases “growth
models” and “growth curve analysis” have become synonymous with the
measurement of change, many people assume that outcomes must
“grow” or increase over time. Yet the statistical models that we will specify
care little about the direction (or even the functional form) of change.
They lend themselves equally well to outcomes that decrease over time
(e.g., weight loss among dieters) or exhibit complex trajectories (in-
cluding plateaus and reversals), as we illustrate in the following three
examples.

1.1.1 Changes in Antisocial Behavior
during Adolescence

Adolescence is a period of great experimentation when youngsters try out
new identities and explore new behaviors. Although most teenagers
remain psychologically healthy, some experience difficulty and manifest
antisocial behaviors, including aggressive externalizing behaviorsand depres-
sive internalizing behaviors. For decades, psychologists have postulated a
variety of theories about why some adolescents develop problems and
others do not, but lacking appropriate statistical methods, these supposi-
tions went untested. Recent advances in statistical methods have allowed
empirical exploration of developmental trajectories and assessment of
their predictability based upon early childhood signs and symptoms.
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Coie, Terry, Lenox, Lochman, and Hyman (1995) designed an ingen-
ious study to investigate longitudinal patterns by capitalizing on data
gathered routinely by the Durham, North Carolina, public schools. As
part of a systemwide screening program, every third grader completes a
battery of sociometric instruments designed to identify classmates who
are overly aggressive (who start fights, hit children, or say mean things)
or extremely rejected (who are liked by few peers and disliked by many).
To investigate the link between these early assessments and later antiso-
cial behavioral trajectories, the researchers tracked a random sample of
407 children, stratified by their third-grade peer ratings. When they were
in sixth, eighth, and tenth grade, these children completed a battery of
instruments, including the Child Assessment Schedule (CAS), a semi-
structured interview that assesses levels of antisocial behavior. Combin-
ing data sets allowed the researchers to examine these children’s patterns
of change between sixth and tenth grade and the predictability of these
patterns on the basis of the earlier peer ratings.

Because of well-known gender differences in antisocial behavior, the
researchers conducted separate but parallel analyses by gender. For sim-
plicity here, we focus on boys. Nonaggressive boys—regardless of their
peer rejection ratings—consistently displayed few antisocial behaviors
between sixth and tenth grades. For them, the researchers were unable
to reject the null hypothesis of no systematic change over time. Aggres-
sive nonrejected boys were indistinguishable from this group with respect
to patterns of externalizing behavior, but their sixth-grade levels of inter-
nalizing behavior were temporarily elevated (declining linearly to the
nonaggressive boys’ level by tenth grade). Boys who were both aggressive
and rejected in third grade followed a very different trajectory. Although
they were indistinguishable from the nonaggressive boys in their sixth-
grade levels of either outcome, over time they experienced significant
linear increases in both. The researchers concluded that adolescent boys
who will ultimately manifest increasing levels of antisocial behavior can
be identified as early as third grade on the basis of peer aggression and
rejection ratings.

1.1.2 Individual Differences in Reading Trajectories

Some children learn to read more rapidly than others. Yet despite
decades of research, specialists still do not fully understand why. Educa-
tors and pediatricians offer two major competing theories for these
interindividual differences: (1) the lag hypothesis, which assumes that
every child can become a proficient reader—children differ only in the
rate at which they acquire skills; and (2) the deficit hypothesis, which
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assumes that some children will never read well because they lack a
crucial skill. If the lag hypothesis were true, all children would eventually
become proficient; we need only follow them for sufficient time to see
their mastery. If the deficit hypothesis were true, some children would
never become proficient no matter how long they were followed—they
simply lack the skills to do so.

Francis, Shaywitz, Stuebing, Shaywitz, and Fletcher (1996) evaluated
the evidence for and against these competing hypotheses by follow-
ing 363 six-year-olds until age 16. Each year, children completed the
Woodcock-Johnson Psycho-educational Test Battery, a well-established
measure of reading ability; every other vear, they also completed the
Wechsler Intelligence Scale for Children (WISC). By comparing third-
grade reading scores to expectations based upon concomitant WISC
scores, the researchers identified three distinct groups of children: 301
“normal readers”; 28 “discrepant readers,” whose reading scores were
much different than their WISC scores would suggest; and 34 “low
achievers,” whose reading scores, while not discrepant from their WISC
scores, were far below normal.

Drawing from a rich theoretical tradition that anticipates complex tra-
jectories of development, the researchers examined the tenability of
several alternative nonlinear growth models. Based upon a combination
of graphical exploration and statistical testing, they selected a model in
which reading ability increases nonlinearly over time, eventually reach-
ing an asymptote—the maximum reading level the child could be
expected to attain (if testing continued indefinitely). Examining the
fitted trajectories, the researchers found that the two groups of disabled
readers were indistinguishable statistically, but that both differed signifi-
cantly from the normal readers in their eventual plateau. They estimated
that the average child in the normal group would attain a reading level
30 points higher than that of the average child in either the discrepant
or low-achieving group (a large difference given the standard deviation
of 12). The researchers concluded that their data were more consistent
with the deficit hypothesis—that some children will never attain mastery—
than with the lag hypothesis.

1.1.3 Efficacy of Short-Term Anxiety-
Provoking Psychotherapy
Many psychiatrists find that short-term anxiety-provoking psychotherapy
(STAPP) can ameliorate psychological distress. A methodological
strength of the associated literature is its consistent use of a well-
developed instrument: the Symptom Check List (SCL-90), developed by
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Derogatis (1994). A methodological weakness is its reliance on two-wave
designs: one wave of data pretreatment and a second wave posttreatment.
Researchers conclude that the treatment is effective when the decrease
in SCL-90 scores among STAPP patients is lower than the decrease among
individuals in a comparison group.

Svartberg, Seltzer, Stiles, and Khoo (1995) adopted a different
approach to studying STAPP’s efficacy. Instead of collecting just two waves
of data, the researchers examined “the course, rate and correlates of
symptom improvement as measured with the SCL-90 during and after
STAPP” (p. 242). A sample of 15 patients received approximately 20
weekly STAPP sessions. During the study, each patient completed the
SCL-90 up to seven times: once or twice at referral (before therapy
began), once at mid-therapy, once at termination, and three times after
therapy ended (after 6, 12, and 24 months). Suspecting that STAPP’s
effectiveness would vary with the patients’ abilities to control their emo-
tional and motivational impulses (known as ego ngidity), two independ-
ent psychiatrists reviewed the patients’ intake files and assigned ego
rigidity ratings.

Plotting each patient’s SCI-90 data over time, the researchers identi-
fied two distinct temporal patterns, one during treatment and another
after treatment. Between intake and treatment termination (an average
of 8.5 months later), most patients experienced relatively steep linear
declines in SCI-90 scores—an average decrease of (.060 symptoms per
month (from an initial mean of 0.93). During the two years after treat-
ment, the rate of linear decline in symptoms was far lower—only 0.005
per month—although still distinguishable from 0. In addition to signifi-
cant differences among individuals in their rates of decline before and
after treatment termination, ego rigidity was associated with rates of
symptom decline during therapy (but not after). The researchers con-
cluded that: (1) STAPP can decrease symptoms of distress during therapy;
(2) gains achieved during STAPP therapy can be maintained; but (3)
major gains after STAPP therapy ends are rare.

1.2 Distinguishing Between Two Types of Questions
about Change

From a substantive point of view, each of these studies poses a unique set
of research questions about its own specific outcomes (antisocial behav-
ior, reading levels, and SCI-90 scores) and its own specific predictors
(peer ratings, disability group, and ego rigidity ratings). From a statisti-
cal point of view, however, each poses an identical pair of questions: (1)
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How does the outcome change over time? and (2) Can we predict dif-
ferences in these changes? From this perspective, Coie and colleagues
(1995) are asking: (1) How does each adolescent’s level of antisocial
behavior change from sixth through tenth grade?; and (2) Can we predict
differences in these changes according to third grade peer ratings? Sim-
ilarly, Francis and colleagues (1996) are asking: (1) How does reading
ability change between ages 6 and 162; and (2) Can we predict differ-
ences in these changes according to the presence or absence of a reading
disability?

These two kinds of question form the core of every study about change.
The first question is descriptive and asks us to characterize each person’s
pattern of change over time. Is individual change linear? Nonlinear? Is
it consistent over time or does it fluctuate? The second question is rela-
tional and asks us to examine the association between predictors and the
patterns of change. Do different types of people experience different pat-
terns of change? Which predictors are associated with which patternsz In
subsequent chapters, we use these two questions to provide the concep-
tual foundation for our analysis of change, leading naturally to the spec-
ification of a pair of statistical models—one per question. To develop vour
intuition about the questions and how they map onto subsequent studies
of change, here we simply emphasize their sequential and hierarchical
nature.

In the first stage of an analysis of change, known as level-1, we ask about
within-individual change over time. Here, we characterize the individual
pattern of change so that we can describe each person’s individual growth
trajectory—the way his or her outcome values rise and fall over time. Does
this child’s reading skill grow rapidly, so that she begins to understand
complex text by fourth or fifth grade? Does another child’s reading skill
start out lower and grow more slowly? The goal of a level-1 analysis is to
describe the shape of each person’s individual growth trajectory.

In the second stage of an analysis of change, known as level-2, we ask
about interindividual differences in change. Here, we assess whether differ-
ent people manifest different patterns of within-individual change and ask
what predicts these differences. We ask whether it is possible to predict,
on the basis of third-grade peer ratings, which boys will remain psycho-
logically healthy during adolescence and which will become increasingly
antisocial?> Can ego rigidity ratings predict which patients will respond
most rapidly to psychotherapy? The goal of a level-2 analysis is to detect
heterogeneity in change across individuals and to determine the rela-
tionship between predictors and the shape of each person’s individual
growth trajectory.

In subsequent chapters, we map these two research questions onto a
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pair of statistical models: (1) a level-l model, describing within-
individual change over time; and (2) a level-2 model, relating predictors
to any interindividual differences in change. Ultimately, we consider
these two models to be a “linked pair” and refer to them jointly as the
multilevel model for change. But for now, we ask only that you learn to dis-
tinguish the two types of questions. Doing so helps clarify why research
studies of change must possess certain methodological features, a topic
to which we now turn.

1.3 Three Important Features of a Study of Change

Not every longitudinal study is amenable to the analysis of change. The
studies introduced in section 1.1 share three methodological features that
make them particularly well suited to this task. They each have:

® Three or more waves of data
* An outcome whose values change systematically over time
* A sensible metric for clocking time

We comment on each of these features of research design below.

1.3.1 Multiple Waves of Data

To model change, you need longitudinal data that describe how each
person in the sample changes over time. We begin with this apparent tau-
tology because too many empirical researchers seem willing to leap from
cross-sectional data that describe differences among individuals of dif-
ferent ages to making generalizations about change over time. Many
developmental psychologists, for example, analyze cross-sectional data
sets composed of children of differing ages, concluding that outcome dif-
ferences between age groups—in measures such as antisocial behavior—
reflect real change over time. Although change is a compelling
explanation of this situation—it might even be the frue explanation—
cross-sectional data can never confirm this possibility because equally
valid competing explanations abound. Even in a sample drawn from a
single school, a random sample of older children may differ from a
random sample of younger children in important ways: the groups began
school in different years, they experienced different curricula and life
events, and if data collection continues for a sufficient period of time,
the older sample omits age-mates who dropped out of school. Any
observed differences in outcomes between grade-separated cohorts may
be due to these explanations and not to systematic individual change. In
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statistical terms, cross-sectional studies confound age and cohort effects
(and age and history effects) and are prone to selection bias.

Studies that collect two waves of data are only marginally better. For
decades, researchers erroneously believed that two-wave studies were suf-
ficient for studying change because they narrowly conceptualized change
as an increment: the simple difference between scores assessed on two
measurement occasions (see Willett, 1989). This limited perspective views
change as the acquisition (or loss) of the focal increment: a “chunk” of
achievement, attitude, symptoms, skill, or whatever. But there are two
reasons an increment’s size cannot describe the process of change. First, it
cannot tell us about the shape of each person’s individual growth trajec-
tory, the focus of our level-1 question. Did all the change occur immedi-
ately after the first assessment? Was progress steady or delayed? Second,
it cannot distinguish true change from measurement error. If measure-
ment error renders pretest scores too low and posttest scores too high,
you might conclude erroneously that scores increase over time when a
longer temporal view would suggest the opposite. In statistical terms, two-
waves studies cannot describe individual trajectories of change and they
confound true change with measurement error (see Rogosa, Brandt, &
Zimowski, 1982).

Once vou recognize the need for multiple waves of data, the obvious
question is, How many waves are enough? Are three sufficient? Four?
Should you gather more? Notice that Coie’s study of antisocial behavior
included just three waves, while Svartberg’s STAPP study included at least
six and Francis’s reading study included up to ten. In general, more waves
are always better, within cost and logistical constraints. Detailed discussion
of this design issue requires clear understanding of the statistical models
presented in this book. So for now, we simply note that more waves allow
you to posit more elaborate statistical models. If your data set has only
three waves, you must fit simpler models with stricter assumptions—
usually assuming that individual growth is linear over time (as Coie and col-
leagues did in their study of antisocial behavior). Additional waves allow
you to posit more flexible models with less restrictive assumptions; you can
assume that individual growth is nonlinear (as in the reading study) or
linear in chunks (as in the STAPP study). In chapters 2-5, we assume that
individual growth is linear over time. In chapter 6, we extend these basic
ideas to situations in which level-1 growth is discontinuous or nonlinear.

1.3.2 A Sensible Metric for Time

Time is the fundamental predictor in every study of change; it must be
measured reliably and validly in a sensible metric. In our examples,
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reading scores are associated with particular ages, antisocial behavior is
associated with particular grades, and SCL-90 scores are associated with
particular months since intake. Choice of a time metric affects several inter-
related decisions about the number and spacing of data collection waves.
Each of these, in turn, involves consideration of costs, substantive needs,
and statistical benefits. Once again, because discussion of these issues
requires the statistical models that we have yet to develop, we do not delve
into specifics here. Instead we discuss general principles.

Our overarching point is that there is no single answer to the seemingly
simple question about the most sensible metric for time. You should adopt
whatever scale makes most sense for your outcomes and your research
question. Coie and colleagues used grade because they expected antisocial
behavior to depend more on this “social” measure of time than on chrono-
logical age. In contrast, Francis and colleagues used age because each
reading score was based on the child’s age at testing. Of course, these
researchers also had the option of analyzing their data using grade as the
time metric; indeed, they present tables in this metric. Yet when it came
to data analysis, they used the child’s age at testing so as to increase the
precision with which they measured each child’s growth trajectory.

Many studies possess several plausible metrics for time. Suppose, for
example, your interest focuses on the longevity of automobiles. Most of
us would initially assess time using the vehicle’s age—the number of weeks
(or months) since purchase (or manufacture). And for many automotive
outcomes—particularly those that assess appearance qualities like rust
and seat wear—this choice seems appropriate. But for other outcomes,
other metrics may be better. When modeling the depth of tire treads, you
might measure time in miles, reasoning that tire wear depends more on
actual use, not years on the road. The tires of a one-year-old car that has
been driven 50,000 miles will likely be more worn than those of a two-
vear-old car that has been driven only 20,000 miles. Similarly, when mod-
eling the health of the starter/igniter, you might measure time in frips,
reasoning that the starter is used only once each drive. The condition of
the starters in two cars of identical age and mileage may differ if one car
is driven infrequently for long distances and the other is driven several
times daily for short hops. So, too, when modeling the life of the engine,
vou might measure time in o0il changes, reasoning that lubrication is most
important in determining engine wear.

Our point is simple: choose a metric for time that reflects the cadence
you expect to be most useful for your outcome. Psychotherapy studies
can clock time in weeks or number of sessions. Classroom studies can clock
time in grade or age. Studies of parenting behavior can clock time using
parental age or child age. The only constraint is that, like time itself, the
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temporal variable can change only monotonically—in other words, it
cannot reverse direction. This means, for example, that when studying
child outcomes, you could use height, but not weight, as a gauge of time.

Having chosen a metric for time, you have great flexibility concerning
the spacing of the waves of data collection. The goal is to collect sufficient
data to provide a reasonable view of each individual’s growth trajectory.
Equally spaced waves have a certain appeal, in that they offer balance and
symmetry. But there is nothing sacrosanct about equal spacing. If you
expect rapid nonlinear change during some time periods, you should
collect more data at those times. If you expect little change during other
periods, space those measurements further apart. So in their STAPP
study, Svartberg and colleagues (1995) spaced their early waves more
closely together—at approximately 0, 4, 8, and 12 months—because they
expected greater change during therapy. Their later waves were further
apart—at 18 and 30 months—because they expected fewer changes.

A related issue is whether everyone should share the same data col-
lection schedule—in other words, whether everyone needs an identical
distribution of waves. If everyone is assessed on an identical schedule—
whether the waves are equally or unequally spaced—we say that the data
set is time-structured. If data collection schedules vary across individuals,
we say the data set is time-unstructured. Individual growth modeling is flex-
ible enough to handle both possibilities. For simplicity, we begin with
time-structured data sets (in chapters 2, 3, and 4). In chapter 5, we show
how the same multilevel model for change can be used to analyze time-
unstructured data sets.

Finally, the resultant data set need not be balanced; in other words, each
person need not have the same number of waves. Most longitudinal
studies experience some attrition. In Coie and colleagues’ (1995) study
of antisocial behavior, 219 children had three waves, 118 had two, and
70 had one. In Francis and colleagues’ (1996) reading study, the total
number of assessments per child varied between six and nine. While non-
random attrition can be problematic for drawing inferences, individual
growth modeling does not require balanced data. Each individual’s
empirical growth record can contain a unique number of waves collected
at unique occasions of measurement—indeed, as we will see in chapter
5, some individuals can even contribute fewer than three waves!

1.3.3 A Continuous Outcome That Changes
Systematically Over Time

Statistical models care little about the substantive meaning of the indi-
vidual outcomes. The same models can chart changes in standardized test
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scores, self-assessments, physiological measurements, or observer ratings.
This flexibility allows individual growth models to be used across diverse
disciplines, from the social and behavioral sciences to the physical and
natural sciences. The content of measurement is a substantive, not statis-
tical, decision.

How to measure a given construct, however, is a statistical decision, and
not all variables are equally suitable. Individual growth models are
designed for continuous outcomes whose values change systematically
over time.' This focus allows us to represent individual growth trajecto-
ries using meaningful parametric forms (an idea we introduce in chapter
2). Of course, it must make conceptual and theoretical sense for the
outcome to follow such a trajectory. Francis and colleagues (1996) invoke
developmental theory to argue that reading ability will follow a logistic
trajectory as more complex skills are layered upon basic building blocks
and children head toward an upper asymptote. Svartberg and colleagues
(1995) invoke psychiatric theory to argue that patients’ trajectories of
symptomatology will differ when they are in therapy and after therapy
ends.

Continuous outcomes support all the usual manipulations of arith-
metic: addition, subtraction, multiplication, and division. Differences
between pairs of scores, equidistantly spaced along the scale, have iden-
tical meanings. Scores derived from standardized instruments developed
by testing companies—including the Woodcock Johnson Psycho-
educational Test Battery—usually display these properties. So, too, do
arithmetic scores derived from most public-domain instruments, like
Hodges's Child Assessment Schedule and Derogatis’s SCL-90. Even
homegrown instruments can produce scores with the requisite measure-
ment properties as long as they include a large enough number of items,
each scored using a large enough number of response categories.

Of course, your outcomes must also possess decent psychometric prop-
erties. Using well-known or carefully piloted instruments can ensure
acceptable standards of validity and precision. But longitudinal research
imposes three additional requirements because the metric, validity, and
precision of the outcome must also be preserved across time.

When we say that the metric in which the outcome is measured must
be preserved across time, we mean that the outcome scores must be
equatable over time—a given value of the outcome on any occasion must
represent the same “amount” of the outcome on every occasion. Out-
come equatability is easiest to ensure when you use the identical instru-
ment for measurement repeatedly over time, as did Coie and colleagues
(1995) in their study of antisocial behavior and Svartverg and colleagues
(1995) in their study of STAPP. Establishing outcome equatability when
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the measures differ over time—like the Woodcock Johnson test battery
used by Francis and colleagues (1996)—requires more effort. If the
instrument has been developed by a testing organization, you can usually
find support for equatability over time in the testing manuals. Francis and
colleagues (1996) note that:

The Rasch-scaled score reported for the reading-cluster score is a trans-
formation of the number correct for each subtest that vields a score with
interval scale properties and a constant metric. The transformation is such
that a score of 500 corresponds to the average performance level of fifth
graders. Its interval scale and constant metric properties make the
Rasch-scaled score ideal for longitudinal studies of individual growth. (p. 6)

If outcome measures are not equatable over time, the longitudinal equiv-
alence of the score meanings cannot be assumed, rendering the scores
useless for measuring change.

Note that measures cannot be made equatable simply by standardizing
their scores on each occasion to a common standard deviation. Although
occasion-by-occasion standardization appears persuasive—it seems to let
vou talk about children who are “1 (standard deviation) unit” above the
mean at age 10 and “1.2 units” above the mean at age 11, say—the “units”
from which these scores are derived (i.e., the underlying age-specific
standard deviations used in the standardization process) are themselves
unlikely to have had either the same size or the same meaning.

Second, your outcomes must be equally valid across all measurement
occasions. If you suspect that cross-wave validity might be compromised,
you should replace the measure before data collection begins. Sometimes,
as in the psychotherapy study, it is easy to argue that validity is maintained
over time because the respondents have good reason to answer honestly
on successive occasions. But in other studies, such as Coie and colleagues’
(1996) antisocial behavior study, instrument validity over time may be
more difficult to assert because young children may not understand all
the questions about antisocial behavior included in the measure and
older children may be less likely to answer honestly. Take the time to be
cautious even when using instruments that appear valid on the surface.
In his landmark paper on dilemmas in the measurement of change, Lord
(1963) argued that, just because a measurement was valid on one occa-
sion, it would not necessarily remain so on all subsequent occasions even
when administered to the same individuals under the same conditions.
He argued that a multiplication test may be a valid measure of mathe-
matical skill among young children, but becomes a measure of memory
among teenagers.

Third, you should try to preserve your outcome’s precision over time,
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although precision need not be identical on every occasion. Within the
logistical constraints imposed by data collection, the goal is to minimize
errors introduced by instrument administration. An instrument that is
“reliable enough™ in a cross-sectional study—perhaps with a reliability of
.8 or .9—uwill no doubt be sufficient for a study of change. So, too, the
measurement error variance can vary across occasions because the
methods we introduce can easily accommodate heteroscedastic error vari-
ation. Although the reliability of change measurement depends directly
on outcome reliability, the precision with which you estimate individual
change depends more on the number and spacing of the waves of data
collection. In fact, by carefully choosing and placing the occasions of
measurement, you can usually offset the deleterious effects of measure-
ment error in the outcome.



Exploring Longitudinal Data
on Change

Change is the nursery of music, joy, life. and Eternity.
—TJohn Donne

Wise researchers conduct descriptive exploratory analyses of their data
before fitting statistical models. As when working with cross-sectional
data, exploratory analyses of longitudinal data can reveal general pat-
terns, provide insight into functional form, and identify individuals whose
data do not conform to the general pattern. The exploratory analyses
presented in this chapter are based on numerical and graphical strate-
gies already familiar from cross-sectional work. Owing to the nature of
longitudinal data, however, they are inevitably more complex in this new
setting. For example, before you conduct even a single analysis of longi-
tudinal data, you must confront a seemingly innocuous decision that has
serious ramifications: how to store your longitudinal data efficiently. In
section 2.1, we introduce two different data organizations for longitudi-
nal data—the “person-level” format and the “person-period” format—
and argue in favor of the latter.

We devote the rest of this chapter to describing exploratory analyses
that can help you learn how different individuals in your sample change
over time. These analyses serve two purposes: to identify important
features of your data and to prepare you for subsequent model-based
analyses. In section 2.2, we address the within-person question—How does
each person change over time?—by exploring and summarizing empiri-
cal growth records, which list each individual’s outcome values over time.
In section 2.3, we address the between-person question—How does indi-
vidual change differ across people?—by exploring whether different
people change in similar or different ways. In section 2.4, we show how
to ascertain descriptively whether observed differences in change across
people (interindividual differences in change) are associated with individual

16
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characteristics. These between-person explorations can help identity vari-
ables that may ultimately prove to be important predictors of change. We
conclude, in section 2.5, by examining the reliability and precision of
exploratory estimates of change and commenting on their implications
tor the design of longitudinal studies.

2.1 Creating a Longitudinal Data Set

Your first step is to organize your longitudinal data in a format suitable
for analysis. In cross-sectional work, data-set organization is so straight-
forward as to not warrant explicit attention—all vou need is a “standard”
data set in which each individual has his or her own record. In longitu-
dinal work, data-set organization is less straightforward because you can
use two very different arrangements:

* A person-level data set, in which each person has one record
and multiple variables contain the data from each measurement
occasion

* A person-period data set, in which each person has multiple
records—one for each measurement occasion

A person-level data set has as many records as there are people in the
sample. As you collect additional waves, the file gains new variables, not
new cases. A person-period data set has many more records—one for
each person-period combination. As you collect additional waves of data,
the file gains new records, but no new variables.

All statistical software packages can easily convert a longitudinal data
set from one format to the other. The website associated with our book
presents illustrative code for implementing the conversion in a variety of
statistical packages. If you are using SAS, for example, Singer (1998,
2001) provides simple code for the conversion. In STATA, the “reshape”
command can be used. The ability to move from one format to the
other means that you can enter, and clean, your data using whichever
format is most convenient. But as we show below, when it comes to
data analysis—either exploratory or inferential—you need to have your
data in a person-period format because this most naturally supports
meaningful analyses of change over time.

We illustrate the difference between the two formats in figure 2.1,
which presents five waves of data from the National Youth Survey (NYS;
Raudenbush & Chan, 1992). Each year, when participants were ages 11,
12, 13, 14, and 15, they filled out a nine-item instrument designed
to assess their tolerance of deviant behavior. Using a four-point scale



"Person-Level" data set

ID| TOL11 TOL12 TOL13 TOLI4 TOLI5 MALE EXPOSURE

9 2.23 1.79 1.9 2.12 2.66 0 1.54

45 1.12 1.45 1.45 1.45 1.99 1 1.16
268 1.45 1.34 1.99 1.79 1.34 1 0.9
314 1.22 1.22 1.55 1.12 1.12 0 0.81
442 1.45 1.99 1.45 1.67 1.9 0 1.13
514 1.34 1.67 2.23 2.12 2.44 1 0.9
569 1.79 1.9 1.9 1.99 1.99 0 1.99
624 1.12 1.12 1.22 1.12 1.22 1 0.98
723 1.22 1.34 1.12 1 1.12 0 0.81
918 1 1 1.22 1.99 1.22 0 1.21
949 1.99 1.55 1.12 1.45 1.55 1 0.93
978 1.22 1.34 2.12 3.46 3.32 1 1.59
1105 1.34 1.9 1.99 1.9 2.12 1 1.38
1542 1.22 1.22 1.99 1.79 242 0 1.44
1552 1 1.12 2.23 1.55 1.55 0 1.04
1653 1.11 1.11 1.34 1.55 2.12 0 1.25

"Person-Period" data set

ID}{ AGE TOL MALE EXPOSURE

9 11 223 0 1.54
9 12 1.79 0 1.54
9 13 1.9 0 1.54
9 14 2.12 0 1.54
9 15 2.66 0 1.54

Figure 2.1. Conversion of a person-level data set into a person-period data set for selected
participants in the tolerance study.
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{1 = very wrong, 2 = wrong, 3 = a little bit wrong, 4 = not wrong at all),
they indicated whether it was wrong for someone their age to: (a) cheat
on tests, (b) purposely destroy property of others, (¢) use marijuana, (d)
steal something worth less than five dollars, (e) hit or threaten someone
without reason, (f) use alcohol, (g) break into a building or vehicle to
steal, (h) sell hard drugs, or (i) steal something worth more than fifty
dollars. At each occasion, the outcome, TOL, is computed as the respon-
dent’s average across the nine responses. Figure 2.1 also includes two
potential predictors of change in tolerance: MALE, representing respon-
dent gender, and EXPOSURE, assessing the respondent’s self-reported
exposure to deviant behavior at age 11. To obtain values of this latter pre-
dictor, participants estimated the proportion of their close friends who
were involved in each of the same nine activities on a five-point scale
(ranging from 0 = none, to 4 = all). Like TOL, each respondent’s value
of EXPOSURE is the average of his or her nine responses. Figure 2.1 pres-
ents data for a random sample of 16 participants from the larger NYS
data sct. Although the exploratory methods of this chapter apply in data
sets of all sizes, we have kept this example purposefully small to enhance
manageability and clarity. In later chapters, we apply the same methods
to larger data sets.

2.1.1 The Person-Level Data Set

Many people initially store longitudinal data as a person-level data set (also
known as the multivariate format), probably because it most resembles the
familiar cross-sectional data-set format. The top panel of figure 2.1 dis-
plays the NYS data using this arrangement. The hallmark feature of a
person-level data set is that each person has only one row (or “record”)
of data, regardless of the number of waves of data collection. A 16-person
data set has 16 records; a 20,000-person data set has 20,000. Repeated
measurements of each outcome appear as additional variables (hence the
alternate “multivariate” label for the format). In the person-level data set
of figure 2.1, the five values of tolerance appear in columns 2 through 6
(TOL11, TOL12, ... TOLI15). Suffixes attached to column headings iden-
tify the measurement occasion (here, respondent’s age) and additional
variables—here, MALE and EXPOSURE—appear in additional columns.
The primary advantage of a person-level data set is the ease with which
you can examine visually each person’s empirical growth record, his or her
temporally sequenced outcome values. Each person’s empirical growth
record appears compactly in a single row making it is easy to assess quickly
the way he or she is changing over time. In examining the top panel of
figure 2.1, for example, notice that change differs considerably across
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Table 2.1: Estimated bivariate correlations among tolerance scores assessed on five
measurement occasions (n = 16)

TOL11 TOI12 TOLI13 TOLI14 TOL15
TOL1] 1.00
TOLI12 0.66 1.00
TOL13 0.06 0.25 1.00
TOL14 0.14 0.21 0.59 1.00
TOLIS5 0.26 0.39 0.57 0.83 1.00

adolescents. Although most become more tolerant of deviant behavior
over ume (e.g., subjects 514 and 1653), many remain relatively stable
(e.g., subjects 569 and 624), none of the 16 becomes much less tolerant
(although subject 949 declines for a while before increasing).

Despite the ease with which you can examine each person’s empirical
growth record visually, the person-level data set has four disadvantages
that render it a poor choice for most longitudinal analyses: (1) it leads
naturally to noninformative summaries; (2) it omits an explicit “time”
variable; (3) it is inefficient, or useless, when the number and spacing
of waves varies across individuals; and (4) it cannot easily handle the
presence of time-varving predictors. Below, we explain these difficul-
ties; in section 2.1.2, we demonstrate how each is addressed by a con-
version to a person-period data set.

First, let us begin by examining the five separate tolerance variables
in the person-level data set of figure 2.1 and asking how you might analyze
these longitudinal data. For most researchers, the instinctive response is
to examine wave-to-wave relationships among TOL11 through TOLI5
using bivariate correlation analyses (as shown in table 2.1) or com-
panion bivariate plots. Unfortunately, summarizing the bivariate rela-
tionships between waves tells us little about change over time, for either
individuals or groups. What, for example, does the weak but generally
positive correlation between successive assessments of TOLERANCE
tell us? For any pair of measures, say TOLII and TOLI2, we know that
adolescents who were more tolerant of deviant behavior at one wave
tend to be more tolerant at the next. This indicates that the rank order of
adolescents remains relatively stable across occasions. But it does not tell
us how each person changes over time; it does not even tell us about the
direction of change. If everyone’s score declined by one point between age
11 and age 12, but the rank ordering was preserved, the correlation
between waves would be positive (at +1)! Tempting though it is to infer
a direct link between the wave-to-wave correlations and change, it is a



Exploring Longitudinal Data on Change 21

futile exercise. Even with a small data sct—here just five waves of data for
16 people—wave-to-wave correlations and plots tell us nothing about
change over time.

Second, the person-level data set has no explicit numeric variable iden-
tifving the occasions of measurement. Information about “time” appears
in the variable names, not in the data, and is therefore unavailable for
statistical analysis. Within the actual person-level data set of figure 2.1, for
example, information on when these TOLERANCE measures were
assessed—the numeric values 11, 12, 13, 14, and 15—appears nowhere.
Without including these values in the dataset, we cannot address within-
person questions about the relationship between the outcome and
“tiine.”

Third, the person-level format is inefficient if either the number,
or spacing, of waves varies across individuals. The person-level format is
best suited to research designs with fixed occasions of measurement—
cach person has the same number of waves collected on the same exact
schedule. The person-level data set of figure 2.1 is compact because the
NYS used such a design—each adolescent was assessed on the same five
annual measurement occasions (at ages 11, 12, 13, 14, and 15). Many
longitudinal data sets do not share this structure. For example, if we
reconceptualized “time” as the adolescent’s specific age (say, in months)
at each measurement occasion, we would need to expand the person-
level data set in some way. We would need either five additional columns
to record the respondent’s precise age on each measurement occasion (e.g.,
variables with names like AGEI1, AGEI2, AGE13, AGE14, and AGEI5) or
even more additional columns to record the respondent’s tolerance of
deviant behavior on each of the many unigque measurement occasions
(c.g., variables with names like TOL11.1, TOL11.2, ... TOL15.11). This
latter approach is particularly impractical. Not only would we add 55 vari-
ables to the data set, we would have missing values in the cells corre-
sponding to each month not used by a particular individual. In the
extreme, if each person in the data set has his or her own unique data
collection schedule—as would be the case were AGE recorded in days—
the person-evel format becomes completely unworkable. Hundreds of
columns would be needed and most of the data entries would be missing!

Finally, person-level data sets become unwieldy when the values of
predictors can vary over time. The two predictors in this data set are
time-invariant—the values of MALE and EXPOSURE remain the same on
every occasion. This allows us to use a single variable to record the values
of each. If the data set contained time-varying predictors—predictors
whose values vary over time—we would need an additional set of columns
for each—one per measurement occasion. If, for example, exposure to
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deviant behavior were measured each year, we would need four additional
columns. While the data could certainly be recorded in this way, this leads
to the same disadvantages for time-varying predictors as we have just
described for time-varying outcomes.

Taken together, these disadvantages render the person-level format,
so familiar in cross-sectional research, ill suited to longitudinal work.
Although we will return to the multivariate format in chapter 8, when we
introduce a covariance structure analysis approach to modeling change
(known as latent growth modeling). for now we suggest that longitudinal
data analysis is facilitated—and made more meaningful—if you use the
“person-period” format for your data.

2.1.2 The Person-Period Data Set

In a person-period data set, also known as univariate format, each indi-
vidual has multiple records, one for cach period in which he or she was
observed. The bottom panel of figure 2.1 presents illustrative entries for
the NYS data. Both panels present identical information; they differ only
in structure. The person-period data set arrays each person’s empirical
growth record vertically, not horizontally. Person-period data sets there-
fore have fewer columns than person-level data sets (here, five instead
of eight), but many more rows (here, 80 instead of 16). Even for this
small example, the person-period data set has so many rows that figure
2.1 displays only a small subset.

All person-period data sets contain four types of variables: (1) a subject
identifier; (2) a time indicator; (3) outcome variable(s); and (4) predic-
tor variable(s). The ID number, which identifies the participant that each
record describes, typically appears in the first column. Time-invariant by
definition, IDs are identical across each person’s multiple records. Includ-
ing an /D number is more than good record keeping; it is an integral part
of the analysis. Without an ID, you cannot sort the data set into person-
specific subsets (a first step in examining individual change trajectories
in section 2.2).

The second column in the person-period data set typically displays a
time indicator—usually labeled AGE, WAVE, or TIME—which identifies the
specific occasion of measurement that the record describes. For the NYS
data, the second column of the person-period data set identifies the
respondent’s AGE (in years) on each measurement occasion. A dedicated
time variable is a fundamental feature of every person-period data set; it
is what renders the format amenable to recording longitudinal data from
a wide range of research designs. You can easily construct a person-period
data set even if each participant has a unique data collection schedule
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(as would be the case if we clocked time using each adolescent’s precise
age on the date of interview). The new AGE variable would simply record
cach adolescent’'s age on that particular date (e.g., 11.24, 12.32, 13.73,
14.11, 15.40 for one case; 11.10, 12.32, 13.59, 14.21, 15.69 for the next,
cte.). A dedicated TIME variable also allows person-period data sets to
accommodate research designs in which the number of measurement
occasions differs across people. Each person simply has as many records
as he or she has waves of data in the design. Someone with three waves
will have three records; someone with 20 will have 20.

Fach outcome in a person-period data set—here, just TOL—is repre-
sented by a single variable (hence the alternate “univariate” label for the
format) whose values represent that person’s score on each occasion.
In figure 2.1, every adolescent has five records, one per occasion, each
containing his or her tolerance of deviant behavior at the age indicated.

Every predictor—whether time-varying or time-invariant—is also
represented by a single variable. A person-period data set can include
as many predictors of either type as you would like. The person-period
data set in figure 2.1 includes two time-invariant predictors, MALE and
EXPOSURE. The former is time-invariant; the latter is time-invariant only
because of the way it was constructed (as exposure to deviant behavior at
one point in time, age 11). Time-invariant predictors have identical
values across each person’s multiple records; time-varying predictors have
potentially differing values. We defer discussion of time-varying predic-
tors to section 5.3. For now, we simply note how easy it is to include them
in a person-period data set.

We hope that this discussion convinces you of the utility of storing
longitudinal data in a person-period format. Although person-period
data sets are typically longer than their person-level cousins, the ease
with which they can accommodate any data collection schedule, any
number of outcomes, and any combination of time-invariant and time-
varying predictors outweigh the cost of increased size.

2.2 Descriptive Analysis of Individual Change over Time

Having created a person-period data set, you are now poised to conduct
exploratory analyses that describe how individuals in the data set change
over time. Descriptive analyses can reveal the nature and idiosyncrasies
of each person’s temporal pattern of growth, addressing the question:
How does each person change over time? In section 2.2.1, we present a
simple graphical strategy; in section 2.2.2, we summarize the observed
trends by superimposing rudimentary fitted trajectories.
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2.2.1 Empirical Growth Plots

‘The simplest way of visualizing how a person changes over time is to
examine an empirical growth plot, a temporally sequenced graph of his or
her empirical growth record. You can easily obtain empirical growth
plots from any major statistical package: sort the person-period data set
by subject identifier (/D) and separately plot each person’s outcome vs.
time (e.g., TOL vs. AGL). Because it is difficult to discern similarities and
differences among individuals if each page contains only a single plot,
we recomnmend that you cluster sets of plots in smaller numbers of
panels.

Figure 2.2 presents empirical growth plots for the 16 adolescents in
the NYS study. To facilitate comparison and interpretation, we use iden-
tical axes across panels. We emphasize this seemingly minor point
because many statistical packages have the annoying habit of automati-
cally expanding (or contracting) scales to fill out a page or plot area.
When this happens, individuals who change only modestly acquire seem-
ingly steep trajectories because the vertical axis expands to cover their
limited outcome range; individuals who change dramatically acquire
seemingly shallow trajectories because the vertical axis shrinks to accom-
modate their wide outcome range. If your axes vary inadvertently, you
may draw erroneous conclusions about any similarities and differences in
individual change.

Empirical growth plots can reveal a great deal about how each person
changes over time. You can evaluate change in both absolute terms
(against the outcome’s overall scale) and in relative terms (in compari-
son to other sample members). Who is increasing? Who is decreasing?
Who is increasing the most? The least? Does anyone increase and then
decrease (or vice versa)? Inspection of figure 2.2 suggests that tolerance
of deviant behavior generally increases with age (only subjects 314, 624,
723, and 949 do not fit this trend). But we also see that most adolescents
remain in the lower portion of the outcome scale—here shown in its full
extension from | to 4—suggesting that tolerance for deviant behavior
never reaches alarming proportions (except, perhaps, for subject 978).

Should you examine every possible empirical growth plot if your data
set is large, including perhaps thousands of cases? We do not suggest that
you sacrifice a ream of paper in the name of data analysis. Instead, you
can randomly select a subsample of individuals (perhaps stratified into
groups defined by the values of important predictors) to conduct these
exploratory analyses. All statistical packages can generate the random
numbers necessary for such subsample selection; in fact, this is how we
selected these 16 individuals from the NYS sample.
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Figure 2.2. Exploring how individuals change over time. Empirical growth plots for 16

participants in the tolerance study.

2.2.2 Using a Trajectory to Summarize Each Person’s
Empirical Growth Record

25

It is easy to imagine summarizing the plot of each person’s empirical
growth record using some type of smooth trajectory. Although we often
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begin by drawing freehand trajectories, we strongly recommend that
you also apply two standardized approaches. With the nonparametric
approach, you let the “data speak for themselves” by smoothing across
temporal idiosyncrasies without imposing a specific functional form. With
the parametric approach, you select a common functional form
for the trajectories—a straight line, a quadratic or some other curve—
and then fit a separate regression model to each person’s data, yielding
a fitted trajectory.

The fundamental advantage of the nonparametric approach is that it
requires no assumptions. The parametric approach requires assumptions
but, in return, provides numeric summaries of the trajectories (e.g., esti-
mated intercepts and slopes) suitable for further exploration. We find it
helpful to begin nonparametrically—as these summaries often inform
the parametric analysis.

Smoothing the Empirical Growth
Trajectory Nonparametrically

Nonparametric trajectories summarize each person’s pattern of change
over time graphically without committing to a specific functional form.
All major statistical packages provide several options for assumption-
free smoothing, including the use of splines, loess smoothers, kernel
smoothers, and moving averages. Choice of a particular smoothing
algorithm is primarily a matter of convenience; all are adequate for the
exploratory purposes we intend here.

Figure 2.3 plots the NYS empirical growth records and superimposes
a smooth nonparametric trajectory (obtained using the “curve” option in
Harvard Graphics). When examining smoothed trajectories like these,
focus on their elevation, shape, and tilt. Where do the scores hover—at
the low, medium, or high end of the scale? Does everyone change over
time or do some people remain the same? What is the overall pattern of
change? Is it linear or curvilinear; smooth or steplike? Do the trajectories
have an inflection point or plateau? Is the rate of change steep or shallow?
Is this rate of change similar or different across people? The
trajectories in figure 2.3 reinforce our preliminary conclusions about
the nature of individual change in the tolerance of deviant behavior.
Most adolescents experience a gentle increase between ages 11 and 15,
except for subject 978, who registers a dramatic leap after age 13.

After examining the nonparametric trajectories individually, stare at
the entire set together as a group. Group-level analysis can help inform
decisions that you will soon need to make about a functional form
for the trajectory. In our example, several adolescents appear to have
linear trajectories (subjects 514, 569, 624, and 723) while others have
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Figure 2.3. Smooth nonparametric summaries of how individuals change over time.
Smooth nonparametric trajectories superimposed on empirical growth plots for
participants in the tolerance study.
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curvilinear ones that either accelerate (9, 45, 978, and 1653) or rise and
fall around a central peak or trough (268, 314, 918, 949, 1552).

Smoothing the Empirical Growth Trajectory Using
OLS Regression

We can also summarize each person’s growth trajectory by fitting a
separate parametric model to each person’s data. Although many
methods of model fitting are possible, we find that ordinary least squares
(OLS) regression is usually adequate for exploratory purposes. Of course,
fiting person-specific regression models, one individual at a time, is
hardly the most efficient use of longitudinal data; that’s why we need
the multilevel model for change that we will soon introduce. But because
the “fitting of little OLS regression models” approach is intuitive and
easy to implement in a person-period data set, we find that it connects
empirical researchers with their data in a direct and intimate way.

To fit an exploratory OLS regression model to each person’s data, you
must first select a specific functional form for that model. Not only is this
decision crucial during exploratory analysis, it becomes even more impor-
tant during formal model fitting. Ideally, substantive theory and past
research will guide your choice. But when you observe only a restricted
portion of the life span—as we do here—or when you have only three or
four waves of data, model selection can be difficult.

Two factors further complicate the choice of a functional form. First,
exploratory analyses often suggest that different people require different
functions—change might appear linear for some, curvilinear for others.
We observe this pattern, to some extent, in figure 2.3. Yet the simplification
that comes from adopting a common functional form across everyone in
the data set is so compelling that its advantages totally outweigh its disad-
vantages. Adopting a common functional form across everyone in the
sample allows you to distinguish people easily using the same set of numeri-
cal summaries derived from their fitted trajectories. This process is espe-
cially simple if you adopt a linear change model, as we do here; you can
then compare individuals using just the estimated intercepts and slopes of
their fitted trajectories. Second, measurement error makes it difficult to
discern whether compelling patterns in the empirical growth record really
reflect true change or are simply due to random fluctuation. Remember,
cach observed scoreis just a fallible operationalization of an underlying true
score—depending upon the sign of the error, the observed score can be
inappropriately high or low. The empirical growth records do not present
a person’s true pattern of change over time; they present the fallible
observed reflection of that change. Some of what we see in the empirical
growth records and plots is nothing more than measurement error.
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These complications argue for parsimony when selecting a functional
torm tor exploratory analysis, driving you to adopt the simplest trajectory
that can do the job. Often the best choice is simply a straight line. In this
example, we adopted a linear individual change trend because it provides
a decent description of the trajectories for these 16 adolescents. In
making this decision, of course, we assume implicitly that any deviations
from linearity in figure 2.3 result from either the presence of outliers or
measurement error. Use of an individual linear change model simplifies
our discussion enormously and has pedagogic advantages as well. We
devote chapter 6 to a discussion of models for discontinuous and
nonlinear change.

Having selected an appropriate parametric form for summarizing the
empirical growth records, you obtain fitted trajectories using a three-step
process:

I. Estimate a within-person regression model for each person in the
data set. With a linear change model, simply regress the outcome
(here TOL) on some representation of time (here, AGE) in the
person-period data set. Be sure to conduct a separate analysis for
each person (i.e., conduct the regression analyses “by ID").

2. Collect summnary statistics from all the within-person regression
models into a separate data set. For a linear-change model, each
person’s estimated intercept and slope summarize their growth
trajectory; the R? and residual variance statistics summarize their
goodness of fit.

3. Superimpose each person’s fitted regression line on a plot of his
or her empirical growth record. For each person, plot selected
predicted values and join them together smoothly.

We now apply this three-step process to the NYS data.

We begin by fitting a separate linear change model to each person’s
empirical growth record. Although we can regress TOL on AGE directly, we
instead regress TOLon (AGE — 11) years, providing a centeredversion of AGE.
Centering the temporal predictor is optional, but doing so improves the
imerpretability of the intercept. Had we not centered AGE, the fitted inter-
cept would estimate the adolescent’s tolerance of deviant behavior at age
0—an age beyond the range of these data and hardly one at which a child
can report an attitude. Subtracting 11 years from each value of AGE moves
the origin of the plot so that each intercept now estimates the adolescent’s
tolerance of deviant behavior at the more reasonable age of 11 years.

Centering AGE has no effect on the interpretation of each person’s
slope: it still estimates his or her annual rate of change. Adolescents with
positive slopes grow more tolerant of deviant behavior as they age; those
with the largest slopes become more tolerant the most rapidly. Adoles-
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Table 2.2: Results of fitting separate within-person exploratory OLS regression models
for TOLERANCE as a function of linear time

Initial status Rate of change Residual
D Estimate se Estimate se variance R? MALE EXPOSURE
0009 1.90 0.25 0.12 0.10 0.11 0.31 0 1.54
0045 1.14 0.13 0.17 0.05 0.03 0.77 1 1.16
0268 1.54 0.26 0.02 0.11 0.11 0.02 1 0.90
0314 1.31 0.15 -0.03 0.06 0.04 0.07 0 0.81
0442 1.58 0.21 0.06 0.09 0.07 0.14 0 1.13
0514 1.43 0.14 0.27 0.06 0.03 0.88 1 0.90
0569 1.82 0.03 0.05 0.01 0.00 0.88 0 1.99
0624 1.12 0.04 0.02 0.02 0.00 0.33 1 0.98
0723 1.27 0.08 -0.05 0.04 0.01 0.45 0 0.81
0918 1.00 0.30 0.14 0.13 0.15 0.31 0 1.21
0949 1.73 0.24 ~0.10 0.10 0.10 0.25 1 0.93
0978 1.03 0.32 0.63 0.13 0.17 0.89 1 1.59
1105 1.54 0.15 0.16 0.06 0.04 0.68 1 1.38
1542 1.19 0.18 0.24 0.07 0.05 0.78 0 1.44
1552 1.18 0.37 0.15 0.15 0.23 0.25 0 1.04
1653 0.95 0.14 0.25 0.06 0.03 0.86 0 1.25

cents with negative slopes grow less tolerant of deviant behavior over
time; those with the most negative slopes become less tolerant the most
rapidly. Because the fitted siopes estimate the annual rate of change in
the outcome, they are the parameter of central interest in an exploratory
analysis of change.

Table 2.2 presents the results of fitting 16 linear-change OLS regres-
sion models to the NYS data. The table displays OLS-estimated intercepts
and slopes for each person along with associated standard errors, resid-
ual variance, and R? statistics. Figure 2.4 presents a stem-and-leaf display
of each summary statistic. Notice that both the fitted intercepts and slopes
vary considerably, reflecting the heterogeneity in trajectories observed in
figure 2.3. Although most adolescents have little tolerance for deviant
behavior at age 11, somme—like subjects 9 and 569—are more tolerant.
Notice, too, that many adolescents register little change over time. Com-
paring the estimated slopes to their associated standard errors, we find
that the slopes for nine people (subjects 9, 268, 314, 442, 624, 723, 918,
949, and 1552) are indistinguishable from 0. Three have moderate
increases (514, 1542, and 1653) and one extreme case (978) increases
three times faster than his closest peer.

Figure 2.5 superimposes each adolescent’s fitted OLS trajectory on his
or her empirical growth plot. All major statistical packages can generate
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such plots. For example, because the estimated intercept and slope for
subject 514 are 1.43 and 0.27, the fitted values at ages 11 and 15 are: 1.43
(computed as 1.43 +0.27(11 — 11) ) and 2.51 (computed as 1.43 + 0.27(15
= 11)). To prevent extrapolation beyond the temporal limits of the data,
we plot this trajectory only between ages 11 and 15.

Comparing the exploratory OLS-fitted trajectories with the observed
data points allows us to evaluate how well the chosen linear change model
fits each person’s growth record. For some adolescents (such as 569 and
624), the linear change model fits well—their observed and fitted values
nearly coincide. A linear change trajectory may also be reasonable for
many other sample members (including subjects 45, 314, 442, 514, 728,
949, 1105, and 1542) if we are correct in regarding the observed devia-
tions from the fitted trajectory as random error. For five adolescents (sub-
jects 9, 268, 918, 978, and 1552), observed and fitted values are more
disparate. Inspection of their empirical growth records suggests that their
change may warrant a curvilinear model.

Table 2.2 presents two simple ways of quantifying the quality of fit f_or
each person: an individual R statistic and an individual estimated resid-
nal variance. Even in this small sample, notice the striking variability in
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Figure 2.5. OLS summaries of how individuals change over time. Fitted OLS trajectories
superimposed on empirical growth plots for participants in the tolerance study.

the individual R® statistics. They range from a low of 2% for subject 268
(whose trajectory is essentially flat and whose data are widely scattered)
to highs of 88% for subjects 514 and 569 (whose empirical growth records
show remarkable linearity in change) and 89% for subject 978 (who has
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the most rapid rate of growth). The individual estimated residual vari-
ances mirror this variability (as you might expect, given that they are an
clement in the computation of the R* statistic). Skewed by definition (as
apparent in figure 2.4), they range from a low near 0 for subjects 569 and
624 (whose data arc predicted nearly perfectly) to highs of 0.17 and 0.23
for subjects 978 and 1552 (who each have an extreme observation). We
conclude that the quality of exploratory model fit varies substantially
from person to person; the linear change trajectory works well for some
sample members and poorly for others.

By now you may be questioning the wisdom of using OLS regression
methods to conduct even exploratory analyses of these data. OLS regres-
sion methods assume independence and homoscedasticity of residuals.
Yet these assumptions are unlikely to hold in longitudinal data where
residuals tend to be autocorrelated and heteroscedastic over time within
person. Despite this concern, OLS estimates can be very useful for
exploratory purposes. Although they are less efficient when the assump-
tion ol residual independence is violated (i.e., their sampling variance
is too high), they still provide unbiased estimates of the intercept and
slope of the individual change (Willett, 1989). In other words, these
exploratory estimates of the key features of the individual change
trajectory—each person’s intercept and slope—will be on target, if a little
H()IS)’.

2.3 Exploring Differences in Change across People

Having summarized how each individual changes over time, we now
examine similarities and differences in these changes across people. Does
everyone change in the same way? Or do the trajectories of change differ
substantially across people? Questions like these focus on the assessment
of interindividual differences in change.

2.3.1 Examining the Entire Set of
Smooth Trajectories

The simplest way of exploring interindividual differences in change is to
plot, on a single graph, the entire set of smoothed individual trajectories.
The left panel of figure 2.6 presents such a display for the NYS data using
the nonparametric smoother; the right panel presents a similar display
using OLS regression methods. In both, we omit the observed data to
decrease clutter.
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Figure 2.6. Examining the collection of smooth nonparametric and OLS trajectories
across participants in the tolerance study. Panel A presents the collection of smooth
nonparametric trajectories: Pancl B presents the collection of fitted OLS trajectories.
Both panels also present an average change trajectory for the entire group.

Each panel in figure 2.6 also includes a new summary: an average change
trajectory for the entire group. Depicted in bold, this summary helps us
compare individual change with group change. Computing an average
change trajectory is a simple two-step process. First, sort the person-
period data set by time (here, AGE), and separately estimate the mean
outcome (here, TOLERANCE) for each occasion of measurement.
Second, plot these time-specific ineans and apply the same smoothing
algorithm, nonparametric or parametric, used to obtain the individual
trajectories.

Both panels in figure 2.6 suggest that, on average, the change in tol-
erance of deviant behavior between ages 11 and 15 is positive but modest,
rising by one to two-tenths of a point per year (on this 1 to 4 scale). This
suggests that as adolescents mature, they gradually tolerate more deviant
behavior. Note that even the nonparametrically smoothed average tra-
jectory seems approximately linear. (The slight curvature or discontinu-
ity between ages 12 and 13 disappears if we set aside the extreme case,
subject 978.) Both panels also suggest substantial interindividual hetero-
geneity in change. For some adolescents, tolerance increases moderately
with age; for others, it remains stable; for some, it declines. This hetero-
geneity creates a “fanning out” of trajectories as increasing age engen-
ders greater diversity in tolerance. Notice that the OLS regression panel
is somewhat easier to interpret because of its greater structure.
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Although the average change trajectory is a valuable summary, we
inject a note of caution: the shape of the average change trajectory may
not mimic the shape of the individual trajectories from which it derives.
We see this disconcerting behavior in figure 2.6, where the nonparamet-
rically smoothed trajectories manifest various curvilinear shapes but the
average trajectory is nearly linear. This means that you should never infer
the shape of the individual change trajectories from the shape of their
average. As we explain in section 6.4, the only kind of trajectory for which
the “average of the curves” is identical to the “curve of the averages” is
one whose mathematical representation is linear in the parameters (Keats,
1983). All polynomials—including linear, quadratic, and cubic trajectories
—are linear in the parameters; their average trajectory will always be a
polynomial of the same order as the individual trajectories. The average
of a set of straight lines will be a straight line; the average of a set of
quadratics will be a quadratic. But many other common curves do not
share this property. The average of a set of logistic curves, for example,
is usually a smoothed-out step function. This means that you must ex-
ercise extreme caution when examining an average growth trajectory. We
display the average simply for comparison, not to learn anything about
underlying shapes of the individual trajectories.

2.3.2 Using the Results of Model Fitting to Frame
Questions about Change

Adopting a parametric model for individual change allows us to re-
express generic questions about interindividual differences in “change” as
specific questions about the behavior of parameters in the individual
models. If we have selected our parametric model wisely, little informa-
tion is lost and great simplification is achieved. If you adopt a linear indi-
vidual change model, for instance, you are implicitly agreeing to
summarize each person’s growth using just two parameter estimates: (1)
Fhe fitted intercept; and (2) the fitted slope. For the NYS data, variation
in fitted intercepts across adolescents summarizes observed interindivid-
ual differences in tolerance at age 11. If these intercepts describe fitted
values at the first wave of data collection, as they do here, we say that they
estimate someone’s “initial status.” Variation in the fitted slopes describes
observed interindividual differences in the rates at which tolerance for
deviant behavior changes over time.

Greater specificity and simplification accrues if we reframe general
questions about interindividual heterogeneity in change in terms of key
Parameters of the individual change trajectory. Rather than asking “Do
individuals differ in their changes, and if so, how?” we can now ask “Do
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individuals differ in their intercepts? In their slopes?” To learn about the
observed average pattern of change, we examine the sample averages of
the ftted intercepts and slopes; these tell us about the average inital
status and the average annual rate of change in the sample as a whole.
To learn about the observed individual differences in change, we examine
the sample variances and standard deviations of the intercepts and slopes;
these tell us about the observed variability in initial status and rates of
change in the sample. And to lcarn about the observed relationship
between initial status and the rate of change, we can examine the sample
covariance or correlation between intercepts and slopes.

Formal answers (o these questions require the multilevel model for
change of chapter 3. But we can presage this work by conducting simple
descriptive analyses of the estimated intercepts and slopes. In addition to
plotting their distribution (as in figure 2.4), we can examine standard
descriptive statistics (means and standard deviations) and bivariate sumn-
maries (correlation coefficients) obtained using the data set that
describes the separate fitted regression results in table 2.2.

We find it helpful to examine three specific quantities, the:

* Sample means of the estimated intercepts and slopes. The level-1 OLS-
estimated intercepts and slopes are unbiased estimates of initial
status and rate of change for each person. Their sample means
are therefore unbiased estimates of the key features of the average
observed change trajectory.

® Sample variances (or standard deviations) of the estimated intercepts
and slopes. These measures quantify the amount of observed
interindividual heterogeneity in change.

* Sample correlation between the estimated intercepts and slopes. This
correlation summarizes the association between fitted initial status
and fitted rate of change and answers the question: Are observed
initial status and rate of change related?

Results of these analyses for the NYS data appear in table 2.3.

Across this sample, we find an average estimated intercept of 1.36 and
an average estimated slope of 0.13. We therefore conclude that the
average adolescent in this sample has an observed tolerance level of 1.36
at age 11 and that this increases by an estimated 0.13 points per year. The
magnitude of the sample standard deviations (in comparison to their
means) suggests that adolescents are scattered widely around both these
averages. This tells us that the adolescents differ considerably in their
fitted initial status and fitted rates of change. Finally, the correlation coef-
ficient of -0.45 indicates a negative relationship between fitted initial
status and fitted rate of change, suggesting that adolescents with greater
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Table 2.3: Descriptive statistics for the individual growth
parameters obtained by fitting separate within-person OLS
regression models for TOLERANCE as a function of linear
time (n = 16)

Initial status Rate of change
(intercept) (slope)
Mean 1.36 0.13
Standard deviation 0.30 0.17
Bivariate correlation -0.45

initial tolerance tend to become more tolerant less rapidly over time
(although we must be cautious in our interpretation because of negative
bias introduced by the presence of measurement error).

2.3.3 Exploring the Relationship between Change
and Time-Invariant Predictors

Evaluating the impact of predictors helps you uncover systematic patterns
in the individual change trajectories corresponding to interindividual
variation in personal characteristics. For the NYS data, we consider two
time-invariant predictors: MALE and EXPOSURE. Asking whether the
observed tolerance trajectories differ by gender allows us to explore
whether boys (or girls) are initially more tolerant of deviant behavior and
whether they tend to have different annual rates of change. Asking
whether the observed tolerance trajectories differ by early exposure to
deviant behavior (at age 11) allows us to explore whether a child’s fitted
initial level of tolerance is associated with early exposure and whether the
titted rate of change in tolerance is related as well. All of these questions
focus on systematic interindividual differences in change.

Graphically Examining Groups of Smoothed Individual

Growth Trajectories
Plots of smoothed individual growth trajectories, displayed separately for
groups distinguished by important predictor values, are valuable
exploratory tools. If a predictor is categorical, display construction is
straightforward. If a predictor is continuous, you can temporarily cate-
gorize its values. For example, we split EXPOSURE at its median (1.145)
for the purposes of display. For numeric analysis, of course, we continue
lo use its continuous representation.

Figure 2.7 presents smoothed OLS individual growth trajectories

separately by gender (upper pair of panels) and exposure (lower pair of
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Figure 2.7. Identifying potential predictors of change by examining OLS fitted
trajectories separately by levels of selected predictors. Fitted OLS trajectories for the
tolerance data displayed separately by gender (upper panel) and exposure (lower panel).
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panels). The bold trajectory in each panel depicts the average trajectory
for the subgroup. When you examine plots like these, look for systematic
patterns: Do the observed trajectories differ across groups? Do observed
differences appear more in the intercepts or in the slopes? Are some
groups’ obscrved trajectories more heterogeneous than others’ Setting
aside subject 978, who had extremely rapid growth, we find litde differ-
ence in the distribution of fitted trajectories by gender. Each group’s
average observed trajectory is similar in intercept, slope, and scatter. We
also find little difference in fitted initial status by exposure, but we do
discern a difference in the fitted rate of change. Even discounting subject
978, those with greater initial exposure to deviant behavior seem to
become tolerant more rapidly as they age.

The Relationship between OLS-Estimated Trajectories
and Substantive Predictors

Just as we described the distribution of fitted intercepts and slopes in
section 2.3, we can also use them as objects of further exploratory analy-
sis. To investigate whether fitted trajectories vary systematically with pre-
dictors, we can treat the estimated intercepts and slopes as outcomes and
explore the relationship between them and predictors. For the NYS data,
these analyses explore whether the initial tolerance of deviant behavior
or the annual rate of change in tolerance is observed to differ by: (1)
gender or (2) early exposure to deviant behavior.

Because these analyses are exploratory—soon to be replaced in
chapter 3 by the fitting of a multilevel model for change—we restrict our-
selves to the simplest of approaches: the use of bivariate plots and sample
correlations. Figure 2.8 plots the fitted intercepts and slopes versus the
two predictors: MALE and EXPOSURE. Accompanying each plot is a
sample correlation coefficient. All signs point to little or no gender dif-
ferential in either fitted initial status or rate of change. But with respect
to EXPOSURE, it does appear that adolescents with greater early expo-
sure to deviant behavior become more tolerant at a faster rate than peers
who were less exposed.

Despite their utility for descriptive and exploratory analyses, OLS esti-
mated intercepts and slopes are hardly the final word in the analysis of
change. Estimates are not true values—they are imperfect measures of
each person’s true initial status and true rate of change. They have biases
that operate in known directions; for example, their sample variances are
inflated by the presence of measurement error in the outcome. This
means that the variance in the true rate of change will necessarily be
smaller than the variance of the fitted slope because part of the latter’s
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Figure 2.8. Examining the relationship between OLS parameter estimates (for initial
status and rates of change) and potential predictors. Fitted OLS intercepts and slopes for
the tolerance data plotted vs. two predictors: MALE and EXPOSURE.

variability is error variation. So, too, the sample correlation between the
fitted intercept and slope is negatively biased (it underestimates the pop-
ulation correlation) because the measurement error in fitted initial status
is embedded, with opposite sign, in the fitted rate of change.

These biases suggest that you should use the descriptive analyses of this
chapter for exploratory purposes only. They can help you get your feet
wet and in touch with your data. Although it is technically possible to
improve these estilnates—for example, we can deflate the sample vari-
ances of OLS estimates and we can correct the correlation coefficient for
measurement error (Willett, 1989)—we do not recommend expending
this extra effort. The need for ad hoc corrections has been effectively
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replaced by the widespread availability of computer sofiware for fitting
the multilevel model for change directly.

2.4 Improving the Precision and Reliability of
OLS-Estimated Rates of Change: Lessons for
Research Design

Before introducing the multilevel model for change, let us examine
another feature of the within-person exploratory OLS trajectories intro-
duced in this chapter: the precision and reliability of the estimated rates
of change. We do so not because we will be using these estimates for
further analysis, but because it allows us to comment on—in a particu-
larly simple arena—some fundamental principles of longitudinal design.
As you would hope, these same basic principles also apply directly to the
more complex models we will soon introduce.

Statisticians assess the precision of a parameter estimate in terms of its
sampling variation, a measure of the variability that would be found across
infinite resamplings from the same population. The most common
measure of sampling variability is an estimate’s standard error, the square
root of its estimated sampling variance. Precision and standard error have
an inverse relationship; the smaller the standard error, the more precise
the estimate. Table 2.2 reveals great variability in the standard errors of
the individual slope estimates for the NYS data. For some, the estimated
rate of change is very precise (e.g., subjects 569 and 624); for others, it
is not (e.g., subject 1552).

Understanding why the individual slope estimates vary in precision pro-
vides important insights into how you can improve longitudinal studies of
change. Standard results from mathematical statistics tell us that the pre-
cision of an OLS-estimated rate of change depends upon an individual’s:
(1) residual variance, the vertical deviations of observed values around the
fitted line; and (2) number and spacing of the waves of longitudinal data.
Ifindividual : has Twaves of data, gathered at times &, &y, . - ., tir the sam-
pling variance of the OLS-estimated rate of change is':

Sampling variance o? o?
of the OLS rate of change | = = =— (2.1)
5 e : -2 CSST,
for individual ¢ Z(ty ~1)
j=1

where o7 represents the residual variance for the ith individual and CSST;
represents his or her corrected sum of squares for TIME, the sum of
squared deviations of the time values around the average time, ..
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Equation 2.1 suggests two ways of increasing the precision of OLS
estimated rates of change: (1) decrease the residual variance (because
it appears in the numerator); or (2) increase variability in measurement
times (because the corrected sums of squares for time appears in the
denominator). Of course, the magnitude of the residual variance is
largely outside your control; strictly speaking, you cannot directly modify
its value. But because at least some of the residual variance is nothing
more than measurement error, you can improve precision by using
outcome measures with better psychometric properties.

Greater improvements in precision accrue if you work to increase the
corrected sum of squares for time by modifying your research design.
Inspection of equation 2.1 indicates that the greater the variability in the
timing of measurement, the more precise the assessment of change.
There are two simple ways of achieving increased variability in the timing
of neasurement: (1) redistribute the timing of the planned measurement
occasions to be further away from their average; and (2) increase the
number of waves. Both strategies yield substantial payoffs because it is
the squared deviations of the measurement times about their average in
the denominator of equation 2.1. A change as simple as adding another
wave of data to your research design, far afield from the central set of
observations, can reap dramatic improvements in the precision with
which change can be measured.

We can reach similar conclusions by examining the reliability of the
OLS estimated rates of change. Even though we believe that precision is
a better criterion for judging measurcment quality, we have three reasons
for also examining reliability. First, the issue of reliability so dominates
the literature on the measurement of change that it may be unwise to
avoid all discussion. Second, it is useful to define reliability explicitly so
as to distinguish it mathematically from precision. Third, even though
reliability and precision are different criteria for evaluating measurement
quality, they do, in this case, lead to similar recommendations about
research design.

Unlike precision, which describes how well an individual slope estimate
measures that person’s true rate of change, reliability describes how much
the rate of change varies across people. Precision has meaning for the
individual; reliability has meaning for the group. Reliability is defined in
terms of interindividual variation: it is the proportion of a measure’s
observed variance that is true variance. When test developers claim that
a test has a reliability of .90 in a population, they mean that 90% of the
person-to-person variation in observed scores across the population i
variability in true scores.

Reliability of change is defined similarly. The population reliability of
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the OLS slope is the proportion of population variance in observed rate
of change that is variance in true rate of change (see Rogosa et al., 1982;
Willet, 1988, 1989). If reliability is high, a large portion of the interindi-
vidual differences in observed rate of change will be differences in true
rate of change. Were we to rank cveryone in the population on their
observed changes, we would then be pretty confident that the rankings
reflect the rank order of the true changes. If reliability is low, the rankings
on observed change might not reflect the true underlying rankings at all.

Iimprovements in precision generally lead to improvements in reliability
—when you measure individual change more accurately, you can better
distinguish individuals on the basis of these changes. But as a group-level
parameter, reliability’s magnitude is also affected by the amount of vari-
ability in true change in the population. If everyone has an identical
value of true rate of change, you will be unable to effectively distinguish
among people even if their observed rates of change are precise, so reli-
ability will be zero. This means that you can simultaneously enjoy excel-
lent individual precision for the rate of change and poor reliability
for detecting interindividual differences in change; you can measure
everyone’s change well, but be unable to distinguish people because
everyone’s changes are identical. For a constant level of measurement
precision, as population heterogeneity in true change increases, so does
reliability.

The disadvantage of reliability as a gauge of measurement quality is
that it confounds the effect of within-person precision with the effect of
between-person heterogeneity in true change. When individual precision
is poor or when interindividual heterogeneity in true change is small, reli-
ability tends to 0. When precision is high or when heterogeneity in true
change is large, reliability tends to 1. This means that reliability does not
tell you uniquely about either precision or heterogeneity in true change;
instead, it tells you about both simultaneously, impairing its value as an
indicator of measurement quality.

We can confirm these inadequacies algebraically, albeit under a pair
of limiting assumptions: (1) that the longitudinal data are fully bal-
anced—everyone in the population is observed on the same set of
occasions, £, t, ..., t; and (2) that each person’s residuals are drawn
identically and independently from a common distribution with variance
0:. The population reliability of the OLS estimate of individual rate of
change is then:

o.?ruf.’ 4
Reliability of the OLS rate of change = r Vop’o_? , (2:2)

Ohresn ¥ CsT
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where 0'3;.,,“-,,,,,, is the population variance of the true rate of change and
CSST is the corrected sum-of-squarcs-time, now common across individ-
uals (Willett, 1988). Because 0'3;,,,_%,,, appears in both the numerator and
denominator, it plays a central role in determining reliability. If everyone
is growing at the same true rate, all true growth trajectories will be par-
allel and there will be no variability in the true rate of change across
people. When this happens, both O% e supe and the reliability of change will
be 0, no matter how precisely the individual change is measured. Troni-
cally, this means that the OLS slope can be a very precise yet completely
unrcliable measure of change. If there are large differences in the true
rate of change across people, the true growth trajectories will crisscross
considerably. When this happens, 0'?,;1“,,,,” will be large, dominating both
numerator and denominator, and the reliability of the OLS slope will
tend to 1, regardless of its precision. This means that the OLS slope can
be an imprecise yet reliable measure of change. The conclusion: you can
be fooled about the quality of your change measurement if you use reli-
ability as vour sole criterion.

We can also use equation 2.2 to reinforce our earlier conclusions about
longitudinal research design. First, for a given level of interindividual dif-
ference in true change in the population, the reliability of the OLS slope
depends solely on the residual variance. Once again, the better the
quality of your outcome measurement, the better the reliability with
which change can be measured because at least part of the residual vari-
ance is simply measurement error. Second, reliability can be improved
through design, by manipulating the number and spacing of the meas-
urement occasions. Anything that you can do to increase corrected sum-
ofssquares time, CSST, will help. As you add waves of data or move the
existing waves further away from the center of the data collection period,
the reliability with which change can be measured will improve.



Al rights reserved. May not be reproduced in any form without permnission fromthe publisher, except fair uses permtted under U.S. or applicable copyright |aw

Copyright 2003. Oxford University Press.

Introducing the Multilevel Model
for Change

When you’re finished changing, you're finished
—Benjamin Franklin

In this chapter, we introduce the multilevel model for change, demon-
strating how it allows us to address within-person and between-person
questions about change simultaneously. Although there are several ways
of writing the statistical model, here we adopt a simple and common
approach that has much substantive appeal. We specify the multilevel
model for change by simultaneously postulating a pair of subsidiary
models—a level-1 submodel that describes how each person changes over
time, and a level-2 model that describes how these changes differ across
people (Bryk & Raudenbush, 1987; Rogosa & Willett, 1985).

We begin, in section 3.1, by briefly reviewing the rationale and purpose
of statistical models in general and the multilevel model for change in
particular. We then introduce the level-1 model for individual change
(section 3.2) and the level-2 model for interindividual heterogeneity in
change (section 3.3). In section 3.4, we provide an initial foray into the
world of estimation, introducing the method of maximum likelihood.
(We discuss other methods of estimation in subsequent chapters.) We
close, in sections 3.5 and 3.6, by illustrating how the resultant parameter
estimates can be interpreted and how key hypotheses can be tested.

We do not intend this chapter to present a complete and general
account of the multilevel model for change. Our goal is to provide a
single “worked” example—from beginning to end—that illustrates all the
steps you must go through when specifying the model, fitting it to data,
and interpreting its results. We proceed in this way because we believe it
is easier to learn about the model by first walking through a simple, but
complete, analysis in a constrained, yet realistic, context. This minimizes
notational and analytic complexity and lets us focus on interpretation and
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understanding. As a result, this chapter is limited to: (1) a linear change
model for individual growth; (2) a time-structured data set in which every-
one shares an identical data collection schedule; (3) an evaluation of the
impact of a single dichotomous time-invariant predictor; and (4) the use
of one piece of dedicated statistical software, HLM. In subsequent chap-
ters, we extend this basic model in many ways, generalizing it to
situations in which growth is curvilinear or discontinuous; the timing,
spacing, and number of waves of data differ across individuals; interest
centers on the effects of many predictors, both discrete and continuous,
time-invariant and time-varying; distributional assumptions differ; and
other methods of estimation and statistical software are used.

3.1 What Is the Purpose of the Multilevel Model
for Change?

Even though you have surely fit many types of statistical models in your
data analytic career, experience tells us that when researchers get caught
up in a novel and complex analysis, they often need to be reminded just
what a statistical model is and what it is not. So before presenting the
multilevel model for change itself, we briefly review the purpose of sta-
tistical models.

Statistical models are mathematical representations of population
behavior; they describe salient features of the hypothesized process of
interest among individuals in the target population. When you use a par-
ticular statistical model to analyze a particular set of data, you implicitly
declare that this population model gave rise to these sample data. Statisti-
cal models are not statements about sample behavior; they are statements
about the population process that generated the data.

To provide explicit statements about population processes, statistical
models are expressed using parameters—intercepts, slopes, variances,
and so on—that represent specific population quantities of interest. Were
you to use the following simple linear regression model to represent the
relationship between infant birth weight (in pounds) and neurological
functioning on a single occasion in a cross-sectional data set (with the
usual notation) NEURO, = 3, + B, (BWGT; - 3) + ¢, you would be declar-
ing implicitly that, in the population from which your sample was drawn:
(1) By is an unknown intercept parameter that represents the expected
level of neurological functioning for a three-pound newborn; and (2)
is an unknown slope parameter that represents the expected difference
in functioning between newborns whose birth weights differ by one
pound. Even an analysis as simple as a one-sample ttest invokes a statis-
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tical model expressed in terms of an unknown population parameter: the
population mean, y. In conducting this test, you use sample data to
evaluate the evidence concerning (’s value: Is u equal to zero (or some
other prespecified value)? Analyses may differ in form and function, but
a statistical model underpins every inference.

In whatever context, having postulated a statistical model, you then fit
the model to sample data and estimate the population parameters’
unknown values. Most methods of estimation provide a measure of
“goodness-of-fit’—such as an R* statistic or a residual variance—that
quantifies the correspondence between the fitted model and sample data.
If the model fits well, you can use the estimated parameter values to draw
conclusions about the direction and magnitude of hypothesized effects
in the population. Were you to fit the simple linear regression model just
specified above, and find that NEURO, = 80 + 5(BWGT; — 3), you would
be able to predict that an average three-pound newborn has a functional
level of 80 and that functional levels are five points higher for each extra
pound at birth. Hypothesis tests and confidence intervals could then be
used to make inferences from the sample back to the population.

The simple regression model above is designed for cross-sectional data.
What kind of statistical model is needed to represent change processes
in longitudinal data? Clearly, we seek a model that embodies two types of
research questions: level-1 questions about within-person change and level-
2 questions about between-person differences in change. If the hypothetical
study of neurological functioning just described were longitudinal, we
might ask: (1) How does each child’s neurological functioning change
over time? and (2) Do children’s trajectories of change vary by birth
weight? The distinction between the within-person and the between-
person questions is more than cosmetic—it provides the core rationale
for specifying a statistical model for change. It suggests that a model for
change must include components at two levels: (1) a level-1 submodel
that describes how individuals change over time; and (2) a level-2 sub-
model that describes how these changes vary across individuals. Taken
together, these two components form what is known as a multilevel sta-
tistical model (Bryk & Raudenbush, 1987; Rogosa & Willett, 1985).

In this chapter, we develop and explain the multilevel model for
change using an example of three waves of data collected by Burchinal
and colleagues (1997). As part of a larger study of the effects of early
intervention on child development, these researchers tracked the cogni-
tive performance of 103 African-American infants born into low-income
families. When the children were 6 months old, approximately half (n =
58) were randomly assigned to participate in an intensive early interven-
tion program designed to enhance their cognitive functioning; the other
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Table 3.1: Excerpts from the person-period data set for the
early intervention study

ID AGE COG PROGRAM
68 1.0 103 1
68 1.5 119 1
68 2.0 96 1
70 1.0 106 1
70 1.5 107 1
70 2.0 96 1
71 1.0 112 1
71 1.5 86 1
71 2.0 73 1
72 1.0 100 1
72 1.5 93 1
72 2.0 87 1
902 1.0 119 0
902 1.5 93 0
902 2.0 99 0
904 1.0 112 0
904 1.5 98 0
904 2.0 79 0
906 1.0 89 0
906 1.5 66 0
906 2.0 81 0
908 1.0 117 0
908 1.5 90 0
908 2.0 76 0

half (n = 45) received no intervention and constituted a control group.
Each child was assessed 12 times between ages 6 and 96 months. Here,
we examine the effects of program participation on changes in cognitive
performance as measured by a nationally normed test administered three
times, at ages 12, 18, and 24 months.

Table 3.1 presents illustrative entries from the person-period data set
for this example. Each child has three records, one per wave of data col-
lection. Each record contains four variables: (1) ID; (2) AGE, the child’s
age (in years) at each assessment (1.0, 1.5, or 2.0); (3) COG, the child’s
cognitive performance score at that age; and (4) PROGRAM, a dichotomy
that describes whether the child participated in the early intervention
program. Because children remained in their group for the duration of
data collection, this predictor is time-invariant. Notice that all eight
empirical growth records in table 3.1 suggest a decline in cognitive per-
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formance over time. As a result, although we might wish that we would
be determining whether program participants experience a faster rate of
growth, it appears that we will actually be determining whether they expe-
rience a slower rate of decline.

3.2 The Level-1 Submodel for Individual Change

The level-1 component of the multilevel model, also known as the indi-
vidual growth model, represents the change we expect each member of the
population to experience during the time period under study. In the
current example, the level-1 submodel represents the individual change
in cognitive performance that we hypothesize will occur during each
child’s second year of life.

Whatever level-1 submodel we specify, we must believe that the
observed data could reasonably have come from a population in which
the model is functioning. To align expectations with reality, we usually
precede level-1 submodel specification with visual inspection of the
empirical growth plots (although purists might question the wisdom of
“peeking”). Figure 3.1 presents empirical growth plots of COG vs AGE for
the 8 children whose data appear in table 3.1. We also examined plots
for the 95 other children in the sample but we do not present them here,
to conserve space. The plots reinforce our perception of declining cog-
nitive performance over time. For some, the decline appears smooth and
systematic (subjects 71, 72, 904, 908); for others, it appears scattered and
irregular (subjects 68, 70, 902, 906).

When examining empirical growth plots like these, with an eye toward
ultimate model specification, we ask global questions such as: What type
of population individual growth model might have generated these
sample data? Should it be linear or curvilinear with age? Smooth or
jagged? Continuous or disjoint? As discussed in chapter 2, try and look
beyond inevitable sample zigs and zags because plots of observed data
confound information on true change with the effects of random error.
In these plots, for example, the slight nonlinearity with age for subjects
68, 70, 902, 906, and 908 might be due to the imprecision of the cogni-
tive assessment. Often, and especially when you have few waves of data,
it is difficult to argue for anything except a linear-change individual-
growth model. So when we determine which trajectory to select for
modeling change, we often err on the side of parsimony and postulate a
simple linear model.!

Adopting an individual growth model in which change is a linear func-
tion of AGE, we write the level-1 submodel as:
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Figure 3.1. Identifying a suitable functional form for the level-1 submodel. Empirical
growth plots with superimposed OLS trajectories for 8 participants in the early interven-
tion study.

Y; =[mo; + m:(AGE; —1)]+[g;] (3.1)
In postulating this submodel, we assert that, in the population from which
this sample was drawn, Y, the value of COG for child iat time j, is a linear
function of his or her age on that occasion (AGE;). This model assumes
that a straight line adequately represents each person’s true change over
time and that any deviations from linearity observed in sample data result
from random measurement error (g;).

Equation 3.1 uses two subscripts, ¢ and j, to identify individuals and
occasions, respectively. For these data, ¢ runs from 1 through 103 (for the
103 children) and jruns from 1 through 3 (for the three waves of data).
Although everyone in this data set was assessed on the same three occa-
sions (ages 1.0, 1.5, and 2.0), the level-1 submodel in equation 3.1 is not
limited in application to time-structured designs. The identical submodel
could be used for data sets in which the timing and spacing of waves
differs across people.2 For now, we work with this time-structured
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example; in chapter 5, we extend our presentation to data sets in which
data collection schedules vary across people.

In writing equation 3.1, we use brackets to distinguish two parts of the
submodel: the structural part (in the first set of brackets) and the stochastic
part (in the second). This distinction parallels the classical psychometric
distinction between “true scores” and “measurement error,” but as we
discuss below, its implications are much broader.

3.2.1 The Structural Part of the Level-1 Submodel

The structural part of the level-1 submodel embodies our hypotheses
about the shape of each person’s true trajectory of change over time. Equa-
tion 3.1 stipulates that this trajectory is linear with age and has individ-
ual growth parameters m,; and 7, that characterize its shape for the ith child
in the population. Harkening back to section 2.2.2, these individual
growth parameters are the population parameters that lie beneath the
individual intercepts and slopes obtained when we fit OLS-estimated indi-
vidual change trajectories in our exploratory analyses.

To clarify what the individual growth model says about the population,
examine figure 3.2, which maps the model onto imaginary data for an
arbitrarily selected member of the population, child i First notice the
intercept. Because we specify the level-1 submodel using the predictor
(AGE-I), the intercept, 7, represents child ¢'s true cognitive perform-
ance at age 1. We concretize this interpretation in figure 3.2 by showing
that the child’s hypothesized trajectory intersects the Y axis at ;. Because
we hypothesize that each child in the population has his or her own
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intercept, this growth parameter includes the subscript i Child 1’s inter-
cept is 7, child 2’s intercept is 7y, and so on.

Notice that equation 3.1 uses a special representation for the predic-
tor, AGE. We used a similar approach in chapter 2, when we subtracted
11 from each adolescent’s age before fitting exploratory OLS change tra-
jectories to the tolerance data. This practice, known as centering, facili-
tates parameter interpretation. By using (AGE-I) as a level-1 predictor,
instead of AGE, the intercept in equation 3.1 represents child 7’s true
value of Y at age 1. Had we simply used AGE as a level-1 predictor, with
no centering, m; would represent child ¢’s true value of Yat age 0, an age
that precedes the onset of data collection. This representation is less
attractive because: (1) we would be predicting beyond the data’s tempo-
ral limits; and (2) we don’t know whether the trajectory extends back to
birth linearly with age.

As you become adept at positing level-1 submodels, you will find that
it is wise to consider empirical and interpretive issues like these when
chosing the scale of your temporal predictor. In section 5.4, we explore
other temporal representations, including those in which we center time
on its middle and final values. The approach we adopt here—centering
time on the first wave of data collection—is usually a good way to start.
Aligning 7, with the first wave of data collection allows us to interpret its
value using simple nomenclature: it is child ¢'s true initial status. If ), is
large, child ¢ has a high true initial status; if 7, is small, child 7 has low
true initial status. We summarize this interpretation in the first row of the
top panel of table 3.2, which defines all parameters in equation 3.1.

The second parameter in equation 3.1, m; represents the slope of the
postulated individual change trajectory. The slope is the most important
parameter in a level-1 linear change submodel because it represents the
rate at which individual i changes over time. Because AGE is clocked in
years, 7;; represents child ¢’s true annual rate of change. We represent this
parameter in figure 3.2 using the right triangle whose hypotenuse is the
child’s hypothesized trajectory. During the single year under study in our
example—as child ¢ goes from age 1 to 2—the trajectory rises by 7,
Because we hypothesize that each individual in the population has his (or
her) own rate of change, this growth parameteris subscripted by 7. Child 1’s
rate of change is 7, child 2’s rate of change is 75, and so on. If 7;; is posi-
tive, child 7’s true outcome increases over time; if 7, is negative, child ¢’s
true outcome decreases over time (this latter case prevails in our example).

In specifying a level-1 submodel that attempts to describe everyone (all
the ¢’s) in the population, we implicitly assume that all the true individ-
ual change trajectories have a common algebraic form. But we do not
assume that everyone has the same exact trajectory. Because each person
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Table 3.2: Definition and interpretation of parameters in the multilevel model

for change

Symbol  Definition

Ilustrative interpretation

Level-1 Model (See Equation 3.1)

Individual o, Intercept of the true change
growth trajectory for individual 7 in
parameters the population.

;i Slope of the true change

trajectory for individual ¢ in
the population.

Variance oy Level-1 residual variance

component across all occasions of
measurement, for individual
iin the population.

Level-2 Model (See Equation 3.3)

Fixed effects Yoo Population average of the
level-1 intercepts, 7, for
individuals with a level-2
predictor value of 0.

You Population average difference
in level-1 intercept, 7, for a
1-unit difference in the level-2
predictor.

Yio Population average of the
level-1 slopes, m;;, for
individuals with a level-2
predictor value of 0.

Y1 Population average difference
in level-1 slope, m;, for a
1-unit difference in the level-2
predictor.

Variance Oy Level-2 residual variance in
components true intercept, 7, across all
individuals in the population.

Oi Level-2 residual variance in true
slope, m;, across all individuals
in the population.

Oy Level-2 residual covariance

between true intercept, 7,
and true slope, 7, across all
individuals in the population.

Individual 7’s true value of
COG at age 1 (i.e., his true
initial status).

Individual ¢'s yearly rate of
change in true COG (i.e., his
true annual rate of change).

Summarizes the net (vertical)
scatter of the observed data
around individual 7’s
hypothesized change trajectory.

Population average true initial
status for nonparticipants.

Difference in population
average true initial status
between participants and
nonparticipants.

Population average annual
rate of true change for
nonparticipants.

Difference in population
average annual rate of true
change between participants
and non-participants.

Population residual variance
of true initial status, controlling
for program participation.
Population residual variance
of true rate of change,
controlling for program
participation.

Population residual covariance
between true initial status and
true annual rate of change,
controlling for program
participation.
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has his or her own individual growth parameters (intercepts and slopes),
different people can have their own distinct change trajectories.

Positing a level-1 submodel allows us to distinguish the trajectories of
different people using just their individual growth parameters. This leap
is the cornerstone of individual growth modeling because it means that
we can study interindividual differences in change by studying interindi-
vidual variation in the growth parameters. Imagine a population in which
each member dips into a well of possible individual growth parameter
values and selects a pair—a personal intercept and a slope. These values
then determine his or her true change trajectory. Statistically, we say that
each person has drawn his or her individual growth parameter values
from an underlying bivariate distribution of intercepts and slopes.
Because each individual draws his or her coefficients from an unknown
random distribution of parameters, statisticians often call the multilevel
model for change a random coefficients model.

3.2.2 The Stochastic Part of the Level-1 Submodel

The stochastic part of the level-1 submodel appears in the second set of
brackets on the right-hand side of equation 3.1. Composed of just one
term, the stochastic part represents the effect of random error, €;, asso-
ciated with the measurement of individual ¢ on occasion j. The level-1
errors appear in figure 3.2 as g, £, and €. Each person’s true change tra-
jectory is determined by the structural component of the submodel. But
each person’s observed change trajectory also reflects the measurement
errors. Our level-1 submodel accounts for these perturbations—the dif-
ferences between the true and observed trajectories—by including
random errors: g, for individual ¢’s first measurement occasion, €y for
individual ¢’s second measurement occasion, and so on.
Psychometricians consider random errors a natural consequence of
measurement fallibility and the vicissitudes of data collection. We think
it wise to be less specific, labeling the g; as level-1 residuals. For these data,
each residual represents that part of child 7’s value of COG at time j not
predicted by his or her age. We adopt this vaguer interpretation because
we know that we can reduce the magnitude of the level-1 residuals by
introducing selected time-varying predictors other than AGE into the
level-1 submodel (as we show in section 5.3). This suggests that the sto-
chastic part of the level-1 submodel is not just measurement error.
Regardless of how you conceptualize the level-1 errors, one thing is
incontrovertible: they are unobserved. In ultimately fitting the level-1 sub-
model to data, we must invoke assumptions about the distribution of the
level-1 residuals, from occasion to occasion and from person to person.
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Traditional OLS regression invokes “classical” assumptions: that resi-
duals are independently and identically distributed, with homoscedastic
variance across occasions and individuals. This implies that, regardless of
individual and occasion, each error is drawn independently from an
underlying distribution with zero mean and an unknown residual vari-
ance. Often, we also stipulate the form of the underlying distribution,
usually claiming normality. When we do, we can embody our assumptions

about the level-1 residuals, €, by writing:

gij ~ N(Oa 682)’ (32)

where the symbol ~ means “is distributed as,” N stands for a normal dis-
tribution, and the first element in parentheses identifies the distribution’s
mean (here, 0) and the second element identifies its variance (here, 62).
As documented in table 3.2, the residual variance parameter 0; captures
the scatter of the level-1 residuals around each person’s true change
trajectory.

Of course, classical assumptions like these may be less credible in lon-
gitudinal data. When individuals change, their level-1 error structure may
be more complex. Each person’s level-1 residuals may be autocorrelated
and heteroscedastic over time, not independent as equation 3.2 stipu-
lates. Because the same person is measured on several occasions, any
unexplained person-specific time-invariant effect in the residuals will
create a correlation across occasions. So, too, the outcome may have a
different precision (and reliability) for individuals at different times,
perhaps being more suitable at some occasions than at others. When this
happens, the error variance may differ over time and the level-1 residu-
als will be heteroscedastic over occasions within person. How does the
multilevel model for change account for these possibilities? Although
this is an important question, we cannot address it fully without further
technical work. We therefore delay addressing the issues of residual auto-
correlation and heteroscedasticity until chapter 4, where we show, in
section 4.2, how the full multilevel model for change accommodates auto-
matically for certain kinds of complex error structure. Later, in chapter
8, we go further and demonstrate how using covariance structure analy-
sis to conduct analyses of change lets you hypothesize, implement, and
evaluate other alternative error structures.

3.2.3 Relating the Level-1 Submodel to the OLS
Exploratory Methods of Chapter 2

The exploratory OLSfitted trajectories of section 2.2.2 may now make
more sense. Although they are not fully efficient because they do not
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properly exploit all the information present in longitudinal data, they do
provide invaluable insights into the functioning of the hypothesized indi-
vidual growth model. The top panel of figure 3.3 presents the results of
using OLS methods to fit the level-1 submodel in equation 3.1 to the data
for all 103 children (regressing COG on (AGE-1), separately by ID). The
bottom panel presents stem and leaf displays for three summary statistics
from these models: the fitted intercepts, the fitted slopes, and the esti-
mated residual variances.

For most children, cognitive performance declines over time. For
some, the decline is rapid; for others, less so. Few children show any
improvement. Each fitted intercept estimates that child’s true initial
status; each fitted slope estimates that child’s true annual rate of change
during the second year of life. The fitted intercepts are centered near
110; the fitted slopes are centered near —10. This suggests that at age 1,
the average child has a true cognitive level slightly above the national
norm (of 100 for this test). Over time, however, most children decline
(we estimate that only 7 improve).

The stem-and-leaf displays in the bottom left panel of figure 3.3 reveal
great heterogeneity in fitted intercept and slope across children in the
sample and suggest that not all children have identical trajectories of
change. Of course, you must be cautious when interpreting the interindi-
vidual heterogeneity in change trajectories evident in figure 3.3. The
between-person variation in the estimated change trajectories that you
observe is necessarily inflated over the underlying interindividual vari-
ability in the unknown true change trajectories because the fitted trajec-
tories, having been estimated from observed data, are fallible
representations of true change. The actual variability in underlying true
change will always be somewhat less than what you observe in exploratory
analysis, with the magnitude of the difference depending on the quality
of your outcome measurement and the efficacy of your hypothesized indi-
vidual growth model.

The skewed distribution of residual variances in the bottom right
panel of figure 3.3 suggests great variation in the quality of the OLS
summaries across children (we expect the distribution of these statistics
to be skewed, as they are “squared” quantities and are therefore bounded
by zero below). When the residual variance is near 0, as it is for many
children, the fitted trajectories are reasonable summaries of the observed
data for those children. When the residual variance is larger, as it often
is here, the fitted trajectories are poorer summaries: the observed values
of COG are further away from the fitted lines, making the magnitude of
the estimated level-1 residuals, and therefore the residual variance, large.
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Figure 3.3. Observed variation in fitted OLS trajectories. Fitted OLS trajectories for par-
ticipants in the early intervention study as well as stem and leaf displays for fitted initial
status, fitted rate of change, residual variance.

3.3 The Level-2 Submodel for Systematic Interindividual
Differences in Change

The level-2 submodel codifies the relationship between interindividual
differences in the change trajectories and time-invariant characteris-
tics of the individual. The ability to formulate this relationship using a
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level-2 submodel stems from the realization that adoption of a common
level-1 submodel forces people to differ only in the values of their indi-
vidual growth parameters. When we use a level-1 linear change model,
people can differ only in their intercepts and slopes. This allows us to
recast vague questions about the relationship between “change” and pre-
dictors as specific questions about the relationship between the individ-
ual growth parameters and predictors.

Like all statistical models, the level-2 submodel describes hypothesized
population processes, not sample behavior. But insights gleaned from
sample data can often provide valuable insight into model formulation.
In this spirit, examine the top panel of figure 3.4, which separately plots
fitted OLS trajectories according to the child’s program participation
(program participants in the right panel, nonparticipants in the left).
The average change trajectory for each group is shown in bold. Program
participants tend to have higher scores at age 1 and decline less precip-
itously over time. This suggests that their intercepts are higher but their
slopes are shallower. Also note the substantial interindividual hetero-
geneity within groups. Not all participants have higher intercepts than
nonparticipants; not all nonparticipants have steeper slopes. Our level-2
model must simultaneously account for both the general patterns (here,
the between-group differences in intercepts and slopes) and interindi-
vidual heterogeneity in patterns within groups.

What kind population model might have given rise to these patterns?
The preceding discussion suggests four specific features for the level-2
submodel. First, its outcomes must be the individual growth parameters
(here, m; and m;; from equation 3.1). As in regular regression, where we
model the population distribution of a random variable by making it an
outcome, here, where we model the population distribution of the indi-
vidual growth parameters, they, too, must be the outcomes. Second, the
level-2 submodel must be written in separate parts, one for each level-1
growth parameter. When we use a linear change individual growth model
atlevel-1 (asin equation 3.1), we need two level-2 submodels: one for the
intercept, 7, another for the slope, m,. Third, each part must specity a
relationship between an individual growth parameter and the predictor
(here, PROGRAM). As you move across the panels in the top of figure
3.4, the value of the predictor, PROGRAM, shifts from 0 to 1. This sug-
gests that each level-2 model should ascribe differences in either 7, or
m;to PROGRAMjust as in a regular regression model. Fourth, each model
must allow individuals who share common predictor values to vary in
their individual change trajectories. This means that each level-2
submodel must allow for stochastic variation in the individual growth
parameters.
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Figure 3.4. Understanding the structural and stochastic features of the level-2 submodel
for inter-individual differences in change. Top panel presents fitted OLS trajectories sep-
arately by levels of the predictor PROGRAM. Bottom panel maps the model in equation
3.3 onto imaginary data for an arbitrary child ¢ and the average population trajectory.
The shaded portion in each of the lower panels is designed to suggest the existence of
many distinct population trajectories for different children.
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These considerations lead us to postulate the following level-2 sub-
model for these data:

Toi = Yoo + Yo PROGRAM; +

(3.3)
”11' = ')/10 + ')/HPROGMMZ + Cli-

Like all level-2 submodels, equation 3.3 has more than one component,
each resembling a regular regression model. Taken together, the two
components treat the intercept (7,;) and the slope (7;;) of an individual’s
growth trajectory as level-2 outcomes that may be associated with the
predictor, PROGRAM. Each component also has its own residual—here,
{o; and §,—that permits the level-1 parameters (the 7’s) of one person
to differ stochastically from those of others.

Although not yet apparent, the two components of this level-2 sub-
model have seven population parameters: the four regression parameters
(the ys) shown in equation 3.3 and three residual variance/covariance
parameters we will soon define. All are estimated when we fit the multi-
level model for change to data. We list, label, and define these parame-
ters in the second section of table 3.2 and illustrate their action in the
bottom panel of figure 3.4. We discuss their interpretation below.

3.3.1 Structural Components of the Level-2 Submodel

The structural parts of the level-2 submodel contain four level-2 param-
eters—7yy, %1, Yo, and Y;—known collectively as the fixed effects. The fixed
effects capture systematic interindividual differences in change trajectory
according to values of the level-2 predictor(s). In equation 3.3, two of the
fixed effects, %, and %, are level-2 intercepts; two, ¥, and %, are level-2
slopes. As in regular regression, the slopes are of greater interest because
they represent the effect of predictors (here, the effect of PROGRAM)
on the individual growth parameters. You can interpret the level-2 param-
eters much as you do regular regression coefficients, except that you must
remember that they describe variation in “outcomes” that are themselves
level-1 individual growth parameters.

The easiest way to unravel the meaning of the level-2 fixed effects is to
identify a prototypical individual distinguished by particular predictor
values, substitute those values into the level-2 submodel, and examine the
consequences. To derive the postulated level-2 submodel for a prototypical
nonparticipant, for example, we set PROGRAM to 0 in both parts of equa-
tion 3.3 to find: when PROGRAM = 0, ;= %o + {oi and my; = Yo + &1 This
model hypothesizes that, in the population of nonparticipants, the values
ofinitial status and annual rate of change, 7,;and m,;, are centered around
the level-2 parameters ¥, and . Yo represents the average true initial
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status (cognitive score atage 1); ¥, represents the average true annual rate
of change. By fitting the multilevel model for change to data and estimat-
ing these parameters, we address the question: What is the average true
trajectory of change in the population for children who did not receive
the early intervention program? The lower left panel of figure 3.5 depicts
this average population trajectory. Its intercept is J; its slope is ¥;o.

We repeat this process for program participants by setting PROGRAM
to 1: in this case, ;= (%o + Y1) + Goiand m; = (Yo + %1) + & In the pop-
ulation of program participants, the values of initial status and annual
rate of change, 7, and 7, are centered around (¥ + %:) and (%o + %1).
Comparing these centers to those for nonparticipants illustrates that the
level-2 parameters %, and ¥, capture the effects of PROGRAM. yy repre-
sents the hypothesized difference in average true initial status between
groups; %, represents the hypothesized difference in average true annual
rate of change. This allows us to think of the level-2 slopes, ¥, and %, as
“shifts” associated with program participation. The lower right panel of
figure 3.4 depicts these shifts. If ¥, and %, are non-zero, the average
population trajectories in the two groups differ; if they are both 0, they
do not. These two level-2 slope parameters therefore address the ques-
tion: What is the difference in the average trajectory of true change asso-
ciated with program participation?

3.3.2 Stochastic Components of the Level-2 Submodel

Each part of the level-2 submodel contains a residual that allows the
value of each person’s growth parameters to be scattered around the
relevant population averages. These residuals, {,, and {;, in equation 3.3,
represent those portions of the level-2 outcomes—the individual growth
parameters—that remain “unexplained” by the level-2 predictor(s). As is
true for most residuals, we are interested less in their specific values than
in their population variances and covariance, which we label o3, o3, and
0p1. You should know that labeling conventions for these population
variances vary considerably across authors and statistical packages. For
example, Raudenbush and Bryk (2002) label them 7y, 7,1, and 7y, while
Goldstein (1995) labels them 6%, 62, and O,.

If child ¢is a member of the population of nonparticipants, PROGRAM
takes on the value 0 and the level-2 residuals in equation 3.3 represent
deviations between his or her true initial status and annual rate of change
from the population average intercept and slope for nonparticipants (¥,
and 79). We display a trajectory for this prototypical child in the lower
left panel of figure 3.4. The trajectory begins at a true initial status of
(%0 + &) and has a (declining) true annual rate of change of (¥, + ;).
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Trajectories for other children can be constructed similarly by combin-
ing parameters %, and 7}, with other child-specific residuals. The shaded
area in this panel is designed to suggest the existence of many different
true trajectories, one for each nonparticipant in the population (if they
could be fully enumerated). Similarly, if child ¢is a member of the pop-
ulation of participants, PROGRAM takes on the value 1 and the level-2
residuals in equation 3.3 represent deviations between his true initial
status and annual rate of change and the population average intercept
and slope for participants (Yo + %:) and (%o + %1). To illustrate the het-
erogeneity in change for this group, the lower right panel of figure 3.4
also includes a shaded area.

Because the level-2 residuals represent deviations between the indi-
vidual growth parameters and their respective population averages, their
variances, o3 and o3, summarize the population variation in true indi-
vidual intercept and slope around these averages. Because they describe
those portions of the intercepts and slopes left over after accounting for
the effect(s) of the model’s predictor(s), they are actually conditional
residual variances. Conditional on the presence of the model’s predic-
tors, O3 represents the population residual variance in true initial status
and o7 represents the population residual variance in true annual rate of
change. These variance parameters allow us to address the question: How
much heterogeneity in true change remains after accounting for the
effects of program participation?

When we posit a level-2 submodel, we also allow for a possible associa-
tion between individual initial status and individual rates of change.
Children who begin at a higher level may have higher (or lower) rates of
change. To account for this possibility, we permit the level-2 residuals to
be correlated. Since §); and {;; represent the deviations of the individual
growth parameters from their population averages, their population
covariance summarizes the association between true individual intercepts
and slopes. Again because of their conditional nature, the population
covariance of the level-2 residuals, 0y;, summarizes the magnitude and
direction of the association between true initial status and true annual
rate of change, controlling for program participation. This parameter
allows us to address the question: Controlling for program participation,
are true initial status and true rate of change related?

To fit the multilevel model for change to data, we must make some
assumptions about the level-2 residuals (just as we did for the level-1
residuals in equation 3.2). But because we have two level-2 residuals, we
describe their underlying behavior using a bivariate distribution. The stan-
dard assumption is that the two level-2 residuals, {); and {; are bivariate
normal with mean 0, unknown variances, o3, and o, and unknown
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covariance, 0y;. We can express these assumptions compactly using matrix

notation by writing:
i 0 (72 (o2
S ) e
Cui 0floyw oi

Matrix notation greatly simplifies the way in which we codify the model’s
assumptions. In broad outline, we interpret equation 3.4 in the same way
we interpret the assumptions about the level-1 residuals in equation 3.2.
The first matrix on the right of the equals sign in parentheses specifies
the bivariate distribution’s mean vector; here, we assume it to be 0 for
each residual (as usual). The second matrix specifies the bivariate distri-
bution’s variance-covariance matrix, also known as the level-2 error covari-
ance matrix because it captures the covariation among the level-2 residuals
(or errors). Two variances, 0 and o7, appear along the diagonal, the
covariance, Oy, appears on the off-diagonal. Because the covariance
between ), and {; is the same as the covariance between {;; and §, the
off-diagonal elements are identical—that is, 6y; = 07o. The complete set
of residual variances and covariances—both the level-2 error variance-
covariance matrix and the level-1 residual variance, 6>—is known col-
lectively as the model’s variance components.

3.4 Fitting the Multilevel Model for Change to Data

Until the widespread availability of software for fitting multilevel models,
researchers used ad hoc strategies like those presented in chapter 2 to
analyze longitudinal data: they fitted individual growth trajectories in
separate within-person OLS-regression analyses and then they regressed
the individual growth parameter estimates obtained on selected level-2
predictors (Willett, 1989). But as previously discussed, this approach has
at least two flaws: (1) it ignores information about the individual growth
parameter estimates’ precision, even though we know that it varies (as
seen in the varying residual variances in the bottom panel of figure 3.3);
and (2) it replaces trueindividual growth parameters—the real outcomes
in a level-2 submodel—with their fallible estimates. The level-2 sub-
models do not describe the relationship between the parameter estimates
and predictors, but between the parameters’ true values and predictors.
Beginning in the 1980s, several teams of statisticians began developing
specialized software for fitting the multilevel model for change to data. By
the early 1990s, four major packages were widely used: HLM (Bryk,
Raudenbush, & Congdon, 1988), MLn (Rasbash & Woodhouse, 1995),
GENMOD (Mason, Anderson, & Hayat, 1988),and VARCL (Longford, 1993).
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Although the latter two are no longer supported, HLM (Raudenbush, Bryk,
Cheong, & Congdon, 2001, available from http://www.ssicentral.com)
and MLwiN (Goldstein, 1998, available from http://multilevel.ioe.ac.uk)
continue to be modified, expanded, and upgraded regularly to handle an
increasing variety of multilevel models. Several multipurpose software
packages have also added multilevel routines, including SAS PROC
MIXED and PROC NLMIXED (SAS Institute, 2001, http://www.sas.com),
the STATA “xt” routines, such as xtreg (Stata, 2001, http://www.stata.com),
and SPLUS’ NLME library (Pinheiro & Bates, 2001, available from
http://cm.bell-labs.com/cm/ms/departments/sia/project/nlme/). So,
too, teams of statisticians continue to develop new specialty programs
including BUGS (Gilks, Richardson, & Spiegelhalter, 1996, available from
http://www.mrcbsu.cam.ac.uk/bugs) and MIXREG (Hedeker & Gibbons,
1996; available from http://www.uic.edu/~hedeker).

As this list suggests, you have a wide and growing array of model fitting
options in the investigation of change. We ourselves have no vested inter-
estin any particular software program and do not promote any one above
the others. All have their strengths, and we use many of them in our
research and in this book. At their core, each program does the same
job: it fits the multilevel model for change to data and provides para-
meter estimates, measures of precision, diagnostics, and so on. There is
also some evidence that all the different packages produce the same, or
similar, answers to a given problem (Kreft & de Leeuw, 1990). So, in one
sense, it does not matter which program you choose. But the packages
do differ in many important ways including the “look and feel” of their
interfaces, their ways of entering and preprocessing data, their model
specification process, their estimation methods, their strategies for
hypothesis testing, and the provision of diagnostics. These differences
may lead you to decide that one piece of software is especially con-
venient for your work.

For now, we focus on one particular method of estimation—maximum
likelihood—as implemented in one program, HLM (Raudenbush, Bryk,
Cheong, & Congdon, 2001). In subsequent chapters, we describe other
methods of estimation and we apply other statistical software, allowing us
to provide advice and compare the competing approaches and packages.

3.4.1 The Advantages of Maximum
Likelihood Estimation

The method of maximum likelihood (ML) is currently the most popular
approach to statistical estimation. Its popularity results, in part, from its
excellent performance in large random samples from well-defined target
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populations. As sample size increases, ML estimates have three desirable
properties: (1) they are asymptotically unbiased (consistent)—they converge
on the unknown true values of population parameters; (2) they are asymp-
totically mormally distributed—their sampling distributions are approxi-
mately normal with known variance; and (3) they are asymptotically
efficient—their standard errors are smaller than those derived by other
methods. Another advantage is that any function of ML estimates is also
an ML estimate. This means that predicted growth trajectories (con-
structed from ML estimates of initial status and rates of change) are ML
estimates of the true trajectories. All else being equal, statisticians prefer
estimates that are consistent and efficient, that make use of well-
established normal theory, and that can generate decent estimates of
more complex quantities. Hence the appeal of MLL methods.

Notice that the attractive properties of ML estimates are asymptotic. This
means that in practice—in any actual analysis of a real sample—the
properties hold only approximately. In large samples, they are likely to hold;
in small samples, they may not.” To enjoy these advantages, you need a
relatively large sample, and the question, how large is large, has no simple
answer. Although 10 is certainly small and 100,000 is certainly large, no
one can say definitively how large is large enough. In cross-sectional work,
Long (1997), for example, recommends a minimum of 100 individuals
and he labels sample sizes of 500 “adequate.” For a general multilevel
model, Snijders and Bosker (1999) consider samples of 30 or more large.
Although “rules of thumb” like these provide broad guidelines, we tend
to distrust them. The answer to the question “How large?” differs by
context, by the particularities of different types of ML estimation, by
features of the data, and by the requirements of the tests conducted.
Instead we simply offer practical advice: if you use ML methods in “small”
samples, treat p-values and confidence intervals circumspectly.

Derivation of computational formulas for ML estimation is beyond our
scope or intent here. Below, we offer a heuristic explanation of what
happens when you use MLL methods to fit a multilevel model for change.
Our goal is to lay the conceptual foundation for future chapters by
explaining why ML estimates make sense and why they have such useful
properties. Readers interested in mathematical details should consult
Raudenbush and Bryk (2002), Goldstein (1995), or Longford (1993).

3.4.2 Using Maximum Likelihood Methods to
Fit a Multilevel Model

Conceptually, maximum likelihood estimates are those guesses for the
values of the unknown population parameters that maximize the
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probability of observing a particular sample of data. In the early inter-
vention study, they are those estimates of the fixed effects and variance
components that make it most likely we would have observed the specific
patterns of change found for these 103 children.

To derive an ML estimate for a population parameter, a statistician
must first construct a likelthood function—an expression that describes the
probability of observing the sample data as a function of the model’s
unknown parameters. Then, he, she, or more accurately, a computer,
numerically examines the relative performance of potentially competing
estimates until those that maximize the likelihood function are found.
The likelihood function for the early intervention data is a function of
the probability that we would observe the particular temporal pattern of
COG values found in the person-period data set. We seek estimates of the
fixed effects and variance components whose values maximize the prob-
ability of observing this specific pattern.

All likelihood functions are expressed as the product of probabilities
(or probability densities). For cross-sectional data, each sample member
usually contributes just one term, related to the probability that that
person has his or her observed data. But because longitudinal data consist
of several observations, one per measurement occasion, each person con-
tributes several terms to the likelihood function, which contains as many
terms as there are records in the person-period data set.

The particular term that each person contributes on each occasion
depends on the specification and assumptions of the hypothesized
model. The multilevel model contains structural parts (as shown in, for
example, in equations 3.1 and 3.3) and stochastic parts (whose behavior
is described in equations 3.2 and 3.4). The structural portion describes
the true outcome value for person ¢ on occasion j for his or her partic-
ular predictor values. It depends on the unknown values of the fixed
effects. The stochastic portion—the level-1 and level-2 residuals—intro-
duce an element of randomness into the proceedings, scattering the
observations for person ¢ on occasion j from the structurally specified
value.

To derive a maximum likelihood estimate, we must also make assump-
tions about the distribution of the residuals. We have already stated
assumptions in equation 3.2 for the level-1 residual, €;, and in equation
3.4 for the two-level-2 residuals, {), and &, Each is assumed to be
normally distributed with mean 0; g; has unknown variance, 0% {,; and
£; have unknown variances, o2 and o2, and covariance, o,. We also
assume that the level-2 residuals are independent of the level-1 residual
and that all residuals are independent of the model’s predictors.

Given a model and its underlying assumptions, a statistician can write
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a mathematical expression for the distribution, or probability density, of the
outcome. This expression has a mean determined by the model’s struc-
tural parts and a variance determined by its stochastic parts. As a proba-
bility density function, it also describes the likelihood that a person with
particular values of the predictors—only PROGRAM in equation 3.3—
could have particular outcome values using a set of unknown fixed effects
and variance components whose values we would like to estimate. That
is, it also contains the actual data values observed for that person on that
occasion.

It is a short step from here to the full sample likelihood, which
we reach by exploiting the well-known multiplicative property of inde-
pendent probabilities. If you toss one coin, there is a probability of .5 that
it will turn up heads. If you independently toss two coins, the prob-
ability that each will turn up heads is still .5. But taken together, the pro-
bability that you will obtain two heads is only .25 (.5 X .5). If you
independently toss three coins, the probability of three heads declines to
0.125 (.5 x .5 x .b). Statisticians use this principle to create a full sample
likelihood from the separate person-period likelihoods just developed.
First they write down the value of the probability density of the outcome
for each person in the data set on every occasion, thereby describing the
likelihood that he or she obtained his or her particular value of the
outcome on that occasion. Then they multiply these terms together,
yielding an expression for the likelihood of simultaneously observing all
the data in the person-period data set. Because each person-period like-
lihood is a function of the data and the unknown parameters, so is their
product the full sample likelihood.

To find ML estimates of the unknown population parameters, we iden-
tify those values of the unknown parameters that maximize this product
of probabilities. Conceptually, imagine a computer trying out billions of
alternative estimates, multiplying them together as specified in the
sample likelihood function to yield a numeric value for the likelihood,
and comparing those numeric values across all of the billions of tries until
those estimates that yield the maximum value of the likelihood function
are found. These would be the maximum likelihood estimates for this
particular problem.

Of course, an enormous numerical search like this is daunting, even
with fast computers. Calculus can facilitate the search, but it cannot elim-
inate the difficulty of working with the products of probability densities
that make up the sample likelihood function. To facilitate the search, stat-
isticians use a simple strategy: instead of finding those values of the
unknown parameters that maximize the likelihood function, they find
those that maximize its logarithm. Working with this new function, known
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as the log-likelihood function, sacrifices nothing because the values that
maximize it also maximize the raw likelihood function. The transforma-
tion to logarithms simplifies the intensive numerical calculations involved
because (1) the logarithm of a product is a sum of the separate loga-
rithms, and (2) the logarithm of a term raised to a power is the power
multiplied by the logarithm of the term. And so, since the sample likeli-
hood contains both multiplicative and exponentiated terms, the loga-
rithmic transformation moves the numerical maximization into a more
tractable sphere, computationally speaking.

Although simpler than maximizing the likelihood function itself, max-
imizing the log-likelihood function also involves iteration. All software
programs that provide ML estimates for the multilevel model for change
use an iterative procedure. To begin, the program generates reasonable
“starting” values for all model parameters, usually by applying something
like the OLS methods we just rejected in chapter 2! In successive itera-
tions, the program gradually refines these estimates as it searches for the
log-likelihood function’s maximum. When this search converges—and
the difference between successive estimates is trivially small—the result-
ant estimates are output. If the algorithm does not converge (and this
happens more often than you might like), you must repeat the search
allowing more iterations or you must improve your model specification.
(We discuss these issues in section 5.2.2.)

Once the ML estimates are found, it is relatively easy for a computer
to estimate their associated sampling variation in the form of asymptotic
standard errors (ase). We use the adjective “asymptotic” because, as noted
earlier, ML standard errors are accurate only in large samples. Like
any standard error, the ase measures the precision with which an
estimate has been obtained—the smaller the ase, the more precise the
estimate.

We now use maximum likelihood methods to fit the multilevel model
in equations 3.1 and 3.3 to the early intervention data. Table 3.3 presents
results obtained using the HLM software.! We first discuss the estimated
fixed effects in the first four rows; in section 3.6, we discuss the estimated
variance components shown in the next four rows.

3.5 Examining Estimated Fixed Effects

Empirical researchers usually conduct hypothesis tests before scrutiniz-
ing parameter estimates to determine whether an estimate warrants
inspection. If an estimate is consistent with a null hypothesis of no
population effect, it is unwise to interpret its direction or magnitude.
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Table 3.3: Results of fitting a multilevel model for change to the early intervention data
(n=103)

Parameter  Estimate ase z
Fixed Effects
Initial status, 7, Intercept Yoo 107.84%** 204 52.97
PROGRAM You 6.85% 2.71 2.53
Rate of change, m;; Intercept Yo —21.13%** 1.89 -11.18
PROGRAM Y 5.27* 2.52 2.09
Variance Components
Level 1: Within-person, g; o; 74.24%%% 10.34 7.17
Level 2: In initial status, §; o} 124.64%+*% 27 38 4.55
In rate of change, {;; o7 12.29 30.50 0.40
Covariance between §,; and §;; Oo1 -36.41 22.74  -1.60

~p <.10; *p < .05; #p < .01; % p < .001.
This model predicts cognitive functioning between ages 1 and 2 years as a function of (AGFE-1) (at level-1)
and PROGRAM (at level-2).

Note: Full ML, HLM.

Although we agree that it is wise to test hypotheses before interpreting
parameters, here we reverse this sequence for pedagogic reasons,
discussing interpretation in section 3.5.1 and testing in section 3.5.2.
Experience convinces us that when learning a new statistical method, it
is easier to understand what you are doing if you interpret parameters
first and conduct tests second. This sequence emphasizes conceptual
understanding over up-or-down decisions about “statistical significance”
and ensures that you understand the hypotheses you test.

3.5.1 Interpreting Estimated Fixed Effects

The fixed effects parameters of the level-2 submodel—the ¥’s of equa-
tion 3.3—quantify the effects of predictors on the individual change tra-
jectories. In our example, they quantify the relationship between the
individual growth parameters and program participation. We interpret
these estimates much as we do any regression coefficient, with one key
difference: the level-2 “outcomes” that these fixed effects describe are the
level-1 individual growth parameters themselves.

Until you are comfortable directly interpreting the output from
software programs, we strongly recommend that you take the time to
actually write down the structural portion of the fitted model before
attempting to interpret the fixed effects. Although some software
programs facilitate the linkage between model and estimates through
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structured displays (e.g., MIwiN), others (e.g., SAS PROC MIXED) use
somewhat esoteric conventions for labeling output. Substituting estimates
7 in table 3.3 into the level-2 submodel in equation 3.3, we have:

7o =107.84+6.85PROGRAM,;
7 = —21.13+5.27 PROGRAM,;

The first part of the fitted submodel describes the effects of PROGRAM
on initial status; the second part describes its effects on the annual rates
of change.

Begin with the first part of the fitted submodel, for initial status. In the
population from which this sample was drawn, we estimate the true initial
status (COG at age 1) for the average nonparticipant to be 107.84; for the
average participant, we estimate thatitis 6.85 points higher (114.69). The
means of both groups are higher than national norms (100 for this test).
The age 1 performance of participants is 6.85 points higher than that of
nonparticipants. Before concluding that this differential in initial status
casts doubt on the randomization mechanism, remember that the inter-
vention started before the first wave of data collection, when the children
were already 6 months old. This modest seven-point elevation in initial
status may reflect early treatment gains attained between ages 6 months
and 1 year.

Next, examine the second part of the fitted submodel, for the annual
rate of change. In the population from which this sample was drawn, we
estimate the true annual rate of change for the average nonparticipant
to be —21.13; for the average participant, we estimate it to be 5.27 points
higher (-15.86). The average nonparticipant dropped over 20 points
during the second year of life; the average participant dropped over 15.
The cognitive functioning of both groups of children declines over time.
As we suspected when we initially examined these data, the intervention
slows the rate of decline.

Another way of interpreting fixed effects is to plot fitted trajectories for
prototypical individuals. Even in a simple analysis like this, which involves
just one dichotomous predictor, we find it invaluable to inspect prototyp-
ical trajectories visually. For this particular multilevel model, only two pro-
totypes are possible: a program participant (PROGRAM = 1) and a
nonparticipant (PROGRAM = 0). Substituting these values into equation
3.5 yields the estimated initial status and annual growth rates for each:

Ty =107.84+6.85(0) =107.84

When PROGRAM =0: |
m; =—-21.13+5.27(0) = -21.13.

7;=107.84+6.85(1) =114.69
When PROGRAM =1:
T, =—-21.13+5.27(1) = -15.86.

(3.5)
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Figure 3.5. Displaying the results of a fitted multi-
level model for change. Prototypical trajectories for 50
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in the early intervention data. AGE

We use these estimates to plot the fitted individual change trajectories in
figure 3.5. These plots reinforce the numeric conclusions just articulated.
In comparison to nonparticipants, the average participant has a higher
score at age 1 and a slower annual rate of decline.

3.5.2 Single Parameter Tests for the Fixed Effects

As in regular regression, you can conduct a hypothesis test on each fixed
effect (each p) using a single parameter test. Although you can equate
the parameter value to any pre-specified value in your hypothesis test,
most commonly you examine the null hypothesis that, controlling for all
other predictors in the model, the population value of the parameter is
0, Hy: y= 0, against the two-sided alternative that it is not, /,:y# 0. When
you use ML methods, this test’s properties are known only asymptotically
(for exceptions, see note 3). You test this hypothesis for each fixed effect
by computing the familiar zstatistic:

A

__ Y
z= ) (3.7)

Most multilevel modeling programs provide zstatistics; if not, you can
easily compute them by hand. However, care is needed because there is
much looseness and inconsistency in output labels; terms like zstatistic,
zratio, quasi-£statistic, ¢statistic, and #ratio, which are not the same, are
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used interchangeably. In HLM, the package we used here, this statistic is
labeled a “#ratio.” Most programs also output either an associated p-value
or confidence interval to facilitate testing.”

Table 3.3 presents zstatistics (column 6) and approximate p-values (as
superscripts in column 4) for testing hypotheses about the fixed effects.
We reject all four null hypotheses, suggesting that each parameter plays
a role in the story of the program’s effect on children’s cognitive devel-
opment. In rejecting (at the .001 level) the null hypotheses for the two
level-2 intercepts, ¥, and %,, we conclude that the average nonpartici-
pant had a non-zero cognitive score at age 1 (hardly surprising!) which
declined over time. In rejecting (at the .05 level) the null hypotheses for
the two level-2 slopes, ¥%; and %;, we conclude that differences between
program participants and nonparticipants—in both initial status and
annual rates of change—are statistically significant.

3.6 Examining Estimated Variance Components

Estimated variance and covariance components are trickier to interpret
as their numeric values have little absolute meaning and there are no
graphic aids to fall back on. Interpretation for a single fitted model is
especially difficult as you lack benchmarks for evaluating the compo-
nents’ magnitudes. This increases the utility of hypothesis testing, for at
least the tests provide some benchmark (against the null value of 0) for
comparison.

3.6.1 Interpreting Estimated Variance Components

Variance components assess the amount of outcome variability left—at
either level-1 or level-2—after fitting the multilevel model. The level-1
residual variance, 0 summarizes the population variability in an average
person’s outcome values around his or her own true change trajectory.
Its estimate for these data is 74.24, a number that is difficult to evaluate
in absolute terms. In chapter 4, we provide strategies making relative
comparisons to residual variances in other models.

The level-2 variance components summarize the between-person vari-
ability in change trajectories that remains after controlling for predictors
(here, PROGRAM). Using the matrix notation of equation 3.4, we write:

124.64 —-36.41
-36.41 12.29 |

Because hypothesis tests, discussed below, reveal that only one of these
elements, 03, is significantly different from 0, it is the only parameter we
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discuss here. But because we have no point of comparison, it is difficult
to say whether its value, 124.64, is small or large. All we can say is that it
quantifies the amount of residual variation in true initial status remain-
ing after we control for program participation.

3.6.2 Single Parameter Tests for the
Variance Components

Tests for variance components evaluate whether there is any remaining
residual outcome variation that could potentially be explained by other
predictors. The level of the particular variance component—either level-
1 or level-2—dictates the type of predictor that might be added. In
general, all the tests are similar in that they assess the evidence concern-
ing the null hypothesis that the parameter’s population value is 0, Hy: 6*
= 0, against the alternative that it is not, f: o’ #0.

There are two very different methods for conducting these hypothesis
tests. In this chapter, we offer the simpler approach—the single parameter
test. Some programs provide this test as a zstatistic—the ratio of the esti-
mated variance component to its asymptotic standard error. Others offer
the identical test by squaring the zstatistic and labeling it a y* statistic on
one degree of freedom. The appeal of a single parameter hypothesis test
is simple. Even if you fit just one statistical model, as we have here, you
can garner some insight into the variance components’ relative values—
at least in comparison to 0.

Unfortunately, statisticians disagree as to the nature, form, and effec-
tiveness of these tests. Miller (1986), Raudenbush and Bryk (2002), and
others have long questioned their utility because of their sensitivity to
departures from normality. Longford (1999) describes their sensitivity
to sample size and imbalance (unequal numbers of observations per
person) and argues that they are so misleading that they should be aban-
doned completely. Because they can be useful for quick, albeit imprecise,
assessment, we suggest you examine them only with extreme caution. In
section 4.6, we present a superior method for testing hypotheses about
variance components, an approach whose use we normally recommend.

Table 3.3 presents single-parameter hypothesis tests for the model’s
four variance/covariance components. The first three test the null
hypothesis that the population variance of the level-1 residuals, o2, is 0,
that the population variance of the level-2 residuals for initial status, o3,
is 0 and that the population variance of the level-2 residuals for the
annual rate of change, o2, is 0. The last tests whether the covariance
between the level-2 residuals for initial status and annual rates of change,
Oo1, i1s 0, indicating whether true initial status and true annual rate of
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change are correlated, after participation in the intervention program is
accounted for.

For these data, we reject only two of these null hypotheses (each at the
.001 level). The test for the level-1 residual, on o7, suggests the existence
of additional outcome variation at level-1, which may be predictable. To
explain some of this remaining within-person variation, we might add
suitable time-varying predictors such as the number of books in the
child’s home or the amount of parent-child interaction to the level-1
submodel.

The test for the level-2 residual for initial status, on o3, suggests the
existence of additional variation in true initial status, 7); after account-
ing for the effects of program participation. This again suggests the need
for additional predictors, but because this is a level-2 variance component
(describing residual variation in true initial status), we would consider
adding both time-invariant and time-varying predictors to the multilevel
model.

We cannot reject the null hypotheses for the two remaining variance
components. Failure to reject the null hypothesis for o7 indicates that
PROGRAM explains all the potentially predictable variation between
children in their true annual rates of change. Failure to reject the null
hypothesis for 0y, indicates that the intercepts and slopes of the individ-
ual true change trajectories are uncorrelated—that there is no associa-
tion between true initial status and true annual rates of change (once the
effects of PROGRAM are removed). As we discuss in subsequent chapters,
the results of these two tests might lead us to drop the second level-2
residual, {};, from our model, for neither its variance nor covariance with
oi» 18 significantly different from 0.
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change are correlated, after participation in the intervention program is
accounted for.

For these data, we reject only two of these null hypotheses (each at the
.001 level). The test for the level-1 residual, on 62, suggests the existence
of additional outcome variation at level-1, which may be predictable. To
explain some of this remaining within-person variation, we might add
suitable time-varying predictors such as the number of books in the
child’s home or the amount of parent-child interaction to the level-1
submodel.

The test for the level-2 residual for initial status, on o3, suggests the
existence of additional variation in true initial status, m,;, after account-
ing for the effects of program participation. This again suggests the need
for additional predictors, but because this is a level-2 variance component
(describing residual variation in true initial status), we would consider
adding both time-invariant and time-varying predictors to the multilevel
model.

We cannot reject the null hypotheses for the two remaining variance
components. Failure to reject the null hypothesis for o indicates that
PROGRAM explains all the potentially predictable variation between
children in their true annual rates of change. Failure to reject the null
hypothesis for oy, indicates that the intercepts and slopes of the individ-
ual true change trajectories are uncorrelated—that there is no associa-
tion between true initial status and true annual rates of change (once the
effects of PROGRAM are removed). As we discuss in subsequent chapters,
the results of these two tests might lead us to drop the second level-2
residual, {;;, from our model, for neither its variance nor covariance with
Gos is significantly different from 0.

4

Doing Data Analysis with the
Multlevel Model for Change

We are restless because of incessant change, but we would
be frightened if change were stopped.
—Lyman Bryson

In chapter 3, we used a pair of linked statistical models to establish the
multilevel model for change. Within this representation, a level-1 sub-
model describes how each person changes over time and a level-2 sub-
model relates interindividual differences in change to predictors. To
introduce these ideas in a simple context, we focused on just one method
of estimation (maximum likelihood), one predictor (a dichotomy), and
a single multilevel model for change.

We now delve deeper into the specification, estimation, and interpre-
tation of the multilevel model for change. Following introduction of
a new data set (section 4.1), we present a composite formulation of the
model that combines the level-1 and level-2 submodels together into a
single equation (section 4.2). The new composite model leads naturally
to consideration of 'alternativle methods of estimation (section 4.3). Not
only do we describe two new methods—generalized least squares (GLS) and
iterative generalized least squares (IGLS)—within each, we distinguish
further between two types of approaches, the full and the restricted.

The remainder of the chapter focuses on real-world issues of data
analysis. Our goal is to help you learn how to articulate and implement
a coherent approach to model fitting. In section 4.4, we present two “stan-
dard” multilevel models for change that you should always fit initially in
any analysis—the wnconditional means model and the unconditional growth
model—and we discuss how they provide invaluable baselines for subse-
quent comparison. In section 4.5, we discuss strategies for adding time-
invariant predictors to the multilevel model for change. We then discuss
methods for testing complex hypotheses (sections 4.6 and 4.7) and
examining model assumptions and residuals (section 4.8). We conclude,
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in section 4.9, by recovering “model-based” estimates of the individual
growth trajectories that improve upon the exploratory person-by-person
OLS estimates introduced in chapter 3. To highlight concepts and strate-
gies rather than technical details, we continue to limit our presentation
in several ways, by using: (1) alinear individual growth model; (2) a time-
structured data set in which everyone shares the same data collection
schedule; and (3) a single piece of statistical software (MLwiN).

4.1 Example: Changes in Adolescent Alcohol Use

As part of a larger study of substance abuse, Curran, Stice, and Chassin
(1997) collected three waves of longitudinal data on 82 adolescents. Each
year, beginning at age 14, the teenagers completed a four-item instrument
assessing their alcohol consumption during the previous year. Using an 8-
point scale (ranging from 0 = “not at all” to 7 = “every day”), adolescents
described the frequency with which they (1) drank beer or wine, (2) drank
hard liquor, (3) had five or more drinks in a row, and (4) got drunk. The
data set also includes two potential predictors of alcohol use: COA, a
dichotomy indicating whether the adolescent is a child of an alcoholic
parent; and PEER, a measure of alcohol use among the adolescent’s peers.
This latter predictor was based on information gathered during the initial
wave of data collection. Participants used a 6-point scale (ranging from 0
=“none” to 5 ="“all”) to estimate the proportion of their friends who drank
alcohol occasionally (one item) or regularly (a second item).

In this chapter, we explore whether individual trajectories of alcohol
use during adolescence differ according to the history of parental alco-
holism and early peer alcohol use. Before proceeding, we note that the
values of the outcome we analyze, ALCUSE, and of the continuous pre-
dictor, PEER, are both generated by computing the square root of the sum
of participants’ responses across each variable’s constituent items. Trans-
formation of the outcome allows us to assume linearity with AGE at level-
1; transformation of the predictor allows us to assume linearity with PEER
at level-2. Otherwise, we would need to posit nonlinear models at both
levels in order to avoid violating the necessary linearity assumptions. If
you find these transformations unsettling, remember that each item’s
original scale was arbitrary, at best. As in regular regression, analysis is
often clearer if you fit a linear model to transformed variables instead of
a nonlinear model to raw variables. We discuss this issue further when we
introduce strategies for evaluating the tenability of the multilevel model’s
assumptions in section 4.8, and we explicitly introduce models that relax
the linearity assumption in chapter 6.
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Figure 4.1. Identifying a suitable functional form for the level-l submodel. Empirical
growth plots with superimposed OLS trajectories for 8 participants in the alcohol use
study.

To inform model specification, figure 4.1 presents empirical change
plots with superimposed OLS-estimated linear trajectories for 8 adoles-
cents randomly selected from the larger sample. For them, and for
most of the other 74 not shown, the relationship between (the now-
transformed) ALCUSE and AGE appears linear between ages 14 and 16.
This suggests that we can posit a level-1 individual growth model that is
linear with adolescent age Y; = m; + my,(AGE; — 14) + &;, where Y; is ado-
lescent i’s value of ALCUSE on occasion j and AGE; is his or her age (in
years) at that time. We have centered AGE on 14 years (the age at the
first wave of data collection) to facilitate interpretation of the intercept.

As you become comfortable with model specification, you may find it
easier to write the level-1 submodel using a generic variable TIME;instead
of a specific temporal predictor like (AGE; — 14):

YU =To; +7T1,TI]\4EZ] +£tj (41)

This representation is general enough to apply to all longitudinal data
sets, regardless of outcome or time scale. Its parameters have the usual
interpretations. In the population from which this sample was drawn:



® 7; represents individual ¢'s true initial status, the value of the
outcome when TIME; = 0.

® m; represents individual ¢s true rate of change during the period
under study.

* g; represents that portion of individual s outcome that is unpre-
dicted on occasion j.

We also continue to assume that the £; are independently drawn from a
normal distribution with mean 0 and variance o% They are also uncor-
related with the level-1 predictor, TIME, and are homoscedastic across
occasions.

To inform specification of the level-2 submodel, figure 4.2 presents
exploratory OLSHitted linear change trajectories for a random sample of
32 of the adolescents. To construct this display, we twice divided this
subsample into two groups: once by COA (top panel) and again by PEER
(bottom panel). Because PEER is continuous, the bottom panel repre-
sents a split at the sample mean. Thicker lines represent coincident tra-
Jectories—the thicker the line, the more trajectories. Although each plot
suggests considerable interindividual heterogeneity in change, some
patterns emerge. In the top panel, ignoring a few extreme trajectories,
children of alcoholic parents have generally higher intercepts (but no
steeper slopes). In the bottom panel, adolescents whose young friends
drink more appear to drink more themselves at age 14 (that is, they tend
to have higher intercepts), but their alcohol use appears to increase at a
slower rate (they tend to have shallower slopes). This suggests that both
COA and PEER are viable predictors of change, each deserving further
consideration.

We now posit a level-2 submodel for interindividual differences in
change. For simplicity, we focus only on COA, representing its hypothe-
sized effect using the two parts of the level-2 submodel, one for true initial
status (7;) and a second for true rate of change (m,):

Toi = Yoo+ YoiCOA; + {;

(4.2)
Tt1; = Y10 + Y11COA; + L.

In the level-2 submodel:

* %o and ¥, the level-2 intercepts, represent the population average
initial status and rate of change, respectively, for the child of a
non-alcoholic (COA = 0). If both parameters are 0, the average
child whose parents are non-alcoholic uses no alcohol at age 14
and does not change his or her alcohol consumption between
ages 14 and 16.

COA =0 COA =1
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Figure 4.2. Identifying potential predictors of change by examining OLS fitted trajecto-
ries separately by levels of selected predictors. Fitted OLS trajectories for the alcohol use
data displayed separately by COA status (upper panel) and PEER alcohol use (lower
panel).
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® %, and 7,, the level-2 slopes, represent the effect of COA on the
change trajectories, providing increments (or decrements) to
initial status and rates of change, respectively, for children of alco-
holics. If both parameters are 0, the average child of an alcoholic
initially uses no more alcohol than the average child of a non-
alcoholic and the rates of change in alcohol use do not differ as well.

o {y;and {,, the level-2 residuals, represent those portions of initial
status or rate of change that are unexplained at level-2. They
represent deviations of the individual change trajectories around
their respective group average trends.

We also continue to assume that {; and {;, are independently drawn from
a bivariate normal distribution with mean 0, variances o7 and o3, and
covariance 0. They are also uncorrelated with the level-2 predictor, COA,
and are homoscedastic over all values of COA.

As in regular regression analysis, we can modify the level-2 submodel
to include other predictors—for example, replacing COA with PEER or
adding PEER to the current model. We illustrate these modifications in
section 4.5. For now, we continue with a single level-2 predictor so that
we can introduce a new idea: the creation of the composite multilevel
model for change.

4.2 The Composite Specification of the
Multilevel Model for Change

The level-1/level-2 representation above is not the only specification of
the multilevel model for change. A more parsimonious representation

%ariscs if you collapse the level-l and level-2 submodels together alge-
braically into a single composite model. The composite representation,
while identical to the level-1/level-2 specification mathematically, pro-
vides an alternative way of codifying hypotheses and is the specification
required by many multilevel statistical software programs (including
MLwiN and SAS PROC MIXED).

To derive the composite $peciﬁcation, first notice that any pair of
linked level-1 and level-2 submodels share some common terms. Specifi-
cally, the individual growth parameters of the level-1 submodel are the
outcomes of the level-2 submodel. We can therefore collapse the sub-
models together by substituting for 7, and 7;; from the level-2 submodel
(in equation 4.2, say) into the level-1 submodel (equation 4.1), as follows:

Y,] = TTy; +7'E1,-TIME,-]- +€,']'
\\V = (Yoo + Y01COA; + §o;) + (Y10 + Y1:COA; + $u)TIME; +&€;;.

LIULLY Aald ALIALYSIS WALLL LG (VAULLLG VUL ATAUMLL LU Sateige s

The first parenthesis contains the level-2 specification for the level-1
intercept, m; the second parenthesis contains the level-2 specification for
the level-1 slope, 7. Multiplying out and rearranging terms then yields
the composite multilevel model for change:

Yy =Yoo + Y10TIME;; + Ya1COA: + Y11 (COA; x TIME, )]
+ [Cof + &;TH\’[E,) + Eq ],

where we once again use brackets to distinguish the model’s structural
and stochastic components.

Even though the composite specification in equation 4.3 appears more
complex than the level-1/level-2 specification, the two forms are logically
and mathematically equivalent. Each posits an identical set of links
between an outcome (Y;) and predictors (here, TIME and COA). The
specifications differ only in how they organize the hypothesized rela-
tionships, each providing valuable insight into what the multilevel model
represents. The advantage of the level-1/level-2 specification is that it
reflects our conceptual framework directly: we focus first on individual
change and next on interindividual differences in change. It also pro-
vides an intuitive basis for interpretation because it directly identifies
which parameters describe interindividual differences in initial status (¥
and %;) and which describe interindividual differences in change (¥, and
7%1). The advantage of the composite specification is that it clarifies which
statistical model is actually being fit to data when the computer begins to
iterate,

In introducing the composite model, we do not argue that its repre-
sentation is uniformly superior to the level-1/level-2 specification. In the
remainder of this book, we use both representations, adopting whichever
best suits our purposes at any given time. Sometimes we invoke the sub-
stantively appealing level-1/level-2 specification; other times we invoke
the algebraically parsimonious composite specification. Because both are
useful, we recommend that you take the time to become equally facile

(4.3)

-with each. To aid in this process, below, we now delve into the structural

and stochastic components of the composite model itself.

4.2.1 The Structural Component of the ’ -
Composite Model

The structural portion of the composite multilevel model for change, in
the first set of brackets in equation 4.3, may appear unusual, at least at
first. Comfortingly, it contains all the original predictors—here, COA and
TIMFE—as well as the now familiar fixed effects, %qg, %1, %o, and %i1. In
chapter 3, we demonstrated that the y’s describe the average change
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trajectories for individuals distinguished by their level-2 predictor values:
%o and ¥, are the intercept and slope of the average trajectory for the
children of parents who are not alcoholic; (Yo + Y1) and (Yo + %) are the
.merccpt and slope of the average trajectory for the children of alcoholics.
The ¥’s retain these interpretations in the composite mode]. To demon-
strate this equivalence, let us substitute different values of COA into the
model’s structural portion and recover the population average change tra-
jectories. As COA has only two values, 0 and 1, recovery is easy. For the chil-
dren of non-alcoholic parents, we substitute 0 into equation 4.3 to find:

Population average
trajectory for the children | =Yoo + Y10 TIME; + Y00+ ¥1(0 x TIME;)
of non-alchoholic parents
=Yoo + Y10l IME;,
(4.4a)

a trajectory with intercept % and slope o, as indicated in the previous
paragraph. For the children of alcoholic parents, we substitute in 1 to find:

Population average
trajectory for the children |= Yoo + ¥10TIME; + Yor1+ ¥ (1 x TIME;)
of alchoholic parents

= (Yoo +Yo1)+ (Y10 +¥n YTIME;,
(4.4b)

a trajectory with intercept (o + %:) and slope (%o + Y1) also as just
described.

Although their interpretation is identical, the ¥’s in the composite
model describe patterns of change in a different way. Rather than pos-
tulating first how ALCUSE is related to TIME and the individual growth
parameters, and second how the individual growth parameters are

related to COA, the composite specification in equation 4.3 postulates

that ALCUSE depends simultaneously on: (1) the level-1 predictor. TIME;
(2 level-2 predictor, COA; e -level int ion, COAb

TIME, From this perspective, the composite model’s structural portion

trongly resembles a regular regression model with predictors, TIME and
{COA, appearing as main effects (associated with %o and %, respectively)
and in a cross-level interaction (associated with 7).

How did this crosslevel interaction arise, when the level-1/level-2 spec-
ification appears to have no similar term? Its appearance arises from the
“multiplying out” procedure used to generate the composite model.
When we substitute the level-2 submodel for m; into its appropriate posi-
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tion in the level-1 submodel, the parameter %,, previously associated only
with COA, gets multiplied by TIME. In the composite model, then, this
parameter becomes associated with the interaction term, COA by TIME.
This association makes sense if you consider the following logic. When
%1 is non-zero in the level-1/level-2 specification, the slopes of the change
trajectories differ according to values of COA. Stated another way, the®
effect of TIME (whose effect is represented by the slopes of the change
trajectories) differs by levels of COA. When the effects of one prcdiclor]
(here, TIME) differ by the levels of another predictor (here, COA), we '\
say that the two predictors interact. The cross-level interaction in the com- _
posite specification codifies this effect.

4.9.2 The Stochastic Component of the
Composite Model

The random effects of the composite model appear in the second set of
brackets in equation 4.3. Their representation is more mysterious than
that of the fixed effects and differs dramatically from the simple error
terms in the separate submodels. Butas you would expect, ultimately, they
have the same meaning under both the level-1/ level-2 and composite rep-
resentations. In addition, their structure in the composite model provides
valuable insight into our assumptions about the behavior of residuals over
time in longitudinal data.

To understand how to interpret this stochastic portion, recall that in
chapter 3, we described how the random effects allow each person’s true
change trajectory to be scattered around the relevant population average
trajectory. For example, given that the population average change tra-
jectory for the children of non-alcoholic parents (in equation 4.44) has
intercept o and slope %o, the level-2 residuals, & and &, allow individ-
ual #'s trajectory to differ from this average. The true trajectory for indi-
vidual i, a specific child of non-alcoholic parents, therefore has intercept
(%0 + &) and slope (%50 + i) - Once this trajectory has been determined,
the level-1 residuals, &g then allow his or her data for occasion j o be
scattered randomly about it.

We can see how the composite model represents this conceptualiza-
tion by deriving the true trajectories for different individuals with specific
predictor values. Using equation (4.3), we note that if adolescent i has
nonalcoholic parents (COA = 0):

Y; =[Yoo + Y10 TIME; + Yo10+71:(0 X TIME;)]+ [8oi + CuTIME; + £4]
= (Yoo + V1eTIME; |+ [§o: + G TIME;; + £
= (Yoo +Co:) + (V10 + G )TIME; + £,
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leading to a true trajectory with intercept (o + o) and slope (%o + &1)
as described above. If adolescent ¢ has an alcoholic parent (COA = 1):

Yzj = ['}/00 + ]/IOTIZ\/[E,] + ')/01]. + }/11(1 X TI]\4E,;)]+ [COi + §11TI]\/IE1] + 821']
=[(Yoo + Yor) + (Y10 + Y1) TIME )+ [{o; + i TIME; + £4]
= (Yoo +Yo1 + Coi) + (Y10 + Y11 + E1)TIME;; + €,

leading to a true trajectory with intercept (%o + ¥ + (o;) and slope (%o +
Y+ ).

- : : ltilevel model is its “com-
al.” the three terms in the second set of brack n the right

Lomposite residual: [{o; + . TIME; + ;]

[he composite residual is not a simple sum. Instead, the second level-2

residual, & ;. is multiplied by the level-1 predictor, TIME, before joining
its siblings. Despite its unusual construction, the interpretation of the
composite residual is straightforward: it describes the difference between
the observed and the expected value of Y for individual 7 on occasion j.
The mathematical form of the composite residual reveals two impor-
/ tant properties about the occasion-specific residuals not readily apparent
in the level-1/level-2 specification: they_can be both_ autocorrelated and
heteroscedastic within person. As we describe briefly below, and more
elaborately explain in chapter 7, these are exactly the kinds of properties
that you would expect among residuals for repeated measurements of
\a changing outcome.

When residuals are heteroscedastic, the unexplained portions of each
person’s outcome have unequal variances across occasions of measure-
ment. Although heteroscedasticity has many roots, one major cause is the
effects of omitted predictors—the consequences of failing to include vari-
ables that are, in fact, related to the outcome. Because their effects have
nowhere else to go, they bundle together, by default, into the residuals.
If their impact differs across occasions, the residual’s magnitude may

differ as well, creating heteroscedasticity. The composite model allows for .

heteroscedasticity via the level-2 residual ;. Because {); is multiplied by
TIME in the composite residual, its magnitude can differ (linearly, at
least, in a linear level-1 submodel) across occasions. If there are system-
atic differences in the magnitudes of the composite residuals across occa-
sions, there will be accompanying differences in residual variance, hence
heteroscedasticity.

When residuals are autocorrelated, the unexplained portions of each
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person’s outcome are correlated with each other across repeated occa-
sions. Once again, omitted predictors, whose effects are bundled into the
residuals, are a common cause. Because their effects may be present iden-
tically in each residual over time, an individual’s residuals may become
linked across occasions. The presence of the time-invariant §;’s and £;,'s
in the composite residual of equation 4.3 allows the residuals to be auto-
correlated. Because they have only an “7” subscript (and no “j”), they
feature identically in each individual’s composite residual on every occa-

sion, creating the potential for autocorrelation across time.

4.3 Methods of Estimation, Revisited

When we discussed estimation in section 3.4, we focused on the method
of maximum likelihood (ML). As we suggested then, there are other ways
of fitting the multilevel model for change. Below, in section 4.3.1, we
describe two other methods that are extensions of the popular OLS
estimation method, with which you are already familiar: generalized least
squares (GLS) estimation and iterative generalized least squares (IGLS) esti-
mation. In section 4.3.2, we delve deeper into ML methods themselves
and distinguish further between two important types of ML estimation—
called fulland restricted maximum-likelihood estimation. Finally, in section
4.3.3, we comment on the various methods and how you might choose
among them.

4.3.1 Generalized Least-Squares Estimation

Generalized leastsquares (GLS) estimation is an extension of ordinary
least-squares estimation that allows you to fit statistical models under
more complex assumptions on the residuals, Like OLS, GLS seeks
parameter estimates that minimize the sum of squared residuals.' But,

instead of requiring the residuals to be independent and homoscedastic
as OLS does. GLS allows them to be autocorrelated and heteroscedastic,

L > ; ale
as in the composite multilevel model for change.

To understand how you can use GLS to fit the composite multilevel
model for change, first reconsider the inefficient exploratory OLS analy-
ses of chapter 2. In section 2.3, our exploratory analyses actually mirrored
our later level-1/level-2 specification of the multilevel model for change.
To fit the model, we used OLS methods twice. First, in a set of exploratory
level-1 analyses, we divided the person-period data set into person-
specific chunks (by /D) and fit separate within-person regressions of the
outcome on TJME. Then, in an exploratory level-2 analysis, we regressed
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the resultant individual growth parameter estimates on predictors. The
existence and form of the composite multilevel model for change sug-
gests that, instead of this piecewise analysis, you could keep the person-
period data set intact and regress the outcome (here, ALCUSE) on the

predictors in the structural portion of the composite model for change

(here, TIME, COA, and COA by TIME). This would allow you to estimate
the fixed effects of greatest interest (%o, %o, %1, ¥11) Without dividing the
data set into person-specific chunks. '

Were you to use OLS to conduct this regression analysis in the full
person-period data set, the resultant regression coefficients (estimates of
Toos Yio» Yo1» Y1) would indeed be unbiased estimates of the composite

'model’s fixed effects. Unfortunately, their standard errors would not

possess the optimal properties needed for testing hypotheses efficiently
because the residuals in the stochastic portion of the composite model
do not possess the “classical” assumptions of independence and

homoscedasuaty In other words, the OIS approach is simplv inappros,
priate in the full person-period data set. To estimate the fixed effects effi-

ciently by fitting the composite model directly in the person-period data
set requires the methods of GLS estimation.

This leads to a conundrum. In reality, to estimate the fixed effects in
the composite model by a regression analysis in the entire person-period
data set, we need GLS methods. But to conduct a GLS analysis, we need
to know the shape and contents of the true error covariance matrix—
specifically we need to know the degree of autocorrelation and het
eroscedasticity that actually exists among the residuals in the population
so that we can account for this error structure during GLS estimation.
We cannot know these population values explicitly, as they are hidden
from view; we only possess information on the sample, not the popula-
tion. Hence the conundrum: to conduct an appropriate analysis of the
composite multilevel model for change directly in the person-period data
set we need information that we do not, indeed cannot, know.

GLS addresses this conundrum using a two-stage approach. First, fit
the composite model by regressing ALCUSE on predictors TIME, COA,
and COA by TIMFE in the full person-period data set using OLS methods
and estimate the error covariance matrix using residuals from the OLS-
fitted model. Then, refit the composite model using GLS treating the esti-
maled error covariance matrix as though it were the frue error covariance
matrix. In this process, the first stage uses OLS to provide starting values
(initial estimates) of the fixed effects. These starting values then yield pre-
dicted outcome values that allow computation of the residuals for each
person on each occasion. The population error covariance matrix is then
estimated using these residuals. In the second stage, compute revised GLS
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estimates of the fixed effects and associated standard errors under the
assumption that the estimated error covariance matrix from the first stage
is a correct representation of the population error covariance matrix of
the composite model. All of this, of course, is hidden from view because
the computer does it for you. ,

If GLS estimation with two steps is good, could GLS estimation with
many steps be better? This simple question leads to an extension of GLS
known as IGLS (iterative generalized least squares). Instead of stopping
after one round of estimation and refitting, you ask the computer to
implement the approach repeatedly, each time using the previous set of
estimated fixed effects to re-estimate the error covariance matrix, which
then leads to GLS estimates of the fixed effects that are further refined.
After each round, you can ask the computer to check whether the current
set of estimates is an improvement over the last. If they have not improved
(as judged by criteria that you define, or the software package specifies
by default), then declare that the process has converged and stop, out-
putting the estimates, their standard errors, and model goodness-of-fit
statistics for your perusal.

As with all iterative procedures, the convergence of IGLS is not guar-
anteed. If your data set is small or severely unbalanced, or if your hypoth-
esized model is too complex, IGLS may iterate indefinitely. To prevent
this, all software packages invoke an upper limit on the number of itera-
tions for each analysis (that you can modify, if you wish). If an IGLS analy-
sis fails to converge after a pre-specified number of iterations, you can try
again, increasing this upper limit. If it still fails to converge, the estimates
may be incorrect and should be treated with caution. We illustrate the
use of IGLS methods later in this chapter and discuss issues of noncon-
vergence in section 5.2.

4.3.2 Full and Restricted Maximum-Likelihood
Estimation

Statisticians distinguish between two types of maximum likelihood esti-
mation: full (FML) and restricted (RML). These two variants on a common
theme differ in how the likelihood function is formed, which affects
parameter estimation and the strategies used to test hypotheses. You must
select a particular ML method before fitting models. Perhaps more impor-
tantly, you should understand which method your software package
selects as its default (although this can usually be overridden).
Although we were not specific in chapter 3, the ML method that we
described there was FML. The likelihood function described in section
3.4 assesses the joint probability of simultaneously observing all the
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sample data actually obtained. The sample likelihood, a function of the
data and the hypothesized model and its assumptions, contains all the
unknown parameters, both the fixed effects (the v’s) and the variance
components (0%, 03, 03, and 0y). Under FML, the computer computes
those estimates of these population parameters that jointly maximize this
likelihood.
FML estimation is not without problems. Because of the way we con-
(struct and maximize the likelihood function, FML estimates of the vari-
Jance components (63, 6, 63, and 6y;) contain FML estimates of the fixed
/ effects (the 7’s). This means that we ignore uncertainty about the fixed
| effects when estimating the variance components, treating their values as
known. By failing to allocate some degrees of freedom to the estimation
{ of fixed effects, FML overstates the degrees of freedom left for estimat-
Jing variance components and underestimates the variance components

/ themselves, leading to hiased estimates when samples are small (they are
’-\ still asymptotically unbiased).
se_concerns le tistici evelop restricted maximum likeli;
Jood (RML; Dempster Laird & Rubin, 1977). Because both FML and
RML require intensive numerical iteration when used to fit the multilevel
model for change, we cannot illustrate their differences algebraically. But
because similar issues arise when these methods are used to fit simpler
models, including the linear regression model for cross-sectional data, we
can illustrate their differences in this context where closed-form estimates
can be written down.

We begin by describing what happens when we use FML to fit a linear
regression model to crosssectional data. Imagine using the following
simple regression model to predict an outcome, Y, on the basis of p pre-
dictors, X; through X,, in a sample of size n, ¥;= Bo+ B X+ BoXoi - -+
B,X, + €, where i indexes individuals and &, represents the usual inde-
pendent, normally distributed residual with zero mean and homoscedas-
tic variance, o= If it were somehow possible to know the true population
values of the regression parameters, the residual for individual i would
be: &= Y, — (By + B X + BeXoi + - - - + B,X,). The FML estimator of the
unknown residual variance 2 would then be the sum of squared resid-
uals divided by the sample size, n:

=ttt (4.52)

Because we imagine that we know the population values of the regression
coefficients, we need not estimate them to compute residuals, leaving n
degrees of freedom for the residual variance calculation.
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In practice, of course, we never know the true population values of the
regression parameters; we estimate them using sample data, and so:

&=Y - (.Bo +B1X1i +B2X2i +o +BPXP1')‘

Substituting these estimates into equation (4.5a) yields an FML estimate
of the residual variance:

n
L&

22 i=]

o n (4.5b)
because functions of FML estimators, the ﬁ’s, are themselves FML
estimators.

Notice that the denominator of the FML estimated residual variance
in equation 4.5b is the sample size n. Use of this denominator assumes
that we still have all the original degrees of freedom in the sample to
estimate this parameter. But because we estimated (p + 1) regression
parameters to compute the residuals, and did so with uncertainty, we used
up (p+ 1) degrees of freedom. An unbiased estimate of the residual vari-
ance decreases the denominator of equation 4.5b to account for this loss:

Y&
“ =G

. The distinction between the estimated residual variances in equations
4.5b and 4.5c is exactly the same as that between full and restricted ML esti-
mation in the multilevel model for change. Like RML, equation 4.5c
accounts for the uncertainty associated with estimating the regression
parameters (the fixed effects) before estimating the residual variance
(the variance components); like FML, equation (4.5b) does not.

How are RML estimates computed? Technical work by Patterson and
Thompson (1971) and Harville (1974) provides a conceptually appeal-
ing strategy. RML estimates of the variance components are those values
that maximize the likelihood of observing the sample residuals (not the
sample data). Once again, an iterative process is used. First, we estimate
the fixed effects, the ¥’%, using some other method, often OLS or GLS.
Next, as in regular regression analysis, we use the ¥’s to estimate a resid-
ual for each person on each occasion (by subtracting observed and
predicted values). Under the usual assumptions about the level-1 and
level-2 residuals—independence, homoscedasticity, and normality—we
can write down the likelihood of observing this particular collection of
“data” (that is, residuals), in terms of the residuals and the unknown

¢

(4.5¢)




variance components that govern their distributions. We then take the
logarithm of the restricted likelihood and maximize it to yield RML
estimates of the variance components, the only unknown parameters
remaining (as we have assumed that the fixed effects, the ¥’s, are known),

For decades, controversy has swirled around the comparative advan-
tages of these two methods. Although Dempster et al. (1977, p. 344)
declared RML to be “intuitively more correct,” it has not proved to be

unilaterally better than FML in practice. In_their review of simulation

J studies that compare these methods for fitting multilevel models, Kreft
and deLeeuw (1998) find no clear winner, They suggest that some of the

ambiguity stems from the decreased precision that accompanies the
decreased small sample bias of RML estimation.

..,If nei Lher appmach is uniformly superior, whv belabor this d:suncnon’

i int ced in ection refer to different portions of
. Under FML. th t of the entire model: under
RML.. thev describe the fit of only the stockastic portion (the random
effects). This means that the goodness-of-fit statistics from FML can be
used to test hypotheses about any type of parameter, either a fixed effect
or a variance component, but those from RML can be used only to test
hypotheses about variance components (not the fixed effects). This dis-
tinction has profound implications for hypothesis testing as a compo-
ent of model bulldlng and ‘data analyms (as we will soon describe).

|'uh NE COMpPA mode at diffe n th Arian DOIPOTENnt:

an use either method A.‘l'! we compare models that differ in both

methods. To further compllcate matters different software pr use
different methods as their default option (although all can use either
approach). SAS PROC MIXED, for example, uses RML by default,
whereas MLwiN and HLM use FML. This means that when you use a
particular statistical computer program, you must be sure to ascertain
which method of ML estimation is used by default; if you prefer the alter-
native method—for reasons of potentially increased precision or the

ability to conduct a wider array of hypothesis tests—be sure you are
obtaining the desired estimates.

4.3.3 Practical Advice about Estimation

Generalized least squares and maximum likelihood estimation are not
identical methods of estimation. They use different procedures to fit the
model and they allow us to make different assumptions about the distri-

bution of the random effects. We obtain GLS estimates by mnsmizing a
weighted function of the reb:duals we obtain ML estimates by mm;mu
ing a log—hkehhood ion 1

normally distributed. These differences 1mply that GLS and ML estimates

/\
of the same parameters in the same model using the same data may differ. (
Although you might find this disturbing, we note that two methods can |
yield unbiased estimates of the same population parameter but that the
estimates themselves can differ. While extensive simulation studies com-
paring methods are still underway (Draper, 1995; Browne & Draper
2000), limited data-based ¢ arison t, i

methods lgad to s ;mg lg;g ggnclusmns (Kreft de Leeuw & Kim, 1990)

This equivalence means that, if you are prepared to assume normality fo:
gand the s, as we did in chapter 3, GLS estimates usually enjoy the same
asymptoth unbiasedness, efficiency, and normality that ML estimates do.
And since you must invoke normal theory assumptions to conduct
hypothesis tests anyway, most data analysts find them compelling and easy
to accept. In the remainder of the book, we therefore continue to invoke
the standard normal theory assumptions when specifying the multilevel
model for change.

GLS and ML are currently the dominant methods of fitting multilevel
models to data. They appear in a variety of guises in different packages.
Both FML and RML appear in HLM and SAS PROC MIXED. STATA
xtreg uses a GLS approach. MLwiN uses IGLS and an extension of it,
restricted IGLS (RIGLS), which is the GLS equivalent of RML. And new
estimation approaches appear each year. This suggests that whatever we
write about a particular method of estimation, or its 1rnplementauon in
a particular package, will soon be out of date. But if your goal is data
analysis (not the development of estimation strategies), these modifica-
tions of the software are unproblematic. The educated user needs to
understand the statistical model, its assumptions, and how it represents
reality; the mathematical details of the method of estimation are less
crucial. That said, we have three reasons for recommending that you take
the time to become comfortable with both ML and GLS methods, at least
at the heuristic level presented here. First, you cannot conduct credible
analyses nor interpret parameter estimates without at least a conceptual
understanding how the model is fit. Second, under the assumptions for
which they were designed, these methods have decent statistical proper-
ties. Third, most new methods will ultimately descend from, or seek to
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«ctify weaknesses in, these methods. In other words, the ML and GLS
ethods are here to stay.

4 First Steps: Fitting Two Unconditional Multilevel
Models for Change

su've articulated your research questions, created a person-period data
;t, conducted exploratory analyses, chosen an estimation approach, and
Jlected a software package. Although you might be tempted to begin by
tting models that include your substantive predictors, we suggest that
>u first fit the two simpler models presented in this section: the uncon-
itional means model (section 4.4.1) and the unconditional growth model

section 4.4.2). These unconditional models partition and quantify the

utcome variation in two important ways: first, across people without
egard to time (the unconditional means model), and second, across
oth people and time (the unconditional growth model). Their results
llow you to establish: (1) whether there is systematic variation in your
utcome that is worth exploring; and (2) where that variation resides
within or between people). They also provide two valuable baselines
gainst which you can evaluate the success of subsequent model build-
ng, as we discuss in section 4.4.3.

4.41 The Unconditional Means Model
_Fhe unconditional means model is the first model you should always fit.

f neein th ; ver time, it simply
ind partitions the outcome variation, Its hallmark is the ab ; -
lictors at everv level: . J-er\(ﬂ““
R

where we assume, as usual, that:
i~ N(0,07) and Lo ~ N(O, o3). (4.6b)

NoFice.that because there is only one level2 residual, {y;, we assume
univariate normality at level-2 (not bivariate normality, as we do when we
have two level-2 residuals).

ncondit : . ipulates that. at level-1, the tru

£

indivi
vation 7. Because the trajectory lacks a slope paraméter associated with

a temporal predictor, it cannot tilt. The single part of the level-2 suh.
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model stipulates that while these flat trajectories may differ in elevation,

v ¥ evervone in_the population. is Yoo Any
interindividual variation in elevation is not linked to predictors, Even®
though you hope that this model did not give rise to your sample data[
—for it is not really about change at all—we recommend that vou')'

always_fit it first because it partitions the total variation in the outcome

To understand how this variance partition operates, notice that flat
individual change trajectories are really just means. The true mean of Y
for individual i is 7o the true mean of Y across everyone in the popula-
tion is Y. Borrowing terminology from analysis of variance, My is the
person-specific mean and % is the grand mean. The unconditional means
model postulates that the observed value of Y for individual 7 on occasion
jis composed of deviations about these means. On occasion j, Y; deviates
from individual 7's true mean (7m) by & The level-1 residual is thus a
“within-person” deviation that assesses the «distance” between Yj and T |
Then, for person i, his or her true mean (7m;) deviates from the popula—']
tion average true mean {(¥0) by Cor. This level-2 residual is thus a “between-|
person” deviation that assesses the “distance” between 7o and Y- l

The variance components of equation 4.6b summarize the variabiliryll
in these deviations across everyone in the population: o?is the “within-
person” variance, the pooled scatier of each person’s data around his or
her own mean; G5 is the “between-person” variance, the pooled scatter of
the person—speciﬁc means around the grand mean. The primary reason

we fit the unconditional means model is to estimate these variance com-

onents, which assess a “ou iati i
level, Associated hypothesis tests help determine whether there is suffi-
cient variation at that level to warrant further analysis. If a variance com<

onent is zero, there is little point in trying to predict outcome variation
at that level—there is too little variation to explain. If a variance compo-
nent is non-zero, then there is some variation at that level that could
potentially be explained.

Model A of table 4.1 presents the results of fitting the unconditional
means model to the alcohol use data. Its one fixed effect, oo, estimates
the outcome’s grand mean across all occasions and individuals. Rejection
of its associated null hypothesis (p < .001) confirms that the average
alcohol consumption of the average adolescent between ages 14 and 16
is non-zero. Squaring 0.922 (which yields 0.85) to obtain its value on the
instrument’s original scale, we conclude that the average adolescent does
drink during these years, but not very much.

Next, examine the random effects, the major purpose for fitting this
model. The estimated within-person variance, 62, is 0.562; the estimated

—
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Table 4.1: Results of fitting a taxonomy of muldlevel models for change to the alcohol use data (= 82)

Model G
Model F CCOA &
Parameter Model A Model B Model C Model D Model E (CPEER) (CPEER)

Fixed Effects

an;u status,  Intercept Yo 0.922%#%  (.651%F%  (316%% (. §17HKE  _(Q314%kk  (.394%E% () Gr]Hkk
o on (0.096) (0.105) (0.181) (0.148) (0.146) (0.104) (0.080)
o 0.743%%%  (57Q%x  QB7IHEE QB7IRE ()57
- . (0.195) (0.162) (0.146) (0.146) (0.146)
0.694%%%  0.695%** (. GOBRIE () GORkRE
(0.112) (0.111) 0.111 0.1
g?;igef . Intercept Yo (g.gg;;** 0.208%%% (. 49Q%x% () 495%x (0.2711** (0.2;11**
, M . 0.084
on N _(0.049) _(8:;113) (0.106) (0.061) (0.061)
- ) (0.125) (0.125)
fo —0.150~ ~0.151~ -0.151~ —0.151~
(0.086) (0.085) (0.085) (0.085)

fow. it /C

hE. ¥

of
N
*
Q;}' <A
& X
Variance Components
Level 1 Within- ol 0.562%** 0.337+%% 0.337***§ 6’337*** 0.337%skk 0.337%x* 0.337%%*
person ) (0.062) (0.053) (0.053) " (0.053) (0.053) (0.053) (0.053)
Level 2 In initial o3 0.564%** 0.624%** 0.488** / 0.241%** 0.241%* 0.24 1% 0.241**
status (0.119) (0.148) (0.128) . =(0.093) (0.093) (0.093) (0.093)
In rate of o2 0.1561%* 0.151*);{“ 0.139* 0.139* 0.139% 0.139*
change (0.056) (0.056) (0.055) (0.055) (0.055) (0.055)
Covariance Coi -0.068 —0.059 » —0.006 —-0.006 -0.006 -0.006
(0.070) (0.066) (0.055) (0.055) (0.055) . (0.055) 5 }[‘;,
. ) o i
Pseudo R? Statistics and Goodness-of-fit ST se l?ek Vor Cov € J foen Tha Tint e
R} .043 150 201 291 291 291
R? 40 40 40 40 40 40
R? 218 614 614 614 614
R .000 079 .079 .079 .079
Deviance 670.2 636.6 621.2 588.7 588.7 588.7 588.7
AIC 676.2 648.6 637.2 608.7 606.7 606.7 606.7
BIC 683.4 663.0 656.5 632.8 628.4 628.4 628.4

~p<.10; *#p < .05; #kp< 015 ¥4+ p < 001
These models predict ALCUSE between ages 14 and 16 as a function of AGE14 (at level-1) and various combinations of COA and PEER (at level-2). Models

G, D, and E enter the level-2 predictors in their raw form; Models F and G enter the level-2 predictors in centered forms as indicated.

Note: MLwiN, full IGLS.
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between-person variance, 63, is 0.564. Using the single parameter
hypothesis tests of section 3.6, we can reject both associated null hypothe-
ses at the .001 level. (Although these tests can mislead—(see section
3.6.2), we use them in table 4.1 because it turns out—for these data, at
least—that the conclusions are supported by the superior methods of
testing presented in section 4.6.) We conclude that the average adoles-
cent’s alcohol consumption varies over time and that adolescents differ
from each other in alcohol use. Because each variance component is sig-
nificantly different from 0, there is hope for linking both within-person
and between-person variation in alcohol use to predictors.

~ The unconditional means model serves another purpose: it allows us

Jto evaluate numerically the relative magnitude of the within-person and
between-person variance components. In this data set, they happen to be
almost equal ] isti ifyi i iv i i
the intraclass correlation coefficient, p. which describes the proportion _of

the total outcome variation that lies “b 2 - Because the total

variation in Yis just the sum of the within and between-person variance

components, the population intraclass correlation coefficient is:

\ p . (4.7)

oj +0?

We can estimate p by substituting the two estimated variance components
from table 4.1 into equation (4.7). For these data, we find:

0.564

—————=(.50,
0.564 +0.562

p=

indicating that half the total variation in alcohol use is attributable to dif-
ferences among adolescents.

!

Autocorrelation in ite
ditional means madel. To understand how it does this, substitute the
level-2 submodel in equation 4.6a into its level-1 submodel to yield the
following composite unconditional means model:

In this representation, Y, is composed of one fixed effect, %o, and one
composite residual({y; + ;). Each person has a different composite resid-
wual on each occasion of measurement. But notice the difference in the
subscripts of the pieces of the composite residual: while the level-1 resid-
ual, &;, has two subscripts (i and J), the level-2 residual, {;, has only one
(?). Each person can have a different &; on each occasion, but has only
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one {;; across every occasion. The repeated presence of §, in individu
7s composite residual links his or her composite residuals across occa-
sions. The error autocorrelation coefficient quantifies the magnitude of}

this linkage; in_the unconditional means model. the error autocorrela/

tion coefficient is the intraclass correlation coefficient. Thus, we estimate

that, for each person, the average correlation between any pair of com-
posite residuals—between occasions 1 and 2, or 2 and %, or 1 and 3—is
0.50. This is quite large, and far from the zero residual autocorrelation
that an OLS analysis of these data would require. We discuss the intra-
class correlation coefficient further in chapter 7.

4.4.2 The Unconditional Growth Model

The next logical step is the introduction of predictor TIME into the level-
1 submodel. Based on the exploratory analyses of section 4.1, we posit a
linear change trajectory:

Kj =Tg; +7r1,TIZ\4ElJ + 8,:7'
Toi = Yoo+ 8o (4.92)
Ty = Y10+ i,

where we assume that

o 0][of o©On
&y~ N, 0'3) and |:§1;] - N(M’[Gm of D S

Because the only predictor in this model is TIME, we call equation 4.9)
the unconditional growth model.

Begin by comparing the unconditional growth model in equation 4.9a
to the unconditional means model in equation 4.6a. We facilitate this
comparison in table 4.2, which presents these models as well as several
others we will soon fit. Instead of postulating that individual 7's observed
score on occasion j, ¥, deviates by &; from his or her person-specific
mean, it specifies that Y; deviates by &; from his or her true change trajec-
tory. In other words, altering the level-1 specification alters what the level-
1 residuals represent. In addition, we now have a second part to the
level-2 submodel that depicts interindividual variation in the rates o
change (7;;). But because the .model includes no substantive predictors,
each part of the level-2 submodel simply stipulates that an individual
growth parameter (either m, or ;) is the sum of an intercept (either 7,
or %p) and a level-2 residual (&, or ;).

An important consequence of altering the level-1 specification is that
the meaning of the variance components changes as well. The level-IJ



Table 4.2: Taxonomy of multilevel models for change fitted to the alcohol use data

Level-1/level-2 specification

Composite model

level-2 model

level-1 model

Model

Yoo + (€5 + Co)

Yij:

Yoo + Coi
Yoo + Con

i =
T = Yo + G

T + &

Yij =

Yoo + Yie TIME;;

Yi]:

Tooi + w0 TIME; + g

Yij =

+ (& + Coi+ & TIME)

Yoo + Y1 COA; + yio TIME;; + 7, COA; X TIME;

+ (&5 + Goi + G TIME))

Yij .

Yoo + Yon COA; + &y
Tio + 111COA; + (i

o =

;
=

Y,j = My; + ﬂl,TIIWE,j + E;

Yzj .

Yoo + Vo1 COA; + Yoo PEER; + &;
Yo + 711 COA; + y9PEER; + );

mo; + m TIME; + € i =

Y-‘,’ .

Yoo T Yor COA; + Yoo PEER; + 1 TIME;

m;=

+ ¥ COA; X TIME; + YioPEER; X TIME;

+ (g + Coi + CliTHWE,-)-)

Yoo + Yo COA; + Yoo PEER; + 1o TIME;

+ 112PEER; x TIME;
+ (g5+ Coi + £ TIME;)

Yij .

Yoo + Y01 COA; + Yoo PEER; + {y;
Yo + YiePEER; + §;

7o + m TIME; + €, o,
1i

Yij =

Yoo + Y01 COA; + Yo CPEER; + 1o TIME;

+ %2 CPEER; X TIME;

Yij=

Yoo + Y01 COA; + Yoo CPEER; + §y;

%o + Y12 CPEER; + {3

i + 7, TIME; + & oy, =

Y.‘j .

i =

+ (g;+ Coi + gliTHWEij)

Yoo + Y1 (COA;— COA) + Yo CPEER;
+ Yo TIME; + Yo CPEER; X TIME;

+ (& + Goi CI.’TIMEq)

Yoo + Yor (COA; — COA)

+ %2 CPEER; + &y
i = Yo + 12 CPEER; + §;

Yzj =

i

Toi + i TIME; + €

Yij:

These models predict ALCUSE between ages 14 and 16 as a function of AGE-14 (at level-1) and various combinations of COA and PEER (at level-2). Models

C, D, and E enter the level-2 predictors in their raw form; Models F and G enter the level-2 predictors in centered forms as indicated. Results of model fitting

appear in Table 4.1.
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Model B:
Unconditional growth model

Model C: Model E:
Uncontrolled effects of COA "Final" model for the
controlled effects of COA

e~ e~ e~
ALCUSE ALCUSE ALCUSE
2+ 2 2 1
COA=1
14 1
COA=0
0+ 1 0 r
13 14 15 16 17 13 14 15 16 17
AGE AGE

Figure 4.3. Displaying the results of fitted multilevel models for change. Prototypical tra-
jectories from three models presented in table 4.1: Model B: the unconditional growth
model, Model C: the uncontrolled effect of COA, Model E: the effect of COA controlling
for PEER

residual variance, 62, now summarizes the scatter of each person’s data)
around his or her own linear change trajectory (not his or her person-specific '
mean). The level-2 residual variances, ¢ and o3, now summarize ;
between-person variability in initial status and rates of change. Estimat-
ing these variance components allow istingui z iafi
from the two different kinds vel-2 variati L ine whether
interindividual differences in change are due to interindividual differ-
ences in true initial status or true rate of change.

Model B in table 4.1 presents the results of fitting the unconditional
growth model to the alcohol use data. The fixed effects, J40 and 7, est-
mate the starting point and slope of the population average change tra-
jectory. We reject the null hypothesis for each (p < .001), estimating that
the average true change trajectory for ALCUSE has a non-zero intercept
of 0.651 and a non-zero slope of +0.271. Because there are no level-2 pre-
dictors, it is simple to plot this trajectory, as we do in the left panel of
figure 4.3. Although alcohol use for the average adolescent remains low,
we estimate that ALCUSE rises steadily between ages 14 and 16, from 0.65
to 1.19. We will soon determine whether these trajectories differ system-
atically by parental alcoholism history or early peer alcohol use.

To assess whether there is hope for future analyses—whether there is
statistically significant variation in individual initial status or rate of
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change that level2 predictors could explain—examine the variance com-
ponents. By now, we hope you are beginning to see that variance com-
ponents are often more interesting than fixed effects. The level-1 residual
variance, 02, summarizes the average scatter of an individual’s observed
outcome values around his or her own true change trajectory. If the true
change trajectory is linear with age, the unconditional growth niodel will
do a better job of predicting the observed outcome data than the uncon-
ditional means model, resulting in smaller level-1 residuals and a smaller
level-1 residual variance. Comparing 6% in Model B to that of Model A,
we find a decline of .40 (from 0.562 to 0.837). We conclude that 40% of
the within-person variation in ALCUSE is systematically associated with
linear 7IME. Because we can reject the null hypothesis for this variance
component in Model B, we also know that some important within-person
variation still remains at level-1 (p <.001). This suggests that it might be
profitable to introduce substantive predictors into the level-1 submodel.
We defer discussion of level-1 substantive predictors until section 5.3
because they must be time-varying (not time-invariant like the level-2 pre-
dictors in this data set). \

The level2 variance components quantify the amount of unpredicted
variation in the individual growth parameters. 0} assesses the unpredicted
variability in true initial stams (the scatter of the my; around %w); ol
assesses the unpredicted variability in true rates of change (the scatter of
the m, around %,). Because we reject each associated null hypothesis (at
$<.001 and p< .01, respectively), we conclude that there is non-zero vari-
ability in both true initial stajtus and true rate of change. This suggests
that it worth trying to use level-2 predictors to explain heterogeneity in
each parameter. When we dof so, these variance components—0.624 and
0.151—will provide benchmarks for quantifying the predictors’ effects.
We do not compare these variance components with estimates from the
unconditional means model because introduction of TIME into the
model changes their interpretation.

The population covariance of the level-2 residuals 0y, has an important
interpretation in the unconditional growth model. It not only assesses the
relationship between the level-2 residuals, it quantifies the population
covariance between true initial status and true change. This means that we
can assess whether adolescents who drink more at age 14 increase their
drinking more (or less) rapidly over time. Interpretation is easier if we re-
express the covariance as a correlation coefficient, dividing it by the
square root of the product of its associated variance components:

f? —,6 _ Gor __ﬂ_:
o TP T 5268 7(0.624)(0.151)
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We conclude that the relationship between true rate of change in
ALCUSE and its level at age 14 is negative and weak and, because we
cannot reject its associated null hypothesis, possibly zero.

We can learn more about the residuals in the unconditional growth
model by examining the composite specification of the multilevel model:

Y; = Yoo + V10T IME; +(Co: + $uTIME; +&). (4.10)

Each person has j composite residuals, one per occasion of measure-
ment. The structure of the composite residual, which combines the
original level-1 and level-2 residuals (with §;; multiplied by TIME before
being bundled into the sum), provides the anticipated heterosce-
dasticity and autocorrelation that longitudinal data analysis may
demand.

First, we examine the variances of the composite residual. Mathemat-
ical results not presented here allow us to write the population variance
of the composite residual on the jth occasion of measurement as:

O ituas; = O3 + OTTIME] +200TIME, + 02 (4.11)

Substituting the estimated variance components from Model B in table
4.1 we have:

(0.624 +0.151TIME? —0.136TIME; + 0.337).

Substituting values for TIME at ages 14 (TIME, = 0), 15 (TIME; = 1) and
16 (TIME; = 2), we find estimated composite residual variances of 0.961,
0.976, and 1.293, respectively. While not outrageously heteroscedastic,
especially for ages 14 and 15, this is beyond the bland homoscedasticity
we assume of residuals in cross-sectional data.

Further mathematical results not shown here allow us to write the auto-
correlation between composite residuals on occasions j and 7 as:

Gg +001(ﬂIMEj +TIME_,-')+ GfTHWE,TIMEJ*

2 2
JO.Residual i O-Residual I

(4.12)

PrResidualResidualy =

where the residual variances in the denominator are given by equation
(4.11). Substituting the estimated variance components and TIME into
equation 4.12 yields a residual autocorrelation of 0.57 between occasions
1 and 2, 0.64 between occasions 2 and 3, and 0.44 between occasions 1
and 3. We conclude that there is substantial autocorrelation between the
residuals across successive measurement occasions. We explore this
behavior further in chapter 7.
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4.4.3 Quantifying the Proportion of Outcome
Variation “Explained”

The two unconditional models assess whether there is potentially pre-
Jictable outcome variation and, if so, where it resides. For these data, the
unconditional means model suggests roughly equal amounts of within-
person and between-person variation. The unconditional growth model
suggests that some of the within-person variation is attributable to linear
TIME and that there is between-person variation in both true initial status
and true rate of change that level-2 predictors might explain.

In multiple regression analysis, we quantify the proportion of outcome
yariation that a model’s predictors “explain” using an R? (or adjusted R%)
statistic. In the muldlevel model for change, definition of a similar sta-
tistic is trickier because total outcome variation is partitioned into several
variance components: here, o2, 63 and o?. As a result, statisticians have
yet to agree on appropriate summaries (Kreft & deLeeuw, 1998; Snidjers
& Bosker, 1994). Below, we present several pseudo-R® statistics that quan-
tify how much outcome variation is “explained” by a multilevel model’s
predictors. First, we assess the proportion of total variation explained
using a statistic similar to the traditional R? statistic; second, we dissect
the level-1 and level-2 outcome variation using statistics similar to tradi-
tional adjusted-R® statistics. These pseudo-R’ statistics can be useful data
analytic tools, as long as you construct and interpret them carefully.

An Overall Summary of Total Outcome
Variability Explained

In multiple regression, one simple way of computing a summary R® sta-
tistic is to square the sample correlation between observed and predicted
values of the outcome. The same approach can be used in the multilevel
model for change. All you need do is: (1) compute a predicted outcome
value for each person on each occasion of measurement; and (2) square
the sample correlation between observed and predicted values. The
resultant pseudo-R’ statistic assesses the proportion of total outcome
variation “explained” by the multilevel model’s specific combination of
predictors. ‘

The bottom panel of table 4.1 presents this pseudo-R® statistic (labeled
R};) for each model fit. We calculate these statistics by correlating pre-
dicted and observed values of ALCUSE for each person on each occasion
of measurement. For Model B, for example, the predicted values for indi-
vidual i on occasion j are: ¥ = 0.651 + 0.271 TIME;. As everyone in this
data set has the identical set of measurement occasions (0, 1, and 2),
Model B yields only three distinct predicted values:
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¥, = 0.651+0.271(0) = 0.651
Yo =0.651+0.271(1) = 0.922
Y, =0.651+0.271(2) = 1.193.

Across the entire person-period data set, the sample correlation between
these predicted values and the observed values is 0.21, which yields a
pseudo-R? statistic of .043. We conclude that 4.3% of the total variability
in ALCUSE is associated with linear time. As we add substantive predic-
tors to this model, we examine whether, and by how much, this pseudo-
R? statistic increases.

PseudoR? Statistics Computed from the Variance Components

Residual variation—that portion of the outcome variation unexplained by
a model’s predictors—provides another criterion for comparison. When
you fit a series of models, you hope that added predictors further explain
unexplained outcome variation, causing residual variation to decline.
The magnitude of this decline quantifies the improvement in fit. A large
decline suggests that the predictors make a big difference; a small, or
zero, decline suggests that they do not. To assess these declines on a
common scale, we compute the proportional reduction in residual variance
as we add predictors.

Fach unconditional model yields residual variances that serve as yard-
sticks for comparison. The unconditional means model provides a base-
line estimate of o2 the unconditional growth model provides baseline
estimates of 0% and 02 Each leads to its own pseudo-R® statistic.

Let us begin by examining the decrease in within-person residual vari-
ance (02 between the unconditional means model and unconditional
growth model. As shown in table 4.1, our initial level-1 residual variance
estimate, 0.562, drops to .337 in the initial model for change. As the fun-
damental difference between these models is the introduction of TIME,
this pseudo-R? statistic assesses the proportion of within-person variation
“explained by time.” We compute the statistic as:

Pseudo R’ = 6% (unconditonal means model) — o (unconditional growth madel]‘

& (unconditional means model}

(4.18)

For the alcohol use data, we have (562 — .337)/.562 = 0.400. We con-
clude that 40.0% of the within-person variation in ALCUSE is explained
by linear TIME. The only way of reducing this variance component
further is to add time-varying predictors to the level-1 submodel. As this
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jata set has no such predictors, 6% remains unchanged in every subse-
juent model in table 4.1. '

We can use a similar approach to compute pseudo-R” statistics quanti-
ying the proportional reduction in level-2 residual variance on the addi-
ion of one or more level-2 predictors. Each level-2 residual variance
-omponent has its own pseudo-R® statistic. A level-1 linear change model,
vith two level-2 variance components, 63 and o3, has two pseudo-R’s.
Baseline estimates of these components come from the unconditional
srowth model. For any subsequent model, we compute a pseudo-R? sta-
astic as:

6} (unconditional growth model) — o} (subsequent model) (4.14)

2 _
Pseudo-R; = 6;(unconditional growth model)

Estimates of these statistics for each of the models in table 4.1 appear in
the bottom of the table. We will examine these proportional declines in
the next section when we evaluate the results of subsequent model fitting.

Before doing so, however, we close by identifying a potentially serious
flaw with the pseudo-R® statistics. Unlike traditional R® statistics, which
will always be positive (or zero), some of these statistics can be negative!
In ordinary regression, additional predictors generally reduce the resid-
ual variance and increase R°. Even if every added predictor is worthless,
the residual variance will not change and R* will not change. In the mul-
tilevel model for change, additional predictors generally reduce variance
components and increase pseudo-R® statistics. But because of explicit
links among the model’s several parts, you can find yourself in extreme
situations in which the addition of predictors increases the variance com-
ponents’ magnitude. This is most likely to happen when all, or most, of
the outcome variation is exclusively either within-individuals or between-
individuals. Then, a predictor added at one level reduces the residual
variance at that level but potentially increases the residual variance(s) at
the other level. This yields negative pseudo-R® statistics, a disturbing
result to say the least. Kreft and de Leeuw (1998, pp. 117-118) and Sni-
jders and Bosker (1999, pp. 99-109) provide mathematical accounts of
this phenomenon, explicitly calling for caution when computing and
interpreting pseudo-R® statistics.

4.5 Practical Data Analytic Strategies for Model Building

A sound statistical model includes all necessary predictors and no unnec-
essary ones. But how do you separate the wheat from the chaff? We
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suggest you rely on a combination of substantive theory, research ques-
tions, and statistical evidence. Never let a computer select predictors
mechanically. The computer does not know your research questions nor
the literature upon which they rest. It cannot distinguish predictors of
direct substantive interest from those whose effects you want to control.

In this section, we describe one data analytic path through the alcohol
use data, distilling general principles from this specific case. We begin,
in section 4.5.1, by introducing the notion of a taxonomy of statistical
models, a systematic path for addressing your research questions. In
section 4.5.2, we compare fitted models in the taxonomy, interpreting
parameter estimates, their associated tests and pseudo—R2 statistics. In
section 4.5.3, we demonstrate how to display analytic results graphically.
In section 4.5.4, we discuss alternative strategies for representing the
effects of predictors. In the remaining sections of the chapter, we use
these basic principles to introduce other important topics related to
model building.

4.5.1 A Taxonomy of Statistical Models

A taxonomy of statistical models is a systematic sequence of models that,
as a set, address your research questions. Each model in the taxonomy
extends a prior model in some sensible way; inspection and comparison
of its elements tell the story of predictors’ individual and joint effects.
Most data analysts iterate toward a meaningful path; good analysis does
not proceed in a rigidly predetermined order.

We suggest that you base decisions to enter, retain, and remove pre-
dictors on a combination of logic, theory, and prior research, supple-
mented by judicious hypothesis testing and comparison of model fit. At
the outset, you might examine the effect of each predictor individually.
You might then focus on predictors of primary interest (while including
others whose effects you want to control). As in regular regression, you
can add predictors singly or in groups and you can address issues of func-
tional form using interactions and transformations. As you develop the
taxonomy, you will progress toward a “final model” whose interpretation
addresses your research questions. We place quotes around this term to
emphasize that we believe no statistical model is ever final; it is simply a
placeholder until a better model is found.

When analyzing longitudinal data, be sure to capitalize on your intu-
ition and skills cultivated in the cross-sectional world. But longitudinal
analyses are more complex because they involve: (1) multiple level-2 out-
comes (the individual growth parameters), each of which can be related to
predictors; and (2) multiple kinds of effects, both fixed effects and variance
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components. A level-1 linear change submodel has two level-2 outcomes;
a more complex level-1 submodel may have more. The simplest strategy
is to initially include each level-2 predictor simultaneously in all level-2
submodels, but as we show below, they need not remain. Each individual
growth parameter can have its own predictors, and one goal of model
building is to identify which predictors are important for which level-1
parameters. So, too, although each level-2 submodel can contain fixed
and random effects, both are not necessarily required. Sometimes a
model with fewer random effects will provide a more parsimonious rep-
resentation and clearer substantive insights.

Before fitting models, take the time to distinguish between: (1) ques-
tion predictors, whose effects are of primary substantive interest; and, (2)
control predictors, whose effects you would like to remove. Substantive and
theoretical concerns usually support the classification. For the alcohol
use data, our classifications and analytic path will differ depending on
our research questions. If interest centers on parental influences, COA is
a question predictor and PEER a control. We would then evaluate the
effect of COA on its own and after control for PEER. But if interest centers
on peer influences, PEER is a question predictor and COA a control. We
would then evaluate the effect of PEER on its own and after contro] for
COA. Different classification schemes may lead to the same “final model,”
but they would arrive there via different paths. Sometimes, they lead
to different “final models,” each designed to answer its own research
questions.

In what follows, we assume that research interest centers on the effects
of parental alcoholism; PEER is a control. This allows us to adopt the ana-
lytic path illustrated in tables 4.1 and 4.2. Model C includes COA as a pre-
dictor of both initial status and change. Model D adds PEER to both
level-2 models. Model E is a simplification of Model D in which the effect
of COA on one of the individual growth parameters (the rate of change)
is removed. We defer discussion of Models ¥ and G until section 4.5.4.

4.5.2 Interpreting Fitted Models

You need not interpret every model you fit, especially those designed to
guide interim decision making. When writing up findings for presenta-
tion and publication, we suggest that you identify a manageable subset
of models that, taken together, tells a persuasive story parsimoniously. At
a minimum, this includes the unconditional means model, the uncondi-
tional growth model, and a “final model.” You may also want to present
intermediate models that either provide important building blocks or tell
interesting stories in their own right.
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Columns 4-8 of table 4.1 present parameter estimates and associated
single parameter hypothesis tests for five models in our taxonomy. (We
discuss the last two models in section 4.5.4.) We recommend that you
always construct a table like this because it allows you to compare fitted
models systematically, describing what happens as you add and remove
predictors. Sequential inspection and comparison of estimated fixed
effects and variance components and their associated tests allows you to:
(1) ascertain whether, and how, the variability in initial status and rate
of change is gradually “explained”; and (2) identify which predictors
explain what variation. Tests on the fixed effects help identify the pre-
dictors to retain; tests on the variance components help assess whether
there is additional outcome variation left to predict. Integrating these
conclusions helps identify the sources of outcome variation available for
prediction and those predictors that are most effective in explaining that
variation. As we have discussed Models A and B in section 4.3, we turn
now to Model C.

Model C: The Uncontrolled Effects of COA

Model C includes COA as a predictor of both initial status and change.
Interpretation of its four fixed effects is straightforward: (1) the estimated
initial ALCUSE for the average child of non-alchoholic parents is 0.316
(p<.001); (2) the estimated differential in initial ALCUSE between chil-
dren of alchoholic and non-alchoholic parents is 0.743 (p<.001); (3) the
estimated rate of change in ALCUSE for an average child of non-
alchoholic parents is 0.293 (p < .001); and (4) the estimated differential
in the rate of change in ALCUSE between children of alchoholic and non-
alcoholic parents is indistinguishable from 0 (=0.049, ns). This model
provides uncontrolled answers to our research questions, suggesting that
while children of alchoholic parents initially drink more than children
of non-alchoholic parents, their rate of change in alcohol consumption
between ages 14 and 16 does not differ.

Next examine the variance components. The statistically significant
within-person variance component (6?) for Model C is identical to that
of Model B, reinforcing the need to explore the effects of time-varying
predictors (if we had some). Stability like this is expected because we
added no additional level-1 predictors (although estimates can vary
because of uncertainties arising from iterative estimation). The level-2
variance components, however, do change: 6% declines by 21.8% from
Model B. Because it is still statistically significant, potentially explainable
residual variation in initial status remains. While 6% is unchanged, it,
too, is still statistically significant, suggesting the continued presence of
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potentially explainable residual variation in rates of change. These vari-
ance components are now called partial or conditional variances because
they quantify the interindividual differences in change that remain unex-
plained by the model’s predictors. We conclude that we should explore
the effects of a level-2 predictor like PEER because it might help explain
some of the level-2 residual variation.

Failure to find a relationship between COA and the rate of change
might lead some analysts to immediately remove this term. We resist this
temptation because COA is our focal question predictor and we want to
evaluate the full spectrum of its effects. If subsequent analyses continue

to suggest that this term be removed, we can always do so (as we do, in
Model E).

Model D: The Controlled Effects of COA

Model D evaluates the effects of COA on initial status and rates of change
in ALCUSE, controlling for the effects of PEER on initial status and rate
of change. Notice that the level-2 intercepts change substantially from
Model C: ¥y, reverses sign, from +0.316 to —0.317; 7., increases by 50%,
from 0.293 to 0.429. We expect changes like these when we add level-2
predictors to our model. This is because each level-2 intercept represents
the value of the associated individual growth parameter—i,; or ;;—when
all predictors in each level-2 model are 0. In Model C, which includes
only one predictor, COA, the intercepts describe initial status and rate
of change for children of non-alchoholic parents. In Model D, which
includes two predictors, the intercepts describe initial status and rate of
change for a subset of children of non-alchoholic parents—those for
whom PEER also equals 0. Because we can reject the null hypothesis asso-
ciated with each parameter (p < .001), we might conclude that children
of non-alchoholic parents whose early peers do not drink have non-zero
levels of alcohol consumption themselves. But this conclusion is incor-
rect because the fitted intercept for initial status (-0.317) is negative sug-
gesting that the confidence interval for the parameter does not even
reach zero from below! As ALCUSE cannot be negative, this interval is
implausible. As in regular regression, fitted intercepts may be implausi-
ble even when they correspond to observable combinations of predictor
values. We discuss strategies for improving the interpretability of the
level-2 intercepts in section 4.5.4.

The remaining parameters in Model D have expected interpretations:
Yo and ¥, describe the differential in ALCUSE between children of
alchoholic and non-alchoholic parents controlling for the effects of
PEER and Y, and %, describe the differential in ALCUSE for a one-unit
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difference in PEER controlling for the effect of COA. Given. our focus on
the effects of COA, we are more interested in the former ef.fects Lhan‘tl}e
latter. We therefore conclude that, controlling for the effects .of PEER:
(1) the estimated differential in initial AI.CUSE between children of
alchoholic and non-alchoholic parents is 0.579 (p < .001); and (?) the
estimated differential in the rate of change in ALCUSE between children
of alchoholic and non-alchoholic parents is indistinguishable from 0
(—0.014, ns). This model provides controlled answers to our rescarc.h H}Les—
tions. As before, we conclude that children of alchoholic parents initially
drink more than children of non-alchoholic parents b.ut theu‘ annual rate
of change in consumption between ages 14 aqd 16 is no different. The
magnitude of the early differential in ALCUSE is lower after PEER is con-
trolled. At least some of the differential initially found between the two
groups may be attributable to this predictor. .

Next examine the associated variance components. Conr_l paring Mot}lel
D to the unconditional growth model B, we find that while &% re‘mams
stable (as expected), 63 and 67 both decline. Taken together, PEER and
COA explain 61.4% of the variation in initial status and 7.9% of the vari-
ation in rates of change. Notice that we can compare these random:eﬂ'ects
across models even though we cannot compare their ﬁxec} effects gym and\
f10). This is because the random effects describ.e the re:mdual variance of
the level-1 growth parameters—7g; or m,—which retain their meaning
across successive models even though the corresponding fixed effects (at
level-2) do not. . . .

Rejection of the null hypotheses associated wi Lh‘q‘a and o7 suggests that
there is further unpredicted variation in both initial status anfl rates of
change. If our data set had included other person—leve':l pre:‘dwlolrs,. we
would introduce them into the level-2 model to explain this variation.
But we have no such predictors. And hypothesis tests for the parameter
associated with the effect of COA on rate of change (1) suggest that it
need not be included in Models C or D as a predictor of change. In com-
parison to all other fixed effects, it is the only one whose; null hypothesis
cannot be rejected. We conclude that even though CQA is our focal ques-
tion predictor, we should remove this term to obtain a more parsimo-
nious model.

Model E: A Tentative “Final Model” for the Controlled
Effects of COA

Model E includes PEER as a predictor of both initial status and chapge
but COA as a predictor of only initial status. For ease of exposition,
we tentatively label this our “final model,” but we hasten to add that our
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decision to temporarily stop here is based on many other analyses not
shown. In particular, we examined issues of functional form, including
nonlinearity and interactions, and found no evidence of either (beyond
that which we addressed by transforming the original outcome and pre-
dictor). We discuss issues like these in section 4.8 and in subsequent chap-
ters as we extend the multilevel model for change.

By now, you should be able to interpret the fixed effects in Model E
directly. Controlling for the effects of PEER, the estimated differential
in initial ALCUSE between children of alchoholic and non-alchoholic
parents is 0.571 (p < .001) and controlling for the effect of parental alco-
holism, for each 1-point difference in PEER: the average initial ALCUSE
is 0.695 higher and the average rate of change in ALCUSE is .151 lower.
We conclude that children of alchoholic parents drink more alcohol ini-
tially than children of non-alchoholic parents but their rate of change in
consumption between ages 14 and 16 is no different. We also conclude
that PEER is positively associated with early consumption but negatively
associated with the rate of change in consumption. Fourteen-year-olds
whose friends drink more tend to drink more at that age, but they have
a slower rate of increase 1n consumption over time.

Examining the random effects for Model E in comparison to Model D,
we find no differences in (;YE; 63 or 6%, This confirms that we lose little by
eliminating the effect of COA on change. As before, rejection of all three
associated null hypotheses suggests the presence of unpredicted variation
that we might be able to explain with additional predictors. The popula-
tion covariance of the level-2 residuals, 0y, summarizes the bivariate rela-
tionship between initial status and change, controlling for the specified
etfects of COA and PEER; in other words, the partial covariance between
true initial status and change. Its estimate, —0.000, is even smaller than the
unconditional estimate of —0.068 in the initial model for change and its
associated hypothesis test indicates that it may well be zero in the popula-
tion. We conclude that, after accounting for the effects of PEER and COA,
initial status and rate of change in alcohol use are unrelated.

4.5.3 Displaying Prototypical Change Trajectories

Numerical summaries are just one way of describing the results of model
fitting. For longitudinal analyses, we find that graphs of fitted trajectories
for prototypical individuals are more powerful tools for communicating
results. These plots are especially helpful when fitted intercepts in level-
2 submodels refer to unlikely or implausible combinations of predictors,
as they do for Model E (as evidenced by the negative fitted intercept for
the initial status model). Some multilevel software packages provide these
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plots; if not, the calculations are simple and can be executed in any
spreadsheet or graphics program, as shown below.

Let us begin with Model C, which includes the effect of COA on both
initial status and change. From table 4.1, we have the following two level-
2 fitted models:

Ro; = 0.316+40.743COA;
71; = 0.293 — 0.049C0A;.

We can obtain fitted values for each group by substituting 0 and 1 for
COA:

7To; = 0.316+0.743(0) = 0.316
73 = 0.293 — 0.049(0) = 0.293
7To; = 0.316+0.743(1) = 1.059
7y = 0.293-0.049(1) = 0.244.

The average child of a non-alchoholic parent has a fitted trajectory with an
intercept of 0.316 and a slope of 0.293; the average child of an alchoholic
parent hasa fitted trajectory with an intercept of 1.059 and a slope of 0.244.

We plot these fitted trajectories in the middle panel of figure 4.3.
Notice the dramatic difference in level and trivial (nonsignificant) dif-
ference in slope. Unlike the numeric representation of these effects in
table 4.1, the graph depicts both how much higher the ALCUSE level is
at each age among children of alchoholic parents and it emphasizes the
similarity in slopes.

We can also obtain fitted trajectories by working directly with the com-
posite specification. From Model C’s composite specification ;= 0.316
+0.743COA; + 0.203 TIME; — 0.049 COA; x TIME;, we obtain the following
two trajectories by substituting in the two values of COA:

When COA; =0 {

When COA; =1 {

Y; = 0.316+0.743(0) +0.293TIME; — 0.049 (0)TIME;
Y; = 0.316+0.293TIME;
¥, =0.316+0.743 (1) +0.293TIME; — 0.049 ()TIME;
Y; =1.059 +0.244TIME;.

When COA; =0 {

By working with composite model directly, we obtain fitted trajectories
expressed as a function of TIME.

It is easy to extend these strategies to models with multiple predictors,
some of which may be continuous. Instead of obtaining a fitted function
for each predictor value, we recommend that you select prototypical values
of the predictors and derive fitted functions for combinations of these



12 Applied Longitudinal Data Analysis

sredictor values. Although you may be tempted to select many prototyp-
cal values for each predictor, we recommend that you limit yourself lest
he displays become crowded, precluding the very interpretation they
vere intended to facilitate.

Prototypical values of predictors can be selected using one (or more)
>f the following strategies:

e Choose substantively interesting values. This strategy is best for cate-
gorical predictors or those with intuitively appealing values (such
as 8, 12, and 16 for years of education in the United States).

o Use a range of percentiles. For continuous predictors without
well-known values, consider using a range of percentiles (either
the 95th, 50th, and 75th or the 10th, 50th, and 90th).

e Use the sample mean = .5 (or 1) standard deviation. Another strategy
useful for continuous predictors without well-known values.

o Use the sample mean. If you just want to control for the impact of a
predictor rather than displaying its effect, set its value to the
sample mean, yielding the “average” fitted trajectory controlling
for that predictor.

Exposition is easier if you select whole number values (if the scale
permits) or easily communicated fractions (e.g., /s, /2 and %.). When
using sample data to obtain prototypical values, be sure to do the calcu-
Jations on the time-invariant predictors in the original person data set,
not the person-period data set. If you are interested in every substantive
predictor in a model, display fitted trajectories for all combinations of
prototypical predictor values. If you want to focus on certain predictors
while statistically controlling for others, eliminate clutter by setting the
values of these latter variables to their means.

The right panel of figure 4.3 presents fitted trajectories for four pro-
totypical adolescents derived from Model E. To construct this display we
needed to select prototypical values for PEER. Based on its standard devi-
ation of 0.726, we chose 0.655 and 1.381, values positioned a half a stan-
dard deviation from the sample mean (1.018). For ease of exposition, we
label these “low” and “high” PEER. Using the level-1/level-2 specification,
we calculate the fitted values as follows:

PEER COA Initial status (7%y;) Rate of change (7y;)

Low No —0.314 + 0.695(0.655) + 0.571(0) = 0.142  0.425 — 0.151(0.655) = 0.326
Low Yes —0.314+ 0.695(0.655) +0.571(1) =0.713  0.425 — 0.151(0.655) = 0.326
High No -0.314+ 0.695(1.381) + 0.571(0) = 0.646  0.425 — 0.151(1.381) = 0.216
High Yes -0:314+0.695(1.381) + 0.571(1) =1.217  0.425 - 0.151(1.381) = 0.216
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The fitted trajectories of alcohol use differ by both parental history of
alcoholism and peer alcohol use. At each level of PEER, the trajectory for
children of alchoholic parents is consistently above that of children of
non-alchoholic parents. But PEER also plays a role. Fourteen-year-olds
whose friends drink more tend to drink more at that age. Regardless of
parental history, the fitted change trajectory for high PEER is above that
of low PEER. But PEER has an inverse effect on the change in ALCUSE
over time. The slope of the prototypical change trajectory is about 33%
lower when PEERis high, regardless of parental history. We note that this
negative impact is not sufficient to counteract the positive early effect of
PEER. Despite the lower rates of change, the change trajectories when
PEER is high never approach, let alone fall below, that of adolescents
whose value of PEER is low.

4.5.4 Recentering Predictors to
Improve Interpretation

When introducing the level-1 submodel in chapter 9. we discussed the
interpretive benefits of recentering the predictor used to represent time.
Rather than entering time as a predictor in its raw form, we suggested
that you subtract a constant from each observed value, creating variables
like AGE-11 (in chapter 2), AGE-1 (in chapter 3), and AGE-14 (here in
chapter 4). The primary rationale for temporal recentering is that it sim-
plifies interpretation. If we subtract a constant from the temporal pre-
dictor, the intercept in the level-1 submodel, 7, refers to the true value
of Y at that particular age—11, 1, or 14. If the constant chosen represents
a study’s first wave of data collection, we can simplify interpretation even
further by referring to 7, as individual i's true “initial status.”

We now extend the practice of rescaling to time-invariant predictors
like COA and PEER. To understand why we might want to recenter time-
invariant predictors, reconsider Model E in tables 4.1 and 4.2. When it
came to the level-2 fitted intercepts, Yoo and F10, interpretation was dif-
ficult because each represents the value of a level-1 individual growth
parameter—7l; Or 7 —when all predictors in the associated level-2 model
are 0. If a level-2 model includes many substantive predictors or if zero
is not a valid value for one or more of them, interpretation of its fitted
intercepts can be difficult. Although you can always construct prototypi-
cal change trajectories in addition to direct interpretation of parameters,
we often find it easier to recenter the substantive predictors before analy-
sis so that direct interpretation of parameters is possible.

The easiest strategy for recentering a time-invariant predictor is to
subtract its sample mean from each observed value. When we center a



this chapter, we therefore adopt Model F as our “final model.” (We con-
tinue to use quotes to emphasize that even this model might be set aside
in favor of an alternative in subsequent analyses.)

4.6 Comparing Models Using Deviance Statistics

In developing the taxonomy in tables 4.1 and 4.2, we tested hypotheses
on fixed effects and variance components using the single parameter
approach of chapter 3. This testing facilitated our decision making and
helped us determine whether we should render a simpler model more
complex (as when moving from Model B to C) or a more complex model
simpler (as when moving from Model D to E). As noted in section 3.6,
however, statisticians disagree as to the nature, form, and effectiveness of
these tests. The disagreement is so strong that some multilevel software
packages do not routinely output these tests, especially for variance com-
ponents. We now introduce an alternative method of inference—based
on the deviance statistic—which statisticians seem to prefer. The major
advantages of this approach are that it: (1) has superior statistical prop-
erties; (2) permits composite tests on several parameters simultaneously;
and (3) conserves the reservoir of Type I error (the probability of incor-
rectly rejecting H, when it is true).

4.6.1 The Deviance Statistic

The easiest way of understanding the deviance statistic is to return to
the principles of maximum likelihood estimation. As described in section
3.4, we obtain ML estimates by maximizing numerically the log-likelihood
function, the logarithm of the joint likelihood of observing all the sample
data actually observed. The log-likelihood function, which depends on
the hypothesized model and its assumptions, contains all the unknown
parameters (the y’s and ¢’s) and the sample data. ML estimates are those
values of the unknown parameters (the 7’s and &7s) that maximize the
log-likelihood.

/ As a by-product of ML estlmatlon the computer determines the mag-

' nitude of the log-likelihood function for this particular combination of
observed data and parameter estimates. Statisticians call this number the
sample log-likelihood statistic, often abbreviated as LL. Every program that
uses ML methods outputs the LL statistic (or a transformation of it). In
general _if you fit several competing models to the same data, the larger
the LL statistic, the better the fit. This means that if the models you
compare yield negative LL statistics, those that are smaller in absolute
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value—i.e., closer to 0—fit better. (We state this obvious point explicitly
as there has been some confusion in the literature about this issue.)
' : -likelihood statistics for two models:

(1)_the current model. the model just fit; and (2) a saturated model, a more
general model that fits the sample data perfectly. For reasons explained

below, deviance is defined as this difference multiplied by —2:
Deviance = —Q[L-Lcurren[ model — L[saturated model]- (415)

For a given set of data, deviance quantifies how much worse the current)
model is in comparison to the best possible model. A model with a small
deviance statistic is nearly as good as any you can fit; a model with a
large deviance statistic is much worse. Although the deviance statistic may
appear unfamiliar, you have used it many times in regression analysis

where it is identical to the residual sum of squares, (E(Y —}}-)2)
i=l

To calculate a deviance statistic, you need the log-likelihood statistic
for the saturated model. Fortunately, in the case of the multilevel mode
for change, this is easy because a saturated model contains as many
parameters as necessary to achieve a perfect fit, reproducing every
observed outcome value in the person-period data set. This means that
the maximum of its likelihood function—the probability that it will per-
fectly reproduce the sample data—is 1. As the logarithm of 1 is 0, the log-
likelihood statistic for the saturated model is 0. We can therefore drop
the second term on the righthand side of equation 4.15, defining the
deviance statistic for the multilevel model for change as:

Deviance = _QLLcurrem model- (416)

Because the deviance statistic is just =2 times the sample log-likelihood,
many statisticians (and software packages) label it —2logL. or —2LL. Asl
befits its name, we prefer models with smaller values of deviance.

The multiplication by ~2 invoked during the transition from log-
likelihood to deviance is more than cosmetic. Under standard normal}
theory assumptions, the difference in deviance statistics between a pair of
nested models fit to the identical set of data hasa known dlStI‘lbuthIl This,
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because a difference of logarithms is equal to the logarithm of a ratio.

4.6.2 When and How Can You Compare
Deviance Statistics?

Deviance statistics for the seven models fit to the alcohol use data appear
in table 4.1.:They range from a high of 670.16 for Model A to a tow of

l
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predictor on its sample mean, the level-2 fitted intercepts represent the
average fitted values of initial status (or rate of change). We can also recen-
ter a time-invariant predictor by subtracting another meaningful value—
for example, 12 would be a suitable centering constant for a predictor
representing years of education among U.S. residents; 100 may be a suit-
able centering constant for scores on an IQ test. Recentering works best
when the centering constant is substantively meaningful—either because
it has intuitive meaning for those familiar with the predictor or because
it corresponds to the sample mean. Recentering can be equally benefi-
cial for continuous and dichotomous predictors. ‘

Models F and G in tables 4.1 and 4.2 demonstrate what happens when
we center the time-invariant predictors PEER and COA on their sample
means. Each of these models is equivalent to Model E, our tentative
“final” model, in that all include the effect of COA on initial status and
the effect of PEER on both initial status and rate of change. The differ-
ence between models is that before fitting Model F, we centered PEER
on its sample mean of 1.018 and before fitting Model G, we also centered
COA on its sample mean of .451. Some software packages (e.g., HLM)
allow you to center predictors by toggling a switch on an interactive
menu; others (e.g., MLwiN and SAS PROC MIXED) require you to create
a new variable using computer code (e.g., by computing CPEER = PEER
—1.018). Our only word of caution is that you should compute the sample
mean in the person-level data set. Otherwise, you may end up giving greater
weight to individuals who happen to have more waves of data (unless the
person-period data set is fully balanced, as it is here).

To evaluate empirically how recentering affects interpretation,
compare the last three columns of table 4.1 and notice what remains the
same and what changes. The parameter estimates for COA and PEER
remain identical, regardless of recentering. This means that conclusions
about the effects of predictors like PEER and COA are unaffected: ¥y
remains at 0.571, 7 remains at 0.695, and 7, remains at —0.151 (as do
their standard errors). Also notice that each of the variance components
remains unchanged. This demonstrates that our conclusions about the
variance components for the level-1 and level-2 residuals are also unaf-
fected by recentering level-2 predictors.

What does differ across Models E, F and G are the parameter estimates
(and standard errors) for the intercepts in each level-2 submodel. These
estimates change because they represent different parameters:

¢ If neither PEER nor COA are centered (Model E), the intercepts
represent a child of non-alchoholic parents whose peers at age 14
were totally abstinent (PEER = 0 and COA =0).
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e If PEER is centered and COA is not (Model F), the intercepts
represent a child of non-alchoholic parents with an average value
of PEER (PEER=1.018 and COA = 0).

e If both PEER and COA are centered (Model G), the intercepts rep-
resent an average study participant—someone with average values
of PEER and COA (PEER=1.018 and COA = 0.451).

Of course, this last individual does not really exist because only two
values of COA are possible: 0 and 1. Conceptually, though, the notion of
an average study participant has great intuitive appeal.

When we center PEER and not COA in Model F, the level-2 intercepts
describe an “average” child of non-alchoholic parents: 7o estimates his
or her true initial status (0.394, p < .001) and Y10 estimates his or her
true rate of change (0.271, p < .001). Notice that the latter estimate is
unchanged from Model B, the unconditional growth model. When we
go further and center both PEERand COA in Model G, each level-2 inter-
cept is numerically identical to the corresponding level-2 intercept in the
unconditional growth model (B).”

Given that Models E, F, and G are substantively equivalent, which
do we prefer? The advantage of Model G, in which both PEER and
COA are centered, is that its level-2 intercepts are comparable to those
in the unconditional growth model (B). Because of this comparability,
many researchers routinely center all time-invariant predictors—eve
dichotomies—around their grand means so that the parameter esu’ma[el!
that result from the inclusion of additional predictors hardly change.
Model E has a different advantage: because each predictor retains its
original scale, we need not remember which predictors are centered and
which are not. The predictor identified is the predictor included.

But both of these preferences are context free; they do not reflect
our specific research questions. When we consider not just algebra but
research interests—which here focus on parental alcoholism—we find
ourselves preferring Model F. We base this decision on the easy inter-
pretability of parameters for the dichotomous predictor COA. Not only
is zero a valid value, it is an especially meaningful one (it represents chil-
dren of non-alchoholic parents). We therefore see little need to center
its values to yield consistency in parameter estimates with the uncondi-
tional growth model. When it comes to PEER, however, we have a differ-
ent preference. Because it is of less substantive interest—we view it as a
control predictor—we see no need not to center its values. Our goal is to
evaluate the effects of COA controlling for PEER. By centering PEER at
its mean, we achieve the goal of statistical control and interpretations of
the level-2 intercepts are reasonable and credible. For the remainder of



é A 1(11)'si5
'mdinal pata AT ]
i fodel F as our final mode] »

= al m 4
hat even this model mighg pe Sebag

analyses.) aSide

lie \'
- AD > t!
ApP : crefore adOP :
1 nphasize

- we the
er.
this chaP™™” yotes € ° in subsequent

atve

in fav St
viance Statistics

_ Models Using D¢

mp
6 Co
4 LﬂXO no lny

bles 4.1 and .4.‘2, we tested hYPOthese
eloping d yariance Compon_e.nts uls mg_tclse .Sl.ngle paljametei
In de¥ offects an This testing facilitated our ecision makmg ang
on fixe ~f chapter 5 s we should render a simpler mode] yy,,
apprO2 erermin€ WP Nfodel B to C) or amore complex Modg
S€Ction 3.2

he]ped 5 when moving = Model D to E). As noted in
to the nature, form, and effectiVenESS o,f

ing fro

t is so strong that some multileve] software
2 :nely output these S ESpEGL Y f OT variance gop,
o not routine’ an alternative method of mference\based
erduf;ich statisticians seem to prefer. The major

h are that it: (1) has superior statistica] pro
ts on several parameters simultaneo“sly.
f Type I error (the probability of inc0ri

in ta

We now ¢
nts. o
pon deviance statistic—

i ac

this apPro

tages of : ;
adx"an' ‘%) ermits composite Fe
e the reservoir O

H, when it is true).

' 46.1 The Deviance Statistic

‘1o the deviance statistic iS to return to
The easigst i u;;r?sfrsltﬁigllirl]f)od estimation. As described in section
the princip l.e - Of]jn 2::imates by maximizing numerically the log-likelihood
ok ObramlM ar?thm of the joint likelihood of observing all the sample
iy Lﬁe Obgsewed The log—likelihood function, which depends on
e ac{ut?}eysiged mod;:l and its assumptions, contains all the unknown
glafafx;yg;rs (the y’s and 075) and the saxnp}6 data. l}{IL estimates are those
values of the unknown parameters (the 7’s and 6’s) that maximize the
Jikelihood. i
lngxlsl];lei:y-product of ML estimation, the computer determines thf? mag;
nitude of the loglikelihood function for this particular C(?mbmalt)lonLhe
observed data and parameter estimates. Statisticians call this num ertmt
sample log-likelihood statistic, often abbreviated as LL. Every progrant 5
uses ML methods outputs the LL statistic (or a transformation of it).

er
general if you fit several competing models to the same data ﬂ:flls ra
the LL suiistic, the better the fit. This means that if the mO¢e y

compare yield negative LL statistics, those that are smaller M

absolute

Datz alysi
ata Analys;g With the Mulyj)
1

: evel Model
alvesifel oo o ()__ﬁt odel for Change 117

as there has been some ¢,

: sons explained
nce multiplied by —-2: 2

urrent mode] — LL

Deviance = —AVLIL, ]
aturated mode] |- (415)

0w much worse the current
odel. A model with a small

For a given set of data, deviance
model is in cgmparison to the best Possib]

(lC\riml(jt‘.SLZIUSUC is nearly as good as g
Jarge deviance statistic is much worse,
appear unfamiliar,

quantifies ,

where it is identical to the residual sum of squares (i(y ?)2)

\ln (:21,1,(:Llléte 3 deviance statistic, YOu need the log-likelihood statistic
for the saturated model. Fortunatelyinithe case of the multilevel mode

for change, this is easy because a saturated model contains
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obscrvcd outcome value in the person-period data’set This me§ns that
the maximum of its likelihood function—the probability that it will ear-
fectly reproduce the sample data—is 1. As the logarithm of 1 is 0 theEl)o =
likelihood statistic for the saturated model is 0. We can therefc,)re drogp

the second tferm on the right-hand side of equation 4.15, defining the
deviance statistic for the multilevel model for change as:

Deviance == NS 4 | (4.16)
Because the deviance statistic is just =2 times the sample log-likelihood,
many statisticians (and software packages) label it —2logl. or —2LL. As
befits its name, we prefer models with smaller values of deviance.

The multiplication by -2 invoked during the transition from log-
likelihood to deviance is more than cosmetic. Under standard normal
theory assumptions, the difference in deviance statistics between a pair of
nested models fit to the identical set of data has a known distribution. This,

i=1

between competing model
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4.6.2 When and How Can You Compare
Deviance Statistics?

Deviance statistics for the seven models fit to the alcohol use data appear
in table 4.1.\They range from a high of 670.16 for Model A to a tow of
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588.69 for Model D. We caution that you cannot directly interpret their
magnitude (or sign). (Also notice that the deviance statistics for Models
E, F, and G are identical. Centering one or more level-2 predictors has
absolutely no effect on this statistic.)
To compare deviance statistics for two models, the models must meet
certain_criteria. At a minimum: (1) each must be estimated using the
_identical data; and_(2) one must be nested within the other, The con-
. stancy of data criterion requires that you eliminate any record in the
person-period data set that is missing for any variable in either model.
A difference of even one record invalidates the comparison. The nesting
criterion requires that you can specify one model by placing constraints
on the parameters in the other. The most common constraint is to set
one or more parameters to 0. A “reduced” model is nested within a
“full” model if every parameter in the former also appears in the
latter.
When comparing multilevel models for change, you must attend to
a third issue before comparing deviance statistics. Because these models
involve two types of parameters—fixed effects (the y’s) and variance com-
ponents (the 0’s)—there are three distinct ways in which full and reduced
models can differ: in their fixed effects, in their variance components,
or in some combination of each. Depending upon the method of esti-
mation—full or restricted ML—only certain types of differences can be
tested. This limitation stems from principles underlying the estimation
methods. Under FML (and IGLS), we maximize the likelihood of the
sample data; under RML (and RIGLS), we maximize the likelihood of
the sample 7esiduals. As a result, an FML deviance statistic describes the
#fit of the entire model (both fixed and random effects), but a RML
! deviance statistic describes the fit of only its stochastic portion of the
\ model (because, during estimation, its fixed effects are assumed
“known”). This means that if you have applied FML estimation, as we
have here, you can use deviance statistics to test hypotheses about any
/" combination of parameters, fixed effects, or variance components. But if
_vou have used RML to fit the model, you can use deviance statistics to
test_hypotheses only about variance components. Because RML is the
default method in some multilevel programs (e.g., SAS PROC MIXED},
caution is advised. Before using deviance statistics to test hypotheses, be
sure you are clear about which method of estimation you have used.
Having fit a pair of models that meets these conditions, conducting
tests is easy. Under the null hypothesis that the specified constraints hold,
the difference in deviance statistics between a full and reduced model
[l (often called “delta deviance” or AD) is distributed asymptotically as a e
ﬂ\ distribution with degrees of freedom (d.f.) equal to the number of inde-

Domg Data Analysis with the Mulllevel MOodael I0T Lndnge L1

pendent constraints imposed. If the models differ by one parameter, you
have one degree of freedom for the test; if they differ by three parame-
ters, you have three. As with any hypothesis test, you compare AD to a
critical value, appropriate for that number of degrees of freedom, reject-
ing H, when the test statistic is large.*

4.6.3 Implementing Deviance-Based Hypothesis Tests

Because the models in table 4.1 were fit using Full IGLS, we can use
deviance statistics to compare their goodness-of-fit, whether they differ
by only fixed effects (as do Models B, C, D, and E, F, G) or both fixed
effects and variance components (as does Model A in comparison to all
others). Before comparing two models, you must: (1) ensure that the data
set has remained the same across models (it does); (2) establish that the
former is nested within the latter; and (3) compute the number of addi-
tional constraints imposed.

Begin with the two unconditional models. We obtain multilevel Model
A from Model B by invoking three independent constraints: %, =0, 0% =
0, and oy = 0. The difference in deviance statistics, (670.16 — 636.61) =
$3.55, far exceeds 16.27, the .001 critical value of a }” distribution on 3
d.f., allowing us to reject the null hypothesis at the p < .001 level that all
three parameters are simultaneously 0. We conclude that the uncondi-
tional growth model provides a better fit than the unconditional means
model (a conclusion already suggested by the single parameter tests for
each parameter).

Deviance-based tests are especially useful for comparing what happens
when we simultaneously add one (or more) predictor(s) to each level-2
submodel. As we move from Model B to Model C, we add COA as a pre-
dictor of both initial status and rate of change. Noting that we can obtain
the former by invoking two independent constraints on the latter (setting
both 9, and 7%, to 0) we compare the difference in deviance statistics of
(636.61 ~ 621.20) = 15.41 to a ¥ distribution on 2 d.f. As this exceeds
the .001 critical value (13.82), we reject the null hypothesis that both %,
and 7, are simultaneously 0. (We ultimately set %4, to 0 because we are
unable to reject its single parameter hypothesis test in Model D. Com-
paring Models D and E, which differ by only this term, we find a trivial
difference in deviance of 0.01 on 1 4.f).

You can also use deviance-based tests to compare nested models with
identical fixed effects and different random effects. Although the strat-
egy is the same, we raise this topic explicitly for two reasons: (1) if you
use restricted methods of estimation (RML or RIGLS), these are the only
types of deviance comparisons you can make; and (2) they address an

R
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important question we have yet to consider: Must the complete set of
random effects appear in every multilevel model?

In every model considered so far, the level-2 submodel for each indi-
vidual growth parameter (7 and ;) has included a residual (& or &).
This practice leads to the addition of three variance components: a3, O,
and @p;. Must all three always appear? Might we sometimes prefer a more
parsimonious model? We can address these questions by considering the
consequences of removing a random effect. To concretize the discussion,
consider the following extension of Model F, which eliminates the second
level-2 residual, {;

Y; =Ty + 7, TIME; + &
Toi = Yoo + Y01COA; + Y 0:CPEER; + Co;
Ty =% +y12CPEERi:

and g, ~ N (0, 03) and &~ N (0, 67). In the parlance of multilevel mod-
eling, we have “fixed” the individual growth rates, preventing them from
varying randomly across individuals (although we allow them to be
related to CPEER). Removing this one level-2 residual (remember, resid-
uals are not parameters) eliminates two variance components (which are
parameters): 67 and Op;. :

Because the fixed effects in this reduced model are identical to those
in Model F, we can test the joint null hypothesis that both o3? and oy, are
0 by comparing deviance statistics. When we fit the reduced model to
data, we obtain a deviance statistic of 606.47 (not shown in table 4.1).
Comparing this to 588.70 (the deviance for Model F) yields a difference
of 18.77. As this exceeds the .001 critical value of a ¥ distribution with 2
d.f. (18.82), we reject the null hypothesis. We conclude that there is resid-
ual variability in the annual rate of change in ALCUSE that could poten-
tially be explained by other level-2 predictors and that we should retain
the associated random effects in our model.

4.6.4 AIC and BIC Statistics: Comparing Nonnested
Models Using Information Criteria

You can test many important hypotheses by comparing deviance statistics
for pairs of nested models. But as you become a more proficient data
analyst, you may occasionally want to compare pairs of models that are
not nested. You are particularly likely to find yourself in this situation
when you would like to select between alternative models that involve dif-
ferent sets of predictors.

Suppose you wanted to identify which subset of interrelated predictors
best captures the effect of a single underlying construct. You might, for
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example, want to control statistically for the effects of parental socioeco-
nomic status (SES) on a child outcome, yet you might be unsure which
combination of many possible SES measures—education, occupation, or
income (either maternal or paternal)—to use. Although you could use
principal components analysis to construct summary measures, you
might also want to compare the fit of alternative models with different
subsets of predictors. One model might use only paternal measures;
another might use only maternal measures; still another might be
restricted only to income indicators, but for both parents. As these
models would not be nested (you cannot recreate one by placing con-
straints on parameters in another), you cannot compare their fit using
deviance statistics.

We now introduce two ad hoc criteria that you can use to compare the
relative goodness-of-fit of such models: the Akai ke Information Criterion
(AIC: Akaike, 1978) and the Bavesian Information Criterion (BIC;
Schwarz. 1978). Like the deviance statistic. each is based on the log-
likelihood statistic. But instead of using the LL itself. each “penalizes”
(ie. decreases) the LI according to pre=specified criteria, The AIC
penalty is based upon the number of model parameters. This is because
adding parameters—even if they have no effect—will increase the LL sta-
tistic, thereby decreasing the deviance statistic. The BIC goes further. Its

vis | ] ; rameters, but also on the
sample size. In larger samples. you will need a larger improvement before
~ou prefer a more complex mode] to a simpler one, In each case, the
result is multiplied by —2 so that the information criterion’s scale is
roughly equivalent to that of the deviance statistic. (Note that the number
of parameters you consider in the calculations differs under full and
restricted ML methods.) Under full ML, both fixed effects and variance
components are relevant. Under restricted ML, as you would expect, only
the variance component parameters are relevant.

Formally, we write:

Information _ _ :
critesion - —9[LL — (scale factor)(number of model parameters)]

= Deviance + 2(scale factor) (number of model parameters).

For the AIC. the scale factor is 1; for the BIC, it is half the log of the,
sample size. This latter definition leaves room for some ambiguity, as it
is not clear whether the sample size should be the number of individu-
als under study or the number of records in the person-period data set.
In the face of this ambiguity, Raftery (1995) recommends the former fo
mulation, which we adopt here.
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AICs and BICs can be compared for p
vhether one is nested within another, as long as both are fil to the identi-
‘al_set of data. The model with the smaller information criterion (either
AIC or BIC) fits “betier,” As each successive model in table 4.1 is nested
vithin a previous one, informal comparisons like these are unnecessary.
3ut to illustrate how to use these criteria, let us compare Models B and
Z. Model B involves six parameters (two fixed effects and four variance
-omponents); Model C involves eight parameters (two additional fixed
sffects). In this sample of 82, we find that Model B has an AIC statistic
> 636.6 + 2(1) (6) = 648.6 and an BIC of 636.6 + 2(In(82) /2) (6) = 663.0,
vhile Model C has an AIC statistic of 621.2 + 2(1) (8) = 637.2 and an BIG
>f 621.2 + 2(In(82) /2) (8) = 656.5. Both criteria suggest that C is prefer-
able to B, a conclusion we already reached via comparison of deviance
statistics.

Comparison of AIC and BIC statistics is an “art based on science.”
Unlike the objective standard of the x* distribution that we use to
compare deviance statistics, there are few standards for comparing infor-
mation criteria. While large differences suggest that the model with the
smaller value is preferable, smaller differences are difficult to evaluate.
Moreover, statisticians have yet to agree on what differences are “small”
or “large.” In his excellent review extolling the virtues of BIC, Raftery
(1995) declares the evidence associated with a difference of 0-2 to be
“weak,” 2-6 to be “positive,” 6-10 to be “strong,” and over 10 to be “very
strong.” But before concluding that information criteria provide a
panacea for model selection, consider that Gelman and Rubin (1995)
declared these statistics to be “off-target and only by serendipity manage
to hit the target in special circumstances” (p. 165). We therefore offer a
cautious recommendation to examine information criteria and to use
them for model comparison only when more traditional methods cannot
be applied.

4.7 Using Wald Statistics to Test Composite Hypotheses
About Fixed Effects

Deviance-based comparisons are not the only method of testing com-
posite hypotheses. We now introduce the Wald statistic, a generalization
of the “parameter estimate divided by its standard error” strategy for
testing hypotheses. The major advantage of the Wald statistic js its gen-
erality: vou can test composite hypotheses about multiple effects regard-
Jless of the method of estimation used. This means that if you use
restricted methods of estimation, which prevent you from using deviance-
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based tests to compare models

with different fixed effects, you still haveS

a means of testing composite hypotheses about sets of fixed effects.

Suppose, for example, you

wanted to test whether the entire true

change trajectory for a particular type of adolescent—say, a child of non-
alchoholic parents with an average value of PEER——diffe.rs.from a “null

trajectory (one with zero intercept and zero slope). This is tantamount
to asking whether the average child of non-alchoholic parents drinks no

alcohol at age 14 and remains

abstinent over time.

To test this composite hypothesis, you must first figure out the entire
set of parameters involved. This is easier if you start with a model’s com-

posite representation, such as

L\’IOdel F: Y& = %Q + }’0] COA, + %QCPEER, +

Yo TIME; + %2 CPEER; X TIME; + [&oi + §uTIME; + €;). To identify param-
eters, simply derive the true change trajectory for the focal group, here
children of non-alchoholic parents with an average value of CPEER. Sub-
stituting COA =0 and CPEER = 0 we have: E[Y;| COA=0, CPEE‘R =0]=
oo + Y01(0) + 7%2(0) + Y10 TIME; + 712(0) X TIME; = Yoo + Y0 TIME;, where

the expectation notation, E[. .

tations eliminates the level-1

.], indicates that this is the average popula-

tion trajectory for the entire COA = 0, CPEER = 0 subgroup. Taking expec-

and level-2 residuals, because—like all

residuals—they average to zero. To test whether this trajectory differs
from the null trajectory in the population, we formulate the composite

null hypothesis:

H():'}/()() =0 and Y10 = 0. (4:17)

This joint hypothesis is a composite statement about an entire popula-
tion trajectory, not a series of separate independent statements about

each parameter.

We now restate the null hypothesis in a generic form known as a general
linear hypothesis. In this representation, each of the model’s fixed effects

is multiplied by a judiciously

chosen constant (an integer, a decimal, 2

fraction, or zero) and then the sum of these products is equated to
another constant, usually zero. This “weighted linear combination” of

parameters and constants is

called a linear contrast. Because Model F

includes five fixed effects—even though only two are under scrutiny here

—we restate equation 4.17 as

Ho:l')/oo +O'J/01 + 0')/02 +0'J/10 +O'}/12 =0
0'}/00 + O'J/()l + 0'}/02 +1'y]0 + 0'}/12 =0.

the following general linear hypothesis:

(4.18) |

Although each equation includes all five fixed effects, the carefullzJ

chosen multiplying constants
focal parameters, Yo and %o,

(the weights) guarantee that only the tw
remain viable in the statement. While this
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may seem like little. more than an excessively parameterized reshuffling
of symbols, its structure allows us to invoke a widely used testing strategy.

Most software programs require you to express a general linear
hypotheses in matrix notation. This allows decomposition of the hypoth-
esis into two distinct parts: (1) a matrix of multiplying constants (e.g., the
0’s and 1’s in equation 4.18); and (2) a vector of parameters (e.g., the
7’s). To construct the matrix of multiplying constants, commonly labeled
a constraints or contrast matrix, C, simply lift the numbers in the general
linear hypothesis equation en bloc and array them in the same order.
From equation 4.18 we have:

c 10000
0001 0f
To form the vector of fixed effects, commonly labeled the parameter vector,

or %, lift the parameters in the general linear hypothesis en bloc and array
them in the same order as well:

Y =Yoo Yo Yoo Yo Yiz)

The general linear hypothesis is formed from the product of the C matrix
and the transposed yvector: .

L1 0000 _m
“lo 0 01 of"™| ol

which can be written generically as: Hy: Cy’ = 0. For a given model, the
elements of Cwill change from hypothesis to hypothesis but the elements
of ywill remain the same.

the weighted linear combination of parameters to its estimated variance.
As the variance of an estimate is the square of its standard error, the Wald
statistic then resembles a squared zstatistic. (Indeed, if you use a Wald
statistic to test a null hypothesis about a single fixed effect, Wreduces to
the square of the usual zstatistic.) Under the null hypothesis and usual
normal theory assumptions, W has a y* distribution with degrees of
freedom equal to the number of rows in the C matrix (because the
number of rows determines the number of independent constraints the

Doing Data Analysis with the Multilevel Model for Change 12%

null hypothesis invokes). For this hypothesis, we obtain a Wald statistic
of 51.01 on 2 d.f, allowing us to reject the composite null hypothesis in
equation 4.18 at the .001 level.

General linear hypotheses can address even more complex questions
about change over time. For example, when we examined the OLS esti-
mated change trajectories in figure 4.2, we noticed that among children
of non-alchoholic parents, those with low values of CPEER tended to have
a lower initial status and steeper slopes than those with high values of
CPEER. We might therefore ask whether the former group “catches up”
to the latter. This is a question about the “vertical” separation between
these two groups” true change trajectories at some later age, say 16.

To conduct such a test, you must once again first figure out the specific
parameters under scrutiny. As before, we do so by substituting appropri-
ate predictor values into the fitted model. Setting COA to 0 (for the chil-
dren of non-alchoholic parents) and now selecting —.363 and +.363 as the
low and high values of CPEER (because they correspond to .5 standard
deviations on either side of the centered variable’s mean of 0) we have:

E[Yj|COA =0, CPEER = low] = Yoo + ¥01(0) + Yo2(—.363)+ Yo TIME;
+712(~.363) x TIME,
= (Yoo —-363702) +(¥10 —.363y12) TIME;
E[Y;ICOA = 0, CPEER = high] = Yoo +Y0n(0)+ ¥02(.363) + 1, TIME,
+712(.363) X TIME;
= (Yoo +-363702)+ (710 +.368y.2) TIME;.

The predicted ALCUSE levels at age 16 are found by substituting TIME =
(16 — 14) = 2 into these equations:

E[Y}ICOA = O, CPEER = ZOZU] = ')/00 B 363'}’02 + Q'Ym . 2(363)'}/12
E[Y}ICOA = O, CPEER B hlgk] s YOO + .363'}/02 + 2'}/10 + 2(363)712

How do we express the “catching up” hypothesis? If the low CPEER
group “catches up,” the expected values of the two groups should be iden-
tical at age 16. We therefore derive the composite null hypothesis by
equating their expected values:

Yoo —-363Y02+ 2y 10 — 2(.363)y12 = Yoo +.863Y 09 + 2¥ 10 + 2(.363)y15.

Simplifying yields the following constraint , + 2%, = 0, which we can be
re-expressed as:

Hy:0%0 + 0% + 1969 + 0759 + 2940 = 0. (4.19)
Notice that unlike the composite null hypothesis in equation 4.18, which
required two equations, this composite null hypothesis requires just one.
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This is a result of a reduction in the number of independent constraints.
Because the first hypothesis simultaneously tested two independent state-
ments—one about %, and the other about y,—it required two separate
equations. Because this hypothesis is just a single statement—albeit about
two parameters, ¥ and yo—it requires just one. This reduction reduces
the dimensions of the contrast matrix, C.

We next express the composite null hypothesis in matrix form. The
parameter vector, % remains unchanged from equation 4.18 because the
model has not changed. But because the null hypothesis has changed,
the constraint matrix must change as well. Stripping off the numerical
constants in equation 4.19 we have C=[0 0 1 0 2].

As expected, C is just a single row reflecting its single constraint. The
composite null hypothesis is: 7

Yoo

Yo
Hyf0 0 1 0 2]70e|=[0]

Y10

T
which has the requisite' Cy” = 0 algebraic form. Conducting this test we
ﬁ.nd-that we can reject the null hypothesis at the usual level of statistical
mgmﬁcanc.e Ve = 6.23, p = .013). We conclude that these average true
change trajectories do not converge by age 16. In other words, the alcohol

consumption of children of non-alchoholic parents with low CPEER

does not catch up to the alcohol consumption of children of non-
alchoholic parents with high CPEER.

) 3 : . St i is form. general
: : " ; i . It is par-
ncularlv usef or cond o omnibus tests of several level-2 predicto 0

If we represent a nominal or ordinal predictor using a set of indicator
variables, we could use this approach to test their overall effect and eval-
uate pair-wise comparisons among subgroups.

™

Although Wald statistics can be used to test hypotheses about variance
w@wx@ The small-sample dis-
.trlbuuon theory necessary for these tests is poorly developed. It is only
in very lgrge samples—that is, asymplotically—that the distribution of a
W statistic involving variance components converges on a ¥* distribution

1as your sample size tends to infinity. We therefore do not recommend

the use of Wald statistics for composite null hvpotheses about variance
components.

LJOLLLY 17l SILLALYOLD YYALhL Lias drasssvass s ~= = -

4.8 Evaluating the Tenability of a Model’s Assumptions ‘

Whenever you fit a statistical model, you invoke assumptions. When yc
use ML methods to fit a linear regression model, for example, you assun
that the errors are independent and normally distributed with consta
variance. Assumptions allow you to move forward, estimate paramete:
interpret results, and test hypotheses. But the validity of your conclusio
rests on your assumptions’ tenability. Fitting a model with untenal
assumptions is as senseless as fitting a model to data that are knowing
flawed. Violations lead to biased estimates, incorrect standard errors, a1
erroneous inferences.

When you fit a multilevel model for change, you also invoke assurr
tions. And because the model is more complex, its assumptions are mc
complex as well, involving both structural and stochastic features at ea
level. The structural specification embodies assumptions about the tr
functional form of the relationship between outcome and predicto
At level-1. vou specify the shape of the hypothesized individual chan
trajectory. declaring it to be linear (as we have assumed s or 1«
linear (as we assume in chapter 6). At level-2, you specify the relations}
And. as in regular regression analysis. you can specify that the leve
relationship is linear (as we have so far) or more complex (nonline
discontinuous, or potentially interactive). The stochastic specificat
embodies assumptions about that level’s outcome (either Y at level-1
m,; and 7y; at level-2) that remains unexplained by the model’s predict
Because you know neither their nature nor value, you make assumpti
about these error distributions, typically assuming univariate normalit
level-1 and bivariate normality at level-2.

No analysis is complete until you examine the tenability of your assw
tions. Of course, you can never be completely certain about the tenab
of assumptions because you lack the very data you need to evaluate tl
tenability: information about the population from which your sample
drawn. Assumptions describe true individual change trajectories, pop
tion relationships between frue individual growth parameters and lev
predictors, and true errors for each person. All you can examine are
observed properties of sample quantities—jitted individual change traje
ries, estimated individual growth parameters, and sample residuals.

Must you check the assumptions underlying every statistical model
fit? As much as we would like to say yes, reality dictates that we say
Repetitive model checking is neither efficient nor plausible. We sug

instead that you examine the assumptions of several initial models
then aeain in any model vou cite or interpret explicitly.
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We offer simple multilevel model checking strategies in the three sec-
tions below. Section 4.8.1 reviews methods for assessing functional form;
although we introduced the basic ideas earlier, we reiterate them here
for completeness. We then extend familiar strategies from regression
analysis to comparable issues in the multilevel context: assessing nor-
mality (section 4.8.2) and homoscedasticity (section 4.8.3). Table 4.3 sum-
marizes what you should look for at each stage of this work.

4.8.1 Checking Functional Form

The most direct way of examining the functional form assumptions in the
multilevel model for change is to inspect “outcome versus gredlgm!,.
plots at each level.

» At level-1. For each individual, examine empirical growth plots -
and superimpose an OLS-estimated individual change trajectory.
Inspection should confirm the suitability of its hypothesized
shape.

e At level-2. Plot OLS estimates of the individual growth parameters
against each level-2 predictor. Inspection should confirm the suit-
ability of the hypothesized level-2 relationships.

For the eight adolescents in figure 4.1, for example, the hypothesis of
linear individual change seems reasonable for subjects 23, 32, 56 and 65,
but less so for subjects 04, 14, 41, and 82. But it is hard to argue for sys-
tematic deviations from linearity for these four cases given that the depar-
tures observed might be attributable to measurement error. Inspection
of empirical growth plots for the remaining adolescents leads to similar
conclusions.

Examination of the level-2 assumptions is facilitated by figure 4.4,
which plots OLS-estimated individual growth parameters against the two
substantive predictors. In the left pair of plots, for COA, there is nothmg
to assess because a linear model is de facto acceptable for dichotomous
predictors. In the right pair of plots for PEER, the level-2 relationships
do appear to be linear (with only a few exceptions).

4.8.2 Checking Normality

Most multilevel modeling packages can output estimates of the level-1
and level-2 errors, g, {; and ;. We label these estimates, £; {q; and {1,
“raw residuals.” As in regular regression, you can examine their behavior
using exploratory analyses. Although you can also conduct formal tests
‘for normality (using Wilks-Shapiro and Kolmogorov-Smirnov stat1st1cs
say), we prefer visual inspection of the residual distributions.

is no linearity assumption for 7,
points in a plot of

standardized {4, vs. ID. There is also

evidence of a floor effect in the

outcome.

-~

level-2 residual, {;

A plot of E],- vs. normal scores

A plot of En vs. COA suggests

homoscedasticity at both values

Plot of 7 ; vs. PEER suggests a weak

linear relationship.
of COA. So does a plot vs. PEER at

support for this claim when we find
least for values up to, and

Because COA is dichotomous, there
upper tail. The lower tail seems

no unusual data

including, 2. Beyond this, there
are too few cases to judge.

suggests normality, at least in the
compressed. We find further

does a plot of standardized &,

vs. ID, which reveals no

puints, the plot of o, vs.

level-2 residual, £y,

assumption for 7. With the

A plot of {g; vs. normal

A plot of Eoi vs. COA suggests

homoscedasticity at both

values of COA. So does a
values up to, and including, 2.

Beyond this, there are too few

slight evidence of a floor effect
cases to judge.

scores suggests normality. So
unusual data points. There is
in the outcome.

PEER suggests a strong linear
plot vs. PEER, at least for

exception of two extreme data
relationship.

Because COA is dichotomous,

What we find in the alcohol use data
there is no linearity

~

level-1 residual, €;

standardized &, vs ID, which reveals
no unusual data points.

A plot of Eij vs. normal scores

A plot of &; vs. AGE suggests

trajectory a reasonable approximation.

Empirical growth plots suggest that
most adolescents experience linear
change with age. For others, the
small number of waves of data (3)
makes it difficult to declare
curvilinearity making the linear
suggests normality. We find further
support for normality in a plot of
approximately equal variability

at ages 14, 15, and 16.

Table 4.3: Strategies for checking assumptions in the multilevel model for change, illustrated using Model F of tables 4.1 and 4.2 for

the alcohol use data
parameters and level-2

relationships between
predictors.

Assumption and
what to expect

if the assumption
is tenable

Shape. Linear
individual change
trajectories and linear
individual growth
Normality. All
residuals, at both
level-1 and level-2,
will be normally
distributed.

Homoscedasticity.

Equal variances of the
level-1 and level-2
residuals at cach level
of every predictor.




130 Applied Longitudinal Data Analysis

A A =
) 7R
“ r=039 = o r=0.58 .
34 . 3' - .
J H ] 8o
2 . ' 2 . ERE
1+ (] l 14 . ' . :. *
| H H $ 3.
0 4 g 0 t s .
- ™y -
0 1 0 1 2 3
COA PEER
A Fal
74 n
24 r=-0.04 24 r=-0.19
L ] -
H ) ' : .
1+ : H 14 ~ o - .
H - e 3 o
i . : § o .
0 i 0l — . .
[ ] .
L ] -
- : Ll .:
-14 . . -1 a .
0 1 0 1 2 3
COA ' PEER

Figure 4.4. Examining the level-2 linearity assumption in the multilevel model for
change. OLS estimated individual growth parameters (for the intercept and slope)

plotted vs. selected predictors. Left panel is for the predictor COA; right panel is for the
predictor PEER.

For each raw residual—the one at level-1 and the two at level-2—
examine a normal probability plot, a plot of their values against their asso-
ciated normal scores. If the distribution is normal, the points will form a
line. Any departure from linearity indicates a departure from normality.
As shown in the left column of figure 4.5, the normal probability plots
for Model F for the alcohol use data appear linear for the level-1 resid-
ual, £; and the first level-2 residual, ¢y The plot for second level-2 resid-
ual, {s;, is crooked, however, with a foreshortened lower tail falling closer
to the center than anticipated. As the second level-2 residual describes
unpredicted inter-individual variation in rates of change, we conclude
that variability in this distribution’s lower tail may be limited. This may
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Figure 4.5. Examining normality assumptions in the multilevel model for change. Left
panel presents normal probability plots for the raw residuals at level-1 and level-2. Right
panel presents plots of standardized residuals at level-1 and level-2 vs. ID numbers.
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¢ due to the bounded nature of ALCUSE, whose “floor” of zero imposes
limit on the possible rates of change.
Plots of standardized residuals—ei ivari

gainst predictors—can also provide insight into the tenability of nor-

1ality assumptions. If the raw residuals are normally distributed, approx-
nately 95% of the standardized residuals will fall within +2 standard
eviations of their center (i.e., only 5% will be greater than 2). Use
aution when applying this simple rule of thumb, however, because there
re other distributions that are not normal in which about 5% of the
bservations also fall in these tails.

You can also plot the standardized residuals by /D to identify extreme
1dividuals (as in the right panel of figure 4.5). In the top plot, the stan-
ardized level-1 residuals appear to conform to normal theory assump-
ons—a large majority fall within 2 standard deviations of center, with
zlatively few between 2 and 3, and none beyond. Plots of standardized
:vel-2 residuals suggest that the negative residuals tend to be smaller in
ragnitude, “pulled in” toward the center of both plots. This feature is
10st evident for the second level-2 residual, {; in the lower plot, but
1ere is also evidence of its presence in the plot for {y,. Again, compres-
on of the lower tail may result from the fact that the outcome, ALCUSE,
as a “floor” of zero.

4.8.3 Checking Homoscedasticity

ou can evaluate the homoscedasticity assumption by plotting raw resid-
als against predictors: the level-1 residuals against the level-1 predictor,
1e level-2 residuals against the level-2 predictor(s). If the assumption
olds, residual variability will be approximately equal at every predictor
alue. Figure 4.6 presents these plots for Model F of the alcohol use data.

The level-1 residuals, £;, have approximately equal range and variabil-
y at all ages; so, too, do the level-2 residuals plotted against COA. The
lots of the level-2 residuals against PEER reveal a precipitous drop in
ariability at the highest predictor values (PEER > 2.5), suggesting poten-
al heteroscedasticity in this region. But the small sample size (only 82
dividuals) makes it difficult to reach a definitive conclusion, so we
itisfy ourselves that the model’s basic assumptions are met.

.9 Model-Based (Empirical Bayes) Estimates of the
Individual Growth Parameters

Ine advantage of the multilevel model for change is that it improves the

recision with which we can estimate individual growth parameters. Yet
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Figure 4.6. Examining the homoscedasticity assumptions in the multilevel modezl for
change. Top panel presents raw level-1 residuals vs. the level-1 predictor AGE. Remaining
panels present raw level-2 residuals vs. the two level-2 predictors, COA and PEER
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we have continued to display exploratory OLS estimates even though we"

know they are inefficient. In this section, we present superior estimates
by combining OLS estimates with population average estimates derived
from the fitted model. The resultant trajectories, known as model-based ox
ampirical Bayes estimates, are usually your best bet if vou would like to
display individual growth trajectories for particular sample members.

There are two distinct methods for deriving model-based estimates.
One is to explicitly construct a weighted average of the OLS and popu-
lation average estimates. The other, which we adopt here, has closer links
to the model’s conceptual underpinnings: first we obtain population
average trajectories based upon an individual’s predictor values and
second we add individual-specific information to these estimates (by
using the level-2 residuals).

We begin by computing a population average growth trajectory for
zach person in the data set using a particular model’s estimates. Adopt-
mng Model F for the alcohol use data, we have:

To; = 0.394+0.571COA; +0.695CPEER,;
7; =0.271—0.151CPEER,.

Substituting each person’s observed predictor values into these equations
7ields his or her population average trajectory. For example, for subject
23, a child of an alchoholic parent whose friends at age 14 did not drink
(resulting in a value of —1.018 for CPEER) we have:

Toes = 0.394+0.571(1)+0.695(—1.018) = 0.257

. (4.20)
Ties =0.271-0.151(-1.018) = 0.425,

1 trajectory that begins at 0.257 at age 14 and rises linearly by 0.425 each
/ear.

This intuitively appealing approach has a drawback: it yields identical
rajectories for everyone with the same specific combination of predictor
salues. Indeed, it is indistinguishable from the same approach used in
Section 4.5.3 to obtain fitted trajectories for prototypical individuals. The
rajectory in equation 4.20 represents our expectations for the average
:hild of alchoholic parents whose young friends do not drink. However,
vhat we seek here is an individual trajectory for this person, subject 23.
dis OLS trajectory does not take advantage of what we have learned from
nodel fitting. Yet his population average trajectory does not capitalize on
1 key feature of the model: its explicit allowance for interindividual vari-
ition in initial status and rates of change.

The level-2 residuals, {p; and {y;, which distinguish each person’s
growth parameters from his or her population average trajectory, provide
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the missing link. Because each person has his or her own set of residu-
als, we can add them to the model’s fitted values:

i = Roi + Co;
oy =y + G,

where we place a ~ over the model-based estimates to distinguish them
drom the population average trajectories. Adding residuals to the popu-

lation averages distinguishes each person from his or her peer group
(defined by his or her predictor values). Most multilevel modeling soft-
ware programs routinely provide these residuals (or the model-based esti-
mates themselves). For subject 23, for example, the child of alchoholic
parents whose peers did not drink, his level-2 residuals of 0.331 and
0.075 yield the following model-based estimates of his individual growth
trajectory: :

(4.21)

Toes =0.257+0.331 = 0.588
ﬁ-l,ES b O.425+0.075 . 0500

Notice that both of these estimates are larger than the population average
values obtained above.

Figure 4.7 displays the observed data for the eight individuals depicted
in figure 4.1 and adds three types of fitted trajectories: (1) OLS-estimated
trajectories (dashed lines); (2) population average trajectories (faint
lines); and (3) model-based individual trajectories (bold lines). First,
notice that across the plots, the population average trajectories (the faint
lines) are the most stable, varying the least from person to person. We
expect greater stability because these are average trajectories for groups
of individuals who share ‘particular predictor values. People who share
identical predictor values will have identical average trajectories, even
though their observed outcome data may differ. Population average tra-
Jectories do not reflect the behavior of individuals and hence are likely
to be the least variable.

Next examine the model-based and OLS estimates (the bold and
dashed lines), each designed to provide the individual information we
seek. For three adolescents, the difference between estimates is small
(subjects 23, 41, and 65), but for four others (subjects 4, 14, 56, and 82)
it is pronounced and for subject 32, it is profound. We expect discrep-
ancies like these because we estimate each trajectory using a different
method and they depend upon the data in different ways. This does not
mean that one of them is “right” and the other “wrong.” Each has a set

of statistical properties for which it is valued. OLS estimates are unbiased
3 n . -%
nefficient; model-based e E . ed, but more precise
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igure 4.7. Model-based (empirical Bayes) estimates of the individual growth trajectories.
ach plot presents the observed ALCUSE measurements (as data points), OLS fitted tra-
«ctories (dashed lines), population average trajectories (faint lines), and model-based
mpirical Bayes trajectories (bold lines).

Now notice how each model-based trajectory (in bold) falls between
s OLS and population average trajectories (the dashed and faint lines).
“his is a hallmark of the model-based procedure to which we alluded
arlier. Numerically, the model-based estimates are weighted averages of
he OLS and population average trajectories. When OLS estimates are
yrecise. thev have greater weight: when OLS estimates are i ise, the
yopulation average trajectories have greater weight. Because OLS trajec-
ories differ markedly from person to person, the model-based trajecto-
jes differ as well, but their discrepancies are smaller because the
»opulation average trajectories are more stable. Statisticians use the term
‘borrowing strength” to describe procedures like this in which individual
sstimates are enhanced by incorporating information from others with
vhom he or she shares attributes. In this case, the model-based trajecto-
-ies are shrunk toward the average trajectory of that person’s peer group
(those with the same predictor values). This combination yields a supe-
7101, IOTE precise, estimate.

Model-based estimates are also more precise because they require est-
mation of fewer parameters. In positing the multilevel model for change,

= o

we assume that everyone shares the same level-1 residual variance, oo
When we fit OLS trajectories, we estimate a separate level-1 variance for
each individual in the sample. Fewer parameters in the multilevel model
for change mean greater precision.

i 1-bas

unbiase

— s : s
mental motivation for fitting the multilevel model But as we extol the
G ased estimates, we conclude with a word ol ¢ .
ilv on the g ality of the model fit. If the model
is flawed, particularly if its level-2 components are specified incorrectly,
then the model-based estimates will be flawed as well,

How might you use model-based estimates like these in practice? Stag.e
(2001) provides a simple illustration of the power of this approach in his
evaluation of the relationship between first-grade reading fluency and
changes in oral reading proficiency in second-graders. He began by
fitting a multilevel model for change to four waves of second-grade c.lata,
demonstrating that while first-grade performance was a strong predictor
of initial status it was not a statistically significant predictor of rate of
change. Stage went on to compute empirical Bayes estimates of the
number of words each child was able to read by the end of second grade
and he compared these estimates to: (1) the number of words each child
was observed to have read at the end of second grade; and (2) the
number of words each child was predicted to have read on the basis of
simple OLS regression analyses within child. As Stage suggests, adminis-
trators might be better off assigning children to summer school programs
(for remedial reading) not on the basis of observed or OLS-predicted
end-of-year scores but rather on the basis of the empirical Bayes estimates,
which yield more precise estimates of the child’s status at the end of the

trajectories. you must

year.




Treating TIME More Flexibly

Change is a measure of time
—Edwin Way Teale

1 the illustrative longitudinal data sets in previous chapters share two
-uctural features that simplify analysis. Each is: (1) balanced—everyone

assessed on the identical number of occasions; and (2) time-
uctured—each set of occasions is identical across individuals. Our analyses
e also been limited in that we have used only: (1) time-invariant
eedictors that describe immutable characteristics of individuals or their
wironment (except for TIME itself); and (2) a representation of TIME
at forces the level-1 individual growth parameters to represent “initial
itus” and “rate of change.”

The multilevel model for change is far more flexible than these ex-
nples suggest. With little or no adjustment, you can use the same strate-
es to analyze more complex data sets. Not only can the waves of data
> irregularly spaced, their number and spacing can vary across partici-
ints. Each individual can have his or her own data collection schedule
1d the number of waves can vary without limit from person to person.
), too, predictors of change can be time-invariant or time-varying, and
ie level-1 submodel can be parameterized in a variety of interesting ways.
In this chapter, we demonstrate how you can fit the multilevel model
r change under these new conditions. We begin, in section 5.1, by illus-
ating what to do when the number of waves is constant but their spacing
irregular. In section 5.2, we illustrate what to do when the number of
aves per person differs as well; we also discuss the problem of missing
ata, the most common source of imbalance in longitudinal work. In
:«ction 5.3, we demonstrate how to include time-varying predictors in
sur data analysis. We conclude, in section 5.4, by discussing why and how
>u can adopt alternative representations for the main effect of TIME.
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5.1 Variably Spaced Measurement Occasions

Many researchers design their studies with the goal of assessing each indi-
vidual on an identical set of occasions. In the tolerance data introduced
in chapter 2, each participant was assessed five times, at ages 11, 12, 13,
14, and 15. In the early intervention data introduced in chapter 3 and
the alcohol use data introduced in chapter 4, each participant was
assessed three times: at ages 12, 24, and 36 months or ages 14, 15, and
16 years. The person-period data sets from these time-structured designs
are elegantly balanced, with a temporal variable that has an identical
cadence for everyone under study (like AGE in tables 2.1, and 3.1).

Yet sometimes, despite a valiant attempt to collect time-structured data,
actual measurement occasions will differ. Variation often results from
the realities of fieldwork and data collection. When investigating the psy-
chological consequences of unemployment; for example, Ginexi, Howe,
and Caplan (2000) designed a time-structured study with interviews
scheduled at 1, 5, and 11 months after job loss. Once in the field, however,
the interview times varied considerably around these targets, with increas-
ing variability as the study went on. Although interview 1 was conducted
between 2 and 61 days after job loss, interview 2 was conducted between
111 and 220 days, and interview 3 was conducted between 519 and 458
days. Ginexi and colleagues could have associated the respondents’ out-
comes with the target interview times, but they argue convincingly that
the number of days since job loss is a better metric for the measurement
of time. Each individual in their study, therefore, has a unique data col-
lection schedule: 31, 150, and 356 days for person 1; 23, 162, and 401
days for person 2; and so on.

So, too, many researchers design their studies knowing full well that
the measurement occasions may differ across participants. This is cer-
tainly true, for example, of those who use an accelerated cohort design in
which an age-heterogeneous cohort of individuals is followed for a con-
stant period of time. Because respondents initially vary in age, and age,
not wave, is usually the appropriate metric for analysis (see the discussion
of time metrics in section 1.3.2), observed measurement occasions will
differ across individuals. This is actually what happened in the larger
alcohol-use study from which the small data set in chapter 4 was
excerpted. Not only were those 14-year-olds re-interviewed at ages 15 and
16, concurrent samples of 15- and 16-year-olds were re-interviewed at ages
16 and 17 and ages 17 and 18, respectively. The advantage of an accel-
erated cohort design is that you can model change over a longer tem-
poral period (here, the five years between ages 14 and 18) using fewer
waves of data. Unfortunately, under the usual conditions, the data sets



are then sparser at the earliest and latest ages, which can complicate the
specification of the level-1 submodel.

In this section, we show how you can use the methods of previous
chapters to analyze data sets with variably spaced measurement occasions.
All you need to deal with are some minor coding issues for the temporal
predictor in the person-period data set; model specification, parameter
estimation, and substantive interpretation proceeds as before. To illus-
trate just how simple the analysis can be, we begin by discussing data sets
in which the number of waves is constant but their spacing varies. We
discuss data sets in which the number of waves varies as well in section 5.2,

5.1.1 The Structure of Variably Spaced Data Sets

We illustrate how to analyze data sets with variably spaced measurement
occasions using a small sample extracted from the Children of the
National Longitudinal Study of Youth (CNLSY). The data set, compris-
ing children’s scores on the reading subtest of the Peabody Individual
Achievement Test (PIAT), includes three waves of data for 89 African-
American children. Each child was 6 years old in 1986, the first year of
data collection, During the second wave of data collection, in 1988, these
children were to be 8; during the third wave, in 1990, they were to be 10,
We focus here on an unconditional growth model, not the inclusion of
level-2 predictors, because this second aspect of analysis remains
unchanged.

Table 5.1 presents excerpts from the person-period data set. Notice
that its structure is virtually identical to all person-period data sets shown
so far. The only difference is that it contains three temporal variables
denoting the passage of time: WAVE, AGE, and AGEGRP. Although we will
include only one of these in any given model, a distinctive feature of time-
unstructured data sets is the possibility of multiple metrics for clocking
time (often called metameters).

WAVE s the simplest but least analytically useful of the three. Although
its values—1, 2, and 3—reflect the study’s design, they have little sub-
stantive meaning when it comes to addressing the research question.
Because WAVE does not identify the child’s age at each occasion, nor does
it capture the chronological distance between occasions, it cannot con-
tribute to a meaningful level-1 submodel, We mention this issue explic-
itly because empirical researchers sometimes postulate individual growth
models using design variables like WAVE (or year of data collection) even
though other temporal predictors are generally more compelling.

AGE s a better predictor because it specifies the child’s actual age (to

the nearest month) on the day each test was administered. A child like
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Table 5.1: Excerpts from the person-period data set for the
reading study

D WAVE AGEGRP AGE PIAT
04 1 6.5 6.00 18
04 2 8.5 8.50 31
04 3 10.5 10.67 50
27 1 6.5 6.25 19
27 2 8.5 9.17 36
27 3 10.5 10.92 57
31 1 6.5 6.33 18
31 2 8.5 8.83 31
31 3 10.5 10.92 51
33 1 6.5 6.33 18
33 2 8.5 8.92 34
33 3 10.5 10.75 29
41 1 6.5 . 6.33 18
41 2 85 8.75 28
41 3 10.5 10.83 36
49 1 6.5 6.50 19
49 2 8.5 8.75 32
49 3 10.5 10.67 48
69 1 6.5 6.67 26
69 2 8.5 9.17 47
69 3 10.5 11.33 45
77 1 6.5 6.83 17
77 2 8.5 8.08 19
77 3 10.5 10.00 28
87 1 6.5 6.92 22
87 2 8.5 9.42 49
87 3 10.5 11.50 64

Note that TIME is clocked using three distinct variables: WAVE,
AGEGRP, and AGE.

ID 04, who had just turned 6 at wave 1, has an AGE of 6.00 for that record
a child like ID 87, who would soon turn 7, has an AGE of 6.92. The averajtg(
child is 6.5 years old at wave 1, as we would expect if births and testing
occasions were randomly distributed. If data collection had proceedec
according to plan, the average child would have been 8.5 ancli 10.5 year
old at the next two waves. Not surprisingly, actual ages varied arounc
these targets. By wave 2, the youngest child had just turnf}d 8 while the
oldest was well over 9. By wave 3, the youngest child had just turned 1(
while the oldest was nearly 12. Like many longitudinal studies, the CNLS?

. suffers from “occasion creep”—over time, the temporal separation o
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ccasions widens as the actual ages exceed design projections. In this data
t, the average child is 8.9 years in wave 2 and nearly 11 years in wave 3.

The third temporal variable, AGEGRP, is a time-structured predictor
1t is more substantively meaningful than the design variable WAVE. Its
alues indicate the child’s “expected age” on each measurement occasion
3.5, 8.5, and 10.5). This time-structured predictor clocks time on a scale
\at is comparable numerically to the irregularly spaced predictor AGE.
dding AGEGRP to the person-period data set allows us to demonstrate
1at the characterization of a data set as time-structured or irregular can
epend on nothing more than the cadence of the temporal predictor used
> postulate a model. If we postulate our model using AGEGRP, the data set
i time-structured; if we postulate a comparable model using AGE, itis not.

The mulilevel model for change does not care if the individual-
pecific cadence of the level-1 predictor is identical for everyone or if it
aries from case to case. Because we fit the model using the actual
wmeric values of the temporal predictor, spacing is irrelevant. We can
jostulate and fit a comparable model regardless of the variable’s cadence.
)f far greater importance is the choice of the functional form for the
svel-1 submodel. Should it represent linear change or a more complex
hape for the individual growth trajectory? Might this decision depend
ipon the specific temporal predictor chosen for model building?

To address these questions, figure 5.1 presents empirical change plots
vith superimposed OLS linear change trajectories for 9 children. Each
yanel plots each child’s PIAT scores twice, once for each temporal pre-
lictor. We use ®’s and a dashed line when plotting by AGE; we use +’s and
. solid line when plotting by AGEGRP. With just three waves of data—
vhichever temporal predictor we use—it is difficult to argue for anything
sut a linear change individual growth model.

If we can postulate a linear change individual growth model using
sither temporal predictor, which one should we use? As argued above,
ve prefer AGE because it provides more precise information about the
-hild at the moment of testing. Why set this information aside just to use
‘he equally spaced, but inevitably less accurate, AGEGRP. Yet this is what
nany researchers do when analyzing longitudinal data—indeed, it is what
we did in chapters 3 and 4. There, instead of using the participant’s
orecise ages, we used integers: 12, 18, and 24 months for the children in
chapter 3; 14, 15, and 16 for the teenagers in chapter 4. Although the
loss of precision may be small, as suggested by the close correspondence
between the pairs of fitted OLS trajectories in each panel of figure 5.1,
there are children for whom the differential is much larger. To inve-
stigate this question empirically, we fit two multilevel models for
change to these data: one using AGEGRP, another using AGE as the

PIAT PIAT

0 0 0
56 7 8 91011 56 7 8 9 1011 567 8 91011
AGE or AGEGRP AGE or AGEGRP AGE or AGEGRP
PIAT PIAT PIAT
30] 30-‘ 80
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40 40/ 40
+e |
;) SR S I (S —
567 8 91011 5 6 7 8 9 1011 56 7 8 91011
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Figure 5.1. Comparing time-structured and time-unstructured representations of the
effect of TIME. Empirical change plots with superimposed OLS trajectories for 9 partic-
ipants in the reading study. The +'s and solid lines are for TIME clocked using the child's
target age at data collection; the *'s and dashed lines are for TIME clocked using each
¢hild’s observed age.
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nporal predictor at level-1. Doing so allows us to demonstrate how to
alyze irregularly spaced data sets and to illustrate the importance of
essing the merits of alternative metrics for time empirically. |wes

Te-l !)"5 wl? M‘F
5.1.2 Postulating and Fitting Multilevel Models with r:-)f‘ M""ﬁ J
Variably Spaced Waves of Data

gardless of which temporal representation we use, we posmlate, fit, and
erpret the multilevel model for change using the same strategies.
apting the general specification of an unconditional growth model in
uations 4.9a and 4.9b, let Y; be child #'s PIAT score on occasion j and
ME; represent either temporal variable:

Yij = TTy; +7T11TI]\4E,J +8ij
Toi = Yoo + Cos (5.1a)
1w = Y10 + 8,

o Co: 0108 oOn
R P S | D

~e center both AGE and AGEGRP on age 6.5—the average child’s age at
ve 1—the parameters have the usual interpretations. In the population
ym which this sample was drawn, ¥, represents the average child’s true
tial status (at age 6.5); ¥, represents the average child’s annual rate of
1e change between ages 6 and 11; 62 summarizes the within-child scatter
>und his or her own true change trajectory; and 0 and 03 summarize the
tween-child variability in initial status and annual rates of change.
Use of a generic representation TIME; in the level-1 growth model
1stead of a specific representation like AGE ~ 6.5 or AGEGRP — 6.5)
:lds these interpretations. We can postulate the same model for either
edictor because TIME; includes subscripts that are both person-specific
and time-specific (). If TIME represents AGEGRP — 6.5, the data set
time structured; if we use AGE — 6.5, it is not. From a data-analytic per-
ective, you just specify the relevant temporal representation to your sta-
tical software. From an interpretive perspective, the distinction is moot.
Table 5.2 presents the results of fitting these two unconditional growth
odels to these data: the first uses AGEGRP — 6.5; the second uses AGE
6.5. Each was fit using full ML in SAS PROC MIXED. The parameter
timates for initial status, Py, are virtually identical—21.16 and 21.06—
are those for the within-child variance, 6% 27.04 and 27.45. But the
nilarities stop there. For the slope parameter, 5o, the estimated growth
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Table 5.2: Results of using alternative representations for the main effect of TIME
(n = 89) when fitting an unconditional growth model to the CNLSY reading data

Predictor representing TIME

Parameter AGEGRP - 6.5 AGE - 6.5

Fixed Effects
Initial status, 7 Intercept Yoo 21.1629%** 21.0608%***
(0.6143) (0.5593)
Rate of Change, m; Intercept Yo 5.0309%** 4.5400%**
(0.2956) (0.2606)
Variance Components
Level-1: within-person o? 27.04%% 27,45k
Level-2: In initial status o 11.05% 511
In rate of change ot 4.40%** 3.30% %
Goodness-of-fit N
- Deviance - 1819.8 1803.9
AIC 1831.9 1815.9
BIC 1846.9 1830.8

~p<.10; ¥p<.05; ¥ p < 01; *** p < 001.
The first model treats the data set as time-structured by using the predictor (AGEGRP — 6.5); the

second model treats the data set as time-unstructured by using each child's actual age at each assess-
ment, (AGE — 6.5).

Note: SAS Proc Mixed, Full ML.. Also note that the covariance component, Gy, is estimated, but not
displayed.

rate is half a point larger in a model with AGEGRP — 6.5 (5.03 vs. 4.54).
This cumulates to a two-point differential in PIAT scores over the four
years under study. So, too, the two level-2 variance components are much
larger for a model with AGEGRP — 6.5.

Why are these estimates larger when we treat the data set as time-
structured, using AGEGRP — 6.5 as our level-1 predictor, than when we treat
it as irregular, using AGE — 6.5? We obtain a larger fixed effect for linear
growth because AGEGRP associates the data for waves 2 and 3 with earlier
ages (8.5 and 10.5) than observed. If we amortize the same gain over a
shorter time period, the slope must be steeper. We obtain larger estimated
variance components because the model with the time-structured pre-
dictor fits less well—there is more unexplained variation in initial status
and growth rates—than when we associate each child’s data with his or her
age at testing. In other words, treating this unstructured data set as though
it is time-structured introduces error into the analysis—error that we can
reduce by using the child’s age at testing as the temporal predictor.

We conclude that the model with AGEGRP as the level-1 temporal
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redictor fits less well than the model with AGE. With the former repre-
‘ntation, the slope is inappropriately larger—inaccurately implying more
1pid gains—and there is more u nexplained variation in initial status and
ites of change. The superiority of the model with AGE as the temporal
redictor is supported by its smaller AIC and BIC statistics. The bottom
ne: never “force” an unstructured data set to be structured. If you have
sveral metrics for tracking time—and you often will—investigate the
ossibility of alternative temporal specifications. Your first choice, espe-
ially if tied to design, not substance, may not always be the best.
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.2 Varying Numbers of Measurement Occasions

dnce you allow the spacing of waves to vary across individuals, it is 2 small
eap to allow their number to vary as well. Statisticians say that such data sets
wre unbalanced. As vou would expect, balance 12 ilitates analvsis: modg

:an be ga@etgrized more easily, random effects can be gguggted more

ata se th_varving num

S stral 7 4 sets wi ng ers of wave
data. To illustrate the general approach, we begin, in section 5.2.1, by
introducing a new data set in which the number of waves per person
varies widely, from 1 to 13. We extend this discussion in section 5.2.2, by
discussing implementation and estimation problems that can arise when
data are unbalanced. We conclude, in section 5.2.3, by discussing poten-
tial causes of imbalance—especially missing data—and how they can

affect statistical analysis.

5.2.1 Analyzing Data Sets in Which the Number of
Waves per Person Varies

Murnane, Boudett, and Willett (1999) used data from the National
Longitudinal Survey of Youth (NLSY) to track the labor-market experi-
ences of male high school dropouts. Like many large panel studies, the
NLSY poses a variety of design complications: (1) at the first wave of data
collection, the men varied in age from 14 to 17; (2) some subsequent
waves were separated by one year, others by two; (8) each wave’s interviews
were conducted at different times during the calendar year; and (4)
respondents could describe more than one job at each interview. Person-
specific schooling and employment patterns posed further problems. Not
only could respondents drop out of school at different times and enter the
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T;lt;le 5.3: Excerpts from the person-period data set for the high school dropout wage
study

D EXPER

LNW BLACK HGC UERATE
206 1.874 2.028 0 10 9.200
206 2.814 2.997 0 10 11.000
206 4314 2.482 0 10 6.205
3392 0.125 1.630 0 8 7,100
$32 1.625 1.476 0 8 9.600
332 2.413 1.804 0 8 7'200
$32 3.398 1.439 0 8 6.195
332 4.470 1.748 0 8 5.505
332 5.178 1.526 0 8 4505
382 6.082 2.044 0 8 4.295
332 7.043 2.179 0 8 3.305
332 8.197 2.186 0 8 4395
332 9.092 4.0%5 0" 8 6.605
1028 0.004 0.872 1 8 9.300
1028 0.035 0.903 1 8 7.400
1028 0.515 1.389 1 8 7.800
1028 1.483 2.324 1 8 7.400
1028 2.141 1.484 1 8 6'295 '
1028 . 8.161 1.705 1 8 5.805
1028 4103 2.343 1 8 6.900

labor force at different times, they also changed jobs at different times. To
trac'k wages on a common temporal scale, Murnane and colleagues
decided to clock time from each respondent’s first day of work. This allows
each hourly wage to be associated with a temporally appropriate point in
the respondent’s labor force history. The resulting data set has an unusual
temporal schedule, varying not only in spacing but length.

T_able 53 presents excerpts from the person-period data set. To adjust
for inflation, each hourly wage is expressed in constant 1990 dollars. To
?1d4r§ss the skewness commonly found in wage data and to linearize the
individual wage trajectories, we analyze the natural logarithm of wages
LNW. Then, to express this outcome on its original scale, we take antilo ;
(e.g., e = $7.60 per hour). i

The temporal variable EXPER identifies the specific moment—to the
nearest day—in each man’s labor force history associated with each
observed value of LNW. Notice the variability in the number and spacing
of waves. Dropout 206 has three waves, for jobs held at 1.874, 2.814 and
4.314 years of experience after labor force entry. Dropout ;}32 has 10
waves, the first for a job held immediately after entering the labor force
the others for jobs held approximately every subsequent year. Dropou;
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)28 has 7 waves; the first three describe the first six months of work (at
004, 0.035, and 0.515 years). Across the full sample, 77 men have 1 or
waves of data, 82 have 3 or 4, 166 have 5 or 6, 226 have 7 or 8, 240 have
or 10, and 97 have more than 10. The earliest wave describes someone’s
rst day of work; the latest describes a job held 13 years later.

This is the first data set we have presented in which the number of
aves of data varies across individuals. Some men even have fewer than
iree waves—Iless than the minimum articulated in previous chapters. A
1ajor advantage of the multilevel model for change is that everyone can
articipate in the estimation, regardless of how many waves he con-
ibutes to the data set. Even the 38 men with just 1 wave of data and the
9 with just 2 waves are included in the estimation. Almg_ugh_[h_cy_pmjﬂ.dr_
:ss, or no, information about within-person variation—and hence do nog
ontribute to variance component estimation—they can still cont ibut
- the estimation of fixed effects where appropriate. Ultimately, each
ierson’s fitted trajectory is based on a combination of his: (1) observed
rajectory, and (2) a model-based trajectory determined by the values of
he predictors.

You need no special procedures to fit a multilevel model for change
o unbalanced data. All you need do is specify the model appropriately -

o your statistical software. As long as the person-period data set includes | ¢ u

wwww |
-onverge, you will encounter no difficulties. If the data set is severely =
mbalanced, or if too many people have too few waves for the complexity

>f your hypothesized model, problems may arise in the estimation. For
10w, we continue with this data set, which includes so many people with

;0 many waves that estimation is straightforward. We discuss strategies for
identifying and resolving estimation problems in section 5.2.2.

Table 5.4 presents the results of fitting three multilevel models for
change to the wage data, using full ML in SAS PROC MIXED. First
examine the results for Model A, the unconditional growth model. The
positive and statistically significant fixed effect for EXPER indicates that
inflation-adjusted wages rise over time. Because the outcome, LNW, is
expressed on a logarithmic scale, its parameter estimate, ¥y, is nota linear
growth rate. As in regular regression, however, transformation facilitates
interpretation. If an outcome in a linear relationship, Y, is expressed as a
natural logarithm and 7y, is the regression coefficient for a predictor X,
then 100(e'm — 1) is the percentage change in Y per unit difference in X
Because EXPER s calibrated in years, this transformation yields an annual
percentage growth rate in wages. Computing 100 (@057 - 1) =4.7, we esti-
mate that the average high school dropout’s inflation-adjusted hourly
wages rise by 4.7% with each year of labor force participation.

/
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Table 5.4: Results of fitting a taxonomy of mi}léevcl models for change to the high school

dropout wage data (n = 888) y,

/i’arameter Model A Model B Model C
Fixed Effects /
Initial status, 7; Intercept / Yoo 1.71566%** 1.7171%** 1.7215%**
(0.0108) (0.0125) (0.0107)
(HGC-9 Yor 0.0549*** 0.0384%#*
(0.0079) (0.0064)
BLA Yoo 0.0154
(0.0239)
Rate of change, m; tercept Y10 0.04p57%#:** 0.0493*** 0.0489***
(0.0023) (0.0026) (0.0025)
(HGC-9) b 0.0013
(0.0017)
/_,/ BLACK Y12 —0.0182%* —0.0161%**
/ (0.0055) (0.0045)
Varia{ice Components
I_,é;.rel-l: within-person o2 0.0951*** 0.0952%** 0.0952%**
/Level-2: In initial status od 0.0543%k* 0.0518%** 0.0518%%*
In rate of change h 0.0017%%* ~ 0.0016%%* 0.0016%**
Goodness-of-fit
Deviance 4921.4 4873.8 4874.7
AIC 4933.4 4893.8 4890.7
BIC 4962.1 4941.7 4929.0

~p<.10; #p < .05; ** < .01; ¥ p< 001

Model A is an unconditional growth model; Model B includes the effects of highest grade completed
(HGC — 9) and race (BLACK) on both initial status and rate of change; Model C is a reduced model in
which (HGC— 9) predicts only initial status and BLACK predicts only rate of change.

Note: SAS Proc Mixed, Full ML. Also note that the covariance component, Gy, is estimated, but not

displayed.

After specifying a suitable individual growth model, you add level-2
predictors in the usual way. The statistically significant variance compo-
nents in Model A, for both initial status and rate of change, suggest the
wisdom of this action. Models B and C examine the effects of two pre-
dictors: (1) the race/ethnicity of the dropout; and (b) the highest grade
he completed before dropping out. Although the sample includes 438
Whites, 246 African Americans, and 204 Latinos, analyses not shown here
suggest that we cannot distinguish statistically between the trajectories of
Latino and White dropouts. For this reason, these models include just
one race/ethnicity predictor (BLACK). Highest grade completed, HGC,
is a continuous variable that ranges from 6th through 12th grade,

with an average of 8.8 and a standard deviation of 1.4. To facilitate
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~ /
INW j
241 — /
White/Latino /
22 | = /
| Black /
12" grade = ,;"f
70 l dropouts 4
- \
— Figure 5.2. Displajing the results of a
18  hitted mutd model for change. Log

wage trajectories from Model C of table
5.4 for four prototypical dropouts:
Blacks and Whites/Latinos who

164 dropped out in 9th and 12th grades.

EXPER

interpretation, our analyses use a rescaled version, HGC — 9, which
centers HGC around this substantively meaningful value near the sample
mean (see section 4.5.4 for a discussion of centering).

Model B of Table 5.4 associates each predictor with initial status and
rate of change. The estimated fixed effects suggest that HGC— 9 is related
only to initial status while BLACK is related only to the rate of change.
We therefore fit Model C, whose level-2 submodels reflect this observa-
tion. The fixed effect for HGC — 9 on initial status tells us that dropouts
who stay in school longer earn higher wages on labor force entry (¥, =
0.0384, p < .001), as we might expect because they are likely to have more
skills than peers who left school earlier. The fixed effect for BLACK on
rate of change tells us that, in contrast to Whites and Latinos, the wages
of Black males increase less rapidly with labor force experience (¥, =
—0.0161, p<.001). The statistically significant level-2 variance components
indicate the presence of additional unpredicted interindividual variation
in both initial status and rate of change. In sections 5.3.3 and 6.1.2, we
add other predictors that explain some of this remaining variation.

Figure 5.2 summarizes the effects in Model C by displaying wage tra-
jectories for four prototypical dropouts: Blacks and Whites/Latinos who
dropped out in 9th and 12th grades. We obtained these trajectories using
the same two-stage process presented in section 4.5.3. We first substituted
the two values of BLACK (0 and 1) into Model C and then substituted in
two prototypical values of HGC —9 (0 and 3, to correspond to 9 and 12
years of education). The plots document the large and statistically sig-
nificant effects of education and race on the wage trajectories. The longer
a prospective dropout stays in school, the higher his wages on labor force
entry. But race plays an important role, not on initial wages but on the
rate of change. Although the average Black dropout initially earns an
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hourly wage indistinguishable from the average White or Latino dropout,
his annual percentage increase is lower. Controlling for highest grade
completed, the average annual percentage increase is 100(e®** 1) =
5.0% for Whites and Latinos in comparison to 100(¢""* — 1) = 3.3%
for Blacks. Over time, this race differential overwhelms the initial advan-
tage of remaining in school. Beyond 7 years of labor force participation,
a Black male who left school in 12th grade earns a lower hourly wage
than a White or Latino male who left in 9th.

5.2.2 Practical Problems That May Arise When
Analyzing Unbalanced Data Sets

We encountered no problems when fitting models to the unbalanced
data in section 5.2.1. The most complex model (C) converged in just
three iterations and we could estimate every parameter in the model. But
if your data set is severely unbalanced, or if too few people have enough
waves of data, computer iterative algorithms may not converge and you
may be unable to estimate one or more variance components.

Why does imbalance affect the estimation of variance components but
not fixed effects? No matter how unbalanced the person-period data set,
the estimation of fixed effects is generally no more difficult than the esti-
mation of regression coefficients in a regular linear model. To demon-
strate why, let us begin with a multilevel model—for simplicity, an
unconditional growth model—expressed in composite form:

Y; =700 + Y10 TIME; 1+{Co; + (1. TIME; +&5). (5.2a)

If we re-express the composite error term in the second set of brackets
as: €5 = [§: + §uTIME; + €;], we obtain an equivalent representation of
equation 5.2a:

Equation 5.2b resembles a standard regression model, with y’s instead of
B's and €% instead of &;. The difference is that we do not assume that the
composite residuals £% are independent and normally distributed with
mean 0 and variance o. Instead we assume that their constituents—U,
{1 and g—follow the assumptions:

o-wostma]-a{[ollc, )

It is these complex assumptions—about the variance components—that
complicate estimation.

Now consider the following thought experiment. Suppose we are willing
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ake a simplifying assumption about the composite residuals, declaring
1 to be independent and normally distributed: €5~ N(0,0%). This is
imount to assuming that both level-2 residuals, {,;and {;,, are always 0,
>uld be their associated variance components (i.e., both 6% and 02 are
0). In the language of multilevel modeling, we would be fixing the
"cept and rate of change, making them constant across individuals.
ther each person contributed one wave or many, estimation of the two
1 effects and the one variance component would then become a stan-
- regression problem. All you would need are a sufficient number of

nct values of TIME; in the person-period data set—enough distimet

ts in a plot of Yj vs. TIME;—to identify the level-1 submodel’s func-
il form. In a time-structured data set, this plot would be composed of
cal stripes, one for each measurement occasion. This is why you would
Lat least three waves of data—the stripes would lie at just those three
stons. In an unstructured data set, the variable spacing of waves makes
sier to estimate fixed effects because the data points are more sepa-
1 “horizontally.” This allows you to relax the data minimum per
on—allowing some people to have fewer than three waves—as long as
1ave enough distinct values of TIME; to estimate the fixed effects.

we are unwilling to make these simplifying assumptions—and we
rally are—estimation of variance components can be difficult if too
y people have too few waves. Variability in the spacing of waves helps,
may not resolve the problem. Estimati varian

ires that enough people have sufficient data to allow quantification
ithin-person residual variation—variation in the residuals over and

e the fixed effects. If too many people have too little data, you will
nable to quantify this residual variability.
hen does the numeric task become so difficult that the variance com-
mts cannot be estimated? We offer no rules because so many issues
nvolved, including the degree of imbalance, the complexity of the
el, the number of people with few vs. many waves, and the inclusion
ne-varying predictors (discussed in section 5.3). Suffice it to say that
1 imbalance is severe enough, numeric computer algorithms can
uce theoretically impossible values or fail to converge. Each statisti-
>ftware program has its own way of informing the user of a problem;
discovered, we recommend that you be proactive and not auto-
cally accept the default “solution” your program offers. Below, we
1ss each of the two major estimation problems.

Boundary Constraints

y population parameters have boundary constraints—limits beyond
h they cannot theoretically lie. Like variances and correlation
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coefficients, the variance/covariance components in the multilevel
model have clear boundaries: (1) a variance component cannot be neg- |

fative; and (2) a covariance component, expressed in correlation form, |

must lie between —1 and +1. Because of the complexity of the estimation

task—especially with unbalanced data—as well as the iterative nature of

the computational algorithms, multilevel modeling programs occasion-

ally generate parameter estimates that reach, or lie outside, these limits. |
When this happens, the program may output the implausible estimate or

its boundary value (e.g., it might set a variance component to 0).

How will you know if you have encountered a boundary constraint?
The warning signs differ across programs. If you use SAS PROC MIXED,
the program log will note that “the G matrix [the variance-covariance
matrix for the variance components] is not positive definite.” By default,
SAS sets the offending estimate to its boundary value. MLwiN does not
provide a note; instead, it sets the offending estimate, and all associated
estimates, to boundary values. If your output indicates that an estimate is
exactly 0, you have likely encountered a boundary constraint. HLM will
provide you with a warning message and modify its computational algo-
rithm to avoid the problem. With all software, one clue that you may be
approaching a “boundary” is if you find you need an excessive number
of iterations to reach convergence.

We recommend that you never let a computer program arbitrarily
make important decisions like these. Regardless of which program you
use, you should be proactive about boundary constraints. Overspecificas

i f 'k tic portion is the usual cause: model simplifi-
cation is generally the cure. A practical solution is to compare alternative
models that remove one, or more, offending random effects systemati-
cally until the model can be fit. This strategy, known as fixing a predictor’s
effect, usually resolves the problems.

We illustrate this approach using a small data set purposefully selected
from the larger wage data set just analyzed. We constructed this sample
for pedagogic purposes, hoping to create such extreme imbalance that
boundary constraints would arise. This new data set is composed of the
124 men who had three or fewer waves of wage data: 47 men have three
waves, 39 have two, and 38 have only one. The earliest value of EXPER
is 0.002; the latest is 7.768. This data set is not a random sample of the
original group.

Table 5.5 presents the results of fitting three models to this smaller
data set; each is based upon Model C, the “final” model of table 5.4. As
before, each was fit using ML in SAS PROC MIXED. In the first model,
which is identical to Model C, the estimated variance component for
linear growth, 6%, is exactly 0. This is a standard sign of a boundary
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Table 5.5: Comparison of three alternative approaches to fitting Model C of table 5.4 to a
severely unbalanced subset of the high school dropout wage data (n = 124)

B C
A Removing Fixing
Default boundary rates of
Parameter method constraints  change
Fixed Effects
Initial status, 7;  Intercept Yoo 1.7373++% — 1.7873%%x
(0.0476) (0.0483)
(HGC-9) Yo 0.0462~ — 0.0458~
(0.0245) (0.0245)
Rate of Intercept Y10 0.0516% —_ 0.0518*
change, m; (0.0211) (0.0209)
BLACK Y2 —0.0596~ —_ —-0.0601~
(0.0348) (0.0346)
Variance Components
Level-1: Within-person o2 0.1150%** 0.1374*** 0.1148+*x*
Level-2: In initial status o2 0.0818** 0.0267 0.084 2%+
In rate of change o} 0.0000 -0.0072 -
Goodness-of-fit
Deviance 283.9 - 283.9
AIC 297.9 - 295.9
BIC 317.6 — 312.8

~p<.10; ¥p <.05; ¥* p < .01; ¥**p < .001.

Model A uses the default option in SAS PROC MIXED; Model B removes boundary constraints for the
variance components; Model C removes the level-2 residual for rate of change, eliminating the associated
variance component (as well as the associated covariance component).

Note. SAS Proc Mixed, Full ML. Also note that the covariance component, Oy, is estimated where appro-
priate, but not displayed.

problem, used by both SAS PROC MIXED and MLwiN. Estimates of
0 are always suspicious; here they indicate that the algorithm has
encountered a boundary constraint. (Note that SAS allows the associated
covariance component to be non-zero, whereas MLwiN would also set
that term to 0.)

Model B in table 5.5 represents our dogged attempt to fit the speci-
fied model to data. To do so, we invoke a software option that relaxes the
default boundary constraint permitting usto obtain a negative variance
component. When analyzing severely unbalanced data, eliminating auto-
matic fix-ups can help identify problems with boundary constraints.
Unfortunately, in this case, the iterative algorithm does not converge (a
different problem that we will soon discuss). Nevertheless, notice that the
estimated variance component for rate of change at the last iteration is

negative—a logical impossibility. This, too, is another sign suggesting the
need for model simplification.

Model Cin table 5.5 constrains the variance component for the linear
growth rate, a:;éi its associated covariance component, to be 0. Notice that
the deviance statistic for this model is identical to that of the first, sug-
gesting the wisdom of fixing this parameter. This model fits no worse and
involves fewer parameters (as reflected by the superior AIC and BIC
statisfics). This means that with this data set—which is not a random

“sample from the original—we cannot confirm the existence of any sys-

tematic residual variation in the slopes of the wage trajectories beyond
the modest effect of BLACK shown in the final column of table 5.5.

Nonconvergence

As discussed in section 4.3, all multilevel modeling programs implement
iterative numeric algorithms for mdédel fitting. These algorithms compare
fit criteria (such as the log-likelihood statistic) across successive iterations
and declare convergence when the change in the fit criterion is suffi-
ciently “small.” Although the user can determine how small is “small
enough,” all programs have a default criterion, generally an arbitrarily
small proportional change. When the criterion is met, the algorithm con-
verges (i.e., stops iterating). If the criterion cannot be met in a large
number of iterations, estimates should be treated with suspicion.

How many iterations are needed to achieve convergence? If your data
set is highly structured and your model simple, convergence takes just a
few iterations, well within the default values set by most programs. With
unbalanced data sets and complex models, convergence can take
hundreds or thousands of iterations although the algorithms in specialized
packages (e.g., HLM and MLwiN) usually converge more rapidly than
those in multipurpose programs (e.g., SAS PROC MIXED).

For every model you fit—but especially for models fit to unbalanced
data—be sure to check that the algorithm has converged. In complex
problems, the program’s default limits on the maximum number of
iterations may be too low to reach convergence. All packages allow you
to increase this limit. If the algorithm still does not converge, sequentially
increase the limit until it does. Some programs allow you to facilitate
this search by providing “starting values” for the variance and covariance
components.

No matter how many iterations you permit and no matter how much
prior information you provide, there will be times when the algorithm

will not converge. Nonconvergence can result from many factors, but two
common causes are poorly specified models and insufficient data: their



. If you need an extremely large number of
iterations to fit a model to data, closely examine the variance components
and determine whether you have sufficient information to warrant allow-
ing level-2 residuals for both initial status and rates of change. (If you are
fitting nonlinear models using the methods of chapter 6, scrutinize other
variance components as well.) Remember that any given data set contains
a finite amount of information. You can postulate a complex model, buy
it is not alwavs possible to fit that model to the available data.

We conclude by noting that other problems besides boundary con-
straints can cause nonconvergence. One problem, easily remedied, is a
variable’s scale. If an outcome’s values are too small, the variance com-
ponents will be smaller still; this can cause nonconvergence via rounding
error issues. Simple multiplication of the outcome by 100, 1000, or
another factor of 10 can usually ameliorate this difficulty. Predictor
scaling can also cause problems but usually you want to adjust its metric
n the opposite direction. For a temporal predictor, for example, you might
ove from a briefer time unit to a longer one (from days to months or
months to years) so as to increase the growth rate’s magnitude. These
< i I C ffects on vour essential
ﬁndmgs (They will change the value of the 1oq likelihood and associated
ut leave the results of tests unaffected.)

5.2.3 Distinguishing among Different Types
of Missingness

No discussion of imbalance is complete without a complementary dis-
cussion of its underlying source. Although some researchers build imbal-
ance into their design, most imbalance is unplanned, owing to scheduling
problems, missed appointments, attrition, and data processing errors.
Further imbalance accrues if individuals who miss a wave of data collec-
tion subsequently return to the sample. For example, although the NLSY .
has a low annual attrition rate—less than 5% of the original sample ini-
tially leave in each of the first 13 years—many participants miss one or
two waves. In their exhaustive study of NSLY attrition, MaCurdy, Mroz,
and Gritz (1998) find many differences among persisters, dropouts, and
returnees. Of relevance for the wage analyses just presented are the find-
ings that attrition is higher for both the unemployed and men who once
earmed high wages.
Unplanned imbalance, especially when it stems from attrition or other
() potentially systematic sources, may invalidate your inferences. The issue
( is not the technical ability to fit a model but rather a substantive ques-
tion about credible generalization. To probe the issues, statisticians frame

the problem, not in terms of imbalance, but rather in terms of missing
data. When you fit a multilevel model for change, you implicitly assume
that each person’s observed records are a random sample of data from -
his or her underlying true growth trajectory. If your design is sound and
has no builtin bias, and everyone is assessed on every planned occasion,
your observed data will meet this assumption. If one or more individuals
are not assessed on one or more occasions, your observed data may not
meet this assumption. In this case, your parameter estimates may be
biased and your generalizations incorrect.

Notice that we use the word “may,” not “will,” throughout the previous
paragraph. This is because missingness, in and of itself, is not necessar-
ily problematic. It all depends upon what statisticians call the #ype of miss-
ingness. In seminal work on this topic, Little (1995), refining earlier work
with Rubin (Little & Rubin, 1987), distinguishes among three types
of missingness: (1) missing completely at random (MCAR); (2) covariate-}
dependent dropout (CDD); and (8). missing at random (MAR) (see also
Schafer, 1997). As Laird (1988) demonstrates, we can validly generalize
the results of fitting a multilevel model for change under all three of these
missingness conditions, which she groups together under rubric ignorables
nonresponse.

When we say that data are MCAR, we argue that the observed values
are a random sample of all the values that could have been observed
(according to plan), had there been no missing data. Because time-
invariant predictors are usually measured when a study begins, their
values are rarely missing. As a result, when a multilevel model includes
no time-varying predictors, the only predictor that can be missing is TIME
itself (when a planned measurement occasion is missed). This means that®
longitudinal data are MCAR if the probability of assessment on any occa-
sion is independent of: (1) the particular time; (2) the values of the sub-
stantive predictors; and (3) the values of the outcome (which are, by
definition, unobserved). For the NLSY wage data just analyzed, we can-
make a case for the MCAR assumption if the probability of providing
wage data at any point in time is independent of the particular moment
in that individual’s labor force history, all other predictors, and the unob-
served wage. There cannot be particular moments when a man would be:
unlikely to grant an interview, as would be the case if men were unwill-
ing to do so on specific days (which seems unlikely). But missingness must
also not vary systematically by an individual’s wage or other potentially
unobserved characteristics. MaCurdy and colleagues (1998) convincingly
demonstrate that these latter two conditions are implausible for the
NLSY.

The conclusion that the MCAR assumption is untenable for the NLSY
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data is unsurprising as this assumption is especially restrictive—wonder-
ful when met, but rarely so. Covariate dependent dropout (CDD) is a less
restrictive assumption that permits associations between the probability
of missingness and observed predictor values (“covariates”). Data can be
CDD even if the probability of missingness is systematically related to

either TIME or observed substantive predictors. For the NLSY wage data, .

we can argue for the validity of the CDD assumption even if there are
particular moments when men are unlikely to grant interviews. Missing-
ness can also vary by either race or highest grade completed (our two
observed predictors). By including these observed predictors in the mul-
tilevel model, we deflect the possibility of bias, allowing appropriate gen-
eralization of empirical results.

The major difficulty in establishing the tenability of the MCAR and
CDD assumptions is the requirement of demonstrating that the proba-
bility of missingness at any point in time is unrelated to the contem-
poraneous value of the associated outcome. Because this outcome is
unobserved, you cannot provide empirical support as you lack the very
data you need. Only a substantive argument and thought experiment will
do. Any potential relationship between the unobserved outcome and the
probability of missingness invalidates these assumptions. For example, if
men with particularly high or low wages are less likely to participate in
an NLSY interview, we cannot support either assumption. As this hypoth-
esis is both tenable and likely, we cannot defend either assumption for
the NLSY wage data (nor for many other longitudinal data sets).

Fortunately, there is an even less restrictive type of missingness—more
common in longitudinal research—that still permits valid generalization
of the multilevel model for change: the MAR assumption. When data are
MAR. the probability of missingness can depend upon any observed data,
for_either the predictors or any outcome values. It cannot. however,
depend upon any unobserved value of either any predictor or the
outcome. So if we are willing to argue that the probability of missingness
in the NLSY depends only upon observed predictor values (that is,
BILACK and HGC) and wage data, we can make a case for the MAR
assumption. The allowance for dependence upon observed outcome data
can account for a multitude of sins, often supporting the credibility
of the MAR assumption even when MCAR and CDD assumptions seem
far-fetched.

As general as it seems, you should not accept the MAR assumption
without scrutiny. Greenland and Finkle (1995) examine this assumption
in cross-sectional research and suggest that even it can be difficult to
meet. To illustrate their point, they argue that someone’s unwillingness
to answer a question about sexual preference (i.e., heterosexual vs. homo-
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sexual) is likely correlated with his or her true sexual preference. We
agree, but believe that there are many times when an individual’s
outcome values will adequately reflect such concerns. Yet even this asser-
tion can be untrue. For example, a recovering alcoholic’s willingness to
continue participating in a study about abstinence is likely related to his
or her ability to stay sober on each occasion. Such a systematic pattern—
even if impossible to prove—invalidates the MAR assumption.

In practice, the burden of evaluating the tenability of these missing-
ness assumptions rests with you. Any type of ignorable missingness
permits valid inference; you just need to determine which seems most
credible for your project. We suggest that you act as your own harshest
critic—better you than the reviewers! As MAR is the least restrictive
assumption, it provides the acid test. The key question is whether it is safe
to assume that the probability of missingness is unrelated to unobserved
concurrent outcomes (conditional on all cbserved outcomes). For the
NLSY wage data, we can invent two plausible scenarios that undermine
this assumption: If men are less likely to be interviewed at a particular
wave if, at that time, they are earning especially: (1) high wages—because
they might be less willing to take the time off from work to participate;
or (2) low wages—because they might be less willing to reveal these low
values to an interviewer. Because current wages (even unobserved) are
strongly correlated with past and future wages, however, these risks are
likely minimal. We therefore conclude that they are unlikely to be a major
source of missingness for these data, supporting the credibility of the
MAR assumption.!

If vou cannot invoke one of these three missingness assumptions, you
will need to add corrections to _the multilevel model for change. Two
different strategies are currently used: selection models and pattern mixture
models. Under the selection approach, you build one statistical model for>
the “complete” data and a second model for the selection process that
gave rise to the missingness. Under the pattern mixture approach, you 7
identify a small number of missingness patterns and then fit a multilevel
model stratified by these patterns. For further information, we direct your)
attention to the excellent papers by Hedeker and Gibbons (1997), Little
(1995), and Litte and Yau (1998).

5.3 Time-Varying Predictors

A time-varying predictor is a variable whose values may differ over time.
Unlike their time-invariant cousins, which record an individual’s static

__status, time-varying predictors record an individual’s potentially differing
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status on each associated measurement occasion. Some time-varying pre-
dictors have values that change naturally; others have values that change
by design.

In their fouryear study of how teen employment affects the amount of
time adolescents spend with their families, Shanahan, Elder,
Burchinal, and Conger (1996) examined the effects of three time-varying
predictors: (1) the average number of hours worked per week; (2) the
total amount of money earned per year; and (3) whether earnings were
used for nonleisure activities (e.g., schoolbooks or savings). At age 12Y,,
the average adolescent spent 16.3 hours per week with his or her family;
over time, this amount declined at an average annual rate of 1.2 hours
per week. Teen employment had both positive and negative effects.
Although teens who made more money experienced steeper declines
than peers who made less, those who spent some earnings on nonleisure
activities or who worked especially long hours spent more time, on
average, with their families (although their rates of decline were no shal-
lower). The authors conclude that: “adolescent work constitutes a poten-
tially positive source of social development, although this depends on
how its multiple dimensions—earnings, spending patterns, [and] hours

. —fit with the adolescent’s broader life course” (p. 2198).

In this section, we demonstrate how you can include time-varying pre-
dictors in the multilevel model for change. We begin, in section 5.3.1, by
showing how to parameterize, interpret, and graphically display a model
that includes a time-varying predictor’s main effect. In section 5.3.2, we
allow the effect of a time-varying predictor to vary over time. In section
5.3.3, we discuss how to recenter time-varying predictors so as to facili-
tate interpretation. We conclude, in section 5.3.4, with some words of
caution. Having described the analytic opportunities that time-varying
predictors afford, we raise complex conceptual issues that can compro-
mise your ability to draw clear convincing conclusions.

5.3.1 Including the Main Effect of a
Time-Varying Predictor

Conceptually, you need no special strategies to include the main effect
of a time-varying predictor in a multilevel model for change. The key to
understanding why this is so lies in the structure of the person-period data
set. B_egmm_e_cag_h_p_ledlcmr—whe[her tlme-mvarlant or _time-varying—

a[;.; ACTOSS gggh pglsgn ’s multiple reggrd;. A time-invariant predictor’s

values remain constant; a time-varying predictor’s values vary. There is
nothing more complex to it than that.

Table 5.6: Excerpts from the person-period data set for the
unemployment study

D MONTHS CES-D UNEMP
7589 1.3142 36 1
7589 5.0924 40 1
7589 11.7947 39 1

55697 1.3471 7 1

55697 5.7823 4 1

65641 0.3285 32 1

65641 4.1068 9 0

65641 10.9405 10 0

65441 1.0842 27 1

65441 4.6982 15 1

65441 11.2690 7 0

53782 0.4271 29 1

53782 4.9382 15 0

53782 11.0719 21 1

We illustrate the general approach using data from Ginexi and col-
leagues’ (2000) study of the effects of unemployment on depressive symp-
toms (mentioned briefly in section 5.1). By recruiting 254 participants
from local unemployment offices, the researchers were able to interview
individuals soon after job loss (within the first 2 months). Follow-up inter-
views were conducted between 3 and 8 months and 10 and 16 months after
Jjob loss. Each time, participants completed the Center for Epidemiologic
Studies’ Depression (CES-D) scale (Radloff, 1977), which asks them to
rate, on a four-point scale, the frequency with which they experience each
of 20 depressive symptoms. CES-D scores can vary from a low of 0 for
someone with no symptoms to a high of 80 for someone in serious distress.

Just over half the sample (n=132) was unemployed at every interview.
Others had a variety of re-employment patterns: 62 were always working
after the first interview; 41 were still unemployed at the second interview
but working by the third; 19 were working by the second interview but
unemployed at the third. We investigate the effect of unemployment
using the time-varying predictor, UNEMP. As shown in the person-period
data set in table 5.6, UNEMP represents individual 7's unemployment
status at each measurement occasion. Because subjects 7589 and 55697
were consistently unemployed, their values of UNEMP are consistently 1
Because the unemployment status of the remaining cases changed, their
values of UNEMP change as well: subject 65641 was working at both the
second and third interviews (pattern 1-0-0); subject 65441 was working
by the third (pattern 1-1-0); and subject 53782 was working at the second
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interview but unemployed again by the third (pattern 1-0-1). For any indi-
vidual, UNEMP can be either 0 or 1 at each measurement occasion except
the first (because, by design, everyone was initially unemployed).

We begin, as usual, with an unconditional growth model without sub-
stantive predictors:

Yy =Ty; +7T1,T.UWEy + Stj

Toi =Yoo+ Goi (5.3a)
Ty = Y10 +Cui,
where
C 0 0'§ Oo1
&; ~ N(0,02) and [ I } Mo o oF | (5.3b)

Model A of table 5.7 presents the results of fitting this model to data, where
TIME; indicates the number of months (to the nearest day) between the
date of interview j for person 7and his date of initial unemployment. On
the first day of job loss (TIME; = 0), we estimate that the average person
has a non-zero CES-D score of 17.67 (p< .01); over time, this level declines
linearly at a rate of 0.42 per month (p <.001). The variance components
for both initial status and rates of change are statistically significant, sug-

gesting the wisdom of exploring the effects of person-specific predictors.

Using a Composite Specification

Because many respondents eventually find work, the unconditional
growth model likely tells an incomplete story. If employment alleviates
depressive symptoms, might the reemployment of half the sample explain
the observed decline? If you exclusively use level-1/level-2 representa-
tions, you may have difficulty postulating a model that addresses this
question. In particular, it may not be clear where—in which model—the
time-varying predictor should appear. So far, person-specific variables
have appeared in level-2 submodels as predictors of level-1 growth param-
eters. Although you might therefore conclude that substantive predictors
must always appear at level-2, this conclusion would be incorrect!

The easiest way of understanding how to include a time-varying pre-
dictor is to use the composite specification of the multilevel model. It is
not that we cannot include a time-varying predictor in a model written
using a level-1/level-2 specification (we will soon show how to do so), but
rather that it is easier to learn how these predictors’ effects operate and
what types of models you might fit, if you start here.

We begin with the composite specification for the unconditional
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Table 5.7: Results of fitting a taxonomy of multilevel models for change to the
unemployment data (n = 254)

Parameter Model A Model B Model C Model D
Fixed Effects
Composite Intercept Yoo 17.6694**  12.6656%**  9.6167*** 11.2666%**
model (initial (0.7756) (1.2421) (1.8893) (0.7690)
status)
TIME Y10 —0.4220%%*  —0.2020* 0.1620
(rate of (0.0830) (0.0933) (0.1937)
change)
UNEMP Yoo B.1113%*%  8.5291%**  §.8795%%*
(0.9888) (1.8779) (0.9133)
UNEMP by Yao —0.4652* —0.3254**
TIME (0.2172) (0.1105)
(Variance Components .
[ Level-1 Within-person o? 68.85% % 62.39%** 62.03%** 62.43%+*
| Level- In intercept o3 86.85%** 93.52%** 93.71%*% 41.52%%*
- In rate of o? 0.36* 0.46%* 0.45%* —
change
In UNEMP 0'2 — — — 40.45%
In UNEMP by o3 .- — 0.71%*
= WVe) vre 2T L @»7%/'@ /Z"-LC (4
- Goodness-of-fit
Deviance 5133.1 5107.6 5103.0 5093.6
AIC 5145.1 5121.6 5119.7 5113.6
BIC 5166.3 5146.4 5147.3 5148.9

—p<.10; *p < .05 ¥ p< OL; ¥ p< 001,

These models predict depression scores (on the CESD) in the months following unemployment as a func
tion of the ime-varying predictor UNEMP. Model A is an unconditional growth model (see equation 5.4)
odel B adds the main effect of UNEMP as a fixed effect (see equation 5.5); Model C also adds the inter
tion between UNEMP and linear TIME (see equation 5.7). Model D allows UNEMP to have both fixec
and random effects (see equation 5.10). Notice that we have changed the order in which the fixed effect
‘appear to correspond to the composite specification of the model.

: Full ML, SAS Proc Mixed. Also note the models include all associated covariance parameters, whicl
. we do not display to conserve space.

growth model, formed by substituting the second and third equations in
equation 5.3a into the first:

Y; =Yoo + 710TIME; |+ [{o; + C1.TIME; + g1 (54)

As in chapter 4, we use brackets to distinguish the model’s fixed and sto-
. chastic portions. Because the fixed portion in the first bracket resembles
. 2 standard regression model, we can add the main effect of the time-
& varying predictor, UNEMP, by writing:
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. Y; =Yoo +V10TIME; + ¥20UNEMP; )+ [Lo; + § TIME;; + €5 ) (5.5)

The two subscripts on UNEMP signify its time-varying nature. In writing
equation 5.5, we assume that individual 7's value of Y at time j depends
upon: (1) the number of months of since job loss (TIME); (2) his or her
contemporaneous value of UNEMP, and (3) three person-specific resid-
uals, &, C1, and &

What does this model imply about the time-varying predictor’s main
effect? Because the fixed effects, the 7’s, are essentially regression param-
eters, we can interpret them using standard conventions:

e o is the population average monthly rate of change in CES-D
scores, controlling for unemployment status.

e 15 is the population average difference, over time, in CES-D scores
between the unemployed and employed.

The intercept, ¥, refers to a logical impossibility: someone who is
employed (UNEMP = 0) on the first day of job loss (TIME = 0). As in
regular regression, an intercept can fall outside the range of the data (or
theoretical possibility) without undermining the validity of the remain-
ing parameters.

We can delve further into the model’s assumptions by examining figure
5.3, which presents four average population trajectories implied by the
model. As in figure 3.4, we obtained these trajectories by substituting in
specific values for the substantive predictor(s). But because UNEMP is
time-varying, we substitute in time-varying patierns not constant values.
Since everyone was initially unemployed, UNEMP can take on one of four
distinct patterns: (1) 1 1 1, for someone consistently unemployed; (2)
1 0 0, for someone who soon finds a job and remains employed; (3)110,
for someone who remains unemployed for a while but eventually finds a
job;and (4) 101, for someone who soon finds a job only to lose it. Each
pattern yields a different population trajectory, as shown in figure 5.3.

The unbroken trajectory in the upper left panel represents the pre-
dicted change in depressive symptoms for people who remain unem-
ployed during the study. Because their values of UNEMP do not change,
their implied average trajectory is linear. In displaying this single line, we
do not mean to suggest that everyone who is consistently unemployed
follows this line. The person-specific residuals, &y and §;, allow different
individuals to have unique intercepts and slopes. But every true trajec-
tory for someone who is consistently unemployed is linear, regardless of
its level or slope.

The remaining trajectories in figure 5.3 reflect different patterns of

temporal variation in UNEMP. Unlike the population trajectories in pre-
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Figure 5.3. Identifying a suitable level-1 model for a time-varying predictor. Four averag

b .Pppula{it}n trajectories implied by equation 5.5 for the effects of time-varying unen
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vious chapters, these are discontinuous. Discontinuity is a direct conse-
quence of UNEMP's dichotomous time-varying nature. The upper right
panel, for the 1 0 0 pattern, presents a hypothesized population trajec-
tory for someone who finds a job at 5 months and remain employed. The
lower left panel, for the 1 1 0 pattern, presents a hypothesized trajectory
for someone who finds a job at 10 months and remains employed. The
lower right panel, for the 1 0 1 pattern, presents a hypothesized trajec-
tory for someone who finds a job at 5 months only to lose it at 10.

In offering these hypothetical trajectories, we must mention two
caveats. First, although we link the upper and lower segments in each
panel using dashed lines, our model implies only the solid portions. We
use the dashed lines to emphasize that a change in unemployment status
is associated with a switch in trajectory. Second, these few trajectories are
not the only ones implied by the model. As in the first panel, person-
specific residuals—{,, and {i1—suggest the existence of many other discon-
tinuous trajectories, each with its own intercept and slope. But because
the model constrains the effect of UNEMPto be constant, the gap between

jectories—for any individual—will be identical, at %o, the parameter
associated with UNEMP. (We relax this assumption in section 5.3.2.)

Model B of table 5.7 presents the results of fitting this model to data.
The parameter estimate for TIME, 7, suggests that the monthly rate of
decline in CES-D, while still statistically significant, has been cut in half
(t0 0.20 from 0.42 in Model A). This suggests that reemployment explains
some of the observed-decline in CES-D scores. This conclusion is
reinforced by: (1) the large statistically significant effect of UNEMP—the
average CES-D score is 5.11 points higher (p < .001) among the unem-
ployed; and (2) the poorer fit of Model A in comparison to Model B—
the difference in deviance statistics is 25.5 on the addition of one
parameter (p < .001) and the AIC and BIC statistics are much lower as
well. (We discuss the variance components later in this section.)

The left panel of figure 5.4 displays prototypical trajectories for Model
B. Rather than present many different discontinuous trajectories reflect
ing the wide variety of transition times for UNEMP, we present just two con-
tinuous trajectories: the upper one for someone consistently unemployed;
the lower one for someone consistently employed after 3.5 months.
Displaying only two trajectories reduces clutter and highlights the most
extreme contrasts possible. Because of this study’s design, we start the
fitted trajectory for UNEMP = 0 at 3.5 months, the earliest time when a
participant could be interviewed while working. To illustrate what would
happen were we to extrapolate this trajectory back to TIME= 0, we include
the dashed line. Because the model includes only the main effect of
UNEMP, the two fitted trajectories are constrained to be parallel.

..

. ployment status in Model B? Had the study followed just two static
| groups—the consistently unemployed and the consistently employed—
. these two trajectories would be the only ones implied by the model. But
\ because UNEMP is time-varying, Model B implies the existence of many
¢ more depression trajectories, one for each possible paitern of unemploy-

Model B: Model C: Model D:
Main effects of Interaction between Constraining the effect of TIME
UNEMP and TIME UNEMP and TIME among the re-employed
— e —
g CES-D CES-D
20 ED 20 - 20.
i UNEMP =1 UNEMP =1
15+ 15 - 15 |
10 \ 10- _,,-/ UNEMP=0 19 UNEMP =0
UNEMP =0
5 l 5 51

02 46 8101214
Months since job loss

02 4 6 8 1012 14
Months since job loss

02468101214
Months since job loss

Figure 5.4. Displaying the results of fitted multilevel models for change that include a

time-varying predictor. Prototypical trajectories from three models presented in table 5.7:

Model B—the main effect of UNEMP and TIME, Model C—the interaction between
UNEMP and TIME, and Model D—which constrains the effect of TIME to be 0 among

~ the reemployed.

How do these two fitted trajectories display the main effect of unem-

ment/employment. Where are these additional trajectories? We find it

: ~ helpful to think of the extremes shown as a conceptual envelgpe encom-

* passing all discontinuous trajectories implied by the model. If UNEMP

remains constant, an individual stays on one depression trajectory: if
UNEMP changes, an _individual shifts trajectories. As everyone in this
study is unemployed at the first interview, everyone begins on the top tra-
Jjectory. Those who find new jobs drop to the lower trajectory. Those who
- remain employed stay there. Those who lose their new jobs return to
the upper trajectory. Conceptually, envision many dashed vertical lines
- running from the upper trajectory to the bottom (and back again) for
individuals who change employment status. The set of these trajectories,

1 - which fall within the envelope shown, represent the complete set of pro-
£ totypes implied by the model.
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between postulated trajectories in figure 5.3 is ¢ To
fit the new model to data, we revise the distributional assumptions
. for the residuals as presented in equation 5.3b. Commonly, we expand
. the assumption of multivariate normality to include all three level-2

Using a Level-1/Level-2 Specification

Having included a time-varying predictor under the composite specifi-
cation, we now show how you can specify the identical model using a
level-1/level-2 specification. This representation provides further insight

into how time-varying predictors’ effects operate; it also allows you to
include time-varying predictors using software packages (e.g., HLM)
that require a level-1/level-2 specification of the multilevel model for
change.

To derive the level-1/level-2 specification that corresponds to a given
composite specification, you proceed backwards. In other words, just as
we can substitute level-2 submodels into a level-1 submodel to form a com-
posite specification, 5o, too, can we decompose a composite model into its

* constituent level-1 and level-2 parts. Because the time-specific subscript j
can appear only in a level-l model, all time-varying predictors must
appear in at level-1. We therefore write the level-1 submodel for the com-
posite main effects model in equation 5.5 as:

Person-specific predictors that vary over time appear at level-1, not level-

2. If you have no time-invariant p?‘edictors, as here, the accompanying

level-2 models are brief:
|

Toi = Yoo +Gos
Ty; = Y10+ (5.6b)
Toi = Y20-

You can verify that substituting these level-2 models into the level-1 model

ala i Nme-1nvarial ) (] 0TS ) § ACIC LG
in the level2 submodels,
Notice that the third equation in equation 5.6b, for @, the parameter

5 for UNEMP, includes no level-2 residual. All the multilevel models fit so

|

far have invoked a similar constraint—that the effect of a person-specific

predictor is constant across population members. Time-invariant predic-
tors require this assumption because they have no within-person variation

to allow for a level-2 residual. But for time-varving predictors we could
easily modify the last model in equation 5.6b to be:

T9; = Yoo + o (5.6¢)

This allows the effect of UNEMP to vary randomly across individuals
in_the population. Adding this residual relaxes the assumption that

. . . . . - in section 5.2.2).
in equation 5.6a yields the composite specification in equation 5.5. To.

: «59 _fil‘

L residuals:

Coi 0 O’g 601 602
g; ~ N(0,062)and | {;; |~ N} |0 },| o1 o7 O (5.6d)
oi 0] 09 0O o3

Notice that in adding one extra residual, {s:, we add three extra variance
components: 03, Oy and GCy.

Just because we can add these terms to our model does not mean that
we should. Before doing so, we must decide whether the additional
parameters are: (1) necessary; and (2) estimable using the available data.}

To address the first issue, consider whether the effect of employment on
L CES-D scores, controlling for time, should vary randomly across individu-
~ als. Before answering yes, remember that we are talking about random
~ variation. If we expect the effect of unemployment to vary systematically
-~ across people, we can add substantive predictors that reflect this hypoth-
. esis. The question here is whether we should go further and add 2 resid-
. ual that allows the effect of UNEMP to vary randomly. To be sure, much
~ of our caution stems from concerns about the second point—the ability
':' to estimate the additional parameters. With three (and sometimes fewer)
. mate additional variance components. Indeed, if we attempt to fit this

tmore elaborate model, we encounter boundary constraints (as described
We therefore suggest that you resist temptation Lo
wtomatically allow the effects of ime-varving predic va

L 2 unless you have good reason. and sufficient data, to do so. (We will soon

do so in section 5.3.2.)
- As your models become more complex, we offer some practical advice

(born of the consequences of the failure to follow it). When including
. time-varying predictors, we suggest that you write out the entire model

before specifying your choice to a computer package. We suggest this
extra step because it is not always obvious which random effects to
include. In equation 5.6b, for example, the level-2 submodels require the

:_- words, to fit this model you must use what appears to be an inconsisient
. set of level-2 submodels. As in many aspects of longitudinal analysis, the

default or “standard” specifications may not yield the model you want
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Time-Varying Predictors and Variance Components

In section 4.5.2, we discussed how the magnitude of variance components
“ generally change on the inclusion of time-invariant predictors: (1) the

Jevel-1 variance component, 0% remains relatively stable because time-

invariant predictors cannot explain much within-person variation; but

(2) the level-2 variance components, o2 and o}, will decline if the time-

invariant predictors “explain” some of the between-person variation in

initial status or rates of change, respectively. Time-varying predictors, in

contrast, can affect all three variance compone v

within- and between-persons. And although vou can in t

in the magnitude of the level-1 variance component. ¢

variance components may not be meaningful. as we now show.

" The general pringiples can be illustrated simply using Models A and B
in table 5.7. Adding UNEMP to the unconditional growth model (Model
A) reduces the magnitude of the within-person variance component, o5
by 9.4% (from 68.85 to 62.39). Using strategies from section 4.4.3, equa-
tion 4.13, we conclude that time-varying unemployment status explains
just over 9% of the variation in CES-D scores. This interpretation is
straightforward because the time-varying predictor is added to the level-
1 model, reducing the magnitude of the level-1 residual, &;

But ascribing meaning to observed changes in the level-2 variance com-
ponents 6% and o3 can be nearly impossible. As we move from Model A
to B both estimates irereaset” Although we alluded to this possibility in
section 4.4.3, this is first example in which we observe such a pattern. The
explanation for this seeming paradox—that changes in level-2 variance
components do not assess the effects of time-varying predictors—lies in
the associated level-1 submodel. When you add a time-varying predictor,
as either a main effect or an interaction, you change the meaning of the
individual growth parameters because: :

e The intercept parameter, 7o, NOW refers to the value of the
outcome when all level-1 predictors, not only TIME but also the
time-varying predictor, are zero.

¢ The slope parameter, 7j; is now a conditional rate of change, con-
trolling for the effects of the time-varying predictor.

lreating f//VIE NMIOTE FIEXIDLY 1/1

Oor in vou . As tempting as
it is to compute the percentage reduction in a variance component asso-
ciated with the inclusion of a time-varying predictor, there is no consis-
tently meaningful way of doing so.

5.3.2 Allowing the Effect of a Time-Varying Predictor
to Vary over Time

Might unemployment status also affect the trajectory’s slope? In previous
chapters, we initially associated predictors with both initial status and
rates of change. Yet because Model B includes only the main effects of
TIME and UNEMP, the trajectories are constrained to be parallel.
There are many ways to specify a model in which the trajectories’ slopes

vary by unemployment status. The easiest approach. and the one we

suggest you begin with, is to add the crossproduct—here. between

K] = [')/00 + YIOTIJ\JEU + ’)/QOIMIWR] + YBOLMJWBJ X TI]\IEU]
+[&o; + CuTIME; + €]

(5.7)

Notice the close resemblance between this and the composite model that
includes an interaction between a time-invariant predictor and TIME

: (shown in equation 4.3). The differences between the two are purely cos-
= 'me!:ic: (1) the substantive predictor (here UNEMP and there COA) has
~ an additional subscript j to indicate that it is time-varying; and (2) dif-
. ferent subscripts reference the relevant fixed effects (the 7’s).

Model C of table 5.7 presents the results of fitting this model to data.
The interaction between TIME and UNEMP is statistically significant (3o

© = 0.46, p < .05). As with all interactions, we can interpret this effect in "

two ways: (1) the effect of unemployment status on CES-D scores varies

. over time; and (2) the rate of change in CES-D scores over time differs
¢ by unemployment status. Rather than delve into these interpretations, we
. draw your attention to the prototypical trajectories for this model dis-
. played in the middle panel of figure 5.4. Here we find an unexpected

pattern: while CES-D scores decline among the unemployed, the reverse
is found among the re-employed—their CES-D scores appear to increase!

£ The parameter estimate for the main effect of TIME, 71, = 0.16, suggests
" why we observe this anomaly—it is not statistically significant (it is even
¢ smaller than its standard error, 0.19). Although we estimate a non-zero
. rate of change among the re-employed, we might have obtained this esti-
* mate even if the true rate of change in the population was zero.

¢ This suggests that it might be wise to constrain the trajectory among
L the re-employed to be flat, with a slope of 0, while allowing the trajectory
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mong the unemployed to decline over time. Were we fitting 2 s.tandard
>gression model, we might achieve this goal by removing the main effect
f TIME:

Y; = [Yoo + Y20UNEMP; +y3UNEME; X TIME;)+[Coi + CuTIME; + 3:']'1-5 B

fad we fit this model to data and obtained ﬁttedﬂtrajectories by unem-
loyment status we would find: when UNEMP=0, Y;= Y00, Wwhen UNEMP
-1, i}y: {f’u@ + '}720) + YSOTIJWEQ. . ‘ ' ‘

This model’s structural portion yields trajectories with the des1rAed
yroperties: (1) for the employed, we would have a flat Iine_ at _level Toot
ind (2) for the unemployed, we would have a slanted line, with intercept
700 + 720 and slope Vs0-

We do not fit this model, however, because of the lack of congruence
setween its structural and stochastic portions. Comparing the elements
in the two sets of brackets in equation 5.8, notice that the model includes:
(1) a random effect for TIME, (,;, but no corresponding main effect (we
removed ¥, from the model when we removed the main effect of TIME);
and (2) a fixed effect for the UNEMP by TIME interaction (150) a{ld
no corresponding random effect. We therefore postulate an alternative
model in which the fixed and random effects are better aligned:

¥, =[oo +2UNEMP; +5UNEMP; » TIME; ]

(5.9)

Notice that the interaction term, UNEMPby TIME, appears as both a fixed
and a random effect. But when we attempt to fit the model in equation 5.9
to data, we find that its AIG and BIC statistics are larger (worse) than that
of Model C (we cannot conduct a formal test because this model is :mt
fully nested within the other, nor do we present the results in table 5. f‘).
It might appear, then, that Model C is preferable. But before read}mg
this conclusion, we revisit a question raised in the previous section:
Should the effect of UNEMP be constant across the population? When
we previously attempted to allow this effect to vary randomly (by aug-
menting Model B, which included the main effect of TIME) we could not
fit the model to data. But having constrained the model’s structural
portion so that the trajectory among the re-employed is flat, we notice an
inconsistency in equation 5.8: it allows the intercept among the
employed, Yo, tO vary randomly (through the inclusion of the residual,

allow the increment to this flat level (which yields the the intercept
among the unemployed) to vary randomly as well? Perhaps the fit of the
model in equation 5.9 is poorer than Model C because of this unrealis-
tically stringent constraint on the random effects.

We address this supposition by fitting Model D:

which allows each fixed effect to have an associated random effect. The
results of fitting this model are shown in the final column of table 5.7
and are graphed in the right panel of figure 5.4. Immediately upon layoff,
the average unemployed person in the population has a CES-D score of
18.15 (=11.27 + 6.88). Over time, as they acclimate to their new status,
the average unemployed person’s CES-D scores decline at a rate of —0.33
per month (p < .01). CES-D scores among those who find a job are lower
(by as much as 6.88 if the job is found immediately after layoff or as little
as 2.97 if 12 months later (14.24 — 11.27). Once a formerly unemployed
individual finds a job and keeps it, we find no evidence of systematic
change in CES-D scores over time. We believe that this model provides a
more realistic representation of the patterns of change in CES-D scores
over time than Model C. Not only is it substantively compelling, its AIC
statistic is superior (and its BIC nearly equivalent) even though itincludes
several additional parameters (the extra variance components shown in
table 5.7 as well as the extra covariance components not shown).

We hope that this example illustrates how you can test important
hypotheses about time-varying predictors’ effects and investigate even
more ways in which outcomes might change over time (here, how CES-
D scores change not just with time but also re-employment). As we will
show in chapter 6, the ability to include time-varying predictors opens up

(5.10)

* 2 world of analytic opportunities. Not only can level-1 individual growth
"~ models be smooth and linear, they can also be discontinuous and curvi-

linear. This allows us to postulate and fit level-1 submodels that better
reflect our hypotheses about the population processes that give rise to
sample data and assess the tenability of such hypotheses with data. But to
adequately build a foundation for pursuing those types of analyses, we

‘must consider other issues that arise when working with time-varying

predictors, and we do so by beginning with issues of centering.

5.3.3 Recentering Time-Varying Predictors

{s:) but not the increment to this intercept associated with unemploy- i
ment, Y, (there is no corresponding residual, ;). Why should we allow
the flat level of the trajectory among the re-employed to vary and not £

§ In chapter 4, when discussing interpretation of parameters associated
. with time-invariant predictors, we introduced the practice of recentering:



subtracting a constant from a predictor’s values to alter its parameter’s
meaning. In some analyses, we subtracted a predictor’s overall sample
mean (known as grand-mean centering); in others, we subtracted a sub-
stantively interesting value (such as 9 for highest grade completed). We now
describe similar strategies you can use with time-varying predictors.

To concretize the discussion, let us return to the wage data for high
school dropouts summarized in table 5.4. We can express Model C in
composite form by writing: Y; = [%o + % TIME; + ¥ (HGC, — 9) +
Y12BLACK; X TIME;] + [ §o;+ & TIME; + €;]. As did the original researchers,
we now 1ntr0duce the possibility that wages might be affected by a
time-varying predictor, UERATE, the unemployment rate in the local
geographic area:

+[8o; + CuTIME; + ;] (5.11)

We restrict attention to the main effect of UERATE because extensive
analysis suggests that its effect on log wages does not vary over time.

Adapting recentering strategies outlined in section 4.5.4 for time-
invariant predictors, we could include UERATE in several different ways,
each using one of the following:

* Its raw values

® Deviations around its grand mean in the person-period data set (7.73)

® Deviations from another meaningful constant (say, 6, 7 or 8,
common unemployment rates during the time period under
study)

‘Each strategy would lead to virtually identical conclusions. Were we to fit

L

the model in equation 5.11 using each, we would find identical parame-
ter estimates, standard errors, and goodness-of-fit statistics with just one
exception: for the intercept, Y%o. Inspecting equation 5.11 clarifies why this
is so. As in regression, adding a main effect does not alter the meaning
of the model’s remaining parameters. If UERATE is expressed on its raw
scale, ¥ estimates the average log wage on the first day of work (EXPER
=0) for a black male who dropped out in ninth grade (HGC — 9 =0) and
who lives in an area with zo unemployment (UERATE = 0). If UERATE is
grand-mean centered, J, estimates the average log-wage for a compara-
ble male who lives in an area with an “average’ unemployment rate. But
because this “average” would be computed in the person-period data set,
in which both the measurement occasions and number of waves vary
across people, it may not be particularly meaningful.

Table 5.8: Results of adding three alternative representations of the time-varying
predictor for local area unemployment rate (UERATE) to Model C of table 5.4 for the
high school dropout wage data (n = 888)

Model B:
Model A: within- Model C:
centered person time-1
Parameter at 7 centering  centered
Fixed Effects
~ Initial Intercept Yoo 1.7490*** 1.8743%%* 1.8693***
status, T, (0.0114) (0.0295) (0.0260)
(HGC-9) Yor 0.0400%** 0.0402*%**  (.0399%**
(0.0064) (0.0064) (0.0064)
UERATE Yo —0.0120%*%  —0, 0177+ —0.0162%%*
(0.0018) (0.0035) (0.0027)
Deviation of Yao —0.0099***  —(.0103%s**
UERATE from (0.0021) (0.0019)
= centering value
_. Rate of Intercept Yo 0.0441**x  (0.0451* 0.0448**x
change, m; (0.0026) (0.0027) (0.0026)
BLACK Yo —0.0182%%*  _(.0189%** (.01 8F***
(0.0045) (0.0045) (0.0045)
" Variance Components
~ Level-1: within-person o? 0.0948%¥*  (0.0948%#* () 0948***
- Level-2: In initial status o3 0.0506%**  0.0510%**  (.0503%%*
In rate of change o 0.0016%** 0.0016%** 0.0016%**
| Goodness-of-fit
3 Deviance 4830.5 4827.0 4825.8
AlIC 4848.5 4847.0 4845.8
BIC 4891.6 4894.9 4893.7

b p<.10;%p < .05; ¥* p < 01; F+Ep < 001
. Model A adds (UERATE ~ 7); Model B centers UERATE at each person’s mean; Model C centers
- UERATE around each person's value of UERATE at his first measurement occasion.

R Note: SAS Proc Mixed, Full ML. Also note that the covariance component, Gy, is estimated, but not
- displayed.

We therefore often prefer recentering time-varying predictors not
around the grand-mean but rather around a substantively meaningful

constant—here, say 7. This allows 7, to describe the average log-wage for
i someone whose local area has a 7% unemployment rate. The results of
. fitting this last model appear in the first column of table 5.8. As in sectio

5:2.1, we can interpret this parameter estimate by computing 100 (e

=1) =-1.2. We conclude that each one-percentage point difference i
Ioca] area unemployment rate is associated with wages that are 1.

3 'perccnt lower.
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Given that centering has so little effect on model interpretation, you
may wonder why we raise this issue. We do so for three reasons: (1) the
topic receives much attention in the multilevel literature (see, e.g., Kreft
et al., 1995; Hofmann & Gavin, 1998); (2) some computer programs
tempt analysts into recentering their predictors through the availability
of simple toggle switches on an interactive menu; and (3) there are still
other meaningful ways of recentering. Not only can you recenter around
a single constant, you can recenter around multiple constants, one per
person. It is this approach, also known as within-context or group-mean
centering, to which we now turn.

The general idea behind within-context centering is simple: instead of
representing a time-varying predictor using a single variable, decompose
the predictor into multiple constituent variables, which, taken together,
separately identify specific sources of variation in the outcome. Of the
many ways of decomposing a time-varying predictor, two deserve special
mention:

» Within-person centering: include the average unemployment rate for
individual 7, UERATE,, as well as the deviation of each period’s
rate from this average, (UERATE; — UERATE,).

e Time-1 centering: include time-I's unemployment rate for individual
i, UERATE,, as well as the deviation of each subsequent rate from
this original value, (UERATE; - UERATE;).

Within-context centering provides multiple ways of representing a time
varying predictor. Under within-person centering, you include a time-
invariant average value and deviations from that average; under time-1
centering, you include the time-invariant énitial value and deviations from
that starting point. In both cases, as well as in the many other possible
versions of within-context centering, the goal is to represent the predic-
tor in a way that provides greater insight into its effects. (Of course,
within-person centering raises interpretive problems of endogeneity,
discussed in the following section.)

The last two columns of table 5.8 present the results of fitting the mul-
tilevel model for change with UERATE centered within-person (Model B)
and around time-1 (Model C). Each contributes a particular insight into
the negative effect of local unemployment on dropouts’ wages. Model B
reveals an association between wages and two aspects of the unemploy-
ment: (1) its average over time—the lower the average rate, the lower the
wage; and (2) its relative magnitude, at each point in time, in compari-
son to this average. Model C demonstrates that wages are also associated
with two other aspects of the time-varying unemployment rates: (1) their

initial value, when the dropout first enters the labor force; and (2) the s

increment or decrement, at each subsequent point in time, from that initial
value. Is either of these centered options clearly superior to the raw vari-
able representation? Given that we cannot compare deviance statistics
(because no model is nested within any other), comparison of AIC and
BIC statistics suggests that all three are roughly comparable, with BIC
giving the nod to Model A and AIC the nod to Model C.

These strategies for representing the effect of 2 time-varying predictor
are hardly the only options. We offer them primarily in the hope that
they will stimulate your thinking about substantively interesting ways of
representing predictors’ effects. We find routine recommendations to
always, or never, center unconstructive. We prefer instead to recommend

that you think carefully about which representations might provide the

greatest insight into the phenomenon you are studying.

5.3.4 An Important Caveat: The Problem of
Reciprocal Causation

Most researchers get very excited by the possibility thata statistical model
could represent the relationship between changing characteristics of indi-
viduals and their environments, on the one hand, and individual out-
comes on the other. We now dampen this enthusiasm by highlighting
interpretive difficulties that tme-varying predictors can present. The
problem, known generally as reciprocal causation O endogeneity, is the famil-
iar “chicken and egg” cliché: if Xis correlated with Y, can you conclude
that X causes Y or is it possible that Y causes X?

Many, but not all, time-varying predictors are subject to these prob-
lems. To help identify which are most susceptible, we classify time-varying
predictors into four groups: defined, ancillary, contextual, and internal’. In
the context of individual growth modeling, classification is based on the

A degree to which a predictor’s values at time ; are: (1) assignable a prior;

and (2) potentially influenced by the study participant’s contemporane-
ous outcome. The more “control” a study participant has over his or her
predictor values, the more clouded your inferences.

A time-varying predictor is defined if, in advance of data collection, its

" values are predetermined for everyone under study. Defined predictors

are impervious to issues of reciprocal causation because no one—not

* the study participants nor the researchers—can alter their values. Most

defined predictors are themselves functions of time. All representations
of TIME are defined because their values depend solely on a record’s
time-period. Time-varying predictors that reflect other periodic aspects

" of time—such as season (fall, summer, etc) or anniversary (anniversary
. month, nonanniversary month)—are defined because once the metric
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for time is chosen, so, too, are their values. Predictors whose values are
set by an external schedule are also defined. If Ginexi and colleagues
(2000) added a variable representing each person’s time-varying unem-
ployment benefits, its values would be defined because payments reflect
a uniform schedule. Similarly, when comparing the efficacy of time-
varying drug tapering regimens in a randomized trial, an individual’s
dosage is defined if the researcher determines the entire dosing sched-
ule a priori. Different people may take different doses at different times,
but if the schedule is predetermined, the predictor is defined.

A time-varying predictor is ancillary if its values cannot be influenced
by study participants because they are determined by a stochastic process
totally external to them. We use the term “stochastic process” to empha-
size that, unlike a defined predictor, an ancillary predictor can behave
erratically over time. Ancillary predictors are impervious to issues of
reciprocal causation because no one involved in the study directly affects
their values. Most ancillary predictors assess potentially changing char-
acteristics of the physical or social environment in which respondents live.
In his study of marital dissolution, for example, South (1995) divided the
United States into 382 local marriage markets and used census data to
create a time-varying predictor assessing the availability of spousal alter-
natives in each market. His availability index contrasted the number of
unmarried persons “locally available” to the respondent with the number
of unmarried persons “locally available” to the respondent’s spouse. As
no respondent could be part of the local marriage market (because all
were married), this predictor is ancillary. If some were part of the local
market (as they would be in a study of marital initiation), this predictor
would be approximately ancillary because: (1) the contribution of any
individual to the index would be negligible (given that the smallest
marriage market included over a half million people); and (2) few indi-
viduals move to a particular area because of the availability of spousal
alternatives. Following this logic, the local area unemployment rate just
used in the high school dropout wage analysis is approximately ancillary.
Other ancillary predictors include weather (Young, Meaden, Fogg,
Cherin, & Eastman, 1997) and treatment, if randomly assigned.

A contextual time-varying predictor also describes an “external” sto-
chastic process, but the connection between units is closer—between
husbands and wives, parents and children, teachers and students, employ-
ers and employees. Because of this proximity, contextual predictors can
be influenced by an individual’s contemporaneous outcome values; if so,
they are susceptible to issues of reciprocal causation. To assess whether
reciprocal causation is a problem, you must analyze the particular situa-
tion. For example, in their 30-year study of the effects of parental divorce

~

on mental health, Cherlin, Chase-Lansdale and McRae (1998) included
time-varying predictors denoting whether children had experienced a
parental divorce during four developmental phases: 7-10, 11-15, 16-22,
and 23-33. These contextual time-varying predictors are unlikely to
create interpretive problems because it is doubtful that someone’s level
of emotional problems would influence either the occurrence or the
timing of a parental divorce. But in their three-year study of the link
between the quality of childcare centers and children’s early cognitive
and language development, Burchinal et al. (2000) face a thornier

~problem. Because parents may choose particular childcare centers pre-

cisely because they emphasize particular skills, observed links between
center quality and child development may be due to a link between
development and quality, not quality and development. If such criticisms
seem reasonable, we suggest that you treat a contextual time-varying
predictor as if it were internal, and address issues of reciprocal causation
in ways we now describe.

Internal time-varying predictors describe an individual’s potentially
changeable status over time. Some describe psychological states (mood or
satisfaction), while others describe physical states (respiratory function,
blood levels), social states (married/unmarried, working/unemployed),
or other personal attributes. In their fouryear study of adolescent
smoking, for example, Killen, Robinson, Haydel, et al. (1997) annually
assessed dozens of internal predictors ranging from counts of the number
of friends who smoke and the frequency of drinking to the adolescent’s
height and weight. And in their fouryear study of conduct disorder in
boys, Lahey, McBurnett, Loeber, & Hart (1995) collected annual data on
receipt of various kinds of psychological treatment, both in-patient and

~out-patient, medication and talk therapy.
- 1. Internal time-varying predictors raise serious interpretive dilemmas.

Isn’t it reasonable to argue, for example, that as teens start smoking, they
increase the number of friends who smoke, increase their frequency of
drinking, and lose weight? So, too, isn’t it possible that as a child’s behav-
ior worsens a parent may be more likely to initiate psychotherapy?

L Although the causal link may be from predictor to outcome, it may also
. run the opposite way. Some readers may believe that longitudinal data—
~and the associated statistical models—should resolve such concerns. But
- resolution of the directional arrow is more difficult. As long as a model

links contemporaneous information about time-varying predictors and
outcomes, we effectively convert a longitudinal problem into a cross-
sectional one, fully burdened by questions of reciprocal causation.

i Given the conceptual appeal of internal and contextual time-varying

& predictors, what should you do? We have two concrete recommendations.
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‘irst, use theory as a guide, play your own harshest critic, and determine
vhether your inferences are clouded by reciprocal causation. Second,
£ your data allow, consider coding time-varying predictors so that their
alues in each record in the person-period data set refer to a previous
»oint in chronological time. After all, there is nothing about the
nultilevel model for change that requires contemporaneous data coding.
dost researchers use contemporaneous values by default. Yet it is often
nore logical to link prior status on a predictor with current status on
- outcome.

For example, in their study of conduct disorder (CD) in boys, Lahey
ind colleagues (1995) carefully describe three ways they coded the effect
f time-varying predictors representing treatment:

In each case, the treatment was considered to be present in a given year if
that form of treatment had been provided during all or part of the previ-
ous 12 months (emphasis added). . . . In addition, the analyses of treatment
were repeated using the cumulative number of years that the treatment
had been received as the time-varying covariate to determine whether the
accumulated number of years of treatment influenced the number of CD
symptoms in each year. Finally, a 1-year time-lagged analysis was conducted
to look at the effect of treatment on the number of CD symptoms in the
following year. (p. 90)

3y linking each year’s outcomes to prior treatment data, the researchers
liminish the possibility that their findings are clouded by reciprocal
ausation. So, too, by carefully describing several alternative coding
trategies, each of which describes a predictor constructed from the
rior year’s data, the researchers appear more credible and thoughtful
n their work.

How might we respond to questions about reciprocal causation in
sinexi and colleagues’ (2000) study of the link between unemployment
ind depression? A critic might argue that individuals whose CES-D scores
lecline over time are more likely to find jobs than peers whose levels
emain stable or perhaps increase. If so, the observed link between
e-employment and CES-D scores might result from the effects of CES-D
m employment, not employment on CES-D. To rebut this criticism,
ve emphasize thayhé re-employment predictor indicates whether the
rerson is currently employed at each subsequent interview. As a result, the
noment of re-employment is temporally prior to the collection of CES-
) scores. This design feature helps ameliorate the possibility that the
bserved relationship between unemployment and depression is a result
f reciprocal causation. Had the CES-D and re-employment data been
:ollected simultaneously, it would have been more difficult to marshal
his argument.

A1TALLILY 4 2iVAEy IVIVLT LICTALVLY FULE

Our message is simple: just because you can establish a link between a
time-varying predictor and a time-varying outcome does not guarantee
that the link is causal. While longitudinal data can help resolve issues of
temporal ordering, the inclusion of a time-varying predictor can muddy
the very issues the longitudinal models were intended to address. More-
- over, as we will show in the second half of this book, issues of reciprocal
causation can be even thornier when studying event occurrence because
the links between outcomes and predictors are often more subtle than
the examples just presented suggest. This is not to say you should not
include time-varying predictors in your models. Rather, it is to say that
you must recognize the issues that such predictors raise and not naively
. assume that longitudinal data alone will resolve the problem of recipro-

cal causation.

'_ 5.4 Recentering the Effect of TIME

TIME is the fundamental time-varying predictor. It therefore makes sense
that if recentering a substantive time-varying predictor can produce inter-
pretive advantages, so, too, should recentering TIME. In this section, we
discuss an array of alternative recentering strategies, each yielding a
. different set of level-1 individual growth parameters designed to address
= related, but slightly different, research questions.

; So far, we have tended to recenter TIME so that the level-1 intercept,
. represents individual ¢'s true initial status. Of course, the moment cor-
. responding to someone’s “initial status” is context specific—it might be
& aparticular chronological age in one study (e.g., age 3, 6.5, or 13) or the
. occurrence of a precipitating event in another (e.g., entry into or exit
- from the labor force). In selecting a sensible starting point, we seek an
~ early moment, ideally during the period of data collection, inherently
. meaningful for the process under study. This strategy yields level-2
. submodels in which all parameters are directly and intrinsically
: interpretable, and it ensures that the value of TIME associated with the
intercept, 7, falls within TIME's observed range. Not coincidentally,
I this approach also yields a level-1 submodel that reflects everyday intu-
.. ition about intercepts as a trajectory’s conceptual “starting point.”

~+ Although compelling, this approach is hardly sacrosanct. Once you are
* comfortable with model specification and parameter interpretation, a
. world of alternatives opens up. We illustrate some options using data from
Tomarken, Shelton, Elkins, and Anderson’s (1997) randomized trial
valuating the effectiveness of supplemental antidepressant medication
for individuals with major depression. The study began with an overnight



182 Applied Longitudinal Data Analysis

Table 5.9: Alternative coding strategies for TJME in the antidepressant trial

TIME OF
WAVE DAY  READING DAY TIME (TIME — 3.33) (TIME — 6.67)
1 0 8 AM. 0.00 0.00 -3.33 —6.67
2 0 3 p.M. 0.33 0.33 -3.00 —6.33
3 0 10 p.M. 0.67 0.67 -2.67 -6.00
4 1 8 A.M. 0.00 1.00 -2.33 -5.67
5 1 3 P.M. 0.33 1.33 -2.00 -5.33
6 1 10 p.M 0.67 1.67 -1.67 -5.00
11 3 3pm. 0.33 3.33 0.00 -3.33
16 5 8 A.M. 0.00 5.00 1.67 -1.67
17 5 3 pM. 0.33 5.33 2.00 -1.33
18 5 10 p.M. 0.67 5.67 2.33 -1.00
19 6 8 A.M. 0.00 6.00 2.67 —0.67
20 6 3 P.M. 0.33 6.33 3.00 -0.33
21 6 10 p.m. 0.67 6.67 3.33 0.00

hospital stay for 73 men and women who were already being treated with
a nonpharmacological therapy that included bouts of sleep deprivation.
During the pre-intervention night, the researchers prevented each par-
ticipant from obtaining any sleep. The next day, each person was sent
home with a week’s worth of pills (placebo or treatment), a package of
mood diaries (which use a five-point scale to assess positive and negative
moods), and an electronic pager. Three times a day—at 8 A.M., 3 p.M,,
and 10 p.Mm.—during the next month, respondents were electronically
paged and reminded to fill out a mood diary. Here we analyze the first
week’s data, focusing on the participants’ positive moods. With full com-
pliance, each person would have 21 assessments. Although two people
were recalcitrant (producing only 2 and 12 readings), everyone else was
compliant, filling out at least 16 forms.

Table 5.9 presents seven variables that represent related, but distinct,
ways of clocking time. The simplest, WAVE, counts from 1 to 21; although
great for data processing, its cadence has little intuitive meaning because
few of us divide our weeks into 21 conceptual components. DAY, although
coarse, has great intuitive appeal, but it does not distinguish among
morning, afternoon, and evening readings. One way to capture this finer

information is to add a second temporal variable, such as READING or 4
TIME OF DAY. Although the metric of the former makes it difficult to
analyze, the metric of the latter is easily understood: 0 for morning read-
ings; 0.33 for afternoon readings; 0.67 for evening readings. (We could &
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also use a 24-hour clock and assign values that were not equidistant.)
Another way to distinguish within-day readings is to create a single vari-
able that combines both aspects of time. The next three variables, TIME,
TIME — 3.33, and TIME — 6.67, achieve this goal. The first, TIME, oper-
ates like our previous temporal variables—it is centered on initial status.
The others are linear transformations of TIME: one centered on 3.33, the
study’s midpoint, and the other centered on 6.67, the study’s final wave.

Having created these alternative variables, we could now specify a sep-
arate set of models for each. Instead of proceeding in this tedious fashion,
let us write a general model that uses a generic temporal variable (T)
- whose values are centered around a generic constant (¢):

Yy = 7o; + ms(Ty — ) + &5 (5.12a)

We can then write companion level-2 models for the effect of treatment:

To: = Yoo + Yo TREAT; +Co;

(5.12b)
Ty = Y10+ YuTREAT, + {;

. and invoke standard normal theory assumptions for the residuals. This
same model can be used for most of the temporal variables in table 5.9
(except those that distinguish only between within-day readings).
Table 5.10 presents the results of fitting this general model using
~ the three different temporal variables, TIME, TIME — 3.33, and TIME —
6.67. Begin with the initial status representation of TIME. Because we
~ cannot reject null hypotheses for either linear change or treatment, we
. conclude that: (1) on average, there is no linear trend in positive moods
' over time in the placebo group (7,0 =-2.42, n.s.); and (2) when the study
. began, the groups were indistinguishable (7o; = —3.11, n.s.) as random-
- ization would have us expect. The statistically significant coefficient for
. the effect of TREAT on linear change (¥1; = 5.54, p < 0.05) indicates that
_ the trajectories’ slopes differ. The prototypical trajectories in figure 5.5
. illustrate these findings. On average, the two groups are indistinguish-
able initially, but over time, the positive mood scores of the treatment
. group increase while those of the control group decline. The statistically
. significant variance components for the intercept (65=2111.33, p<.001)
. and linear change (0} = 63.74, p<.001) indicate that that substantial vari-
. ation in these parameters has yet to be explained.
. What happens as we move the centering constant from 0 (initial
. status), to 3.33 (the study’s midpoint), to 6.67 (the study’s endpoint)? As
expected, some estimates remain identical, while others change. The
_ general principle is simple: parameters related to the slope remain stable
- while those related to the intercept differ. On the stable side, we obtain
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5.10: Results of using alternative representations for the main effect of TIME when
iting the effect of treatment on the positive mood scores in the antddepressant trial

73)
Temporal predictor in level-1 model
Parameter TIME (TIME - 3.33) (TIME - 6.67)
Effects r
-1 Intercept Yoo 167.46%** 159.40%** 151,345
rcept, My, (9.33) (8.76) (11.54)
TREAT Yo -3.11 15.35 33.80*
(12.33) (11.54) (15.16)
>f Intercept Y10 —-2.42 -2.42 -2.42
nge, m; (1.73) (1.78) (1.73)
TREAT Y11 5.5b4* 5.54% 5.54*
(2.28) (2.28) (2.28)
1ce Components 3
1: within-person o2 1229.93#%** 1229.93%** 1229.93%%+ =
2: In level-1 intercept op 2111.38%**  20(08.72%** 8399 45%%% &
In rate of change o7 63.74% %% 63.74%%* 63.74%4%
Covariance Oo —121.62% 90.83 303.28%*%
ness-of-fit :
Deviance 12680.5 12680.5 12680.5
AlIC 12696.5 12696.5 12696.5
BIC 12714.8 12714.8 12714.8

L0; *p < .05; ** p < 01; ¥** p< 001.
is centered around initial status, middle status, and final status.

“ull ML, SAS PROC MIXED.

dentical estimates for the linear rate of change in the placebo group (71,
:—2.42, n.s.) and the effect of treatment on that rate (1, =5.54, p<0.05).
10, 100, we obtain identical estimates for the residual variance in the rate
f change (63 =63.74, #<.001) and the within-person residual variance
6= 1229.93). And, most important, the deviance, AIC and BIC statis-
ics remain unchanged because these models are structurally identical.
Where these models differ is in the location of their trajectories’
inchors, around their starting point, midpoint, or endpoint. Because the
ntercepts refer to these anchors, each model tests a different set of
iypotheses about them. If we change ¢, we change the anchors, which
hanges the estimates and their interpretations. In terms of the general
nodel in equations 5.12a and 5.12b, ¥, assesses the elevation of the pop-
ation average change trajectory at time ¢ %, assesses the differential
levation of this trajectory at time ¢ between groups; 0} assesses the pop-
dation variance in true status at time ¢ and oy assesses the population
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Figure 5.5. Understanding the consequences of rescaling the effect of TIME. Prototypi-
cal trajectories for individuals by TREATMENT status in the antidepressant experiment.
The dashed vertical lines reflect the magnitude of-the efféct of TREATMENT if time is
centered at the study’s beginning (0), midpoint (3.33), and endpoint (6.67).

covariance between true status at time ¢ and the per-unit rate of change
in Y.

Although general statements like these are awkward, choice of a suit-
able centering constant can create simple, even elegant, interpretations.
If we choose ¢ to be 3.33, this study’s midpoint, the intercept parameters
assess effects at midweek. Because the treatment is still nonsignificant (7o,
=15.35, n.s.), we conclude that the average elevation of the two trajec-
tories remains indistinguishable at this time. If we choose ¢ to be 6.67,

. - this study’s endpoint, the intercept parameters assess effects at week’s

end. Doing so yields an important finding: Instead of reinforcing the
expected nonsignificant early differences between groups, we now find a
statistically significant treatment effect (701 = 33.80, p < .05). After a week
of antidepressant therapy, the positive mood score for the average

. member of the treatment group differs from that of the average member
* of the control group.

“How can changing the centering constant for TIME have such a pro-
found impact, especially since the fundamental model is unchanged? The
dashed vertical lines in the prototypical plots in figure 5.5 provide an
explanation. In adopting a particular centering constant, we cause the
resultant estimates to describe the trajectories’ behavior at that specific
point in time. Changing the trajectory’s anchor changes the location of

L the focal comparison. Of course, you could conduct post hoc tests of these

‘contrasts (using methods of section 4.7) and obtain identical results. But



when doing data analysis, it is sometimes easier to establish level-1 param-
eters that automatically yield readymade tests for hypotheses of greatest
interest. We urge you to identify a scale for TIME that creates a level-1
submodel with directly interpretable parameters. Initial status often
works well, but there are alternatives. The midpoint option is especially
useful when fotal study duration has intrinsic meaning; the endpoint
option is especially useful when final status is of special concern.

Statistical considerations can also suggest the need to recenter TIME.
As shown in table 5.10, a change in center can change the interpretation,
and hence values, of selected random effects. Of particular note is the
effect that a recentering can have on 6y, the covariance between a level-
1 model’s intercept and slope. Not only can a recentering affect this para-
meter’s magnitude, it can also affect its sign. In these data, the covariance
between intercept and slope parameters moves from —121.62 to 90.83 to
303.28 as the centering constant changes. These covariances (and their
associated variances) imply correlation coefficients of —0.33, 0.25, and
0.66, respectively. As you might imagine, were we to choose an even larger
centering constant, outside the range of the data, it would be possible to
find oneself specifying a model in which the correlation between param-
eters is close to 1.00. As Rogosa and Willett (1985) demonstrate, you can
always alter the correlation between the level-1 growth parameters simply
by changing the centering constant.

Understanding that the correlation between level-1 individual growth
parameters can change through a change of centering constants has
important analytic consequences. Recall that in section 5.2.2, we alluded
to the possibility that you might encounter boundary constraints if you
attempted to fit a model in which the correlation between intercept and
slope is so high that iterative algorithms may not converge and you
cannot find stable estimates. We now introduce the possibility that the
correlation between true intercept and true slope can be so high as to
preclude model fitting. When this happens, recentering TIME can some-
times ameliorate your problem.

There is yet another reason you might recenter time: it can sometimes
lead to a simpler level-1 model. For this to work, you must ask yourself:
Is there a centering constant that might totally eliminate the need for an
explicit intercept parameter? If so, you could decrease the number of
parameters needed to effectively characterize the process under study.
This is precisely what happened in the work of Huttenlocher, Haight,
Bryk, Seltzer, and Lyons (1991). Using a sample of 22 infants and tod-
dlers, the researchers had data on the size of children’s vocabularies at
up to six measurement occasions between 12 and 26 months. Reasoning

that there must be an age at which we expect children to have no words, 4

the researchers centered TIME on several early values, such as 9, 10, 11,
and 12 months. In their analyses, they found that centering around age
12 months allowed them to eliminate the intercept parameter in their
level-1 submodel, thereby dramatically simplifying their analyses.
~ We conclude by noting that there are other scales for TIME t}.lat alter
not only a level-1 submodel’s intercept but also its slope. It i§ possible, for
example, to specify a model that uses neither a traditional intercept nor
slope, but rather parameters representing initial and final status. To do
s0, you need to create two new temporal predictors, one to register each
feature, and eliminate the stand-alone intercept term.

To fit 2 multilevel model for change in which the level-1 individual

_growth parameters refer to initial and final status, we write:

(5.13a)

max time — TIME; TIME,;; — min time
Y" _—-ﬂgi = R = +7L'1,- +6U
i max time — main tome

max time — min time

In the context of the antidepressant medication trial, in which the earli-
est measurement is at time 0 and the latest at time 6.67, we have:

6.67 — TIME; TIME;
5 = Toi li

€.

6.67 6.67

|- Although it may not appear so, this model is identical to the other linear

growth models; it is just that its parameters have new interpretations. This
is true despite the fact that equation 5.13a contains no classical “inter-

~ cept” term and TIME appears twice in two different predictors.

To see how the individual growth parameters in this model represent
individual 7s initial and final status, substitute the minimum and

' maximum values for TIME (0 and 6.67) and simplify. When TIME = 0,
- we are describing someone’s initial status. At this moment, the second
b term of equation 5.13a falls out and the first term becomes my; so that

individual #'s initial status is 7y; + &;. Similarly, when TIME = 6.67, we are

= describing someone’s final status. At this moment, the first term of equa-

tion 5.13a falls out and the second term becomes 7;; so that individual s

~ final status is 7, + &;

We can then specify standard level-2 submodels—for example:

Toi = Yoo + Yo TREAT, + o
Ty = Y10+ YuTREAT, + {y;

(5.13b)

. and invoke standard normal theory assumptions about the residuals.
~ When we fit this model to data, we find the same deviance statistic we
-' found before—12,680.5—reinforcing the observation that this model is
L identical to the three linear models in table 5.10. And when it comes to
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the parameter estimates, notice the similarity between these and selected
results in table 5.10:

fo; = 167.46 —3.11TREAT;
7,; =151.34+33.80TREAT..

The first model provides estimates of initial status in the control group
(167.46) and the differential in initial status in the treatment group
(-3.11). The second model provides estimates of final status in the
control group (151.34) and the differential in final status in the treat-
ment group (33.80). .

This unusual parameterization allows you to address questions about
initial and final status simultaneously. Simultaneous investigation of these

questions is superior to a piecemeal approach based on separate analy-

ses of the first and last wave. Not only do you save considerable time and
effort, you increase statistical power by using all the longitudinal data,
even those collected at intermediate points in time.

6

Modeling Discontinuous and
Nonlinear Change

Things have changed.
—Bob Dylan

. widual growth is smooth and linear. Yet individual change can also be dis-
. continuous or nonlinear. Patients’ perceptions of their psychological
* well-being may abruptly shift when psychiatrists intervene and change
itheir medications. Initial decreases in employee self-efficacy may gradu-
~ ally abate as new hires develop confidence with experience on the job.
. This is not the first time we have confronted such possibilities. In the
early intervention study of chapter 3, the trajectory of the child’s cogni-
tive development was nonlinear between infancy and age 12. To move
. forward and fit a model to these data, we focused on a narrower tempo-
* ral period—the year of life between 12 and 24 months—in which the lin-
. earity assumption was tenable. In chapter 4, when changes in adolescent
?lcohol use seemed nonlinear, we transformed the outcome (and one of
. the predictors). Although the researchers used a nine-point scale to assess
=.,~:a;lcoh01 consumption, we analyzed the square root of scores on this scale,
" which yielded approximately linear change trajectories.

. In this chapter, we introduce strategies for fitting models in which indi-
dual change is explicitly discontinuous or nonlinear. Rather than view
ese patterns as inconveniences, we treat them as substantively com-
elling opportunities. In doing so, we broaden our questions about the
ature of change beyond the basic concepts of initial status and rate of
ange to a consideration of acceleration, deceleration, turning points,
hifts, and asymptotes. The strategies that we use fall into two broad
asses. Empirical strategies that let the “data speak for themselves.” Under
is approach, you inspect observed growth records systematically and
entify a transformation of the outcome, or of TIME, that linearizes the



